WO2021052300A1 - 利用比率制动差动原理的高压混合线路故障区段判别方法 - Google Patents

利用比率制动差动原理的高压混合线路故障区段判别方法 Download PDF

Info

Publication number
WO2021052300A1
WO2021052300A1 PCT/CN2020/115224 CN2020115224W WO2021052300A1 WO 2021052300 A1 WO2021052300 A1 WO 2021052300A1 CN 2020115224 W CN2020115224 W CN 2020115224W WO 2021052300 A1 WO2021052300 A1 WO 2021052300A1
Authority
WO
WIPO (PCT)
Prior art keywords
section
line
fault
overhead
overhead line
Prior art date
Application number
PCT/CN2020/115224
Other languages
English (en)
French (fr)
Inventor
张怿宁
王越杨
国建宝
杨光源
Original Assignee
中国南方电网有限责任公司超高压输电公司检修试验中心
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中国南方电网有限责任公司超高压输电公司检修试验中心 filed Critical 中国南方电网有限责任公司超高压输电公司检修试验中心
Publication of WO2021052300A1 publication Critical patent/WO2021052300A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/08Locating faults in cables, transmission lines, or networks
    • G01R31/081Locating faults in cables, transmission lines, or networks according to type of conductors
    • G01R31/086Locating faults in cables, transmission lines, or networks according to type of conductors in power transmission or distribution networks, i.e. with interconnected conductors
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02HEMERGENCY PROTECTIVE CIRCUIT ARRANGEMENTS
    • H02H3/00Emergency protective circuit arrangements for automatic disconnection directly responsive to an undesired change from normal electric working condition with or without subsequent reconnection ; integrated protection
    • H02H3/02Details
    • H02H3/06Details with automatic reconnection
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02HEMERGENCY PROTECTIVE CIRCUIT ARRANGEMENTS
    • H02H7/00Emergency protective circuit arrangements specially adapted for specific types of electric machines or apparatus or for sectionalised protection of cable or line systems, and effecting automatic switching in the event of an undesired change from normal working conditions
    • H02H7/26Sectionalised protection of cable or line systems, e.g. for disconnecting a section on which a short-circuit, earth fault, or arc discharge has occured

Definitions

  • the invention relates to the technical field of electric power detection, in particular to a method for identifying fault sections of a high-voltage hybrid line using a ratio braking differential principle.
  • High-voltage cables are mainly used for cross-strait interconnection of regional power grids, power supply to ocean islands and offshore oil drilling platforms, grid connection of offshore renewable energy power sources, and power supply of urban distribution networks.
  • the Guangdong-Hainan 500kV interconnection line uses overhead lines-submarine cable hybrid lines
  • the land part uses overhead lines
  • the part that crosses the Qiongzhou Strait uses submarine cable lines.
  • the purpose of the present invention is to overcome the shortcomings of the prior art and provide a method for identifying fault sections of a high-voltage hybrid line using the principle of ratio braking differential, so that when the hybrid line fails, the fault can be accurately identified on the overhead line or the cable To determine whether to open the automatic reclosing switch, avoiding the reclosing when the fault is in the cable section, and at the same time, it will not lose the chance of reclosing when the fault is in the overhead line.
  • the overhead-cable hybrid line includes two types: Type A and Type B.
  • Type A includes two overhead line sections and one cable section. Connected between two overhead line sections, the two overhead line sections are overhead line section I and overhead line section II respectively.
  • Type B includes an overhead line section and a cable section. The current at both ends of the overhead line section is used to identify faulty sections. It is characterized in that the method includes:
  • the judgment of the fault section based on the principle of ratio braking differential includes:
  • the capacitance current compensation method is a time domain capacitance current compensation method.
  • the method for calculating the compensated current phasor value is a Fourier algorithm, which is implemented by calculating the compensated current sampling value.
  • the Fourier algorithm is a discrete Fourier algorithm (DFT), that is, a weighted summation calculation is performed on the compensated current sampling value to obtain the current phasor value, and the calculation formula is Where N is the length of the DFT transformation interval.
  • DFT discrete Fourier algorithm
  • I Cma (t) and I Cna (t) are the capacitance currents to be compensated on both sides of the line;
  • C 1 and C 0 are the unit positive sequence and unit zero sequence equivalent capacitance of the line;
  • u ma (t), u na (t) are the instantaneous voltage values of phase a on the m and n sides of the line;
  • u mab (t) and u nab (t) are the instantaneous voltage values of the phase a and b phases on the m and n sides of the line, respectively ;
  • U mac (t), u nac (t) are the instantaneous values of the phase-to-phase voltages of the m-side, n-side a-phase and c-phase of the line, respectively
  • the present invention has the following beneficial effects:
  • the ratio brake differential principle is used to identify the fault section to determine whether to open the automatic reclosing, avoiding the reclose when the fault is in the cable section, and at the same time when the fault is in the overhead line Will not lose the chance of reclosing and improve the performance of automatic reclosing.
  • Figure 1 is a schematic diagram of a type A hybrid circuit provided by this embodiment
  • FIG. 2 is a schematic diagram of the B-type hybrid circuit provided by this embodiment
  • FIG. 3 is a flow chart of a type A hybrid line of a method for identifying fault sections of a high-voltage hybrid line for automatic reclosing provided by this embodiment
  • FIG. 4 is a flow chart of a type B hybrid line of a method for identifying fault sections of a high-voltage hybrid line for automatic reclosing provided by this embodiment
  • Figure 5 is a comparison diagram of the differential momentum and braking capacity of the overhead line section I when a fault occurs near the midpoint of the overhead line section I of this embodiment
  • Figure 6 is a comparison diagram of the differential momentum and braking capacity of the second section of the overhead line when a fault occurs near the midpoint of the first section of the overhead line in this embodiment
  • Figure 7 is a comparison diagram of the differential momentum and braking capacity of section I of the overhead line when a fault occurs near the midpoint of the cable in this embodiment
  • Figure 8 is a comparison diagram of the differential momentum and braking capacity of the second section of the overhead line when a fault occurs near the midpoint of the cable in this embodiment
  • Figure 9 is a comparison diagram of the differential momentum and braking capacity of the overhead line section I when a fault occurs near the midpoint of the overhead line section II of this embodiment;
  • Fig. 10 is a comparison diagram of the differential momentum and braking capacity of the second section of the overhead line when a fault occurs near the midpoint of the second section of the overhead line in this embodiment.
  • the overhead-cable hybrid line includes two types: A type and B type.
  • Type A includes two overhead line sections and one cable section. The cable section is connected between two overhead line sections.
  • the two overhead line sections are overhead line section I and overhead line section II.
  • Type B includes one section of overhead line section and one section of cable section. The current sampling value at both ends of the overhead line section is used to realize the faulty section. Discriminate. Specifically, the process is shown in Figure 3 and Figure 4, and the method includes the following steps:
  • the above-mentioned identification of the fault section based on the principle of ratio braking differential includes:
  • the capacitance current compensation method is a time domain capacitance current compensation method, and the formula is as follows:
  • I Cma (t) and I Cna (t) are the capacitance currents to be compensated on both sides of the line;
  • C 1 and C 0 are the unit positive sequence and unit zero sequence equivalent capacitance of the line;
  • u ma (t), u na (t) are the instantaneous voltage values of phase a on the m and n sides of the line;
  • u mab (t) and u nab (t) are the instantaneous voltage values of the phase a and b phases on the m and n sides of the line, respectively ;
  • U mac (t) and u nac (t) are the instantaneous values of the phase-to-phase voltages of the a-phase and c-phase on the m-side and n-side of the line, respectively, so that the capacitor current to be compensated can be accurately calculated.
  • the method for calculating the compensated current phasor value is a Fourier algorithm, which is implemented by calculating the compensated current sampling value.
  • the Fourier algorithm is a Discrete Fourier Algorithm (DFT), that is, a weighted sum calculation is performed on the compensated current sampling value to obtain the current phasor value, and the calculation formula is Where N is the length of the DFT conversion interval, so that the current phasor value can be accurately obtained.
  • DFT Discrete Fourier Algorithm
  • Figures 5 and 6 are the comparison diagrams of the differential momentum and braking capacity of the overhead line section I and the overhead line section II when a fault occurs near the midpoint of the overhead line section I. It can be seen from the figure that when the fault occurs in the first section of the overhead line, for the first section of the overhead line, the fault is in the area, and the differential momentum of the first section of the overhead line should be greater than the braking capacity; while for the second section of the overhead line, the fault is outside the area. Failure, the differential momentum should be less than the braking volume. Therefore, it can be accurately determined that the fault occurred in section I of the overhead line.
  • Figures 7 and 8 are the comparison diagrams of the differential momentum and braking capacity of the overhead line section I and the overhead line section II when a fault occurs near the midpoint of the cable section.
  • the differential momentum of the overhead line section I and the overhead line section II are both less than the braking amount, which meets the differential criterion conditions for the failure to occur outside or inside the area. Therefore, it can be accurately determined that the fault occurred in the cable section.
  • Figure 9 and Figure 10 are the comparison diagrams of the differential momentum and braking capacity of the overhead line section I and the overhead line section II when a fault occurs near the midpoint of the overhead line section II.
  • the differential momentum of section I of the overhead line is less than the braking amount
  • the differential momentum of section II of the overhead line is greater than the braking amount, which is in line with the differential criterion condition that the fault occurs outside or within the area. Therefore, it can be accurately determined that the fault occurred in section II of the overhead line.
  • the vicinity of the connection point of the overhead line and the cable is selected as the fault point for simulation and analysis.
  • the fault point near the connection point of the overhead line section I and the cable is k1
  • the fault point near the connection point of the cable and the overhead line section I is k2
  • the fault point near the connection point of the cable and the overhead line section II is k3
  • the fault point near the connection point between section II of the overhead line and the cable is k4.
  • this paper carried out the fault simulation of the midpoint of the overhead line section I, the cable section and the overhead line section II through different transition resistances.
  • Table 2 and Table 3 are the simulation results of single-phase grounding fault and short-circuit between two phases through transition resistance respectively.
  • the line has a single-phase grounding fault and a short-circuit between two phases through the transition resistance.
  • the transition resistance is too large, the fault current will be significantly reduced, but the differential momentum and braking capacity both meet the current difference. According to the dynamic criterion conditions, the method in this paper can still accurately identify the faulty section.
  • the present invention proposes a method for identifying the fault section of a high-voltage hybrid line using the principle of ratio brake differential.
  • the fault section can be accurately identified through the principle of ratio brake differential.
  • PSCAD/EMTDC simulation shows that when the overhead-cable hybrid line fails, this method can accurately and effectively identify the fault occurrence section, and is not affected by distributed capacitance current, fault location and fault type. influences.
  • Performing fault simulation near the connection point of the overhead line and the cable can also accurately and effectively determine which section the fault occurs in.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Locating Faults (AREA)

Abstract

一种利用比率制动差动原理的高压混合线路故障区段判别方法,当混合线路发生故障时,保护动作跳开线路两侧的断路器,对架空线段两端电流采样值进行电容电流补偿,利用补偿后的电流采样值计算电流相量值,采用比率制动差动原理进行故障区段判别。若故障发生在架空线段,开放重合闸重合断路器,否则闭锁重合闸。本方法通过故障区段识别,以决定是否开放重合闸,避免了故障处于电缆区段时的重合闸,同时当故障处于架空线路时不会丧失重合机会,可改善自动重合闸的性能。

Description

利用比率制动差动原理的高压混合线路故障区段判别方法 技术领域
本发明涉及电力检测技术领域,具体涉及一种利用比率制动差动原理的高压混合线路故障区段判别方法。
背景技术
高压电缆主要用于区域电网的跨海峡联网、向海洋孤岛及海上石油钻探平台供电、海上可再生能源电源的并网、城市配电网供电等。例如:广东-海南500kV联网线路采用架空线路-海底电缆混合线路,陆上部分采用架空线路,穿越琼州海峡部分采用海底电缆线路。
架空线路的故障大多是瞬时性故障,重合后线路可以恢复正常运行。而电缆(包括海底电缆)的短路故障中大部分属于永久性故障,若重合断路器,在故障点将会再次产生电弧,不仅对系统和电气设备再次造成冲击,而且会扩大电缆故障,甚至会造成爆炸事故。对于架空-电缆混合线路,若故障位置处于电缆部分,开放重合闸将造成更严重事故;若闭锁重合闸,对于架空线路故障又丧失了重合机会,可能危及系统的稳定和安全运行。因此,混合线路故障后,有必要判别故障发生区段,以决定是否开放自动重合闸。
发明内容
本发明的目的在于克服现有技术的不足,提供一种利用比率制动差动原理的高压混合线路故障区段判别方法,以当混合线路发生故障时,能够准确识别故障发生在架空线还是电缆上,决定是否开放自动重合闸,避免了故障处于电缆区段时的重合闸,同时当故障处于架空 线路时不会丧失重合机会。
为实现上述目的,本发明的技术方案是:
一种利用比率制动差动原理的高压混合线路故障区段判别方法,所述架空-电缆混合线路包括A型和B型两种类型,A型包括两段架空线段和一段电缆段,电缆段连接于两架空线段之间,所述两架空线段分别为架空线Ⅰ段和架空线Ⅱ段,B型包括一段架空线段和一段电缆段,利用架空线段两端的电流量实现故障区段判别,其特征在于,所述方法包括:
混合线路发生故障时,保护动作跳开混合线路两侧断路器;
获取架空线段两端的电流采样值,进行电容电流补偿,利用傅里叶算法求取补偿后电流相量,利用比率制动差动原理进行故障区段判别;
根据故障区段判别来开放或闭锁重合闸,若故障发生在架空线段,开放重合闸;否则,闭锁重合闸。
进一步地,所述据比率制动差动原理来进行故障区段判别包括:
对于A型架空-电缆混合线路:
Figure PCTCN2020115224-appb-000001
故障发生在架空线段;
若上式不成立,则故障发生在电缆段;
其中,
Figure PCTCN2020115224-appb-000002
为架空线段两端的电流;k为比率制动系数。
对于B型架空-电缆-架空混合线路:
Figure PCTCN2020115224-appb-000003
故障发生在架空线I段;
Figure PCTCN2020115224-appb-000004
故障发生在架空线Ⅱ段;
若上两式均不成立,则故障发生在电缆段;
其中,
Figure PCTCN2020115224-appb-000005
为架空线Ⅰ段两端的电流;
Figure PCTCN2020115224-appb-000006
为架空线Ⅱ段两端的电流;k为比率制动系数。
进一步地,所述电容电流补偿方法为时域电容电流补偿方法。
进一步地,所述计算补偿后电流相量值的方法为傅里叶算法,通过计算补偿后的电流采样值实现。
进一步地,所述k=0.4。
进一步地,所述傅里叶算法为离散傅里叶算法(DFT),即对补偿后的电流采样值进行加权求和计算,进而得到电流相量值,其计算公式为
Figure PCTCN2020115224-appb-000007
式中,
Figure PCTCN2020115224-appb-000008
N为DFT变换区间长度。
进一步地,所述时域电容电流补偿方法,公式如下:
Figure PCTCN2020115224-appb-000009
其中,I Cma(t)、I Cna(t)为线路两侧需补偿的电容电流;C 1、C 0别为线路的单位正序、单位零序等效电容;u ma(t)、u na(t)分别为线路m侧、n侧的a相电压瞬时值;u mab(t)、u nab(t)分别为线路m侧、n侧a相和b相两相的相间电压瞬时值;u mac(t)、u nac(t)分别为线路m侧、n侧a相和c相两相的相间电压瞬时值
本发明与现有技术相比,其有益效果在于:
针对架空-电缆混合输电线路发生故障时,利用比率制动差动原理识别故障区段,以决定是否开放自动重合闸,避免了故障处于电缆区段时的重合闸,同时当故障处于架空线路时不 会丧失重合机会,改善自动重合闸的性能。
附图说明
图1为本实施例所提供的A型混合线路示意图;
图2为本实施例所提供的B型混合线路示意图;
图3为本实施例所提供的一种用于自动重合闸的高压混合线路故障区段识别的方法的A型混合线路的流程图;
图4为本实施例所提供的一种用于自动重合闸的高压混合线路故障区段识别的方法的B型混合线路的流程图;
图5为本实施例架空线Ⅰ段中点附近发生故障时架空线Ⅰ段的差动量、制动量对比图;
图6为本实施例架空线Ⅰ段中点附近发生故障时架空线Ⅱ段的差动量、制动量对比图;
图7为本实施例电缆中点附近发生故障时架空线Ⅰ段的差动量、制动量对比图;
图8为本实施例电缆中点附近发生故障时架空线Ⅱ段的差动量、制动量对比图;
图9为本实施例架空线Ⅱ段中点附近发生故障时架空线Ⅰ段的差动量、制动量对比图;
图10为本实施例架空线Ⅱ段中点附近发生故障时架空线Ⅱ段的差动量、制动量对比图。
具体实施方式
下面结合附图和具体实施方式对本发明的内容做进一步详细说明。
实施例:
参阅图1、图2所示,为本方法适用的架空-电缆混合线路示意图,所述架空-电缆混合 线路包括A型和B型两种类型,A型包括两段架空线段和一段电缆段,电缆段连接于两架空线段之间,所述两架空线段分别为架空线Ⅰ段和架空线Ⅱ段,B型包括一段架空线段和一段电缆段,利用架空线段两端的电流采样值实现故障区段判别。具体地,流程如图3、图4所示,本方法包括如下步骤:
混合线路发生故障时,保护动作跳开混合线路两侧断路器;
获取架空线段两端的电流采样值,进行电容电流补偿,利用傅里叶算法求取补偿后电流相量,利用比率制动差动原理进行故障区段判别;
根据故障区段判别来开放或闭锁重合闸,若故障发生在架空线段,开放重合闸;否则,闭锁重合闸。
具体地,上述的据比率制动差动原理来进行故障区段判别包括:
对于A型架空-电缆混合线路:
Figure PCTCN2020115224-appb-000010
故障发生在架空线段;
若上式不成立,则故障发生在电缆段;
其中,
Figure PCTCN2020115224-appb-000011
为架空线段两端的电流;k为比率制动系数。
对于B型架空-电缆-架空混合线路:
Figure PCTCN2020115224-appb-000012
故障发生在架空线I段;
Figure PCTCN2020115224-appb-000013
故障发生在架空线Ⅱ段;
若上两式均不成立,则故障发生在电缆段;
其中,
Figure PCTCN2020115224-appb-000014
为架空线Ⅰ段两端的电流;
Figure PCTCN2020115224-appb-000015
为架空线Ⅱ段两端的电流;k为比率 制动系数。
具体地,所述电容电流补偿方法为时域电容电流补偿方法,公式如下:
Figure PCTCN2020115224-appb-000016
其中,I Cma(t)、I Cna(t)为线路两侧需补偿的电容电流;C 1、C 0别为线路的单位正序、单位零序等效电容;u ma(t)、u na(t)分别为线路m侧、n侧的a相电压瞬时值;u mab(t)、u nab(t)分别为线路m侧、n侧a相和b相两相的相间电压瞬时值;u mac(t)、u nac(t)分别为线路m侧、n侧a相和c相两相的相间电压瞬时值,从而可以准确地计算出需补偿的电容电流。
具体地,所述计算补偿后电流相量值的方法为傅里叶算法,通过计算补偿后的电流采样值实现。
具体地,所述k=0.4。
具体地,所述傅里叶算法为离散傅里叶算法(DFT),,即对补偿后的电流采样值进行加权求和计算,进而得到电流相量值,其计算公式为
Figure PCTCN2020115224-appb-000017
式中,
Figure PCTCN2020115224-appb-000018
N为DFT变换区间长度,从而可以准确地得到电流相量值。
通过使用PSCAD/EMTDC仿真软件搭建了B型混合线路模型。为验证本方法的有效性,进行了每一段线路中点处发生故障以及架空线与电缆连接点附近发生各种类型故障的暂态仿真。
首先选取不同区段的中点进行故障仿真,其中比率制动系数k取0.4,绘制出不同故障位置的差动量与制动量对比图,仿真结果如图5、图6、图7、图8、图9和图10所见。
图5、图6分别为架空线Ⅰ段中点附近发生故障时架空线Ⅰ段、架空线Ⅱ段的差动量和制动量对比图。由图可见,当故障发生在架空线Ⅰ段,对于架空线Ⅰ段为区内故障,架空线 Ⅰ段的差动量应大于制动量;而对于架空线Ⅱ段来说,故障为区外故障,其差动量应小于制动量。因此,可以准确判断出故障发生在架空线Ⅰ段。
图7、图8分别为电缆段中点附近发生故障时架空线Ⅰ段、架空线Ⅱ段的差动量和制动量对比图。由图所见,架空线Ⅰ段、架空线Ⅱ段的差动量均小于制动量,符合故障发生在区外、区内的差动判据条件。因此,可以准确判断出故障发生在电缆段。
图9、图10分别为架空线Ⅱ段中点附近发生故障时架空线Ⅰ段、架空线Ⅱ段的差动量和制动量对比图。由图所见,架空线Ⅰ段的差动量小于制动量,架空线Ⅱ段的差动量大于制动量,符合故障发生在区外、区内的差动判据条件。因此,可以准确判断出故障发生在架空线Ⅱ段。
为了验证在架空线与电缆连接点附近发生故障时差动能否准确识别故障区段,选取架空线与电缆连接点附近作为故障点进行仿真并分析。如图1所示,设架空线Ⅰ段与电缆连接点附近的故障点为k1,电缆与架空线Ⅰ段连接点附近的故障点为k2,电缆与架空线Ⅱ段连接点附近的故障点为k3,架空线Ⅱ段与电缆连接点附近的故障点为k4。仿真结果如表1所示。
表1 不同故障点的差动量与制动量
Figure PCTCN2020115224-appb-000019
由表1可知,当故障发生在架空线与电缆的连接点附近时,差动量与制动量满足电流差动判据条件,并且不受故障类型的影响,即当不同类型故障发生在架空线与电缆的连接点附近时,本文方法依然能够准确识别故障区段。
为了验证过渡电阻对本文所提架空-电缆混合线路故障区段识别方法的影响,本文进行了架空线Ⅰ段、电缆段与架空线Ⅱ段的中点经不同过渡电阻的故障仿真。表2、表3分别为经过渡电阻单相接地故障、两相相间短路的仿真结果。
表2 经不同过渡电阻单相接地故障时的差动量与制动量
Figure PCTCN2020115224-appb-000020
表3 经不同过渡电阻相间短路故障时的差动量与制动量
Figure PCTCN2020115224-appb-000021
Figure PCTCN2020115224-appb-000022
由表2、表3可见,线路分别发生经过渡电阻单相接地故障、两相相间短路,当过渡电阻太大时,故障电流会明显减小,但差动量与制动量均满足电流差动判据条件,本文方法依然能够准确识别故障区段。
通过上述方式,本发明提出一种利用比率制动差动原理的高压混合线路故障区段判别方法,当架空-电缆混合线路发生在故障时,通过比率制动差动原理可以准确识别故障区段,进而决定是否开放重合闸;经PSCAD/EMTDC仿真表明,当架空-电缆混合线路发生故障时,本方法可以准确有效的识别故障发生区段,并且不受分布电容电流、故障位置以及故障类型的影响。在架空线与电缆的连接点附近进行故障仿真,同样可以准确有效的判断出故障发生在哪个区段。
上述实施例只是为了说明本发明的技术构思及特点,其目的是在于让本领域内的普通技术人员能够了解本发明的内容并据以实施,并不能以此限制本发明的保护范围。凡是根据本发明内容的实质所做出的等效的变化或修饰,都应涵盖在本发明的保护范围内。

Claims (7)

  1. 一种利用比率制动差动原理的高压混合线路故障区段判别方法,所述架空-电缆混合线路包括A型和B型两种类型,A型包括两架空线段和一电缆段,电缆段连接于两架空线段之间,所述两架空线段分别为架空线Ⅰ段和架空线Ⅱ段,B型包括一架空线段和一电缆段,利用架空线段两端的电流量实现故障区段判别,其特征在于,所述方法包括:
    混合线路发生故障时,保护动作跳开混合线路两侧断路器;
    获取架空线段两端的电流采样值,进行电容电流补偿,求取补偿后电流相量,利用比率制动差动原理进行故障区段判别;
    根据故障区段判别来开放或闭锁重合闸,若故障发生在架空线段,开放重合闸;否则,闭锁重合闸。
  2. 如权利要求1所述的利用比率制动差动原理的高压混合线路故障区段判别方法,其特征在于,所述据比率制动差动原理来进行故障区段判别包括:
    对于A型架空-电缆混合线路:
    Figure PCTCN2020115224-appb-100001
    故障发生在架空线段;
    若上式不成立,则故障发生在电缆段;
    其中,
    Figure PCTCN2020115224-appb-100002
    为架空线段两端的电流;k为比率制动系数;
    对于B型架空-电缆-架空混合线路:
    Figure PCTCN2020115224-appb-100003
    故障发生在架空线I段;
    Figure PCTCN2020115224-appb-100004
    故障发生在架空线Ⅱ段;
    若上两式均不成立,则故障发生在电缆段;
    其中,
    Figure PCTCN2020115224-appb-100005
    为架空线Ⅰ段两端的电流;
    Figure PCTCN2020115224-appb-100006
    为架空线Ⅱ段两端的电流;k为比率制动系数。
  3. 如权利要求1所述的利用比率制动差动原理的高压混合线路故障区段判别方法,其特征在于,所述电容电流补偿方法为时域电容电流补偿方法。
  4. 如权利要求1所述的利用比率制动差动原理的高压混合线路故障区段判别方法,其特征在于,所述计算补偿后电流相量值的方法为傅里叶算法,通过计算补偿后的电流采样值实现。
  5. 如权利要求2所述的利用比率制动差动原理的高压混合线路故障区段判别方法,其特征在于,所述比率制动特性k=0.4。
  6. 如权利要求4所述的利用比率制动差动原理的高压混合线路故障区段判别方法,其特征在于,所述傅里叶算法为离散傅里叶算法,即对补偿后的电流采样值进行加权求和计算,进而得到电流相量值,其计算公式为
    Figure PCTCN2020115224-appb-100007
    式中,
    Figure PCTCN2020115224-appb-100008
    N为DFT变换区间长度。
  7. 如权利要求3所述的利用比率制动差动原理的高压混合线路故障区段判别方法,其特征在于,所述时域电容电流补偿方法,公式如下:
    Figure PCTCN2020115224-appb-100009
    其中,I Cma(t)、I Cna(t)为线路两侧需补偿的电容电流;C 1、C 0别为线路的单位正序、单位零序等效电容;u ma(t)、u na(t)分别为线路m侧、n侧的a相电压瞬时值;u mab(t)、u nab(t)分别为线路m侧、n侧a相和b相两相的相间电压瞬时值;u mac(t)、u nac(t)分别为线路m侧、n侧a相和c相两相的相间电压瞬时值。
PCT/CN2020/115224 2019-09-19 2020-09-15 利用比率制动差动原理的高压混合线路故障区段判别方法 WO2021052300A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201910891011.6A CN110736895A (zh) 2019-09-19 2019-09-19 利用比率制动差动原理的高压混合线路故障区段判别方法
CN201910891011.6 2019-09-19

Publications (1)

Publication Number Publication Date
WO2021052300A1 true WO2021052300A1 (zh) 2021-03-25

Family

ID=69268289

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/115224 WO2021052300A1 (zh) 2019-09-19 2020-09-15 利用比率制动差动原理的高压混合线路故障区段判别方法

Country Status (2)

Country Link
CN (1) CN110736895A (zh)
WO (1) WO2021052300A1 (zh)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110736895A (zh) * 2019-09-19 2020-01-31 中国南方电网有限责任公司超高压输电公司检修试验中心 利用比率制动差动原理的高压混合线路故障区段判别方法
CN112731060A (zh) * 2020-12-24 2021-04-30 西安理工大学 一种高压架空-电缆混合线路自适应重合闸方法
CN113346451A (zh) * 2021-06-30 2021-09-03 西安理工大学 一种b型架空-电缆混合线路自适应故障区段重合闸方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013071974A1 (en) * 2011-11-17 2013-05-23 Abb Research Ltd Fault protection in mixed high-voltage transmission lines
CN103744002A (zh) * 2014-01-17 2014-04-23 昆明理工大学 一种基于电流暂态量主成分聚类分析的缆-线混合输电线路的故障区段识别方法
CN109709447A (zh) * 2019-02-25 2019-05-03 南京南瑞继保电气有限公司 一种基于差动区段判别装置的混合线路故障定位方法
CN109709439A (zh) * 2019-02-25 2019-05-03 南京南瑞继保电气有限公司 一种基于接头处采集单元的混合线路故障定位方法
CN110224380A (zh) * 2019-04-29 2019-09-10 浙江华云清洁能源有限公司 海缆架空混合线路智能重合闸系统
CN110736895A (zh) * 2019-09-19 2020-01-31 中国南方电网有限责任公司超高压输电公司检修试验中心 利用比率制动差动原理的高压混合线路故障区段判别方法

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101789587A (zh) * 2010-01-08 2010-07-28 黄震 A型架空线-电缆混合线路自动重合闸方法
CN102185281A (zh) * 2011-05-20 2011-09-14 中国南方电网有限责任公司超高压输电公司检修试验中心 用于发电机补偿差动电流中的电容电流的方法
CN107332216B (zh) * 2017-08-04 2018-11-13 山东大学 一种采用自同步技术的母线差动保护方法及装置
CN109444644B (zh) * 2018-12-21 2020-12-29 南京国电南自电网自动化有限公司 基于暂态量差动的配电网单相接地故障选线方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013071974A1 (en) * 2011-11-17 2013-05-23 Abb Research Ltd Fault protection in mixed high-voltage transmission lines
CN103744002A (zh) * 2014-01-17 2014-04-23 昆明理工大学 一种基于电流暂态量主成分聚类分析的缆-线混合输电线路的故障区段识别方法
CN109709447A (zh) * 2019-02-25 2019-05-03 南京南瑞继保电气有限公司 一种基于差动区段判别装置的混合线路故障定位方法
CN109709439A (zh) * 2019-02-25 2019-05-03 南京南瑞继保电气有限公司 一种基于接头处采集单元的混合线路故障定位方法
CN110224380A (zh) * 2019-04-29 2019-09-10 浙江华云清洁能源有限公司 海缆架空混合线路智能重合闸系统
CN110736895A (zh) * 2019-09-19 2020-01-31 中国南方电网有限责任公司超高压输电公司检修试验中心 利用比率制动差动原理的高压混合线路故障区段判别方法

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
DING, LEI ET AL.: "Research on Capacitance Current Compensation based Differential Current Protection for High Voltage Power Cable", POWER SYSTEM TECHNOLOGY, vol. 29, no. 4, 28 February 2005 (2005-02-28), pages 45 - 49, XP055793105, ISSN: 1000-3673 *
WANG, HAIGANG ET AL.: "A Sensitive and Reliable Operational Criterion for Current Differential Protection of Transmission Line", POWER SYSTEM TECHNOLOGY, vol. 30, no. 10, 20 May 2006 (2006-05-20), pages 90 - 93+99, XP055793044, ISSN: 1000-3673 *

Also Published As

Publication number Publication date
CN110736895A (zh) 2020-01-31

Similar Documents

Publication Publication Date Title
WO2021052300A1 (zh) 利用比率制动差动原理的高压混合线路故障区段判别方法
CN102608495B (zh) 一种基于电流突变量的故障选相方法
Zhang et al. Non-unit traveling wave protection of HVDC grids using Levenberg–Marquart optimal approximation
CN109444644A (zh) 基于暂态量差动的配电网单相接地故障选线方法
CN100442623C (zh) 超高压输电线并联电抗器的匝间短路保护方法
CN107064741A (zh) 一种配电网线路异名相两点相继接地故障选线方法
CN102590654B (zh) 一种直流输电线路故障极判别元件及判别方法
WO2013185521A1 (zh) 一种基于全分量差动系数矩阵的特高压交流输电线路保护方法
CN103746350B (zh) 高灵敏度母线差动保护方法
CN103048567B (zh) 基于波形估计的带并联电抗器输电线路故障性质判别方法
CN105067951B (zh) 基于多时间断面信息的t接线路单相接地故障测距方法
CN103257304A (zh) 一种利用零序电流特征频带内cwt系数rms值的ann故障选线方法
CN106501675A (zh) 风电场并网输电线路瞬时单相接地故障单端测距方法
CN110794340B (zh) 一种高压架空线的断线保护方法及电路
Anudeep et al. An improved protection scheme for DFIG-based wind farm collector lines
CN107123974A (zh) 一种基于饱和机理的母线区内故障ct饱和开放跳闸方法
Kumar et al. Detection of fault during power swing using superimposed negative sequence apparent power based scheme
CN112653105A (zh) 基于电流信息重构的高压输电线路后备保护方法及装置
Xue et al. Fault location principle and 2‐step isolation scheme for a loop‐type DC grid
CN104979808B (zh) 一种计及纵差保护影响的逆变电源准入容量计算方法
Kumar et al. Fault detection in a series compensated line during power swing using superimposed apparent power
CN113949049B (zh) 一种220kV输电线路自适应单相重合闸方法
Shekhar et al. Fault section identification of a three terminal line during power swing
CN110879332A (zh) 一种适用于小电流接地系统的单相接地故障选相方法
CN105738751A (zh) 一种母线差动保护电流回路断线告警定值的整定计算方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20864941

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 18.08.2022)

122 Ep: pct application non-entry in european phase

Ref document number: 20864941

Country of ref document: EP

Kind code of ref document: A1