WO2021053971A1 - 散乱トモグラフィ装置及び散乱トモグラフィ方法 - Google Patents

散乱トモグラフィ装置及び散乱トモグラフィ方法 Download PDF

Info

Publication number
WO2021053971A1
WO2021053971A1 PCT/JP2020/028886 JP2020028886W WO2021053971A1 WO 2021053971 A1 WO2021053971 A1 WO 2021053971A1 JP 2020028886 W JP2020028886 W JP 2020028886W WO 2021053971 A1 WO2021053971 A1 WO 2021053971A1
Authority
WO
WIPO (PCT)
Prior art keywords
image
coordinate
scattering
function
measurement results
Prior art date
Application number
PCT/JP2020/028886
Other languages
English (en)
French (fr)
Inventor
木村 憲明
建次郎 木村
Original Assignee
株式会社 Integral Geometry Science
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社 Integral Geometry Science filed Critical 株式会社 Integral Geometry Science
Priority to US17/640,159 priority Critical patent/US20220319067A1/en
Priority to AU2020348001A priority patent/AU2020348001A1/en
Priority to JP2021546534A priority patent/JP7481757B2/ja
Priority to KR1020227005201A priority patent/KR20220062270A/ko
Priority to CA3153233A priority patent/CA3153233A1/en
Priority to CN202080063129.0A priority patent/CN114390908A/zh
Priority to EP20864902.0A priority patent/EP4033228A4/en
Publication of WO2021053971A1 publication Critical patent/WO2021053971A1/ja
Priority to IL290774A priority patent/IL290774A/en

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/05Detecting, measuring or recording for diagnosis by means of electric currents or magnetic fields; Measuring using microwaves or radio waves 
    • A61B5/0507Detecting, measuring or recording for diagnosis by means of electric currents or magnetic fields; Measuring using microwaves or radio waves  using microwaves or terahertz waves
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T11/002D [Two Dimensional] image generation
    • G06T11/003Reconstruction from projections, e.g. tomography
    • G06T11/005Specific pre-processing for tomographic reconstruction, e.g. calibration, source positioning, rebinning, scatter correction, retrospective gating
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B10/00Other methods or instruments for diagnosis, e.g. instruments for taking a cell sample, for biopsy, for vaccination diagnosis; Sex determination; Ovulation-period determination; Throat striking implements
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/0033Features or image-related aspects of imaging apparatus classified in A61B5/00, e.g. for MRI, optical tomography or impedance tomography apparatus; arrangements of imaging apparatus in a room
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/0033Features or image-related aspects of imaging apparatus classified in A61B5/00, e.g. for MRI, optical tomography or impedance tomography apparatus; arrangements of imaging apparatus in a room
    • A61B5/004Features or image-related aspects of imaging apparatus classified in A61B5/00, e.g. for MRI, optical tomography or impedance tomography apparatus; arrangements of imaging apparatus in a room adapted for image acquisition of a particular organ or body part
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/05Detecting, measuring or recording for diagnosis by means of electric currents or magnetic fields; Measuring using microwaves or radio waves 
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/43Detecting, measuring or recording for evaluating the reproductive systems
    • A61B5/4306Detecting, measuring or recording for evaluating the reproductive systems for evaluating the female reproductive systems, e.g. gynaecological evaluations
    • A61B5/4312Breast evaluation or disorder diagnosis
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/70Means for positioning the patient in relation to the detecting, measuring or recording means
    • A61B5/708Breast positioning means
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/72Signal processing specially adapted for physiological signals or for diagnostic purposes
    • A61B5/7235Details of waveform analysis
    • A61B5/7253Details of waveform analysis characterised by using transforms
    • A61B5/7257Details of waveform analysis characterised by using transforms using Fourier transforms
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N22/00Investigating or analysing materials by the use of microwaves or radio waves, i.e. electromagnetic waves with a wavelength of one millimetre or more
    • G01N22/02Investigating the presence of flaws
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S7/00Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
    • G01S7/02Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S13/00
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S7/00Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
    • G01S7/02Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S13/00
    • G01S7/35Details of non-pulse systems
    • G01S7/352Receivers
    • G01S7/356Receivers involving particularities of FFT processing
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B2576/00Medical imaging apparatus involving image processing or analysis
    • A61B2576/02Medical imaging apparatus involving image processing or analysis specially adapted for a particular organ or body part
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N22/00Investigating or analysing materials by the use of microwaves or radio waves, i.e. electromagnetic waves with a wavelength of one millimetre or more
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S13/00Systems using the reflection or reradiation of radio waves, e.g. radar systems; Analogous systems using reflection or reradiation of waves whose nature or wavelength is irrelevant or unspecified
    • G01S13/02Systems using reflection of radio waves, e.g. primary radar systems; Analogous systems
    • G01S13/0209Systems with very large relative bandwidth, i.e. larger than 10 %, e.g. baseband, pulse, carrier-free, ultrawideband
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S13/00Systems using the reflection or reradiation of radio waves, e.g. radar systems; Analogous systems using reflection or reradiation of waves whose nature or wavelength is irrelevant or unspecified
    • G01S13/88Radar or analogous systems specially adapted for specific applications
    • G01S13/89Radar or analogous systems specially adapted for specific applications for mapping or imaging
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T2210/00Indexing scheme for image generation or computer graphics
    • G06T2210/41Medical

Definitions

  • the present disclosure relates to a scattered tomography apparatus or the like that uses scattered waves of radio waves to generate a reconstructed image showing elements inside an object.
  • Patent Document 1 Patent Document 2 and Patent Document 3 are related to a scattering tomography apparatus or the like that generates a reconstructed image showing an element inside an object by using scattered waves of radio waves.
  • a beam transmitted from a microwave transmitter is incident on an inspection target, and the amplitude and phase of the scattered beam are detected by the microwave detector. Then, the distribution of the permittivity is calculated from the output signal of the microwave detector, and the image of the tomography in the inspection target is displayed.
  • an element inside an object can be identified using scattered waves, it is not easy to identify the characteristics of the element. For example, whether or not the element exists permanently inside the object. Is not easy to identify. Specifically, when a permanent malignant tumor and other cells that randomly occur and disappear reflect radio waves in the same way, a scattered wave is used to make an element inside the human body a malignant tumor. It is not easy to distinguish between one and another cell.
  • the present disclosure provides a scattered tomography apparatus or the like capable of generating a reconstructed image showing a permanent element inside an object by using scattered waves of radio waves.
  • the scattering tomography apparatus includes a transmitting antenna that transmits radio waves from the outside of the object to the inside of the object, and the scattered waves of the radio waves transmitted from the transmitting antenna to the inside of the object.
  • a transmitting antenna that transmits radio waves from the outside of the object to the inside of the object, and the scattered waves of the radio waves transmitted from the transmitting antenna to the inside of the object.
  • the information processing circuit includes an information processing circuit that generates a reconstructed image showing a permanent element inside the radio wave, and the information processing circuit uses the measurement result as a boundary condition for each of the plurality of measurement results.
  • a scattering field function is calculated in which the transmission position and the reception position of the scattered wave are input and the amount of the scattered wave at the reception position is output, and the position to be visualized is input for each of the plurality of measurement results. It is a visualization function that outputs the image intensity of the visualization target position, and is output from the scattering field function by inputting the visualization target position into the scattering field function as the transmission position and the reception position.
  • FIG. 1 is a graph showing the secretion of progesterone and others during the menstrual cycle.
  • FIG. 2A is a graph showing the frequency of leaflet cell proliferation (mitosis) with respect to the day in the menstrual cycle.
  • FIG. 2B is a graph showing the frequency of cell deletion (apoptosis) with respect to the day in the menstrual cycle.
  • FIG. 3 is a conceptual diagram showing leaflets and milk ducts.
  • FIG. 4 is a conceptual diagram showing an example in which the array antenna in the embodiment scans on a curved surface and measures scattered data.
  • FIG. 5 is a conceptual diagram showing a time series measurement performed using microwave mammography in the embodiment.
  • FIG. 6 is a graph showing time series data of image intensity in the embodiment.
  • FIG. 7 is a conceptual diagram showing the deviation of the measurement region in the embodiment.
  • FIG. 8A is an image diagram showing a display example of an image according to the embodiment.
  • FIG. 8B is an image diagram showing a display example of a translucent fluoroscopic image in which the inside of the breast in the embodiment is viewed from the lower side to the upper side of the subject.
  • FIG. 8C is an image diagram showing a display example of a translucent fluoroscopic image in which the inside of the breast in the embodiment is viewed from the front side of the subject.
  • FIG. 9A is an image diagram showing a display example of the reconstructed image obtained from the measurement data on January 11 in Example 1.
  • FIG. 9B is an image diagram showing a display example of the reconstructed image obtained from the measurement data on January 18 in Example 1.
  • FIG. 9C is an image diagram showing a display example of the reconstructed image obtained from the measurement data on January 25 in Example 1.
  • FIG. 9D is an image diagram showing a display example of the reconstructed image obtained from the measurement data on February 1 in Example 1.
  • FIG. 9E is an image diagram showing a display example of the tumor probability image in Example 1.
  • FIG. 10A is an image diagram showing a display example of the reconstructed image obtained from the measurement data of June 1 in Example 2.
  • FIG. 10B is an image diagram showing a display example of the reconstructed image obtained from the measurement data on June 5 in Example 2.
  • FIG. 10C is an image diagram showing a display example of the reconstructed image obtained from the measurement data on June 8 in Example 2.
  • FIG. 10A is an image diagram showing a display example of the reconstructed image obtained from the measurement data of June 1 in Example 2.
  • FIG. 10B is an image diagram showing a display example of the reconstructed image obtained from the measurement data on June 5 in Example 2.
  • FIG. 10C is an image
  • FIG. 10D is an image diagram showing a display example of the reconstructed image obtained from the measurement data on June 12 in Example 2.
  • FIG. 10E is an image diagram showing a display example of the reconstructed image obtained from the measurement data on June 15 in Example 2.
  • FIG. 10F is an image diagram showing a display example of the reconstructed image obtained from the measurement data on June 19 in Example 2.
  • FIG. 10G is an image diagram showing a display example of the reconstructed image obtained from the measurement data on June 22 in Example 2.
  • FIG. 10H is an image diagram showing a display example of the reconstructed image obtained from the measurement data on June 26 in Example 2.
  • FIG. 10I is an image diagram showing a display example of the tumor probability image in Example 2.
  • FIG. 10D is an image diagram showing a display example of the reconstructed image obtained from the measurement data on June 12 in Example 2.
  • FIG. 10E is an image diagram showing a display example of the reconstructed image obtained from the measurement data on June 15 in Example 2.
  • FIG. 10F is an image
  • FIG. 11A is an image diagram showing a display example of the reconstructed image obtained from the measurement data on October 23 in Example 3.
  • FIG. 11B is an image diagram showing a display example of the reconstructed image obtained from the measurement data on October 30 in Example 3.
  • FIG. 11C is an image diagram showing a display example of the reconstructed image obtained from the measurement data on November 6 in Example 3.
  • FIG. 11D is an image diagram showing a display example of the reconstructed image obtained from the measurement data on November 13 in Example 3.
  • FIG. 11E is an image diagram showing a display example of the reconstructed image obtained from the measurement data of November 20 in Example 3.
  • FIG. 11F is an image diagram showing a display example of the reconstructed image obtained from the measurement data on November 27 in Example 3.
  • FIG. 11A is an image diagram showing a display example of the reconstructed image obtained from the measurement data on October 23 in Example 3.
  • FIG. 11B is an image diagram showing a display example of the reconstructed image obtained from the measurement data on October 30 in Example 3.
  • FIG. 11G is an image diagram showing a display example of the reconstructed image obtained from the measurement data of December 4 in Example 3.
  • FIG. 11H is an image diagram showing a display example of the reconstructed image obtained from the measurement data on December 11 in Example 3.
  • FIG. 11I is an image diagram showing a display example of the tumor probability image in Example 3.
  • FIG. 12A is an image diagram showing a display example of a reconstructed image obtained from the composite data of the measurement data of the cancer patient in Example 4 and the measurement data of the healthy subject on February 26.
  • FIG. 12B is an image diagram showing a display example of a reconstructed image obtained from the composite data of the measurement data of the cancer patient in Example 4 and the measurement data of the healthy subject on February 5.
  • FIG. 12A is an image diagram showing a display example of a reconstructed image obtained from the composite data of the measurement data of the cancer patient in Example 4 and the measurement data of the healthy subject on February 5.
  • FIG. 12C is an image diagram showing a display example of a reconstructed image obtained from the composite data of the measurement data of the cancer patient in Example 4 and the measurement data of the healthy subject on February 12.
  • FIG. 12D is an image diagram showing a display example of a reconstructed image obtained from the composite data of the measurement data of the cancer patient in Example 4 and the measurement data of the healthy subject on February 19.
  • FIG. 12E is an image diagram showing a display example of the tumor probability image in Example 4.
  • FIG. 13 is a block diagram showing a basic configuration of the scattering tomography apparatus according to the embodiment.
  • FIG. 14 is a flowchart showing the basic operation of the scattering tomography apparatus according to the embodiment.
  • FIG. 15 is a conceptual diagram showing a specific configuration of the scattering tomography apparatus according to the embodiment.
  • the scattering tomography apparatus includes a transmitting antenna that transmits radio waves from the outside of the object to the inside of the object, and the scattered waves of the radio waves transmitted from the transmitting antenna to the inside of the object.
  • a transmitting antenna that transmits radio waves from the outside of the object to the inside of the object, and the scattered waves of the radio waves transmitted from the transmitting antenna to the inside of the object.
  • the information processing circuit includes an information processing circuit that generates a reconstructed image showing a permanent element inside the radio wave, and the information processing circuit uses the measurement result as a boundary condition for each of the plurality of measurement results.
  • a scattering field function is calculated in which the transmission position and the reception position of the scattered wave are input and the amount of the scattered wave at the reception position is output, and the position to be visualized is input for each of the plurality of measurement results. It is a visualization function that outputs the image intensity of the visualization target position, and is output from the scattering field function by inputting the visualization target position into the scattering field function as the transmission position and the reception position.
  • the scattering tomography apparatus can calculate an intermediate image that can show an element inside the object based on the scattering field function calculated by using the measurement result of the scattered wave as a boundary condition. Then, the scattering tomography apparatus can generate a reconstructed image showing a permanent element inside the object from a plurality of intermediate images obtained by using a plurality of measurement results on a plurality of days.
  • the scattered tomography apparatus can use the scattered waves of radio waves to generate a reconstructed image showing a permanent element inside an object. This makes it possible, for example, to use scattered waves to identify whether an element inside the human body is a permanent malignant tumor or another cell that randomly develops and disappears. ..
  • the scattering tomography apparatus can simply generate a reconstructed image by the logical product of the intermediate images corresponding to the output of the visualization function.
  • the information processing circuit generates the intermediate image based on the visualization function and the diffusion coefficient, and when the intermediate image is generated, the larger the diffusion coefficient, the more the imaging target position in the intermediate image.
  • the image intensity of is widely diffused spatially.
  • the scattering tomography apparatus can diffuse the image intensity by the diffusion coefficient. Therefore, the scattering tomography apparatus can suppress the disappearance of the permanent element from the reconstructed image due to the misalignment in the measurement of the scattered wave by the diffusion coefficient.
  • P N (r) represents the reconstructed image
  • r is represents the position
  • N is the represents the number of the plurality of intermediate images
  • b i represents the image function relating i from 1 to N
  • e ⁇ b i (r) is about i from 1 to N represents the intermediate image
  • [nu represents the diffusion coefficient
  • delta is a two-dimensional Laplacian corresponding to two directions positional deviation occurs in the measurement of the scattered wave It represents an operator
  • represents a logical product.
  • the scattering tomography apparatus can appropriately diffuse the image intensity by the relational expression based on the stochastic method.
  • the information processing circuit performs a Fourier transform on the b i (r), multiplied by exp (- ⁇ (k x 2 + k y 2)) against the result of the Fourier transform, exp ( -v by performing inverse Fourier transform on the (k x 2 + k y 2 )) the result of multiplying, e ⁇ b i (calculates r), exp (- ⁇ (k x 2 + k y 2)) 's k x and k y, representing the two wave numbers corresponding to the two directions of b i.
  • the scattering tomography apparatus can diffuse the image intensity at high speed and appropriately.
  • the diffusion coefficient is determined as a value proportional to the squared average error of the measurement position of the scattered wave.
  • the diffusion coefficient can be determined based on the magnitude of the error of the measurement position. Then, the scattering tomography apparatus can appropriately diffuse the image intensity based on the magnitude of the error of the measurement position.
  • the diffusion coefficient is set as a value equal to the squared average error of the measurement position of the scattered wave.
  • the diffusion coefficient can be simply determined based on the magnitude of the error in the measurement position. Then, the scattering tomography apparatus can appropriately diffuse the image intensity based on the magnitude of the error of the measurement position.
  • the diffusion coefficient is set to 0.
  • the scattering tomography apparatus can simply generate a reconstructed image by the logical product of the intermediate image corresponding to the output of the visualization function, as in the case where the diffusion coefficient is not used.
  • the diffusion coefficient is defined as a value larger than 0.
  • the scattering tomography apparatus can more reliably diffuse the image intensity with a diffusion coefficient greater than zero. Therefore, the scattered tomography apparatus can more reliably suppress the disappearance of permanent elements from the reconstructed image due to misalignment in the measurement of scattered waves by a diffusion coefficient greater than zero.
  • the X coordinate and the Z coordinate of the position of the transmitting antenna are the same as the X coordinate and the Z coordinate of the position of the receiving antenna, respectively.
  • the scattering field function is , X represents the X coordinate of the transmission position and the reception position, y 1 represents the Y coordinate of the transmission position, y 2 represents the Y coordinate of the reception position, and z represents the Y coordinate of the reception position.
  • k represents the wave number of the wave
  • y 1 and y Represents the wave number with respect to 2 , where a (k x , ky1 , ky2 ) is I represents the transmitting antenna and the index of the transmitting position and the receiving position where the receiving antenna is present, and x I is the transmitting position and the receiving position where the transmitting antenna and the receiving antenna are present.
  • x I is the transmitting position and the receiving position where the transmitting antenna and the receiving antenna are present.
  • z I represents the Z coordinate of the transmitting antenna and the transmitting position where the receiving antenna is present and the receiving position.
  • Is x represents y 1, [Phi representing the measurement results in y 2 and t Fourier transform image relating y1, y2 and t of (x, y 1, y 2, t), t represents the time, the video
  • the transform function is The x, y, and z of the visualization function represent the X-coordinate, Y-coordinate, and Z-coordinate of the visualization target position, respectively.
  • the scattering tomography apparatus determines the above-mentioned scattering field function and the above-mentioned image based on the fact that the X-coordinate and the Z-coordinate of the position of the transmitting antenna are the same as the X-coordinate and the Z-coordinate of the position of the receiving antenna, respectively.
  • An intermediate image can be appropriately generated based on the conversion function.
  • the scattering tomography method includes a step of transmitting radio waves from the outside of the object to the inside of the object by a transmitting antenna, and the above-mentioned transmission from the transmitting antenna to the inside of the object by a receiving antenna.
  • a plurality of measurement results are acquired on the plurality of days, and the plurality of measurements are performed.
  • the measurement result is bounded for each of the plurality of measurement results.
  • a scattering field function is calculated in which the transmitting position of the radio wave and the receiving position of the scattered wave are input and the amount of the scattered wave at the receiving position is output, and for each of the plurality of measurement results, the scattering field function is calculated. It is a visualization function in which the visualization target position is input and the image intensity of the visualization target position is output, and by inputting the visualization target position as the transmission position and the reception position into the scattering field function.
  • About the plurality of measurement results by calculating a visualization function determined based on the amount output from the scattering field function and generating an intermediate image based on the visualization function for each of the plurality of measurement results.
  • the reconstructed image is generated by generating a plurality of intermediate images and calculating the minimum value of the image intensity at each position in the plurality of intermediate images by a logical product.
  • the scattered tomography apparatus of this embodiment uses scattered waves of radio waves to generate a reconstructed image showing a permanent element inside an object.
  • the scattering tomography apparatus according to the present embodiment will be described in detail, including the techniques and theories underlying the scattering tomography apparatus.
  • microwave mammography is mainly assumed, microwaves are used for radio waves, and breasts are used for objects, but the field of application is not limited to microwave mammography, and what is microwave? Different radio waves and objects different from the breast may be used.
  • the present disclosure provides a method for identifying a malignant tumor or the like or a method for confirming the absence of a tumor or the like by using time series probability theory.
  • a time-series stochastic method images showing long-term or medium-term invariant elements in the breast are extracted from the results of a plurality of measurements.
  • images showing long-term or medium-term invariant elements in the breast are extracted from the results of a plurality of measurements.
  • a 3D image showing the elements in the breast can be obtained from the result of one measurement.
  • a plurality of 3D images can be obtained from the results of a plurality of measurements.
  • a final reconstructed image can be obtained from the time series data of such an image by using a stochastic partial differential equation (also called a time series stochastic partial differential equation).
  • the time-series stochastic method in the present disclosure is an analysis method based on a stochastic partial differential equation.
  • Time-series stochastic methods may be combined with existing scattering field theories.
  • the time-series stochastic method in the present disclosure may be combined with the scattering field theory described in Patent Document 2 or Patent Document 3 or the like described above.
  • the present inventors have conducted clinical trials based on a combination of scattering field theory and time-series stochastic methods for a total of five people from the early 20s to the late 40s.
  • the 3D image obtained from the result of one measurement of each person sometimes showed some elements in the breast, but the result was that no malignant tumor was found in all of them.
  • the elements to be visualized are projected with high resolution and high contrast.
  • the imaged element is a cell that produces and disappears in a short period of time, or a tumor that does not change in the long to medium term (or a tumor that grows monotonically).
  • the combination of the scattering field theory and the time-series stochastic method is particularly effective in a simple situation where the element to be visualized is one of the above, and constitutes a practically powerful diagnostic technique.
  • FIG. 1 is a graph showing the secretion of progesterone and others during the menstrual cycle.
  • FIG. 2A is a graph showing the frequency of daily leaflet cell proliferation (mitosis) in the menstrual cycle.
  • FIG. 2B is a graph showing the frequency of daily cell deletion (apoptosis) in the menstrual cycle.
  • FIG. 3 is a conceptual diagram showing leaflets and milk ducts.
  • the mammary gland is composed of multiple mammary lobes.
  • the mammary lobe is further composed of leaflets and ducts.
  • the leaflets produce milk, and the ducts carry the milk to the nipple.
  • the frequency of leaflet cell proliferation increases as the day progresses towards the end of the menstrual cycle. Then, the frequency of cell proliferation of the leaflets becomes a high value on the 25th day of the 28-day menstrual cycle. This high number is associated with an increase in the number of leaflets.
  • the cell proliferation of the leaflets also affects the measurement results obtained by microwave mammography.
  • the increase in leaflets with high permittivity clearly hinders the detection of malignant tumors.
  • cell proliferation is not active on the 4th to 19th days of the menstrual cycle, so that this period is suitable for measurement using microwave mammography.
  • there are some reflex signals from the leaflets even at this time and such reflex signals hinder the detection of small tumors.
  • cell proliferation mitosis
  • cell deletion apoptosis
  • lobular cell proliferation is not a phenomenon that occurs uniformly throughout the breast, but a phenomenon that occurs locally (discretely). That is, lobular cells are assumed to develop locally and randomly and disappear.
  • the elements visualized by microwave mammography are assumed to be these randomly generated and extinguished lobular cells, or tumors that do not disappear for a long period of time once they are formed (including benign tumors such as fiber line types). ..
  • tumors and the like are extracted by making the best use of these differences.
  • the time-series stochastic method is a powerful method that greatly surpasses the method aimed at a specific time in the menstrual cycle described above. For young people with a menstrual cycle, the experiment reliably determined whether they were healthy or not with just a few time-series measurements.
  • this time-series stochastic method is applied to intramammary measurement techniques other than microwave mammography because collagen and the like appear strongly in the image and stably for a long period of time. Is difficult.
  • the ultrasonic echo device since the measurement is performed by manually matching the mechanical impedance, it is extremely difficult to improve the reproducibility, and there are many reflections from the long-term stable intramammary layer boundary. In addition, it is difficult to apply because the layer boundary in the breast is freely deformed at the time of measurement.
  • FIG. 4 is a conceptual diagram showing an example in which an array antenna scans on a curved surface and measures scattered data.
  • the array antenna 401 is a multi-static array antenna that scans on a curved surface, and includes a transmitting antenna T and a receiving antenna R.
  • the scattering field theory also called the multistatic inverse scattering theory on a curved surface
  • the multistatic inverse scattering theory on a curved surface there are various variations in the scattering field theory (also called the multistatic inverse scattering theory on a curved surface) corresponding to a multistatic array antenna that scans on a curved surface.
  • the curved surface used in the scattering field theory is a relatively simple curved surface having a finite curvature in the x direction and a curvature of 0 in the y direction.
  • the array antenna 401 arranged linearly along the y direction scans along the curve in the x direction.
  • the array antenna 401 is arranged on a straight line having the same X coordinate.
  • the y direction with a curvature of 0 is the direction in which the transmitting antenna T and the receiving antenna R of the array antenna 401 are aligned, and the other x direction. Is the antenna scanning direction.
  • the array antenna 401 may be provided with a plurality of transmitting antennas T or a plurality of receiving antennas R.
  • Radio waves radiated from point P 1 (x, y 1 , z) are reflected at point P ( ⁇ , ⁇ , ⁇ ) and received at point P 2 (x, y 2, z).
  • the signal received at the point P 2 is expressed by the following equation (3-1).
  • c the propagation speed of the radio wave.
  • the function of equation (3-1) can also be expressed as a scattering field function. In the state where ⁇ ( ⁇ , ⁇ , ⁇ ) is unknown, the scattering field function of Eq. (3-1) is unknown.
  • the scattering field function of Eq. (3-1) can be interpreted as a function in which an arbitrary transmitting position and an arbitrary receiving position having the same x-coordinate and z-coordinate are input and the amount of scattered waves at the receiving position is output. ..
  • the transmitting position and the receiving position input to the scattering field function match the position of the transmitting antenna T and the position of the receiving antenna R, respectively, the output of the scattering field function matches the measurement data obtained by the receiving antenna R.
  • the signal is instantly received there after the radio wave is transmitted at (x, y, z). It is assumed that the amount of scattered waves, i.e. the amount of reflection at (x, y, z), is shown.
  • the value output as the amount of scattered waves from the scattering field function increases as the reflection at that position increases.
  • the value output from the scattering field function can indicate the amount of reflection at that position.
  • the visualization function for generating an image showing the inside of an object is derived as follows as a function showing such an amount.
  • equation (3-2) is an equation satisfied by the scattering field function of equation (3-1).
  • Equation (3-3) is obtained as a general solution of the equation shown in equation (3-2). That is, the following equation (3-3) is obtained as the scattering field function.
  • k x, k y1 and k y2 each represent wavenumber of scattered field functions x, it relates to y 1 and y 2.
  • Measurement target region scattering data i.e. measurement result
  • [Phi y 1 of (x, y 1, y 2 , t) [Phi y 1 of (x, y 1, y 2 , t), y 2.
  • the Fourier transform image for t When expressed as, the following equation (3-4) is obtained as a (k x , ky1 , ky2) of the equation (3-3).
  • x j represented by x I represents the common X coordinate of the transmitting antenna T and the receiving antenna R
  • z j represented by z I in the above represents the common Z of the transmitting antenna T and the receiving antenna R.
  • x j and z j satisfy the relationship represented by the following equation (3-5).
  • the function f in the following equation (3-5) is a shape function of the boundary surface.
  • Equations (3-3) and (3-4) are scattering field functions calculated using the measurement results as boundary conditions. Finally, the following equation (3-6) is obtained as a visualization function.
  • ⁇ (r) represents an image. More specifically, r represents the image target position, and ⁇ (r) represents the image intensity of the image target position.
  • the image intensity of the image target position corresponds to the output of the scattering field function with respect to the image target position, that is, the magnitude of reflection at the image target position. For example, because an element in the breast reflects radio waves, a large image intensity can be obtained at the position of the element in the breast.
  • FIG. 5 is a conceptual diagram showing a time series measurement (also referred to as a time series 3D measurement) performed by using microwave mammography for the same region of the same person.
  • represents the diffusion coefficient and corresponds to the noise that comes in at each measurement.
  • the noise is assumed to be random and is generated by the deviation of the position of the scale and the deviation of the measurement area due to the deviation of the scanning of the probe and the like.
  • represents a delta function.
  • is a symbol representing a logical product, and means a minimum value as in the following equation (4-2).
  • ⁇ (ti ⁇ , r) in the equation of equation (4-1) means the lower limit as in the following equation (4-3).
  • b i (r) denotes the probabilistic image intensity of the position of the spatial coordinates r at time t i.
  • the first term on the right side in Eq. (4-1) corresponds to the deviation of the measurement area.
  • the second term on the right side in the equation (4-1) corresponds to the change in the image intensity at the time of measurement, and corresponds to the difference (change) between the fixed portion and the total portion of the image intensity.
  • the temporal and spatial changes in image intensity correspond to these additions.
  • b i (r) is an image obtained from the measurement results of the i-th in the microwave mammography.
  • the above-described scattered field theory, b i (r) is described as ⁇ (r). That, b i represents the image function, b i (r) represents the image obtained by the imaging function.
  • equation (4-5) By executing the integration of equation (4-4), the following equation (4-5) can be obtained.
  • Q (t, k) represents a Fourier transform image of ⁇ (t, r).
  • FIG. 7 is a conceptual diagram showing the deviation of the measurement area.
  • a thin sticker with one-sided adhesiveness is attached to a subject, and measurement is performed on the surface of the attached sticker. That is, the area of the attached sticker is used as the measurement area. Further, for example, this seal is made of a transparent or translucent member (specifically, synthetic resin or the like) through which radio waves are transmitted. Then, 32 ⁇ 32 squares and the like are printed on the sticker, and the sticker is attached so that the nipples or moles of the subject are located on the same squares in the time series measurement.
  • the measurement region is randomly shifted by ⁇ in the (x, y) plane every ⁇ t.
  • may correspond to a combination of rotation and translation.
  • the deviation of the measurement area does not have a characteristic that increases with the number of measurements.
  • the measurement area changes randomly near the same location with a positional error.
  • the distribution function of the deviation of the measurement region is expressed by the diffusion equation.
  • r 0 is the reference position and r is the particle position of Brownian motion
  • these squared average errors are proportional to ⁇ t. This relationship is expressed by the following equation (5-2).
  • the diffusion coefficient ⁇ can be estimated as the amount of deviation of the measurement region between two measurements.
  • e ⁇ b i (r) is based on the formula (4-12), x, performs a Fourier transform of b i (r) for y and z, exp a (- ⁇ (k x 2 + k y 2)) It is obtained by multiplying and performing an inverse Fourier transform. That, e ⁇ b i (r) is obtained by the following equation (6-3).
  • the final tumor probability image is obtained by the following formula (6-4) based on the formula (4-7).
  • equation (6-4) in order to clearly define ⁇ , an equation is used for the proportional relationship of equation (5-3) of ⁇ .
  • the temporary lobule disappears and the permanent tumor remains in the tumor probability image.
  • the tumor may disappear from the tumor probability image due to the deviation in position.
  • the subjects of Examples 1 to 3 are all young people who are considered to be healthy people.
  • the measurement frequency is 4 to 8 times / person in consideration of the menstrual cycle. All the data of each person are organized with the same image intensity. That is, the scales of the image intensity are aligned between the images, and the maximum value and the minimum value of the image intensity are aligned between the images, respectively.
  • the most ideal ⁇ 0 is used in the analysis.
  • Example 4 is an example of a simulation when there is cancer. Synthetic data created based on clinical trial data of two patients, a cancer patient and a healthy person, is used for verification. Specifically, synthetic data created by superimposing the data of one clinical trial of a cancer patient on the data of four time-series clinical trials of a healthy subject is used.
  • an image displayed as shown in FIG. 8A, FIG. 8B or FIG. 8C can be obtained.
  • FIG. 8A is an image diagram showing a display example of an image showing the inside of the breast. As shown in FIG. 8A, the inside of the breast is displayed in a translucent and three-dimensional manner.
  • the upper side of the image corresponds to the upper side of the subject, and the lower side of the image corresponds to the lower side of the subject.
  • the left side of the image corresponds to the right side of the subject, and the right side of the image corresponds to the left side of the subject.
  • FIG. 8B is an image diagram showing a display example of a translucent fluoroscopic image in which the inside of the breast is viewed from the lower side to the upper side of the subject.
  • the left side of the image corresponds to the right side of the subject, and the right side of the image corresponds to the left side of the subject.
  • FIG. 8C is an image diagram showing a display example of a translucent fluoroscopic image in which the inside of the breast is viewed from the front side of the subject.
  • the left side of the image corresponds to the right side of the subject, and the right side of the image corresponds to the left side of the subject.
  • a tumor probability image for identifying a tumor or the like is generated from a plurality of time-series images.
  • FIG. 9A is an image diagram showing a display example of the reconstructed image obtained from the measurement data on January 11 in Example 1. This image corresponds to b 1 (r) described above.
  • FIG. 9B is an image diagram showing a display example of the reconstructed image obtained from the measurement data on January 18 in Example 1. This image corresponds to b 2 (r) described above.
  • FIG. 9C is an image diagram showing a display example of the reconstructed image obtained from the measurement data on January 25 in Example 1. This image corresponds to b 3 (r) described above.
  • FIG. 9D is an image diagram showing a display example of the reconstructed image obtained from the measurement data on February 1 in Example 1. This image corresponds to b 4 (r) described above. Further, in Example 1, February 1 corresponds to the start date of the menstrual cycle.
  • FIG. 9E is an image diagram showing a display example of the tumor probability image in Example 1. This image corresponds to ⁇ 4 (r) described above. In Example 1, it is identified by the tumor probability image that no tumor or the like is seen.
  • FIG. 10A is an image diagram showing a display example of the reconstructed image obtained from the measurement data of June 1 in Example 2. This image corresponds to b 1 (r) described above. Further, in Example 4, June 1 corresponds to the start date of the menstrual cycle.
  • FIG. 10B is an image diagram showing a display example of the reconstructed image obtained from the measurement data on June 5 in Example 2. This image corresponds to b 2 (r) described above.
  • FIG. 10C is an image diagram showing a display example of the reconstructed image obtained from the measurement data on June 8 in Example 2. This image corresponds to b 3 (r) described above.
  • FIG. 10D is an image diagram showing a display example of the reconstructed image obtained from the measurement data on June 12 in Example 2. This image corresponds to b 4 (r) described above.
  • FIG. 10E is an image diagram showing a display example of the reconstructed image obtained from the measurement data on June 15 in Example 2. This image corresponds to b 5 (r) described above.
  • FIG. 10F is an image diagram showing a display example of the reconstructed image obtained from the measurement data on June 19 in Example 2. This image corresponds to b 6 (r) described above.
  • FIG. 10G is an image diagram showing a display example of the reconstructed image obtained from the measurement data on June 22 in Example 2. This image corresponds to b 7 (r) described above.
  • FIG. 10H is an image diagram showing a display example of the reconstructed image obtained from the measurement data on June 26 in Example 2. This image corresponds to b 8 (r) described above.
  • FIG. 10I is an image diagram showing a display example of the tumor probability image in Example 2. This image corresponds to ⁇ 8 (r) described above. In Example 2, it is identified by the tumor probability image that no tumor or the like is seen.
  • FIG. 11A is an image diagram showing a display example of the reconstructed image obtained from the measurement data on October 23 in Example 3. This image corresponds to b 1 (r) described above.
  • FIG. 11B is an image diagram showing a display example of the reconstructed image obtained from the measurement data on October 30 in Example 3. This image corresponds to b 2 (r) described above.
  • FIG. 11C is an image diagram showing a display example of the reconstructed image obtained from the measurement data on November 6 in Example 3. This image corresponds to b 3 (r) described above.
  • FIG. 11D is an image diagram showing a display example of the reconstructed image obtained from the measurement data on November 13 in Example 3. This image corresponds to b 4 (r) described above.
  • FIG. 11E is an image diagram showing a display example of the reconstructed image obtained from the measurement data of November 20 in Example 3. This image corresponds to b 5 (r) described above.
  • FIG. 11F is an image diagram showing a display example of the reconstructed image obtained from the measurement data on November 27 in Example 3. This image corresponds to b 6 (r) described above.
  • FIG. 11G is an image diagram showing a display example of the reconstructed image obtained from the measurement data of December 4 in Example 3. This image corresponds to b 7 (r) described above.
  • FIG. 11H is an image diagram showing a display example of the reconstructed image obtained from the measurement data on December 11 in Example 3. This image corresponds to b 8 (r) described above.
  • FIG. 11I is an image diagram showing a display example of the tumor probability image in Example 3. This image corresponds to ⁇ 8 (r) described above. In Example 3, it is identified by the tumor probability image that no tumor or the like is seen.
  • FIG. 12A is an image diagram showing a display example of a reconstructed image obtained from the composite data of the measurement data of the cancer patient in Example 4 and the measurement data of the healthy subject on February 26. This image corresponds to b 1 (r) described above.
  • FIG. 12B is an image diagram showing a display example of a reconstructed image obtained from the composite data of the measurement data of the cancer patient in Example 4 and the measurement data of the healthy subject on February 5. This image corresponds to b 2 (r) described above.
  • FIG. 12C is an image diagram showing a display example of a reconstructed image obtained from the composite data of the measurement data of the cancer patient in Example 4 and the measurement data of the healthy subject on February 12. This image corresponds to b 3 (r) described above.
  • FIG. 12D is an image diagram showing a display example of a reconstructed image obtained from the composite data of the measurement data of the cancer patient in Example 4 and the measurement data of the healthy subject on February 19. This image corresponds to b 4 (r) described above. Further, in Example 4, February 19 corresponds to a day within 10 days from the start date of the menstrual cycle of a healthy person.
  • FIG. 12E is an image diagram showing a display example of the tumor probability image in Example 4. This image corresponds to ⁇ 4 (r) described above. In Example 4, the tumor on the right side of the breast is identified by the tumor probability image.
  • the configuration and operation of a scattering tomography apparatus that generates a reconstructed image showing a permanent element inside an object by using scattered waves of radio waves are shown below.
  • the permanent element is an element that does not disappear in a predetermined period such as 4 weeks.
  • FIG. 13 is a basic configuration diagram of the scattering tomography apparatus according to the present embodiment.
  • the scattering tomography apparatus 100 shown in FIG. 13 includes a transmitting antenna 101, a receiving antenna 102, and an information processing circuit 103. Further, the scattering tomography apparatus 100 may include a display 104.
  • the transmitting antenna 101 is a circuit that transmits radio waves. Specifically, the transmitting antenna 101 transmits radio waves from the outside of the object to the inside of the object.
  • the radio wave may be a microwave, a millimeter wave, a terahertz wave, or the like.
  • the object may be a living body, a product, a natural material, or the like. In particular, the object may be the breast.
  • the scattering tomography apparatus 100 may include a plurality of transmitting antennas 101.
  • the receiving antenna 102 is a circuit that receives radio waves such as scattered waves of radio waves. Specifically, the receiving antenna 102 receives the scattered wave of the radio wave transmitted to the inside of the object outside the object.
  • the scattering tomography apparatus 100 may include a plurality of receiving antennas 102. Further, the receiving antenna 102 may be arranged at substantially the same position as the transmitting antenna 101, or may be arranged at a position different from that of the transmitting antenna 101.
  • the transmitting antenna 101 and the receiving antenna 102 may form a multi-static antenna or a mono-static antenna.
  • the information processing circuit 103 is a circuit that performs information processing. Specifically, the information processing circuit 103 generates a reconstructed image showing a permanent element inside an object based on a plurality of measurement results obtained by the transmitting antenna 101 and the receiving antenna 102 on a plurality of days. For example, the information processing circuit 103 performs the arithmetic processing shown in the theory described above when generating the reconstructed image based on the measurement result.
  • the information processing circuit 103 may be a computer or a computer processor.
  • the information processing circuit 103 may perform information processing by reading a program from the memory and executing the program.
  • the information processing circuit 103 may be a dedicated circuit that generates a reconstructed image showing a permanent element inside an object based on a plurality of measurement results on a plurality of days.
  • the information processing circuit 103 may output the generated reconstructed image to the display 104 or the like.
  • the information processing circuit 103 may display the reconstructed image on the display 104 by outputting the reconstructed image to the display 104.
  • the information processing circuit 103 may print the reconstructed image via the printer by outputting the reconstructed image to a printer (not shown).
  • the information processing circuit 103 may transmit the reconstructed image as electronic data to another device (not shown) by wired or wireless communication.
  • the display 104 is a display device such as a liquid crystal display.
  • the display 104 is an arbitrary component, not an essential component. Further, the display 104 may be an external device that does not constitute the scattering tomography device 100.
  • FIG. 14 is a flowchart showing the basic operation of the scattering tomography apparatus 100 shown in FIG. Specifically, the transmitting antenna 101, the receiving antenna 102, and the information processing circuit 103 of the scattering tomography apparatus 100 shown in FIG. 13 perform the operations shown in FIG.
  • the transmitting antenna 101 transmits radio waves from the outside of the object to the inside of the object (S201).
  • the receiving antenna 102 receives the scattered wave of the radio wave transmitted to the inside of the object outside the object (S202).
  • the information processing circuit 103 generates a reconstructed image showing a permanent element inside the object based on a plurality of measurement results obtained by the transmitting antenna 101 and the receiving antenna 102 on a plurality of days (S203).
  • the scattering field function is calculated for each of the plurality of measurement results by using the measurement results as boundary conditions.
  • the scattering field function is a function in which the transmission position of radio waves and the reception position of scattered waves are input and the amount of scattered waves at the reception position is output. That is, the scattering field function is a function that indicates the amount of scattered waves at the receiving position with respect to an arbitrarily determined transmission position and reception position.
  • the information processing circuit 103 calculates the visualization function based on the scattering field function calculated for each of the plurality of measurement results.
  • the visualization function is a function in which the image target position is input and the image intensity of the image target position is output. By inputting the image target position as the transmission position and the reception position into the scattering field function, the scattering field is output. It is a function defined based on the amount output from the function.
  • the information processing circuit 103 generates a plurality of intermediate images for the plurality of measurement results by generating an intermediate image based on the visualization function calculated for each of the plurality of measurement results. Then, the information processing circuit 103 generates a reconstructed image by calculating the minimum value of the image intensity at each position in the plurality of intermediate images by the logical product. The information processing circuit 103 may output the generated reconstructed image to the display 104 or the like.
  • the scattering tomography apparatus 100 can calculate an intermediate image capable of showing an element inside the object based on the scattering field function calculated by using the measurement result of the scattered wave as a boundary condition. Then, the scattering tomography apparatus 100 can generate a reconstructed image showing a permanent element inside the object from a plurality of intermediate images obtained by using a plurality of measurement results on a plurality of days.
  • the scattered tomography apparatus 100 can generate a reconstructed image showing a permanent element inside the object by using the scattered wave of the radio wave. This makes it possible, for example, to use scattered waves to identify whether an element inside the human body is a permanent malignant tumor or another cell that randomly develops and disappears. ..
  • PN (r) represents a reconstructed image.
  • r represents a position.
  • N represents the number of a plurality of intermediate images.
  • b i for the i from 1 to N represents the imaging function.
  • represents the logical product.
  • the scattering tomography apparatus 100 can simply generate a reconstructed image by the logical product of the intermediate images corresponding to the output of the visualization function.
  • the information processing circuit 103 generates an intermediate image based on the visualization function and the diffusion coefficient, and when the intermediate image is generated, the larger the diffusion coefficient, the spatially the image intensity of the imaging target position in the intermediate image. Spreads widely.
  • the scattering tomography apparatus 100 can diffuse the image intensity by the diffusion coefficient. Therefore, the scattering tomography apparatus 100 can suppress the disappearance of the permanent element from the reconstructed image due to the misalignment in the measurement of the scattered wave by the diffusion coefficient.
  • PN (r) represents a reconstructed image.
  • r represents a position.
  • N represents the number of a plurality of intermediate images.
  • b i for the i from 1 to N represents the imaging function.
  • e ⁇ b i for the i from 1 to N (r) represents the intermediate image.
  • represents the diffusion coefficient.
  • represents a two-dimensional Laplace operator corresponding to two directions in which the position shift occurs in the measurement of the scattered wave.
  • represents the logical product.
  • the scattering tomography apparatus 100 can appropriately diffuse the image intensity by the relational expression based on the stochastic method.
  • the information processing circuit 103 performs a Fourier transform on the b i (r), multiplied by exp (- ⁇ (k x 2 + k y 2)) against the result of the Fourier transform, exp ( - ⁇ (k x 2 + k y 2)) may be subjected to inverse Fourier transform to the result of multiplying. And, thereby, the information processing circuit 103 may calculate the e ⁇ b i (r).
  • k x and k y of exp (- ⁇ (k x 2 + k y 2)) represents the two wave numbers corresponding to the two directions of b i.
  • the scattering tomography apparatus 100 can diffuse the image intensity at high speed and appropriately.
  • the diffusion coefficient may be set as a value proportional to the squared average error of the measurement position of the scattered wave. Thereby, the diffusion coefficient can be determined based on the magnitude of the error of the measurement position. Then, the scattering tomography apparatus 100 can appropriately diffuse the image intensity based on the magnitude of the error of the measurement position.
  • the diffusion coefficient may be set as a value equal to the squared average error of the measurement position of the scattered wave. Thereby, the diffusion coefficient can be simply determined based on the magnitude of the error in the measurement position. Then, the scattering tomography apparatus 100 can appropriately diffuse the image intensity based on the magnitude of the error of the measurement position.
  • the diffusion coefficient may be set to 0.
  • the scattering tomography apparatus 100 can simply generate a reconstructed image by the logical product of the intermediate images corresponding to the output of the visualization function, as in the case where the diffusion coefficient is not used.
  • the diffusion coefficient is set as a value larger than 0.
  • the scattering tomography apparatus 100 can more reliably diffuse the image intensity with a diffusion coefficient larger than 0. Therefore, the scattering tomography apparatus 100 can more reliably suppress the disappearance of permanent elements from the reconstructed image due to misalignment in the measurement of scattered waves by a diffusion coefficient greater than zero.
  • the X coordinate and the Z coordinate of the position of the transmitting antenna 101 are the same as the X coordinate and the Z coordinate of the position of the receiving antenna 102, respectively. There may be.
  • x represents the X coordinate of the transmission position and the reception position.
  • y 1 represents the Y coordinate of the transmission position.
  • y 2 represents the Y coordinate of the receiving position.
  • z represents the Z coordinate of the transmission position and the reception position.
  • k represents the wave number of the radio wave.
  • k x, k y1 and k y2 in the scattered field function, respectively, x of the scattered field function represents the wave number about y 1 and y 2.
  • a (k x , ky1 , ky2 ) is It may be determined by.
  • I represents the transmission position and the index of the reception position where the transmission antenna 101 and the reception antenna 102 are present.
  • x I represents the X coordinate of the transmission position and the reception position where the transmission antenna 101 and the reception antenna 102 are present.
  • z I represents the Z coordinate of the transmission position and the reception position where the transmission antenna 101 and the reception antenna 102 are present.
  • the visualization function is It may be determined by.
  • x, y, and z of the visualization function represent the X coordinate, the Y coordinate, and the Z coordinate of the visualization target position, respectively.
  • the scattering tomography apparatus 100 can appropriately generate an intermediate image based on the above-mentioned scattering field function and the above-mentioned visualization function.
  • the scattering field function and the visualization function can be appropriately determined based on the fact that the X and Z coordinates of the position of the transmitting antenna 101 are the same as the X and Z coordinates of the position of the receiving antenna 102, respectively. ..
  • the transmitting antenna 101, the receiving antenna 102, the information processing circuit 103, the scattering field function, the visualization function, the parameters, and the like shown in the above basic configuration and basic operation are configured in the present embodiment. Elements, expressions, variables, etc. may be applied as appropriate.
  • the scattering field function, the visualization function, and the like shown in the present embodiment may be appropriately modified and applied.
  • a mathematical formula showing substantially the same contents as the above-mentioned mathematical formula in other expressions may be used, or another mathematical formula derived based on the above-mentioned theory may be used.
  • FIG. 15 is a conceptual diagram showing a specific configuration of the scattering tomography apparatus 100 shown in FIG.
  • the transmitting antenna 101 and the receiving antenna 102 of the scattering tomography apparatus 100 shown in FIG. 13 may be included in the multistatic array antenna 1008.
  • the information processing circuit 103 of the scattering tomography apparatus 100 shown in FIG. 13 may correspond to one or more of the plurality of components shown in FIG. Specifically, for example, the information processing circuit 103 may correspond to the signal processing computer 1005. Further, the display 104 shown in FIG. 13 may correspond to the signal monitoring device 1006.
  • the microwave signal used in the scattering tomography apparatus 100 is a pseudo-random time-series signal (PN code: Pseudo Noise Code) having a frequency component of DC to 20 GHz.
  • PN code Pseudo Noise Code
  • This signal is output from the FPGA board 1002 for PN code generation. More specifically, there are two types of this signal.
  • One type of signal (LO signal: local oscillator signal) is sent to the RF detection circuit (RF detection board 1007) through the delay circuit (digital control board 1003).
  • the other type of signal (RF signal: Radio Frequency Signal) is sent to the transmitting microwave UWB antenna of the multistatic array antenna 1008 and radiated.
  • the scattered signal of the microwave is received by the receiving UWB antenna of the multistatic array antenna 1008 and sent to the RF detection circuit (RF detection board 1007).
  • the transmitted / received signal passes through the antenna element selection switch (UWB antenna RF switch 1004).
  • the delayed signal (LO signal) is delayed by 1/2 n times (n is an integer larger than 2) of the time when the value of the PN code changes.
  • the detected signal is A / D converted by the signal processing computer 1005 and stored as an IF signal (Intermediate Frequency Signal).
  • information indicating the detected signal may be displayed on the signal monitoring device 1006.
  • the timing of these series of operations is controlled by the microprocessor in the digital control board 1003 so as to synchronize with the signal (distance signal or free-run signal) from the distance meter 1001.
  • the microprocessor in the digital control board 1003 transmits a Switch switching signal, a PN code sweep trigger, and the like.
  • the signal processing computer 1005 performs three-dimensional reconstruction and displays a three-dimensional image using the signal that has been A / D converted and stored. Further, the signal processing computer 1005 may perform signal calibration. Further, the signal processing computer 1005 may display a raw waveform.
  • the signal processing computer 1005 stores a plurality of three-dimensional images in the memory 1009 by storing the three-dimensional images obtained for each measurement in the memory 1009. These three-dimensional images correspond to the time-series measurement images described above.
  • the signal processing computer 1005 uses these three-dimensional images to generate a final tumor probability image, and displays the generated tumor probability image on a signal monitoring device 1006 or the like.
  • the configuration shown in FIG. 15 is an example, and the configuration of the scattering tomography apparatus 100 is not limited to the configuration shown in FIG. A part of the configuration shown in FIG. 15 may be omitted or changed.
  • the embodiment of the scattering tomography apparatus is not limited to the embodiment. Modifications that a person skilled in the art can think of may be applied to the embodiment, or a plurality of components in the embodiment may be arbitrarily combined. For example, in the embodiment, the processing executed by a specific component may be executed by another component instead of the specific component. Further, the order of the plurality of processes may be changed, or the plurality of processes may be executed in parallel.
  • a scattering tomography method including steps performed by each component of the scattering tomography apparatus may be performed by any apparatus or system.
  • some or all of the scattering tomography methods may be performed by a computer equipped with a processor, memory, input / output circuits, and the like.
  • the scattering tomography method may be executed by executing a program for causing the computer to execute the scattering tomography method.
  • the above program may be recorded on a non-temporary computer-readable recording medium.
  • each component of the scattering tomography apparatus may be composed of dedicated hardware, general-purpose hardware for executing the above program or the like, or a combination thereof. May be good.
  • the general-purpose hardware may be composed of a memory in which the program is recorded, a general-purpose processor that reads and executes the program from the memory, and the like.
  • the memory may be a semiconductor memory, a hard disk, or the like, and the general-purpose processor may be a CPU or the like.
  • the dedicated hardware may be composed of a memory, a dedicated processor, and the like.
  • a dedicated processor may perform the above-mentioned scattering tomography method with reference to a memory for recording measurement data.
  • each component of the scattering tomography apparatus may be an electric circuit.
  • These electric circuits may form one electric circuit as a whole, or may be separate electric circuits. Further, these electric circuits may be compatible with dedicated hardware, or may be compatible with general-purpose hardware for executing the above program or the like.
  • One aspect of the present disclosure is useful for a scattered tomography apparatus that generates an image showing the inside of an object by using scattered waves of radio waves, and is applicable to geophysical exploration, medical diagnosis, and the like.

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • General Health & Medical Sciences (AREA)
  • Pathology (AREA)
  • Veterinary Medicine (AREA)
  • Molecular Biology (AREA)
  • Public Health (AREA)
  • Animal Behavior & Ethology (AREA)
  • Biomedical Technology (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Medical Informatics (AREA)
  • Surgery (AREA)
  • Remote Sensing (AREA)
  • Biophysics (AREA)
  • General Physics & Mathematics (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Radiology & Medical Imaging (AREA)
  • Electromagnetism (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Chemical & Material Sciences (AREA)
  • Immunology (AREA)
  • Biochemistry (AREA)
  • Analytical Chemistry (AREA)
  • Artificial Intelligence (AREA)
  • Mathematical Physics (AREA)
  • Physiology (AREA)
  • Computer Vision & Pattern Recognition (AREA)
  • Signal Processing (AREA)
  • Psychiatry (AREA)
  • Theoretical Computer Science (AREA)
  • Gynecology & Obstetrics (AREA)
  • Reproductive Health (AREA)
  • Measuring And Recording Apparatus For Diagnosis (AREA)
  • Apparatus For Radiation Diagnosis (AREA)
  • Image Processing (AREA)

Abstract

散乱トモグラフィ装置(100)は、物体の内部へ電波を送信する送信アンテナ(101)と、電波の散乱波を物体の外部で受信する受信アンテナ(102)と、複数の日において複数の測定結果を取得し、複数の測定結果に基づいて物体の内部における永続的な要素を示す再構成画像を生成する情報処理回路(103)とを備え、情報処理回路(103)は、複数の測定結果のそれぞれについて散乱場関数を算出し、複数の測定結果のそれぞれについて映像化関数を算出し、複数の測定結果について複数の中間画像を生成し、複数の中間画像における各位置の画像強度の最小値を論理積により算出することにより再構成画像を生成する。

Description

散乱トモグラフィ装置及び散乱トモグラフィ方法
 本開示は、電波の散乱波を用いて、物体の内部における要素を示す再構成画像を生成する散乱トモグラフィ装置等に関する。
 電波の散乱波を用いて物体の内部における要素を示す再構成画像を生成する散乱トモグラフィ装置等に関する技術として、特許文献1、特許文献2及び特許文献3に記載の技術がある。
 例えば、特許文献1に記載の技術では、マイクロ波送出器から送出されたビームが検査対象に入射され、散乱したビームの振幅及び位相がマイクロ波検出器により検出される。そして、マイクロ波検出器の出力信号から誘電率の分布が計算され、検査対象における断層の像表示が行われる。
特開昭62-66145号公報 国際公開第2014/125815号 国際公開第2015/136936号
 しかしながら、マイクロ波等の電波の散乱波を用いて、物体の内部における要素を示す再構成画像を生成することは容易ではない。具体的には、物体の内部の状態が既知である場合において、物体に入射された電波に対して散乱波として測定(計測)されるデータを求めることは、順方向問題と呼ばれ、容易である。一方、測定されたデータが既知である場合において、物体の内部の状態を求めることは、逆方向問題と呼ばれ、容易ではない。
 また、散乱波を用いて物体の内部における要素の存在を識別できても、その要素の特性を識別することは容易ではなく、例えば、その要素が物体の内部において永続的に存在するか否かを識別することは容易ではない。具体的には、永続的な悪性の腫瘍と、ランダムに発生し消滅する他の細胞とが、同じように電波を反射する場合、散乱波を用いて、人体の内部における要素が悪性の腫瘍であるか他の細胞であるかを識別することは容易ではない。
 そこで、本開示は、電波の散乱波を用いて、物体の内部における永続的な要素を示す再構成画像を生成することができる散乱トモグラフィ装置等を提供する。
 本開示の一態様に係る散乱トモグラフィ装置は、物体の外部から前記物体の内部へ電波を送信する送信アンテナと、前記送信アンテナから前記物体の内部へ送信された前記電波の散乱波を前記物体の外部で受信する受信アンテナと、複数の日のそれぞれにおいて前記散乱波の測定結果を取得することにより、前記複数の日において複数の測定結果を取得し、前記複数の測定結果に基づいて前記物体の内部における永続的な要素を示す再構成画像を生成する情報処理回路とを備え、前記情報処理回路は、前記複数の測定結果のそれぞれについて、当該測定結果を境界条件として用いて、前記電波の送信位置及び前記散乱波の受信位置が入力されて前記受信位置における前記散乱波の量が出力される散乱場関数を算出し、前記複数の測定結果のそれぞれについて、映像化対象位置が入力されて前記映像化対象位置の画像強度が出力される映像化関数であって、前記送信位置及び前記受信位置として前記映像化対象位置を前記散乱場関数に入力することで前記散乱場関数から出力される量に基づいて定められる映像化関数を算出し、前記複数の測定結果のそれぞれについて前記映像化関数に基づいて中間画像を生成することにより、前記複数の測定結果について複数の中間画像を生成し、前記複数の中間画像における各位置の画像強度の最小値を論理積により算出することにより前記再構成画像を生成する。
 なお、これらの包括的又は具体的な態様は、システム、装置、方法、集積回路、コンピュータプログラム、又は、コンピュータ読み取り可能なCD-ROMなどの非一時的な記録媒体で実現されてもよく、システム、装置、方法、集積回路、コンピュータプログラム、及び、記録媒体の任意な組み合わせで実現されてもよい。
 本開示の一態様によれば、電波の散乱波を用いて、物体の内部における永続的な要素を示す再構成画像を生成することが可能になる。
図1は、月経周期中における黄体ホルモン(プロゲステロン)他の分泌を示すグラフである。 図2Aは、月経周期における日に対する小葉の細胞増殖(有糸分裂)の度数を示すグラフである。 図2Bは、月経周期における日に対する細胞欠失(アポトーシス)の度数を示すグラフである。 図3は、小葉及び乳管を示す概念図である。 図4は、実施の形態におけるアレイアンテナが曲面上で走査し散乱データを測定する例を示す概念図である。 図5は、実施の形態におけるマイクロ波マンモグラフィを用いて行われる時系列測定を示す概念図である。 図6は、実施の形態における画像強度の時系列データを示すグラフである。 図7は、実施の形態における測定領域のずれを示す概念図である。 図8Aは、実施の形態における画像の表示例を示すイメージ図である。 図8Bは、実施の形態における乳房内部を対象者の下側から上側へ見た半透明透視画像の表示例を示すイメージ図である。 図8Cは、実施の形態における乳房内部を対象者の前側から見た半透明透視画像の表示例を示すイメージ図である。 図9Aは、例1における1月11日の測定データから得られる再構成画像の表示例を示すイメージ図である。 図9Bは、例1における1月18日の測定データから得られる再構成画像の表示例を示すイメージ図である。 図9Cは、例1における1月25日の測定データから得られる再構成画像の表示例を示すイメージ図である。 図9Dは、例1における2月1日の測定データから得られる再構成画像の表示例を示すイメージ図である。 図9Eは、例1における腫瘍確率画像の表示例を示すイメージ図である。 図10Aは、例2における6月1日の測定データから得られる再構成画像の表示例を示すイメージ図である。 図10Bは、例2における6月5日の測定データから得られる再構成画像の表示例を示すイメージ図である。 図10Cは、例2における6月8日の測定データから得られる再構成画像の表示例を示すイメージ図である。 図10Dは、例2における6月12日の測定データから得られる再構成画像の表示例を示すイメージ図である。 図10Eは、例2における6月15日の測定データから得られる再構成画像の表示例を示すイメージ図である。 図10Fは、例2における6月19日の測定データから得られる再構成画像の表示例を示すイメージ図である。 図10Gは、例2における6月22日の測定データから得られる再構成画像の表示例を示すイメージ図である。 図10Hは、例2における6月26日の測定データから得られる再構成画像の表示例を示すイメージ図である。 図10Iは、例2における腫瘍確率画像の表示例を示すイメージ図である。 図11Aは、例3における10月23日の測定データから得られる再構成画像の表示例を示すイメージ図である。 図11Bは、例3における10月30日の測定データから得られる再構成画像の表示例を示すイメージ図である。 図11Cは、例3における11月6日の測定データから得られる再構成画像の表示例を示すイメージ図である。 図11Dは、例3における11月13日の測定データから得られる再構成画像の表示例を示すイメージ図である。 図11Eは、例3における11月20日の測定データから得られる再構成画像の表示例を示すイメージ図である。 図11Fは、例3における11月27日の測定データから得られる再構成画像の表示例を示すイメージ図である。 図11Gは、例3における12月4日の測定データから得られる再構成画像の表示例を示すイメージ図である。 図11Hは、例3における12月11日の測定データから得られる再構成画像の表示例を示すイメージ図である。 図11Iは、例3における腫瘍確率画像の表示例を示すイメージ図である。 図12Aは、例4における癌患者の測定データと2月26日の健常者の測定データとの合成データから得られる再構成画像の表示例を示すイメージ図である。 図12Bは、例4における癌患者の測定データと2月5日の健常者の測定データとの合成データから得られる再構成画像の表示例を示すイメージ図である。 図12Cは、例4における癌患者の測定データと2月12日の健常者の測定データとの合成データから得られる再構成画像の表示例を示すイメージ図である。 図12Dは、例4における癌患者の測定データと2月19日の健常者の測定データとの合成データから得られる再構成画像の表示例を示すイメージ図である。 図12Eは、例4における腫瘍確率画像の表示例を示すイメージ図である。 図13は、実施の形態における散乱トモグラフィ装置の基本構成を示すブロック図である。 図14は、実施の形態における散乱トモグラフィ装置の基本動作を示すフローチャートである。 図15は、実施の形態における散乱トモグラフィ装置の具体的な構成を示す概念図である。
 本開示の一態様に係る散乱トモグラフィ装置は、物体の外部から前記物体の内部へ電波を送信する送信アンテナと、前記送信アンテナから前記物体の内部へ送信された前記電波の散乱波を前記物体の外部で受信する受信アンテナと、複数の日のそれぞれにおいて前記散乱波の測定結果を取得することにより、前記複数の日において複数の測定結果を取得し、前記複数の測定結果に基づいて前記物体の内部における永続的な要素を示す再構成画像を生成する情報処理回路とを備え、前記情報処理回路は、前記複数の測定結果のそれぞれについて、当該測定結果を境界条件として用いて、前記電波の送信位置及び前記散乱波の受信位置が入力されて前記受信位置における前記散乱波の量が出力される散乱場関数を算出し、前記複数の測定結果のそれぞれについて、映像化対象位置が入力されて前記映像化対象位置の画像強度が出力される映像化関数であって、前記送信位置及び前記受信位置として前記映像化対象位置を前記散乱場関数に入力することで前記散乱場関数から出力される量に基づいて定められる映像化関数を算出し、前記複数の測定結果のそれぞれについて前記映像化関数に基づいて中間画像を生成することにより、前記複数の測定結果について複数の中間画像を生成し、前記複数の中間画像における各位置の画像強度の最小値を論理積により算出することにより前記再構成画像を生成する。
 これにより、散乱トモグラフィ装置は、散乱波の測定結果を境界条件として用いて算出される散乱場関数に基づいて、物体の内部における要素を示し得る中間画像を算出することができる。そして、散乱トモグラフィ装置は、複数の日における複数の測定結果を用いて得られる複数の中間画像から、物体の内部における永続的な要素を示す再構成画像を生成することができる。
 したがって、散乱トモグラフィ装置は、電波の散乱波を用いて、物体の内部における永続的な要素を示す再構成画像を生成することができる。そして、これにより、例えば、散乱波を用いて、人体の内部における要素が、永続的な悪性の腫瘍であるか、ランダムに発生し消滅する他の細胞であるかを識別することが可能になる。
 例えば、前記情報処理回路は、P(r)=b(r)∧b(r)∧・・・∧b(r)により前記再構成画像を生成し、P(r)は前記再構成画像を表し、rは位置を表し、Nは前記複数の中間画像の個数を表し、1からNまでのiに関するbは前記映像化関数を表し、∧は論理積を表す。
 これにより、散乱トモグラフィ装置は、映像化関数の出力に対応する中間画像の論理積によって、再構成画像をシンプルに生成することができる。
 また、例えば、前記情報処理回路は、前記映像化関数及び拡散係数に基づいて前記中間画像を生成し、前記中間画像を生成する際、前記拡散係数が大きいほど前記中間画像において前記映像化対象位置の画像強度を空間的に大きく拡散させる。
 これにより、散乱トモグラフィ装置は、画像強度を拡散係数によって拡散させることができる。したがって、散乱トモグラフィ装置は、永続的な要素が散乱波の測定における位置ずれによって再構成画像から消失することを拡散係数によって抑制することができる。
 また、例えば、前記情報処理回路は、P(r)=eνΔ(r)∧eνΔ(r)∧・・・∧eνΔ(r)により前記再構成画像を生成し、P(r)は前記再構成画像を表し、rは位置を表し、Nは前記複数の中間画像の個数を表し、1からNまでのiに関するbは前記映像化関数を表し、1からNまでのiに関するeνΔ(r)は前記中間画像を表し、νは前記拡散係数を表し、Δは前記散乱波の測定において位置ずれが生じる2方向に対応する2次元のラプラス作用素を表し、∧は論理積を表す。
 これにより、散乱トモグラフィ装置は、確率論的方法に基づく関係式によって画像強度を適切に拡散させることができる。
 また、例えば、前記情報処理回路は、b(r)に対してフーリエ変換を行い、フーリエ変換を行った結果に対してexp(-ν(k +k ))を掛け、exp(-ν(k +k ))を掛けた結果に対して逆フーリエ変換を行うことにより、eνΔ(r)を算出し、exp(-ν(k +k ))のk及びkは、bの前記2方向に対応する2つの波数を表す。
 これにより、散乱トモグラフィ装置は、画像強度を高速にかつ適切に拡散させることができる。
 また、例えば、前記拡散係数は、前記散乱波の測定位置の2乗平均誤差に比例する値として定められる。
 これにより、拡散係数が、測定位置の誤差の大きさに基づいて定められ得る。そして、散乱トモグラフィ装置は、測定位置の誤差の大きさに基づいて、画像強度を適切に拡散させることができる。
 また、例えば、前記拡散係数は、前記散乱波の測定位置の2乗平均誤差に等しい値として定められる。
 これにより、拡散係数が、測定位置の誤差の大きさに基づいてシンプルに定められ得る。そして、散乱トモグラフィ装置は、測定位置の誤差の大きさに基づいて、画像強度を適切に拡散させることができる。
 また、例えば、前記拡散係数は、0として定められる。
 これにより、散乱トモグラフィ装置は、拡散係数を用いない場合と同様に、映像化関数の出力に対応する中間画像の論理積によって、再構成画像をシンプルに生成することができる。
 また、例えば、前記拡散係数は、0よりも大きい値として定められる。
 これにより、散乱トモグラフィ装置は、画像強度を0よりも大きい拡散係数によってより確実に拡散させることができる。したがって、散乱トモグラフィ装置は、永続的な要素が散乱波の測定における位置ずれによって再構成画像から消失することを0よりも大きい拡散係数によってより確実に抑制することができる。
 また、例えば、X座標、Y座標及びZ座標で構成される3次元空間において、前記送信アンテナの位置のX座標及びZ座標は、それぞれ、前記受信アンテナの位置のX座標及びZ座標と同じであり、前記散乱場関数は、
Figure JPOXMLDOC01-appb-M000005
で定められ、xは、前記送信位置及び前記受信位置のX座標を表し、yは、前記送信位置のY座標を表し、yは、前記受信位置のY座標を表し、zは、前記送信位置及び前記受信位置のZ座標を表し、kは、前記電波の波数を表し、前記散乱場関数におけるk、ky1及びky2は、それぞれ、前記散乱場関数のx、y及びyに関する波数を表し、a(k、ky1、ky2)は、
Figure JPOXMLDOC01-appb-M000006
で定められ、Iは、前記送信アンテナ及び前記受信アンテナが存在する前記送信位置及び前記受信位置のインデックスを表し、xは、前記送信アンテナ及び前記受信アンテナが存在する前記送信位置及び前記受信位置のX座標を表し、zは、前記送信アンテナ及び前記受信アンテナが存在する前記送信位置及び前記受信位置のZ座標を表し、
Figure JPOXMLDOC01-appb-M000007
は、x、y、y及びtにおける測定結果を表すΦ(x,y,y,t)のy1、y2及びtに関するフーリエ変換像を表し、tは、時間を表し、前記映像化関数は、
Figure JPOXMLDOC01-appb-M000008
で定められ、前記映像化関数のx、y及びzは、それぞれ、前記映像化対象位置のX座標、Y座標及びZ座標を表す。
 これにより、散乱トモグラフィ装置は、送信アンテナの位置のX座標及びZ座標がそれぞれ受信アンテナの位置のX座標及びZ座標と同じであることに基づいて定められる上記の散乱場関数及び上記の映像化関数に基づいて適切に中間画像を生成することができる。
 本開示の一態様に係る散乱トモグラフィ方法は、送信アンテナによって、物体の外部から前記物体の内部へ電波を送信するステップと、受信アンテナによって、前記送信アンテナから前記物体の内部へ送信された前記電波の散乱波を前記物体の外部で受信するステップと、複数の日のそれぞれにおいて前記散乱波の測定結果を取得することにより、前記複数の日において複数の測定結果を取得し、前記複数の測定結果に基づいて前記物体の内部における永続的な要素を示す再構成画像を生成するステップとを含み、前記再構成画像を生成するステップでは、前記複数の測定結果のそれぞれについて、当該測定結果を境界条件として用いて、前記電波の送信位置及び前記散乱波の受信位置が入力されて前記受信位置における前記散乱波の量が出力される散乱場関数を算出し、前記複数の測定結果のそれぞれについて、映像化対象位置が入力されて前記映像化対象位置の画像強度が出力される映像化関数であって、前記送信位置及び前記受信位置として前記映像化対象位置を前記散乱場関数に入力することで前記散乱場関数から出力される量に基づいて定められる映像化関数を算出し、前記複数の測定結果のそれぞれについて前記映像化関数に基づいて中間画像を生成することにより、前記複数の測定結果について複数の中間画像を生成し、前記複数の中間画像における各位置の画像強度の最小値を論理積により算出することにより前記再構成画像を生成する。
 これにより、散乱波の測定結果を境界条件として用いて算出される散乱場関数に基づいて、物体の内部における要素を示し得る中間画像を算出することが可能になる。そして、複数の日における複数の測定結果を用いて得られる複数の中間画像から、物体の内部における永続的な要素を示す再構成画像を生成することが可能になる。
 したがって、電波の散乱波を用いて、物体の内部における永続的な要素を示す再構成画像を生成することが可能になる。そして、これにより、例えば、散乱波を用いて、人体の内部における要素が、永続的な悪性の腫瘍であるか、ランダムに発生し消滅する他の細胞であるかを識別することが可能になる。
 以下、図面を用いて、実施の形態について説明する。なお、以下で説明する実施の形態は、いずれも包括的又は具体的な例を示す。以下の実施の形態で示される数値、形状、材料、構成要素、構成要素の配置位置及び接続形態、ステップ、ステップの順序等は、一例であり、請求の範囲を限定する主旨ではない。
 (実施の形態)
 本実施の形態における散乱トモグラフィ装置は、電波の散乱波を用いて、物体の内部における永続的な要素を示す再構成画像を生成する。以下、本実施の形態における散乱トモグラフィ装置をその基礎となる技術及び理論なども含めて、詳細に説明する。なお、以下では、主に、マイクロ波マンモグラフィが想定され、電波にはマイクロ波が用いられ、物体には乳房が用いられているが、適用分野はマイクロ波マンモグラフィに限定されず、マイクロ波とは異なる電波、及び、乳房とは異なる物体が用いられてもよい。
 <I 概要>
 本開示は、時系列確率論を用いて、悪性の腫瘍等を特定する方法、又は、腫瘍等が存在しないことを確認する方法を提供する。
 例えば、月経周期を有する人に対して数回の測定が実施される。そして、時系列確率論的方法を用いて、複数回の測定結果から、乳房内の長期的又は中期的に不変な要素を示す映像が抽出される。具体的には、例えば、散乱場理論に基づいて、一回の測定結果から乳房内の要素を示す3D画像が得られる。複数回の測定結果から複数の3D画像が得られる。こうした画像の時系列データから確率偏微分方程式(時系列確率偏微分方程式とも呼ぶ)を用いて最終的な再構成画像が得られる。
 本開示における時系列確率論的方法は、確率偏微分方程式に基づく解析方法である。時系列確率論的方法は、既存の散乱場理論に組み合わされてもよい。具体的には、本開示における時系列確率論的方法は、上述された特許文献2又は特許文献3等に記載の散乱場理論に組み合わされてもよい。
 本発明者らは、現在までに、散乱場理論と時系列確率論的方法との組み合わせに基づく臨床実験を20歳台前半から40歳台後半までの合計5人について行った。各人の1回の測定結果から得られる3D画像には乳房内の何らかの要素が映し出される場合もあったが、全員について悪性腫瘍が全く見当たらないという結果が得られた。
 散乱場理論に基づくマイクロ波マンモグラフィでは、高い分解能及び高いコントラストで映像化対象要素が映し出される。典型的には、この映像化対象要素は、生成と消滅とを短期間に行う細胞、又は、長中期的に不変な腫瘍(又は単調増殖する腫瘍)である。散乱場理論と時系列確率論的方法との組み合わせは、特に映像化対象要素が上記のいずれかであるというシンプルな状況で効力を発揮し、実用上強力な診断技術を構成する。
 <II 基礎となる生理学的予備知識と考察>
 図1は、月経周期中における黄体ホルモン(プロゲステロン)他の分泌を示すグラフである。
 人の乳房の内部では、細胞増殖(有糸分裂)及び細胞欠失(アポトーシス)が生じている。細胞増殖(有糸分裂)及び細胞欠失(アポトーシス)は、月経周期に伴うホルモン環境、すなわちエストロゲン及びプロゲステロンの分泌量に依存すると想定される。
 図2Aは、月経周期における日毎の小葉の細胞増殖(有糸分裂)の度数を示すグラフである。図2Bは、月経周期における日毎の細胞欠失(アポトーシス)の度数を示すグラフである。
 図2A及び図2Bは、「D.J.P.FERGUSON AND T.J.ANDERSON 『MORPHOLOGICAL EVALUATION OF CELL TURNOVER IN RELATION TO THE MENSTRUAL CYCLE IN THE “RESTING” HUMAN BREAST』 Br.J.Cancer (1981) 44,177」(非特許文献)に基づく。
 図3は、小葉及び乳管を示す概念図である。乳腺は、複数の乳腺葉で構成される。乳腺葉は、さらに、小葉と乳管とで構成される。小葉は、母乳を生成し、乳管は、母乳を乳頭まで運ぶ。
 図2Aに示されているように、特に、小葉の細胞増殖の度数は、月経周期の終わりへ日が進むにつれて上昇する。そして、小葉の細胞増殖の度数は、28日の月経周期の25日目に高い数値となる。この高い数値は、小葉の数の増加に関連する。
 マイクロ波マンモグラフィによって得られる測定結果にも小葉の細胞増殖が影響する。誘電率が高い小葉の増加は悪性腫瘍の発見に明らかに障害となる。一方、図2Aからも判るように、月経周期の4日目~19日目では、細胞増殖が活発とは言えないので、この時期はマイクロ波マンモグラフィを用いた測定に適している。しかしながら、実際には、この時期においても小葉から多少の反射信号があるので、このような反射信号が小さな腫瘍の発見には障害となる。
 また、月経周期の中で短期間に細胞増殖(有糸分裂)及び細胞欠失(アポトーシス)が行われ、かつ、その現象は、乳房内のかなり広い領域のどこででも生じ得る。このような現象によって生じる小葉が、マイクロ波マンモグラフィによって得られる測定結果において局所的でかなり強い信号として現れる。
 小葉の細胞増殖が発生する場所にはランダム性があり、小葉の細胞増殖は、乳房内の全体で一様に広がって起きる現象ではなく、局所的(離散的)に発生する現象である。つまり、小葉細胞は、局所的かつランダムに発生し、消滅すると想定される。
 マイクロ波マンモグラフィで映像化される要素は、このランダムに発生し消滅する小葉細胞、又は、一度できると長期間消滅しない腫瘍等(繊維線種等の良性の腫瘍を含む)であると想定される。本開示の時系列確率論的方法では、これらの違いを最大限に利用して腫瘍等が抽出される。
 時系列確率論的方法は、上記に述べた月経周期における特定の時期を狙った方法を大きく凌駕する強力な方法である。月経周期を有する若年者に関して、実験では、僅か数回の時系列の測定でも、健常であるか否かが確実に決定された。
 なお、マイクロ波マンモグラフィ以外の乳房内測定技術にこの時系列確率論的方法が適用できるか否かについて、X線マンモグラフィでは、コラーゲン等が、映像において強く、かつ、長期安定的に表れるため、適用が難しい。超音波エコー装置では、機械的インピーダンスをマニュアルで整合させて測定が行われるため、再現性を高めることが極めて困難であり、また、長期安定的な乳房内の層界から反射が多い。また、乳房内の層界が測定時に自由に変形するので、やはり適用が困難である。
 また、MRI(核磁気共鳴画像法)又はPET(ポジトロン断層法)での測定に時系列確率論的方法を適用することについても、課題が多い。
 <III 散乱場理論概要(曲面上のマルチスタティック逆散乱理論)>
 この章は、測定結果を解析して、3D画像を取得するための散乱場理論を示す。散乱場理論で得られた3D画像は、次のステップにおいて、確率偏微分方程式を用いて解析される。なお、適宜、特許文献2又は特許文献3に記載の散乱場理論が適用されてもよい。
 図4は、アレイアンテナが曲面上で走査し散乱データを測定する例を示す概念図である。アレイアンテナ401は、曲面上で走査するマルチスタティックアレイアンテナであって、送信アンテナT及び受信アンテナRを含む。曲面上で走査するマルチスタティックアレイアンテナに対応する散乱場理論(曲面上のマルチスタティック逆散乱理論とも呼ぶ)には、様々なバリエーションがある。
 ここで例として散乱場理論に用いられる曲面は、x方向に対して有限の曲率があり、y方向に対して曲率が0であるという比較的シンプルな曲面である。また、この例では、y方向に沿って直線状に配置されたアレイアンテナ401が、x方向へ曲線に沿って走査する。
 アレイアンテナ401は、X座標が同じ直線上に配置されている。ガウス曲率が0である曲面上にある2つの直交する主曲率方向のうち、曲率が0のy方向が、アレイアンテナ401の送信アンテナT及び受信アンテナRが並ぶ方向であり、もう一方のx方向がアンテナ走査方向である。この例は、マイクロ波マンモグラフィへの応用ではかなり汎用的かつ実用的な例である。なお、アレイアンテナ401は、複数の送信アンテナTを備えていてもよいし、複数の受信アンテナRを備えていてもよい。
 点P(x,y,z)から放射された電波は、点P(ξ,η,ζ)で反射し、点P(x,y,z)で受信される。点Pが領域D全体のあらゆる位置に存在するとき、点Pで受信される信号は、次式(3-1)で表現される。
Figure JPOXMLDOC01-appb-M000009
 式(3-1)において、時間の因子は、exp(-iωt)に比例すると仮定されている。また、ωは、電波の角周波数を表し、kは、電波の波数を表し、ε(ξ、η、ζ)は、P(ξ、η、ζ)における反射率を表す。また、ω=ckが成立する。ここで、cは、電波の伝搬速度である。式(3-1)の関数は、散乱場関数とも表現され得る。ε(ξ、η、ζ)が未知である状態では、式(3-1)の散乱場関数は、未知である。
 式(3-1)の散乱場関数は、同一のx座標及びz座標を有する任意の送信位置及び任意の受信位置が入力されて受信位置における散乱波の量が出力される関数と解釈され得る。散乱場関数に入力される送信位置及び受信位置が送信アンテナTの位置及び受信アンテナRの位置にそれぞれ一致する場合、散乱場関数の出力は、受信アンテナRによって得られる測定データに一致する。
 そして、散乱場関数にt→0、x→x、y1→y2(=y)、及び、z→zを適用することで、(x,y,z)において電波送信後にそこで瞬時に受信される散乱波の量、すなわち、(x,y,z)における反射の量が示されると想定される。
 具体的には、例えば、散乱場関数に送信位置及び受信位置として任意の同じ位置を入力することで散乱場関数から散乱波の量として出力される値は、その位置での反射が大きいほど、大きいと想定される。つまり、散乱場関数に送信位置及び受信位置として任意の同じ位置を入力することで散乱場関数から出力される値は、その位置における反射の量を示し得る。物体の内部を示す画像を生成するための映像化関数は、このような量を示す関数として以下のように導出される。
 次式(3-2)は、式(3-1)の散乱場関数が満たす方程式である。
Figure JPOXMLDOC01-appb-M000010
 式(3-2)に示された方程式の一般解として次式(3-3)が得られる。つまり、散乱場関数として次式(3-3)が得られる。
Figure JPOXMLDOC01-appb-M000011
 ここで、k、ky1及びky2は、それぞれ、x、y及びyに関する散乱場関数の波数を表す。測定対象領域の境界上で測定した散乱データ(つまり測定結果)がΦ(x,y,y,t)と表現され、Φ(x,y,y,t)のy、y、tに関するフーリエ変換像が
Figure JPOXMLDOC01-appb-M000012
と表現される場合、式(3-3)のa(k,ky1,ky2)として次式(3-4)が得られる。
Figure JPOXMLDOC01-appb-M000013
 上記においてxで表されるxは、送信アンテナT及び受信アンテナRの共通のX座標を表し、上記においてzで表されるzは、送信アンテナT及び受信アンテナRの共通のZ座標を表す。x及びzは、次式(3-5)によって示される関係を満たす。なお、次式(3-5)における関数fは、境界面の形状関数である。
Figure JPOXMLDOC01-appb-M000014
 式(3-3)及び式(3-4)が、測定結果を境界条件として用いて算出される散乱場関数である。最終的に映像化関数として次式(3-6)が得られる。
Figure JPOXMLDOC01-appb-M000015
 ρ(r)は、画像を表す。より具体的には、rは、映像化対象位置を表し、ρ(r)は、その映像化対象位置の画像強度を表す。映像化対象位置の画像強度は、映像化対象位置に対する散乱場関数の出力、つまり、映像化対象位置での反射の大きさに対応する。例えば、乳房内の要素が電波を反射するため、乳房内の要素の位置において大きい画像強度が得られる。
 式(3-6)のρ(r)が、次章の確率場を構成する。また、i回目の測定に対応するt=tにおけるρ(r)は、b(r)と記載される。
 <IV 確率偏微分方程式>
 <IV-1 時系列測定>
 図5は、同一人の同一領域に対してマイクロ波マンモグラフィを用いて行われる時系列測定(時系列3D測定とも呼ぶ)を示す概念図である。
 時系列測定の最も標準的な方法は、月経周期に対応する約28日を4週と見做し、毎週1回の測定を行い、4週間ないし5週間において合計4回ないし5回の測定を行う方法である。こうして得られた3D画像ρ(r)は、b(r)(例えばi=1,2,・・・,5)と定められる。
 <IV-2 基礎方程式>
 tが時間を表し、r=(x,y,z)が3次元ベクトルを表し、ρ(t,r)が画像強度(具体的には時系列確率的画像強度)を表すとき、画像強度の時間的空間的変化は、次式(4-1)のような確率偏微分方程式で記述される。
Figure JPOXMLDOC01-appb-M000016
 ここで、νは、拡散係数を表し、各測定の度に入ってくるノイズに対応する。ノイズは、ランダムと仮定され、目盛の位置のずれ、及び、プローブの走査のずれ等に伴う測定領域のずれによって発生する。また、δは、デルタ関数を表す。また、∧は、論理積を表す記号であって、次式(4-2)のような最小値を意味する。
Figure JPOXMLDOC01-appb-M000017
 式(4-1)の方程式におけるρ(ti-,r)は、次式(4-3)のような下極限を意味する。
Figure JPOXMLDOC01-appb-M000018
 αは、ν及びΔt=t-ti-1に依存した定数を表し、α=1であってもよい。b(r)は、時間tにおける空間座標rの位置の確率的画像強度を表す。
 つまり、式(4-1)における右辺の第1項は、測定領域のずれに対応する。式(4-1)における右辺の第2項は、測定時の画像強度の変化に対応し、画像強度の固定分と全体分との差(変化分)に対応する。画像強度の時間的空間的変化は、これらの足し合わせに対応する。
 図6は、r=rにおける確率的画像強度の時系列データを示すグラフであって、r=rにおける離散的なb(r)(j=1,2,3,・・・,N)を示す。b(r)は、マイクロ波マンモグラフィにおけるi回目の測定結果から得られる画像である。上述された散乱場理論では、b(r)は、ρ(r)と記載されている。つまり、bは、映像化関数を表し、b(r)は、映像化関数によって得られる画像を表す。
 式(4-1)で示される確率偏微分方程式をt=tの近傍で積分することにより、次の式(4-4)が得られる。
Figure JPOXMLDOC01-appb-M000019
 式(4-4)の積分を実行することにより、次式(4-5)が得られる。
Figure JPOXMLDOC01-appb-M000020
 Δt=t-ti-1とすると、Δt→0の極限では次式(4-6)が成立する。
Figure JPOXMLDOC01-appb-M000021
 式(4-5)及び式(4-6)に従って、次式(4-7)が成立する。
Figure JPOXMLDOC01-appb-M000022
 また、tがtの近傍ではない場合、式(4-1)に従って、次式(4-8)が成立する。
Figure JPOXMLDOC01-appb-M000023
 <IV-3 確率偏微分方程式の解>
 式(4-1)の確率偏微分方程式の特異点t=t以外での解、つまり、式(4-8)の解を次式(4-9)のようなフーリエ変換を用いて求める。
Figure JPOXMLDOC01-appb-M000024
 ここで、Q(t,k)は、ρ(t,r)のフーリエ変換像を表す。
Figure JPOXMLDOC01-appb-M000025
は、ρ(t,x,y,z)のフーリエ変換像を表す。k、k及びkは、それぞれ、x、y及びzに関する波数を表す。式(4-9)の通り、Q(t,k)のkは、(k,k,k)に対応する。式(4-8)及び式(4-9)に基づいて、次式(4-10)の微分方程式が得られる。
Figure JPOXMLDOC01-appb-M000026
 式(4-10)の微分方程式は、容易に解け、次式(4-11)のような解が得られる。ここで、c(k,k,k)は、t=t→tにおけるQ(t,k)の値、つまり、t→tの極限におけるQ(t,k)に対応する。
Figure JPOXMLDOC01-appb-M000027
 式(4-11)に基づいて、式(4-1)の確率偏微分方程式の特異点t=t以外での解として、次式(4-12)が得られる。
Figure JPOXMLDOC01-appb-M000028
 <V 拡散項νの物理的意味>
 図7は、測定領域のずれを示す概念図である。例えば、片面粘着の薄いシールを被検体に貼付し、貼付されたシールの表面上で測定が行われる。つまり、貼付されたシールの領域が、測定領域として用いられる。また、例えば、このシールは、電波が透過する透明又は半透明の部材(具体的には合成樹脂等)で構成されていている。そして、シールには、32×32のます目等が印刷されており、時系列測定において、被検体の乳頭又はほくろ等が同じます目に位置するように、シールは貼付される。
 ここで、時系列測定における測定領域は、D(i=1,2,3,・・・,N)と表現される。上記のようなシールのます目が用いられていても、各Dを被検体の同じ場所にすることは難しい。毎回ずれが発生する。このずれは、ランダムと仮定され、拡散項で表現される。
 例えば、Δt毎に測定領域が(x,y)平面内でランダムにΔσずれる。Δσは、Δσ=(Δx,Δy)と表現されてもよい。また、Δσは、回転及び平行移動の組み合わせに対応してもよい。
 上記のように2次元平面内でずれが発生するため、式(4-8)のラプラシアンΔが2次元演算子になっている。測定領域のずれに関する式(4-8)の基本解は、次式(5-1)のように表現される。
Figure JPOXMLDOC01-appb-M000029
 測定領域のずれは、測定の回数と共に増加するような特性を有していない。測定領域は、おおむね同じ場所の近くで位置の誤差を伴いながらランダムに変化する。測定領域のずれは、正規分布に従っていると仮定すれば、よく知られたブラウン運動と同様になり、測定領域のずれの分布関数は拡散方程式で表される。ここでrを基準位置、rをブラウン運動の粒子位置とすると、これらの2乗平均誤差がνtに比例する。この関係は、次式(5-2)のように表現される。
Figure JPOXMLDOC01-appb-M000030
 上記の通り、測定領域のずれは、測定の回数と共に増加するような特性を有していない。したがって、式(5-2)のtは、ある測定時から次の測定時までの時間を表していると解釈され得る。例えば、ある測定時がt=0であり、その次の測定時がt=1であると定められ得る。この場合、式(5-2)から次式(5-3)が得られる。
Figure JPOXMLDOC01-appb-M000031
 例えば、拡散係数νを2回の測定間での測定領域のずれ量と見積もることが可能である。
 <VI 腫瘍と小葉細胞とを識別する方法>
 式(4-8)の解は、形式的に次式(6-1)のように定められる。
Figure JPOXMLDOC01-appb-M000032
 また、時系列測定における各測定間の仮想的な時間間隔は、δt=1(つまりt-ti-1=1)と定められる。そして、時系列測定画像がb(r)(i=1,2,3,・・・,N)で表される場合において、次式(6-2)は、測定時の測定領域の誤差を考慮した時系列測定画像を表す。つまり、次式(6-2)は、測定時の測定領域の誤差を考慮して各位置の画像強度をその周辺に拡散させた時系列測定画像を表す。
Figure JPOXMLDOC01-appb-M000033
 eνΔ(r)は、式(4-12)に基づいて、x,y及びzについてb(r)のフーリエ変換を行い、exp(-ν(k +k ))を掛けて、逆フーリエ変換を行うことにより得られる。つまり、eνΔ(r)は、次式(6-3)により得られる。
Figure JPOXMLDOC01-appb-M000034
 最終的な腫瘍確率画像は、式(4-7)に基づく次式(6-4)により得られる。
Figure JPOXMLDOC01-appb-M000035
 式(6-4)では、νを明瞭に定義するため、νの式(5-3)の比例関係に等式が用いられている。
 時系列測定画像における各位置の画像強度の最小値を算出することによって、腫瘍確率画像において、一時的な小葉が消え、永続的な腫瘍が残る。一方、測定領域にずれがある場合、位置のずれによって、腫瘍確率画像から腫瘍も消失してしまう可能性がある。時系列測定画像における各位置の画像強度をその周辺に拡散させることで、測定領域にずれがある場合でも、このような消失が抑制される。
 <VII 実データを用いた検証>
 以上の理論の有効性を臨床実験データ及び臨床実験データに基づく合成データを用いて検証する。以下に例1~4の4つの例を示す。
 例1~3の対象者は全員健常者と思われている若年層である。時系列臨床実験において、測定頻度は、月経周期を考慮して、4~8回/人である。各人のデータは、全て同一の画像強度で整理されている。つまり、画像間で画像強度の尺度が揃えられており、画像間で画像強度の最大値及び最小値がそれぞれ揃えられている。解析では最も理想的なν=0が用いられている。
 例4は、癌がある場合のシミュレーションの例である。癌患者及び健常者の2名の臨床実験データに基づいて作成された合成データが検証に用いられている。具体的には、癌患者の1回の臨床実験データを、健常者の4回の時系列臨床実験データにそれぞれ重畳して作成された合成データが用いられている。
 例えば、1回の臨床データから、図8A、図8B又は図8Cのように表示される画像が得られる。
 図8Aは、乳房の内部を示す画像の表示例を示すイメージ図である。図8Aのように、乳房の内部が半透明かつ3次元で表示される。画像の上側が対象者の上側に対応し、画像の下側が対象者の下側に対応する。そして、画像の左側が対象者の右側に対応し、画像の右側が対象者の左側に対応する。
 図8Bは、乳房の内部を対象者の下側から上側へ見た半透明透視画像の表示例を示すイメージ図である。画像の左側が対象者の右側に対応し、画像の右側が対象者の左側に対応する。
 図8Cは、乳房内部を対象者の前側から見た半透明透視画像の表示例を示すイメージ図である。画像の左側が対象者の右側に対応し、画像の右側が対象者の左側に対応する。
 図8A、図8B又は図8Cのように表示される画像を測定毎に取得することで、時系列の複数の画像が取得される。そして、時系列の複数の画像から腫瘍等を識別するための腫瘍確率画像が生成される。
 <VII-1 例1>
 図9Aは、例1における1月11日の測定データから得られる再構成画像の表示例を示すイメージ図である。この画像は、上述されたb(r)に対応する。
 図9Bは、例1における1月18日の測定データから得られる再構成画像の表示例を示すイメージ図である。この画像は、上述されたb(r)に対応する。
 図9Cは、例1における1月25日の測定データから得られる再構成画像の表示例を示すイメージ図である。この画像は、上述されたb(r)に対応する。
 図9Dは、例1における2月1日の測定データから得られる再構成画像の表示例を示すイメージ図である。この画像は、上述されたb(r)に対応する。また、例1において、2月1日は、月経周期の開始日に対応する。
 図9Eは、例1における腫瘍確率画像の表示例を示すイメージ図である。この画像は、上述されたρ(r)に対応する。例1において、腫瘍等は全く見られないことが腫瘍確率画像によって識別される。
 <VII-2 例2>
 図10Aは、例2における6月1日の測定データから得られる再構成画像の表示例を示すイメージ図である。この画像は、上述されたb(r)に対応する。また、例4において、6月1日は、月経周期の開始日に対応する。
 図10Bは、例2における6月5日の測定データから得られる再構成画像の表示例を示すイメージ図である。この画像は、上述されたb(r)に対応する。
 図10Cは、例2における6月8日の測定データから得られる再構成画像の表示例を示すイメージ図である。この画像は、上述されたb(r)に対応する。
 図10Dは、例2における6月12日の測定データから得られる再構成画像の表示例を示すイメージ図である。この画像は、上述されたb(r)に対応する。
 図10Eは、例2における6月15日の測定データから得られる再構成画像の表示例を示すイメージ図である。この画像は、上述されたb(r)に対応する。
 図10Fは、例2における6月19日の測定データから得られる再構成画像の表示例を示すイメージ図である。この画像は、上述されたb(r)に対応する。
 図10Gは、例2における6月22日の測定データから得られる再構成画像の表示例を示すイメージ図である。この画像は、上述されたb(r)に対応する。
 図10Hは、例2における6月26日の測定データから得られる再構成画像の表示例を示すイメージ図である。この画像は、上述されたb(r)に対応する。
 図10Iは、例2における腫瘍確率画像の表示例を示すイメージ図である。この画像は、上述されたρ(r)に対応する。例2において、腫瘍等は全く見られないことが腫瘍確率画像によって識別される。
 <VII-3 例3>
 図11Aは、例3における10月23日の測定データから得られる再構成画像の表示例を示すイメージ図である。この画像は、上述されたb(r)に対応する。
 図11Bは、例3における10月30日の測定データから得られる再構成画像の表示例を示すイメージ図である。この画像は、上述されたb(r)に対応する。
 図11Cは、例3における11月6日の測定データから得られる再構成画像の表示例を示すイメージ図である。この画像は、上述されたb(r)に対応する。
 図11Dは、例3における11月13日の測定データから得られる再構成画像の表示例を示すイメージ図である。この画像は、上述されたb(r)に対応する。
 図11Eは、例3における11月20日の測定データから得られる再構成画像の表示例を示すイメージ図である。この画像は、上述されたb(r)に対応する。
 図11Fは、例3における11月27日の測定データから得られる再構成画像の表示例を示すイメージ図である。この画像は、上述されたb(r)に対応する。
 図11Gは、例3における12月4日の測定データから得られる再構成画像の表示例を示すイメージ図である。この画像は、上述されたb(r)に対応する。
 図11Hは、例3における12月11日の測定データから得られる再構成画像の表示例を示すイメージ図である。この画像は、上述されたb(r)に対応する。
 図11Iは、例3における腫瘍確率画像の表示例を示すイメージ図である。この画像は、上述されたρ(r)に対応する。例3において、腫瘍等は全く見られないことが腫瘍確率画像によって識別される。
 <VII-4 例4>
 図12Aは、例4における癌患者の測定データと2月26日の健常者の測定データとの合成データから得られる再構成画像の表示例を示すイメージ図である。この画像は、上述されたb(r)に対応する。
 図12Bは、例4における癌患者の測定データと2月5日の健常者の測定データとの合成データから得られる再構成画像の表示例を示すイメージ図である。この画像は、上述されたb(r)に対応する。
 図12Cは、例4における癌患者の測定データと2月12日の健常者の測定データとの合成データから得られる再構成画像の表示例を示すイメージ図である。この画像は、上述されたb(r)に対応する。
 図12Dは、例4における癌患者の測定データと2月19日の健常者の測定データとの合成データから得られる再構成画像の表示例を示すイメージ図である。この画像は、上述されたb(r)に対応する。また、例4において、2月19日は、健常者の月経周期の開始日から10日以内の日に対応する。
 図12Eは、例4における腫瘍確率画像の表示例を示すイメージ図である。この画像は、上述されたρ(r)に対応する。例4において、乳房の右側に腫瘍があることが腫瘍確率画像によって識別される。
 <VIII 散乱トモグラフィ装置の構成及び動作>
 上述された内容に基づいて、以下に、電波の散乱波を用いて物体の内部における永続的な要素を示す再構成画像を生成する散乱トモグラフィ装置の構成及び動作を示す。ここで、永続的な要素は、例えば、4週間等の所定期間に消滅しない要素である。
 図13は、本実施の形態における散乱トモグラフィ装置の基本構成図である。図13に示された散乱トモグラフィ装置100は、送信アンテナ101、受信アンテナ102及び情報処理回路103を備える。また、散乱トモグラフィ装置100は、ディスプレイ104を備えていてもよい。
 送信アンテナ101は、電波を送信する回路である。具体的には、送信アンテナ101は、物体の外部から物体の内部へ電波を送信する。電波は、マイクロ波、ミリ波又はテラヘルツ波等であってもよい。物体は、生体、製造物又は自然素材などであってもよい。特に、物体は、乳房であってもよい。散乱トモグラフィ装置100は、複数の送信アンテナ101を備えていてもよい。
 受信アンテナ102は、電波の散乱波等である電波を受信する回路である。具体的には、受信アンテナ102は、物体の内部へ送信された電波の散乱波を物体の外部で受信する。散乱トモグラフィ装置100は、複数の受信アンテナ102を備えていてもよい。また、受信アンテナ102は、送信アンテナ101と実質的に同じ位置に配置されてもよいし、送信アンテナ101とは異なる位置に配置されてもよい。
 また、送信アンテナ101と受信アンテナ102とは、マルチスタティックアンテナを構成していてもよいし、モノスタティックアンテナを構成していてもよい。
 情報処理回路103は、情報処理を行う回路である。具体的には、情報処理回路103は、複数の日において送信アンテナ101及び受信アンテナ102によって得られる複数の測定結果に基づいて、物体の内部における永続的な要素を示す再構成画像を生成する。例えば、情報処理回路103は、測定結果に基づいて再構成画像を生成する際に、上述された理論に示される演算処理を行う。
 また、情報処理回路103は、コンピュータ、又は、コンピュータのプロセッサであってもよい。情報処理回路103は、メモリからプログラムを読み出し、プログラムを実行することにより情報処理を行ってもよい。また、情報処理回路103は、複数の日における複数の測定結果に基づいて、物体の内部における永続的な要素を示す再構成画像を生成する専用回路であってもよい。
 また、情報処理回路103は、生成された再構成画像をディスプレイ104等に出力してもよい。例えば、情報処理回路103は、再構成画像をディスプレイ104に出力することにより、再構成画像をディスプレイ104に表示してもよい。あるいは、情報処理回路103は、再構成画像をプリンタ(図示せず)に出力することにより、プリンタを介して再構成画像を印刷してもよい。あるいは、情報処理回路103は、有線又は無線の通信によって再構成画像を電子データとして他の装置(図示せず)に送信してもよい。
 ディスプレイ104は、液晶ディスプレイ等のディスプレイ装置である。なお、ディスプレイ104は、任意の構成要素であって、必須の構成要素ではない。また、ディスプレイ104は、散乱トモグラフィ装置100を構成しない外部の装置であってもよい。
 図14は、図13に示された散乱トモグラフィ装置100の基本動作を示すフローチャートである。具体的には、図13に示された散乱トモグラフィ装置100の送信アンテナ101、受信アンテナ102及び情報処理回路103が、図14に示された動作を行う。
 まず、送信アンテナ101は、物体の外部から物体の内部へ電波を送信する(S201)。次に、受信アンテナ102は、物体の内部へ送信された電波の散乱波を物体の外部で受信する(S202)。そして、情報処理回路103は、複数の日において送信アンテナ101及び受信アンテナ102によって得られる複数の測定結果に基づいて、物体の内部における永続的な要素を示す再構成画像を生成する(S203)。
 情報処理回路103は、複数の測定結果に基づいて再構成画像を生成する際、まず、複数の測定結果のそれぞれについて、測定結果を境界条件として用いて散乱場関数を算出する。散乱場関数は、電波の送信位置及び散乱波の受信位置が入力されて受信位置における散乱波の量が出力される関数である。すなわち、散乱場関数は、任意に定められる送信位置及び受信位置に対して受信位置における散乱波の量を示す関数である。
 そして、情報処理回路103は、複数の測定結果のそれぞれについて算出された散乱場関数に基づいて映像化関数を算出する。映像化関数は、映像化対象位置が入力されて映像化対象位置の画像強度が出力される関数であって、送信位置及び受信位置として映像化対象位置を散乱場関数に入力することで散乱場関数から出力される量に基づいて定められる関数である。
 そして、情報処理回路103は、複数の測定結果のそれぞれについて算出された映像化関数に基づいて中間画像を生成することにより、複数の測定結果について複数の中間画像を生成する。そして、情報処理回路103は、複数の中間画像における各位置の画像強度の最小値を論理積により算出することにより再構成画像を生成する。情報処理回路103は、生成された再構成画像をディスプレイ104等に出力してもよい。
 これにより、散乱トモグラフィ装置100は、散乱波の測定結果を境界条件として用いて算出される散乱場関数に基づいて、物体の内部における要素を示し得る中間画像を算出することができる。そして、散乱トモグラフィ装置100は、複数の日における複数の測定結果を用いて得られる複数の中間画像から、物体の内部における永続的な要素を示す再構成画像を生成することができる。
 したがって、散乱トモグラフィ装置100は、電波の散乱波を用いて、物体の内部における永続的な要素を示す再構成画像を生成することができる。そして、これにより、例えば、散乱波を用いて、人体の内部における要素が、永続的な悪性の腫瘍であるか、ランダムに発生し消滅する他の細胞であるかを識別することが可能になる。
 例えば、情報処理回路103は、P(r)=b(r)∧b(r)∧・・・∧b(r)により再構成画像を生成してもよい。ここで、P(r)は再構成画像を表す。また、rは位置を表す。また、Nは複数の中間画像の個数を表す。また、1からNまでのiに関するbは映像化関数を表す。また、∧は論理積を表す。
 これにより、散乱トモグラフィ装置100は、映像化関数の出力に対応する中間画像の論理積によって、再構成画像をシンプルに生成することができる。
 また、例えば、情報処理回路103は、映像化関数及び拡散係数に基づいて中間画像を生成し、中間画像を生成する際、拡散係数が大きいほど中間画像において映像化対象位置の画像強度を空間的に大きく拡散させる。
 これにより、散乱トモグラフィ装置100は、画像強度を拡散係数によって拡散させることができる。したがって、散乱トモグラフィ装置100は、永続的な要素が散乱波の測定における位置ずれによって再構成画像から消失することを拡散係数によって抑制することができる。
 また、例えば、情報処理回路103は、P(r)=eνΔ(r)∧eνΔ(r)∧・・・∧eνΔ(r)により再構成画像を生成してもよい。ここで、P(r)は再構成画像を表す。また、rは位置を表す。また、Nは複数の中間画像の個数を表す。また、1からNまでのiに関するbは映像化関数を表す。また、1からNまでのiに関するeνΔ(r)は中間画像を表す。また、νは拡散係数を表す。また、Δは散乱波の測定において位置ずれが生じる2方向に対応する2次元のラプラス作用素を表す。また、∧は論理積を表す。
 これにより、散乱トモグラフィ装置100は、確率論的方法に基づく関係式によって画像強度を適切に拡散させることができる。
 また、例えば、情報処理回路103は、b(r)に対してフーリエ変換を行い、フーリエ変換を行った結果に対してexp(-ν(k +k ))を掛け、exp(-ν(k +k ))を掛けた結果に対して逆フーリエ変換を行ってもよい。そして、これにより、情報処理回路103は、eνΔ(r)を算出してもよい。ここで、exp(-ν(k +k ))のk及びkは、bの2方向に対応する2つの波数を表す。
 これにより、散乱トモグラフィ装置100は、画像強度を高速にかつ適切に拡散させることができる。
 また、例えば、拡散係数は、散乱波の測定位置の2乗平均誤差に比例する値として定められてもよい。これにより、拡散係数が、測定位置の誤差の大きさに基づいて定められ得る。そして、散乱トモグラフィ装置100は、測定位置の誤差の大きさに基づいて、画像強度を適切に拡散させることができる。
 また、例えば、拡散係数は、散乱波の測定位置の2乗平均誤差に等しい値として定められてもよい。これにより、拡散係数が、測定位置の誤差の大きさに基づいてシンプルに定められ得る。そして、散乱トモグラフィ装置100は、測定位置の誤差の大きさに基づいて、画像強度を適切に拡散させることができる。
 また、例えば、拡散係数は、0として定められてもよい。これにより、散乱トモグラフィ装置100は、拡散係数を用いない場合と同様に、映像化関数の出力に対応する中間画像の論理積によって、再構成画像をシンプルに生成することができる。
 また、例えば、拡散係数は、0よりも大きい値として定められる。これにより、散乱トモグラフィ装置100は、画像強度を0よりも大きい拡散係数によってより確実に拡散させることができる。したがって、散乱トモグラフィ装置100は、永続的な要素が散乱波の測定における位置ずれによって再構成画像から消失することを0よりも大きい拡散係数によってより確実に抑制することができる。
 また、例えば、X座標、Y座標及びZ座標で構成される3次元空間において、送信アンテナ101の位置のX座標及びZ座標は、それぞれ、受信アンテナ102の位置のX座標及びZ座標と同じであってもよい。
 そして、散乱場関数は、
Figure JPOXMLDOC01-appb-M000036
で定められてもよい。
 ここで、xは、送信位置及び受信位置のX座標を表す。また、yは、送信位置のY座標を表す。また、yは、受信位置のY座標を表す。また、zは、送信位置及び受信位置のZ座標を表す。また、kは、電波の波数を表す。また、散乱場関数におけるk、ky1及びky2は、それぞれ、散乱場関数のx、y及びyに関する波数を表す。
 また、a(k、ky1、ky2)は、
Figure JPOXMLDOC01-appb-M000037
で定められてもよい。
 ここで、Iは、送信アンテナ101及び受信アンテナ102が存在する送信位置及び受信位置のインデックスを表す。また、xは、送信アンテナ101及び受信アンテナ102が存在する送信位置及び受信位置のX座標を表す。また、zは、送信アンテナ101及び受信アンテナ102が存在する送信位置及び受信位置のZ座標を表す。
 また、
Figure JPOXMLDOC01-appb-M000038
は、x、y、y及びtにおける測定結果を表すΦ(x,y,y,t)のy1、y2及びtに関するフーリエ変換像を表す。また、tは、時間を表す。
 そして、映像化関数は、
Figure JPOXMLDOC01-appb-M000039
で定められてもよい。ここで、映像化関数のx、y及びzは、それぞれ、映像化対象位置のX座標、Y座標及びZ座標を表す。
 これにより、散乱トモグラフィ装置100は、上記の散乱場関数及び上記の映像化関数に基づいて適切に中間画像を生成することができる。上記の散乱場関数及び上記の映像化関数は、送信アンテナ101の位置のX座標及びZ座標がそれぞれ受信アンテナ102の位置のX座標及びZ座標と同じであることに基づいて適切に定められ得る。
 また、例えば、上記の基本構成及び基本動作において示された送信アンテナ101、受信アンテナ102、情報処理回路103、散乱場関数、映像化関数及びパラメータ等には、本実施の形態において示された構成要素、式及び変数等が適宜適用され得る。
 また、本実施の形態において示された散乱場関数及び映像化関数等は、適宜変形して適用されてもよい。例えば、上述された数式と実質的に同じ内容を他の表現で示す数式が用いられてもよいし、上述された理論に基づいて導出される他の数式が用いられてもよい。
 図15は、図13に示された散乱トモグラフィ装置100の具体的な構成を示す概念図である。
 図13に示された散乱トモグラフィ装置100の送信アンテナ101及び受信アンテナ102は、マルチスタティックアレイアンテナ1008に含まれていてもよい。図13に示された散乱トモグラフィ装置100の情報処理回路103は、図15に示された複数の構成要素のうちの1つ以上に対応していてもよい。具体的には、例えば、情報処理回路103は、信号処理計算機1005に対応していてもよい。また、図13に示されたディスプレイ104は、信号モニタ装置1006に対応していてもよい。
 散乱トモグラフィ装置100において用いられるマイクロ波の信号は、DC~20GHzの周波数成分を持った擬似ランダム時系列信号(PN符号:Pseudo Noise Code)である。この信号は、PN符号生成用FPGAボード1002から出力される。より具体的には、この信号は2種類ある。一方の種類の信号(LO信号:local oscillator signal)は、遅延回路(デジタル制御ボード1003)を通してRF検波回路(RF検波ボード1007)へ送られる。
 他方の種類の信号(RF信号:Radio Frequency Signal)は、マルチスタティックアレイアンテナ1008の送信用マイクロ波UWBアンテナへ送られ放射される。マイクロ波の散乱信号がマルチスタティックアレイアンテナ1008の受信用UWBアンテナで受信され、RF検波回路(RF検波ボード1007)へ送られる。ここで送受信信号はアンテナ素子選択スイッチ(UWBアンテナRFスイッチ1004)を通る。
 また、遅延される信号(LO信号)は、PN符号の値が変化する時間の1/2倍(nは2よりも大きい整数)の時間ずつ遅延される。検波した信号は、IF信号(Intermediate Frequency Signal)として、信号処理計算機1005でA/D変換され記憶される。また、検波した信号を示す情報が、信号モニタ装置1006に表示されてもよい。
 これら一連の動作のタイミングは、距離計1001からの信号(距離信号又はフリーラン信号)に同期するように、デジタル制御ボード1003内のマイクロプロセッサによって制御される。例えば、デジタル制御ボード1003内のマイクロプロセッサは、Switch切替信号、及び、PN符号掃引トリガ等を送信する。
 また、信号処理計算機1005は、A/D変換され記憶された信号を用いて、3次元再構成を行い、3次元画像表示を行う。また、信号処理計算機1005は、信号校正を行ってもよい。また、信号処理計算機1005は、生波形表示を行ってもよい。
 また、例えば、信号処理計算機1005は、測定毎に得られる3次元画像をメモリ1009に保存することにより、複数の3次元画像をメモリ1009に保存する。これらの3次元画像は、上述された時系列測定画像に対応する。信号処理計算機1005は、これらの3次元画像を用いて、最終的な腫瘍確率画像を生成し、生成された腫瘍確率画像を信号モニタ装置1006等に表示する。
 図15に示された構成は例であって、散乱トモグラフィ装置100の構成は、図15に示された構成に限られない。図15に示された構成の一部が省略されてもよいし、変更されてもよい。
 (補足)
 以上、散乱トモグラフィ装置の態様を実施の形態に基づいて説明したが、散乱トモグラフィ装置の態様は、実施の形態に限定されない。実施の形態に対して当業者が思いつく変形が施されてもよいし、実施の形態における複数の構成要素が任意に組み合わされてもよい。例えば、実施の形態において特定の構成要素によって実行される処理を特定の構成要素の代わりに別の構成要素が実行してもよい。また、複数の処理の順序が変更されてもよいし、複数の処理が並行して実行されてもよい。
 また、上記の説明では、マイクロ波マンモグラフィにおいて乳房内の小葉と腫瘍とを識別する例が示されているが、実施の形態に示された散乱トモグラフィ装置の適用例は、この例に限られない。散乱トモグラフィ装置は、物体を破壊せずに物体内の永続的な要素を抽出することができ、乳房と腫瘍との関係と同様の関係を有する他の物体及び他の要素に関して適用が可能である。
 また、散乱トモグラフィ装置の各構成要素が行うステップを含む散乱トモグラフィ方法が任意の装置又はシステムによって実行されてもよい。例えば、散乱トモグラフィ方法の一部又は全部が、プロセッサ、メモリ及び入出力回路等を備えるコンピュータによって実行されてもよい。その際、コンピュータに散乱トモグラフィ方法を実行させるためのプログラムがコンピュータによって実行されることにより、散乱トモグラフィ方法が実行されてもよい。
 また、非一時的なコンピュータ読み取り可能な記録媒体に、上記のプログラムが記録されていてもよい。
 また、散乱トモグラフィ装置の各構成要素は、専用のハードウェアで構成されてもよいし、上記のプログラム等を実行する汎用のハードウェアで構成されてもよいし、これらの組み合わせで構成されてもよい。また、汎用のハードウェアは、プログラムが記録されたメモリ、及び、メモリからプログラムを読み出して実行する汎用のプロセッサ等で構成されてもよい。ここで、メモリは、半導体メモリ又はハードディスク等でもよいし、汎用のプロセッサは、CPU等でもよい。
 また、専用のハードウェアが、メモリ及び専用のプロセッサ等で構成されてもよい。例えば、専用のプロセッサが、測定データを記録するためのメモリを参照して、上記の散乱トモグラフィ方法を実行してもよい。
 また、散乱トモグラフィ装置の各構成要素は、電気回路であってもよい。これらの電気回路は、全体として1つの電気回路を構成してもよいし、それぞれ別々の電気回路であってもよい。また、これらの電気回路は、専用のハードウェアに対応していてもよいし、上記のプログラム等を実行する汎用のハードウェアに対応していてもよい。
 本開示の一態様は、電波の散乱波を用いて、物体の内部を示す画像を生成する散乱トモグラフィ装置に有用であり、物理探査又は医療診断等に適用可能である。
  100 散乱トモグラフィ装置
  101 送信アンテナ
  102 受信アンテナ
  103 情報処理回路
  104 ディスプレイ
  401 アレイアンテナ
  1001 距離計
  1002 PN符号生成用FPGAボード
  1003 デジタル制御ボード
  1004 UWBアンテナRFスイッチ
  1005 信号処理計算機
  1006 信号モニタ装置
  1007 RF検波ボード
  1008 マルチスタティックアレイアンテナ
  1009 メモリ

Claims (11)

  1.  物体の外部から前記物体の内部へ電波を送信する送信アンテナと、
     前記送信アンテナから前記物体の内部へ送信された前記電波の散乱波を前記物体の外部で受信する受信アンテナと、
     複数の日のそれぞれにおいて前記散乱波の測定結果を取得することにより、前記複数の日において複数の測定結果を取得し、前記複数の測定結果に基づいて前記物体の内部における永続的な要素を示す再構成画像を生成する情報処理回路とを備え、
     前記情報処理回路は、
     前記複数の測定結果のそれぞれについて、当該測定結果を境界条件として用いて、前記電波の送信位置及び前記散乱波の受信位置が入力されて前記受信位置における前記散乱波の量が出力される散乱場関数を算出し、
     前記複数の測定結果のそれぞれについて、映像化対象位置が入力されて前記映像化対象位置の画像強度が出力される映像化関数であって、前記送信位置及び前記受信位置として前記映像化対象位置を前記散乱場関数に入力することで前記散乱場関数から出力される量に基づいて定められる映像化関数を算出し、
     前記複数の測定結果のそれぞれについて前記映像化関数に基づいて中間画像を生成することにより、前記複数の測定結果について複数の中間画像を生成し、
     前記複数の中間画像における各位置の画像強度の最小値を論理積により算出することにより前記再構成画像を生成する
     散乱トモグラフィ装置。
  2.  前記情報処理回路は、P(r)=b(r)∧b(r)∧・・・∧b(r)により前記再構成画像を生成し、
     P(r)は前記再構成画像を表し、rは位置を表し、Nは前記複数の中間画像の個数を表し、1からNまでのiに関するbは前記映像化関数を表し、∧は論理積を表す
     請求項1に記載の散乱トモグラフィ装置。
  3.  前記情報処理回路は、
     前記映像化関数及び拡散係数に基づいて前記中間画像を生成し、
     前記中間画像を生成する際、前記拡散係数が大きいほど前記中間画像において前記映像化対象位置の画像強度を空間的に大きく拡散させる
     請求項1に記載の散乱トモグラフィ装置。
  4.  前記情報処理回路は、P(r)=eνΔ(r)∧eνΔ(r)∧・・・∧eνΔ(r)により前記再構成画像を生成し、
     P(r)は前記再構成画像を表し、rは位置を表し、Nは前記複数の中間画像の個数を表し、1からNまでのiに関するbは前記映像化関数を表し、1からNまでのiに関するeνΔ(r)は前記中間画像を表し、νは前記拡散係数を表し、Δは前記散乱波の測定において位置ずれが生じる2方向に対応する2次元のラプラス作用素を表し、∧は論理積を表す
     請求項3に記載の散乱トモグラフィ装置。
  5.  前記情報処理回路は、b(r)に対してフーリエ変換を行い、フーリエ変換を行った結果に対してexp(-ν(k +k ))を掛け、exp(-ν(k +k ))を掛けた結果に対して逆フーリエ変換を行うことにより、eνΔ(r)を算出し、
     exp(-ν(k +k ))のk及びkは、bの前記2方向に対応する2つの波数を表す
     請求項4に記載の散乱トモグラフィ装置。
  6.  前記拡散係数は、前記散乱波の測定位置の2乗平均誤差に比例する値として定められる
     請求項3~5のいずれか1項に記載の散乱トモグラフィ装置。
  7.  前記拡散係数は、前記散乱波の測定位置の2乗平均誤差に等しい値として定められる
     請求項3~5のいずれか1項に記載の散乱トモグラフィ装置。
  8.  前記拡散係数は、0として定められる
     請求項3~5のいずれか1項に記載の散乱トモグラフィ装置。
  9.  前記拡散係数は、0よりも大きい値として定められる
     請求項3~7のいずれか1項に記載の散乱トモグラフィ装置。
  10.  X座標、Y座標及びZ座標で構成される3次元空間において、前記送信アンテナの位置のX座標及びZ座標は、それぞれ、前記受信アンテナの位置のX座標及びZ座標と同じであり、前記散乱場関数は、
    Figure JPOXMLDOC01-appb-M000001
    で定められ、xは、前記送信位置及び前記受信位置のX座標を表し、yは、前記送信位置のY座標を表し、yは、前記受信位置のY座標を表し、zは、前記送信位置及び前記受信位置のZ座標を表し、kは、前記電波の波数を表し、前記散乱場関数におけるk、ky1及びky2は、それぞれ、前記散乱場関数のx、y及びyに関する波数を表し、a(k、ky1、ky2)は、
    Figure JPOXMLDOC01-appb-M000002
    で定められ、Iは、前記送信アンテナ及び前記受信アンテナが存在する前記送信位置及び前記受信位置のインデックスを表し、xは、前記送信アンテナ及び前記受信アンテナが存在する前記送信位置及び前記受信位置のX座標を表し、zは、前記送信アンテナ及び前記受信アンテナが存在する前記送信位置及び前記受信位置のZ座標を表し、
    Figure JPOXMLDOC01-appb-M000003
    は、x、y、y及びtにおける測定結果を表すΦ(x,y,y,t)のy1、y2及びtに関するフーリエ変換像を表し、tは、時間を表し、前記映像化関数は、
    Figure JPOXMLDOC01-appb-M000004
    で定められ、前記映像化関数のx、y及びzは、それぞれ、前記映像化対象位置のX座標、Y座標及びZ座標を表す
     請求項1~9のいずれか1項に記載の散乱トモグラフィ装置。
  11.  送信アンテナによって、物体の外部から前記物体の内部へ電波を送信するステップと、
     受信アンテナによって、前記送信アンテナから前記物体の内部へ送信された前記電波の散乱波を前記物体の外部で受信するステップと、
     複数の日のそれぞれにおいて前記散乱波の測定結果を取得することにより、前記複数の日において複数の測定結果を取得し、前記複数の測定結果に基づいて前記物体の内部における永続的な要素を示す再構成画像を生成するステップとを含み、
     前記再構成画像を生成するステップでは、
     前記複数の測定結果のそれぞれについて、当該測定結果を境界条件として用いて、前記電波の送信位置及び前記散乱波の受信位置が入力されて前記受信位置における前記散乱波の量が出力される散乱場関数を算出し、
     前記複数の測定結果のそれぞれについて、映像化対象位置が入力されて前記映像化対象位置の画像強度が出力される映像化関数であって、前記送信位置及び前記受信位置として前記映像化対象位置を前記散乱場関数に入力することで前記散乱場関数から出力される量に基づいて定められる映像化関数を算出し、
     前記複数の測定結果のそれぞれについて前記映像化関数に基づいて中間画像を生成することにより、前記複数の測定結果について複数の中間画像を生成し、
     前記複数の中間画像における各位置の画像強度の最小値を論理積により算出することにより前記再構成画像を生成する
     散乱トモグラフィ方法。
PCT/JP2020/028886 2019-09-17 2020-07-28 散乱トモグラフィ装置及び散乱トモグラフィ方法 WO2021053971A1 (ja)

Priority Applications (8)

Application Number Priority Date Filing Date Title
US17/640,159 US20220319067A1 (en) 2019-09-17 2020-07-28 Scattering tomography device and scattering tomography method
AU2020348001A AU2020348001A1 (en) 2019-09-17 2020-07-28 Scattering tomography device and scattering tomography method
JP2021546534A JP7481757B2 (ja) 2019-09-17 2020-07-28 散乱トモグラフィ装置及び散乱トモグラフィ方法
KR1020227005201A KR20220062270A (ko) 2019-09-17 2020-07-28 산란 토모그래피 장치 및 산란 토모그래피 방법
CA3153233A CA3153233A1 (en) 2019-09-17 2020-07-28 Scattering tomography device and scattering tomography method
CN202080063129.0A CN114390908A (zh) 2019-09-17 2020-07-28 散射断层成像装置以及散射断层成像方法
EP20864902.0A EP4033228A4 (en) 2019-09-17 2020-07-28 DIFFUSION TOMOGRAPHY DEVICE AND DIFFUSION TOMOGRAPHY METHOD
IL290774A IL290774A (en) 2019-09-17 2022-02-21 A device for scattering tomography for a method for scattering tomography

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2019168675 2019-09-17
JP2019-168675 2019-09-17

Publications (1)

Publication Number Publication Date
WO2021053971A1 true WO2021053971A1 (ja) 2021-03-25

Family

ID=74884167

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/028886 WO2021053971A1 (ja) 2019-09-17 2020-07-28 散乱トモグラフィ装置及び散乱トモグラフィ方法

Country Status (9)

Country Link
US (1) US20220319067A1 (ja)
EP (1) EP4033228A4 (ja)
JP (1) JP7481757B2 (ja)
KR (1) KR20220062270A (ja)
CN (1) CN114390908A (ja)
AU (1) AU2020348001A1 (ja)
CA (1) CA3153233A1 (ja)
IL (1) IL290774A (ja)
WO (1) WO2021053971A1 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022260112A1 (ja) 2021-06-11 2022-12-15 株式会社 Integral Geometry Science 映像化装置及び映像化方法
WO2022265017A1 (ja) 2021-06-17 2022-12-22 建次郎 木村 映像化装置及び映像化方法
WO2024116762A1 (ja) * 2022-11-29 2024-06-06 建次郎 木村 映像化装置及び映像化方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6266145A (ja) 1985-09-06 1987-03-25 シ−メンス、アクチエンゲゼルシヤフト 誘電率分布検出方法
JP2001184492A (ja) * 1999-12-27 2001-07-06 Fuji Photo Film Co Ltd 画像表示方法および画像表示装置
JP2001516604A (ja) * 1997-09-16 2001-10-02 アシュアランス メディカル インコーポレイテッド 臨床組織検査の方法と装置
JP2005323657A (ja) * 2004-05-12 2005-11-24 Toshiba Corp 超音波診断装置及び画像処理装置
WO2017057524A1 (ja) * 2015-09-29 2017-04-06 国立大学法人神戸大学 画像化方法および画像化装置

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014125815A1 (ja) 2013-02-12 2014-08-21 国立大学法人神戸大学 散乱トモグラフィ方法および散乱トモグラフィ装置
PL3117777T3 (pl) 2014-03-12 2020-12-14 Kenjiro Kimura Metoda tomografii rozpraszającej i urządzenie do tomografii rozpraszającej

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6266145A (ja) 1985-09-06 1987-03-25 シ−メンス、アクチエンゲゼルシヤフト 誘電率分布検出方法
JP2001516604A (ja) * 1997-09-16 2001-10-02 アシュアランス メディカル インコーポレイテッド 臨床組織検査の方法と装置
JP2001184492A (ja) * 1999-12-27 2001-07-06 Fuji Photo Film Co Ltd 画像表示方法および画像表示装置
JP2005323657A (ja) * 2004-05-12 2005-11-24 Toshiba Corp 超音波診断装置及び画像処理装置
WO2017057524A1 (ja) * 2015-09-29 2017-04-06 国立大学法人神戸大学 画像化方法および画像化装置

Non-Patent Citations (6)

* Cited by examiner, † Cited by third party
Title
BOURQUI JEREMIE, ZARNKE SASHA M., BUDZIS JACOB R., GARRETT DAVID C., MEW DAPHNE J. Y., FEAR ELISE C.: "Bulk permittivity variations in the human breast over the menstrual cycle", 2017 11TH EUROPEAN CONFERENCE ON ANTENNAS AND PROPAGATION (EUCAP, 18 May 2017 (2017-05-18), pages 3476 - 3479, XP033097666, DOI: 10.23919/ EuCAP.2017.7928600 *
D.J.P. FERGUSONT.J. ANDERSON: "Morphological evaluation of cell turnover in relation to the menstrual cycle in the ''resting'' human breast", BR. J. CANCER, vol. 44, 1981, pages 177
KENJIRO KIMURA, MASAYUKI MAEZAWA, AKARI INAGAKI, NORIAKI KIMURA: "Analytical solution of scattering inverse problem and realization of microwave mammography", MEDICAL SCIENCE DIGESTT, vol. 45, no. 8, 25 July 2019 (2019-07-25), JP , pages 52 (498) - 54 (500), XP009534346, ISSN: 1347-4340 *
MAEYAWA MASAYUKI ET AL.: "11-168 Research on the contrast of microwave mammography and x-ray mammography", 80TH JSAP AUTUMN MEETING; SAPPORO, JAPAN; SEPTEMBER 18-21, 2019, vol. 80, 10 September 2019 (2019-09-10) - 21 September 2019 (2019-09-21), pages 11-168, XP009534314 *
PORTER EMILY, KAZEMI RIZA, SANTORELLI ADAM, POPOVIC MILICA: "Study of daily tissue changes through breast monitoring with time-domain microwave radar", 2015 9TH EUROPEAN CONFERENCE ON ANTENNAS AND PROPAGATION (EUCAP), 13 April 2015 (2015-04-13), pages 1 - 5, XP033212460 *
See also references of EP4033228A4

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022260112A1 (ja) 2021-06-11 2022-12-15 株式会社 Integral Geometry Science 映像化装置及び映像化方法
KR20240019106A (ko) 2021-06-11 2024-02-14 가부시키가이샤 인테그랄 지오메트리 사이언스 영상화 장치 및 영상화 방법
WO2022265017A1 (ja) 2021-06-17 2022-12-22 建次郎 木村 映像化装置及び映像化方法
KR20240021794A (ko) 2021-06-17 2024-02-19 겐지로 기무라 영상화 장치 및 영상화 방법
WO2024116762A1 (ja) * 2022-11-29 2024-06-06 建次郎 木村 映像化装置及び映像化方法

Also Published As

Publication number Publication date
AU2020348001A1 (en) 2022-03-17
KR20220062270A (ko) 2022-05-16
JPWO2021053971A1 (ja) 2021-03-25
US20220319067A1 (en) 2022-10-06
EP4033228A1 (en) 2022-07-27
TW202115738A (zh) 2021-04-16
EP4033228A4 (en) 2023-10-18
CN114390908A (zh) 2022-04-22
CA3153233A1 (en) 2021-03-25
JP7481757B2 (ja) 2024-05-13
IL290774A (en) 2022-04-01

Similar Documents

Publication Publication Date Title
WO2021053971A1 (ja) 散乱トモグラフィ装置及び散乱トモグラフィ方法
Renaud et al. In vivo ultrasound imaging of the bone cortex
US10586354B2 (en) Imaging method and imaging apparatus
EP3806721B1 (en) Method and system for determining fractional fat content of tissue
US20110237939A1 (en) Apparatus and method for doppler-assisted mimo radar microwave imaging
CN103654863B (zh) 用于参数成像的系统和方法
KR20080053057A (ko) 초음파 영상과 외부 의료영상의 혼합영상을 형성 및디스플레이하기 위한 초음파 영상 시스템 및 방법
US10578552B2 (en) Scattering tomography method and scattering tomography device
WO2021020387A1 (ja) 散乱トモグラフィ装置及び散乱トモグラフィ方法
US9519980B2 (en) Object information acquiring apparatus
US20090292208A1 (en) Automated detection of asymptomatic carotid stenosis
JP2008183063A (ja) 医用画像診断装置、医用画像表示装置及びプログラム
Moll et al. Microwave radar imaging of heterogeneous breast tissue integrating a priori information
Fontanarosa et al. A speed of sound aberration correction algorithm for curvilinear ultrasound transducers in ultrasound-based image-guided radiotherapy
WO2020039796A1 (ja) 超音波解析装置、超音波解析方法および超音波解析プログラム
Sanabria et al. Hand-held sound-speed imaging based on ultrasound reflector delineation
US8724878B2 (en) Ultrasound image segmentation
Sarafianou et al. Evaluation of two approaches for breast surface measurement applied to a radar-based imaging system
US20110054319A1 (en) Ultrasound system and method for providing a plurality of slice plane images
TWI837407B (zh) 散射斷層掃描裝置及散射斷層掃描方法
JP6651012B2 (ja) 対象体の内部構造を探査するシステムにおいてフィット状態を評価するための方法、装置、およびコンピュータ可読媒体
RU2817057C1 (ru) Устройство томографии на рассеянном излучении и способ томографии на рассеянном излучении
JP2009045097A (ja) 三次元画像生成装置及び三次元画像生成方法
Catalano et al. Value of the extended field of view modality in the sonographic imaging of cutaneous melanoma: a pictorial essay
Torres-Quispe et al. Improving UWB image reconstruction for breast cancer diagnosis by doing an iterative analysis of radar signals

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20864902

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2021546534

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 3153233

Country of ref document: CA

ENP Entry into the national phase

Ref document number: 2020348001

Country of ref document: AU

Date of ref document: 20200728

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2020864902

Country of ref document: EP

Effective date: 20220419

WWE Wipo information: entry into national phase

Ref document number: 522431931

Country of ref document: SA