WO2021053248A1 - Procedimiento y sistema para desinfectar con una solución oxidante y la solución oxidante utilizada - Google Patents

Procedimiento y sistema para desinfectar con una solución oxidante y la solución oxidante utilizada Download PDF

Info

Publication number
WO2021053248A1
WO2021053248A1 PCT/ES2019/070627 ES2019070627W WO2021053248A1 WO 2021053248 A1 WO2021053248 A1 WO 2021053248A1 ES 2019070627 W ES2019070627 W ES 2019070627W WO 2021053248 A1 WO2021053248 A1 WO 2021053248A1
Authority
WO
WIPO (PCT)
Prior art keywords
water
reactor
tank
brine
solution
Prior art date
Application number
PCT/ES2019/070627
Other languages
English (en)
French (fr)
Inventor
Amir Masoud SAMANI MAJD
Saeed SAMANI MAJD
Ehsan DADKHAH
Original Assignee
Baco Environmental Engineering & Technology, S.L.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Baco Environmental Engineering & Technology, S.L. filed Critical Baco Environmental Engineering & Technology, S.L.
Priority to EP19801393.0A priority Critical patent/EP4032862A1/en
Priority to PCT/ES2019/070627 priority patent/WO2021053248A1/es
Publication of WO2021053248A1 publication Critical patent/WO2021053248A1/es

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/46Treatment of water, waste water, or sewage by electrochemical methods
    • C02F1/461Treatment of water, waste water, or sewage by electrochemical methods by electrolysis
    • C02F1/467Treatment of water, waste water, or sewage by electrochemical methods by electrolysis by electrochemical disinfection; by electrooxydation or by electroreduction
    • C02F1/4672Treatment of water, waste water, or sewage by electrochemical methods by electrolysis by electrochemical disinfection; by electrooxydation or by electroreduction by electrooxydation
    • C02F1/4674Treatment of water, waste water, or sewage by electrochemical methods by electrolysis by electrochemical disinfection; by electrooxydation or by electroreduction by electrooxydation with halogen or compound of halogens, e.g. chlorine, bromine
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/46Treatment of water, waste water, or sewage by electrochemical methods
    • C02F1/461Treatment of water, waste water, or sewage by electrochemical methods by electrolysis
    • C02F1/46104Devices therefor; Their operating or servicing
    • C02F1/4618Devices therefor; Their operating or servicing for producing "ionised" acidic or basic water
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/66Treatment of water, waste water, or sewage by neutralisation; pH adjustment
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/72Treatment of water, waste water, or sewage by oxidation
    • C02F1/722Oxidation by peroxides
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/72Treatment of water, waste water, or sewage by oxidation
    • C02F1/78Treatment of water, waste water, or sewage by oxidation with ozone
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2201/00Apparatus for treatment of water, waste water or sewage
    • C02F2201/46Apparatus for electrochemical processes
    • C02F2201/461Electrolysis apparatus
    • C02F2201/46105Details relating to the electrolytic devices
    • C02F2201/4612Controlling or monitoring
    • C02F2201/46125Electrical variables
    • C02F2201/4613Inversing polarity
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2303/00Specific treatment goals
    • C02F2303/04Disinfection
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2303/00Specific treatment goals
    • C02F2303/20Prevention of biofouling

Definitions

  • the present invention relates to a process and a system for disinfecting with an oxidizing solution and the oxidant solution used.
  • the oxidant solution is useful for example to remove biofilm constituents and can be used in a wide variety of situations, such as swimming pools, hot springs sites, industrial plants and cooling towers, reverse osmosis membranes, municipal facilities and systems. of sanitary distribution.
  • Biofilms can form and sustain in an aqueous environment, including water distribution conduits, water storage reservoirs, open channels, and pyramids of pipes, depending on the surrounding situation. Biofilm is in effect a complex of different microorganisms and their wastes when they begin to excrete substances that are slimy or sticky and allow a layer of micro-crust to form adhering to surfaces.
  • a biofilm layer can consist of different types of bacteria, fungi, algae, protozoa, and even viruses, dead or alive. This combination within the biofilm layer makes it resistant to chlorine, one of the most common biocides, since it makes it an impenetrable layer for chlorine molecules. Consequently, it is difficult to affect microorganisms once an initial adhesion has taken place.
  • said layer of chlorine resistant microorganisms can be pathogenic and host microorganisms that cause diseases such as Legionella, Listeria, temperature resistant bacterial spores.
  • Patent document US9034812 describes a composition for the treating the formation and growth of a biofilm comprising at least one D-amino acid and at least one biocide comprising tetrakis hydroxymethyl phosphonium sulfate (THPS).
  • THPS presents certain problems, such as that THPS can easily degrade and that microorganisms have the ability to degrade and use the added biocide to grow.
  • the inventors have found a method for disinfecting with an oxidizing solution.
  • the oxidant solution is useful for water treatment and biofilm removal with good performance, profitability, accessibility, protection and safety, as well as respect for the environment.
  • a first aspect of the present invention refers to a process for disinfecting that comprises the steps of: a) mixing water and a brine solution in which the brine solution is comprised from 1% to 10% by weight; b) feeding a reactor comprising three to five electrochemical cells with the mixture obtained in step a); c) applying an electric current with a current density of 80mA / cm 2 to 120mA / cm 2 , to the reactor cells; d) dosing the oxidant solution in a volume ratio of 1: 500 to 1: 2000 ppm.
  • water solution refers to sodium chloride solutions and potassium chloride solutions.
  • the second aspect of the present invention relates to an on-site generation system comprising: a) a brine tank; b) a water tank; c) a mixed tank that is fed from the brine and water tanks; d) a reactor comprising three to five electrochemical cells fed by the mixed tank; and e) a chemical or dosing pump to pump the product obtained in the reactor.
  • On-site generation replaces numerous chemicals supplied for water treatment, including; Sodium hypochlorite by mass, chlorine dioxide, chlorine gas, iodine, hydrogen peroxide, calcium hypochlorite, ozone, bromine and other disinfection approaches, depending on the application and / or chemical composition of the water such as, for example, glutaraldehyde, compounds quaternary ammonium, isothialozine, copper and silver ion, ultraviolet light.
  • the third aspect of the invention is an oxidizing solution comprising: ozone, hydrogen peroxide, chlorine dioxide, chlorine gas, hypochlorite salt, hypochlorous acid and oxygen, in which the pH is 6.5 to 9.
  • FIG. 1 presents a preferred embodiment of the on-site generation system of the invention schematically.
  • the first aspect of the invention refers to a process for disinfecting that comprises the steps of: a) mixing water and a brine solution in which the brine solution is comprised from 1% to 10% in weight; b) feeding a reactor comprising three to five electrochemical cells with the mixture obtained in step a); c) applying an electric current with a current density of 80 mA / cm 2 to 120 mA / cm 2 to the reactor cells; d) dosing the oxidant solution in a volume ratio of 1: 500 to 1: 2000 ppm.
  • the water, prior to step a) passes through a delcalcifier and then the water is divided
  • one conduit is used to feed a tank filled with salt, to create a saturated brine, the other conduit acts as a dilution stream before step c).
  • the oxidant solution obtained in step c) is stored in an oxidant solution storage tank.
  • the concentration of the oxidants in the stored solution is 7000 to 8000 ppm.
  • the hydrogen gas produced in the reactor is removed from the reactor and / or from the oxidant solution storage tank.
  • step a there is a washing step of the reactor cell passing a reverse current.
  • the cells are arranged so that all the electrodes make contact with the water and the brine solution and the electric current flows through the cell. In turn, this current causes chemical reactions on the surfaces of both electrodes to produce the oxidizing solution over time.
  • calcium and magnesium crusts will accumulate on the cell electrodes, reducing their efficiency.
  • a manual acid wash procedure is used to remove these scabs.
  • the water temperature in step a) is 18 ° C and 48 ° C.
  • the water pressure in step a) is 25 and 100 psi.
  • step a) an acid selected from: hydrochloric acid, sulfuric acid or nitric acid is mixed with the water and the brine.
  • a soil nutrient is also mixed. Examples of such nutrients include N2 or S.
  • Said acid is added to reduce the adverse effects of cationic ions when the solution is used to disinfect irrigation water.
  • the brine is between 2% and 7%.
  • the second aspect of the present invention refers to an on-site generation system comprising: a) a brine tank (2); b) a water tank (3); c) a mixed tank (4) that is fed from the brine tank (2) and water
  • the on-site generation system comprises an oxidant solution storage tank (7).
  • FIG. 1 shows a preferred embodiment of the second aspect of the invention, the system of the invention consisting of: a water inlet (1) that feeds a brine tank (2) and a water tank (3);
  • the water tank (3) and the brine tank (2) feed the mixed tank (4) which, in turn, feeds the reactor (5) that comprises three to five electrochemical cells and presents an external electrical supply (6 );
  • the product obtained in the reactor (5) is transported to the oxidant solution storage tank (7), finally, the mixed oxidants are pumped through a metering pump (8).
  • the system works through a signal from the level switch / transmitter located downstream of the oxidant solution storage tank (7) guided by a Programmable Logic Controller (PLC) and some sensors. This means that minimal operator attention is required during normal operation.
  • PLC Programmable Logic Controller
  • the system is controlled through a control panel.
  • the dosing pump is selected from: venturi pump, centrifugal feed pump; chemical dosing pump.
  • the reactor (5) and the oxidant solution storage tank (7) include vents and / or air blowers for diluting the separated hydrogen.
  • the system has a sensor and a programmable logic controller.
  • the electrochemical cell comprises at least two electrodes.
  • the electrode is a titanium.
  • the electrode is a titanium with a titanium oxide coating.
  • the electrode is rectangular.
  • the size is 250 cm 2 to 350 cm 2 .
  • the third aspect of the invention is an oxidizing solution comprising: ozone, hydrogen peroxide, chlorine dioxide, chlorine gas, hypochlorite salt, hypochlorous acid and oxygen, in which the pH is 6.5 to 9.
  • the pH is 6.5 to 7.
  • the hypochlorite salt, the hypochlorite acid and the soluble chlorine gas comprise between 65% and 85%
  • the hydrogen peroxide comprises between 15% and 25%
  • the chlorine dioxide the ozone and oxygen comprise 2.5% to 7.5%.
  • the brine is CINa and the chemical reaction in the electrochemical cell is:
  • Oxidation reactions take place at the anode, where the chloride (Cl) ions of one electron are separated to each produce molecular chlorine. 2C
  • the molecular chlorine is then dissolved in water to produce hypochlorous acid (HOCI).
  • HOCI hypochlorous acid
  • Chlorine production is balanced through reduction reactions that take place at the cathode, in which water is converted to hydroxide ions and hydrogen gas.
  • the hydroxide ions produced at the cathode then react with hypochlorous acid produced at the anode, producing the hypochlorite anion (CIO), which is charged in equilibrium with the sodium cations (Na + ) originally derived from the salt.
  • CIO hypochlorite anion
  • the brine in the water / brine mixture, is at 3.2% w / total weight to produce an 8000 ppm solution.
  • the reactor contains three electrochemical cells to charge 100 mA / cm 2 current density to the electrolyte.
  • the composition of the oxidant solution is: free available chlorine compound consisting of: sodium hypochlorite, hypochlorite acid and 75% soluble chlorine gas, 20% hydrogen peroxide and 5% ozone and oxygen.
  • Table 1 Compares residual free available chlorine (FAC) in 4 different disinfection solutions that include the composition of the present invention, commercial bleach, 15% synthesized sodium hypochlorite, and calcium hypochlorite.
  • composition of the present invention shows the highest FAC in ppm, this is positive to ensure maximum efficacy.
  • Table 2 shows the comparison between the capacity to eliminate fecal coliforms from municipal sewage water using different disinfection solutions in 7 samples. Based on the results, the solution of the present invention was the only disinfection solution with which it was possible to reduce fecal coliform below 100 MPN on a logarithmic scale. Table 2. Elimination of fecal coliforms with different disinfection solutions.
  • Table 3 shows how it was possible to reduce heterotrophic bacteria with the solution of the present invention to less than 6000 units, while the others achieved only over 20000 units.
  • Table 4 shows the logarithmic scale of total coliform removal from wastewater.
  • the results of the solution of the present invention show an average of approximately 380 MPN of total coliforms in 100 mm of wastewater, in line with standards and better performance relative to others.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Hydrology & Water Resources (AREA)
  • Engineering & Computer Science (AREA)
  • Environmental & Geological Engineering (AREA)
  • Water Supply & Treatment (AREA)
  • Organic Chemistry (AREA)
  • Treatment Of Water By Oxidation Or Reduction (AREA)
  • Water Treatment By Electricity Or Magnetism (AREA)
  • Agricultural Chemicals And Associated Chemicals (AREA)

Abstract

La presente invención se refiere a un procedimiento y a un sistema para desinfectar con una solución oxidante y la solución oxidante utilizada.La solución oxidante es útil por ejemplo para separar los constituyentes de biopelículas y se puede utilizaren una amplia variedad de situaciones, como por ejemplo piscinas, lugares de fuentes termales, plantas industriales y torres de refrigeración, membranas de ósmosis inversa, instalaciones municipales y sistemas de distribución sanitaria.

Description

PROCEDIMIENTO Y SISTEMA PARA DESINFECTAR CON UNA SOLUCIÓN OXIDANTE Y LA SOLUCIÓN OXIDANTE UTILIZADA
La presente invención se refiere a un procedimiento y a un sistema para desinfectar con una solución oxidante y la solución oxidante utilizada. La solución oxidante es útil por ejemplo para eliminar constituyentes de biopelículas y se puede emplear en una amplia variedad de situaciones, como por ejemplo, piscinas, lugares de fuentes termales, plantas industriales y torres de refrigeración, membranas de osmosis inversa, instalaciones municipales y sistemas de distribución sanitaria.
ANTECEDENTES EN LA TÉCNICA
Las biopelículas pueden formarse y sostenerse en un entorno acuoso, incluyendo conductos de distribución del agua, depósitos de almacenamiento de agua, canales abiertos y pirámides de tuberías, dependiendo de la situación del entorno. La biopelícula es en efecto un complejo de diferentes microorganismos y sus desechos cuando empiezan a excretar sustancias que son limosas o pegajosas y permiten que se forme una capa de microcostra adherida a las superficies. Un estrato de biopelícula puede consistir en diferentes tipos de bacterias, hongos, algas, protozoos e incluso virus, muertos o vivos. Dicha combinación dentro de la capa de biopelícula la hace resistente al cloro, uno de los biocidas más comunes, ya que la convierte en una capa impenetrable para las moléculas de cloro. Por consiguiente, resulta difícil afectar a los microorganismos una vez que ha tenido lugar una adhesión inicial. Por otra parte, dicha capa de microorganismos resistentes al cloro puede ser patógena y hospedar microorganismos que causan enfermedades como Legionella, Listeria esporas bacterianas resistentes a la temperatura.
Para eliminar o reducir el problema de las biopelículas se utilizan diversos procedimientos mecánicos y químicos. El enfoque más común es el tratamiento químico mediante el uso de biocidas y concentraciones para la descontaminación de los sistemas de agua en circulación, sin embargo, estas recomendaciones no son adecuadas para todos sistemas y microorganismos objetivo.
El documento de patente US9034812 describe una composición para el tratamiento de la formación y crecimiento de una biopelícula que comprende al menos un D-aminoácido y al menos un biocida que comprende sulfato tetrakis hidroximetil fosfonio (THPS). El THPS presenta ciertos problemas, como por ejemplo, que el THPS puede degradarse fácilmente y que los microorganismos tienen la capacidad para degradar y utilizar el biocida añadido para crecer.
Por tanto, por cuanto se sabe en la técnica, se deduce la necesidad del desarrollo de una nueva composición, sistema y procedimiento para eliminar la biopelícula de una manera sencilla y rentable y con un buen rendimiento.
SUMARIO DE LA INVENCIÓN
Los autores de la invención han encontrado un procedimiento para desinfectar con una solución oxidante. La solución oxidante es útil para el tratamiento de agua y la eliminación de biopelículas con un buen rendimiento, rentabilidad, accesibilidad, protección y seguridad, así como respeto para el medioambiente.
Un primer aspecto de la presente invención se refiere a un procedimiento para desinfectar que comprende las etapas de: a) mezclar agua y una solución de salmuera en la que la solución de salmuera está comprendida del 1% al 10% en peso; b) alimentar un reactor que comprende de tres a cinco celdas electroquímicas con la mezcla obtenida en la etapa a); c) aplicar una corriente eléctrica con una densidad de corriente de 80mA/cm2 a 120mA/cm2 , a las celdas del reactor; d) dosificar la solución oxidante en una relación de volumen de 1:500 a 1:2000 ppm.
La expresión “solución de salmuera”, tal como se utiliza en el presente documento, se refiere a soluciones de cloruro sódico y soluciones de cloruro potásico.
El segundo aspecto de la presente invención se refiere a un sistema de generación en el sitio que comprende: a) un tanque de salmuera; b) un tanque de agua; c) un tanque mixto que se alimenta del tanque de salmuera y de agua; d) un reactor que comprende de tres a cinco celdas electroquímicas alimentado por el tanque mixto; y e) una bomba de dosificación o química para bombear el producto obtenido en el reactor.
La generación en el sitio reemplaza numerosos productos químicos suministrados para el tratamiento de agua, incluyendo; hipoclorito sódico en masa, dióxido de cloro, gas cloro, yodo, peróxido de hidrógeno, hipoclorito de calcio, ozono, bromo y otros enfoques de desinfección, dependiendo de la aplicación y/o composición química del agua como, por ejemplo, glutaraldehído, compuestos de amonio cuaternario, isotialozina, ion de cobre y plata, luz ultravioleta.
El tercer aspecto de la invención es una solución oxidante que comprende: ozono, peróxido de hidrógeno, dióxido de cloro, gas cloro, sal hipoclorito, ácido hipocloroso y oxígeno, en la que el pH es de 6,5 a 9.
BREVE DESCRIPCIÓN DE LOS DIBUJOS
La FIG. 1 presenta una realización preferente del sistema de generación en sitio de la invención de forma esquemática.
DESCRIPCIÓN DETALLADA DE LA INVENCIÓN
Tal como se ha mencionado, el primer aspecto de la invención se refiere a un procedimiento para desinfectar que comprende las etapas de: a) mezclar agua y una solución de salmuera en la que la solución de salmuera está comprendida del 1 % a 10 % en peso; b) alimentar un reactor que comprende de tres a cinco celdas electroquímicas con la mezcla obtenida en la etapa a); c) aplicar una corriente eléctrica con una densidad de corriente de 80 mA/cm2 a 120 mA/cm2 a las celdas del reactor; d) dosificar la solución oxidante en una relación de volumen de 1:500 a 1:2000 ppm.
En una realización en particular del primer aspecto de la invención, el agua, anteriormente a la etapa a) atraviesa un delcalcificador y después el agua se divide en dos conductos, un conducto se utiliza para alimentar un tanque rellenado con sal, para crear una salmuera saturada, el otro conducto actúa como corriente de dilución antes de la etapa c).
En una realización preferente tras la etapa c), se almacena la solución oxidante obtenida en la etapa c) en un tanque de almacenamiento de solución de oxidantes. En una realización más preferente, la concentración de los oxidantes en la solución almacenada es de 7000 a 8000 ppm.
En una realización en particular, tras la etapa c), el gas hidrógeno producido en el reactor se elimina del reactor y/o del tanque de almacenamiento de solución de oxidantes.
En una realización en particular, antes de la etapa a), hay una etapa de lavado de la celda del reactor pasando una corriente inversa. Las celdas están dispuestas para que todos los electrodos hagan contacto con el agua y la solución de salmuera y la corriente eléctrica fluye a través de la celda. A su vez, esta corriente hace que las reacciones químicas en las superficies de ambos electrodos produzcan con el tiempo la solución oxidante. Cuando funciona la celda, se acumularán costras de calcio y magnesio en los electrodos de la celda, reduciendo su eficiencia. Tradicionalmente, se emplea un procedimiento de lavado con ácido manual para separar estas costras.
En una realización preferente, la temperatura del agua en la etapa a) es de 18 °C y 48 °C.
En una realización preferente, la presión del agua en la etapa a) es de 25 y 100 psi.
En una realización preferente, en la etapa a), se mezcla con el agua y la salmuera un ácido seleccionado entre: ácido clorhídrico, ácido sulfúrico o ácido nítrico. En una realización más preferente, en la etapa a), se mezcla también un nutriente para el suelo. Entre los ejemplos de dichos nutrientes se incluyen N2 o S.
Dicho ácido se añade para reducir los efectos adversos de los iones catiónicos cuando se utiliza la solución para desinfectar agua de riego.
En una etapa preferente, en la etapa a), la salmuera está entre 2 % y 7 %.
El segundo aspecto de la presente invención se refiere a un sistema de generación en sitio que comprende: a) un tanque de salmuera (2); b) un tanque de agua (3); c) un tanque mixto (4) que se alimenta del tanque de salmuera (2) y de agua
(3); d) un reactor (5) que comprende de tres a cinco celdas electroquímicas alimentado por el tanque mixto (4); y e) una bomba de dosificación (8) o química para bombear el producto obtenido en el reactor.
En una realización preferente, el sistema de generación en sitio comprende un tanque de almacenamiento de solución de oxidantes (7).
En la FIG. 1 se muestra una realización preferente del segundo aspecto de la invención, consistiendo el sistema de la invención en: una entrada de agua (1) que alimenta un tanque de salmuera (2) y un tanque de agua (3); el tanque de agua (3) y el tanque de salmuera (2) alimenta el tanque mixto (4) que, a su vez, alimenta el reactor (5) que comprende de tres a cinco celdas electroquímicas y presenta un suministro eléctrico externo (6); el producto obtenido en el reactor (5) se transporta al tanque de almacenamiento de solución de oxidantes (7), finalmente, se bombean los oxidantes mixtos mediante una bomba de dosificación (8).
En una realización preferente, el sistema funciona a través de una señal desde el conmutador de nivel/transmisor situado aguas abajo del tanque de almacenamiento de solución de oxidantes (7) guiado por un Controlador Lógico Programable (PLC) y algunos sensores. Esto significa que se requiera una mínima atención por parte del operador durante un funcionamiento normal.
En una realización en particular, el sistema se controla a través de un panel de control.
En una realización en particular, la bomba de dosificación se selecciona entre: bomba venturi, bomba de alimentación centrífuga; bomba de dosificación química.
En una realización en particular, el reactor (5) y el tanque de almacenamiento de solución de oxidantes (7) incluye ventilaciones y/o sopladores de aire de dilución del hidrógeno separado.
En una realización en particular, el sistema presenta un sensor y un controlador lógico programable.
En una realización preferente, la célula electroquímica comprende al menos dos electrodos. Más preferentemente, el electrodo es un titanio. En una realización en particular, el electrodo es un titanio con un revestimiento de óxido de titanio. En una realización preferente, el electrodo es rectangular. En una realización más preferente el tamaño es de 250 cm2 a 350 cm2.
El tercer aspecto de la invención es una solución oxidante que comprende: ozono, peróxido de hidrógeno, dióxido de cloro, gas cloro, sal hipoclorito, ácido hipocloroso y oxígeno, en la que el pH es de 6,5 a 9.
En una realización preferente, el pH es de 6,5 a 7.
En una realización preferente, en la composición del oxidante, la sal hipoclorito, el ácido hipoclorito y el gas cloro soluble comprenden entre 65 %, y 85 %, el peróxido de hidrógeno comprende entre 15 % y 25 % y el dióxido de cloro, el ozono y el oxígeno comprenden de 2,5 % a 7,5 %.
En una realización en particular, la salmuera es CINa y la reacción química en la celda electroquímica es:
NaCI + H20 NaOCI + H2
Las reacciones de oxidación se llevan a cabo en el ánodo, en el que se separan los iones cloruro (Cl ) de un electrón para producir cada uno de ellos cloro molecular. 2C|- CI2+2e-
A continuación, se disuelve el cloro molecular en agua para producir ácido hipocloroso (HOCI).
Cl2+ H20 HOCI + H+ + Cl
Se equilibra la producción de cloro a través de reacciones de reducción que tienen lugar en el cátodo, en las que se convierte agua en iones hidróxido y gas hidrógeno.
2H20 + 2e- 20H- + H2
A continuación, reaccionan los iones hidróxido producidos en el cátodo con ácido hipocloroso producido en el ánodo, produciendo el anión hipoclorito (CIO ), que se carga en equilibrio con los cationes sodio (Na+) derivados de la sal originalmente.
HOCI + OH H20 + OCI-
Se realizan las siguientes semi-reacciones para la generación de ozono. Se producen hidrógeno y oxígeno en los electrodos del cátodo y el ánodo, respectivamente. La concentración de ion cloruro es muy baja en esta etapa, pero adecuada para la conductividad eléctrica.
2H20+ 2e- H2+20H
-0/8277 V
2H20 02 + 4H+ + 4e- -1/229 V
Al aumentar la corriente de voltaje, tiene lugar la siguiente semi-reacción en el electrodo del ánodo. Este fenómeno está influido por las condiciones de electrólisis. El ozono podría desprender olor durante el proceso de generación de ozono si no se cierra herméticamente el reactor.
3H20 03 + 6H+ + 6e- -1/53 V
Se puede mantener el ozono generado ahorrando las condiciones de proceso hasta que el ozono alcanza un nivel de saturación a 570 mg/l a 20° C (o 1050 mg/l a 0o C).
Cabe destacar que las diferentes semi-reacciones tienen lugar con diferente potencial de reducción de oxidación para la generación de ozono y peróxido de hidrógeno.
2H20 H202 + 2H+ + 2e- -1/776 V
02 + H20 03 + 2H+ +2e- -2/076 V
02 + 20H- 03 + H20 + 2e- -1/24 V
3H20 03 + 6H+ +6e- -1/53 V
02 + 2H+ + 2 e- H202 0,7 V
2H20 H202+2H+ +2e- -1/776 V
H02 + H+ + e- H202 -1/495 V
En la siguiente etapa, se aumenta el ion cloruro y se produce más gas cloro, que reduce el ion cloruro y produce CI02 cuando CIO y Cl2 (ac) están disponibles. 2CI- CI2 + 2e
-1/35827 V
1/2CI2 +H20 HCIO + H+ + e- -1/611 V
Cl- +H20 HCIO + H+ + e- -1/482 V
Cl- + 20H- CIO- + H20 + 2e- -0/81 V
NaCI + H20 + 2e- NaOCI+H2 HCIO + H20 CI02+3H+ + 3e- EJEMPLOS
Los siguientes ejemplos son solo ilustrativos y no se pretende que limiten la presente invención.
Ejemplo 1.
En este ejemplo, en la mezcla de agua/salmuera, la salmuera está en un 3,2 % en peso/peso total para producir una solución de 8000 ppm. El reactor contiene tres celdas electroquímicas para cargar 100 mA/cm2 de densidad de corriente al electrolito. La composición de la solución de oxidante es: compuesto de cloro libre disponible que consiste en: hipoclorito sódico, ácido de hipoclorito y gas cloro soluble al 75 %, peróxido de hidrógeno al 20 % y ozono y oxígeno al 5 %.
La presencia de cloro disponible libre en el agua se correlaciona con la ausencia de una mayoría de organismos que causan enfermedad y por tanto es una medida de potabilidad del agua.
Tabla 1. Compara el cloro libre disponible (FAC) residual en 4 soluciones de desinfección diferentes que incluyen la composición de la presente invención, blanqueador comercial, hipoclorito sódico sintetizado al 15 % e hipoclorito de calcio.
Los residuos medidos al cabo de 30 minutos ilustran que la composición de la presente invención puede competir perfectamente con otros oxidantes incluso cuando están a una concentración más alta.
Tabla 1. residuos FAC en soluciones de desinfección al cabo de 30 minutos en ppm
Figure imgf000011_0001
Debe advertirse que la composición de la presente invención muestra el FAC más alto en ppm, esto es positivo para asegurar una eficacia máxima.
Desinfección de agua residual
En la Tabla 2 se muestra la comparación entre la capacidad para eliminar coliformes fecales de aguas de alcantarillado municipal utilizando diferentes soluciones de desinfección en 7 muestras. Sobre la base de los resultados, la solución de la presente invención fue la única solución de desinfección con la que se pudo reducir el coliforme fecal por debajo de 100 MPN en escala logarítmica. Tabla 2. Eliminación de coliformes fecales con diferentes soluciones de desinfección.
Figure imgf000011_0002
Figure imgf000012_0001
Eliminación de bacterias HPC
En la Tabla 3 se muestra cómo fue posible reducir bacterias heterótrofas con la solución de la presente invención a menos de 6000 unidades, al tiempo que los demás consiguieron solo por encima de 20000 unidades.
Tabla 3. Eliminación de bacterias HPC con diferentes soluciones de desinfección
Figure imgf000012_0002
Eliminación de coliforme total
En la Tabla 4 se muestra la escala logarítmica de la eliminación de coliformes totales de aguas residuales. Los resultados de la solución de la presente invención presentan un promedio de aproximadamente 380 MPN de coliformes en total en 100 mm de aguas residuales, en consonancia con las normas y un mejor rendimiento en relación con otros.
Figure imgf000012_0003
Figure imgf000013_0001

Claims

REIVINDICACIONES
1. Un procedimiento para desinfectar que comprende las etapas de: a) mezclar agua y una solución de salmuera en la que la solución de salmuera está comprendida del 1 % a 10 % en peso; b) alimentar un reactor que comprende de tres a cinco celdas electroquímicas con la mezcla obtenida en la etapa a); c) aplicar una corriente eléctrica con una densidad de corriente de 80 mA/cm2 a 120 mA/cm2 a las celdas del reactor; d) dosificar la solución oxidante en una relación de volumen de 1:500 a 1:2000 ppm.
2. El procedimiento de la reivindicación 1, en el que el agua, antes de la etapa a), atraviesa un descalcificador y después el agua se divide en dos conductos, un conducto se utiliza para alimentar el tanque rellenado con sal, creando una salmuera saturada; el otro conducto actúa como corriente de dilución antes de la etapa c).
3. El procedimiento de cualquiera de las reivindicaciones 1 a 2, en el que tras la etapa c), se almacena la solución de oxidante obtenida en la etapa c) en un tanque de almacenamiento de oxidantes mixtos.
4. El procedimiento de la reivindicación 3 en el que la concentración de los oxidantes en la solución almacenada es de 7000 a 8000 ppm.
5. El procedimiento de acuerdo con cualquiera de las reivindicaciones 1 a 4 en el que, tras la etapa c), se separa del reactor y/o del tanque de almacenamiento de oxidantes mixto el gas hidrógeno producido en el reactor.
6. El procedimiento de acuerdo con cualquiera de las reivindicaciones 1 a 5, en el que antes de la etapa a), hay una etapa de lavado de la celda en el reactor pasando una corriente inversa.
7. El procedimiento de acuerdo con cualquiera de las reivindicaciones 1 a 6 en el que el agua en la etapa a) está a entre 18 °C y 48 °C.
8. El procedimiento de acuerdo con cualquiera de las reivindicaciones 1 a 7, en el que la presión del agua en la etapa a está a) entre 25 y 100 psi.
9. El procedimiento de acuerdo con cualquiera de las reivindicaciones 1 a 8 en el que en la etapa a), el ácido se selecciona entre: ácido clorhídrico, ácido sulfúrico o ácido nítrico junto con el agua y la salmuera.
10. Un sistema de generación en sitio que comprende: a) un tanque de salmuera (2); b) un tanque de agua (3); c) un tanque mixto (4) que se alimenta del tanque de salmuera (2) y de agua (3); d) un reactor (5) que comprende de tres a cinco celdas electroquímicas alimentado por el tanque mixto (4); y e) una bomba de dosificación (8) o química para bombear el producto obtenido en el reactor.
11. El sistema de generación en sitio de la reivindicación 7, en el que el sistema de generación en sitio comprende un tanque de almacenamiento de solución de oxidantes (7).
12. El sistema de generación en sitio de acuerdo con la reivindicación 11, en el que el reactor (5) y el tanque de almacenamiento de solución de oxidantes (7) incluye ventilaciones y/o sopladores de aire de dilución para el hidrógeno separado.
13. Una solución oxidante que comprende: ozono, hidrógeno, peróxido, dióxido de cloro, gas de cloro, sal hipoclorito, ácido hipocloroso y oxígeno, en la que el pH es de 6,5 a 9.
PCT/ES2019/070627 2019-09-20 2019-09-20 Procedimiento y sistema para desinfectar con una solución oxidante y la solución oxidante utilizada WO2021053248A1 (es)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP19801393.0A EP4032862A1 (en) 2019-09-20 2019-09-20 Method and system for disinfecting with an oxidant solution and oxidant solution used
PCT/ES2019/070627 WO2021053248A1 (es) 2019-09-20 2019-09-20 Procedimiento y sistema para desinfectar con una solución oxidante y la solución oxidante utilizada

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/ES2019/070627 WO2021053248A1 (es) 2019-09-20 2019-09-20 Procedimiento y sistema para desinfectar con una solución oxidante y la solución oxidante utilizada

Publications (1)

Publication Number Publication Date
WO2021053248A1 true WO2021053248A1 (es) 2021-03-25

Family

ID=68503170

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/ES2019/070627 WO2021053248A1 (es) 2019-09-20 2019-09-20 Procedimiento y sistema para desinfectar con una solución oxidante y la solución oxidante utilizada

Country Status (2)

Country Link
EP (1) EP4032862A1 (es)
WO (1) WO2021053248A1 (es)

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20050142157A1 (en) * 2003-12-30 2005-06-30 Oculus Innovative Sciences, Inc. Oxidative reductive potential water solution and methods of using the same
US20100044242A1 (en) * 2008-08-25 2010-02-25 Sai Bhavaraju Methods For Producing Sodium Hypochlorite With a Three-Compartment Apparatus Containing an Acidic Anolyte
US20100189805A1 (en) * 2007-04-13 2010-07-29 Aquqgroup Ag Electrochemically treated water, method and device for the production thereof, and the use thereof as a disinfection agent
US20120121731A1 (en) * 2010-11-16 2012-05-17 Strategic Resource Optimization, Inc. Electrolytic System and Method for Generating Biocides Having an Electron Deficient Carrier Fluid and Chlorine Dioxide
WO2014209797A2 (en) * 2013-06-25 2014-12-31 Blue Earth Labs Llc Methods and stabilized compositions for reducing deposits in water systems
US9034812B2 (en) 2011-08-26 2015-05-19 Ohio University Compositions and methods for treating biofilms
US20160029639A1 (en) * 2014-07-30 2016-02-04 Ecolab Usa Inc. Dual biocide generator
WO2016028765A1 (en) * 2014-08-18 2016-02-25 Irani Firdose Apparatus for production of anolyte solution
US20180346352A1 (en) * 2011-04-15 2018-12-06 Advanced Diamond Technologies, Inc. Electrochemicl system and method for on-site generation of oxidants at high current density

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20050142157A1 (en) * 2003-12-30 2005-06-30 Oculus Innovative Sciences, Inc. Oxidative reductive potential water solution and methods of using the same
US20100189805A1 (en) * 2007-04-13 2010-07-29 Aquqgroup Ag Electrochemically treated water, method and device for the production thereof, and the use thereof as a disinfection agent
US20100044242A1 (en) * 2008-08-25 2010-02-25 Sai Bhavaraju Methods For Producing Sodium Hypochlorite With a Three-Compartment Apparatus Containing an Acidic Anolyte
US20120121731A1 (en) * 2010-11-16 2012-05-17 Strategic Resource Optimization, Inc. Electrolytic System and Method for Generating Biocides Having an Electron Deficient Carrier Fluid and Chlorine Dioxide
US20180346352A1 (en) * 2011-04-15 2018-12-06 Advanced Diamond Technologies, Inc. Electrochemicl system and method for on-site generation of oxidants at high current density
US9034812B2 (en) 2011-08-26 2015-05-19 Ohio University Compositions and methods for treating biofilms
WO2014209797A2 (en) * 2013-06-25 2014-12-31 Blue Earth Labs Llc Methods and stabilized compositions for reducing deposits in water systems
US20160029639A1 (en) * 2014-07-30 2016-02-04 Ecolab Usa Inc. Dual biocide generator
WO2016028765A1 (en) * 2014-08-18 2016-02-25 Irani Firdose Apparatus for production of anolyte solution

Also Published As

Publication number Publication date
EP4032862A1 (en) 2022-07-27

Similar Documents

Publication Publication Date Title
EP0651730B1 (en) Method and apparatus for controlling microorganisms
Ghernaout et al. On the dependence of chlorine by-products generated species formation of the electrode material and applied charge during electrochemical water treatment
ES2375779T3 (es) Uso de un desinfectante basado en soluciones acuosas con contenido de �?cido hipocloroso.
EP3017696B1 (en) Method of producing sterile aquaculture water, and method using same of fish aquaculture using flowing sterile water
ES2689092T3 (es) Proceso y aparato para generar biocidas de haloamina
US20100192987A1 (en) Method and technical embodiment for the cleaning of surfaces by means of a high-pressure cleaning device using electrolyzed water by using oxidative free radicals
KR101547566B1 (ko) 전기분해를 이용한 멸균 양식수 제조방법과 이를 이용한 유수식 멸균수 어류 양식방법
JP2016528031A (ja) 水道システムにおける堆積物を減少させるための方法および安定化組成物
KR101498990B1 (ko) 유수식 멸균수 어류 양식방법
EP1461291B1 (en) Electrolytic device and method for disinfecting water in a water supply system by means of the generation of active chlorine
JP2005177672A (ja) 電解式オゾナイザ
JP4394941B2 (ja) 電解式オゾナイザ
KR101550441B1 (ko) 전해살균수를 이용한 수처리 장치
Mosquera-Romero et al. Disinfection of constructed wetland effluent by in situ electrochemical chlorine production for water reuse
JP5758099B2 (ja) 次亜塩素酸水の製造装置及び製造方法
WO2021053248A1 (es) Procedimiento y sistema para desinfectar con una solución oxidante y la solución oxidante utilizada
JP2004132592A (ja) 電気化学的水処理方法及び水処理システム
KR20200001254A (ko) 브롬이온을 제거하는 차아염소산나트륨 생성장치
US20130270193A1 (en) Method for water sanitisation
JPH0938655A (ja) オゾンを含有する電解次亜塩素酸殺菌水並びにその製造方法及び装置
KR102104510B1 (ko) 소규모 상수시설용 살균장치
KR101587193B1 (ko) 소금속의 브롬이온을 제거하는 전처리장치가 부착된 현장제조형 염소발생기
KR102529873B1 (ko) 배출 농도 조절수단을 갖는 온실용 차아염소산수 제조장치
CN211035348U (zh) 酸性电解水生成器的原料供给装置
ES2350131B1 (es) Dispositivo y procedimiento para tratar agua mediante electrocloracion

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19801393

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2019801393

Country of ref document: EP

Effective date: 20220420