WO2021052384A1 - 一种无线接入点分组调优方法、设备及计算机存储介质 - Google Patents

一种无线接入点分组调优方法、设备及计算机存储介质 Download PDF

Info

Publication number
WO2021052384A1
WO2021052384A1 PCT/CN2020/115733 CN2020115733W WO2021052384A1 WO 2021052384 A1 WO2021052384 A1 WO 2021052384A1 CN 2020115733 W CN2020115733 W CN 2020115733W WO 2021052384 A1 WO2021052384 A1 WO 2021052384A1
Authority
WO
WIPO (PCT)
Prior art keywords
tuning
group
path loss
tuning group
management
Prior art date
Application number
PCT/CN2020/115733
Other languages
English (en)
French (fr)
Inventor
孙福清
包德伟
白小飞
俞居正
魏启坤
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to EP20866902.8A priority Critical patent/EP4024935A4/en
Publication of WO2021052384A1 publication Critical patent/WO2021052384A1/zh
Priority to US17/696,292 priority patent/US20220256363A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W24/00Supervisory, monitoring or testing arrangements
    • H04W24/02Arrangements for optimising operational condition
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L12/00Data switching networks
    • H04L12/28Data switching networks characterised by path configuration, e.g. LAN [Local Area Networks] or WAN [Wide Area Networks]
    • H04L12/46Interconnection of networks
    • H04L12/4641Virtual LANs, VLANs, e.g. virtual private networks [VPN]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W16/00Network planning, e.g. coverage or traffic planning tools; Network deployment, e.g. resource partitioning or cells structures
    • H04W16/02Resource partitioning among network components, e.g. reuse partitioning
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W16/00Network planning, e.g. coverage or traffic planning tools; Network deployment, e.g. resource partitioning or cells structures
    • H04W16/02Resource partitioning among network components, e.g. reuse partitioning
    • H04W16/06Hybrid resource partitioning, e.g. channel borrowing
    • H04W16/08Load shedding arrangements
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W16/00Network planning, e.g. coverage or traffic planning tools; Network deployment, e.g. resource partitioning or cells structures
    • H04W16/18Network planning tools
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W28/00Network traffic management; Network resource management
    • H04W28/02Traffic management, e.g. flow control or congestion control
    • H04W28/0231Traffic management, e.g. flow control or congestion control based on communication conditions
    • H04W28/0236Traffic management, e.g. flow control or congestion control based on communication conditions radio quality, e.g. interference, losses or delay
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W28/00Network traffic management; Network resource management
    • H04W28/02Traffic management, e.g. flow control or congestion control
    • H04W28/08Load balancing or load distribution
    • H04W28/09Management thereof
    • H04W28/0925Management thereof using policies
    • H04W28/0933Management thereof using policies based on load-splitting ratios
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W40/00Communication routing or communication path finding
    • H04W40/24Connectivity information management, e.g. connectivity discovery or connectivity update
    • H04W40/32Connectivity information management, e.g. connectivity discovery or connectivity update for defining a routing cluster membership
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • H04W72/044Wireless resource allocation based on the type of the allocated resource
    • H04W72/0453Resources in frequency domain, e.g. a carrier in FDMA
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • H04W72/044Wireless resource allocation based on the type of the allocated resource
    • H04W72/0473Wireless resource allocation based on the type of the allocated resource the resource being transmission power
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/50Allocation or scheduling criteria for wireless resources
    • H04W72/54Allocation or scheduling criteria for wireless resources based on quality criteria
    • H04W72/541Allocation or scheduling criteria for wireless resources based on quality criteria using the level of interference
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/50Allocation or scheduling criteria for wireless resources
    • H04W72/54Allocation or scheduling criteria for wireless resources based on quality criteria
    • H04W72/542Allocation or scheduling criteria for wireless resources based on quality criteria using measured or perceived quality
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W84/00Network topologies
    • H04W84/02Hierarchically pre-organised networks, e.g. paging networks, cellular networks, WLAN [Wireless Local Area Network] or WLL [Wireless Local Loop]
    • H04W84/10Small scale networks; Flat hierarchical networks
    • H04W84/12WLAN [Wireless Local Area Networks]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W88/00Devices specially adapted for wireless communication networks, e.g. terminals, base stations or access point devices
    • H04W88/08Access point devices
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W88/00Devices specially adapted for wireless communication networks, e.g. terminals, base stations or access point devices
    • H04W88/12Access point controller devices

Definitions

  • This application relates to the field of communication technologies, and in particular to a method, equipment and computer storage medium for grouping and tuning wireless access points.
  • a wireless access point is the access point of a wireless network, usually called a "hot spot". Its function is to convert a limited network into a wireless network, which is mainly used in office buildings, campuses, factories, etc. that require wireless coverage. Area, so that wireless devices can access the wired network through the AP.
  • the embodiment of the application discloses a group tuning method and device.
  • the control device divides multiple APs into multiple tuning groups according to the path loss data between APs, which can reduce the coupling between the tuning groups, and give each The tuning group selects an AP with a light load as the management AP to improve the tuning convergence speed.
  • an embodiment of the present application provides a method for grouping and tuning a wireless access point AP, which includes:
  • the control device obtains path loss data of a wireless access point AP set, where the AP set includes multiple APs, and the path loss data includes path loss between any two APs among the multiple APs;
  • the control device obtains a first tuning group based on the path loss data.
  • the first tuning group includes the first AP and the second AP among the multiple APs.
  • the control device uses the preset path loss data and the AP set according to the path loss data.
  • the algorithm divides the above-mentioned AP set into multiple tuning groups, and the above-mentioned first tuning group is any one of the multiple tuning groups;
  • the control device sends first tuning information to the management AP of the first tuning group, where the first tuning information includes the identifier of the first AP and the identifier of the second AP, and the management AP of the first tuning group is the first AP.
  • An AP that performs tuning management in a tuning group.
  • each AP obtains the path loss data with other APs in the AP collection, and sends the obtained path loss data to the control device that manages multiple APs in the AP collection.
  • the control device collects the AP data based on the path loss data. Multiple APs are grouped, and two APs with high path loss between each other can be assigned to different tuning groups, so that the APs in different tuning groups are invisible to each other, reducing the coupling between different tuning groups , Improve the optimization effect of WLAN network.
  • the above method before the control device sends the first tuning information to the management AP of the first tuning group, the above method further includes:
  • the control device obtains the load information of the first AP and the load information of the second AP.
  • the load information of the first AP includes the load data of the first AP collected at the first sampling time and the load of the first AP collected at the second sampling time.
  • Data, the load information of the second AP includes the load data of the second AP collected at the first sampling time and the load data of the second AP collected at the second sampling time.
  • the load data includes the transmission rate, the channel utilization rate, and the number of associated users. At least one of
  • the control device obtains the first load value according to the preset first algorithm, the load data of the first AP collected at the first sampling moment, and the load data of the first AP collected at the second sampling moment; and according to the preset The first algorithm, the load data of the second AP collected at the first sampling time, and the load data of the second AP collected at the second sampling time, obtain a second load value; the first load value and the second load value are The predicted value of the load of the first AP and the second AP at the next sampling moment;
  • the control device determines an AP with a smaller load value from the first AP and the second AP as the management AP of the first tuning group.
  • the APs in each tuning group periodically obtain load information such as the number of their associated users, channel utilization, and transmission rate, and send the obtained load information to the control device.
  • the control device combines each AP according to a preset prediction algorithm
  • the historical load information of each AP will determine the load of each AP in the next tuning cycle, and select the AP with the lightest load as the leading AP of the tuning group in the next tuning cycle, so that the leading AP itself has light business and enough
  • the resource undertakes the tuning tasks of the tuning group.
  • the above method further includes:
  • the control device obtains a second tuning group and a third tuning group according to the path loss data and the AP set, the second tuning group includes the third AP and the fourth AP among the multiple APs, and the third tuning group
  • the superior group includes the fifth AP and the sixth AP among the above-mentioned multiple APs;
  • the control device sends second tuning information to the management AP of the second tuning group and sends third tuning information to the management AP of the third tuning group, where the second tuning information includes the identifier of the third AP and The identification of the fourth AP, the management AP of the second tuning group is the AP that performs tuning management in the second tuning group, and the third tuning information includes the identification of the fifth AP and the identification of the sixth AP.
  • the management AP of the third tuning group is the AP that performs tuning management in the third tuning group.
  • the control device calculates the first coupling value, the second coupling value, and the third coupling value according to the first tuning group, the second tuning group, and the third tuning group, where the first coupling value is the first tuning The sum of the degree of coupling between the group and the second tuning group and the sum of the degree of coupling between the first tuning group and the third tuning group, where the second coupling value is the difference between the second tuning group and the first tuning group
  • the third coupling value is the coupling degree between the third tuning group and the first tuning group, and the third tuning group and the The sum of the coupling degrees between the second tuning group;
  • the control device obtains a tuning sequence according to the first coupling value, the second coupling value, and the third coupling value.
  • the tuning sequence is used to indicate the first tuning group, the second tuning group, and the first tuning group. Third, the tuning sequence of the tuning group.
  • the first tuning information further includes the tuning sequence, the management AP information of the second tuning group, and the management AP information of the third tuning group.
  • the control device calculates the degree of coupling between each tuning group and other tuning groups, and formulates the sequence of tuning for each tuning group according to the degree of coupling, so that when a tuning group performs tuning, it can obtain the completed tuning
  • the tuning results of the optimized tuning group are then allocated according to the tuning results that have been completed. It can avoid the problem that there is no interaction between the tuning groups when multiple tuning groups are tuned at the same time, which causes the problem of high coupling between the tuning groups after tuning.
  • acquiring the path loss data of the AP set by the above-mentioned control device includes:
  • the control device obtains first path loss data, where the first path loss data is a path loss value that belongs to a preset range between the first AP and the second AP obtained at the third sampling moment;
  • the control device acquires second path loss data, where the second path loss data is a path loss value between the first AP and the second AP that is acquired at the fourth sampling time and belongs to a preset range;
  • the control device obtains the path loss data between the first AP and the second AP according to the first path loss data and the second path loss data.
  • the control device By setting the preset interval of the path loss value corresponding to each AP pair, when the control device receives the path loss data sent by the AP, it determines the received AP by querying the preset interval corresponding to the path loss value of each AP pair Regarding whether the corresponding path loss value is a valid value, if the path loss value belongs to the preset interval, the path loss value is retained as the path loss data of the corresponding AP pair to prevent the path loss value caused by changes in the environment of the AP. Mutations have an impact on the results of the tuning group.
  • the above-mentioned control device obtaining path loss data between the first AP and the second AP according to the first path loss data and the second path loss data includes:
  • the control device uses the average value of the first path loss data and the second path loss data as the path loss data between the first AP and the second AP; or
  • the control device obtains the path loss data between the first AP and the second AP according to the first path loss data, the second path loss data, and the weighted average algorithm.
  • the control device obtains the path loss data at multiple sampling times between the AP pairs, calculates the average value of the path loss data for each AP pair at multiple sampling times, and then performs the AP calculation based on the average value of the path loss data for each AP pair. Divide the tuning group to make the division result more accurate.
  • the control device receives the tuning request sent by the management AP of the first tuning group, and the tuning request includes the identifier of the management AP of the first tuning group and the information included in the first tuning group.
  • the identity of the AP includes the identity of the AP;
  • the control device obtains the path loss data of the AP set included in the first tuning group according to the tuning request;
  • the control device obtains a fourth tuning group according to the path loss data of the AP set included in the first tuning group, and the AP set included in the fourth tuning group is a subset of the AP set included in the first tuning group;
  • the control device sends fourth tuning information to the management AP of the fourth tuning group, the fourth tuning information includes the identification of the AP included in the fourth tuning group, and the management AP of the fourth tuning group is in the fourth tuning group AP for tuning management.
  • the management AP in the tuning group can periodically send tuning requests to the control device, and the control device periodically groups the APs in the AP set according to the newly received path loss data, and when a new AP is added or closed in the AP set , You can update the group in time.
  • the number of APs in the first tuning group is less than or equal to a preset threshold
  • the preset threshold is the number of APs that can be managed by a target AP
  • the target AP is the AP Centrally manage the AP with the least number of APs.
  • the number of APs that can be managed by each AP in the AP set may be different.
  • the control device divides the APs into tuning groups, it needs to limit the number of APs in each tuning group. Therefore, the control device needs to obtain each AP in the AP set.
  • the minimum value is used as the constraint condition of the above-mentioned preset AI algorithm, so that the number of APs in each of the above-mentioned divided tuning groups is less than or equal to the above-mentioned minimum value, preventing one tuning
  • the actual number of APs in the group is more than the number of APs that the management AP of the tuning group can manage.
  • an embodiment of the present application provides a group tuning device, including:
  • a communication unit configured to acquire path loss data of a wireless access point AP set, where the AP set includes multiple APs, and the path loss data includes path loss between any two APs among the multiple APs;
  • a processing unit configured to obtain a first tuning group according to the first path loss data, where the first tuning group includes a first AP and a second AP among the multiple APs;
  • the communication unit is further configured to send first tuning information to the management AP of the first tuning group, where the first tuning information includes the identifier of the first AP and the identifier of the second AP,
  • the management AP of the first tuning group is an AP that performs tuning management in the first tuning group.
  • the communication unit is further configured to obtain load information of the first AP and load information of the second AP, and the load information of the first AP includes the first sampling time collection The load data of the first AP and the load data of the first AP collected at the second sampling time, and the load information of the second AP includes the load data of the second AP collected at the first sampling time And load data of the second AP collected at the second sampling moment, where the load data includes at least one of a transmission rate, a channel utilization rate, and the number of associated users;
  • the processing unit is further configured to: according to a preset first algorithm, the load data of the first AP collected at the first sampling time, and the load data of the first AP collected at the second sampling time To obtain the first load value;
  • the processing unit is further configured to obtain a second tuning group and a third tuning group according to the path loss data and the AP set, and the second tuning group includes The third AP and the fourth AP among the plurality of APs, and the third tuning group includes the fifth AP and the sixth AP among the plurality of APs;
  • the communication unit is further configured to send second tuning information to the management AP of the second tuning group and send third tuning information to the management AP of the third tuning group, the second tuning
  • the information includes the identifier of the third AP and the identifier of the fourth AP
  • the management AP of the second tuning group is the AP that performs tuning management in the second tuning group
  • the third tuning group The information includes the identifier of the fifth AP and the identifier of the sixth AP
  • the management AP of the third tuning group is an AP that performs tuning management in the third tuning group.
  • the processing unit is further configured to: calculate the first coupling value, the first coupling value, and the second tuning group according to the first tuning group, the second tuning group, and the third tuning group.
  • a second coupling value and a third coupling value where the first coupling value is the degree of coupling between the first tuning group and the second tuning group, and the first tuning group and the third tuning group The sum of the coupling degrees between groups, where the second coupling value is the coupling degree between the second tuning group and the first tuning group, and the second tuning group and the third tuning group
  • the sum of the degree of coupling between the third tuning group, and the third coupling value is the degree of coupling between the third tuning group and the first tuning group, and between the third tuning group and the second tuning group Sum of coupling degree;
  • a tuning sequence is obtained, and the tuning sequence is used to indicate the first tuning group and the second tuning group And the sequence of tuning performed by the third tuning group.
  • the first tuning information further includes the tuning sequence, information about the management AP of the second tuning group, and information about the management AP of the third tuning group.
  • processing unit is further configured to:
  • the first path loss data is a path loss value belonging to a preset range between the first AP and the second AP acquired at a third sampling time;
  • the second path loss data is a path loss value that belongs to a preset range between the first AP and the second AP acquired at a fourth sampling time;
  • the processing unit is specifically configured to:
  • path loss data of the first AP and the second AP according to the first path loss data, the second path loss data, and a weighted average algorithm.
  • the processing unit is specifically configured to:
  • the first AP and the second AP are divided into the first tuning group, and the any The path loss data between two APs includes path loss data between the first AP and the second AP.
  • the communication unit is further configured to receive a tuning request sent by the management AP of the first tuning group, where the tuning request includes the identifier of the management AP of the first tuning group and the first tuning The ID of the AP included in the group;
  • the processing unit is further configured to: according to the tuning request, obtain path loss data of the AP set included in the first tuning group;
  • a fourth tuning group is obtained, and the AP set included in the fourth tuning group is a subset of the AP set included in the first tuning group. set;
  • the communication unit is further configured to send fourth tuning information to the management AP of the fourth tuning group, where the fourth tuning information includes the identification of the AP included in the fourth tuning group, and the second
  • the management AP of the fourth tuning group is an AP that performs tuning management in the fourth tuning group.
  • the number of APs in the first tuning group is less than or equal to a preset threshold
  • the preset threshold is the number of APs that can be managed by the target AP
  • the target AP is the set of APs.
  • an embodiment of the present application provides an AP grouping tuning device, including a processor, a communication interface, and a memory; the memory is used to store instructions, the processor is used to execute the instructions, and the communication interface is used to Receiving or sending data; wherein, when the processor executes the instruction, the method described in the first aspect or any specific implementation of the first aspect is executed.
  • the present application provides a non-transitory computer storage medium that stores a computer program for group optimization, and when the computer program is executed by a processor, it implements the first aspect or the first aspect described above.
  • FIG. 1A is a schematic diagram of a system for AP grouping optimization provided by an embodiment of the present application
  • FIG. 1B is a schematic diagram of a cloud AP grouping optimization system provided by an embodiment of the present application.
  • FIG. 2 is a schematic flowchart of a group optimization method provided by an embodiment of the present application.
  • FIG. 3 is a schematic diagram of path loss data reported by an AP set according to an embodiment of the present application.
  • FIG. 4 is a schematic diagram of an AP path loss average value provided by an embodiment of the present application.
  • FIG. 5 is a schematic diagram of calculating the mean value of path loss according to an embodiment of the present application.
  • FIG. 6 is a schematic diagram of tuning information provided by an embodiment of the present application.
  • FIG. 7 is a schematic diagram of a group tuning device provided by an embodiment of the present application.
  • Fig. 8 is a schematic diagram of a group tuning device provided by an embodiment of the present application.
  • first and second in the embodiments of the present application are only used for descriptive purposes, and cannot be understood as indicating or implying relative importance or implicitly indicating the number of indicated technical features. Therefore, the features defined with “first” and “second” may explicitly or implicitly include one or more of these features.
  • At least one refers to one or more, and “multiple” refers to two or more.
  • And/or describes the association relationship of the associated objects, indicating that there can be three relationships, for example, A and/or B, which can mean: A alone exists, A and B exist at the same time, and B exists alone, where A, B can be singular or plural.
  • the character “/” generally indicates that the associated objects before and after are in an “or” relationship.
  • At least one item (a) in the following” or similar expressions refers to any combination of these items, including any combination of a single item (a) or a plurality of items (a).
  • At least one of a, b, or c can represent: a, b, c, a-b, a-c, b-c, or a-b-c, where a, b, and c can be single or multiple.
  • path loss is also referred to as propagation loss, and is referred to as path loss in this application for short.
  • Path loss refers to the loss caused by electromagnetic wave propagation in space, which is caused by the radiation diffusion of the transmitted power and the propagation characteristics of the channel. Theoretically, for the same transmission and reception distance, the path loss is the same. In practice, the obstacles between the transmitter and the receiver will cause electromagnetic waves to reflect, scatter, etc., resulting in attenuation of the signal power. The receiving power of the receiving point at the same transmitting and receiving distance varies greatly, and the receiving point of the same receiving point The power will also change at different points in time.
  • the degree of coupling is a measure of the degree of association between units. The more connections between the units, the stronger the coupling between the units, and the worse the independence of each unit.
  • the degree of coupling is usually used to measure the degree of unit independence.
  • Cloud AP is an AP managed through a cloud management platform.
  • the working mode of AP includes traditional mode and cloud mode.
  • the network administrator needs to go to the installation site to debug the AP, which has problems such as high deployment cost and difficulty in later operation and maintenance.
  • the cloud mode after the cloud AP is powered on, it can automatically connect to the specified cloud management platform to load the specified configuration file, etc.
  • the cloud management platform Through the cloud management platform, the centralized management and maintenance of the equipment at any location can be realized, which can greatly reduce the network deployment and operation. Dimension cost.
  • Tuning group When channel allocation is performed to APs in the WLAN network according to the channel allocation algorithm, it is necessary to traverse the permutations and combinations of multiple APs and multiple channels, and calculate the system interference value of each permutation and combination. Usually, the permutation and combination with the smallest interference value is selected The final channel allocation result for the WLAN network. As the number of APs in the network increases, the channel arrangement and combination will increase exponentially, and the resource consumption required by the channel allocation algorithm will also increase. In order to weigh the resource effect and the algorithm effect, a large network is usually divided into multiple groups. Using channel combination operations within a group can reduce the number of channel permutations and combinations and reduce resource consumption. Such grouping is called a tuning group.
  • the management AP is an AP elected in the tuning group that is responsible for channel power tuning, load balancing, and other functions of the APs in the entire group.
  • WLAN technology can provide users with network access conveniently and quickly. This technology is suitable for public places, enterprises and buildings with high mobility and business needs. These environments require high-density deployment of APs to meet the demand.
  • random grouping or manual grouping is usually used to divide multiple APs into different tuning groups.
  • APs in the same tuning group report the collected data to the management AP of the tuning group.
  • the management AP of the tuning group performs tuning calculations to determine the allocation channel, transmit power and other configuration information for the APs in the tuning group.
  • Random grouping APs are randomly aggregated into groups with cloud APs reachable by the surrounding wired network. When the number of APs in a group exceeds the upper limit of management AP management, then this group of APs stops expanding and forms a tuning group. Repeat the above process until all cloud APs at the site are grouped.
  • Manual grouping In actual deployment, manual grouping is often used for grouping. According to the AP's physical area continuity and wireless visible relationship (floor, neighbor, partition, etc.), multiple APs are manually divided into multiple groups. As far as possible between the groups, the AP wireless is invisible, or as few APs are visible as possible. Each group of APs is set to a different virtual local area network (Virtual Local Area Network, VLAN), so that each VLAN is formed into a tuning group. When APs broadcast in their respective Layer 2 domains, they will only find the APs in their own tuning group, and each group will elect its own management AP.
  • VLAN Virtual Local Area Network
  • adjacent APs or APs on the same floor may be assigned to different tuning groups. This will make the path loss between each other smaller, and APs that are visible to each other will be assigned to different tuning groups.
  • the coupling between the tuning groups is strong, and the tuning group with a large coupling has a poor tuning effect.
  • the above manual grouping method although it will be divided according to the physical area, due to the complexity of the network environment, the physical distance between APs does not completely represent the size of the path loss, so the above-mentioned high-coupling tuning group will also appear. The problem of poor tuning effect.
  • each AP in the tuning group elects a management AP.
  • the management AP is usually the AP with strong hardware capabilities in the tuning group, or the AP with a long startup time, or the AP with the smallest physical address.
  • you need to perform tuning management on the APs in the tuning group including periodic tuning of the APs in the tuning group, real-time tuning to solve emergencies (for example, the APs in the tuning group go online and offline), and load Balance and intrusion detection, etc.
  • the APs in the tuning group cannot obtain historical load information of each AP, such as the number of long-term associated users and business traffic of each AP.
  • the elected management AP has a large load, and the central processing unit (CPU), memory, communication overhead and other resources of the management AP are limited.
  • the management AP does not have enough resources to undertake the tuning tasks, resulting in tuning convergence. Slow and long tuning time.
  • this application provides a grouping tuning method, as shown in FIG. 1A, which is a schematic diagram of a system for AP grouping tuning provided in an embodiment of this application, in which the control device and the site where the AP is deployed AP communication connection. All APs that are in communication with the control device form an AP set. After the AP is powered on, it can periodically report service flow, service flow rate, number of associated users, channel utilization, and path loss information between any two APs to the control device. According to the AI algorithm and the path loss information reported by each AP in the AP set, the control device divides the APs in the AP set into multiple tuning groups, which can reduce the degree of coupling between each tuning group. For the load information of each AP, assign a management AP to each tuning group, so that an AP with a lighter load is selected as the management AP in each tuning group, which can speed up the convergence speed of the tuning group during tuning.
  • the above-mentioned control device may be a computing-capable device such as an access controller (AC) or a server deployed in a site, or a cloud analyzer deployed in the cloud.
  • FIG. 1B is a schematic diagram of a system for cloud AP grouping optimization provided by an embodiment of the present application.
  • the cloud analyzer communicates with the cloud AP through the network and switches.
  • Each cloud AP periodically reports load information and path loss information to the cloud analyzer through the network, and then the cloud analyzer realizes the above-mentioned functions of dividing and tuning groups and electing and managing APs.
  • the load information may include one or more of the rate of service traffic, the number of associated users, and effective channel utilization.
  • the effective channel utilization rate may be the channel utilization rate occupied by the AP and its associated users for sending and receiving data, and the channel utilization rate excludes the channel utilization rate caused by external interference.
  • FIG. 2 is a schematic flowchart of a group optimization method provided by an embodiment of the present application, and the method includes:
  • the control device obtains path loss data of the AP set.
  • the above-mentioned AP set includes multiple APs managed by the control device.
  • the aforementioned path loss data includes the path loss between any two APs in the multiple APs in the AP set.
  • the AP includes n APs in a set.
  • the identifiers of the n APs are AP1-APn as an example, and the AP grouping optimization method in the embodiment of the present application is introduced in detail.
  • any one of the n APs After any one of the n APs is powered on, it sends a detection message wirelessly based on a preset detection period. Any one of the n APs receives detection messages sent by other APs, and obtains the path loss value with other APs according to the received detection messages sent by other APs. Any one of the n APs sends path loss data with other APs to the control device.
  • the detection message includes the identification of the AP that sent the detection message and the transmission power for sending the detection message.
  • AP1 sends a detection message in a preset detection period, and the detection message includes the identification of AP1 and the transmission power of AP1 to send the detection message.
  • AP1 receives probe packets sent by other APs.
  • AP1 can receive probe packets sent by AP2.
  • RSSI received signal strength indication
  • AP1 obtains the path loss value between AP1 and AP2 according to the RSSI and the transmit power carried in the probe message sent by AP2.
  • the path loss value between AP1 and AP2 may be the difference between the RSSI and the transmission power carried in the probe message.
  • each AP in the AP set can calculate the path loss value with other APs in the AP set, and then send the obtained multiple path loss values to the control device.
  • the set of path loss values may be sent to the aforementioned control device.
  • AP1 can also send multiple sets of path loss values obtained in the first preset reporting period to the above-mentioned control device. For example, if the detection period of AP1 is 20 seconds and the reporting period is 30 minutes, then AP1 will report to the above-mentioned control device every 30 minutes. Send 90 sets of path loss values.
  • the embodiments of this application do not make specific limitations.
  • the control device after receiving the path loss value sent by each AP in the AP set, can obtain the path loss value between each AP pair in the AP set.
  • the AP pair is the two APs that can receive the probe message sent by the other party in the above-mentioned AP set.
  • FIG. 3 shows the path loss data of the AP set received by the control device, and the path loss data of the AP set includes the path loss value between any two APs in the multiple APs in the AP set.
  • the APs in the AP set send the path loss value to the control device in the preset first reporting period, and the control device stores the path loss value between each AP and other APs after receiving the path loss value sent by each AP.
  • the control device calculates the received data to obtain the average path loss between each AP pair in a tuning cycle, and uses the average path loss between all AP pairs as the path loss data of the AP set .
  • Path loss value When the control device divides the tuning group, the control device calculates the average value of multiple path loss values corresponding to each AP pair as the path loss data of the above-mentioned AP set in the tuning period. Alternatively, the control device may also use the average value of the path loss value of each AP pair acquired in multiple tuning periods as the path loss data of the AP set in the tuning period. For example, as shown in FIG. 4, the control device every 24 Calculate the average path loss of each AP pair once an hour, and store the average path loss.
  • the number of scans means that in a tuning period, two APs in an AP pair receive each other's probe packets sent by each other. The number of times.
  • the path loss data of the periodic AP set is calculated, and the average of the path loss values of each AP pair in the path loss data of the three tuning periods is calculated as the final path loss data of the AP set of the tuning period.
  • the current tuning cycle is the tuning cycle corresponding to September 13.
  • AP1 and AP2 scan each other 2000 times, and the path loss for these two thousand times is 44.
  • the average path loss between AP1 and AP2 is 46 and 45, respectively.
  • the average path loss between AP1 and AP2 in these three tuning cycles is 45, then Use 45 as the final average path loss between AP1 and AP2 in the tuning period.
  • the control device may calculate the average of the historical path loss values of the target AP pair according to multiple historical path loss values corresponding to the target AP pair.
  • the control device uses the average of the historical path loss values of the target AP pair to determine the effective path loss range. If the path loss value of the target AP pair received later by the control device is within the effective path loss range, the path loss value is considered to be valid data, and the path loss value is saved as the historical path loss value of the target AP pair. If the path loss value of the target AP pair is not within the effective path loss range, then the value is discarded.
  • the control device determines that the path loss data is a valid value and saves it as a historical path loss value. If the path loss value is less than 40 or greater than 60, the control device does not save the path loss value.
  • the control device obtains the first tuning group according to the path loss data.
  • the control device After obtaining the path loss data of the AP set, the control device divides the multiple APs in the AP set into a certain tuning group according to the preset AI algorithm and the average value of the path loss between each AP pair, so as to obtain Multiple tuning groups.
  • the average path loss between AP pairs is the path loss data between AP pairs.
  • the AI algorithm can be one or more of k-means clustering algorithm (k-means), Jaccard similarity matrix algorithm, and spectral density clustering algorithm. This application The embodiments are not specifically limited.
  • the control device calculates and obtains the mean value of the path loss between the first AP pairs corresponding to the first duration according to the path loss values between the first AP pairs obtained at different sampling points in the first duration.
  • the control device calculates and obtains the mean value of the path loss between the first AP pairs corresponding to the second duration according to the path loss values between the first AP pairs obtained at different sampling points in the second duration.
  • the first duration is the same as the second duration.
  • the value can be one day, or one week or one hour, which is not limited in the embodiment of the present application.
  • the control device is based on the average path loss between the first AP pairs corresponding to the first duration, the number of samples (or scan times) within the first duration, the average path loss between the first AP pairs corresponding to the second duration, The number of samples (or called the number of scans) in the second time period and the weighted average algorithm are used to obtain the path loss data of the first AP pair.
  • the path loss data of the first AP pair is the quotient of the sum of the first product and the second product and the total sampling times, where the first product is the average path loss between the first AP pair corresponding to the first duration and the first duration The product of the number of samples within.
  • the second product is the product of the average path loss between the first AP pair corresponding to the second duration and the number of samples in the second duration.
  • the total number of samples is the sum of the number of samples in the first period and the number of samples in the second period.
  • the control device may use the foregoing method of obtaining the average path loss between the first AP pair to obtain the average path loss between multiple AP pairs in the AP set.
  • the control device obtains, according to the average value of the path loss between the multiple AP pairs, a topology matrix used to record the average value of the path loss of the multiple AP pairs, as shown in FIG. 4.
  • the control device obtains the neighbor relationship matrix according to the topology matrix and the path loss threshold.
  • the average path loss of the AP pair AP1 and AP2 in the topology matrix is negative, and the average path loss of the AP pair AP1 and AP2 is greater than the path loss threshold, it is considered that there is a neighbor relationship between AP1 and AP2.
  • the average path loss of the AP pair AP1 and AP3 in the topology matrix is negative, and the average path loss of the AP pair AP1 and AP3 is less than or equal to the path loss threshold, it is considered that there is no neighbor relationship between AP1 and AP3 .
  • the average path loss of the AP pair AP1 and AP2 in the topology matrix is positive, and the average path loss of the AP pair AP1 and AP2 is less than the path loss threshold, it is considered that there is a neighbor relationship between AP1 and AP2.
  • the average path loss of the AP pair AP1 and AP3 in the topology matrix is positive, and the average path loss of the AP pair AP1 and AP3 is greater than or equal to the path loss threshold, it is considered that there is no neighbor relationship between AP1 and AP3 .
  • the control device obtains the similarity matrix according to the neighbor relationship matrix and the Jaccard similarity matrix algorithm.
  • the control device obtains the number of tuning groups and the APs included in each tuning group according to the similarity matrix and the spectral density clustering algorithm. Specifically, after obtaining the similarity matrix, the control device may use the k-means algorithm in the spectral density clustering algorithm to obtain the number of tuning groups and the APs included in each tuning group.
  • control device may divide the APs in the AP pair with path loss values within a certain interval into a tuning group according to the path loss data and the AI algorithm corresponding to each AP pair in the AP set.
  • the AI algorithm is used to perform cluster analysis on multiple APs. For example, the path loss between AP1 and AP2 is a1, the path loss between AP1 and AP3 is a2, the path loss between AP2 and AP3 is a3, and a3 is less than a1 and Less than a2, the values of a1 and a2 are closer.
  • the AI algorithm used by the control device can determine that AP1 is far away from AP2 and AP3, and the path loss is relatively large, AP2 and AP3 are closer, and the path loss is relatively small, that is, AP2 and AP3 are divided As a tuning group.
  • the two APs with a large average path loss will be assigned to different tuning groups, so that the APs in different tuning groups are invisible to each other, reducing the coupling between different tuning groups .
  • the above-mentioned first tuning group is any one of the above-mentioned divided tuning groups.
  • the first tuning group includes the first AP and the second AP among the multiple APs in the AP set.
  • the first AP may be the foregoing AP2
  • the second AP may be the foregoing AP3.
  • the number of APs that can be managed by each AP in the above AP set may be different.
  • the control device divides APs into tuning groups, it needs to limit the number of APs in each tuning group.
  • the control The device also needs to obtain the number of APs that can be managed by each AP in the AP set.
  • the control device uses the obtained minimum of the number of APs that each AP can manage as the constraint condition of the AI algorithm, so that the number of APs in each tuning group divided according to the AI algorithm is less than or equal to the minimum value , To prevent the actual number of APs in a tuning group from exceeding the number of APs that the management AP of the tuning group can manage.
  • the control device sends the first tuning information to the management AP of the first tuning group.
  • the management AP of the first tuning group is an AP that performs tuning management in the first tuning group.
  • the foregoing first tuning information includes identification information of multiple APs in the first tuning group.
  • the first tuning information includes the identification of AP2 and the identification of AP3.
  • the management AP of the first tuning group After receiving the above-mentioned tuning information, the management AP of the first tuning group determines the AP that it manages according to the AP identifier carried in the first tuning information, starts tuning, and assigns the channel allocation algorithm to the first tuning The APs in the optimal group allocate channels, and at the same time allocate transmit power to each AP.
  • each AP in the AP set periodically obtains path loss data with other APs in the AP set, and sends the obtained path loss data to the control device that performs unified management of multiple APs in the AP set.
  • the control device groups multiple APs in the AP set according to the path loss data, and the two APs with high path loss between each other can be assigned to different tuning groups, so that the APs in different tuning groups are different from each other. It can be seen that the coupling degree between different tuning groups is reduced, and the tuning effect of the WLAN network is improved.
  • the method before sending the first tuning information to the management AP of the first tuning group in S206, the method further includes:
  • the control device determines the management AP of the first tuning group according to the load information of each AP in the first tuning group.
  • the foregoing load information includes at least one of the number of users associated with each AP, the channel utilization rate of each AP, and the transmission rate.
  • Each AP in the aforementioned AP set not only uploads its own path loss data to the control device in a preset first reporting period, but also uploads its own load information to the control device in a preset second reporting period.
  • the control device After the control device divides the AP set into multiple tuning groups based on the path loss data of the AP set, it determines a management AP for each tuning group according to the load information of the APs in each tuning group, and then adjusts each tuning group.
  • the tuning information corresponding to the group is sent to the management AP corresponding to each tuning group, where the second reporting period may be the same as the first reporting period or different from the first reporting period, which is not specifically limited in the embodiment of the present application.
  • the control device after obtaining the first tuning group according to the path loss data, the control device obtains multiple load data corresponding to each AP in the first tuning group, and then according to the first tuning group The load data of each AP predicts the predicted load value of each AP in the next tuning cycle, and then determines an AP as the first tuning group in the next tuning cycle based on the predicted load value of each AP in the first tuning group And send the tuning information of the first tuning group to the determined management AP of the first tuning group.
  • the control device can use the gradient boosting decision tree (GBDT) algorithm, the long short-term memory network (long-term memory, LSTM) or the time series algorithm and other prediction algorithms to obtain the next tuning cycle for each AP.
  • the predicted load value The predicted load value.
  • AP1 collects corresponding load data at preset time intervals and sends the collected load data to the control device. If the preset time interval is 1 minute, the load data collected by AP1 is shown in Figure 5.
  • the data collected at each sampling time of AP1 is a set of load data.
  • a set of load data includes the sampling time, the number of users associated with AP1, and each Channel utilization and transmission rate of each AP.
  • AP1 may send the collected multiple sets of load data to the aforementioned control device after collecting multiple sets of load data for multiple times. For example, AP1 may send 30 sets of collected load data to the control device every 30 minutes. After receiving the 30 sets of load data uploaded by AP1, the above-mentioned control device calculates and stores the comprehensive load value of AP1 in the 30 minutes according to the 30 sets of load information.
  • the control device calculates the load value corresponding to each group of load data by weighting the value of the transmission rate, the value of the number of associated users, and the value of the channel utilization rate in each group of load data.
  • the load value represents the load condition of AP1 in this minute.
  • the control device calculates 30 load values from 30 sets of load data, and takes the maximum or average value of these 30 load values as the comprehensive load value of AP1 in these 30 minutes and records it.
  • the time when the control device receives multiple sets of load data sent by AP1 is used as the load sampling time of the control device.
  • the control device can calculate the load data of AP1 obtained at multiple load sampling moments to obtain the corresponding load data of AP1. Multiple load values, and according to multiple load values and a preset prediction algorithm, predict the load value of AP1 at the load sampling moment. For example, at the first load sampling moment, the control device calculates the load value corresponding to AP1 according to 30 sets of load data uploaded by AP1. At the second load sampling moment, the control device calculates the load value corresponding to AP1 according to the other 30 sets of load data uploaded by AP1.
  • the control device can calculate the load value of AP1 at the next load sampling moment based on the load value and load value obtained at the two load sampling moments, combined with the preset prediction algorithm. It should be noted that the control device may also calculate the load value of AP1 at the next sampling moment based on the data obtained at more than two sampling moments.
  • the control device can predict the load value of other APs in the first tuning group at the next load sampling moment, and then determine the lightest load based on the load value of each AP in the first tuning group at the next load sampling moment
  • the AP is the management AP of the first tuning group in the next tuning cycle.
  • the APs in each tuning group periodically obtain load information such as the number of their associated users, channel utilization, and transmission rate, and send the obtained load information to the control device.
  • the control device combines each AP according to a preset prediction algorithm
  • the historical load information of each AP will determine the load of each AP in the next tuning cycle, and select the AP with the lightest load as the leading AP of the tuning group in the next tuning cycle, so that the leading AP itself has light business and enough Resources undertake tuning tasks.
  • the control device may also calculate the coupling degree between each tuning group and each other tuning group, and divide each The coupling degree between the tuning group and the other tuning groups is added to obtain the coupling degree metric value of each tuning group, and then the tuning order of each tuning group is determined according to the coupling degree metric value of each tuning group. For example, the control device divides the above-mentioned AP set into three tuning groups: the first tuning group, the second tuning group, and the third tuning group.
  • the coupling degrees between the optimal group and the third adjustment group are C12 and C13, respectively, the coupling degrees between the second adjustment group and the first and third adjustment groups are C21 and C23, respectively, and the third adjustment group
  • the method for calculating the coupling degree between the first tuning group and the second tuning group is: calculating the m APs in the first tuning group and the m APs in the second tuning group Path loss values between n APs, get m*n path loss values, add up these m*n path loss values, and get the value between the first tuning group and the second tuning group The degree of coupling.
  • the path loss value is used to characterize the degree of coupling between the tuning groups, since the larger the path loss value, the smaller the interference between the two APs. Therefore, the larger the path loss value, the greater the coupling degree between the two APs.
  • the control device After calculating the coupling degree metric value of each tuning group, the control device determines the tuning sequence of each tuning group according to the coupling degree metric value of each tuning group. For the above-mentioned path loss value calculation to obtain the coupling degree metric value of the tuning group, the larger the coupling degree metric value is, the lower the tuning sequence is. For example, if the coupling degree metric value relationship of the above three tuning groups is C1> C3>C2, the second tuning group of the three tuning groups tunes first, then the third tuning group tunes, and finally the first tuning group tunes. After receiving the tuning information, the leading AP of each tuning group will perform tuning in sequence according to the tuning sequence. The tuning group after the tuning will scan and obtain the tuning group that has been tuned during tuning. For the channel used by the AP in the tuning group, the leading AP uses the channel allocation algorithm to determine the channel of each AP in the tuning group, reducing the degree of coupling between the tuning groups.
  • the tuning information obtained by the control device for grouping and tuning the APs in the AP set includes: the management AP in each tuning group, the number of APs in each tuning group, and the member APs in each tuning group The identification information of and the tuning sequence of each tuning group. Taking 10 APs in the AP set as an example, the tuning information obtained by the control device is shown in Figure 6.
  • the tuning information sent by the management device to the management AP in S206 also includes tuning sequence information, so that the tuning sequence of each tuning group
  • the management AP determines the time to start the tuning according to the above tuning sequence.
  • the above-mentioned control device may directly send the above-mentioned tuning sequence information of each tuning group to the management AP of each tuning group, when the management AP of a tuning group determines that the tuning of the tuning group is completed.
  • the management AP determines the management AP of the next tuning group according to the received tuning sequence information, and then sends the notification information of the tuning completion to the management AP of the next tuning group, and the notification information is used to indicate the received
  • the management AP of the notification information starts tuning; or, each AP in the above AP set is configured with a startup time, and when a management AP receives the above tuning sequence information, it can be based on the management AP in the tuning sequence information
  • the corresponding tuning sequence and the aforementioned start-up duration determine the interval from the moment when the tuning sequence sent by the control device is received until the management device can start the tuning.
  • the aforementioned start-up duration is 2 minutes, due to the aforementioned second tuning If the tuning sequence of the group is 1, the second tuning group can start tuning immediately after receiving the tuning sequence information sent by the control device; while the tuning sequence of the third tuning group is 2, then the third tuning group The tuning group needs to start the timing function after receiving the tuning information sent by the control device, and the tuning can be started after 2 minutes.
  • the first tuning group needs to be 4 minutes after receiving the tuning information sent by the control device. Start tuning.
  • the control device calculates the degree of coupling between each tuning group and other tuning groups, and formulates the sequence of tuning for each tuning group according to the degree of coupling.
  • a tuning group performs tuning, it can obtain the completion of the tuning According to the tuning results of the tuning group, the channel is allocated according to the tuning results that have been completed. Therefore, when multiple tuning groups are tuned at the same time, there is no interaction between the tuning groups, which causes the problem of large coupling between the tuning groups after tuning.
  • the above-mentioned control device divides the multiple APs in the AP set into tuning groups, and determines the management AP and the tuning sequence for each tuning group, and then the process of group tuning is performed periodically.
  • the management AP in each tuning group will send a tuning request to the control device.
  • the control device After the control device receives the above tuning request, it will be based on the path loss data received before the tuning request is received. As well as load information, etc., perform the above-mentioned process of dividing the tuning group, determining the management AP, and the tuning sequence.
  • the management AP in the first tuning group sends a tuning request to the control device.
  • the tuning request includes the identification of the management AP of the first tuning group and the identification of the AP included in the first tuning group, and the control device According to the tuning request, obtain the path loss data of the AP included in the first tuning group according to the identification of the AP in the tuning request; the control device obtains the fourth path loss data according to the path loss data of the AP included in the first tuning group A tuning group, the APs included in the fourth tuning group are a subset of the APs included in the first tuning group; then the control device sends the fourth tuning information to the management AP of the fourth tuning group, so
  • the fourth tuning information includes the identification of the AP included in the fourth tuning group, and the management AP of the fourth tuning group is the AP that performs tuning management in the fourth tuning group.
  • the above-mentioned random grouping or manual grouping method can be used to generate the tuning group and elect the management AP of each tuning group.
  • the management AP in each tuning group sends a tuning request to the control device, and then the control device divides the tuning group and determines the management AP and the tuning sequence.
  • the management AP determined by the control device sends a tuning request to the control device.
  • FIG. 7 is a schematic structural diagram of a packet tuning device provided by an embodiment of the present application.
  • the device is used in the system shown in FIG. 1A or FIG. 1B.
  • the device 700 includes: a communication unit 710 and a processing unit.
  • Unit 720 in which,
  • the communication unit 710 is configured to obtain path loss data of the AP set, where the AP set includes multiple APs managed by the control device, and the path loss data includes the path loss between any two APs in the multiple APs in the AP set.
  • the processing unit 720 obtains the first tuning group according to the path loss data.
  • the first tuning group is any one of a plurality of tuning groups divided by the AP set, and the first tuning group includes some APs in the AP set, for example, including those in the AP set. AP1 and AP2.
  • the communication unit 710 is further configured to send first tuning information to the management AP of the first tuning group, where the first tuning information includes the identifiers of the APs in the first tuning group, and the first tuning group’s
  • the management AP is an AP that performs tuning management in the first tuning group.
  • the communication unit 710 is further configured to obtain load information of the AP1 and AP2, where the load data includes at least one of a transmission rate, a channel utilization rate, and the number of associated users.
  • the processing unit 720 is further configured to calculate a first load value according to a preset algorithm and load information of AP1; calculate a second load value according to a preset algorithm and load information of AP2; and obtain a second load value according to the first load value and the first load value.
  • the second load value is to determine the management AP of the first tuning group from AP1 and AP2.
  • the processing unit 720 is further configured to calculate the coupling degree metric value between the first tuning group and the other multiple tuning groups, and determine the tuning order of each tuning group according to the coupling degree metric value.
  • the foregoing apparatus 700 may further include a storage unit 730 configured to store path loss data and load information reported by the foregoing AP.
  • the operations performed by the group tuning apparatus 700 in the foregoing method embodiment may refer to the related operations of the control device in the foregoing method embodiment, which will not be described in detail here.
  • the foregoing group tuning device may be a single device, such as a server, or may be a unit with storage, communication, and computing capabilities, which is not specifically limited in the embodiment of the present application.
  • FIG. 8 is a schematic structural diagram of an AP grouping tuning device provided by an embodiment of the application.
  • the AP grouping tuning device 800 includes at least: a processor 810, a communication interface 820, and a memory 830.
  • the processor 810 and the communication interface 820 And the memory 830 is connected to each other through the bus 840, where
  • the specific implementation of the various operations performed by the processor 810 may refer to the specific operations of the control device in the foregoing method embodiment.
  • the processor 810 may have a variety of specific implementation forms.
  • the processor 810 may be a central processing unit (CPU) or a graphics processing unit (GPU), and the processor 810 may also be a single-core processor or Multi-core processor.
  • the processor 810 may be a combination of a CPU and a hardware chip.
  • the above-mentioned hardware chip may be an application-specific integrated circuit (ASIC), a programmable logic device (PLD), or a combination thereof.
  • ASIC application-specific integrated circuit
  • PLD programmable logic device
  • the above-mentioned PLD may be a complex programmable logic device (CPLD), a field-programmable gate array (FPGA), a generic array logic (GAL) or any combination thereof.
  • the processor 811 may also be implemented by a logic device with built-in processing logic alone, such as an FPGA or a digital signal processor (digital signal processor, DSP).
  • the communication interface 820 can be a wired interface or a wireless interface for communicating with other units or devices.
  • the wired interface can be an Ethernet interface, a local interconnect network (LIN), and the wireless interface can be a cellular network interface or wireless LAN interface, etc.
  • the communication interface 820 in the embodiment of the present application may be specifically used to receive path loss data of each AP pair in the AP set and load information of each AP.
  • the bus 840 can be divided into an address bus, a data bus, a control bus, and so on. For ease of representation, only one thick line is used in FIG. 8, but it does not mean that there is only one bus or one type of bus.
  • the memory 830 is also generally referred to as an external memory.
  • the storage medium of the memory 830 may be a volatile memory and a non-volatile memory, or may include both volatile and non-volatile memory.
  • the non-volatile memory can be read-only memory (ROM), programmable read-only memory (programmable ROM, PROM), erasable programmable read-only memory (erasable PROM, EPROM), and electrically available Erase programmable read-only memory (electrically EPROM, EEPROM) or flash memory.
  • the volatile memory may be random access memory (RAM), which is used as an external cache.
  • RAM random access memory
  • static RAM static random access memory
  • DRAM dynamic random access memory
  • SDRAM synchronous dynamic random access memory
  • Double data rate synchronous dynamic random access memory double data date SDRAM, DDR SDRAM
  • enhanced synchronous dynamic random access memory enhanced SDRAM, ESDRAM
  • serial DRAM synchronous connection dynamic random access memory
  • direct rambus RAM direct rambus RAM, DR RAM
  • the memory 830 is used to store program codes and data, so that the processor 810 can call the program codes stored in the memory 830 and historical data such as AP path loss and load information to implement grouping of AP sets and determining and managing APs.
  • the AP grouping tuning device 800 may include more or fewer components than those shown in FIG. 8, or may have different component configurations.
  • the AP grouping and tuning device may also include an input/output interface 850.
  • the input/output interface 850 is connected to an input/output device for receiving input information and outputting operation results.
  • the input/output interface 850 may be CAN Bus interface or other internal bus interface.
  • the embodiment of the present application also provides a computer non-transitory storage medium.
  • the computer non-transitory storage medium stores instructions. When it runs on a processor, the method steps in the above method embodiments can be implemented.
  • the processor of the computer non-transitory storage medium in executing the steps of the foregoing method, reference may be made to the specific operation of the foregoing method embodiment, and details are not described herein again.
  • the computer program product includes one or more computer instructions.
  • the computer may be a general-purpose computer, a special-purpose computer, a computer network, or other programmable devices.
  • the computer instructions may be stored in a computer-readable storage medium, or transmitted from one computer-readable storage medium to another computer-readable storage medium. For example, the computer instructions may be transmitted from a website, computer, server, or data center.
  • the computer-readable storage medium may be any available medium that can be accessed by a computer or a data storage device such as a server or a data center integrated with one or more available media.
  • the usable medium may be a magnetic medium (such as a floppy disk, a hard disk, and a magnetic tape), an optical medium (such as a DVD), or a semiconductor medium (such as an SSD).
  • the steps in the method in the embodiment of this application can be sequentially adjusted, merged, or deleted according to actual needs; the units in the device in the embodiment of this application can be divided, merged, or deleted according to actual needs.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Quality & Reliability (AREA)
  • Computer Security & Cryptography (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本申请实施例公开了一种分组调优方法以及设备,其中,方法包括:控制设备获取无线接入点AP集的路径损耗数据,该AP集包括多个AP,上述路径损耗数据包括多个AP中任意两个AP之间的路径损耗;控制设备根据路径损耗数据,获得第一调优组,并向所述第一调优组的管理AP发送第一调优信息,所述第一调优组的管理AP为所述第一调优组中进行调优管理的AP。通过实施上述方法,控制设备可以根据AP间路径损耗数据将多个AP划分为多个调优组,能够降低调优组之间的耦合度。

Description

一种无线接入点分组调优方法、设备及计算机存储介质
本申请要求于2019年9月17日提交中国专利局、申请号为CN 201910878314.4、发明名称为“一种无线接入点分组调优方法、设备及计算机存储介质”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及通信技术领域,尤其涉及一种无线接入点分组调优方法、设备及计算机存储介质。
背景技术
无线接入点(access point,AP)是无线网络的接入点,通常称为“热点”,其功能是将有限网络转换为无线网络,主要应用于办公楼、校园、厂区等需要无线覆盖的区域,使无线设备通过AP接入有线网络。
在对无线资源进行调配的过程中,若采用本地射频资源管理(radio resource management,RRM)方案,由于本地没有无线局域网接入控制器(wireless local area network access controller,WLAN AC),通常采用随机分组或者人工规划分组的方法,对一定区域范围内的AP划分出多个调优组,每个调优组选举一个leader AP,每个leader AP只管理各自所在的调优组内的AP,负责各自所在的调优组的信道分配、功率调优以及负载均衡等。但是,采用随机分组或者人工规划分组等进行划分调优组的方法,会导致各个调优组之间耦合度较大,导致各调优组之间的干扰较强,影响调优效果。
发明内容
本申请实施例公开了一种分组调优方法以及设备,控制设备根据AP间路径损耗数据将多个AP划分为多个调优组,可以降低调优组之间的耦合度,并给每个调优组选择负载轻的AP作为管理AP,提高调优收敛速度。
第一方面,本申请实施例提供一种无线接入点AP分组调优方法,包括:
控制设备获取无线接入点AP集的路径损耗数据,其中,AP集包括多个AP,路径损耗数据包括上述多个AP中任意两个AP之间的路径损耗;
控制设备根据上述路径损耗数据,获得第一调优组,第一调优组包括上述多个AP中的第一AP和第二AP,控制设备根据路径损耗数据和上述AP集,通过预设的算法将上述AP集划分为多个调优组,上述第一调优组为这多个调优组中的任意一个;
控制设备向第一调优组的管理AP发送第一调优信息,第一调优信息包括上述第一AP的标识和上述第二AP的标识,上述第一调优组的管理AP为上述第一调优组中进行调优管理的AP。
通过AP集中每个AP获取与AP集中其他AP的路径损耗数据,并将获取的路径损耗数据发送给对AP集中多个AP进行统一管理的控制设备,由控制设备根据路径损耗数据对AP集中的多个AP进行分组,能够将相互之间路径损耗大的两个AP分配到不同的调优组中,以使不同调优组中的AP互相不可见,降低不同调优组之间的耦合度,提高WLAN网络的调优效果。
在一种具体的实现方式中,控制设备向上述第一调优组的管理AP发送第一调优信息之前,上述方法还包括:
控制设备获取上述第一AP的负载信息和上述第二AP的负载信息,第一AP的负载信息包括第一采样时刻采集的第一AP的负载数据和第二采样时刻采集的第一AP的负载数据,第二AP的负载信息包括上述第一采样时刻采集的第二AP的负载数据和第二采样时刻采集的第二AP的负载数据,上述负载数据包括传输速率、信道利用率和关联用户数中的至少一个;
控制设备根据预设的第一算法、上述第一采样时刻采集的第一AP的负载数据和上述第二采样时刻采集的第一AP的负载数据,获得第一负载值;并根据上述预设的第一算法、上述第一采样时刻采集的第二AP的负载数据和上述第二采样时刻采集的第二AP的负载数据,获得第二负载值;上述第一负载值和上述第二负载值为对第一AP和第二AP下一个采样时刻的负载的预测值;
控制设备根据上述第一负载值和上述第二负载值,从第一AP和第二AP中确定负载值小的AP作为上述第一调优组的管理AP。
每个调优组中的AP通过周期性的获取各自关联的用户数、信道利用率以及传输速率等负载信息,将获取的负载信息发送给控制设备,控制设备根据预设的预测算法结合各个AP的历史负载信息,将确定各个AP在下一个调优周期内的负载,并选择负载最轻的AP作为下一个调优周期该调优组的主导AP,这样主导AP本身业务轻,从而有足够的资源承担调优组的调优任务。
在一种具体的实现方式中,上述方法还包括:
控制设备根据上述路径损耗数据和上述AP集,获得第二调优组和第三调优组,上述第二调优组包括上述多个AP中的第三AP和第四AP,上述第三调优组包括上述多个AP中的第五AP和第六AP;
控制设备向上述第二调优组的管理AP发送第二调优信息以及向上述第三调优组的管理AP发送第三调优信息,上述第二调优信息包括上述第三AP的标识和上述第四AP的标识,上述第二调优组的管理AP为上述第二调优组中进行调优管理的AP,上述第三调优信息包括上述第五AP的标识和上述第六AP的标识,上述第三调优组的管理AP为上述第三调优组中进行调优管理的AP。
控制设备根据上述第一调优组、上述第二调优组和上述第三调优组,计算第一耦合值、第二耦合值和第三耦合值,上述第一耦合值为第一调优组与第二调优组间的耦合度以及第一调优组与第三调优组间的耦合度之和,所述第二耦合值为第二调优组与第一调优组间的耦合度以及第二调优组与第三调优组间的耦合度之和,第三耦合值为所述第三调优组与第一调优组间的耦合度以及第三调优组与第二调优组间的耦合度之和;
上述控制设备根据上述第一耦合值、上述第二耦合值和上述第三耦合值,获得调优顺序,上述调优顺序用于表示上述第一调优组、上述第二调优组和上述第三调优组的进行调优的顺序。
在一种具体的实现方式中,上述第一调优信息还包括上述调优顺序、上述第二调优组的管理AP的信息和上述第三调优组的管理AP的信息。
控制设备通过计算每个调优组与其他调优组之间的耦合度,根据耦合度制定各个调优组调优的先后顺序,从而使一个调优组进行调优时,可以获取已经完成调优的调优组的调 优结果,进而根据已经完成的调优在的调优结果进行信道的分配。能够避免多个调优组同时调优时,各个调优组之间没有交互,导致调优后各个调优组之间耦合度大的问题。
在一种具体的实现方式中,上述控制设备获取AP集的路径损耗数据包括:
控制设备获取第一路径损耗数据,第一路径损耗数据为第三采样时刻所获取的第一AP和所述第二AP之间的属于预设范围的路径损耗值;
控制设备获取第二路径损耗数据,第二路径损耗数据为第四采样时刻所获取的第一AP和第二AP之间的属于预设范围的路径损耗值;
控制设备根据第一路径损耗数据和第二路径损耗数据,获得第一AP与第二AP间的路径损耗数据。
通过设置每个AP对对应的路径损耗值的预设区间,控制设备在接收到AP发送的路径损耗数据时,通过查询每个AP对的路径损耗值对应的预设区间,确定接收到的AP对对应的路径损耗值是否为有效值,若路径损耗值属于预设区间,则保留该路径损耗值为对应AP对的路径损耗数据,防止AP所处环境等发生变化带来的路径损耗值的突变对调优组分组结果产生影响。
在一种具体的实现方式中,上述控制设备根据第一路径损耗数据和第二路径损耗数据,获得第一AP与第二AP间的路径损耗数据包括:
控制设备将第一路径损耗数据和第二路径损耗数据的均值,作为第一AP与所述第二AP间的路径损耗数据;或者
控制设备根据第一路径损耗数据、第二路径损耗数据以及加权平均算法,获得第一AP与第二AP间的路径损耗数据。
控制设备通过获取AP对之间多个采样时刻的路径损耗数据,计算每个AP对在多个采样时刻中路径损耗数据的均值,然后根据每个AP对的路径损耗数据的均值,对AP进行划分调优组,使划分结果更加精确。
在一种具体的实现方式中,控制设备接收上述第一调优组的管理AP发送的调优请求,上述调优请求包括第一调优组的管理AP的标识和第一调优组包括的AP的标识;
控制设备根据调优请求,获取第一调优组所包括的AP集的路径损耗数据;
控制设备根据第一调优组所包括的AP集的路径损耗数据,获得第四调优组,上述第四调优组包括的AP集是第一调优组包括的AP集的子集;
控制设备向第四调优组的管理AP发送第四调优信息,第四调优信息包括第四调优组包括的AP的标识,第四调优组的管理AP为第四调优组中进行调优管理的AP。
调优组中的管理AP可以周期性的向控制设备发送调优请求,控制设备周期性的根据新接收到的路径损耗数据对AP集中的AP进行分组,在AP集中增加新AP或者关闭AP时,可以及时更新分组。
在一种具体的实现方式中,所述第一调优组中的AP的数量小于或者等于预设阈值,所述预设阈值为目标AP能够管理的AP数量,所述目标AP为所述AP集中管理AP数量最少的AP。
AP集中的每个AP能够管理的AP数量可能各不相同,控制设备在对AP划分调优组时,需要限制每个调优组中AP的数量,因此,控制设备需要获取AP集中每个AP能够管理的AP的数量,将其中最小值作为上述预设的AI算法的约束条件,以使上述划分的每个调优组中的AP的数量,均小于或者等于上述最小值,防止一个调优组中实际的AP数量多于该 调优组的管理AP能够管理的AP数量。
第二方面,本申请实施例提供一种分组调优装置,包括:
通信单元,用于获取无线接入点AP集的路径损耗数据,所述AP集包括多个AP,所述路径损耗数据包括所述多个AP中任意两个AP之间的路径损耗;
处理单元,用于根据所述第一路径损耗数据,获得第一调优组,所述第一调优组包括所述多个AP中的第一AP和第二AP;
所述通信单元,还用于向所述第一调优组的管理AP发送第一调优信息,所述第一调优信息包括所述第一AP的标识和所述第二AP的标识,所述第一调优组的管理AP为所述第一调优组中进行调优管理的AP。
在一种具体的实现方式中,所述通信单元,还用于获取所述第一AP的负载信息和所述第二AP的负载信息,所述第一AP的负载信息包括第一采样时刻采集的所述第一AP的负载数据和第二采样时刻采集的所述第一AP的负载数据,所述第二AP的负载信息包括所述第一采样时刻采集的所述第二AP的负载数据和所述第二采样时刻采集的所述第二AP的负载数据,所述负载数据包括传输速率、信道利用率和关联用户数中的至少一个;
所述处理单元,还用于:根据预设的第一算法、所述第一采样时刻采集的所述第一AP的负载数据和所述第二采样时刻采集的所述第一AP的负载数据,获得第一负载值;
根据所述预设的第一算法、所述第一采样时刻采集的所述第二AP的负载数据和所述第二采样时刻采集的所述第二AP的负载数据,获得第二负载值;
根据所述第一负载值和所述第二负载值,从所述第一AP和所述第二AP中确定所述第一调优组的管理AP。
在一种具体的实现方式中,所述处理单元,还用于根据所述路径损耗数据和所述AP集,获得第二调优组和第三调优组,所述第二调优组包括所述多个AP中的第三AP和第四AP,所述第三调优组包括所述多个AP中的第五AP和第六AP;
所述通信单元,还用于向所述第二调优组的管理AP发送第二调优信息以及向所述第三调优组的管理AP发送第三调优信息,所述第二调优信息包括所述第三AP的标识和所述第四AP的标识,所述第二调优组的管理AP为所述第二调优组中进行调优管理的AP,所述第三调优信息包括所述第五AP的标识和所述第六AP的标识,所述第三调优组的管理AP为所述第三调优组中进行调优管理的AP。
在一种具体的实现方式中,所述处理单元,还用于:根据所述第一调优组、所述第二调优组和所述第三调优组,计算第一耦合值、第二耦合值和第三耦合值,所述第一耦合值为所述第一调优组与所述第二调优组间的耦合度以及所述第一调优组与所述第三调优组间的耦合度之和,所述第二耦合值为所述第二调优组与所述第一调优组间的耦合度以及所述第二调优组与所述第三调优组间的耦合度之和,所述第三耦合值为所述第三调优组与所述第一调优组间的耦合度以及所述第三调优组与所述第二调优组间的耦合度之和;
根据所述第一耦合值、所述第二耦合值和所述第三耦合值,获得调优顺序,所述调优顺序用于表示所述第一调优组、所述第二调优组和所述第三调优组进行调优的顺序。
在一种具体的实现方式中,所述第一调优信息还包括所述调优顺序、所述第二调优组的管理AP的信息和所述第三调优组的管理AP的信息。
在一种具体的实现方式中,所述处理单元还用于:
获取第一路径损耗数据,所述第一路径损耗数据为第三采样时刻所获取的所述第一AP 和所述第二AP之间的属于预设范围的路径损耗值;
获取第二路径损耗数据,所述第二路径损耗数据为第四采样时刻所获取的所述第一AP和所述第二AP之间的属于预设范围的路径损耗值;
根据所述第一路径损耗数据和所述第二路径损耗数据,获得所述第一AP与所述第二AP间的路径损耗数据。
在一种具体的实现方式中,所述处理单元具体用于:
将所述第一路径损耗数据和所述第二路径损耗数据的均值,作为所述第一AP与所述第二AP间的路径损耗数据;或者
根据所述第一路径损耗数据、所述第二路径损耗数据以及加权平均算法,获得所述第一AP与所述第二AP件的路径损耗数据。
在一种具体的实现方式中,所述处理单元具体用于:
根据所述多个AP中任意两个AP之间的路径损耗数据和预设的第二算法,将所述第一AP和所述第二AP划分到所述第一调优组,所述任意两个AP之间的路径损耗数据包括所述第一AP与所述第二AP间的路径损耗数据。
在一种具体的实现方式中,其特征在于,
所述通信单元,还用于接收所述第一调优组的管理AP发送的调优请求,所述调优请求包括所述第一调优组的管理AP的标识和所述第一调优组包括的AP的标识;
所述处理单元,还用于:根据所述调优请求,获取所述第一调优组所包括的AP集的路径损耗数据;
根据所述第一调优组所包括的AP集的路径损耗数据,获得第四调优组,所述第四调优组包括的AP集是所述第一调优组包括的AP集的子集;
所述通信单元,还用于向所述第四调优组的管理AP发送第四调优信息,所述第四调优信息包括所述第四调优组包括的AP的标识,所述第四调优组的管理AP为所述第四调优组中进行调优管理的AP。
在一种具体的实现方式中,所述第一调优组中AP的数量小于或者等于预设阈值,所述预设阈值为目标AP能够管理的AP数量,所述目标AP为所述AP集中管理AP数量最少的AP。
第三方面,本申请实施例提供一种AP分组调优设备,包括处理器、通信接口以及存储器;所述存储器用于存储指令,所述处理器用于执行所述指令,所述通信接口用于接收或者发送数据;其中,所述处理器执行所述指令时执行如上述第一方面或者第一方面的任意具体实现方式中所描述方法。
第四方面,本申请提供一种非瞬态计算机存储介质,所述非瞬态计算机介质存储有用于分组调优的计算机程序,所述计算机程序被处理器执行时实现如上述第一方面或者第一方面的任意具体实现方式中所描述方法。
附图说明
图1A是本申请实施例提供的一种AP分组调优的系统示意图;
图1B是本申请实施例提供的一种云AP分组调优的系统示意图;
图2是本申请实施例提供的一种分组调优方法的流程示意图;
图3是本申请实施例提供的一种AP集上报的路径损耗数据的示意图;
图4是本申请实施例提供的一种AP路径损耗均值示意图;
图5是本申请实施例提供的一种计算路径损耗均值的示意图;
图6是本申请实施例提供的一种调优信息的示意图;
图7是本申请实施例提供的一种分组调优装置的示意图;
图8是本申请实施例提供的一种分组调优设备的示意图。
具体实施方式
下面将结合附图,对本申请中的技术方案进行描述。
本申请实施例中的术语“第一”、“第二”仅用于描述目的,而不能理解为指示或暗示相对重要性或者隐含指明所指示的技术特征的数量。由此,限定有“第一”、“第二”的特征可以明示或者隐含地包括一个或者更多个该特征。
本申请实施例中,“至少一个”是指一个或者多个,“多个”是指两个或两个以上。“和/或”,描述关联对象的关联关系,表示可以存在三种关系,例如,A和/或B,可以表示:单独存在A,同时存在A和B,单独存在B的情况,其中A,B可以是单数或者复数。字符“/”一般表示前后关联对象是一种“或”的关系。“以下中的至少一项(个)”或其类似表达,是指的这些项中的任意组合,包括单项(个)或复数项(个)的任意组合。例如,a,b或c中的至少一项(个),可以表示:a、b、c、a-b、a-c、b-c或a-b-c,其中a、b、c可以是单个,也可以是多个。
本申请中被描述为“示例性的”或者“例如”的任何实施例或设计方案不应被解释为比其他实施例或设计方案更优选或更具优势。确切而言,使用“示例性的”或者“例如”等词旨在以具体方式呈现相关概念。
为了帮助本领域技术人员更好地理解本申请的技术方案,首先对本申请实施例中所涉及到的一些概念进行介绍。
路径损耗也称为传播损耗,本申请中简称为路损。路损是指电磁波在空间传播时所产生的损耗,是由发射功率的辐射扩散以及信道的传播特性造成的。理论上,对于相同的收发距离,路径损耗相同。在实际中,由于发射机与接收机之间的障碍物会使电磁波产生反射、散射等,导致信号功率发生衰减,相同收发距离上的接收点的接收功率存在较大变化,同一接收点的接收功率在不同时间点也会发生改变。
耦合度是对单元间关联程度的度量。单元间联系越多,单元间的耦合性越强,各单元的独立性越差。通常用耦合度来衡量单元独立程度。
云AP是通过云管理平台管理的AP。AP的工作模式包括传统模式和云模式。传统模式下网络管理员需要到安装现场对AP进行调试,存在部署成本高、后期运维困难等问题。在云模式下,云AP上电之后即可自动连接到指定的云管理平台加载指定的配置文件等,通过云管理平台,实现对设备在任意地点的集中管理和维护,可大大降低网络部署运维成本。
调优组:根据信道分配算法对WLAN网络中的AP进行信道分配时,需要遍历多个AP多个信道的排列组合,计算每一个排列组合的系统干扰值,通常选择具有最小干扰值的排列组合为WLAN网络最终的信道分配结果。随着网络的AP数量越多,信道排列组合会出现指数级别增加,信道分配算法所需要的资源消耗也随之增加,为了权衡资源效果以及算法效果,通常将大的网络分成多个小组,每个组内使用信道组合运算,可以减少信道 排列组合数,减少资源消耗,这样的分组,称之为调优组。
管理AP是一个调优组内选举的负责整个组内AP的信道功率调优、负载均衡等功能的AP。
WLAN技术能够方便快捷的为用户提供网络接入,该技术适合用户流动性较大、有业务需求的公共场所、企业以及建筑等环境。这些环境需要高密度的部署AP才能满足需求。为了更好的管理以及配置多个AP,通常采用随机分组或人工分组的方法将多个AP划分到不同的调优组。同一个调优组内的AP将采集到的数据上报给该调优组的管理AP。该调优组的管理AP做调优计算,为调优组内的AP确定分配信道、发送功率等配置信息。
随机分组:AP与周边有线网络可达的云AP进行随机聚合成组。当组内AP数量超过管理AP管理上限,那么这组AP就停止扩张,组建成一个调优组。重复上述过程,直到站点所有的云AP都分组完毕。
人工分组:实际部署中多采用人工分组的方式来进行分组。根据AP的物理区域连续性、无线可见关系(楼层、邻居、隔断等因素),将多个AP人工分成多个组。各组之间尽量AP无线不可见,或尽量少的AP无线可见。将各组AP设置成不同的虚拟局域网(Virtual Local Area Network,VLAN),这样每个VLAN就组建成一个调优组。AP是在各自的2层域内广播时只会发现自己所在的调优组内的AP,每个组都会选举自己的管理AP。
上述随机分组的方法中,相邻的AP或者同楼层的AP可能被分到不同的调优组内,这样会使相互之间路损较小,相互可见的AP分到不同的调优组,调优组之间的耦合度较强,耦合度大的调优组的调优效果差。上述人工分组的方法中,虽然会根据物理区域进行划分,但是由于网络环境的复杂性,AP之间的物理距离并不能完全代表路损的大小,因此同样会出现上述耦合度大的调优组的调优效果差的问题。
另外,每个调优组内的AP会选举一个管理AP,管理AP通常是调优组内硬件能力较强的AP,或者是启动时间长的AP,或者是物理地址最小的AP。管理AP需要对调优组内的AP进行调优管理,包括周期性的对调优组内的AP进行调优、解决突发事件的实时调优(例如调优组内AP上下线)、负载均衡以及入侵检测等,而在选举管理AP的过程中,调优组内的AP并不能获得每个AP的历史负载信息,例如每个AP长期关联的用户数、业务流量等。因此可能选举出的管理AP的负载较大,而管理AP的中央处理器(central processing unit,CPU)、内存、通信开销等资源有限,管理AP没有足够的资源承担调优任务,导致调优收敛慢、调优时间长。
为了解决上述问题,本申请提供一种分组调优方法,如图1A所示,图1A是本申请实施例提供的一种AP分组调优的系统示意图,其中,控制设备与部署AP的站点内的AP通信连接。与该控制设备通信连接的所有AP组成AP集。AP在上电之后,可以周期性的上报业务流量、业务流量速率、关联用户数、信道利用率以及任意两个AP之间的路损信息给控制设备。控制设备根据AI算法和AP集中每个AP上报的路损信息,将AP集中的AP划分为多个调优组,能够降低各个调优组之间的耦合度,并通过各个调优组中每个AP的负载信息,给每个调优组指定管理AP,从而在每个调优组中选择出负载较轻的AP作为管理AP,能够使调优组调优时的收敛速度加快。
举例说明,上述控制设备可以是部署在站点内的接入控制器(access controller,AC)或者服务器等具有计算能力的设备,也可以是部署在云端的云分析器。如图1B所示,图1B是本申请实施例提供的云AP分组调优的系统示意图。云分析器通过网络以及交换机等 与云AP通信。各个云AP通过网络周期性向云分析器上报负载信息以及路损信息,进而通过云分析器实现上述划分调优组以及选举管理AP的功能。负载信息可以包括业务流量的速率、关联用户数和有效信道利用率中的一个或多个。其中,有效信道利用率可以是AP与其关联用户收发数据所占用的信道利用率,该信道利用率排除了外部干扰所导致的信道利用率。
如图2所示,图2是本申请实施例提供的一种分组调优方法的流程示意图,该方法包括:
S202、控制设备获取AP集的路径损耗数据。
其中,上述AP集包括控制设备管理的多个AP。上述路径损耗数据包括AP集中多个AP中任意两个AP之间的路径损耗。
本申请实施例中,AP集中包括n个AP。n个AP的标识分别为AP1-APn为例,对本申请实施例中的AP分组调优方法进行详细介绍。n个AP中的任意一个AP在上电启动之后,基于预设的探测周期以无线的方式发送探测报文。n个AP中的任意一个AP接收其他AP发送的探测报文,并根据接收到的其他AP发送的探测报文获取与其他AP之间的路径损耗值。n个AP中的任意一个AP将与其他AP之间的路径损耗数据发送给控制设备。其中,探测报文包括发送该探测报文的AP的标识以及发送该探测报文的发送功率。
以AP1为例,AP1以预设的探测周期发送探测报文,该探测报文包括AP1的标识以及AP1发送该探测报文的发送功率。AP1接收其他AP发送的探测报文,例如AP1可以接收到AP2发送的探测报文。AP1在接收AP2发送的探测报文时,测量接收到的信号强度指示(Received Signal Strength Indication,RSSI)。AP1根据RSSI和AP2发送的探测报文中携带的发送功率,获得AP1与AP2之间的路径损耗值。比如AP1与AP2间的路径损耗值可以是RSSI与探测报文中携带的发送功率的差值。通过上述方式,AP集中的每个AP可以计算与AP集中的其他AP之间的路径损耗值,进而将获取到的多个路径损耗值发送给控制设备。
举例说明,AP1可以在每次计算得到与其他AP之间的一组路径损耗值之后,将这一组路径损耗值发送给上述控制设备。AP1也可以将预设的第一上报周期得到的多组路径损耗值发送给上述控制设备,例如,AP1的探测周期为20秒,上报周期为30分钟,则AP1每隔30分钟向上述控制设备发送90组路径损耗值。本申请实施例不做具体限定。
本申请实施例中,控制设备在接收到上述AP集中每个AP发送的路径损耗值之后,可以得到AP集中每个AP对之间的路径损耗值。其中,AP对为上述AP集中互相能够接收到对方发送的探测报文的两个AP。如图3所示,图3中示出了控制设备接收到的AP集的路径损耗数据,该AP集的路径损耗数据包括该AP集中多个AP中任意两个AP之间的路径损耗值。上述AP集中的AP以上述预设的第一上报周期向控制设备发送路径损耗值,控制设备接收到每个AP发送的与其他AP之间的路径损耗值之后进行存储。在调优时刻之前,控制设备将接收到的数据进行计算得到一个调优周期内每个AP对之间的路径损耗均值,将所有AP对之间的路径损耗均值作为该AP集的路径损耗数据。
举例说明,若AP的调优周期为24小时,即控制设备每隔24小时计算并划分一次调优组,则控制设备每个调优周期可以获得每个AP对的至多90*24=2160个路径损耗值。在控制设备划分调优组时,控制设备计算每个AP对对应的多个路径损耗值均值,作为该调优周期内上述AP集的路径损耗数据。或者,控制设备也可以将多个调优周期获取的每个 AP对的路径损耗值的均值作为该调优周期内AP集的路径损耗数据,例如,如图4所示,控制设备每隔24小时计算一次每个AP对的路径损耗均值,将该路径损耗均值存储下来,其中,扫描次数是指在一个调优周期内,一个AP对中的两个AP互相接收到对方发送的探测报文的次数。在控制设备划分调优组时,可以先计算该调优周期内每个AP对的路径损耗均值,作为该调优周期AP集的路径损耗数据,然后获取该调优周期之前的两个调优周期的AP集的路径损耗数据,再计算这三个调优周期的路径损耗数据中每个AP对的路径损耗值的均值,作为该调优周期AP集的最终的路径损耗数据。例如,如图4中所示,当前调优周期为9月13日对应的调优周期,在该调优周期内,AP1与AP2扫描到对方2000次,这两千次的路径损耗均为44,在该调优周期的前两个调优周期中,AP1与AP2之间的路径损耗均值分别为46和45,这三个调优周期内AP1与AP2之间的路径损耗均值为45,则将45作为该调优周期内AP1与AP2之间最终的路径损耗均值。
可选地,控制设备接收AP发送的上述路径损耗数据之后,可以根据目标AP对对应的多个历史路径损耗值,计算该目标AP对的历史路径损耗值的平均值。控制设备利用目标AP对的历史路径损耗值的平均值确定有效路径损耗范围。若之后控制设备接收到的该目标AP对的路径损耗值在该有效路径损耗范围内,则认为该路径损耗值为有效数据,将该路径损耗值保存为该目标AP对的历史路径损耗值。若该目标AP对的路径损耗值不在该有效路径损耗范围内,则将该值舍弃。以AP1和AP2这一AP对为例,在某一时刻之前,该AP对对应的历史路径损耗值的平均值为50,有效路径损耗范围为[40,60]。如果在该时刻之后控制设备所获得的该AP对的路径损耗值大于或等于40且小于或等于60,则控制设备确定该路径损耗数据为有效值进而作为历史路径损耗值进行保存。若该路径损耗值小于40或者大于60,则控制设备不保存该路径损耗值。
S204、控制设备根据路径损耗数据,获得第一调优组。
控制设备在获得AP集的路径损耗数据之后,根据预设的AI算法以及上述每个AP对之间的路径损耗均值,将所述AP集中的多个AP划分至某个调优组,进而获得多个调优组。其中,AP对之间的路径损耗均值即为AP对间的路径损耗数据。AI算法可以是k均值聚类算法(k-means clustering algorithm,k-means)、杰卡德(Jaccard)相似度矩阵算法和谱密度聚类(spectral clustering)算法中的一个或多个,本申请实施例不做具体限定。
在一种实现方式中,控制设备根据第一时长内不同采样点所获得的第一AP对之间的路径损耗值,计算获得第一时长对应的第一AP对之间的路径损耗均值。控制设备根据第二时长内不同采样点所获得的第一AP对之间的路径损耗值,计算获得第二时长对应的第一AP对之间的路径损耗均值。第一时长与第二时长相同,比如,其取值可以是一天,或一周或一小时,本申请实施例对此不进行限定。控制设备根据第一时长对应的第一AP对之间的路径损耗均值、第一时长内的采样次数(或称为扫描次数)、第二时长对应的第一AP对之间的路径损耗均值、第二时长内的采样次数(或称为扫描次数)和加权平均算法,获得第一AP对的路径损耗数据。第一AP对的路径损耗数据为第一乘积与第二乘积的和与总采样次数的商,其中,第一乘积为第一时长对应的第一AP对之间的路径损耗均值与第一时长内的采样次数的乘积。第二乘积为第二时长对应的第一AP对之间的路径损耗均值与第二时长内的采样次数的乘积。总采样次数为第一时长内的采样次数与第二时长内的采样次数的和。控制设备可采用上述获得第一AP对之间的路经损耗均值的方法,获得AP集中多个AP对之间的路径损耗均值。控制设备根据所述多个AP对之间的路径损耗均值, 获得用于记录多个AP对路径损耗均值的拓扑矩阵,如图4所示。控制设备根据所述拓扑矩阵和路损阈值,获得邻居关系矩阵。比如所述拓扑矩阵中的AP1与AP2这一AP对的路径损耗均值为负值,AP1与AP2这一AP对的路径损耗均值大于路损阈值,则认为AP1与AP2之间存在邻居关系。所述拓扑矩阵中的AP1与AP3这一AP对的路径损耗均值为负值,AP1与AP3这一AP对的路径损耗均值小于或等于路损阈值,则认为AP1与AP3之间不存邻居关系。所述拓扑矩阵中的AP1与AP2这一AP对的路径损耗均值为正值,AP1与AP2这一AP对的路径损耗均值小于路损阈值,则认为AP1与AP2之间存在邻居关系。所述拓扑矩阵中的AP1与AP3这一AP对的路径损耗均值为正值,AP1与AP3这一AP对的路径损耗均值大于或等于路损阈值,则认为AP1与AP3之间不存邻居关系。控制设备根据邻居关系矩阵和Jaccard相似度矩阵算法,获得相似度矩阵。控制设备根据相似度矩阵和谱密度聚类算法,获得调优组的个数以及每个调优组所包括的AP。具体的,控制设备可在获得相似度矩阵后,利用谱密度聚类算法中的k-means算法获得调优组的个数以及每个调优组所包括的AP。
在另一种实现方式中,控制设备可根据AP集中各AP对所对应的路径损耗数据和AI算法,将AP对中路径损耗值在某一区间范围内的AP划分到一个调优组。其中,AI算法用于对多个AP进行聚类分析,比如AP1与AP2间的路损为a1,AP1与AP3间的路损为a2,AP2与AP3间的路损为a3,a3小于a1且小于a2,a1和a2的数值较为接近。控制设备所采用的AI算法根据上述a1,a2和a3的数值,能够确定AP1与AP2和AP3距离较远,路损较大,AP2和AP3较为接近,路损较小,即AP2和AP3被划分为一个调优组。通过上述方法划分调优组,路径损耗均值大的两个AP会被分配到不同的调优组中,从而使不同调优组中的AP互相不可见,减少不同调优组之间的耦合度。上述第一调优组为上述划分出的多个调优组中的任意一个调优组。第一调优组包括AP集中多个AP中的第一AP和第二AP,比如第一AP可以是上述AP2,第二AP可以是上述AP3。
举例说明,上述AP集中的每个AP能够管理的AP数量可能各不相同.控制设备在对AP划分调优组时,需要限制每个调优组中AP的数量.本申请实施例中,控制设备还需要获取AP集中每个AP能够管理的AP的数量。控制设备将所获得的每个AP能够管理的AP的数量中的最小值作为AI算法的约束条件,以使根据AI算法划分的每个调优组中的AP的数量均小于或者等于该最小值,防止一个调优组中实际的AP数量多于该调优组的管理AP能够管理的AP数量。
S206、控制设备向第一调优组的管理AP发送第一调优信息。
其中,上述第一调优组的管理AP为第一调优组中进行调优管理的AP。上述第一调优信息包括第一调优组中的多个AP的标识信息。比如第一调优信息包括AP2的标识和AP3的标识。
上述第一调优组的管理AP在接收到上述调优信息之后,根据第一调优信息中携带的AP的标识,确定其管理的AP,并启动调优,通过信道分配算法给第一调优组中的AP分配信道,同时为每个AP分配发送功率。
通过实施上述实施例中的方法,AP集中每个AP通过周期性的获取与AP集中其他AP的路径损耗数据,并将获取的路径损耗数据发送给对AP集中多个AP进行统一管理的控制设备,由控制设备根据路径损耗数据对AP集中的多个AP进行分组,能够将相互之间路径损耗大的两个AP分配到不同的调优组中,以使不同调优组中的AP互相不可见, 减少不同调优组之间的耦合度,提高WLAN网络的调优效果。
本申请实施例中,上述S206向所述第一调优组的管理AP发送第一调优信息之前,还包括:
S205、控制设备根据第一调优组中每个AP的负载信息,确定第一调优组的管理AP。
上述负载信息包括每个AP关联的用户数、每个AP的信道利用率以及传输速率中的至少一个。上述AP集中的每个AP不仅会以预设的第一上报周期向控制设备上传各自的路径损耗数据,也会以预设的第二上报周期向控制设备上传各自的负载信息。控制设备在根据AP集的路径损耗数据对AP集划分多个调优组之后,根据每个调优组中的AP的负载信息为每个调优组确定一个管理AP,从而将每个调优组对应的调优信息发送给每个调优组对应的管理AP,其中,第二上报周期可以与第一上报周期相同,也可以与第一上报周期不同,本申请实施例不做具体限定。
以上述第一调优组为例,控制设备在根据路径损耗数据获得第一调优组之后,获取第一调优组中每个AP对应的多个负载数据,然后根据第一调优组中每个AP的负载数据预测每个AP在下一个调优周期的预测负载值,再根据第一调优组中每个AP的预测负载值确定一个AP作为下一个调优周期内第一调优组的管理AP,并将第一调优组的调优信息发送给确定出的第一调优组的管理AP。其中,控制设备可采用梯度提升决策树(gradient boosting decision tree,GBDT)算法、长短期记忆网络(long short-term memory,LSTM)或时间序列算法等预测算法,获取每个AP在下一个调优周期的预测负载值。
以第一调优组中的AP1为例,AP1以预设时间间隔采集对应的负载数据,并将采集的负载数据发送给控制设备。若预设时间间隔为1分钟,则AP1采集的负载数据如图5所示,AP1每个采样时刻采集的数据为一组负载数据,一组负载数据包括采样时刻、AP1关联的用户数、每个AP的信道利用率以及传输速率。AP1可以在多次采集得到多组负载数据之后,将采集的多组负载数据发送给上述控制设备,例如AP1可以每隔30分钟将采集的30组负载数据发送给控制设备。上述控制设备在接收到AP1上传的30组负载数据之后,根据这30组负载信息计算得到这30分钟内AP1的综合负载值并存储。
具体的,控制设备将上述每一组负载数据中的传输速率的值、关联用户数的值以及信道利用率的值,通过加权计算得到每组负载数据对应的负载值。该负载值表征AP1在这一分钟内的负载状况。控制设备对30组负载数据计算得到的30个负载值,取这30个负载值中的最大值或者平均值作为这30分钟内AP1的综合负载值并进行记载。
本申请实施例中,将控制设备接收到AP1发送的多组负载数据的时刻作为控制设备的负载采样时刻,控制设备可以根据多个负载采样时刻获取到的AP1的负载数据,计算得到AP1对应的多个负载值,并根据多个负载值以及预设的预测算法,预测AP1在负载采样时刻的负载值。例如,在第一负载采样时刻,控制设备根据AP1上传的30组负载数据计算得到AP1对应的负载值,在第二负载采样时刻,控制设备根据AP1上传的另外30组负载数据计算得到AP1对应的负载值,控制设备根据这两个负载采样时刻得到的负载值和负载值,结合预设的预测算法,可以计算得到AP1在下一个负载采样时刻的负载值。需要说明的是,控制设备还可以根据两个以上的采样时刻获取到的数据计算AP1在下一个采样时刻的负载值。
根据相同的方法,控制设备可以预测第一调优组内其他AP在下一个负载采样时刻的负载值,然后根据第一调优组内每个AP在下一个负载采样时刻的负载值,确定负载最轻 的AP为下一个调优周期第一调优组的管理AP。
每个调优组中的AP通过周期性的获取各自关联的用户数、信道利用率以及传输速率等负载信息,将获取的负载信息发送给控制设备,控制设备根据预设的预测算法结合各个AP的历史负载信息,将确定各个AP在下一个调优周期内的负载,并选择负载最轻的AP作为下一个调优周期该调优组的主导AP,这样主导AP本身业务轻,从而有足够的资源承担调优任务。
在一种可能的实施方式中,控制设备在将上述AP集划分为多个调优组之后,控制设备还可以计算每个调优组与其他各个调优组之间的耦合度,将每个调优组与其他各个调优组之间的耦合度相加得到每个调优组的耦合度度量值,进而根据各个调优组的耦合度度量值确定各个调优组的调优顺序。例如,控制设备将上述AP集划分为3个调优组:第一调优组、第二调优组以及第三调优组,其中,若控制设备计算得到第一调优组与第二调优组和第三调优组之间的耦合度分别为C12与C13,第二调优组与第一调优组和第三调优组之间的耦合度分别为C21与C23,第三调优组与第一调优组和第二调优组之间的耦合度分别为C31与C32,则第一调优组的耦合度度量值C1=C12+C21,第二调优组的耦合度度量值为C2=C21+C23,第三调优组的耦合度度量值为C3=C31+C32,其中,C12=C21,C13=C31,C23=C32。
在一种可能的实施方式中,上述计算第一调优组与第二调优组之间的耦合度的方法为:计算上述第一调优组中m个AP与上述第二调优组中n个AP之间的路径损耗值,得到m*n个路径损耗值,将这m*n个路径损耗值累加求和,得到的值即为第一调优组与第二调优组之间的耦合度。通过路径损耗值表征调优组之间的耦合度时,由于路径损耗值越大,表示两个AP之间的干扰越小,因此,路径损耗值越大,表示两个AP之间的耦合度越小,即上述累加求和得到的值越大,两个调优组之间的耦合度越小,则上述耦合度度量值越大,表示对应的调优组与其他调优组的耦合度越小,耦合度度量值越小,表示对应的调优组与其他调优组的耦合度越大。
控制设备在计算得到各个调优组的耦合度度量值之后,根据各个调优组的耦合度度量值大小,确定各个调优组的调优顺序。针对上述采用路径损耗值计算得到调优组的耦合度度量值,则耦合度度量值越大,调优顺序越靠后,例如,如果上述三个调优组的耦合度度量值关系为C1>C3>C2,则三个调优组中第二调优组首先调优,然后是第三调优组调优,最后是第一调优组调优。各个调优组的主导AP在接收到调优信息之后,根据调优顺序依次执行调优,其中,后调优的调优组在调优时,会扫描并获取已完成调优的调优组中的AP所使用的信道,主导AP通过信道分配算法确定该调优组中各个AP的信道,减少调优组之间的耦合度。
通过上述方法,控制设备对AP集中的AP进行分组调优得到的调优信息包括:每个调优组中的管理AP、每个调优组中AP的数量、每个调优组中成员AP的标识信息以及每个调优组的调优顺序,以AP集中有10个AP为例,则控制设备得到的调优信息如图6所示。
举例说明,在上述控制设备确定每个调优组的调优顺序的情况下,上述S206中管理设备发送给管理AP的调优信息还包括调优顺序信息,以使每个调优组中的管理AP根据上述调优顺序确定启动调优的时刻。可选地,上述控制设备可以直接将上述每个调优组的调优顺序信息发送给各个调优组的管理AP,当一个调优组的管理AP在确定其所在的调优 组调优完成之后,该管理AP根据接收到的调优顺序信息,确定下一个调优组的管理AP,然后向下一个调优组的管理AP发送调优完成的通知信息,该通知信息用于指示接收到该通知信息的管理AP启动调优;或者,上述AP集中的每个AP均配置有启动时长,当一个管理AP接收到上述调优顺序信息之后,即可根据该调优顺序信息中该管理AP对应的调优顺序以及上述启动时长,确定在接收到控制设备发送的调优顺序的时刻到该管理设备能够启动调优的间隔时长,例如,上述启动时长为2分钟,由于上述第二调优组的调优顺序为1,则第二调优组在接收到上述控制设备发送的调优顺序信息之后,可以立即启动调优;而第三调优组的调优顺序为2,则第三调优组需要在接收到控制设备发送的调优信息之后启动计时功能,在2分钟之后才能启动调优,第一调优组需要在接收到控制设备发送的调优信息之后的第4分钟才能启动调优。
控制设备通过计算每个调优组与其他调优组之间的耦合度,根据耦合度制定各个调优组调优的先后顺序,在一个调优组进行调优时,可以获取已经完成调优的调优组的调优结果,进而根据已经完成的调优在的调优结果进行信道的分配。从而能够避免多个调优组同时调优时,各个调优组之间没有交互,导致调优后各个调优组之间耦合度大的问题。
本申请实施例中,上述控制设备对AP集中的多个AP划分调优组,并为每个调优组确定管理AP以及调优顺序进而进行分组调优的过程是周期性进行的,在AP集的每个调优时刻之前,每个调优组中的管理AP会向控制设备发送调优请求,控制设备接收到上述调优请求之后,根据接收到调优请求之前接收到的路径损耗数据以及负载信息等,执行上述划分调优组、确定管理AP以及调优顺序的过程。
举例说明,上述第一调优组中的管理AP向控制设备发送调优请求,该调优请求包括第一调优组的管理AP的标识和第一调优组包括的AP的标识,控制设备根据所述调优请求,根据调优请求中AP的标识获取第一调优组所包括的AP的路径损耗数据;控制设备根据第一调优组所包括的AP的路径损耗数据,获得第四调优组,所述第四调优组包括的AP是所述第一调优组包括的AP的子集;然后控制设备将第四调优信息发送给第四调优组的管理AP,所述第四调优信息包括第四调优组包括的AP的标识,第四调优组的管理AP为所述第四调优组中进行调优管理的AP。
在AP集中的AP第一次启动时,可以采用上述随机分组或者人工分组的方式,生成调优组并选举出每个调优组的管理AP。在第一次调优时刻之前,由每个调优组中的管理AP向控制设备发送调优请求,进而通过控制设备划分调优组并确定管理AP以及调优顺序。在控制设备第一次对AP集中的AP分组完成并确定每个调优组的管理AP之后,则由控制设备确定的管理AP向控制设备发送调优请求。
上文中结合图1A至图6详细描述了根据本申请实施例所提供的分组调优方法,下面将结合图7和图8,描述根据本申请实施例所提供的永不分组调优的相关装置与设备。请参见图7,图7是本申请实施例提供的一种分组调优装置的结构示意图,该装置用于上述图1A或者图1B所示的系统中,该装置700包括:通信单元710和处理单元720,其中,
通信单元710,用于获取AP集的路径损耗数据,其中,AP集包括控制设备管理的多个AP,上述路径损耗数据包括AP集中多个AP中任意两个AP之间的路径损耗。
处理单元720,根据路径损耗数据,获得第一调优组。其中,所述第一调优组为所述AP集划分出的多个调优组中的任意一个,所述第一调优组包括所述AP集中的部分AP,例如,包括上述AP集中的AP1和AP2。
通信单元710,还用于向第一调优组的管理AP发送第一调优信息,所述第一调优信息包括第一调优组中的AP的标识,所述第一调优组的管理AP为所述第一调优组中进行调优管理的AP。
可选地,上述通信单元710,还用于:获取上述AP1以及AP2的负载信息,所述负载数据包括传输速率、信道利用率和关联用户数中的至少一个。
处理单元720,还用于根据预设算法和AP1的负载信息计算得到第一负载值;根据预设算法和AP2的负载信息计算得到第二负载值;根据所述第一负载值和所述第二负载值,从AP1和AP2中确定所述第一调优组的管理AP。
处理单元720,还用于计算第一调优组与其他多个调优组之间的耦合度度量值,并根据耦合度度量值确定每个的调优组的调优顺序。
可选地,上述装置700还可以包括存储单元730,所述存储单元用于存储上述AP上报的路径损耗数据以及负载信息等。
具体的,上述方法实施例中分组调优装置700所执行的操作可参照上述方法实施例中控制设备的相关操作,在此不再具体描述。上述分组调优装置可以是单独的一台设备,例如服务器,也可以是一个具有存储、通信与计算能力的单元,本申请实施例不做具体限定。
图8为本申请实施例提供的一种AP分组调优设备的结构示意图,该AP分组调优设备800至少包括:处理器810、通信接口820以及存储器830,所述处理器810、通信接口820以及存储器830通过总线840相互连接,其中,
所述处理器810执行各种操作的具体实现可参照上述方法实施例中控制设备的具体操作。处理器810可以有多种具体实现形式,例如处理器810可以为中央处理器(central processing unit,CPU)或图像处理器(graphics processing unit,GPU),处理器810还可以是单核处理器或多核处理器。处理器810可以由CPU和硬件芯片的组合。上述硬件芯片可以是专用集成电路(application-specific integrated circuit,ASIC),可编程逻辑器件(programmable logic device,PLD)或其组合。上述PLD可以是复杂可编程逻辑器件(complex programmable logic device,CPLD),现场可编程逻辑门阵列(field-programmable gate array,FPGA),通用阵列逻辑(generic array logic,GAL)或其任意组合。处理器811也可以单独采用内置处理逻辑的逻辑器件来实现,例如FPGA或数字信号处理器(digital signal processor,DSP)等。
通信接口820可以为有线接口或无线接口,用于与其他单元或设备进行通信,有线接口可以是以太接口、局域互联网络(local interconnect network,LIN),无线接口可以是蜂窝网络接口或使用无线局域网接口等。例如,本申请实施例中通信接口820具体可用于接收AP集中每个AP对的路径损耗数据以及每个AP的负载信息等。
总线840可以分为地址总线、数据总线、控制总线等。为便于表示,图8中仅用一条粗线表示,但并不表示仅有一根总线或一种类型的总线。
存储器830,一般也称为外部存储器,存储器830的存储介质可以是易失性存储器和非易失性存储器,或可包括易失性和非易失性存储器两者。其中,非易失性存储器可以是只读存储器(read-only memory,ROM)、可编程只读存储器(programmable ROM,PROM)、可擦除可编程只读存储器(erasable PROM,EPROM)、电可擦除可编程只读存储器(electrically EPROM,EEPROM)或闪存。易失性存储器可以是随机存取存储器(random access memory,RAM),其用作外部高速缓存。通过示例性但不是限制性说明,许多形式 的RAM可用,例如静态随机存取存储器(static RAM,SRAM)、动态随机存取存储器(DRAM)、同步动态随机存取存储器(synchronous DRAM,SDRAM)、双倍数据速率同步动态随机存取存储器(double data date SDRAM,DDR SDRAM)、增强型同步动态随机存取存储器(enhanced SDRAM,ESDRAM)、同步连接动态随机存取存储器(synchlink DRAM,SLDRAM)和直接内存总线随机存取存储器(direct rambus RAM,DR RAM)。存储器830用于存储程序代码和数据,以便于处理器810调用存储器830中存储的程序代码和AP的路径损耗以及负载信息等历史数据等实现对对AP集的分组以及确定管理AP等。此外,AP分组调优设备800可能包含相比于图8展示的更多或者更少的组件,或者有不同的组件配置方式。
可选地,该AP分组调优设备还可以包括输入/输出接口850,输入/输出接口850连接有输入/输出设备,用于接收输入的信息,输出操作结果,输入/输出接口850可以为CAN总线接口或其他内部总线接口。
本申请实施例还提供一种计算机非瞬态存储介质,所述计算机非瞬态存储介质中存储有指令,当其在处理器上运行时,可以实现上述方法实施例中的方法步骤,所述计算机非瞬态存储介质的处理器在执行上述方法步骤的具体实现可参照上述方法实施例的具体操作,在此不再赘述。
在上述实施例中,可以全部或部分地通过软件、硬件或者其任意组合来实现。当使用软件实现时,可以全部或部分地以计算机程序产品的形式实现。所述计算机程序产品包括一个或多个计算机指令。在计算机上加载和执行所述计算机程序指令时,全部或部分地产生按照本申请实施例所述的流程或功能。所述计算机可以是通用计算机、专用计算机、计算机网络、或者其他可编程装置。所述计算机指令可以存储在计算机可读存储介质中,或者从一个计算机可读存储介质向另一个计算机可读存储介质传输,例如,所述计算机指令可以从一个网站站点、计算机、服务器或数据中心通过有线(例如同轴电缆、光纤、数字用户线(DSL))或无线(例如红外、无线、微波等)方式向另一个网站站点、计算机、服务器或数据中心进行传输。所述计算机可读存储介质可以是计算机能够存取的任何可用介质或者是包含一个或多个可用介质集成的服务器、数据中心等数据存储设备。所述可用介质可以是磁性介质(例如软盘、硬盘、磁带)、光介质(例如DVD)、或者半导体介质(例如SSD)等。
本申请实施例方法中的步骤可以根据实际需要进行顺序调整、合并或删减;本申请实施例装置中的单元可以根据实际需要进行划分、合并或删减。
以上对本申请实施例进行了详细介绍,本文中应用了具体个例对本申请的原理及实施方式进行了阐述,以上实施例的说明只是用于帮助理解本申请的方法及其核心思想;同时,对于本领域的一般技术人员,依据本申请的思想,在具体实施方式及应用范围上均会有改变之处,综上所述,本说明书内容不应理解为对本申请的限制。

Claims (22)

  1. 一种无线接入点AP分组调优方法,其特征在于,包括:
    控制设备获取无线接入点AP集的路径损耗数据,所述AP集包括多个AP,所述路径损耗数据包括所述多个AP中任意两个AP之间的路径损耗;
    所述控制设备根据所述路径损耗数据,获得第一调优组,所述第一调优组包括所述多个AP中的第一AP和第二AP;
    所述控制设备向所述第一调优组的管理AP发送第一调优信息,所述第一调优信息包括所述第一AP的标识和所述第二AP的标识,所述第一调优组的管理AP为所述第一调优组中进行调优管理的AP。
  2. 根据权利要求1所述的方法,其特征在于,所述控制设备向所述第一调优组的管理AP发送第一调优信息之前,所述方法还包括:
    所述控制设备获取所述第一AP的负载信息和所述第二AP的负载信息,所述第一AP的负载信息包括第一采样时刻采集的所述第一AP的负载数据和第二采样时刻采集的所述第一AP的负载数据,所述第二AP的负载信息包括所述第一采样时刻采集的所述第二AP的负载数据和所述第二采样时刻采集的所述第二AP的负载数据,所述负载数据包括传输速率、信道利用率和关联用户数中的至少一个;
    所述控制设备根据预设的第一算法、所述第一采样时刻采集的所述第一AP的负载数据和所述第二采样时刻采集的所述第一AP的负载数据,获得第一负载值;
    所述控制设备根据所述预设的第一算法、所述第一采样时刻采集的所述第二AP的负载数据和所述第二采样时刻采集的所述第二AP的负载数据,获得第二负载值;
    所述控制设备根据所述第一负载值和所述第二负载值,从所述第一AP和所述第二AP中确定所述第一调优组的管理AP。
  3. 根据权利要求1或2所述的方法,其特征在于,所述方法还包括:
    所述控制设备根据所述路径损耗数据,获得第二调优组和第三调优组,所述第二调优组包括所述多个AP中的第三AP和第四AP,所述第三调优组包括所述多个AP中的第五AP和第六AP;
    所述控制设备向所述第二调优组的管理AP发送第二调优信息以及向所述第三调优组的管理AP发送第三调优信息,所述第二调优信息包括所述第三AP的标识和所述第四AP的标识,所述第二调优组的管理AP为所述第二调优组中进行调优管理的AP,所述第三调优信息包括所述第五AP的标识和所述第六AP的标识,所述第三调优组的管理AP为所述第三调优组中进行调优管理的AP。
  4. 根据权利要求3所述的方法,其特征在于,所述方法还包括:
    所述控制设备根据所述第一调优组、所述第二调优组和所述第三调优组,计算第一耦合值、第二耦合值和第三耦合值,所述第一耦合值为所述第一调优组与所述第二调优组间的耦合度以及所述第一调优组与所述第三调优组间的耦合度之和,所述第二耦合值为所述第二调优组与所述第一调优组间的耦合度以及所述第二调优组与所述第三调优组间的耦合度之和,所述第三耦合值为所述第三调优组与所述第一调优组间的耦合度以及所述第三调优组与所述第二调优组间的耦合度之和;
    所述控制设备根据所述第一耦合值、所述第二耦合值和所述第三耦合值,获得调优顺序,所述调优顺序用于表示所述第一调优组、所述第二调优组和所述第三调优组进行调优 的顺序。
  5. 根据权利要求4所述的方法,其特征在于,所述第一调优信息还包括所述调优顺序、所述第二调优组的管理AP的信息和所述第三调优组的管理AP的信息。
  6. 根据权利要求1-5任一项所述的方法,其特征在于,所述控制设备获取AP集的路径损耗数据包括:
    所述控制设备获取第一路径损耗数据,所述第一路径损耗数据为第三采样时刻所获取的所述第一AP和所述第二AP之间的属于预设范围的路径损耗值;
    所述控制设备获取第二路径损耗数据,所述第二路径损耗数据为第四采样时刻所获取的所述第一AP和所述第二AP之间的属于预设范围的路径损耗值;
    所述控制设备根据所述第一路径损耗数据和所述第二路径损耗数据,获得所述第一AP与所述第二AP间的路径损耗数据。
  7. 根据权利要求6所述的方法,其特征在于,所述控制设备根据所述第一路径损耗数据和所述第二路径损耗数据,获得所述第一AP与所述第二AP间的路径损耗数据包括:
    所述控制设备将所述第一路径损耗数据和所述第二路径损耗数据的均值,作为所述第一AP与所述第二AP间的路径损耗数据;或者
    所述控制设备根据所述第一路径损耗数据、所述第二路径损耗数据以及加权平均算法,获得所述第一AP与所述第二AP间的路径损耗数据。
  8. 根据权利要求1-7任一项所述的方法,其特征在于,所述控制设备根据所述路径损耗数据,获得第一调优组,包括:
    所述控制设备根据所述多个AP中任意两个AP之间的路径损耗数据和预设的第二算法,将所述第一AP和所述第二AP划分到所述第一调优组,所述任意两个AP之间的路径损耗数据包括所述第一AP与所述第二AP间的路径损耗数据。
  9. 根据权利要求1-8任一项所述的方法,其特征在于,所述方法还包括:
    所述控制设备接收所述第一调优组的管理AP发送的调优请求,所述调优请求包括所述第一调优组的管理AP的标识和所述第一调优组包括的AP的标识;
    所述控制设备根据所述调优请求,获取所述第一调优组所包括的AP集的路径损耗数据;
    所述控制设备根据所述第一调优组所包括的AP集的路径损耗数据,获得第四调优组,所述第四调优组包括的AP集是所述第一调优组包括的AP集的子集;
    所述控制设备向所述第四调优组的管理AP发送第四调优信息,所述第四调优信息包括所述第四调优组包括的AP的标识,所述第四调优组的管理AP为所述第四调优组中进行调优管理的AP。
  10. 根据权利要求1-9任一项所述的方法,其特征在于,所述第一调优组中的AP的数量小于或者等于预设阈值,所述预设阈值为目标AP能够管理的AP数量,所述目标AP为所述AP集中管理AP数量最少的AP。
  11. 一种无线接入点AP分组调优装置,其特征在于,包括:
    通信单元,用于获取无线接入点AP集的路径损耗数据,所述AP集包括多个AP,所述路径损耗数据包括所述多个AP中任意两个AP之间的路径损耗;
    处理单元,用于根据所述第一路径损耗数据,获得第一调优组,所述第一调优组包括所述多个AP中的第一AP和第二AP;
    所述通信单元,还用于向所述第一调优组的管理AP发送第一调优信息,所述第一调优信息包括所述第一AP的标识和所述第二AP的标识,所述第一调优组的管理AP为所述第一调优组中进行调优管理的AP。
  12. 根据权利要求11所述的装置,其特征在于,
    所述通信单元,还用于获取所述第一AP的负载信息和所述第二AP的负载信息,所述第一AP的负载信息包括第一采样时刻采集的所述第一AP的负载数据和第二采样时刻采集的所述第一AP的负载数据,所述第二AP的负载信息包括所述第一采样时刻采集的所述第二AP的负载数据和所述第二采样时刻采集的所述第二AP的负载数据,所述负载数据包括传输速率、信道利用率和关联用户数中的至少一个;
    所述处理单元,还用于:根据预设的第一算法、所述第一采样时刻采集的所述第一AP的负载数据和所述第二采样时刻采集的所述第一AP的负载数据,获得第一负载值;
    根据所述预设的第一算法、所述第一采样时刻采集的所述第二AP的负载数据和所述第二采样时刻采集的所述第二AP的负载数据,获得第二负载值;
    根据所述第一负载值和所述第二负载值,从所述第一AP和所述第二AP中确定所述第一调优组的管理AP。
  13. 根据权利要求11或12所述的装置,其特征在于,
    所述处理单元,还用于根据所述路径损耗数据和所述AP集,获得第二调优组和第三调优组,所述第二调优组包括所述多个AP中的第三AP和第四AP,所述第三调优组包括所述多个AP中的第五AP和第六AP;
    所述通信单元,还用于向所述第二调优组的管理AP发送第二调优信息以及向所述第三调优组的管理AP发送第三调优信息,所述第二调优信息包括所述第三AP的标识和所述第四AP的标识,所述第二调优组的管理AP为所述第二调优组中进行调优管理的AP,所述第三调优信息包括所述第五AP的标识和所述第六AP的标识,所述第三调优组的管理AP为所述第三调优组中进行调优管理的AP。
  14. 根据权利要求13所述的装置,其特征在于,
    所述处理单元,还用于:根据所述第一调优组、所述第二调优组和所述第三调优组,计算第一耦合值、第二耦合值和第三耦合值,所述第一耦合值为所述第一调优组与所述第二调优组间的耦合度以及所述第一调优组与所述第三调优组间的耦合度之和,所述第二耦合值为所述第二调优组与所述第一调优组间的耦合度以及所述第二调优组与所述第三调优组间的耦合度之和,所述第三耦合值为所述第三调优组与所述第一调优组间的耦合度以及所述第三调优组与所述第二调优组间的耦合度之和;
    根据所述第一耦合值、所述第二耦合值和所述第三耦合值,获得调优顺序,所述调优顺序用于表示所述第一调优组、所述第二调优组和所述第三调优组进行调优的顺序。
  15. 根据权利要求14所述的装置,其特征在于,所述第一调优信息还包括所述调优顺序、所述第二调优组的管理AP的信息和所述第三调优组的管理AP的信息。
  16. 根据权利要求11-15任一项所述的装置,其特征在于,所述处理单元还用于:
    获取第一路径损耗数据,所述第一路径损耗数据为第三采样时刻所获取的所述第一AP和所述第二AP之间的属于预设范围的路径损耗值;
    获取第二路径损耗数据,所述第二路径损耗数据为第四采样时刻所获取的所述第一AP和所述第二AP之间的属于预设范围的路径损耗值;
    根据所述第一路径损耗数据和所述第二路径损耗数据,获得所述第一AP与所述第二AP间的路径损耗数据。
  17. 根据权利要求16所述的装置,其特征在于,所述处理单元具体用于:
    将所述第一路径损耗数据和所述第二路径损耗数据的均值,作为所述第一AP与所述第二AP间的路径损耗数据;或者
    根据所述第一路径损耗数据、所述第二路径损耗数据以及加权平均算法,获得所述第一AP与所述第二AP件的路径损耗数据。
  18. 根据权利要求11-17任一项所述的装置,其特征在于,所述处理单元具体用于:
    根据所述多个AP中任意两个AP之间的路径损耗数据和预设的第二算法,将所述第一AP和所述第二AP划分到所述第一调优组,所述任意两个AP之间的路径损耗数据包括所述第一AP与所述第二AP间的路径损耗数据。
  19. 根据权利要求11-18任一项所述的装置,其特征在于,
    所述通信单元,还用于接收所述第一调优组的管理AP发送的调优请求,所述调优请求包括所述第一调优组的管理AP的标识和所述第一调优组包括的AP的标识;
    所述处理单元,还用于:根据所述调优请求,获取所述第一调优组所包括的AP集的路径损耗数据;
    根据所述第一调优组所包括的AP集的路径损耗数据,获得第四调优组,所述第四调优组包括的AP集是所述第一调优组包括的AP集的子集;
    所述通信单元,还用于向所述第四调优组的管理AP发送第四调优信息,所述第四调优信息包括所述第四调优组包括的AP的标识,所述第四调优组的管理AP为所述第四调优组中进行调优管理的AP。
  20. 根据权利要求11-19任一项所述的装置,其特征在于,所述第一调优组中AP的数量小于或者等于预设阈值,所述预设阈值为目标AP能够管理的AP数量,所述目标AP为所述AP集中管理AP数量最少的AP。
  21. 一种AP分组调优设备,其特征在于,包括处理器、通信接口以及存储器;所述存储器用于存储指令,所述处理器用于执行所述指令,通信接口用于在所述处理器的控制下与其他设备进行通信;其中,所述处理器执行所述指令时执行如上权利要求1至10任一项所述的方法。
  22. 一种非瞬态的计算机存储介质,所述计算机可读存储介质存储有计算机程序,其特征在于,所述计算机程序被处理器执行以实现如权利要求1至10任一项所述的方法。
PCT/CN2020/115733 2019-09-17 2020-09-17 一种无线接入点分组调优方法、设备及计算机存储介质 WO2021052384A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP20866902.8A EP4024935A4 (en) 2019-09-17 2020-09-17 METHOD FOR ADJUSTING GROUPS OF WIRELESS ACCESS POINTS, DEVICE AND COMPUTER INFORMATION MEDIA
US17/696,292 US20220256363A1 (en) 2019-09-17 2022-03-16 Wireless access point group-based calibration method and device, and computer storage medium

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201910878314.4 2019-09-17
CN201910878314.4A CN112533215B (zh) 2019-09-17 2019-09-17 一种无线接入点分组调优方法、设备及计算机存储介质

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US17/696,292 Continuation US20220256363A1 (en) 2019-09-17 2022-03-16 Wireless access point group-based calibration method and device, and computer storage medium

Publications (1)

Publication Number Publication Date
WO2021052384A1 true WO2021052384A1 (zh) 2021-03-25

Family

ID=74884518

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/115733 WO2021052384A1 (zh) 2019-09-17 2020-09-17 一种无线接入点分组调优方法、设备及计算机存储介质

Country Status (4)

Country Link
US (1) US20220256363A1 (zh)
EP (1) EP4024935A4 (zh)
CN (1) CN112533215B (zh)
WO (1) WO2021052384A1 (zh)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11882467B2 (en) * 2019-12-22 2024-01-23 Fortinet, Inc. Artificially intelligent WLAN uplink monitoring for steering wireless stations to selective access points on wireless data communication networks
CN115515154B (zh) * 2021-06-22 2024-05-14 华为技术有限公司 一种遮挡识别方法、装置以及相关设备
CN114143809A (zh) * 2021-11-18 2022-03-04 锐捷网络股份有限公司 一种无线网络优化方法、装置、计算机设备及存储介质

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102761882A (zh) * 2012-07-20 2012-10-31 东南大学 广义分布式mimo系统中基站最优摆放位置的选择方法
US20140038625A1 (en) * 2012-08-03 2014-02-06 Qualcomm Incorporated Methods and apparatus for transmitting clear to send (cts)-to-self indication
US20160119881A1 (en) * 2014-10-28 2016-04-28 Qualcomm Incorporated Uplink power control in multi-user unlicensed wireless networks
CN105940703A (zh) * 2014-01-31 2016-09-14 高通股份有限公司 无线网络节点的分布式群集
CN107836131A (zh) * 2015-07-14 2018-03-23 索尼公司 用于对共享传输介质的依赖于业务模式的接入协调的方法和设备
CN109068375A (zh) * 2018-10-10 2018-12-21 华北电力大学(保定) 一种基于uudn的动态ap分组方法

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9867083B2 (en) * 2014-04-17 2018-01-09 Cisco Technology, Inc. Wireless network controller load balancing

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102761882A (zh) * 2012-07-20 2012-10-31 东南大学 广义分布式mimo系统中基站最优摆放位置的选择方法
US20140038625A1 (en) * 2012-08-03 2014-02-06 Qualcomm Incorporated Methods and apparatus for transmitting clear to send (cts)-to-self indication
CN105940703A (zh) * 2014-01-31 2016-09-14 高通股份有限公司 无线网络节点的分布式群集
US20160119881A1 (en) * 2014-10-28 2016-04-28 Qualcomm Incorporated Uplink power control in multi-user unlicensed wireless networks
CN107836131A (zh) * 2015-07-14 2018-03-23 索尼公司 用于对共享传输介质的依赖于业务模式的接入协调的方法和设备
CN109068375A (zh) * 2018-10-10 2018-12-21 华北电力大学(保定) 一种基于uudn的动态ap分组方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP4024935A4

Also Published As

Publication number Publication date
EP4024935A1 (en) 2022-07-06
EP4024935A4 (en) 2022-10-05
CN112533215A (zh) 2021-03-19
US20220256363A1 (en) 2022-08-11
CN112533215B (zh) 2024-01-23

Similar Documents

Publication Publication Date Title
WO2021052384A1 (zh) 一种无线接入点分组调优方法、设备及计算机存储介质
US10390353B2 (en) Distributed channel selection for wireless networks
US11451971B2 (en) Networking method, networking apparatus, network access method, and user equipment for coordinated multiple points transmission/reception
JP5448226B2 (ja) 複数の無線ネットワークの共存
WO2015131677A1 (zh) 虚拟小区的构建、协作节点的选择方法及装置
WO2020093780A1 (zh) 一种处理网络切片中用户接入的方法及装置
US10136342B2 (en) System and method to facilitate wireless network optimization
WO2020207176A1 (zh) 自适应频率控制方法、装置、设备及计算机可读存储介质
CN113873538A (zh) 一种模型数据传输方法及通信装置
US20160337923A1 (en) Load balancing among wireless access points
CN110475280A (zh) 通信方法和装置
WO2020244389A1 (zh) 用于预测话务量的方法和装置
US11246113B2 (en) Network access node and methods thereof
Andrab et al. Cellular network resource distribution methods for the joint servicing of real-time multiservice traffic and grouped IoT traffic
WO2020057952A1 (en) Cellular telecommunications network
WO2019222999A1 (zh) 接入控制方法、装置和可读存储介质
US20230162006A1 (en) Server and agent for reporting of computational results during an iterative learning process
TW202224381A (zh) 網狀網路中基於觸發式客戶端的客戶端引導
Pratap et al. Maximizing joint data rate and resource efficiency in D2D-IoT enabled multi-tier networks
WO2019204991A1 (zh) 无线回传连接方法及装置
Zhang et al. AP load balance strategy in face of high user density
WO2016172826A1 (zh) 小基站发射功率管理方法、设备和系统
WO2022082516A1 (zh) 数据传输方法及通信装置
WO2019140598A1 (zh) 小区信号质量确定方法、装置及系统
Chen et al. Deep reinforce learning and meta-learning based resource allocation in cellular heterogeneous networks

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20866902

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2020866902

Country of ref document: EP

Effective date: 20220330