WO2021053800A1 - Solvent-soluble polyimide compound, lithium-ion secondary battery negative electrode producing resin composition including said solvent-soluble polyimide compound, lithium-ion secondary battery negative electrode configured using said lithium-ion secondary battery negative electrode producing resin composition, and lithium-ion secondary battery provided with said lithium-ion secondary battery negative electrode - Google Patents

Solvent-soluble polyimide compound, lithium-ion secondary battery negative electrode producing resin composition including said solvent-soluble polyimide compound, lithium-ion secondary battery negative electrode configured using said lithium-ion secondary battery negative electrode producing resin composition, and lithium-ion secondary battery provided with said lithium-ion secondary battery negative electrode Download PDF

Info

Publication number
WO2021053800A1
WO2021053800A1 PCT/JP2019/036819 JP2019036819W WO2021053800A1 WO 2021053800 A1 WO2021053800 A1 WO 2021053800A1 JP 2019036819 W JP2019036819 W JP 2019036819W WO 2021053800 A1 WO2021053800 A1 WO 2021053800A1
Authority
WO
WIPO (PCT)
Prior art keywords
group
ion secondary
negative electrode
secondary battery
solvent
Prior art date
Application number
PCT/JP2019/036819
Other languages
French (fr)
Japanese (ja)
Inventor
敏之 五島
ウィンモーソー
温彦 日比野
中山 真志
真昌 松本
哲也 東崎
Original Assignee
ウィンゴーテクノロジー株式会社
第一工業製薬株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ウィンゴーテクノロジー株式会社, 第一工業製薬株式会社 filed Critical ウィンゴーテクノロジー株式会社
Priority to JP2021546143A priority Critical patent/JPWO2021053800A1/ja
Priority to PCT/JP2019/036819 priority patent/WO2021053800A1/en
Publication of WO2021053800A1 publication Critical patent/WO2021053800A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G73/00Macromolecular compounds obtained by reactions forming a linkage containing nitrogen with or without oxygen or carbon in the main chain of the macromolecule, not provided for in groups C08G12/00 - C08G71/00
    • C08G73/06Polycondensates having nitrogen-containing heterocyclic rings in the main chain of the macromolecule
    • C08G73/10Polyimides; Polyester-imides; Polyamide-imides; Polyamide acids or similar polyimide precursors
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L79/00Compositions of macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing nitrogen with or without oxygen or carbon only, not provided for in groups C08L61/00 - C08L77/00
    • C08L79/04Polycondensates having nitrogen-containing heterocyclic rings in the main chain; Polyhydrazides; Polyamide acids or similar polyimide precursors
    • C08L79/08Polyimides; Polyester-imides; Polyamide-imides; Polyamide acids or similar polyimide precursors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the present invention is a lithium ion secondary composed of a solvent-soluble polyimide compound, a resin composition for producing a negative electrode of a lithium ion secondary battery containing the solvent-soluble polyimide compound, and a resin composition for producing a negative electrode of a lithium ion secondary battery.
  • the present invention relates to a negative electrode for a battery and a lithium ion secondary battery including the negative electrode for a lithium ion secondary battery.
  • lithium ion secondary batteries As the negative electrode active material contained in the lithium ion secondary battery, a silicon (Si) material having a high discharge capacity and excellent initial charge / discharge efficiency and cycle characteristics is used, but silicon has a large expansion / contraction during charge / discharge. Repeated use may cause cutting of the conductive path between the negative electrode active materials and peeling of the current collector and the negative electrode active material layer.
  • Si silicon
  • the present invention has been made in view of the above problems, and the problem to be solved is a solvent-soluble polyimide compound capable of remarkably improving the initial charge / discharge efficiency and cycle characteristics of the lithium ion secondary battery. Is to provide. Another object of the present invention is to provide a resin composition for producing a negative electrode of a lithium ion secondary battery containing the solvent-soluble polyimide compound. Another object of the present invention is to provide a negative electrode for a lithium ion secondary battery constructed by using the resin composition for producing a negative electrode for a lithium ion secondary battery. Further, the present invention provides a lithium ion secondary battery including the negative electrode for the lithium ion secondary battery.
  • the solvent-soluble polyimide compound of the present invention is a solvent-soluble polyimide used as an electrode material for a lithium ion secondary battery. It is a reaction product of a carboxyl group-containing diamine and an acid anhydride. It is characterized by having an elastic modulus of 3.4 GPa or more.
  • the carboxyl group-containing diamine compound is represented by the following general formula (1) or (2).
  • R 1 is represented by a single bond or (CH 2 ) p
  • p is an integer of 1 to 6
  • n and o are integers of 1 to 5, respectively. Is.
  • the solvent-soluble polyimide compound of the present invention contains an aromatic diamine compound as a polymerization component.
  • the solvent-soluble polyimide compound of the present invention contains, as an aromatic diamine compound, a diamine compound represented by the following general formula (3).
  • R 2 ⁇ R 9 are each independently hydrogen, fluorine, selected from the group consisting of substituted or unsubstituted alkyl group and a substituted or unsubstituted aromatic group, R 2 ⁇ At least one of R 9 is an aromatic group.
  • the solvent-soluble polyimide compound of the present invention is a reaction product of (a) a carboxyl group-containing diamine compound, (b) an aromatic diamine compound, and (c) an aromatic acid anhydride.
  • aromatic acid anhydride is represented by the following general formula (4).
  • X is selected from a single bond, an alkyl group having 1 to 6 carbon atoms, (CF 3 ) 2 C, SO 2 and an oxygen atom.
  • the solvent-soluble polyimide compound of the present invention is a reaction product of (d) a carboxyl group-containing diamine compound and (e) an alicyclic acid anhydride.
  • the resin composition for producing a negative electrode of a lithium ion secondary battery of the present invention is characterized by containing the solvent-soluble polyimide compound and a negative electrode active material.
  • the negative electrode for a lithium ion secondary battery of the present invention includes a negative electrode current collector and a negative electrode active material layer formed on the negative electrode current collector.
  • the negative electrode active material layer is characterized by being composed of the resin composition for producing a negative electrode of a lithium ion secondary battery.
  • the lithium ion secondary battery of the present invention is characterized by including the above-mentioned negative electrode for a lithium ion secondary battery and a positive electrode.
  • a solvent-soluble polyimide compound capable of significantly improving the initial charge / discharge efficiency and cycle characteristics of a lithium ion secondary battery. Further, it is possible to provide a resin composition for producing a negative electrode of a lithium ion secondary battery containing the solvent-soluble polyimide compound. Further, it is possible to provide a negative electrode for a lithium ion secondary battery constructed by using the resin composition for producing a negative electrode for a lithium ion secondary battery. Further, it is possible to provide a lithium ion secondary battery including the negative electrode for the lithium ion secondary battery.
  • the solvent-soluble polyimide compound of the present invention is characterized by being a reaction product of a carboxyl group-containing diamine compound and an acid anhydride.
  • the solvent-soluble polyimide compound of the present invention may be obtained by reacting two or more kinds of a carboxyl group-containing diamine compound and an acid anhydride.
  • the "solvent-soluble polyimide compound” means a polyimide compound that dissolves 5 g or more in 100 g of an organic solvent.
  • the solvent-soluble polyimide compound of the present invention is characterized by having an elastic modulus of 3.4 GPa or more. More preferably, the elastic modulus of the solvent-soluble polyimide compound is 3.6 GPa or more and 10 GPa or less.
  • the elastic modulus of the polyimide compound is such that after preparing a polyimide single film having a thickness of about 15 ⁇ m, a test piece having a size of 10 mm ⁇ 80 mm is used as a tensile tester (manufactured by Shimadzu Corporation, trade name: AG-Xplus 50 kN). ) was used to measure the elastic modulus in the MD direction and the TD direction at a tensile speed of 10 mm / min. The average value of the elastic modulus in the MD direction and the elastic modulus in the TD direction was calculated.
  • the tensile strength of the solvent-soluble polyimide compound of the present invention is preferably 90 MPa or more, more preferably 110 MPa or more.
  • the tensile strength of the solvent-soluble polyimide compound is such that after preparing a polyimide single film having a thickness of about 15 ⁇ m, a test piece having a size of 10 mm ⁇ 80 mm is used as a tensile tester (manufactured by Shimadzu Corporation, trade name: AG-Xplus 50 kN).
  • the number average molecular weight of the solvent-soluble polyimide compound of the present invention is preferably 20,000 to 150,000, more preferably 30,000 to 100,000.
  • the number average molecular weight is a polystyrene-equivalent value based on a calibration curve prepared by using a standard polystyrene by a gel permeation chromatography (GPC) apparatus.
  • GPC gel permeation chromatography
  • the carboxyl group-containing diamine compound is represented by the following general formula (1) or (2).
  • the carboxyl group-containing diamine compound represented by such a general formula the initial charge / discharge efficiency and cycle characteristics of the lithium ion secondary battery can be further improved.
  • the carboxyl group-containing diamine compound is represented by the following general formula (1).
  • the diamine compound represented by the general formula (1) and the diamine compound represented by the general formula (2) may be used in combination.
  • R 1 is represented by a single bond or (CH 2 ) p
  • p is an integer of 1 to 6, preferably 1 to 3.
  • n and o are integers of 1 to 5, respectively, more preferably 1 to 3, and particularly preferably 1.
  • Examples of the diamine compound satisfying the above general formula (1) or (2) include, but are not limited to, the following compounds. Moreover, you may use these together.
  • the following diamine compounds are preferable.
  • the initial charge / discharge efficiency and cycle characteristics of the lithium ion secondary battery can be further improved. Moreover, you may use these together.
  • carboxyl group-containing diamine compound a compound other than the diamine compound represented by the general formula (1) or (2) (hereinafter, referred to as other carboxyl group-containing diamine compound) may be used, and the general formula (1) may be used. Alternatively, it may be used in combination with the diamine compound represented by (2).
  • Examples of other carboxyl group-containing diamine compounds include 1,3-bis (4-amino-2-carboxyphenoxy) benzene, 3,5-bis (4-aminophenoxy) benzoic acid, and 5-amino-2- ( Aminophenoxy) Benzoic acid, 3,5-diaminobenzoic acid and the like can be mentioned.
  • the acid anhydride is not particularly limited, and an aromatic acid anhydride may be used, an aliphatic acid anhydride may be used, or these may be used in combination. Further, the aliphatic acid anhydride may be a linear type, a branched chain type, or an alicyclic type.
  • aromatic acid anhydride examples include 4,4'-oxydiphthalic acid dianhydride (ODPA), 3,3', 4,4'-biphenyltetracarboxylic acid hydride (BPDA), and 2,3-naphthalene.
  • ODPA 4,4'-oxydiphthalic acid dianhydride
  • BPDA 4,4'-biphenyltetracarboxylic acid hydride
  • 2,3-naphthalene 2,3-naphthalene.
  • aliphatic acid anhydride examples include norbornan-2-spiro- ⁇ -cyclopentanone- ⁇ '-spiro-2''-norbornan-5,5'', 6,6''-tetracarboxylic acid dianhydride.
  • CpODA Bicyclo [2,2,2] Octo-ene-2,3,5,6-tetracarboxylic acid dianhydride
  • BTA 1,2,4,5-Cyclohexanetetracarboxylic acid dianhydride
  • 1,2,3,4-butanetetracarboxylic acid dianhydride 3,3', 4,4'-bicyclohexyltetracarboxylic acid dioanoxide, carbonyl-4,4'-bis (cyclohexane-1,2) -Dicarboxylic acid) dianhydride, methylene-4,4'-bis (cyclohexane-1,2-dicarboxylic acid) dianhydride, 1,2-ethylene-4,4'-bis (cyclohexane-1,2-dicarboxylic acid) Acid) dianhydride, oxy-4,4'-bis (cyclohexane-1,2-dicarboxylic acid) dianhydride, thio-4,4'-bis (cyclohehex
  • the polyimide compound of the present invention contains an aromatic diamine compound as a polymerization component.
  • the aromatic diamine compound means an aromatic diamine compound having no carboxyl group.
  • aromatic diamine compound examples include bis [4- (4-aminophenoxy) phenyl] sulfone (BAPS), 2,2'-bis (trifluoromethyl) benzidine, m-phenylenediamine, p-phenylenediamine, 2 , 4-Diaminotoluene, 2,4 (6) -diamino-3,5-diethyltoluene, 5 (6) -amino-1,3,3-trimethyl-1- (4-aminophenyl) indan, 4,4 '-Diamino-2,2'-dimethyl-1,1'-biphenyl, 4,4'-diamino-3,3'-dimethyl-1,1'-biphenyl, 3,4'-diaminodiphenyl ether, 4,4 '-Diaminodiphenyl ether, 3,3'-diaminodiphenylsulfone, 4,4'-diaminodiphenyls
  • BAPS bis [4- (4-aminophenoxy) phenyl] sulfone
  • TPE-R 1,3-bis (4-aminophenoxy) benzene
  • a diamine compound represented by the following general formula (3) can also be used.
  • the initial charge / discharge efficiency and the cycle characteristics of the lithium ion secondary battery can be further improved.
  • the solvent solubility of the polyimide compound can be further improved.
  • R 2 ⁇ R 9 are each independently hydrogen, fluorine, selected from the group consisting of substituted or unsubstituted alkyl group and a substituted or unsubstituted aromatic group, R 2 ⁇ At least one of R 9 is an aromatic group.
  • R 9 is an aromatic group.
  • one or two of R 2 to R 9 are aromatic groups.
  • one or two of R 6 to R 9 are substituted or unsubstituted aromatic groups, and more preferably at least R 6 or R 8 is an aromatic group.
  • R 6 to R 9 are substituted or unsubstituted aromatic groups, and R 2 to R 9 other than the aromatic group are hydrogen, fluorine and a substituted or unsubstituted alkyl group. Selected from the group consisting of. Specific examples thereof include compounds represented by the following chemical formulas (a mode in which R 8 is an aromatic group and R 2 to R 7 and R 9 other than R 8 are hydrogen).
  • the alkyl group includes a linear group, a branched chain group and a cyclic group, and further includes an alkoxy group and an alkylamino group which are bonded to the main skeleton via an oxygen atom or a nitrogen atom.
  • the aromatic group also includes a substituent that binds to the main skeleton via an oxygen atom, a nitrogen atom or a carbon atom.
  • the aromatic group includes a heteroaromatic group such as a pyrrole group.
  • the alkyl group and aromatic group are preferably unsubstituted, but may have a substituent, for example, an alkyl group, a halogen group such as a fluoro group or a chloro group, an amino group, a nitro group, or a hydroxyl group. , Cyano group, carboxyl group, sulfonic acid group and the like.
  • the alkyl group and aromatic group may have one or more or two or more of these substituents.
  • the alkyl group preferably has 1 to 10 carbon atoms, and more preferably 1 to 3 carbon atoms.
  • Examples of the alkyl group having 1 to 10 carbon atoms include a methyl group, an ethyl group, an n-propyl group, an isopropyl group, an n-butyl group, a tert-butyl group, an n-pentyl group, a sec-pentyl group, and n-.
  • a methyl group, an ethyl group, a methoxy group, an ethoxy group and a trifluoromethyl group are preferable because of steric hindrance and heat resistance.
  • the aromatic group preferably has 5 to 20 carbon atoms, and more preferably 6 to 10 carbon atoms.
  • Examples of the aromatic group having 5 to 20 carbon atoms include a phenyl group, a trill group, a methylphenyl group, a dimethylphenyl group, an ethylphenyl group, a diethylphenyl group, a propylphenyl group, a butylphenyl group, a fluorophenyl group, and a pentafluoro.
  • Phenyl group chlorphenyl group, bromophenyl group, methoxyphenyl group, dimethoxyphenyl group, ethoxyphenyl group, diethoxyphenyl group, benzyl group, methoxybenzyl group, dimethoxybenzyl group, ethoxybenzyl group, diethoxybenzyl group, aminophenyl Group, aminobenzyl group, nitrophenyl group, nitrobenzyl group, cyanophenyl group, cyanobenzyl group, phenethyl group, phenylpropyl group, phenoxy group, benzyloxy group, phenylamino group, diphenylamino group, biphenyl group, naphthyl group, Phenylnaphthyl group, diphenylnaphthyl group, anthryl group, anthrylphenyl group, phenylanthryl group, naphthacenyl group, phenanthryl
  • the polyimide compound is a reaction of (a) a carboxyl group-containing diamine compound, (b) an aromatic diamine compound, and (c) an aromatic acid anhydride. It is a thing.
  • (A) As the carboxyl group-containing diamine compound it is preferable to use the diamine compound represented by the above general formula (1) or (2).
  • the more preferable embodiment in the diamine compound satisfying the general formula (1) or (2) is as described above.
  • the content of the (a) carboxyl group-containing diamine compound in the polyimide compound is preferably 10 mol% or more and 90 mol% or less, preferably 20 mol% or more and 80 mol% or less, based on 100 mol% of the total diamine amount. More preferably. Within the above numerical range, the initial charge / discharge efficiency and cycle characteristics of the lithium ion secondary battery can be further improved. Further, it is possible to prevent the varnish containing the polyimide compound from gelling.
  • aromatic diamine compound As the aromatic diamine compound, the above-mentioned one can be appropriately selected and used. Among the above-mentioned aromatic diamine compounds, bis [4- (4-aminophenoxy) phenyl] sulfone (BAPS), 1,3-bis (4-aminophenoxy) benzene (TPE-R) and the above general formula (3) Aromatic diamine compounds satisfying the above conditions are preferable. Moreover, you may use these together.
  • the content of the aromatic diamine compound (b) in the polyimide compound is preferably 10 mol% or more and 90 mol% or less, preferably 20 mol% or more and 80 mol% or less, based on 100 mol% of the total diamine amount. Is more preferable. Thereby, the initial charge / discharge efficiency and the cycle characteristics of the lithium ion secondary battery can be further improved.
  • aromatic acid anhydride (c) it is preferable to use one represented by the following general formula (4).
  • aromatic acid anhydride By using such an aromatic acid anhydride, the initial charge / discharge efficiency and cycle characteristics of the lithium ion secondary battery can be further improved.
  • X is selected from a single bond, an alkyl group having 1 to 6 carbon atoms, (CF 3 ) 2 C, SO 2 and an oxygen atom.
  • aromatic acid anhydride satisfying the above general formula (4) examples include 4,4'-oxydiphthalic acid dianhydride (ODPA) and 3,3', 4,4'-biphenyltetracarboxylic dianhydride (BPDA). , 3,3', 4,4'-biphenylsulfonetetracarboxylic dianhydride, 2,3,3', 4'-biphenyltetracarboxylic dianhydride, 2,2', 3,3'-biphenyltetra Examples thereof include carboxylic acid dianhydride.
  • aromatic acid anhydride (c) is not limited to this, and the above-mentioned aromatic acid anhydride that does not satisfy the general formula (4) may be used.
  • the polyimide compound according to a particularly preferable embodiment is a polymerization component other than (a) a carboxyl group-containing diamine compound, (b) an aromatic diamine compound, and (c) an aromatic acid anhydride, as long as the characteristics of the present invention are not impaired. May include.
  • One of the particularly preferable embodiments of the polyimide compound according to the present invention is a reaction product of (d) a carboxyl group-containing diamine compound and (e) an alicyclic acid anhydride.
  • the diamine compound represented by the above general formula (1) or (2) it is preferable to use the diamine compound represented by the above general formula (1) or (2).
  • the more preferable embodiment in the diamine compound satisfying the general formula (1) or (2) is as described above.
  • the content of the (d) carboxyl group-containing diamine compound in the polyimide compound is preferably 10 mol% or more and 90 mol% or less, preferably 20 mol% or more and 80 mol% or less, based on 100 mol% of the total diamine amount. More preferably. Thereby, the initial charge / discharge efficiency and the cycle characteristics of the lithium ion secondary battery can be further improved.
  • (E) As the alicyclic acid anhydride, the above-mentioned one can be appropriately selected and used.
  • norbornane-2-spiro- ⁇ -cyclopentanone- ⁇ '-spiro-2''-norbornane-5 from the viewpoint of initial charge / discharge efficiency of the lithium ion secondary battery.
  • 5 ′′, 6,6''-tetracarboxylic dianhydride (CpODA) and bicyclo [2,2,2] octo-ene-2,3,5,6-tetracarboxylic dianhydride (BTA) Is preferable.
  • the polyimide compound according to a particularly preferable embodiment may contain a polymerization component other than (d) a carboxyl group-containing diamine compound and (e) an alicyclic acid anhydride as long as the characteristics of the present invention are not impaired.
  • the polyimide compound of the present invention can be produced by a conventionally known method using the diamine compound and the acid anhydride. Specifically, it can be obtained by reacting a diamine compound with an acid anhydride to obtain a polyamic acid, and then performing a cyclization dehydration reaction to convert it into a polyimide compound.
  • the mixing ratio of the acid anhydride and the diamine compound is preferably 0.5 mol% to 1.5 mol%, preferably 0.9 mol%, based on the total amount of the acid anhydride of 1 mol%. More preferably, it is ⁇ 1.1 mol%.
  • the reaction between the diamine compound and the acid anhydride is preferably carried out in an organic solvent.
  • the organic solvent is not particularly limited as long as it does not react with the diamine compound and acid anhydride of the present invention and can dissolve the reaction product of the diamine compound and acid anhydride.
  • the reaction temperature of the diamine compound and the acid anhydride is preferably 40 ° C. or lower in the case of chemical imidization. Further, in the case of thermal imidization, the temperature is preferably 150 to 220 ° C, more preferably 170 to 200 ° C.
  • An imidization catalyst may be used during the cyclization dehydration reaction, for example, methylamine, ethylamine, trimethylamine, triethylamine, propylamine, tripropylamine, butylamine, tributylamine, tert-butylamine, hexylamine, triethanolamine, etc.
  • N, N-dimethylethanolamine, N, N-diethylethanolamine, triethylenediamine, N-methylpyrrolidin, N-ethylpyrrolidin, aniline, benzylamine, toluidine, trichloroaniline, pyridine, colidin, lutidine, picolin, quinoline, isoquinolin , Valerolactone and the like can be used.
  • an azeotropic dehydrating agent such as toluene, xylene, or ethylcyclohexane
  • an acid catalyst such as acetic anhydride, propionic anhydride, butyric anhydride, and benzoic anhydride can be used.
  • a sealing agent such as benzoic acid, phthalic anhydride, or hydrogenated phthalic anhydride can be used.
  • a sealing agent such as benzoic acid, phthalic anhydride, or hydrogenated phthalic anhydride
  • the polyimide compound can be prepared. Double or triple bonds can also be introduced at the ends.
  • the resin composition for producing a negative electrode of a lithium ion secondary battery of the present invention contains the above-mentioned polyimide compound and a negative electrode active material. Also, in one embodiment, the resin composition comprises a conductive agent.
  • the content of the polyimide compound in the resin composition is preferably 1% by mass or more and 20% by mass or less, and more preferably 3% by mass or more and 18% by mass or less.
  • a silicon material as the negative electrode active material because the volume change of silicon can be effectively prevented.
  • the silicon material include alloys of silicon with metals such as silicon particles, tin, nickel, iron, copper, silver, cobalt, manganese and zinc, and compounds of silicon with boron, nitrogen, oxygen and carbon. Be done.
  • silicon materials include SiO, SiO 2 , SiB 4 , Mg 2 Si, Ni 2 Si, CoSi 2 , NiSi 2 , Cu 5 Si, FeSi 2 , MnSi 2 , ZnSi 2 , SiC, Si 3 N 4 and Si. 2 N 2 O and the like can be mentioned.
  • a material other than a silicon material may be used, and examples thereof include metallic lithium, metal oxide, and graphite.
  • the resin composition may contain two or more types of negative electrode active materials.
  • the content of the negative electrode active material in the resin composition is preferably 70% by mass or more and 99% by mass or less, and more preferably 75% by mass or more and 95% by mass or less.
  • the resin composition of the present invention contains a conductive agent and includes, for example, carbon black (acetylene black, ketjen black, furnace black, etc.), graphite, carbon fiber, carbon flakes, metal fiber, foil and the like. Be done. Among these, carbon black is preferable, and acetylene black is more preferable.
  • the resin composition may contain two or more kinds of conductive agents.
  • the content of the conductive agent in the resin composition is preferably 0.1% by mass or more and 25% by mass or less, and more preferably 1% by mass or more and 20% by mass or less.
  • the resin composition of the present invention may contain additives as long as the characteristics of the present invention are not impaired, and examples thereof include thickeners and fillers.
  • the negative electrode for a lithium ion secondary battery of the present invention includes a negative electrode current collector and a negative electrode active material layer formed on the negative electrode current collector, and the negative electrode active material layer is composed of the above resin composition. It is characterized by being done.
  • the current collector that can be used is not particularly limited, and examples thereof include copper, nickel, stainless steel, gold, iron, aluminum and alloys thereof, nickel-plated steel, and chrome-plated steel.
  • the thickness of the negative electrode active material layer is preferably 15 ⁇ m or more and 150 ⁇ m or less, and more preferably 30 ⁇ m or more and 120 ⁇ m or less.
  • the negative electrode for a lithium ion secondary battery of the present invention can be produced by applying an organic solvent in which the above resin composition is dissolved or dispersed on a current collector and drying it.
  • organic solvent those described above can be used, and from the viewpoint of solubility or dispersibility of the resin composition, N-methyl-2-pyrrolidone, N, N'-dimethylimidazolidinone and ⁇ -butyrolactone Is preferable.
  • the coating method is not particularly limited, and examples thereof include a die coater method, a three-roll transfer coater method, a doctor blade method, a dip method, a direct roll method, and a gravure method.
  • the lithium ion secondary battery of the present invention is characterized by including the above-mentioned negative electrode and a positive electrode. Further, in one embodiment, the lithium ion secondary battery of the present invention includes a separator arranged between the negative electrode and the positive electrode.
  • a separator arranged between the negative electrode and the positive electrode.
  • the positive electrode As the positive electrode, those conventionally used for the positive electrode of the lithium ion secondary battery can be appropriately used.
  • the positive electrode can be produced by applying a resin composition for producing a positive electrode of a lithium ion secondary battery on a current collector and drying it.
  • the resin composition for producing a positive electrode of a lithium ion secondary battery can include a positive electrode active material and a binder resin. Further, the resin composition for producing a positive electrode of a lithium ion secondary battery may contain the above-mentioned conductive agent and additive.
  • the positive electrode active material examples include lithium cobalt oxide, lithium nickel oxide, lithium manganate, lithium iron phosphate and the like.
  • the binder resin the above-mentioned polyimide compound may be used, or polytetrafluoroethylene, polyvinylidene fluoride, polypropylene, polyethylene or the like may be used.
  • the present invention is not limited to the above, and a lithium foil or the like can be used as the positive electrode.
  • separator conventionally known ones can be used, and examples thereof include a paper separator, a resin separator such as polyethylene and polypropylene, and a glass fiber separator.
  • the positive electrode and the negative electrode are arranged in a battery container, and the container is filled with an organic solvent (electric field solution) in which an electrolyte is dissolved.
  • the electrolyte is not particularly limited, for example, LiPF 6, LiClO 4, LiBF 4, LiClF 4, LiAsF 6, LiSbF 6, LiAlO 4, LiAlCl 4, CF 3 SO 3 Li, LiN (CF 3 SO 2) 3 , LiCl, LiI and the like can be mentioned.
  • LiPF 6 , LiClO 4 and CF 3 SO 3 Li are preferable because they have a high degree of dissociation.
  • the organic solvent is also not particularly limited, and examples thereof include carbonate compounds, lactone compounds, ether compounds, sulfolane compounds, dioxolane compounds, ketone compounds, nitrile compounds, and halogenated hydrocarbon compounds.
  • carbonates such as dimethyl carbonate, methyl ethyl carbonate, diethyl carbonate, ethylene carbonate, propylene carbonate, ethylene glycol dimethyl carbonate, propylene glycol dimethyl carbonate, ethylene glycol diethyl carbonate and vinylene carbonate, and lactones such as ⁇ -butyl lactone.
  • ethers such as 1,4-dioxane, sulfolanes, sulfolanes such as 3-methylsulfolane, dioxolanes such as 1,3-dioxolane, 4-methyl- Ketones such as 2-pentanone, nitriles such as acetonitrile, pyropionitrile, valeronitrile, benzonitrile, halogenated hydrocarbons such as 1,2-dichloroethane, other methylformates, dimethylformamide, diethylformamide, dimethylsulfoxide.
  • ethers such as 1,4-dioxane, sulfolanes, sulfolanes such as 3-methylsulfolane, dioxolanes such as 1,3-dioxolane, 4-methyl- Ketones such as 2-pentanone, nitriles such as acetonitrile, pyropionitrile, valeronitrile, benzon
  • the carbonate compound is preferable because the solubility of the polyimide compound used for the negative electrode is low and the swelling of the polyimide can be suppressed.
  • the form of the lithium ion secondary battery is not particularly limited, and can be appropriately changed depending on the application, such as paper type, button type, coin cell type, laminated type, cylindrical type and square type.
  • Example 1 43.25 g (100 mmol) of the diamine compound (BAPS) represented by the following chemical formula and the diamine compound represented by the following chemical formula (100 mmol) in a 500 ml separable flask equipped with a synthetic nitrogen introduction tube for the solvent-soluble polyimide compound A and a stirrer.
  • MBAA 28.63 g (100 mmol)
  • acid anhydride (BPDA) 58.84 g (200 mmol) represented by the following chemical formula, N-methyl-2-pyrrolidone 700 g, pyridine 3.2 g (40 mmol) and toluene 70 g.
  • Example 2 Synthesis of Solvent-Soluble Polyimide Compound B Using the same equipment as in Example 1, BAPS 43.25 g (100 mmol), MBAA 28.63 g (100 mmol), and diamine compound (PHBAAB) 15.22 g (50 mmol) represented by the following chemical formula. ), BPDA 44.13 g (150 mmol), acid anhydride (ODPA) 31.02 g (100 mmol) represented by the following chemical formula, N-methyl-2-pyrrolidone 868 g, pyridine 4.0 g (50 mmol) and toluene 87 g. was charged and reacted at 180 ° C. under a nitrogen atmosphere for 9 hours while looking out of the system on the way to obtain a 15 wt% polyimide solution.
  • Example 3 Synthesis of Solvent-Soluble Polyimide Compound C Using the same equipment as in Example 1, 28.63 g (100 mmol) of MBAA, 15.22 g (50 mmol) of PHBAAB, and 29.23 g of diamine compound (TPE-R) represented by the following chemical formula (TPE-R).
  • Example 4 Synthesis of Solvent-Soluble Polyimide Compound D Using the same equipment as in Example 1, 28.63 g (100 mmol) of MBAA, 38.44 g (100 mmol) of acid anhydride (CpODA) represented by the following chemical formula, N-methyl-2. -360 g of pyrrolidone, 1.6 g (20 mmol) of pyridine and 36 g of toluene were added, and the reaction was carried out at 180 ° C. under a nitrogen atmosphere for 12 hours while removing toluene from the system to obtain a 15 wt% polyimide solution. It was.
  • CpODA acid anhydride
  • An electrolytic copper foil having a thickness of 10 ⁇ m was prepared as a current collector for the negative electrode, and a resin composition for producing a negative electrode of a lithium ion secondary battery prepared as described above was applied to the surface of the electrolytic copper foil, and dried to obtain a thickness of 50 ⁇ m.
  • a negative electrode active material layer was formed to obtain a negative electrode.
  • a lithium foil as a positive electrode, ethylene carbonate and ethyl methyl carbonate as an electrolytic solution, and a polyolefin single-layer separator (Celguard Co., Ltd., Celguard (registered trademark) 2500) were prepared to prepare a coin-cell type lithium ion secondary battery.
  • Cycle characterization The cycle characteristics were measured by the following method. After two cycles of initial charge / discharge efficiency measurement, CC (constant current) charging is performed up to 5 mV with a current density equivalent to 0.2 C, then switching to CV (constant voltage) charging at 5 mV, and a current density equivalent to 0.02 C. After charging until it becomes, CC discharge to 1.2V with a current density equivalent to 0.2C is performed for 3 cycles at 25 ° C., and then CC (constant current) charging is performed to 5mV with a current density equivalent to 0.5C.

Abstract

[Problem]To provide a solvent-soluble polyimide compound with which the initial charge/discharge efficiency and the cycle characteristics of a lithium-ion secondary battery can be significantly improved. [Solution] A solvent-soluble polyimide compound according to the present invention is a solvent-soluble polyimide used as an electrode material for a lithium-ion secondary battery, and is characterized in that the solvent-soluble polyimide compound is a reactant of a carboxyl group-containing diamine and an acid anhydride, has an elastic modulus of at least 3.4 GPa.

Description

溶媒可溶性ポリイミド化合物、該溶媒可溶性ポリイミド化合物を含むリチウムイオン二次電池負極作製用樹脂組成物、該リチウムイオン二次電池負極作製用樹脂組成物を用いて構成されるリチウムイオン二次電池用負極、及び該リチウムイオン二次電池用負極を備えるリチウムイオン二次電池A solvent-soluble polyimide compound, a resin composition for producing a negative electrode of a lithium ion secondary battery containing the solvent-soluble polyimide compound, and a negative electrode for a lithium ion secondary battery constructed by using the resin composition for producing a negative electrode of a lithium ion secondary battery. And a lithium ion secondary battery including the negative electrode for the lithium ion secondary battery.
 本発明は、溶媒可溶性ポリイミド化合物、該溶媒可溶性ポリイミド化合物を含むリチウムイオン二次電池負極作製用樹脂組成物、該リチウムイオン二次電池負極作製用樹脂組成物を用いて構成されるリチウムイオン二次電池用負極、及び該リチウムイオン二次電池用負極を備えるリチウムイオン二次電池に関する。 The present invention is a lithium ion secondary composed of a solvent-soluble polyimide compound, a resin composition for producing a negative electrode of a lithium ion secondary battery containing the solvent-soluble polyimide compound, and a resin composition for producing a negative electrode of a lithium ion secondary battery. The present invention relates to a negative electrode for a battery and a lithium ion secondary battery including the negative electrode for a lithium ion secondary battery.
 近年、スマートフォン等をはじめとする電子機器の小型化が急激に進んでおり、小型で軽量かつ、高エネルギー密度を得ることが可能なリチウムイオン二次電池の開発が盛んに行われている。
 リチウムイオン二次電池に含有させる負極活物質として、放電容量が高く、初回充放電効率及びサイクル特性に優れる、シリコン(Si)材料が使用されているが、シリコンは充放電時における膨張収縮が大きく、繰り返しの使用により、負極活物質間の導電パスの切断や、集電体と負極活性物質層との剥離等が生じるおそれがあった。
In recent years, the miniaturization of electronic devices such as smartphones has been rapidly progressing, and the development of small, lightweight, and high energy density lithium ion secondary batteries has been actively carried out.
As the negative electrode active material contained in the lithium ion secondary battery, a silicon (Si) material having a high discharge capacity and excellent initial charge / discharge efficiency and cycle characteristics is used, but silicon has a large expansion / contraction during charge / discharge. Repeated use may cause cutting of the conductive path between the negative electrode active materials and peeling of the current collector and the negative electrode active material layer.
 上記シリコン材料の問題に鑑み、負極を構成する材料、バインダー樹脂として、従来より使用されていたカルボキシメチルセルロース等に代えて、ポリイミド化合物の使用が検討されている(特許文献1等参照)。 In view of the above-mentioned problem of the silicon material, the use of a polyimide compound is being studied in place of the conventionally used carboxymethyl cellulose and the like as the material constituting the negative electrode and the binder resin (see Patent Document 1 and the like).
 しかしながら、その初回充放電効率及びサイクル特性には改善の余地があり、初回充放電効率及びサイクル特性をより一層改善することのできる、ポリイミド化合物が求められていた。 However, there is room for improvement in the initial charge / discharge efficiency and cycle characteristics, and a polyimide compound capable of further improving the initial charge / discharge efficiency and cycle characteristics has been required.
国際公開WO2017/138604号パンフレットInternational Publication WO2017 / 138604 Pamphlet
 本発明は、上記問題に鑑みて行われたものであり、その解決しようとする課題は、リチウムイオン二次電池の初回充放電効率及びサイクル特性を顕著に改善することのできる、溶媒可溶性ポリイミド化合物を提供することである。
 また、該溶媒可溶性ポリイミド化合物を含むリチウムイオン二次電池負極作製用樹脂組成物を提供することである。
 また、該リチウムイオン二次電池負極作製用樹脂組成物を用いて構成されるリチウムイオン二次電池用負極を提供することである。
 さらに、該リチウムイオン二次電池用負極を備えるリチウムイオン二次電池を提供することである。
The present invention has been made in view of the above problems, and the problem to be solved is a solvent-soluble polyimide compound capable of remarkably improving the initial charge / discharge efficiency and cycle characteristics of the lithium ion secondary battery. Is to provide.
Another object of the present invention is to provide a resin composition for producing a negative electrode of a lithium ion secondary battery containing the solvent-soluble polyimide compound.
Another object of the present invention is to provide a negative electrode for a lithium ion secondary battery constructed by using the resin composition for producing a negative electrode for a lithium ion secondary battery.
Further, the present invention provides a lithium ion secondary battery including the negative electrode for the lithium ion secondary battery.
 本発明の溶媒可溶性ポリイミド化合物は、リチウムイオン二次電池の電極材料として使用される、溶媒可溶性ポリイミドであって、
 カルボキシル基含有ジアミンと、酸無水物との反応物であり、
 弾性率が、3.4GPa以上であることを特徴とする。
The solvent-soluble polyimide compound of the present invention is a solvent-soluble polyimide used as an electrode material for a lithium ion secondary battery.
It is a reaction product of a carboxyl group-containing diamine and an acid anhydride.
It is characterized by having an elastic modulus of 3.4 GPa or more.
 一実施形態において、カルボキシル基含有ジアミン化合物が、下記一般式(1)又は(2)で表される。
Figure JPOXMLDOC01-appb-C000004
(一般式(1)及び(2)中、Rは、単結合又は(CHで表され、pは1~6の整数であり、n及びoは、それぞれ、1~5の整数である。)
In one embodiment, the carboxyl group-containing diamine compound is represented by the following general formula (1) or (2).
Figure JPOXMLDOC01-appb-C000004
(In the general formulas (1) and (2), R 1 is represented by a single bond or (CH 2 ) p , p is an integer of 1 to 6, and n and o are integers of 1 to 5, respectively. Is.)
 一実施形態において、本発明の溶媒可溶性ポリイミド化合物は、重合成分として、芳香族ジアミン化合物を含む。 In one embodiment, the solvent-soluble polyimide compound of the present invention contains an aromatic diamine compound as a polymerization component.
 一実施形態において、本発明の溶媒可溶性ポリイミド化合物は、芳香族ジアミン化合物として、下記一般式(3)で表されるジアミン化合物を含む。
Figure JPOXMLDOC01-appb-C000005
(一般式(3)中、R~Rは、それぞれ独立して、水素、フッ素、置換又は無置換のアルキル基及び置換又は無置換の芳香族基からなる群より選択され、R~Rの少なくとも1つが、芳香族基である。)
In one embodiment, the solvent-soluble polyimide compound of the present invention contains, as an aromatic diamine compound, a diamine compound represented by the following general formula (3).
Figure JPOXMLDOC01-appb-C000005
(Formula (3) in, R 2 ~ R 9 are each independently hydrogen, fluorine, selected from the group consisting of substituted or unsubstituted alkyl group and a substituted or unsubstituted aromatic group, R 2 ~ At least one of R 9 is an aromatic group.)
 一実施形態において、本発明の溶媒可溶性ポリイミド化合物は、(a)カルボキシル基含有ジアミン化合物と、(b)芳香族ジアミン化合物と、(c)芳香族酸無水物との反応物である。 In one embodiment, the solvent-soluble polyimide compound of the present invention is a reaction product of (a) a carboxyl group-containing diamine compound, (b) an aromatic diamine compound, and (c) an aromatic acid anhydride.
 一実施形態において、(c)芳香族酸無水物が、下記一般式(4)で表される。
Figure JPOXMLDOC01-appb-C000006
(一般式(4)中、Xは、単結合、炭素数1~6のアルキル基、(CFC、SO及び酸素原子から選択される。)
In one embodiment, (c) aromatic acid anhydride is represented by the following general formula (4).
Figure JPOXMLDOC01-appb-C000006
(In the general formula (4), X is selected from a single bond, an alkyl group having 1 to 6 carbon atoms, (CF 3 ) 2 C, SO 2 and an oxygen atom.)
 一実施形態において、本発明の溶媒可溶性ポリイミド化合物は、(d)カルボキシル基含有ジアミン化合物と、(e)脂環式酸無水物との反応物である。 In one embodiment, the solvent-soluble polyimide compound of the present invention is a reaction product of (d) a carboxyl group-containing diamine compound and (e) an alicyclic acid anhydride.
 本発明のリチウムイオン二次電池負極作製用樹脂組成物は、上記溶媒可溶性ポリイミド化合物と、負極活物質とを含むことを特徴とする。 The resin composition for producing a negative electrode of a lithium ion secondary battery of the present invention is characterized by containing the solvent-soluble polyimide compound and a negative electrode active material.
 本発明のリチウムイオン二次電池用負極は、負極集電体と、負極集電体上に形成された負極活性物質層と、を備え、
 負極活性物質層が、上記リチウムイオン二次電池負極作製用樹脂組成物により構成されることを特徴とする。
The negative electrode for a lithium ion secondary battery of the present invention includes a negative electrode current collector and a negative electrode active material layer formed on the negative electrode current collector.
The negative electrode active material layer is characterized by being composed of the resin composition for producing a negative electrode of a lithium ion secondary battery.
 本発明のリチウムイオン二次電池は、上記リチウムイオン二次電池用負極と、正極とを備えることを特徴とする。 The lithium ion secondary battery of the present invention is characterized by including the above-mentioned negative electrode for a lithium ion secondary battery and a positive electrode.
 本発明によれば、リチウムイオン二次電池の初回充放電効率及びサイクル特性を顕著に改善することのできる、溶媒可溶性ポリイミド化合物を提供することができる。
 また、該溶媒可溶性ポリイミド化合物を含むリチウムイオン二次電池負極作製用樹脂組成物を提供することができる。
 また、該リチウムイオン二次電池負極作製用樹脂組成物を用いて構成されるリチウムイオン二次電池用負極を提供することができる。
 さらに、該リチウムイオン二次電池用負極を備えるリチウムイオン二次電池を提供することができる。
According to the present invention, it is possible to provide a solvent-soluble polyimide compound capable of significantly improving the initial charge / discharge efficiency and cycle characteristics of a lithium ion secondary battery.
Further, it is possible to provide a resin composition for producing a negative electrode of a lithium ion secondary battery containing the solvent-soluble polyimide compound.
Further, it is possible to provide a negative electrode for a lithium ion secondary battery constructed by using the resin composition for producing a negative electrode for a lithium ion secondary battery.
Further, it is possible to provide a lithium ion secondary battery including the negative electrode for the lithium ion secondary battery.
(溶媒可溶性ポリイミド化合物)
 本発明の溶媒可溶性ポリイミド化合物は、カルボキシル基含有ジアミン化合物と、酸無水物との反応物であることを特徴とする。
 本発明の溶媒可溶性ポリイミド化合物は、カルボキシル基含有ジアミン化合物及び酸無水物をそれぞれ2種以上反応させたものであってもよい。
(Solvent-soluble polyimide compound)
The solvent-soluble polyimide compound of the present invention is characterized by being a reaction product of a carboxyl group-containing diamine compound and an acid anhydride.
The solvent-soluble polyimide compound of the present invention may be obtained by reacting two or more kinds of a carboxyl group-containing diamine compound and an acid anhydride.
 本発明において、「溶媒可溶性ポリイミド化合物」とは、100gの有機溶媒に5g以上溶解するポリイミド化合物を意味する。 In the present invention, the "solvent-soluble polyimide compound" means a polyimide compound that dissolves 5 g or more in 100 g of an organic solvent.
 本発明の溶媒可溶性ポリイミド化合物の弾性率は、3.4GPa以上であることを特徴とする。また、より好ましくは、溶媒可溶性ポリイミド化合物の弾性率は3.6GPa以上、10GPa以下である。
 なお、本発明において、ポリイミド化合物の弾性率は、約15μm厚のポリイミド単独膜を作製後、10mm×80mmのサイズの試験片とし、引張試験機(島津製作所社製、商品名:AG-Xplus 50kN)を用いて、引張速度10mm/分にてMD方向及びTD方向の弾性率を測定した。MD方向の弾性率及びTD方向の弾性率の平均値を算出した。
The solvent-soluble polyimide compound of the present invention is characterized by having an elastic modulus of 3.4 GPa or more. More preferably, the elastic modulus of the solvent-soluble polyimide compound is 3.6 GPa or more and 10 GPa or less.
In the present invention, the elastic modulus of the polyimide compound is such that after preparing a polyimide single film having a thickness of about 15 μm, a test piece having a size of 10 mm × 80 mm is used as a tensile tester (manufactured by Shimadzu Corporation, trade name: AG-Xplus 50 kN). ) Was used to measure the elastic modulus in the MD direction and the TD direction at a tensile speed of 10 mm / min. The average value of the elastic modulus in the MD direction and the elastic modulus in the TD direction was calculated.
 本発明の溶媒可溶性ポリイミド化合物の引張強度は、90MPa以上であることが好ましく、110MPa以上であることがより好ましい。溶媒可溶性ポリイミド化合物の引張強度を110MPa以上とすることにより、シリコン材料の充放電時の膨張収縮に耐え、サイクル特性が向上する。
 なお、本発明において、ポリイミド化合物の引張強度は、約15μm厚のポリイミド単独膜を作製後、10mm×80mmのサイズの試験片とし、引張試験機(島津製作所社製、商品名:AG-Xplus 50kN)を用いて、引張速度10mm/分にてMD方向及びTD方向の引張強度を測定した。MD方向の引張強度及びTD方向の引張強度の平均値を算出した。
The tensile strength of the solvent-soluble polyimide compound of the present invention is preferably 90 MPa or more, more preferably 110 MPa or more. By setting the tensile strength of the solvent-soluble polyimide compound to 110 MPa or more, it can withstand expansion and contraction of the silicon material during charging and discharging, and the cycle characteristics are improved.
In the present invention, the tensile strength of the polyimide compound is such that after preparing a polyimide single film having a thickness of about 15 μm, a test piece having a size of 10 mm × 80 mm is used as a tensile tester (manufactured by Shimadzu Corporation, trade name: AG-Xplus 50 kN). ) Was used to measure the tensile strength in the MD direction and the TD direction at a tensile speed of 10 mm / min. The average value of the tensile strength in the MD direction and the tensile strength in the TD direction was calculated.
 本発明の溶媒可溶性ポリイミド化合物の数平均分子量は、20000~150000であることが好ましく、30000~100000であることがより好ましい。
 なお、本発明において、数平均分子量とはゲルパーミエーションクロマトグラフィー(GPC)装置により標準ポリスチレンを用いて作成した検量線を基礎としたポリスチレン換算値である。
 数平均分子量を上記数値範囲とすることにより、バインダー作製時の取り扱い、電極作製が容易で、なおかつ強固な負極活性物質層を得ることができる。
The number average molecular weight of the solvent-soluble polyimide compound of the present invention is preferably 20,000 to 150,000, more preferably 30,000 to 100,000.
In the present invention, the number average molecular weight is a polystyrene-equivalent value based on a calibration curve prepared by using a standard polystyrene by a gel permeation chromatography (GPC) apparatus.
By setting the number average molecular weight in the above numerical range, it is possible to obtain a strong negative electrode active substance layer that is easy to handle at the time of binder production and electrode production.
 好ましくは、カルボキシル基含有ジアミン化合物は、下記一般式(1)又は(2)で表される。このような一般式で表されるカルボキシル基含有ジアミン化合物を使用することにより、リチウムイオン二次電池の初回充放電効率及びサイクル特性をより改善することができる。
 より好ましくは、カルボキシル基含有ジアミン化合物は、下記一般式(1)で表される。
 なお、一般式(1)で表されるジアミン化合物と、一般式(2)で表されるジアミン化合物とを併用してもよい。
Figure JPOXMLDOC01-appb-C000007
Preferably, the carboxyl group-containing diamine compound is represented by the following general formula (1) or (2). By using the carboxyl group-containing diamine compound represented by such a general formula, the initial charge / discharge efficiency and cycle characteristics of the lithium ion secondary battery can be further improved.
More preferably, the carboxyl group-containing diamine compound is represented by the following general formula (1).
The diamine compound represented by the general formula (1) and the diamine compound represented by the general formula (2) may be used in combination.
Figure JPOXMLDOC01-appb-C000007
 上記一般式(1)及び(2)中において、Rは、単結合又は(CHで表され、pは1~6の整数であり、1~3であることが好ましい。
 また、上記一般式(1)及び(2)中において、n及びoは、それぞれ、1~5の整数であり、1~3であることがより好ましく、1であることが特に好ましい。
In the above general formulas (1) and (2), R 1 is represented by a single bond or (CH 2 ) p , and p is an integer of 1 to 6, preferably 1 to 3.
Further, in the general formulas (1) and (2), n and o are integers of 1 to 5, respectively, more preferably 1 to 3, and particularly preferably 1.
 上記一般式(1)又は(2)を満たすジアミン化合物としては、以下の化合物が挙げられるが、これらに限定されるものではない。また、これらを併用してもよい。
Figure JPOXMLDOC01-appb-C000008
Figure JPOXMLDOC01-appb-C000009
Examples of the diamine compound satisfying the above general formula (1) or (2) include, but are not limited to, the following compounds. Moreover, you may use these together.
Figure JPOXMLDOC01-appb-C000008
Figure JPOXMLDOC01-appb-C000009
 列挙したジアミン化合物の中でも、以下のジアミン化合物が好ましい。このようなジアミン化合物を使用することにより、リチウムイオン二次電池の初回充放電効率及びサイクル特性をより改善することができる。また、これらを併用してもよい。
Figure JPOXMLDOC01-appb-C000010
Among the listed diamine compounds, the following diamine compounds are preferable. By using such a diamine compound, the initial charge / discharge efficiency and cycle characteristics of the lithium ion secondary battery can be further improved. Moreover, you may use these together.
Figure JPOXMLDOC01-appb-C000010
 カルボキシル基含有ジアミン化合物として、一般式(1)又は(2)で表されるジアミン化合物以外のもの(以下、その他のカルボキシル基含有ジアミン化合物という。)を使用してもよく、一般式(1)又は(2)で表されるジアミン化合物と併用してもよい。
 その他のカルボキシル基含有ジアミン化合物としては、例えば、1,3-ビス(4-アミノ-2-カルボキシフェノキシ)ベンゼン、3,5-ビス(4-アミノフェノキシ)安息香酸、5-アミノ-2-(アミノフェノキシ)安息香酸及び3,5-ジアミノ安息香酸等が挙げられる。
As the carboxyl group-containing diamine compound, a compound other than the diamine compound represented by the general formula (1) or (2) (hereinafter, referred to as other carboxyl group-containing diamine compound) may be used, and the general formula (1) may be used. Alternatively, it may be used in combination with the diamine compound represented by (2).
Examples of other carboxyl group-containing diamine compounds include 1,3-bis (4-amino-2-carboxyphenoxy) benzene, 3,5-bis (4-aminophenoxy) benzoic acid, and 5-amino-2- ( Aminophenoxy) Benzoic acid, 3,5-diaminobenzoic acid and the like can be mentioned.
 酸無水物は、特に限定されるものではなく、芳香族酸無水物を使用してもよく、脂肪族酸無水物を使用してもよく、これらを併用してもよい。
 また、脂肪族酸無水物は、直鎖状のものであってもよく、分岐鎖状のものであってもよく、脂環式のものであってもよい。
The acid anhydride is not particularly limited, and an aromatic acid anhydride may be used, an aliphatic acid anhydride may be used, or these may be used in combination.
Further, the aliphatic acid anhydride may be a linear type, a branched chain type, or an alicyclic type.
 芳香族酸無水物としては、例えば、4,4’-オキシジフタル酸二無水物(ODPA)、3,3’,4,4’-ビフェニルテトラカルボン酸二無水物(BPDA)、2,3-ナフタレンジカルボン酸無水物、ピロリメット酸二無水物、3-フルオロピロメリット酸二無水物、3,6-ジフルオロピロメリット酸二無水物、3,6-ビス(トリフルオロメチル)ピロメリット酸二無水物、1,2,3,4-ベンゼンテトラカルボン酸二無水物、2,2’,3,3’-ベンゾフェノンテトラカルボン酸二無水物、3,3’,4,4’-ベンゾフェノンテトラカルボン酸二無水物、3,3’,4,4’-ビフェニルスルホンテトラカルボン酸二無水物、2,3,3’,4’-ビフェニルテトラカルボン酸二無水物、3,3’’,4,4’’-テルフェニルテトラカルボン酸二無水物、3,3’’’,4,4’’’-クァテルフェニルテトラカルボン酸二無水物、2,2’,3,3’-ビフェニルテトラカルボン酸二無水物、メチレン-4,4’-ジフタル酸二無水物、1,1-エチニリデン-4,4’-ジフタル酸二無水物、2,2-プロピリデン-4,4’-ジフタル酸二無水物、1,2-エチレン-4,4’-ジフタル酸二無水物、1,3-トリメチレン-4,4’-ジフタル酸二無水物、1,4-テトラメチレン-4,4’-ジフタル酸二無水物、1,5-ペンタメチレン-4,4’-ジフタル酸二無水物、1,3-ビス〔2-(3,4-ジカルボキシフェニル)-2-プロピル〕ベンゼン二無水物、1,4-ビス〔2-(3,4-ジカルボキシフェニル)-2-プロピル〕ベンゼン二無水物、ビス〔3-(3,4-ジカルボキシフェノキシ)フェニル〕メタン二無水物、ビス〔4-(3,4-ジカルボキシフェノキシ)フェニル〕メタンニ無水物、2,2-ビス〔3-(3,4-ジカルボキシフェノキシ)フェニル〕プロパン二無水物、2,2-ビス〔4-(3,4-ジカルボキシフェノキシ)フェニル〕プロパン二無水物、ジフルオロメチレン-4,4’-ジフタル酸二無水物、1,1,2,2-テトラフルオロ-1,2-エチレン-4,4’-ジフタル酸二無水物、3,3’,4,4’-ジフェニルスルホンテトラカルボン酸二無水物、オキシ-4,4’-ジフタル酸二無水物、ビス(3,4-ジカルボキシフェニル)エ-テル二無水物、チオ-4,4’-ジフタル酸二無水物、スルホニル-4,4’-ジフタル酸二無水物、1,3-ビス(3,4-ジカルボキシフェニル)ベンゼン二無水物、1,4-ビス(3,4-ジカルボキシフェニル)ベンゼン二無水物、1,3-ビス(3,4-ジカルボキシフェノキシ)ベンゼン二無水物、1,4-ビス(3,4-ジカルボキシフェノキシ)ベンゼン二無水物、ビス(3,4-ジカルボキシフェノキシ)ジメチルシラン二無水物、1,3-ビス(3,4-ジカルボキシフェノキシ)-1,1,3,3-テトラメチルジシロキサン二無水物、2,3,6,7-ナフタレンテトラカルボン酸二無水物、1,2,5,6-ナフタレンテトラカルボン酸二無水物、3,3’,5,5’-テトラキス(トリフルオロメチル)オキシ-4,4’-ジフタル酸二無水物、3,3’,6,6’-テトラキス(トリフルオロメチル)オキシ-4,4’-ジフタル酸二無水物、5,5’,6,6’-テトラキス(トリフルオロメチル)オキシ-4,4’-ジフタル酸二無水物、3,3’,5,5’,6,6’-ヘキサキス(トリフルオロメチル)オキシ-4,4’-ジフタル酸二無水物、3,3’-ジフルオロスルホニル-4,4’-ジフタル酸二無水物、5,5’-ジフルオロスルホニル-4,4’-ジフタル酸二無水物、6,6’-ジフルオロスルホニル-4,4’-ジフタル酸二無水物、3,3’,5,5’,6,6’-ヘキサフルオロスルホニル-4,4’-ジフタル酸二無水物、3,3’-ビス(トリフルオロメチル)スルホニル-4,4’-ジフタル酸二無水物、5,5’-ビス(トリフルオロメチル)スルホニル-4,4’-ジフタル酸二無水物、6,6’-ビス(トリフルオロメチル)スルホニル-4,4’-ジフタル酸二無水物、3,3’,5,5’-テトラキス(トリフルオロメチル)スルホニル-4,4’-ジフタル酸二無水物、3,3’,6,6’-テトラキス(トリフルオロメチル)スルホニル-4,4’-ジフタル酸二無水物、5,5’,6,6’-テトラキス(トリフルオロメチル)スルホニル-4,4’-ジフタル酸二無水物、3,3’,5,5’,6,6’-ヘキサキス(トリフルオロメチル)スルホニル-4,4’-ジフタル酸二無水物、3,3’-ジフルオロ-2,2-パーフルオロプロピリデン-4,4’-ジフタル酸二無水物、5,5’-ジフルオロ-2,2-パーフルオロプロピリデン-4,4’-ジフタル酸二無水物、6,6’-ジフルオロ-2,2-パーフルオロプロピリデン-4,4’-ジフタル酸二無水物、3,3’,5,5’,6,6’-ヘキサフルオロ-2,2-パーフルオロプロピリデン-4,4’-ジフタル酸二無水物、3,3’-ビス(トリフルオロメチル)-2,2-パーフルオロプロピリデン-4,4’-ジフタル酸二無水物及び4,4’-(4,4’-イソプロピリデンジフェノキシ)ビスフタル酸二無水物等が挙げられる。
 脂肪族酸無水物としては、例えば、ノルボルナン-2-スピロ-α-シクロペンタノン-α’-スピロ-2’’-ノルボルナン-5,5’’,6,6’’-テトラカルボン酸二無水物(CpODA)、ビシクロ[2,2,2]オクト-エン-2,3,5,6-テトラカルボン酸二無水物(BTA)、1,2,4,5-シクロヘキサンテトラカルボン酸二無水物、1,2,3,4-ブタンテトラカルボン酸二無水物、3,3’,4,4’-ビシクロヘキシルテトラカルボン酸二無水物、カルボニル-4,4’-ビス(シクロヘキサン-1,2-ジカルボン酸)二無水物、メチレン-4,4’-ビス(シクロヘキサン-1,2-ジカルボン酸)二無水物、1,2-エチレン-4,4’-ビス(シクロヘキサン-1,2-ジカルボン酸)二無水物、オキシ-4,4’-ビス(シクロヘキサン-1,2-ジカルボン酸)二無水物、チオ-4,4’-ビス(シクロヘキサン-1,2-ジカルボン酸)二無水物及びスルホニル-4,4’-ビス(シクロヘキサン-1,2-ジカルボン酸)二無水物等が挙げられる。
Examples of the aromatic acid anhydride include 4,4'-oxydiphthalic acid dianhydride (ODPA), 3,3', 4,4'-biphenyltetracarboxylic acid hydride (BPDA), and 2,3-naphthalene. Dicarboxylic acid anhydride, pyrolimetic acid dianhydride, 3-fluoropyromellitic dianhydride, 3,6-difluoropyromellitic hydride, 3,6-bis (trifluoromethyl) pyromellitic dianhydride, 1,2,3,4-benzenetetracarboxylic acid dianhydride, 2,2', 3,3'-benzophenone tetracarboxylic acid dianhydride, 3,3', 4,4'-benzophenone tetracarboxylic acid dianhydride , 3,3', 4,4'-biphenylsulfonetetracarboxylic hydride, 2,3,3', 4'-biphenyltetracarboxylic hydride, 3,3 ″, 4,4'' -Terphenyltetracarboxylic dianhydride, 3,3''', 4,4'''-Quaterphenyltetracarboxylic dianhydride, 2,2', 3,3'-biphenyltetracarboxylic dianhydride Methylene-4,4'-diphthalic hydride, 1,1-ethynidene-4,4'-diphthalic hydride, 2,2-propylidene-4,4'-diphthalic hydride, 1 , 2-ethylene-4,4'-diphthalic hydride, 1,3-trimethylen-4,4'-diphthalic hydride, 1,4-tetramethylene-4,4'-diphthalic hydride , 1,5-Pentamethylene-4,4'-diphthalic hydride, 1,3-bis [2- (3,4-dicarboxyphenyl) -2-propyl] benzene dianhydride, 1,4- Bis [2- (3,4-dicarboxyphenyl) -2-propyl] benzene dianhydride, bis [3- (3,4-dicarboxyphenoxy) phenyl] methane dianhydride, bis [4- (3,3) 4-Dicarboxyphenoxy) phenyl] methanenianhydride, 2,2-bis [3- (3,4-dicarboxyphenoxy) phenyl] propane dianhydride, 2,2-bis [4- (3,4-di) Carboxyphenoxy) phenyl] propane dianhydride, difluoromethylene-4,4'-diphthalic hydride, 1,1,2,2-tetrafluoro-1,2-ethylene-4,4'-diphthalate dianhydride , 3,3', 4,4'-diphenylsulfonetetracarboxylic hydride, oxy-4,4'-diphthalic hydride, bis (3,4-dicarboxyphenyl) ether dianhydride , Thio-4,4'-diphthalic hydride, sulfonyl-4,4'-diphthalate Anhydride, 1,3-bis (3,4-dicarboxyphenyl) benzene dianhydride, 1,4-bis (3,4-dicarboxyphenyl) benzene dianhydride, 1,3-bis (3,4) -Dicarboxyphenoxy) benzene dianhydride, 1,4-bis (3,4-dicarboxyphenoxy) benzene dianhydride, bis (3,4-dicarboxyphenoxy) dimethylsilane dianhydride, 1,3-bis (3,4-Dicarboxyphenoxy) -1,1,3,3-tetramethyldisiloxane dianhydride, 2,3,6,7-naphthalenetetracarboxylic acid dianhydride, 1,2,5,6- Naphthalenetetracarboxylic hydride, 3,3', 5,5'-tetrakis (trifluoromethyl) oxy-4,4'-diphthalic hydride, 3,3', 6,6'-tetrakis (tri) Fluoromethyl) oxy-4,4'-diphthalic acid dianhydride, 5,5', 6,6'-tetrakis (trifluoromethyl) oxy-4,4'-diphthalic acid dianhydride, 3,3', 5,5', 6,6'-hexakis (trifluoromethyl) oxy-4,4'-diphthalic hydride, 3,3'-difluorosulfonyl-4,4'-diphthalic hydride, 5, 5'-Difluorosulfonyl-4,4'-diphthalic acid dianhydride, 6,6'-difluorosulfonyl-4,4'-diphthalic acid dianhydride, 3,3', 5,5', 6,6'-Hexafluorosulfonyl-4,4'-diphthalic hydride, 3,3'-bis (trifluoromethyl) sulfonyl-4,4'-diphthalic hydride, 5,5'-bis (trifluoromethyl) ) Sulfonyl-4,4'-diphthalic hydride, 6,6'-bis (trifluoromethyl) sulfonyl-4,4'-diphthalic hydride, 3,3', 5,5'-tetrakis () Trifluoromethyl) sulfonyl-4,4'-diphthalic hydride, 3,3', 6,6'-tetrakis (trifluoromethyl) sulfonyl-4,4'-diphthalic hydride, 5,5' , 6,6'-tetrakis (trifluoromethyl) sulfonyl-4,4'-diphthalic hydride, 3,3', 5,5', 6,6'-hexakis (trifluoromethyl) sulfonyl-4, 4'-diphthalic hydride, 3,3'-difluoro-2,2-perfluoropropylidene-4,4'-diphthalic hydride, 5,5'-difluoro-2,2-perfluoropropi LIDEN-4,4'-diphthalic hydride, 6,6'-difluoro-2,2-perfluoro Propyridene-4,4'-diphthalic dianhydride, 3,3', 5,5', 6,6'-hexafluoro-2,2-perfluoropropyridene-4,4'-diphthalic dianhydride , 3,3'-bis (trifluoromethyl) -2,2-perfluoropropyridene-4,4'-diphthalic dianhydride and 4,4'-(4,4'-isopropyridenediphenoxy) bisphthal Acid dianhydride and the like can be mentioned.
Examples of the aliphatic acid anhydride include norbornan-2-spiro-α-cyclopentanone-α'-spiro-2''-norbornan-5,5'', 6,6''-tetracarboxylic acid dianhydride. (CpODA), Bicyclo [2,2,2] Octo-ene-2,3,5,6-tetracarboxylic acid dianhydride (BTA), 1,2,4,5-Cyclohexanetetracarboxylic acid dianhydride , 1,2,3,4-butanetetracarboxylic acid dianhydride, 3,3', 4,4'-bicyclohexyltetracarboxylic acid dioanoxide, carbonyl-4,4'-bis (cyclohexane-1,2) -Dicarboxylic acid) dianhydride, methylene-4,4'-bis (cyclohexane-1,2-dicarboxylic acid) dianhydride, 1,2-ethylene-4,4'-bis (cyclohexane-1,2-dicarboxylic acid) Acid) dianhydride, oxy-4,4'-bis (cyclohexane-1,2-dicarboxylic acid) dianhydride, thio-4,4'-bis (cyclohexane-1,2-dicarboxylic acid) dianhydride and Examples thereof include sulfonyl-4,4'-bis (cyclohexane-1,2-dicarboxylic acid) dianhydride.
 一実施形態において、本発明のポリイミド化合物は、重合成分として、芳香族ジアミン化合物を含む。なお、本発明においては、芳香族ジアミン化合物とは、カルボキシル基を有しない芳香族ジアミン化合物を意味する。 In one embodiment, the polyimide compound of the present invention contains an aromatic diamine compound as a polymerization component. In the present invention, the aromatic diamine compound means an aromatic diamine compound having no carboxyl group.
 芳香族ジアミン化合物としては、例えば、ビス[4-(4-アミノフェノキシ)フェニル]スルホン(BAPS)、2,2’-ビス(トリフルオロメチル)ベンジジン、m-フェニレンジアミン、p-フェニレンジアミン、2,4-ジアミノトルエン、2,4(6)-ジアミノ-3,5-ジエチルトルエン、5(6)-アミノ-1,3,3-トリメチル-1-(4-アミノフェニル)インダン、4,4’-ジアミノ-2,2’-ジメチル-1,1’-ビフェニル、4,4’-ジアミノ-3,3’-ジメチル-1,1’-ビフェニル、3,4’-ジアミノジフェニルエーテル、4,4’-ジアミノジフェニルエーテル、3,3’-ジアミノジフェニルスルホン、4,4’-ジアミノジフェニルスルホン、4,4’-ジアミノジフェニルスルフィド、4-アミノフェニル-4-アミノベンゾエート、4,4’-(9-フルオレニリデン)ジアニリン、9,9’-ビス(3-メチル-4-アミノフェニル)フルオレン、1,3-ビス(3-アミノフェノキシ)ベンゼン、1,3-ビス(4-アミノフェノキシ)ベンゼン(TPE-R)、1,4-ビス(4-アミノフェノキシ)ベンゼン、2,2-ビス(4-アミノフェニル)プロパン、2,2-ビス(3-メチル-4-アミノフェニル)プロパン、4,4’-(ヘキサフルオロイソプロピリデン)ジアニリン、2,2-ビス(3-アミノ-4-メチルフェニル)ヘキサフルオロプロパン、2,2-ビス[4-(4-アミノフェノキシ)フェニル]プロパン、2,2-ビス[4-(4-アミノフェノキシ)フェニル]ヘキサフルオロプロパン、α,α-ビス[4-(4-アミノフェノキシ)フェニル]-1,3-ジイソプロピルベンゼン、α,α-ビス[4-(4-アミノフェノキシ)フェニル]-1,4-ジイソプロピルベンゼン、3,7-ジアミノ-ジメチルジベンゾチオフェン 5,5-ジオキシド、ビス(3-カルボキシー4-アミノフェニル)メチレン、3,3’-ジアミノ-4,4’-ジヒドロキシ-1,1’-ビフェニル、4,4’-ジアミノ-3,3’-ジヒドロキシ-1,1’-ビフェニル、2,2-ビス(3-アミノ-4-ヒドロキシフェニル)プロパン、2,2-ビス(3-アミノ-4-ヒドロキシフェニル)ヘキサフルオロプロパン、1、3-ビス(3-ヒドロキシ-4-アミノフェノキシ)ベンゼン、2,2-ビス(3-ヒドロキシ-4-アミノフェニル)ベンゼン及び3,3’-ジアミノ-4,4’-ジヒドロキシジフェニルスルホン等が挙げられる。
 上記した中でも、リチウムイオン二次電池の初回充放電効率及びサイクル特性という観点から、ビス[4-(4-アミノフェノキシ)フェニル]スルホン(BAPS)及び1,3-ビス(4-アミノフェノキシ)ベンゼン(TPE-R)が好ましい。
Examples of the aromatic diamine compound include bis [4- (4-aminophenoxy) phenyl] sulfone (BAPS), 2,2'-bis (trifluoromethyl) benzidine, m-phenylenediamine, p-phenylenediamine, 2 , 4-Diaminotoluene, 2,4 (6) -diamino-3,5-diethyltoluene, 5 (6) -amino-1,3,3-trimethyl-1- (4-aminophenyl) indan, 4,4 '-Diamino-2,2'-dimethyl-1,1'-biphenyl, 4,4'-diamino-3,3'-dimethyl-1,1'-biphenyl, 3,4'-diaminodiphenyl ether, 4,4 '-Diaminodiphenyl ether, 3,3'-diaminodiphenylsulfone, 4,4'-diaminodiphenylsulfone, 4,4'-diaminodiphenylsulfide, 4-aminophenyl-4-aminobenzoate, 4,4'-(9-) Fluolenilidene) dianiline, 9,9'-bis (3-methyl-4-aminophenyl) fluorene, 1,3-bis (3-aminophenoxy) benzene, 1,3-bis (4-aminophenoxy) benzene (TPE-) R), 1,4-bis (4-aminophenoxy) benzene, 2,2-bis (4-aminophenyl) propane, 2,2-bis (3-methyl-4-aminophenyl) propane, 4,4' -(Hexafluoroisopropylidene) dianiline, 2,2-bis (3-amino-4-methylphenyl) hexafluoropropane, 2,2-bis [4- (4-aminophenoxy) phenyl] propane, 2,2- Bis [4- (4-aminophenoxy) phenyl] hexafluoropropane, α, α-bis [4- (4-aminophenoxy) phenyl] -1,3-diisopropylbenzene, α, α-bis [4- (4) -Aminophenoxy) phenyl] -1,4-diisopropylbenzene, 3,7-diamino-dimethyldibenzothiophene 5,5-dioxide, bis (3-carboxy-4-aminophenyl) methylene, 3,3'-diamino-4, 4'-Dihydroxy-1,1'-biphenyl, 4,4'-diamino-3,3'-dihydroxy-1,1'-biphenyl, 2,2-bis (3-amino-4-hydroxyphenyl) propane, 2,2-bis (3-amino-4-hydroxyphenyl) hexafluoropropane, 1,3-bis (3-hydroxy-4-aminophenoxy) benzene, 2,2-bis (3-hydroxy-4-aminopheni) L) Benzene and 3,3'-diamino-4,4'-dihydroxydiphenyl sulfone and the like can be mentioned.
Among the above, from the viewpoint of initial charge / discharge efficiency and cycle characteristics of the lithium ion secondary battery, bis [4- (4-aminophenoxy) phenyl] sulfone (BAPS) and 1,3-bis (4-aminophenoxy) benzene (TPE-R) is preferable.
 また、芳香族ジアミン化合物として下記一般式(3)で表されるジアミン化合物を使用することもできる。このような構造のジアミン化合物を使用することにより、リチウムイオン二次電池の初回充放電効率及びサイクル特性をより改善することができる。また、ポリイミド化合物の溶媒可溶性をより向上することができる。
Figure JPOXMLDOC01-appb-C000011
Further, as the aromatic diamine compound, a diamine compound represented by the following general formula (3) can also be used. By using the diamine compound having such a structure, the initial charge / discharge efficiency and the cycle characteristics of the lithium ion secondary battery can be further improved. In addition, the solvent solubility of the polyimide compound can be further improved.
Figure JPOXMLDOC01-appb-C000011
 上記一般式(3)中、R~Rは、それぞれ独立して、水素、フッ素、置換又は無置換のアルキル基及び置換又は無置換の芳香族基からなる群より選択され、R~Rの少なくとも1つが、芳香族基である。好ましくは、R~Rの1つ又は2つが芳香族基である。
 好ましくは、R~Rの1つ又は2つが、置換又は無置換の芳香族基であり、より好ましくは、少なくともR又はRが芳香族基である。
 上記した位置に芳香族基を有することにより、ジアミン化合物の立体障害性を抑えることができ、酸無水物等との重合反応を良好に進めることができる。
 特に好ましい態様においては、R~Rの1つ又は2つが置換又は無置換の芳香族基であり、芳香族基以外のR~Rが水素、フッ素及び置換又は無置換のアルキル基からなる群より選択される。
 具体的には、以下の化学式で表されるような化合物が挙げられる(Rが芳香族基であり、R以外のR~R及びRが水素である態様)。
Figure JPOXMLDOC01-appb-C000012
In the general formula (3), R 2 ~ R 9 are each independently hydrogen, fluorine, selected from the group consisting of substituted or unsubstituted alkyl group and a substituted or unsubstituted aromatic group, R 2 ~ At least one of R 9 is an aromatic group. Preferably, one or two of R 2 to R 9 are aromatic groups.
Preferably, one or two of R 6 to R 9 are substituted or unsubstituted aromatic groups, and more preferably at least R 6 or R 8 is an aromatic group.
By having an aromatic group at the above-mentioned position, the steric hindrance of the diamine compound can be suppressed, and the polymerization reaction with an acid anhydride or the like can be satisfactorily promoted.
In a particularly preferred embodiment, one or two of R 6 to R 9 are substituted or unsubstituted aromatic groups, and R 2 to R 9 other than the aromatic group are hydrogen, fluorine and a substituted or unsubstituted alkyl group. Selected from the group consisting of.
Specific examples thereof include compounds represented by the following chemical formulas (a mode in which R 8 is an aromatic group and R 2 to R 7 and R 9 other than R 8 are hydrogen).
Figure JPOXMLDOC01-appb-C000012
 本発明において、アルキル基には、直鎖状のもの、分岐鎖状のもの及び環状のものが含まれ、さらに、酸素原子や窒素原子を介して主骨格と結合するアルコキシ基やアルキルアミノ基等が含まれる。
 また、芳香族基についても同様に、酸素原子、窒素原子や炭素原子を介して主骨格と結合する置換基が含まれる。さらに、芳香族基には、ピロール基等のヘテロ芳香族基が含まれる。
In the present invention, the alkyl group includes a linear group, a branched chain group and a cyclic group, and further includes an alkoxy group and an alkylamino group which are bonded to the main skeleton via an oxygen atom or a nitrogen atom. Is included.
Similarly, the aromatic group also includes a substituent that binds to the main skeleton via an oxygen atom, a nitrogen atom or a carbon atom. Further, the aromatic group includes a heteroaromatic group such as a pyrrole group.
 アルキル基及び芳香族基は、無置換であることが好ましいが、置換基を有していてもよく、例えば、アルキル基、フルオロ基やクロロ基等のハロゲン基、アミノ基、ニトロ基、ヒドロキシル基、シアノ基、カルボキシル基、スルホン酸基等が挙げられる。アルキル基、芳香族基は、これらの置換基を1以上又は2以上有するものであってもよい。 The alkyl group and aromatic group are preferably unsubstituted, but may have a substituent, for example, an alkyl group, a halogen group such as a fluoro group or a chloro group, an amino group, a nitro group, or a hydroxyl group. , Cyano group, carboxyl group, sulfonic acid group and the like. The alkyl group and aromatic group may have one or more or two or more of these substituents.
 アルキル基は、炭素数1~10であることが好ましく、1~3であることがより好ましい。
 炭素数1~10のアルキル基としては、例えば、メチル基、エチル基、n-プロピル基、イソプロピル基、n-ブチル基、tert-ブチル基、n-ペンチル基、sec-ペンチル基、n-へキシル基、シクロへキシル基、n-へプチル基、n-オクチル基、n-ノニル基、n-デシル基、フルオロメチル基、ジフルオロメチル基、トリフルオロメチル基、クロロメチル基、ジクロロメチル基、トリクロロメチル基、ブロモメチル基、ジブロモメチル基、トリブロモメチル基、フルオロエチル基、ジフルオロエチル基、トリフルオロエチル基、クロロエチル基、ジクロロエチル基、トリクロロエチル基、ブロモエチル基、ジブロモエチル基、トリブロモエチル基、ヒドロキシメチル基、ヒドロキシエチル基、ヒドロキシルプロピル基、メトキシ基、エトキシ基、n-プロポキシ基、n-ブトキシ基、n-ペンチルオキシ基、sec-ペンチルオキシ基、n-へキシルオキシ基、シクロへキシルオキシ基、n-へプチルオキシ基、n-オクチルオキシ基、n-ノニルオキシ基、n-デシルオキシ基、トリフルオロメトキシ基、メチルアミノ基、ジメチルアミノ基、トリメチルアミノ基、エチルアミノ基、プロピルアミノ基等が挙げられる。
 上記したアルキル基の中でも、立体障害性、耐熱性という理由からメチル基、エチル基、メトキシ基、エトキシ基及びトリフルオロメチル基が好ましい。
The alkyl group preferably has 1 to 10 carbon atoms, and more preferably 1 to 3 carbon atoms.
Examples of the alkyl group having 1 to 10 carbon atoms include a methyl group, an ethyl group, an n-propyl group, an isopropyl group, an n-butyl group, a tert-butyl group, an n-pentyl group, a sec-pentyl group, and n-. Xyl group, cyclohexyl group, n-heptyl group, n-octyl group, n-nonyl group, n-decyl group, fluoromethyl group, difluoromethyl group, trifluoromethyl group, chloromethyl group, dichloromethyl group, Trichloromethyl group, bromomethyl group, dibromomethyl group, tribromomethyl group, fluoroethyl group, difluoroethyl group, trifluoroethyl group, chloroethyl group, dichloroethyl group, trichloroethyl group, bromoethyl group, dibromoethyl group, tribromoethyl group Group, hydroxymethyl group, hydroxyethyl group, hydroxylpropyl group, methoxy group, ethoxy group, n-propoxy group, n-butoxy group, n-pentyloxy group, sec-pentyloxy group, n-hexyloxy group, cyclo Xyloxy group, n-heptyloxy group, n-octyloxy group, n-nonyloxy group, n-decyloxy group, trifluoromethoxy group, methylamino group, dimethylamino group, trimethylamino group, ethylamino group, propylamino group, etc. Can be mentioned.
Among the above-mentioned alkyl groups, a methyl group, an ethyl group, a methoxy group, an ethoxy group and a trifluoromethyl group are preferable because of steric hindrance and heat resistance.
 芳香族基は、炭素数5~20であることが好ましく、6~10であることがより好ましい。
 炭素数5~20の芳香族基としては、例えば、フェニル基、トリル基、メチルフェニル基、ジメチルフェニル基、エチルフェニル基、ジエチルフェニル基、プロピルフェニル基、ブチルフェニル基、フルオロフェニル基、ペンタフルオロフェニル基、クロルフェニル基、ブロモフェニル基、メトキシフェニル基、ジメトキシフェニル基、エトキシフェニル基、ジエトキシフェニル基、ベンジル基、メトキシベンジル基、ジメトキシベンジル基、エトキシベンジル基、ジエトキシベンジル基、アミノフェニル基、アミノベンジル基、ニトロフェニル基、ニトロベンジル基、シアノフェニル基、シアノベンジル基、フェネチル基、フェニルプロピル基、フェノキシ基、ベンジルオキシ基、フェニルアミノ基、ジフェニルアミノ基、ビフェニル基、ナフチル基、フェニルナフチル基、ジフェニルナフチル基、アントリル基、アントリルフェニル基、フェニルアントリル基、ナフタセニル基、フェナントリル基、フェナントリルフェニル基、フェニルフェナントリル基、ピレニル基、フェニルピレニル基、フルオレニル基、フェニルフルオレニル基、ナフチルエチル基、ナフチルプロピル基、アントラセニルエチル基、フェナントリルエチル基、やピロール基、イミダゾール基、チアゾール基、オキサゾール基、フラン基、チオフェン基、トリアゾール基、ピラゾール基、イソオキサゾール基、イソチアゾール基、ピリジン基、ピリミジン基、ベンゾフラン基、ベンゾチオフェン基、キノリン基、イソキノリン基、インドリル基、ベンゾチアゾリル基、カルバゾリル基等のヘテロ芳香族基が挙げられる。
 上記した芳香族基の中でも、出発原料入手容易性、合成コスト面からは、フェニル基、フェノキシ基、ベンジル基及びベンジルオキシ基が好ましい。
The aromatic group preferably has 5 to 20 carbon atoms, and more preferably 6 to 10 carbon atoms.
Examples of the aromatic group having 5 to 20 carbon atoms include a phenyl group, a trill group, a methylphenyl group, a dimethylphenyl group, an ethylphenyl group, a diethylphenyl group, a propylphenyl group, a butylphenyl group, a fluorophenyl group, and a pentafluoro. Phenyl group, chlorphenyl group, bromophenyl group, methoxyphenyl group, dimethoxyphenyl group, ethoxyphenyl group, diethoxyphenyl group, benzyl group, methoxybenzyl group, dimethoxybenzyl group, ethoxybenzyl group, diethoxybenzyl group, aminophenyl Group, aminobenzyl group, nitrophenyl group, nitrobenzyl group, cyanophenyl group, cyanobenzyl group, phenethyl group, phenylpropyl group, phenoxy group, benzyloxy group, phenylamino group, diphenylamino group, biphenyl group, naphthyl group, Phenylnaphthyl group, diphenylnaphthyl group, anthryl group, anthrylphenyl group, phenylanthryl group, naphthacenyl group, phenanthryl group, phenanthrylphenyl group, phenylphenanthryl group, pyrenyl group, phenylpyrenyl group, fluorenyl group Phenylfluorenyl group, naphthylethyl group, naphthylpropyl group, anthracenylethyl group, phenanthrylethyl group, pyrrole group, imidazole group, thiazole group, oxazole group, furan group, thiophene group, triazole group, pyrazole group , Isooxazole group, isothiazole group, pyridine group, pyrimidine group, benzofuran group, benzothiophene group, quinoline group, isoquinolin group, indolyl group, benzothiazolyl group, carbazolyl group and other heteroaromatic groups.
Among the above-mentioned aromatic groups, a phenyl group, a phenoxy group, a benzyl group and a benzyloxy group are preferable from the viewpoint of easy availability of starting material and synthesis cost.
 以下、ポリイミド化合物の好ましい態様について説明する。 Hereinafter, preferred embodiments of the polyimide compound will be described.
 本発明に係るポリイミド化合物の特に好ましい態様の1つとしては、ポリイミド化合物は、(a)カルボキシル基含有ジアミン化合物と、(b)芳香族ジアミン化合物と、(c)芳香族酸無水物との反応物である。 As one of the particularly preferable embodiments of the polyimide compound according to the present invention, the polyimide compound is a reaction of (a) a carboxyl group-containing diamine compound, (b) an aromatic diamine compound, and (c) an aromatic acid anhydride. It is a thing.
 (a)カルボキシル基含有ジアミン化合物としては、上記一般式(1)又は(2)で表されるジアミン化合物を使用することが好ましい。一般式(1)又は(2)を満たすジアミン化合物中におけるより好ましい態様については上記した通りである。 (A) As the carboxyl group-containing diamine compound, it is preferable to use the diamine compound represented by the above general formula (1) or (2). The more preferable embodiment in the diamine compound satisfying the general formula (1) or (2) is as described above.
 ポリイミド化合物における(a)カルボキシル基含有ジアミン化合物の含有量は、全ジアミン量100モル%に対して10モル%以上、90モル%以下であることが好ましく、20モル%以上、80モル%以下であることがより好ましい。
上記数値範囲とすることにより、リチウムイオン二次電池の初回充放電効率及びサイクル特性をより改善することができる。さらに、ポリイミド化合物を含むワニスがゲル化してしまうことを防止することができる。
The content of the (a) carboxyl group-containing diamine compound in the polyimide compound is preferably 10 mol% or more and 90 mol% or less, preferably 20 mol% or more and 80 mol% or less, based on 100 mol% of the total diamine amount. More preferably.
Within the above numerical range, the initial charge / discharge efficiency and cycle characteristics of the lithium ion secondary battery can be further improved. Further, it is possible to prevent the varnish containing the polyimide compound from gelling.
 (b)芳香族ジアミン化合物としては、上記したものを適宜選択して使用することができる。上記した芳香族ジアミン化合物の中でも、ビス[4-(4-アミノフェノキシ)フェニル]スルホン(BAPS)、1,3-ビス(4-アミノフェノキシ)ベンゼン(TPE-R)及び上記一般式(3)を満たす芳香族ジアミン化合物が好ましい。また、これらを併用してもよい。 (B) As the aromatic diamine compound, the above-mentioned one can be appropriately selected and used. Among the above-mentioned aromatic diamine compounds, bis [4- (4-aminophenoxy) phenyl] sulfone (BAPS), 1,3-bis (4-aminophenoxy) benzene (TPE-R) and the above general formula (3) Aromatic diamine compounds satisfying the above conditions are preferable. Moreover, you may use these together.
 ポリイミド化合物における(b)芳香族ジアミン化合物の含有量は、全ジアミン量100モル%に対して10モル%以上、90モル%以下であることが好ましく、20モル%以上、80モル%以下であることがより好ましい。これにより、リチウムイオン二次電池の初回充放電効率及びサイクル特性をより改善することができる。 The content of the aromatic diamine compound (b) in the polyimide compound is preferably 10 mol% or more and 90 mol% or less, preferably 20 mol% or more and 80 mol% or less, based on 100 mol% of the total diamine amount. Is more preferable. Thereby, the initial charge / discharge efficiency and the cycle characteristics of the lithium ion secondary battery can be further improved.
 (c)芳香族酸無水物としては、下記一般式(4)で表されるものを使用することが好ましい。このような芳香族酸無水物を使用することにより、リチウムイオン二次電池の初回充放電効率及びサイクル特性をより改善することができる。
Figure JPOXMLDOC01-appb-C000013
As the aromatic acid anhydride (c), it is preferable to use one represented by the following general formula (4). By using such an aromatic acid anhydride, the initial charge / discharge efficiency and cycle characteristics of the lithium ion secondary battery can be further improved.
Figure JPOXMLDOC01-appb-C000013
 上記一般式(4)中、Xは、単結合、炭素数1~6のアルキル基、(CFC、SO及び酸素原子から選択される。 In the above general formula (4), X is selected from a single bond, an alkyl group having 1 to 6 carbon atoms, (CF 3 ) 2 C, SO 2 and an oxygen atom.
 上記一般式(4)を満たす芳香族酸無水物としては、4,4’-オキシジフタル酸二無水物(ODPA)、3,3’,4,4’-ビフェニルテトラカルボン酸二無水物(BPDA)、3,3’,4,4’-ビフェニルスルホンテトラカルボン酸二無水物、2,3,3’,4’-ビフェニルテトラカルボン酸二無水物、2,2’,3,3’-ビフェニルテトラカルボン酸二無水物等が挙げられる。 Examples of the aromatic acid anhydride satisfying the above general formula (4) include 4,4'-oxydiphthalic acid dianhydride (ODPA) and 3,3', 4,4'-biphenyltetracarboxylic dianhydride (BPDA). , 3,3', 4,4'-biphenylsulfonetetracarboxylic dianhydride, 2,3,3', 4'-biphenyltetracarboxylic dianhydride, 2,2', 3,3'-biphenyltetra Examples thereof include carboxylic acid dianhydride.
 なお、(c)芳香族酸無水物は、これに限定されるものではなく、一般式(4)を満たさない上記した芳香族酸無水物を使用してもよい。 The aromatic acid anhydride (c) is not limited to this, and the above-mentioned aromatic acid anhydride that does not satisfy the general formula (4) may be used.
 特に好ましい態様に係るポリイミド化合物は、本発明の特性を損なわない範囲において、(a)カルボキシル基含有ジアミン化合物と、(b)芳香族ジアミン化合物と及び(c)芳香族酸無水物以外の重合成分を含んでいてもよい。 The polyimide compound according to a particularly preferable embodiment is a polymerization component other than (a) a carboxyl group-containing diamine compound, (b) an aromatic diamine compound, and (c) an aromatic acid anhydride, as long as the characteristics of the present invention are not impaired. May include.
 本発明に係るポリイミド化合物の特に好ましい態様の1つとしては、(d)カルボキシル基含有ジアミン化合物と、(e)脂環式酸無水物との反応物である。 One of the particularly preferable embodiments of the polyimide compound according to the present invention is a reaction product of (d) a carboxyl group-containing diamine compound and (e) an alicyclic acid anhydride.
 (d)カルボキシル基含有ジアミン化合物としては、上記一般式(1)又は(2)で表されるジアミン化合物を使用することが好ましい。一般式(1)又は(2)を満たすジアミン化合物中におけるより好ましい態様については上記した通りである。 As the (d) carboxyl group-containing diamine compound, it is preferable to use the diamine compound represented by the above general formula (1) or (2). The more preferable embodiment in the diamine compound satisfying the general formula (1) or (2) is as described above.
 ポリイミド化合物における(d)カルボキシル基含有ジアミン化合物の含有量は、全ジアミン量100モル%に対して10モル%以上、90モル%以下であることが好ましく、20モル%以上、80モル%以下であることがより好ましい。これにより、リチウムイオン二次電池の初回充放電効率及びサイクル特性をより改善することができる。 The content of the (d) carboxyl group-containing diamine compound in the polyimide compound is preferably 10 mol% or more and 90 mol% or less, preferably 20 mol% or more and 80 mol% or less, based on 100 mol% of the total diamine amount. More preferably. Thereby, the initial charge / discharge efficiency and the cycle characteristics of the lithium ion secondary battery can be further improved.
 (e)脂環式酸無水物としては、上記したものを適宜選択して使用することができる。上記した脂環式酸無水物の中でも、リチウムイオン二次電池の初回充放電効率という観点からは、ノルボルナン-2-スピロ-α-シクロペンタノン-α’-スピロ-2’’-ノルボルナン-5,5’’,6,6’’-テトラカルボン酸二無水物(CpODA)及びビシクロ[2,2,2]オクト-エン-2,3,5,6-テトラカルボン酸二無水物(BTA)が好ましい。 (E) As the alicyclic acid anhydride, the above-mentioned one can be appropriately selected and used. Among the above-mentioned alicyclic acid anhydrides, norbornane-2-spiro-α-cyclopentanone-α'-spiro-2''-norbornane-5 from the viewpoint of initial charge / discharge efficiency of the lithium ion secondary battery. , 5 ″, 6,6''-tetracarboxylic dianhydride (CpODA) and bicyclo [2,2,2] octo-ene-2,3,5,6-tetracarboxylic dianhydride (BTA) Is preferable.
 特に好ましい態様に係るポリイミド化合物は、本発明の特性を損なわない範囲において、(d)カルボキシル基含有ジアミン化合物及び(e)脂環式酸無水物以外の重合成分を含んでいてもよい。 The polyimide compound according to a particularly preferable embodiment may contain a polymerization component other than (d) a carboxyl group-containing diamine compound and (e) an alicyclic acid anhydride as long as the characteristics of the present invention are not impaired.
 本発明のポリイミド化合物は、上記ジアミン化合物及び上記酸無水物を使用して従来公知の方法により製造することができる。具体的には、ジアミン化合物と酸無水物とを反応させ、ポリアミド酸を得た後、環化脱水反応を行い、ポリイミド化合物に転化させることにより得ることができる。 The polyimide compound of the present invention can be produced by a conventionally known method using the diamine compound and the acid anhydride. Specifically, it can be obtained by reacting a diamine compound with an acid anhydride to obtain a polyamic acid, and then performing a cyclization dehydration reaction to convert it into a polyimide compound.
 酸無水物と、ジアミン化合物の混合比は、酸無水物の総量1モル%に対し、ジアミン化合物の総量を0.5モル%~1.5モル%であることが好ましく、0.9モル%~1.1モル%であることがより好ましい。 The mixing ratio of the acid anhydride and the diamine compound is preferably 0.5 mol% to 1.5 mol%, preferably 0.9 mol%, based on the total amount of the acid anhydride of 1 mol%. More preferably, it is ~ 1.1 mol%.
 ジアミン化合物と酸無水物との反応は、有機溶媒中において行うことが好ましい。有機溶媒としては、本発明のジアミン化合物及び酸無水物と反応することがなく、ジアミン化合物と酸無水物との反応物を溶解することができるものであれば特に限定されるものではなく、N-メチル-2-ピロリドン、N,N-ジメチルホルムアミド、N,N-ジメチルアセトアミド、N,N’-ジメチルイミダゾリジノン、γ-ブチロラクトン、ジメチルスルホキシド、スルホラン、1,3-ジオキソラン、テトラヒドロフラン、エチレングリコールモノメチルエーテル、エチレングリコールモノエチルエーテル、プロピレングリコールモノメチルエーテル、プロピレングリコールモノエチルエーテル、エチレングリコールジメチルエーテル、エチレングリコールジエチルエーテル、エチレングリコールジブチルエーテル、ジエチレングリコールジメチルエーテル、ジエチレングリコールジエチルエーテル、ジエチレングリコールメチルエチルエーテル、ジプロピレングリコールジメチルエーテル、ジエチレングリコールジブチルエーテル、ジベンジルエーテル、エチレングリコールモノエチルエーテルアセテート、ジエチレングリコールモノブチルエーテルアセテート、プロピレングリコールモノメチルエーテルアセテート、プロピルアセテート、プロピレングリコールジアセテート、ブチルアセテート、イソブチルアセテート、3-メトキシブチルアセテート、3-メチル-3-メトキシブチルアセテート、ンジルアセテート、ブチルカルビトールアセテート、乳酸メチル、乳酸エチル、乳酸ブチル、安息香酸メチル、安息香酸エチル、トリグライム、テトラグライム、アセチルアセトン、メチルプロピルケトン、メチルブチルケトン、メチルイソブチルケトン、シクロペンタノン、2-ヘプタノン、ブチルアルコール、イソブチルアルコール、ペンタノール、4-メチル-2-ペンタノール、3-メチル-2-ブタノール、3-メチル-3-メトキシブタノール、ジアセトンアルコール、トルエン、キシレン等が挙げられる。
 本発明のポリイミド化合物の溶解性という観点からは、N-メチル-2-ピロリドン、N,N’-ジメチルイミダゾリジノン、γ-ブチロラクトンがポリイミドにおいて好ましい。
The reaction between the diamine compound and the acid anhydride is preferably carried out in an organic solvent. The organic solvent is not particularly limited as long as it does not react with the diamine compound and acid anhydride of the present invention and can dissolve the reaction product of the diamine compound and acid anhydride. -Methyl-2-pyrrolidone, N, N-dimethylformamide, N, N-dimethylacetamide, N, N'-dimethylimidazolidinone, γ-butyrolactone, dimethylsulfoxide, sulfolane, 1,3-dioxolane, tetrahydrofuran, ethylene glycol Monomethyl ether, ethylene glycol monoethyl ether, propylene glycol monomethyl ether, propylene glycol monoethyl ether, ethylene glycol dimethyl ether, ethylene glycol diethyl ether, ethylene glycol dibutyl ether, diethylene glycol dimethyl ether, diethylene glycol diethyl ether, diethylene glycol methyl ethyl ether, dipropylene glycol dimethyl ether , Diethylene glycol dibutyl ether, dibenzyl ether, ethylene glycol monoethyl ether acetate, diethylene glycol monobutyl ether acetate, propylene glycol monomethyl ether acetate, propyl acetate, propylene glycol diacetate, butyl acetate, isobutyl acetate, 3-methoxybutyl acetate, 3-methyl -3-Methoxybutyl acetate, nail acetate, butyl carbitol acetate, methyl lactate, ethyl lactate, butyl lactate, methyl benzoate, ethyl benzoate, triglime, tetraglyme, acetylacetone, methylpropylketone, methylbutylketone, methylisobutyl Ketone, cyclopentanone, 2-heptanone, butyl alcohol, isobutyl alcohol, pentanol, 4-methyl-2-pentanol, 3-methyl-2-butanol, 3-methyl-3-methoxybutanol, diacetone alcohol, toluene , Xylene and the like.
From the viewpoint of the solubility of the polyimide compound of the present invention, N-methyl-2-pyrrolidone, N, N'-dimethylimidazolidinone, and γ-butyrolactone are preferable in the polyimide.
 ジアミン化合物と酸無水物との反応温度は、化学的イミド化の場合は40℃以下であることが好ましい。また、熱イミド化の場合は150~220℃であることが好ましく、170~200℃であることがより好ましい。 The reaction temperature of the diamine compound and the acid anhydride is preferably 40 ° C. or lower in the case of chemical imidization. Further, in the case of thermal imidization, the temperature is preferably 150 to 220 ° C, more preferably 170 to 200 ° C.
 環化脱水反応時には、イミド化触媒を使用してもよく、例えば、メチルアミン、エチルアミン、トリメチルアミン、トリエチルアミン、プロピルアミン、トリプロピルアミン、ブチルアミン、トリブチルアミン、tert-ブチルアミン、へキシルアミン、トリエタノールアミン、N,N-ジメチルエタノールアミン、N,N-ジエチルエタノールアミン、トリエチレンジアミン、N-メチルピロリジン、N-エチルピロリジン、アニリン、ベンジルアミン、トルイジン、トリクロロアニリン、ピリジン、コリジン、ルチジン、ピコリン、キノリン、イソキノリン、バレロラクトン等を使用することができる。
 また、必要に応じて、トルエン、キシレン、エチルシクロヘキサンのような共沸脱水剤、無水酢酸、無水プロピオン酸、無水酪酸、無水安息香酸等の酸触媒を使用することができる。
An imidization catalyst may be used during the cyclization dehydration reaction, for example, methylamine, ethylamine, trimethylamine, triethylamine, propylamine, tripropylamine, butylamine, tributylamine, tert-butylamine, hexylamine, triethanolamine, etc. N, N-dimethylethanolamine, N, N-diethylethanolamine, triethylenediamine, N-methylpyrrolidin, N-ethylpyrrolidin, aniline, benzylamine, toluidine, trichloroaniline, pyridine, colidin, lutidine, picolin, quinoline, isoquinolin , Valerolactone and the like can be used.
If necessary, an azeotropic dehydrating agent such as toluene, xylene, or ethylcyclohexane, and an acid catalyst such as acetic anhydride, propionic anhydride, butyric anhydride, and benzoic anhydride can be used.
 ジアミン化合物と酸無水物との反応において、安息香酸、無水フタル酸、水添無水フタル酸等の封止剤を使用することができる。
 さらに、無水マレイン酸、エチニルフタル酸無水物、メチルエチニルフタル酸無水物、フェニルエチニルフタル酸無水物、フェニルエチニルトリメリット酸無水物、3-又は4-エチニルアニリン等を用いることにより、ポリイミド化合物の末端に二重結合又は三重結合を導入することもできる。
In the reaction between the diamine compound and the acid anhydride, a sealing agent such as benzoic acid, phthalic anhydride, or hydrogenated phthalic anhydride can be used.
Further, by using maleic anhydride, ethynylphthalic anhydride, methylethynylphthalic anhydride, phenylethynylphthalic anhydride, phenylethynyltrimellitic anhydride, 3- or 4-ethynylaniline, etc., the polyimide compound can be prepared. Double or triple bonds can also be introduced at the ends.
(リチウムイオン二次電池負極作製用樹脂組成物)
 本発明のリチウムイオン二次電池負極作製用樹脂組成物(以下、場合により、単に樹脂組成物という)は、上記ポリイミド化合物と、負極活物質とを含む。また、一実施形態において、該樹脂組成物は、導電剤を含む。
(Resin composition for manufacturing negative electrode of lithium ion secondary battery)
The resin composition for producing a negative electrode of a lithium ion secondary battery of the present invention (hereinafter, in some cases, simply referred to as a resin composition) contains the above-mentioned polyimide compound and a negative electrode active material. Also, in one embodiment, the resin composition comprises a conductive agent.
 ポリイミド化合物の構成については上記したため、ここでは記載を省略する。
 樹脂組成物におけるポリイミド化合物の含有量は、1質量%以上、20質量%以下であることが好ましく、3質量%以上、18質量%以下であることがより好ましい。
 樹脂組成物におけるポリイミド化合物の含有量を上記数値範囲内とすることにより、リチウムイオン二次電池の初回充放電効率及びサイクル特性をより改善することができる。
Since the composition of the polyimide compound has been described above, the description thereof is omitted here.
The content of the polyimide compound in the resin composition is preferably 1% by mass or more and 20% by mass or less, and more preferably 3% by mass or more and 18% by mass or less.
By setting the content of the polyimide compound in the resin composition within the above numerical range, the initial charge / discharge efficiency and the cycle characteristics of the lithium ion secondary battery can be further improved.
 本発明の樹脂組成物においては、シリコンの体積変化を効果的に防止することができるため、負極活物質としては、シリコン材料を使用することが好ましい。
 シリコン材料としては、シリコン粒子、スズ、ニッケル、鉄、銅、銀、コバルト、マンガン及び亜鉛等の金属とケイ素との合金、並びに、ホウ素、窒素、酸素及び炭素等とケイ素との化合物等が挙げられる。
 シリコン材料としては、例えば、SiO、SiO、SiB、MgSi、NiSi、CoSi、NiSi、CuSi、FeSi、MnSi、ZnSi、SiC、Si及びSiO等が挙げられる。
In the resin composition of the present invention, it is preferable to use a silicon material as the negative electrode active material because the volume change of silicon can be effectively prevented.
Examples of the silicon material include alloys of silicon with metals such as silicon particles, tin, nickel, iron, copper, silver, cobalt, manganese and zinc, and compounds of silicon with boron, nitrogen, oxygen and carbon. Be done.
Examples of silicon materials include SiO, SiO 2 , SiB 4 , Mg 2 Si, Ni 2 Si, CoSi 2 , NiSi 2 , Cu 5 Si, FeSi 2 , MnSi 2 , ZnSi 2 , SiC, Si 3 N 4 and Si. 2 N 2 O and the like can be mentioned.
 負極活物質として、シリコン材料以外のものを使用してもよく、例えば、金属リチウム、金属酸化物や黒鉛を挙げることができる。 As the negative electrode active material, a material other than a silicon material may be used, and examples thereof include metallic lithium, metal oxide, and graphite.
 なお、樹脂組成物は、負極活物質を2種以上含んでいてもよい。 The resin composition may contain two or more types of negative electrode active materials.
 樹脂組成物における負極活物質の含有量は、70質量%以上、99質量%以下であることが好ましく、75質量%以上、95質量%以下であることがより好ましい。
 樹脂組成物における負極活物質の含有量を上記数値範囲内とすることにより、リチウムイオン二次電池の初回充放電効率及びサイクル特性をより改善することができる。
The content of the negative electrode active material in the resin composition is preferably 70% by mass or more and 99% by mass or less, and more preferably 75% by mass or more and 95% by mass or less.
By setting the content of the negative electrode active material in the resin composition within the above numerical range, the initial charge / discharge efficiency and the cycle characteristics of the lithium ion secondary battery can be further improved.
 一実施形態において、本発明の樹脂組成物は、導電剤を含み、例えば、カーボンブラック(アセチレンブラック、ケッチェンブラック、ファーネスブラック等)、グラファイト、炭素繊維、カーボンフレーク、金属ファイバー及び箔等が挙げられる。これらの中でも、カーボンブラックが好ましく、アセチレンブラックがより好ましい。樹脂組成物は、導電剤を2種以上含んでいてもよい。 In one embodiment, the resin composition of the present invention contains a conductive agent and includes, for example, carbon black (acetylene black, ketjen black, furnace black, etc.), graphite, carbon fiber, carbon flakes, metal fiber, foil and the like. Be done. Among these, carbon black is preferable, and acetylene black is more preferable. The resin composition may contain two or more kinds of conductive agents.
 樹脂組成物における導電剤の含有量は、0.1質量%以上、25質量%以下であることが好ましく、1質量%以上、20質量%以下であることがより好ましい。
 樹脂組成物における導電剤の含有量を上記数値範囲内とすることにより、負極活性物質層において良好な導電パスを形成することができる。
The content of the conductive agent in the resin composition is preferably 0.1% by mass or more and 25% by mass or less, and more preferably 1% by mass or more and 20% by mass or less.
By setting the content of the conductive agent in the resin composition within the above numerical range, a good conductive path can be formed in the negative electrode active material layer.
 本発明の特性を損なわない範囲において、本発明の樹脂組成物は、添加剤を含むことができ、例えば、増粘剤、フィラー等が挙げられる。 The resin composition of the present invention may contain additives as long as the characteristics of the present invention are not impaired, and examples thereof include thickeners and fillers.
(リチウムイオン二次電池用負極)
 本発明のリチウムイオン二次電池用負極は、負極集電体と、該負極集電体上に形成された負極活性物質層と、を備え、該負極活性物質層は、上記樹脂組成物により構成されることを特徴とする。
(Negative electrode for lithium ion secondary battery)
The negative electrode for a lithium ion secondary battery of the present invention includes a negative electrode current collector and a negative electrode active material layer formed on the negative electrode current collector, and the negative electrode active material layer is composed of the above resin composition. It is characterized by being done.
 使用することのできる集電体は、特に限定されるものではなく、例えば、銅、ニッケル、ステンレス鋼、金、鉄、アルミニウム及びこれらの合金、ニッケルメッキ鋼、並びにクロムメッキ鋼等が挙げられる。 The current collector that can be used is not particularly limited, and examples thereof include copper, nickel, stainless steel, gold, iron, aluminum and alloys thereof, nickel-plated steel, and chrome-plated steel.
 負極活性物質層の厚さは、15μm以上、150μm以下であることが好ましく、30μm以上、120μm以下であることがより好ましい。負極活性物質層の厚さを上記数値範囲内とすることにより、リチウムイオン二次電池の初回充放電効率及びサイクル特性をより改善することができる。 The thickness of the negative electrode active material layer is preferably 15 μm or more and 150 μm or less, and more preferably 30 μm or more and 120 μm or less. By setting the thickness of the negative electrode active material layer within the above numerical range, the initial charge / discharge efficiency and cycle characteristics of the lithium ion secondary battery can be further improved.
 本発明のリチウムイオン二次電池用負極は、上記樹脂組成物を溶解又は分散した有機溶媒を、集電体上に塗布し、乾燥させることにより作製することができる。
 有機溶媒としては、上記したものを使用することができ、樹脂組成物の溶解性又は分散性という観点からは、N-メチル-2-ピロリドン、N,N’-ジメチルイミダゾリジノン及びγ-ブチロラクトンが好ましい。
 塗布方法は、特に限定されず、例えば、ダイコーター法、3本ロール式転写コーター法、ドクターブレード法、ディップ法、ダイレクトロール法及びグラビア法等が挙げられる。
The negative electrode for a lithium ion secondary battery of the present invention can be produced by applying an organic solvent in which the above resin composition is dissolved or dispersed on a current collector and drying it.
As the organic solvent, those described above can be used, and from the viewpoint of solubility or dispersibility of the resin composition, N-methyl-2-pyrrolidone, N, N'-dimethylimidazolidinone and γ-butyrolactone Is preferable.
The coating method is not particularly limited, and examples thereof include a die coater method, a three-roll transfer coater method, a doctor blade method, a dip method, a direct roll method, and a gravure method.
(リチウムイオン二次電池)
 本発明のリチウムイオン二次電池は、上記負極と、正極とを備えることを特徴とする。また、一実施形態において、本発明のリチウムイオン二次電池は、負極と正極との間に配置されたセパレータを備える。
 以下、リチウムイオン二次電池が備える各構成について説明するが、負極については上記したため、ここでは記載を省略する。
(Lithium-ion secondary battery)
The lithium ion secondary battery of the present invention is characterized by including the above-mentioned negative electrode and a positive electrode. Further, in one embodiment, the lithium ion secondary battery of the present invention includes a separator arranged between the negative electrode and the positive electrode.
Hereinafter, each configuration of the lithium ion secondary battery will be described, but since the negative electrode has been described above, the description thereof will be omitted here.
 正極としては、従来よりリチウムイオン二次電池の正極に使用されているものを適宜使用することができる。
 該正極は、リチウムイオン二次電池正極作製用樹脂組成物を、集電体上に塗布、乾燥することにより作製することができる。
As the positive electrode, those conventionally used for the positive electrode of the lithium ion secondary battery can be appropriately used.
The positive electrode can be produced by applying a resin composition for producing a positive electrode of a lithium ion secondary battery on a current collector and drying it.
 リチウムイオン二次電池正極作製用樹脂組成物は、正極活物質及びバインダー樹脂を含むことができる。また、リチウムイオン二次電池正極作製用樹脂組成物は、上記導電剤及び添加剤を含んでいてもよい。 The resin composition for producing a positive electrode of a lithium ion secondary battery can include a positive electrode active material and a binder resin. Further, the resin composition for producing a positive electrode of a lithium ion secondary battery may contain the above-mentioned conductive agent and additive.
 正極活物質としては、例えば、コバルト酸リチウム、ニッケル酸リチウム、マンガン酸リチウム及びリン酸鉄リチウム等が挙げられる。
 バインダー樹脂としては、上記したポリイミド化合物を使用してもよく、ポリテトラフルオロエチレン、ポリフッ化ビニリデン、ポリプロピレン、ポリエチレン等を使用してもよい。
Examples of the positive electrode active material include lithium cobalt oxide, lithium nickel oxide, lithium manganate, lithium iron phosphate and the like.
As the binder resin, the above-mentioned polyimide compound may be used, or polytetrafluoroethylene, polyvinylidene fluoride, polypropylene, polyethylene or the like may be used.
 また、上記したものに限定されず、正極として、リチウム箔等を使用することができる。 Further, the present invention is not limited to the above, and a lithium foil or the like can be used as the positive electrode.
 セパレータは、従来公知のものを使用することができ、例えば、紙製セパレータ、ポリエチレン及びポリプロピレン等の樹脂製セパレータ、並びにガラス繊維製セパレータ等を挙げることができる。 As the separator, conventionally known ones can be used, and examples thereof include a paper separator, a resin separator such as polyethylene and polypropylene, and a glass fiber separator.
 上記正極及び負極は、電池容器内に配置され、該容器には、電解質が溶解した有機溶媒(電界液)が充填されている。電解質は、特に限定されるものではなく、例えば、LiPF、LiClO、LiBF、LiClF、LiAsF、LiSbF、LiAlO、LiAlCl、CFSOLi、LiN(CFSO、LiCl及びLiI等が挙げられる。
 これらの中でも、高い解離度を有するため、LiPF、LiClO及びCFSOLiが好ましい。
 有機溶媒も特に限定されるものではなく、例えば、カーボネート化合物、ラクトン化合物、エーテル化合物、スルホラン化合物、ジオキソラン化合物、ケトン化合物、ニトリル化合物、ハロゲン化炭化水素化合物等を挙げることができる。
 具体的には、ジメチルカーボネート、メチルエチルカーボネート、ジエチルカーボネート、エチレンカーボネート、プロピレンカーボネート、エチレングリコールジメチルカーボネート、プロピレングリコールジメチルカーボネート、エチレングリコールジエチルカーボネート、ビニレンカーボネート等のカーボネート類、γ-ブチルラクトン等のラクトン類、ジメトキシエタン、テトラヒドロフラン、2-メチルテトラヒドロフラン、テトラヒドロピラン、1,4-ジオキサンなどのエーテル類、スルホラン、3-メチルスルホラン等のスルホラン類、1,3-ジオキソラン等のジオキソラン類、4-メチル-2-ペンタノン等のケトン類、アセトニトリル、ピロピオニトリル、バレロニトリル、ベンソニトリル等のニトリル類、1,2-ジクロロエタン等のハロゲン化炭化水素類、その他のメチルフォルメート、ジメチルホルムアミド、ジエチルホルムアミド、ジメチルスルホキシド、イミダゾリウム塩、4級アンモニウム塩などのイオン性液体等を挙げることができる。さらに、これらの混合物であってもよい。
 これらの中でも、負極に使用したポリイミド化合物の溶解性が低く、該ポリイミドの膨潤を抑えることができるため、カーボネート化合物が好ましい。
The positive electrode and the negative electrode are arranged in a battery container, and the container is filled with an organic solvent (electric field solution) in which an electrolyte is dissolved. The electrolyte is not particularly limited, for example, LiPF 6, LiClO 4, LiBF 4, LiClF 4, LiAsF 6, LiSbF 6, LiAlO 4, LiAlCl 4, CF 3 SO 3 Li, LiN (CF 3 SO 2) 3 , LiCl, LiI and the like can be mentioned.
Among these, LiPF 6 , LiClO 4 and CF 3 SO 3 Li are preferable because they have a high degree of dissociation.
The organic solvent is also not particularly limited, and examples thereof include carbonate compounds, lactone compounds, ether compounds, sulfolane compounds, dioxolane compounds, ketone compounds, nitrile compounds, and halogenated hydrocarbon compounds.
Specifically, carbonates such as dimethyl carbonate, methyl ethyl carbonate, diethyl carbonate, ethylene carbonate, propylene carbonate, ethylene glycol dimethyl carbonate, propylene glycol dimethyl carbonate, ethylene glycol diethyl carbonate and vinylene carbonate, and lactones such as γ-butyl lactone. , Dimethoxyethane, tetrahydrofuran, 2-methyl tetrahydrofuran, tetrahydropyran, ethers such as 1,4-dioxane, sulfolanes, sulfolanes such as 3-methylsulfolane, dioxolanes such as 1,3-dioxolane, 4-methyl- Ketones such as 2-pentanone, nitriles such as acetonitrile, pyropionitrile, valeronitrile, benzonitrile, halogenated hydrocarbons such as 1,2-dichloroethane, other methylformates, dimethylformamide, diethylformamide, dimethylsulfoxide. , Imidazolium salt, quaternary ammonium salt and other ionic liquids and the like. Further, it may be a mixture of these.
Among these, the carbonate compound is preferable because the solubility of the polyimide compound used for the negative electrode is low and the swelling of the polyimide can be suppressed.
 リチウムイオン二次電池の形態は、特に限定されるものではなく、ペーパー型、ボタン型、コインセル型、積層型、円筒型及び角形等、その用途に応じ適宜変更することができる。 The form of the lithium ion secondary battery is not particularly limited, and can be appropriately changed depending on the application, such as paper type, button type, coin cell type, laminated type, cylindrical type and square type.
(実施例1)
溶媒可溶性ポリイミド化合物Aの合成
 窒素導入管、撹拌装置を備えた500mlセパラブルフラスコに、下記化学式で表されるジアミン化合物(BAPS)43.25g(100ミリモル)、下記化学式で表されるジアミン化合物(MBAA)28.63g(100ミリモル)、下記化学式で表される酸無水物(BPDA)58.84g(200ミリモル)、N-メチル-2-ピロリドン700g、ピリジン3.2g(40ミリモル)及びトルエン70gを投入し、窒素雰囲気下、180℃で、途中トルエンを系外にのぞきながら8時間反応させることにより、15重量%のポリイミド溶液を得た。
Figure JPOXMLDOC01-appb-C000014
Figure JPOXMLDOC01-appb-C000015
Figure JPOXMLDOC01-appb-C000016
(Example 1)
43.25 g (100 mmol) of the diamine compound (BAPS) represented by the following chemical formula and the diamine compound represented by the following chemical formula (100 mmol) in a 500 ml separable flask equipped with a synthetic nitrogen introduction tube for the solvent-soluble polyimide compound A and a stirrer. MBAA) 28.63 g (100 mmol), acid anhydride (BPDA) 58.84 g (200 mmol) represented by the following chemical formula, N-methyl-2-pyrrolidone 700 g, pyridine 3.2 g (40 mmol) and toluene 70 g. Was charged and reacted at 180 ° C. under a nitrogen atmosphere for 8 hours while looking out of the system on the way to obtain a 15 wt% polyimide solution.
Figure JPOXMLDOC01-appb-C000014
Figure JPOXMLDOC01-appb-C000015
Figure JPOXMLDOC01-appb-C000016
(実施例2)
溶媒可溶性ポリイミド化合物Bの合成
 実施例1と同様の装置を用い、BAPS43.25g(100ミリモル)、MBAA28.63g(100ミリモル)、下記化学式で表されるジアミン化合物(PHBAAB)15.22g(50ミリモル)、BPDA44.13g(150ミリモル)、下記化学式で表される酸無水物(ODPA)31.02g(100ミリモル)、N-メチル-2-ピロリドン868g、ピリジン4.0g(50ミリモル)及びトルエン87gを投入し、窒素雰囲気下、180℃で、途中トルエンを系外にのぞきながら9時間反応させることにより、15重量%のポリイミド溶液を得た。
Figure JPOXMLDOC01-appb-C000017
Figure JPOXMLDOC01-appb-C000018
(Example 2)
Synthesis of Solvent-Soluble Polyimide Compound B Using the same equipment as in Example 1, BAPS 43.25 g (100 mmol), MBAA 28.63 g (100 mmol), and diamine compound (PHBAAB) 15.22 g (50 mmol) represented by the following chemical formula. ), BPDA 44.13 g (150 mmol), acid anhydride (ODPA) 31.02 g (100 mmol) represented by the following chemical formula, N-methyl-2-pyrrolidone 868 g, pyridine 4.0 g (50 mmol) and toluene 87 g. Was charged and reacted at 180 ° C. under a nitrogen atmosphere for 9 hours while looking out of the system on the way to obtain a 15 wt% polyimide solution.
Figure JPOXMLDOC01-appb-C000017
Figure JPOXMLDOC01-appb-C000018
(実施例3)
溶媒可溶性ポリイミド化合物Cの合成
 実施例1と同様の装置を用い、MBAA28.63g(100ミリモル)、PHBAAB15.22g(50ミリモル)、下記化学式で表されるジアミン化合物(TPE-R)29.23g(100ミリモル)、ODPA31.02g(100ミリモル)、下記化学式で表される酸無水物(BTA)37.23g(150ミリモル)、N-メチル-2-ピロリドン750g、ピリジン4.0g(50ミリモル)及びトルエン75gを投入し、窒素雰囲気下、180℃で、途中トルエンを系外にのぞきながら10時間反応させることにより、15重量%のポリイミド溶液を得た。
Figure JPOXMLDOC01-appb-C000019
Figure JPOXMLDOC01-appb-C000020
(Example 3)
Synthesis of Solvent-Soluble Polyimide Compound C Using the same equipment as in Example 1, 28.63 g (100 mmol) of MBAA, 15.22 g (50 mmol) of PHBAAB, and 29.23 g of diamine compound (TPE-R) represented by the following chemical formula (TPE-R). 100 mmol), 31.02 g (100 mmol) of ODPA, 37.23 g (150 mmol) of acid anhydride (BTA) represented by the following chemical formula, 750 g of N-methyl-2-pyrrolidone, 4.0 g (50 mmol) of pyridine and 75 g of toluene was added, and the mixture was reacted at 180 ° C. under a nitrogen atmosphere for 10 hours while looking out of the system on the way to obtain a 15 wt% polyimide solution.
Figure JPOXMLDOC01-appb-C000019
Figure JPOXMLDOC01-appb-C000020
(実施例4)
溶媒可溶性ポリイミド化合物Dの合成
 実施例1と同様の装置を用い、MBAA28.63g(100ミリモル)、下記化学式で表される酸無水物(CpODA)38.44g(100ミリモル)、N-メチル-2-ピロリドン360g、ピリジン1.6g(20ミリモル)及びトルエン36gを投入し、窒素雰囲気下、180℃で、途中トルエンを系外にのぞきながら12時間反応させることにより、15重量%のポリイミド溶液を得た。
Figure JPOXMLDOC01-appb-C000021
(Example 4)
Synthesis of Solvent-Soluble Polyimide Compound D Using the same equipment as in Example 1, 28.63 g (100 mmol) of MBAA, 38.44 g (100 mmol) of acid anhydride (CpODA) represented by the following chemical formula, N-methyl-2. -360 g of pyrrolidone, 1.6 g (20 mmol) of pyridine and 36 g of toluene were added, and the reaction was carried out at 180 ° C. under a nitrogen atmosphere for 12 hours while removing toluene from the system to obtain a 15 wt% polyimide solution. It was.
Figure JPOXMLDOC01-appb-C000021
(比較例1)
溶媒可溶性ポリイミド化合物aの合成
 実施例1と同様の装置を用い、BAPS43.25g(100ミリモル)、CpODA38.44g(100ミリモル)、N-メチル-2-ピロリドン442g、ピリジン1.6g(20ミリモル)及びトルエン44gを投入し、窒素雰囲気下、180℃で、途中トルエンを系外にのぞきながら12時間反応させることにより、15重量%のポリイミド溶液を得た。
(Comparative Example 1)
Synthesis of Solvent-Soluble Polyimide Compound a Using the same equipment as in Example 1, BAPS 43.25 g (100 mmol), CpODA 38.44 g (100 mmol), N-methyl-2-pyrrolidone 442 g, pyridine 1.6 g (20 mmol). And 44 g of toluene was added, and the mixture was reacted at 180 ° C. under a nitrogen atmosphere for 12 hours while looking out of the system on the way to obtain a 15 wt% polyimide solution.
(比較例2)
溶媒可溶性ポリイミド化合物bの合成
 実施例1と同様の装置を用い、下記化学式で表されるDABz15.22g(100ミリモル)、CpODA38.44g(100ミリモル)、N-メチル-2-ピロリドン284g、ピリジン1.6g(20ミリモル)及びトルエン28gを投入し、窒素雰囲気下、180℃で、途中トルエンを系外にのぞきながら10時間反応させることにより、15重量%のポリイミド溶液を得た。
Figure JPOXMLDOC01-appb-C000022
(Comparative Example 2)
Synthesis of solvent-soluble polyimide compound b Using the same equipment as in Example 1, DABz 15.22 g (100 mmol), CpODA 38.44 g (100 mmol), N-methyl-2-pyrrolidone 284 g, pyridine 1 represented by the following chemical formulas. .6 g (20 mmol) and 28 g of toluene were added and reacted at 180 ° C. under a nitrogen atmosphere for 10 hours while looking out of the system on the way to obtain a 15 wt% polyimide solution.
Figure JPOXMLDOC01-appb-C000022
<<弾性率測定>>
 上記実施例及び比較例において得られた溶液を、スピンコート法にて10cm角のガラス板上に塗布し、100℃で0.5時間、200℃で0.5時間、250℃で1時間乾燥した。その後、ガラス板から剥離しカットすることにより、縦80mm×横10mm×厚さ15μmの試験片を得た。
 この試験片の弾性率を引張試験機(島津製作所社製、商品名:AG-Xplus 50kN)を用いて、引張速度10mm/分にてMD方向及びTD方向の弾性率を測定した。MD方向の弾性率及びTD方向の弾性率の平均値を算出し、測定結果を表1にまとめた。
<< Measurement of elastic modulus >>
The solutions obtained in the above Examples and Comparative Examples were applied onto a 10 cm square glass plate by a spin coating method, and dried at 100 ° C. for 0.5 hours, 200 ° C. for 0.5 hours, and 250 ° C. for 1 hour. did. Then, it was peeled off from the glass plate and cut to obtain a test piece having a length of 80 mm, a width of 10 mm, and a thickness of 15 μm.
The elastic modulus of this test piece was measured in the MD direction and the TD direction at a tensile speed of 10 mm / min using a tensile tester (manufactured by Shimadzu Corporation, trade name: AG-Xplus 50 kN). The average values of the elastic modulus in the MD direction and the elastic modulus in the TD direction were calculated, and the measurement results are summarized in Table 1.
<<引張強度測定>>
 弾性率の測定時と同様の方法でサンプルを作製し、この試験片の引張強度を引張試験機(島津製作所社製、商品名:AG-Xplus 50kN)を用いて、引張速度10mm/分にてMD方向及びTD方向の引張強度を測定した。MD方向の弾性率及びTD方向の引張強度の平均値を算出し、測定結果を表1にまとめた。
<< Tensile strength measurement >>
A sample was prepared by the same method as when measuring the elastic modulus, and the tensile strength of this test piece was measured using a tensile tester (manufactured by Shimadzu Corporation, trade name: AG-Xplus 50 kN) at a tensile speed of 10 mm / min. The tensile strength in the MD direction and the TD direction was measured. The average values of elastic modulus in the MD direction and tensile strength in the TD direction were calculated, and the measurement results are summarized in Table 1.
<<初回充放電効率>>
 上記実施例1において得られた溶媒可溶性ポリイミド化合物Aと、負極活物質として一酸化ケイ素(SiO)及び黒鉛と、導電剤としてアセチレンブラック(デンカ(株)製、Li-400)及び炭素繊維(昭和電工(株)製、VGCF-H)と、を以下の組成にて混合し、リチウムイオン二次電池負極作製用樹脂組成物を調整した。溶媒可溶性ポリイミド化合物Aを、その他の実施例及び比較例において得られた溶媒可溶性ポリイミド化合物に変更した以外は、同様にして、リチウムイオン二次電池負極作製用樹脂組成物を調整した。
(リチウムイオン二次電池負極作製用樹脂組成物の組成)
・溶媒可溶性ポリイミド化合物A                   6質量%
・一酸化ケイ素                          18質量%
・黒鉛                              72質量%
・アセチレンブラック                        3質量%
・炭素繊維                             1質量%
<< Initial charge / discharge efficiency >>
The solvent-soluble polyimide compound A obtained in Example 1 above, silicon monoxide (SiO) and graphite as negative electrode active materials, acetylene black (manufactured by Denka Co., Ltd., Li-400) and carbon fiber (Showa Denko) as conductive agents. VGCF-H manufactured by Denko KK) was mixed with the following composition to prepare a resin composition for producing a negative electrode of a lithium ion secondary battery. A resin composition for producing a negative electrode of a lithium ion secondary battery was prepared in the same manner except that the solvent-soluble polyimide compound A was changed to the solvent-soluble polyimide compound obtained in the other Examples and Comparative Examples.
(Composition of Resin Composition for Fabricing Negative Electrode of Lithium Ion Secondary Battery)
-Solvent-soluble polyimide compound A 6% by mass
・ Silicon monoxide 18% by mass
・ Graphite 72% by mass
・ Acetylene black 3% by mass
・ Carbon fiber 1% by mass
 負極用集電体として、厚さ10μmの電解銅箔を準備し、この表面に、上記のようにして作製したリチウムイオン二次電池負極作製用樹脂組成物を塗布、乾燥し、厚さ50μmの負極活性物質層を形成し、負極を得た。 An electrolytic copper foil having a thickness of 10 μm was prepared as a current collector for the negative electrode, and a resin composition for producing a negative electrode of a lithium ion secondary battery prepared as described above was applied to the surface of the electrolytic copper foil, and dried to obtain a thickness of 50 μm. A negative electrode active material layer was formed to obtain a negative electrode.
 正極としてリチウム箔、電解液としてエチレンカーボネート及びエチルメチルカーボネート、ポリオレフィン製単層セパレータ(セルガード(株)製、セルガード(登録商標)2500)を準備し、コインセル型のリチウムイオン二次電池を作製した。 A lithium foil as a positive electrode, ethylene carbonate and ethyl methyl carbonate as an electrolytic solution, and a polyolefin single-layer separator (Celguard Co., Ltd., Celguard (registered trademark) 2500) were prepared to prepare a coin-cell type lithium ion secondary battery.
[電池性能の評価]
 上記のようにして作製したリチウムイオン二次電池を25℃の環境下で、24時間静置した。その後、リチウムイオン二次電池の性能試験を25℃の環境下において行った。試験方法は下記の通りであり、その試験結果は表2にまとめた。
[Evaluation of battery performance]
The lithium ion secondary battery prepared as described above was allowed to stand for 24 hours in an environment of 25 ° C. Then, the performance test of the lithium ion secondary battery was carried out in an environment of 25 ° C. The test method is as follows, and the test results are summarized in Table 2.
<<初回充放電効率評価>>
 初回充放電効率は以下の方法で測定した。
 0.1C相当の電流密度で5mVまでCC(定電流)充電を行い、続いて5mVでCV(定電圧)充電に切り替え、0.01C相当の電流密度になるまで充電したのち、0.1C相当の電流密度で1.2VまでCC放電するサイクルを25℃で2サイクル行い、このときの1サイクル目の0.1C相当の充電容量Aに対する1サイクル目の0.1C放電容量Bの比を初回充放電効率として、初回充放電効率(%)=(B/A)×100の式に基づいて算出し、その結果を表2にまとめた。
<< Initial charge / discharge efficiency evaluation >>
The initial charge / discharge efficiency was measured by the following method.
CC (constant current) charging up to 5 mV with a current density equivalent to 0.1 C, then switch to CV (constant voltage) charging at 5 mV, charge until the current density is equivalent to 0.01 C, and then equivalent to 0.1 C. Two cycles of CC discharge to 1.2 V at the current density of 1 are performed at 25 ° C., and the ratio of 0.1C discharge capacity B in the first cycle to the charge capacity A equivalent to 0.1C in the first cycle at this time is the first time. The charge / discharge efficiency was calculated based on the formula of initial charge / discharge efficiency (%) = (B / A) × 100, and the results are summarized in Table 2.
<<サイクル特性評価>>
 サイクル特性は以下の方法で測定した。初回充放電効率の測定の2サイクル後、0.2C相当の電流密度で5mVまでCC(定電流)充電を行い、続いて5mVでCV(定電圧)充電に切り替え、0.02C相当の電流密度になるまで充電したのち、0.2C相当の電流密度で1.2VまでCC放電するサイクルを25℃で3サイクル行い、続いて、0.5C相当の電流密度で5mVまでCC(定電流)充電を行い、続いて5mVでCV(定電圧)充電に切り替え、0.05CC相当の電流密度になるまで充電したのち、0.5C相当の電流密度で1.2VまでCC放電するサイクルを25℃で30サイクル行い、このときの30サイクル目の0.5C相当の放電容量をCとした。サイクル特性は、ΔC(%)=(C/B)×100の式に基づいて算出し、その結果を表2にまとめた。
<< Cycle characterization >>
The cycle characteristics were measured by the following method. After two cycles of initial charge / discharge efficiency measurement, CC (constant current) charging is performed up to 5 mV with a current density equivalent to 0.2 C, then switching to CV (constant voltage) charging at 5 mV, and a current density equivalent to 0.02 C. After charging until it becomes, CC discharge to 1.2V with a current density equivalent to 0.2C is performed for 3 cycles at 25 ° C., and then CC (constant current) charging is performed to 5mV with a current density equivalent to 0.5C. Then, switch to CV (constant voltage) charging at 5 mV, charge until the current density is equivalent to 0.05 CC, and then CC discharge to 1.2 V at a current density equivalent to 0.5 C at 25 ° C. 30 cycles were performed, and the discharge capacity equivalent to 0.5C at the 30th cycle at this time was defined as C. The cycle characteristics were calculated based on the formula ΔC (%) = (C / B) × 100, and the results are summarized in Table 2.
Figure JPOXMLDOC01-appb-T000023
Figure JPOXMLDOC01-appb-T000023
Figure JPOXMLDOC01-appb-T000024
Figure JPOXMLDOC01-appb-T000024

Claims (10)

  1.  リチウムイオン二次電池の電極材料として使用される、溶媒可溶性ポリイミドであって、
     カルボキシル基含有ジアミンと、酸無水物との反応物であり、
     弾性率が、3.4GPa以上であることを特徴とする、溶媒可溶性ポリイミド化合物。
    A solvent-soluble polyimide used as an electrode material for lithium-ion secondary batteries.
    It is a reaction product of a carboxyl group-containing diamine and an acid anhydride.
    A solvent-soluble polyimide compound having an elastic modulus of 3.4 GPa or more.
  2.  前記カルボキシル基含有ジアミン化合物が、下記一般式(1)又は(2)で表される、請求項1に記載の溶媒可溶性ポリイミド化合物。
    Figure JPOXMLDOC01-appb-C000001
    (一般式(1)及び(2)中、Rは、単結合又は(CHで表され、pは1~6の整数であり、n及びoは、それぞれ、1~5の整数である。)
    The solvent-soluble polyimide compound according to claim 1, wherein the carboxyl group-containing diamine compound is represented by the following general formula (1) or (2).
    Figure JPOXMLDOC01-appb-C000001
    (In the general formulas (1) and (2), R 1 is represented by a single bond or (CH 2 ) p , p is an integer of 1 to 6, and n and o are integers of 1 to 5, respectively. Is.)
  3.  重合成分として、芳香族ジアミン化合物を含む、請求項1又は2に記載の溶媒可溶性ポリイミド化合物。 The solvent-soluble polyimide compound according to claim 1 or 2, which contains an aromatic diamine compound as a polymerization component.
  4.  前記芳香族ジアミン化合物として、下記一般式(3)で表されるジアミン化合物を含む、請求項1~3のいずれか一項に記載の溶媒可溶性ポリイミド化合物。
    Figure JPOXMLDOC01-appb-C000002
    (一般式(3)中、R~Rは、それぞれ独立して、水素、フッ素、置換又は無置換のアルキル基及び置換又は無置換の芳香族基からなる群より選択され、R~Rの少なくとも1つが、芳香族基である。)
    The solvent-soluble polyimide compound according to any one of claims 1 to 3, which contains the diamine compound represented by the following general formula (3) as the aromatic diamine compound.
    Figure JPOXMLDOC01-appb-C000002
    (Formula (3) in, R 2 ~ R 9 are each independently hydrogen, fluorine, selected from the group consisting of substituted or unsubstituted alkyl group and a substituted or unsubstituted aromatic group, R 2 ~ At least one of R 9 is an aromatic group.)
  5.  (a)カルボキシル基含有ジアミン化合物と、(b)芳香族ジアミン化合物と、(c)芳香族酸無水物との反応物である、請求項1~4のいずれか一項に記載の溶媒可溶性ポリイミド化合物。 The solvent-soluble polyimide according to any one of claims 1 to 4, which is a reaction product of (a) a carboxyl group-containing diamine compound, (b) an aromatic diamine compound, and (c) an aromatic acid anhydride. Compound.
  6.  前記(c)芳香族酸無水物が、下記一般式(4)で表される、請求項5に記載の溶媒可溶性ポリイミド化合物。
    Figure JPOXMLDOC01-appb-C000003
    (一般式(4)中、Xは、単結合、炭素数1~6のアルキル基、(CFC、SO及び酸素原子から選択される。)
    The solvent-soluble polyimide compound according to claim 5, wherein the aromatic acid anhydride (c) is represented by the following general formula (4).
    Figure JPOXMLDOC01-appb-C000003
    (In the general formula (4), X is selected from a single bond, an alkyl group having 1 to 6 carbon atoms, (CF 3 ) 2 C, SO 2 and an oxygen atom.)
  7.  (d)カルボキシル基含有ジアミン化合物と、(e)脂環式酸無水物との反応物である、請求項1~4のいずれか一項に記載の溶媒可溶性ポリイミド化合物。 The solvent-soluble polyimide compound according to any one of claims 1 to 4, which is a reaction product of (d) a carboxyl group-containing diamine compound and (e) an alicyclic acid anhydride.
  8.  請求項1~7のいずれか一項に記載の溶媒可溶性ポリイミド化合物と、負極活物質とを含むことを特徴とする、リチウムイオン二次電池負極作製用樹脂組成物。 A resin composition for producing a negative electrode of a lithium ion secondary battery, which comprises the solvent-soluble polyimide compound according to any one of claims 1 to 7 and a negative electrode active material.
  9.  負極集電体と、前記負極集電体上に形成された負極活性物質層と、を備え、
     前記負極活性物質層が、請求項8に記載のリチウムイオン二次電池負極作製用樹脂組成物により構成されることを特徴とする、リチウムイオン二次電池用負極。
    A negative electrode current collector and a negative electrode active material layer formed on the negative electrode current collector are provided.
    A negative electrode for a lithium ion secondary battery, wherein the negative electrode active material layer is composed of the resin composition for producing a negative electrode for a lithium ion secondary battery according to claim 8.
  10.  請求項9に記載のリチウムイオン二次電池用負極と、正極とを備えることを特徴とする、リチウムイオン二次電池。 A lithium ion secondary battery comprising the negative electrode for a lithium ion secondary battery according to claim 9 and a positive electrode.
PCT/JP2019/036819 2019-09-19 2019-09-19 Solvent-soluble polyimide compound, lithium-ion secondary battery negative electrode producing resin composition including said solvent-soluble polyimide compound, lithium-ion secondary battery negative electrode configured using said lithium-ion secondary battery negative electrode producing resin composition, and lithium-ion secondary battery provided with said lithium-ion secondary battery negative electrode WO2021053800A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2021546143A JPWO2021053800A1 (en) 2019-09-19 2019-09-19
PCT/JP2019/036819 WO2021053800A1 (en) 2019-09-19 2019-09-19 Solvent-soluble polyimide compound, lithium-ion secondary battery negative electrode producing resin composition including said solvent-soluble polyimide compound, lithium-ion secondary battery negative electrode configured using said lithium-ion secondary battery negative electrode producing resin composition, and lithium-ion secondary battery provided with said lithium-ion secondary battery negative electrode

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2019/036819 WO2021053800A1 (en) 2019-09-19 2019-09-19 Solvent-soluble polyimide compound, lithium-ion secondary battery negative electrode producing resin composition including said solvent-soluble polyimide compound, lithium-ion secondary battery negative electrode configured using said lithium-ion secondary battery negative electrode producing resin composition, and lithium-ion secondary battery provided with said lithium-ion secondary battery negative electrode

Publications (1)

Publication Number Publication Date
WO2021053800A1 true WO2021053800A1 (en) 2021-03-25

Family

ID=74884467

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/036819 WO2021053800A1 (en) 2019-09-19 2019-09-19 Solvent-soluble polyimide compound, lithium-ion secondary battery negative electrode producing resin composition including said solvent-soluble polyimide compound, lithium-ion secondary battery negative electrode configured using said lithium-ion secondary battery negative electrode producing resin composition, and lithium-ion secondary battery provided with said lithium-ion secondary battery negative electrode

Country Status (2)

Country Link
JP (1) JPWO2021053800A1 (en)
WO (1) WO2021053800A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022202701A1 (en) * 2021-03-22 2022-09-29 ウィンゴーテクノロジー株式会社 Polyimide compound, negative electrode material for lithium ion secondary batteries that uses said polyimide compound, negative electrode for lithium ion secondary batteries, and lithium ion secondary battery
WO2023080059A1 (en) * 2021-11-04 2023-05-11 第一工業製薬株式会社 Dispersion of carbon nanotubes, coating liquid composition for electrode using same, electrode, and lithium ion secondary battery
WO2023140276A1 (en) * 2022-01-21 2023-07-27 Ube株式会社 Polyimide binder precursor composition, and power storage device using same

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007149604A (en) * 2005-11-30 2007-06-14 Sanyo Electric Co Ltd Negative electrode for lithium secondary battery and lithium secondary battery
JP2010205609A (en) * 2009-03-04 2010-09-16 Nissan Motor Co Ltd Electrode and battery using this
JP2011048969A (en) * 2009-08-26 2011-03-10 Toyobo Co Ltd Negative electrode for lithium ion secondary battery and secondary battery using the same
WO2015159966A1 (en) * 2014-04-18 2015-10-22 宇部興産株式会社 Method for producing electrode
WO2018105338A1 (en) * 2016-12-08 2018-06-14 東レ株式会社 Binder composition for electricity storage elements, slurry composition for electricity storage elements, electrode, method for producing electrode, secondary battery and electric double layer capacitor
JP2018118947A (en) * 2017-01-27 2018-08-02 ウィンゴーテクノロジー株式会社 Diamine compound, and polyimide compound and molded article based on the same
JP2019059959A (en) * 2018-08-03 2019-04-18 Jxtgエネルギー株式会社 Tetracarboxylic acid dianhydride, polyimide precursor resin, polyimide, polyimide precursor resin solution, polyimide solution and polyimide film

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007149604A (en) * 2005-11-30 2007-06-14 Sanyo Electric Co Ltd Negative electrode for lithium secondary battery and lithium secondary battery
JP2010205609A (en) * 2009-03-04 2010-09-16 Nissan Motor Co Ltd Electrode and battery using this
JP2011048969A (en) * 2009-08-26 2011-03-10 Toyobo Co Ltd Negative electrode for lithium ion secondary battery and secondary battery using the same
WO2015159966A1 (en) * 2014-04-18 2015-10-22 宇部興産株式会社 Method for producing electrode
WO2018105338A1 (en) * 2016-12-08 2018-06-14 東レ株式会社 Binder composition for electricity storage elements, slurry composition for electricity storage elements, electrode, method for producing electrode, secondary battery and electric double layer capacitor
JP2018118947A (en) * 2017-01-27 2018-08-02 ウィンゴーテクノロジー株式会社 Diamine compound, and polyimide compound and molded article based on the same
JP2019059959A (en) * 2018-08-03 2019-04-18 Jxtgエネルギー株式会社 Tetracarboxylic acid dianhydride, polyimide precursor resin, polyimide, polyimide precursor resin solution, polyimide solution and polyimide film

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022202701A1 (en) * 2021-03-22 2022-09-29 ウィンゴーテクノロジー株式会社 Polyimide compound, negative electrode material for lithium ion secondary batteries that uses said polyimide compound, negative electrode for lithium ion secondary batteries, and lithium ion secondary battery
WO2023080059A1 (en) * 2021-11-04 2023-05-11 第一工業製薬株式会社 Dispersion of carbon nanotubes, coating liquid composition for electrode using same, electrode, and lithium ion secondary battery
WO2023140276A1 (en) * 2022-01-21 2023-07-27 Ube株式会社 Polyimide binder precursor composition, and power storage device using same

Also Published As

Publication number Publication date
JPWO2021053800A1 (en) 2021-03-25

Similar Documents

Publication Publication Date Title
KR101355288B1 (en) Binder composition for electrically storage device electrode
WO2021053800A1 (en) Solvent-soluble polyimide compound, lithium-ion secondary battery negative electrode producing resin composition including said solvent-soluble polyimide compound, lithium-ion secondary battery negative electrode configured using said lithium-ion secondary battery negative electrode producing resin composition, and lithium-ion secondary battery provided with said lithium-ion secondary battery negative electrode
TWI634694B (en) Manufacturing method of electrode
JP5891626B2 (en) Binder resin composition for electrode, electrode mixture paste, and electrode
WO2012008543A1 (en) Aqueous polyimide precursor solution composition and method for producing aqueous polyimide precursor solution composition
CN101611076B (en) Binder resin for electrode of lithium ion secondary battery, composition and paste containing the resin, and electrode of lithium ion secondary battery using the resin
KR101796952B1 (en) Conductive agent for battery electrode, electrode containing the same, and battery
TWI667839B (en) Negative electrode for secondary battery, method for producing the same, and lithium ion secondary battery having the same
JP2001068115A (en) Nonaqueous solvent binder composition, method of manufacturing electrode, electrode and nonaqueous solvent secondary battery
KR20180098289A (en) Resin composition
KR102511725B1 (en) Resin composition, laminate and manufacturing method thereof, electrode, secondary battery and electric double layer capacitor
JP6241213B2 (en) Binder resin composition for electrode, electrode mixture paste, and electrode
TW201343840A (en) Electrode mixture paste for lithium ion secondary battery, electrode and lithium ion secondary battery
JP2023113663A (en) electrode
JP7246182B2 (en) Secondary battery and porous separator for secondary battery
KR101141910B1 (en) An Electrode for an Electrochemical Capacitor, a Composition used for the Electrode, a Method of Manufacturing the Electrode, and an Electrochemical Capacitor using the Electrode
JP2019096401A (en) Binder for lithium ion secondary battery production, and lithium ion secondary battery using the same
JP2018163877A (en) Binder solution and coating liquid
KR20230160302A (en) Polyimide compounds and negative electrode materials for lithium-ion secondary batteries using the same, negative electrodes for lithium-ion secondary batteries and lithium-ion secondary batteries
TWI496816B (en) Polyimide precursor aqueous composition and method for preparing the same
WO2023080059A1 (en) Dispersion of carbon nanotubes, coating liquid composition for electrode using same, electrode, and lithium ion secondary battery
JP6860925B2 (en) Non-crosslinked polymaleimide, its manufacturing method, and binder solution for power storage devices
JP2022024668A (en) Electrode formation material, electrode mixture, energy device electrode, and energy device
CN116554828A (en) Water-soluble polyimide binder and preparation method and application thereof

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19945588

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2021546143

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19945588

Country of ref document: EP

Kind code of ref document: A1