WO2021052188A1 - 一种整流芯片及终端设备 - Google Patents

一种整流芯片及终端设备 Download PDF

Info

Publication number
WO2021052188A1
WO2021052188A1 PCT/CN2020/113318 CN2020113318W WO2021052188A1 WO 2021052188 A1 WO2021052188 A1 WO 2021052188A1 CN 2020113318 W CN2020113318 W CN 2020113318W WO 2021052188 A1 WO2021052188 A1 WO 2021052188A1
Authority
WO
WIPO (PCT)
Prior art keywords
circuit
electrode
terminal
coupled
rectifier
Prior art date
Application number
PCT/CN2020/113318
Other languages
English (en)
French (fr)
Inventor
袁兵
郑志勇
崔瑞
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Publication of WO2021052188A1 publication Critical patent/WO2021052188A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R19/00Arrangements for measuring currents or voltages or for indicating presence or sign thereof
    • G01R19/165Indicating that current or voltage is either above or below a predetermined value or within or outside a predetermined range of values
    • G01R19/16566Circuits and arrangements for comparing voltage or current with one or several thresholds and for indicating the result not covered by subgroups G01R19/16504, G01R19/16528, G01R19/16533
    • G01R19/16576Circuits and arrangements for comparing voltage or current with one or several thresholds and for indicating the result not covered by subgroups G01R19/16504, G01R19/16528, G01R19/16533 comparing DC or AC voltage with one threshold
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M7/00Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
    • H02M7/02Conversion of ac power input into dc power output without possibility of reversal
    • H02M7/04Conversion of ac power input into dc power output without possibility of reversal by static converters
    • H02M7/12Conversion of ac power input into dc power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M7/21Conversion of ac power input into dc power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal
    • H02M7/217Conversion of ac power input into dc power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only
    • H02M7/219Conversion of ac power input into dc power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only in a bridge configuration

Definitions

  • This application relates to the field of wireless charging technology, and in particular to a rectifier chip and terminal equipment.
  • wireless charging technology has been widely used in terminal devices.
  • more and more terminal devices such as smart phones and tablet computers can implement wireless charging functions.
  • the core component of wireless charging technology is the terminal coil.
  • the terminal coil is mostly installed inside the smart phone close to the rear case of the terminal.
  • the back shell of the smart phone is in contact with the wireless charging base, so that the terminal coil inside the smart phone is magnetically coupled with the charging base coil inside the wireless charging base.
  • the wireless charging stand can provide electric energy to the terminal coil through the charging stand coil, so as to realize the power supply for the smart phone.
  • the smart phone can then use the electric energy received by the terminal coil to realize charging.
  • the terminal coil is installed inside the terminal device in the wireless charging technology, when the terminal device is abnormally charged, the connection of the terminal coil can only be detected by disassembling the terminal device.
  • the current detection method of the terminal coil in the wireless charging technology needs to be further studied.
  • the present application provides a rectifier chip and a terminal device, through which the rectifier chip detects whether the terminal coil is disconnected, so that the manual disassembly process can be omitted, which is beneficial to simplify the detection of the terminal coil.
  • an embodiment of the present application provides a rectifier chip, which mainly includes a rectifier circuit and a control circuit; wherein the rectifier circuit can be coupled with an inductance circuit in a terminal device, and the inductance circuit includes a first capacitor and a terminal coil, The first electrode of the first capacitor is coupled with the first terminal of the terminal coil, the second electrode of the first capacitor is coupled with the first AC terminal of the rectifier circuit, and the second terminal of the terminal coil is coupled with the second AC terminal of the rectifier circuit; control The circuit can control the rectifier circuit to turn on the transmission loop of the detection voltage to the first capacitor during the first time period, and control the rectifier circuit to turn off the transmission loop of the detection voltage to the terminal coil, wherein the detection voltage is the first capacitor applied to the first capacitor.
  • the control circuit controls the rectifier circuit to turn on the transmission circuit between the first capacitor and the terminal coil, and determines whether the terminal coil is open according to the LC coupling voltage, where the LC coupling voltage is the voltage of the first electrode of the first capacitor .
  • the control circuit can determine the terminal coil according to the LC coupling voltage. Whether it is open circuit.
  • the rectifier circuit includes a first switch tube, a second switch tube, a third switch tube, and a fourth switch tube; the second electrode of the first switch tube and the fourth switch tube The first electrode is coupled, the first electrode of the first switch tube is coupled with the first electrode of the second switch tube, the second electrode of the first switch tube is the second AC terminal of the rectifier circuit, and the second electrode of the fourth switch tube is connected to the Grounding circuit coupling; the second electrode of the second switching tube is coupled with the first electrode of the third switching tube, the second electrode of the second switching tube is the first AC terminal of the rectifier circuit, and the second electrode of the third switching tube is connected to the ground Circuit coupling; the control electrode of the first switch tube, the control electrode of the second switch tube, the control electrode of the third switch tube, and the control electrode of the fourth switch tube are respectively coupled with the control circuit; the control circuit can be in the first time period, conduction The third switching tube is turned on, and the first switching tube, the second switching tube, and the fourth switching tube
  • the rectifier chip further includes a sampling circuit, one end of the sampling circuit is coupled to the first end of the terminal coil, and the other end of the sampling circuit is coupled to the control circuit; the sampling circuit is used to detect LC coupling Voltage and provide the voltage value of the LC coupling voltage to the control circuit; the control circuit can control the rectifier circuit to turn on the transmission loop between the first capacitor and the terminal coil at the first time point of the second time period, and then monitor the LC coupling The voltage value of the voltage; if within the first time delay after the first time point, the decrease in the voltage value of the LC coupling voltage is not greater than the first voltage threshold, then it is determined that the terminal coil is open.
  • the rectifier chip further includes a power supply circuit; the power supply circuit may be coupled with the first electrode of the first capacitor and output a first voltage, which may be used to generate a detection voltage.
  • the rectifier chip further includes a switch circuit, one end of the switch circuit is coupled with the power supply circuit, and the other end is coupled with the first electrode of the first capacitor; the control circuit can also be used at the first time In the second time period, the control switching circuit generates a detection voltage according to the first voltage and provides the detection voltage to the inductance circuit; the control circuit may also control the switching circuit to stop providing the detection voltage to the inductance circuit during the second time period.
  • a switch circuit is integrated in the rectifier chip, and the control circuit can provide a detection voltage to the first electrode of the first capacitor through the switch circuit. In the second time period, the control circuit controls the switch circuit to stop providing the detection voltage to the inductance circuit, which can prevent the detection voltage from interfering with the LC coupling voltage, thereby affecting the detection result of the terminal coil.
  • the switch circuit includes a fifth switch tube, the first electrode of the fifth switch tube is coupled with the power supply circuit, the second electrode of the fifth switch tube and the first electrode of the first capacitor Coupling, the control electrode of the fifth switch tube is coupled with the control circuit; the control circuit is specifically used to: turn on the first switch tube in the first time period; turn off the first switch tube in the second time period.
  • the switch circuit further includes a first resistor, and the first resistor is connected in series with the first electrode and the second electrode of the first switch tube between the power supply circuit and the first electrode of the first capacitor. between.
  • the first resistor can generate a certain resistance voltage drop when the switch circuit is turned on, which is beneficial to protect the fifth switch tube.
  • the switch circuit further includes a first diode, the first diode is connected in series with the first electrode and the second electrode of the first switch tube, and the first diode
  • the anode of the tube is coupled with the power supply circuit
  • the cathode of the first diode is coupled with the inductance circuit.
  • the first electrode of the first capacitor often has a higher voltage value.
  • a first diode is added to the switch circuit, so that when the voltage of the first electrode of the first capacitor is high, the first diode is in an off state, which is beneficial to include the fifth switch tube.
  • an embodiment of the present application provides a terminal device, which mainly includes a switching circuit, a system chip, an inductance circuit, and any one of the above-mentioned first aspect and the first to third possible designs of the first aspect.
  • a rectifier chip mainly includes a rectifier circuit.
  • the rectifier circuit in the rectifier chip is coupled with the inductance circuit, where the inductance circuit includes a first capacitor and a terminal coil; the first electrode of the first capacitor is coupled with the first end of the terminal coil, and the second electrode of the first capacitor is coupled with The first AC terminal of the rectifier circuit is coupled, and the second terminal of the terminal coil is coupled with the second AC terminal of the rectifier circuit; the first terminal of the switch circuit is used to receive the first voltage; the second terminal of the switch circuit is connected to the first capacitor of the first capacitor.
  • Electrode coupling the second terminal of the switch circuit is used to apply a detection voltage to the first electrode of the first capacitor; the control terminal of the switch circuit is coupled with the system chip; the system chip can control the switch circuit to generate the voltage according to the first voltage during the first time period The detection voltage is detected and the detection voltage is provided to the first electrode of the first capacitor; the control chip may also control the switching circuit to stop providing the detection voltage to the first electrode of the first capacitor during the second time period.
  • a switch circuit is provided in the terminal equipment, and the switch circuit is controlled by the system chip to apply a detection voltage to the first electrode of the first capacitor in the first period of time, and stop being the first electrode of the first capacitor in the second period of time. Applying the detection voltage to the electrode helps prevent the detection voltage from interfering with the LC coupling voltage during the second time period, thereby affecting the detection result of the terminal coil.
  • the system chip can also generate control instructions according to user operations and send the control instructions to the control circuit of the rectifier chip; the control circuit can also determine whether the terminal coil is open after receiving the control instruction, and The detection result of the terminal coil is sent to the system chip; the system chip can also feed back the detection result to the user.
  • the system chip can trigger the control circuit to detect the terminal coil according to the user operation.
  • the user operation can be the user clicking the detection button of the detection APP, that is, the user can obtain the detection by clicking the detection button of the detection APP.
  • the test result of the terminal coil can be the user clicking the detection button of the detection APP, that is, the user can obtain the detection by clicking the detection button of the detection APP.
  • the switch circuit includes a fifth switch tube, the first electrode of the fifth switch tube is used to receive the first voltage, the second electrode of the fifth switch tube is coupled with the first electrode of the first capacitor, and the first electrode of the fifth switch tube is coupled to the first electrode of the first capacitor.
  • the control electrode of the five switch tube is coupled with the system chip; the system chip is specifically used to: turn on the fifth switch tube in the first time period; and turn off the fifth switch tube in the second time period.
  • the switch circuit further includes a first resistor, and the first resistor is connected in series with the first electrode and the second electrode of the first switch tube.
  • the switch circuit further includes a first diode, the first diode is connected in series with the first electrode and the second electrode of the first switch tube, and the cathode of the first diode is coupled with the inductance circuit .
  • an embodiment of the present application provides a terminal device, which mainly includes an inductance circuit and a rectifier chip provided in any one of the fourth to seventh possible designs of the first aspect, and the rectifier chip
  • the rectifier circuit is coupled with the inductance circuit, where the inductance circuit includes a first capacitor and a terminal coil; the first electrode of the first capacitor is coupled with the first end of the terminal coil, and the second electrode of the first capacitor is connected to the first AC of the rectifier circuit. End coupling, the second end of the terminal coil is coupled with the second AC end of the rectifier circuit.
  • the terminal device also includes a system chip, which is coupled with the control circuit; the system chip is used to: generate control instructions according to user operations and send the control instructions to the control circuit of the rectifier chip; the control circuit also uses Yu: After receiving the control instruction, determine whether the terminal coil is open, and send the detection result of the terminal coil to the system chip; the system chip is also used to: feedback the detection result to the user.
  • an embodiment of the present application provides a rectifier chip, which mainly includes a rectifier circuit and a control circuit; the rectifier circuit is coupled to the control circuit, the DC terminal of the rectifier circuit is used to receive the detection voltage, and the first AC terminal and the second AC terminal of the rectifier circuit
  • the AC terminal is used to couple with the inductance circuit, the inductance circuit includes a terminal coil for wireless charging;
  • the control circuit is used to: control the rectifier circuit to transmit the detection current to the inductance circuit, the detection current is generated under the drive of the detection voltage; according to the detection current
  • the current value of determines whether the terminal coil is open. In the above solution, if the terminal coil is not disconnected, the detection current can be normally generated under the drive of the detection voltage. If the terminal coil is disconnected, the detection current cannot be generated, or the current value of the generated detection current is small. Therefore, the control circuit in the embodiment of the present application can determine whether the terminal coil is disconnected according to the current value of the detection current.
  • the rectifier circuit includes a first switching tube, a second switching tube, a third switching tube, and a fourth switching tube; the second electrode of the first switching tube is coupled with the first electrode of the fourth switching tube, The first electrode of the first switch tube is coupled with the first electrode of the second switch tube.
  • the first electrode of the first switch tube is the DC terminal of the rectifier circuit, and the second electrode of the first switch tube is the first AC terminal of the rectifier circuit.
  • the second electrode of the fourth switch tube is coupled with the grounding circuit; the second electrode of the second switch tube is coupled with the first electrode of the third switch tube, and the second electrode of the second switch tube is the second AC terminal of the rectifier circuit,
  • the second electrode of the third switch tube is coupled with the ground circuit; the control electrode of the first switch tube, the control electrode of the second switch tube, the control electrode of the third switch tube, and the control electrode of the fourth switch tube are respectively coupled with the control circuit;
  • the control circuit is specifically used to: in the third time period, turn on the first switching tube and the fourth switching tube, and disconnect the second switching tube and the third switching tube; in the fourth time period, turn on the second switching tube and The third switch tube, and disconnect the first switch tube and the fourth switch tube.
  • the rectifier chip also includes a sampling circuit; one end of the sampling circuit is coupled with the control circuit, the other end of the sampling circuit is used for coupling with the detection resistor, one end of the detection resistor is coupled with the DC end of the rectifier circuit, and the other end It is used to receive the detection voltage; the sampling circuit is used to detect the resistance voltage of the detection resistance and provide the voltage value of the resistance voltage to the control circuit; the control circuit is specifically used to: get the value according to the voltage value of the detection resistance and the resistance value of the detection resistance The current value of the detection current; if the current value of the detection current is less than the current threshold, it is determined that the terminal coil is open.
  • an embodiment of the present application provides a terminal device, which mainly includes an inductive circuit and the rectifier chip provided in any one of the foregoing fourth aspects, wherein the rectifier circuit is coupled to the inductive circuit, and the inductive circuit includes The terminal coil.
  • the inductance circuit further includes a first capacitor, the first electrode of the first capacitor is coupled with the first AC terminal of the rectifier circuit, the second electrode of the first capacitor is coupled with the first terminal of the terminal coil, and the terminal The second end of the coil is coupled with the second AC end of the rectifier circuit.
  • the DC end of the rectifier circuit is coupled with a charging chip of the terminal device, and the charging chip is used to provide a detection voltage to the rectifier circuit.
  • the charging chip can transmit DC power to the rectifier chip, and the rectifier chip converts the DC power into AC power and then outputs it through the terminal coil. This process can also be called an inverter process.
  • the charging chip may apply the detection voltage to the DC terminal of the rectifier circuit.
  • the terminal device also includes a detection resistor; one end of the detection resistor is coupled to the DC terminal of the rectifier circuit, and the other end is used to receive the detection voltage;
  • the rectifier chip also includes a sampling circuit, the sampling circuit is respectively connected with the detection resistor and the control Circuit coupling, the sampling circuit is used to detect the resistance voltage of the detection resistor and provide the voltage value of the resistance voltage to the control circuit;
  • the control circuit is specifically used to: obtain the current of the detection current according to the voltage value of the detection resistance and the resistance value of the detection resistance Value; if the current value of the detection current is less than the current threshold, it is determined that the terminal coil is open.
  • the terminal device also includes a system chip, which is coupled with the control circuit; the system chip is used to: generate control instructions according to user operations and send the control instructions to the control circuit of the rectifier chip; the control circuit also uses Yu: After receiving the control instruction, determine whether the terminal coil is open, and send the detection result of the terminal coil to the system chip; the system chip is also used to: feedback the detection result to the user.
  • Figure 1 is a schematic diagram of a wireless charging terminal device
  • Figure 2 is a schematic diagram of a terminal device structure
  • FIG. 3 is a schematic structural diagram of a terminal device provided by an embodiment of this application.
  • FIG. 4 is a schematic structural diagram of a terminal device provided by an embodiment of the application.
  • Fig. 1 exemplarily shows a schematic diagram of a wireless charging terminal device 100.
  • the terminal device 100 includes a terminal coil
  • the wireless charging base 200 includes a charging base coil (not shown in the figure).
  • the terminal user can connect the wireless charging stand 200 to a household AC power socket, and place the terminal device 100 on the wireless charging stand 200, so that the terminal coil and the charging stand coil can achieve electromagnetic induction.
  • the wireless charging stand 200 can receive electric energy from a household AC power socket, and provide part or all of the received electric power to the terminal device 100 through electromagnetic induction between the charging base coil and the terminal coil.
  • the terminal device 100 can then use the electric energy provided by the wireless charging stand 200 to complete charging.
  • the terminal coil is often disconnected due to connectivity problems, which makes the terminal device unable to charge normally.
  • connectivity problems which makes the terminal device unable to charge normally.
  • the operator when it is found that the terminal device cannot be charged normally, it is often necessary for the operator to disassemble and test to determine whether the terminal coil is disconnected. This method is relatively cumbersome to operate and has a high labor cost.
  • the embodiments of the present application provide a rectifier chip and a terminal device, wherein the rectifier chip can automatically detect whether the terminal coil is open, thereby making the detection of the terminal coil easier.
  • the application will be further described in detail below in conjunction with the accompanying drawings.
  • the specific operation method in the method embodiment can also be applied to the device embodiment or the system embodiment. It should be noted that in the description of this application, “at least one” refers to one or more, and multiple refers to two or more. In view of this, in the embodiments of the present invention, “a plurality of” may also be understood as “at least two”.
  • the terminal device 100 takes the terminal device 100 in FIG. 2 as an example to specifically describe the wireless charging system to which the embodiment of the present application is applied.
  • the terminal device 100 may be a smart phone, a tablet computer, a smart reader, etc., which is not limited in the embodiment of the present application.
  • the terminal device 100 may mainly include a system chip 110, an inductance circuit 120, a charging chip 130, a terminal battery 140, and a rectifier chip 150 for wireless charging.
  • a system on chip (SoC) 110 may include one or more processing units.
  • the system on chip 110 may include an application processor (AP), a modem processor, and a graphics processing unit (graphics processing unit). unit, GPU), image signal processor (image signal processor, ISP), controller, memory, video codec, digital signal processor (digital signal processor, DSP), baseband processor, and/or neural network processor (Neural-network Processing Unit, NPU) etc.
  • AP application processor
  • modem processor modem processor
  • graphics processing unit graphics processing unit
  • graphics processing unit graphics processing unit
  • unit GPU
  • image signal processor image signal processor
  • ISP image signal processor
  • controller memory
  • video codec digital signal processor
  • DSP digital signal processor
  • baseband processor baseband processor
  • NPU neural network processor
  • different processing units can be independent devices or integrated in one or more processors.
  • the controller may be the nerve center and command center of the terminal device 100.
  • the controller can generate operation control signals according to the instruction operation code and timing signals to complete the control of fetching and executing instructions.
  • a memory may also be provided in the system chip 110 for storing instructions and data.
  • the memory in the system chip 110 is a cache memory.
  • the memory can store instructions or data that have just been used or recycled by the system chip 110. If the system chip 110 needs to use the instruction or data again, it can be directly called from the memory. Repeated accesses are avoided, the waiting time of the processor 110 is reduced, and the efficiency of the system is improved.
  • the system chip 110 may include one or more interfaces.
  • the interface can include an integrated circuit (inter-integrated circuit, I2C) interface, an integrated circuit built-in audio (inter-integrated circuit sound, I2S) interface, a pulse code modulation (pulse code modulation, PCM) interface, a universal asynchronous transceiver receiver/transmitter, UART) interface, mobile industry processor interface (MIPI), general-purpose input/output (GPIO) interface, subscriber identity module (SIM) interface, and / Or Universal Serial Bus (USB) interface, etc.
  • I2C integrated circuit
  • I2S integrated circuit built-in audio
  • PCM pulse code modulation
  • PCM pulse code modulation
  • UART universal asynchronous transceiver receiver/transmitter
  • MIPI mobile industry processor interface
  • GPIO general-purpose input/output
  • SIM subscriber identity module
  • USB Universal Serial Bus
  • the I2C interface is a bidirectional synchronous serial bus, which includes a serial data line (SDA) and a serial clock line (SCL).
  • SDA serial data line
  • SCL serial clock line
  • the system chip 110 may include multiple sets of I2C buses.
  • the system chip 110 may couple different chips respectively through different I2C bus interfaces.
  • the system chip 110 can respectively couple the charging chip 130 and the rectifier chip 150 through different I2C interfaces, so that the system chip 110 can communicate with the charging chip 130 and the rectifier chip 150 through the I2C bus interface respectively to realize the wireless charging function.
  • the inductance circuit 120 includes a terminal coil.
  • the inductance circuit 120 can receive electric energy provided by the wireless charging station, that is, charging electric energy through electromagnetic induction between the terminal coil and the charging base coil.
  • the inductance circuit 120 outputs the charging power to the rectifier chip 150, where the charging power output by the inductance circuit 120 is alternating current, and the rectifier chip 150 can rectify the charging power to convert it into direct current.
  • the charging chip 130 can charge the terminal battery 140 with the charging electric energy in the form of direct current provided by the rectifying chip 150.
  • the charging chip 130 can also use battery power provided by the terminal battery 140 to power the terminal device 100, such as powering the system chip 110 and the rectifier chip 150.
  • the charging chip 130 reference may be made to conventional solutions in the field, which are not described in detail in the embodiment of the present application.
  • the structure illustrated in the embodiment of the present invention does not constitute a specific limitation on the terminal device 100.
  • the terminal device 100 may include more or fewer components than shown, or combine certain components, or split certain components, or arrange different components.
  • the illustrated components can be implemented in hardware, software, or a combination of software and hardware.
  • the rectifier chip 150 and the charging chip 130 can be integrated in the same chip, the rectifier chip 150 and/or the charging chip 130 can also be integrated in the system chip 110, etc.
  • the specific implementations in these situations can be implemented in this case. Obtained on the basis of the application example, it should also be included in the application example.
  • FIG. 3 exemplarily shows a schematic structural diagram of a terminal device 100 provided in an embodiment of the present application.
  • the rectifier chip 150 includes a rectifier circuit 1502 and a control circuit 1501. Among them, the control circuit 1501 is coupled with the rectifier circuit 1502.
  • the rectifier chip 150 is coupled with the inductance circuit 120.
  • the inductance circuit 120 includes a first capacitor C1 and a terminal coil L1.
  • the first electrode of the first capacitor C1 is coupled with the first terminal of the terminal coil L1
  • the second electrode of the first capacitor C1 is coupled with the first AC terminal (P1) of the rectifier circuit 1502
  • the second terminal of the terminal coil L1 is coupled with the rectifier circuit.
  • the second AC terminal (P2) of 1502 is coupled.
  • the rectifier circuit 1502 can receive the AC charging power provided by the inductance circuit 120 through the first AC terminal and the second AC terminal.
  • the rectifier circuit 1502 may be a bridge rectifier circuit 1502 structure composed of four switch tubes. As shown in FIG. 2, the rectifier circuit 1502 includes a first switching tube (S1), a second switching tube (S2), a third switching tube (S3), and a fourth switching tube (S4).
  • the second electrode of the switching tube S1 is coupled with the first electrode of the switching tube S4, the first electrode of the switching tube S1 is coupled with the first electrode of the switching tube S2, and the second electrode of the switching tube S1 can be used as the rectifier circuit 1502.
  • the AC terminal P2 is coupled with the second terminal of the terminal coil L1, and the second electrode of the switch tube S4 is coupled with the ground circuit.
  • the second electrode of the switching tube S2 is coupled with the first electrode of the switching tube S3, and the second electrode of the switching tube S2 can be used as the AC terminal P1 of the rectifier circuit 1502 to couple with the second electrode of the first capacitor C1, and the second electrode of the switching tube S3
  • the electrode is coupled to the ground circuit.
  • the control electrode of the switching tube S1, the control electrode of the switching tube S2, the control electrode of the switching tube S3, and the control electrode of the switching tube S4 are respectively coupled with the control circuit 1501.
  • the control circuit 1501 can control the switching tubes S1 to S4 to be turned on or off respectively, so as to realize rectification.
  • the charging electric energy in the form of AC can be divided into a positive half cycle and a negative half cycle in an AC cycle.
  • the AC terminal P1 is at a low potential
  • the AC terminal P2 is at a high potential.
  • the control circuit 1501 turns on the switching tubes S1 and S4, and disconnects the switching tubes S2 and S3, so that the DC terminal ( P3) Output the charging power in the form of direct current to the charging chip 130.
  • the negative half cycle the AC terminal P2 is at a low potential and the AC terminal P1 is at a high potential.
  • control circuit 1501 disconnects the switching tubes S1 and S4, and turns on the switching tubes S2 and S3, so that the DC terminal ( P3) Output the charging power in the form of direct current to the charging chip 130.
  • the control circuit 1501 alternately repeats the control of each switch tube in the positive half cycle and the negative half cycle, so that the charging electric energy in multiple AC cycles can be converted into direct current.
  • control circuit 1501 can control the rectification circuit 1502 to conduct transmission loops in different directions to control the direction of the current in the rectification circuit 1502, so that the charging power can be converted from alternating current to direct current.
  • control circuit 1501 in the embodiment of the present application can use the rectifier circuit 1502 to detect the terminal coil L1.
  • control circuit 1501 may control the rectification circuit 1502 to turn on the transmission loop of the detection voltage to the first capacitor C1 and control the rectification circuit 1502 to turn off the transmission loop of the detection voltage to the terminal coil L1 in the first time period.
  • the detection voltage is the voltage applied to the first electrode of the first capacitor C1.
  • the control circuit 1501 can turn on the switch S3 in the first time period, thereby turning on the detection voltage to the first capacitor C1 transmission loop, so that the detection of the first capacitor C1 storage can.
  • the control circuit 1501 can control the rectifier circuit 1502 to turn on the transmission loop between the first capacitor C1 and the terminal coil L1.
  • the control circuit 1501 can turn on the switching tube S3 and the switching tube S4 in the second time period, thereby turning on the first capacitor C1, the terminal coil L1, the switching tube S4, and the switching tube.
  • the transmission loop between S3 discharges the first capacitor C1.
  • the voltage of the first electrode of the first capacitor C1 may also be referred to as the LC coupling voltage.
  • the control circuit 1501 can monitor the LC coupling voltage, and determine whether the terminal coil L1 is open according to the change of the LC coupling voltage in the second time period. Specifically, after the first capacitor C1 is charged in the first time period, the LC coupling voltage rises. It is assumed that the voltage value of the LC coupling voltage at the end of the first time period is V1. In the second time period, if the terminal coil L1 is not disconnected, the first capacitor C1 can be discharged normally, causing the LC coupling voltage to decrease.
  • the control circuit 1501 in the embodiment of the present application can determine whether the terminal coil L1 is open according to the LC coupling voltage.
  • the control circuit 1501 may start timing after the conduction control rectification circuit 1502 conducts the transmission loop between the first capacitor C1 and the terminal coil L1. For example, the control circuit 1501 may control the rectification circuit 1502 to conduct at time t1. The transmission loop between the first capacitor C1 and the terminal coil L1 is connected.
  • the control circuit 1501 monitors the voltage value of the LC coupling voltage, and if the decrease in the voltage value of the LC coupling voltage is not greater than the first voltage threshold within the first time delay after the first time point, it can be determined that the terminal coil L1 is open. For example, at the end of the first time delay, the voltage value of the LC coupling voltage is V2, and V1-V2 is not greater than the first voltage threshold.
  • the terminal coil L1 may be disconnected.
  • V1 the value of V1 is 1.8V
  • the first time delay is 1ms. If the LC coupling voltage has been maintained at 1.8V after the first time point, it can be determined that the terminal coil L1 is open.
  • the rectifier chip 150 can be used to detect whether the terminal coil L1 is open, which eliminates the need for manual disassembly, which is beneficial to simplify the detection process of the terminal coil L1.
  • the rectifier chip 150 may further include a sampling circuit 1504. As shown in FIG. 3, one end of the sampling circuit 1504 is coupled with the first end of the terminal coil L1, and the other end of the sampling circuit 1504 is coupled with the control circuit 1501.
  • the sampling circuit 1504 may be an analog-to-digital converter (ADC).
  • ADC analog-to-digital converter
  • the sampling circuit 1504 can detect the LC coupling voltage and provide the voltage value of the LC coupling voltage to the control circuit 1501. It can also be understood that the voltage signal of the LC coupling voltage detected by the sampling circuit 1504 is an analog signal.
  • the sampling circuit 1504 converts it into a digital signal and provides it to the control circuit 1501.
  • the control circuit 1501 can obtain the LC coupling voltage according to the digital signal. Voltage value. Furthermore, the control circuit 1501 can monitor the voltage value of the LC coupling voltage through the sampling circuit 1504, and determine whether the terminal coil L1 is open according to the monitored voltage value of the LC coupling voltage.
  • control circuit 1501 needs to determine whether the terminal coil L1 is open in the second time period according to the change of the LC coupling voltage. Therefore, in the second time period, it needs to stop applying to the first electrode of the first capacitor C1. Detect the voltage to prevent the detection voltage from interfering with the variation of the LC coupling voltage.
  • the terminal device 100 may further include a switch circuit 160, and the switch circuit 160 may be a part of the peripheral circuit of the rectifier chip 150.
  • the first terminal of the switch circuit 160 is used to receive the first voltage
  • the second terminal of the switch circuit 160 is coupled with the first electrode of the first capacitor C1
  • the control terminal of the switch circuit 160 is coupled with the system chip 110.
  • the system chip 110 may control the switch circuit 160 to generate a detection voltage according to the first voltage during the first time period, and provide the detection voltage to the first electrode of the first capacitor C1; in the second time period, control the switch circuit 160 to stop switching to the first electrode of the first capacitor C1.
  • the first electrode of a capacitor C1 provides a detection voltage to prevent the detection voltage from interfering with the detection result of the control circuit 1501. It should be understood that the switch circuit 160 generates the detection voltage according to the first voltage, which means that the switch circuit 160 outputs the detection voltage based on the first voltage.
  • the detection voltage is derived from the first voltage, but the voltage value of the detection voltage may be the same as that of the first voltage.
  • the voltage values of the voltages are the same or different.
  • the switch circuit 160 has at least the following three possible implementation manners:
  • the switch circuit 160 may include a fifth switch tube (S5), the first electrode of the switch tube S5 is used to receive the first voltage V0, and the second electrode of the switch tube S5 is coupled with the first electrode of the first capacitor C1,
  • the control electrode of the switch S5 is coupled with the system chip 110.
  • the system chip 110 can turn on the fifth switch tube in the first time period, so that the switch circuit 160 can output the detection voltage to the first electrode of the first capacitor C1.
  • the system chip 110 turns off the first switch tube, so that the switch circuit 160 stops outputting the detection voltage to the first electrode of the first capacitor C1.
  • the switch circuit 160 may include a first resistor (R1) and a switch tube S5, and the resistor R1 is connected in series with the first electrode and the second electrode of the switch tube S5.
  • R1 receives the first voltage V0
  • the other end of the resistor R1 is coupled with the first electrode of the switch S5
  • the second electrode of the switch S5 is connected to the first capacitor C1.
  • the first electrode is coupled.
  • the first electrode of the switch S5 receives the first voltage V0
  • the second electrode of the switch S5 is coupled to one end of the resistor R1, and the other end of the resistor R1 is connected to the first capacitor C1. Electrode coupling.
  • the resistor R1 can generate a certain resistance voltage drop to protect the switch tube S5.
  • the switch circuit 160 may include a first resistor (R1), a first diode (D1) and a switch tube S5, the diode D1, the resistor R1, and the first electrode of the switch tube S5 and the first electrode
  • the two electrodes are connected in series, and the cathode of the diode D1 is coupled with the inductance circuit 120.
  • the first electrode of the first capacitor C1 often reaches a higher voltage.
  • the cathode of the diode D1 is coupled with the inductance circuit 120, when the terminal device 100 is charged , The diode D1 can be cut off to prevent breakdown of the switch tube S5.
  • the first voltage may be provided by the rectifier chip 150 to the switch circuit 160.
  • the rectifier chip 150 may also include a power supply circuit 1503.
  • the control circuit 1501 may control the power supply circuit 1503 to provide the switch circuit 160 with a first voltage.
  • the voltage value of the first voltage may be 1.8V.
  • the rectifier chip 150 can receive the voltage provided by the charging chip 130 or the boost chip coupled with the terminal battery 140, generally, the voltage is about 5V.
  • the power supply circuit 1503 in the rectifier chip 150 can output the above-mentioned first voltage according to the voltage provided by the charging chip 130 or the boost chip under the control of the control circuit 1501.
  • the specific implementation of the power supply circuit 1503 can refer to the existing rectifier chip 150, which is not limited in the embodiment of the present application.
  • system chip 110 may also provide the first voltage to the switch circuit 160, or the system chip 110 instructs other chips to provide the first voltage to the switch circuit 160, etc.
  • the embodiment of the present application does not limit this.
  • the switch circuit 160 can also be integrated in the rectifier chip 150.
  • the control circuit 1501 can control the switch circuit 160 to be turned on or off. Specifically, the control circuit 1501 turns on the switch circuit 160 in the first time period, and turns off the switch circuit 160 in the second time period.
  • the specific implementation in this case is similar to the structure shown in FIG. 3, which will not be repeated here.
  • the charging chip 130 can obtain battery power from the terminal battery 140 and provide the battery power to the rectifier chip 150.
  • the rectifier chip 150 inverts (converts direct current to alternating current) the battery power provided by the charging chip 130, and outputs it through the terminal coil L1.
  • an embodiment of the present application also provides another terminal device 100, as shown in FIG. 4.
  • the specific implementation of the inductance circuit 120 and the rectification circuit 1502 is similar to that of the first embodiment, which will not be repeated here.
  • the DC terminal P3 of the rectifier circuit 1502 can receive the detection voltage, and the control circuit 1501 can control the rectifier circuit 1502 to transmit the detection current to the inductance circuit 120, where the detection current is driving the detection voltage. That is to say, the control circuit 1501 can control the rectifier circuit 1502 to turn on the transmission path of the detection voltage to the inductance circuit 120. In this case, a detection current is generated between the DC terminal P3 and the inductance circuit 120.
  • control circuit 1501 can control the switching tubes S1 to S4 to be turned on and off respectively in a control manner similar to the inverter process.
  • the control circuit 1501 can turn on the first switching tube and the switching tube in the third time period.
  • the fourth switching tube is disconnected from the second switching tube and the third switching tube, so that the positive half cycle of the alternating current can be output through the terminal coil L1.
  • the second switching tube and the third switching tube are turned on, and the first switching tube and the fourth switching tube are disconnected, so that the negative half cycle of the alternating current can be output through the terminal coil L1.
  • the control circuit 1501 can determine whether the terminal coil L1 is open according to the current value of the detected current at this time. Specifically, if the terminal coil L1 is open, the detection current cannot flow normally, so the detection current may not be detected, or a small detection current may be detected. If the terminal coil L1 is not disconnected, a more obvious detection current can be detected. In view of this, the control circuit 1501 may determine that the terminal coil L1 is open when it is determined that the current value of the detection current is less than the current threshold value.
  • the rectifier chip 150 shown in FIG. 4 may also include a sampling circuit 1504, one end of the sampling circuit 1504 is coupled to the control circuit 1501, and the other end of the sampling circuit 1504 is coupled to the detection resistor (R2). Among them, one end of the resistor R2 is coupled to the DC terminal P3 of the rectifier circuit 1502, and the other end is used to receive the detection voltage.
  • the sampling circuit 1504 can detect the resistance voltage of the detection resistor, and provide the voltage value of the resistance voltage to the control circuit 1501.
  • the resistance value of the detection resistor is preset in the control circuit 1501.
  • the control circuit 1501 can calculate the current value of the detection current according to the resistance voltage provided by the sampling circuit 1504 and the resistance value of the detection resistance, and then can be based on the current value of the detection current Determine whether the terminal coil L1 is open.
  • FIG. 4 utilizes the inverter function of the terminal device 100 without adding a switch circuit 160 in the terminal device 100 or the rectifier chip 150, so the structure is simpler and the cost is lower.
  • the detection voltage may be provided by the charging chip 130.
  • the charging chip 130 is coupled to the DC terminal P3 of the rectifier circuit 1502 (coupled through the resistor R2).
  • the charging chip 130 can obtain battery power from the terminal battery 140 and provide a detection voltage to the rectifier chip 150.
  • the charging chip 130 provides the detection voltage to the rectifier chip 150. It can also be understood that the detection voltage is obtained on the basis of the output voltage of the charging chip 130.
  • the rectifier chip 150 in the embodiment of the present application can complete the detection of the terminal coil L1 without manual disassembly.
  • the system chip 110 may trigger the rectifier chip 150 to perform the detection process.
  • the operating system of the terminal device 100 is installed in the system chip 110, and the system chip 110 runs the operating system, and can display a user interface (UI interface) on the display screen of the terminal device 100.
  • the UI interface includes one or more applications (application, APP). Among them, there is a detection APP, and the user can trigger the system chip 110 to generate control instructions through touch, click and other operations.
  • the system chip 110 sends the control command to the rectifier chip 150.
  • the control circuit 1501 in the rectifier chip 150 determines whether the terminal coil L1 is open or not through any one of the possible implementation manners provided in the first embodiment or the second embodiment, and will check the detection result of the terminal coil L1 Send to the system chip 110.
  • the system chip 110 can feed back the detection result to the user in any manner such as voice, image, text, etc.
  • the user can complete the detection of the terminal coil L1 by using the detection APP, and the operation is more convenient.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Charge And Discharge Circuits For Batteries Or The Like (AREA)

Abstract

本申请实施例提供一种整流芯片及终端设备,可以应用于具有无线充电功能的终端设备中。在本申请实施例中,可以由整流芯片检测终端设备中的终端线圈是否断路,该检测过程无需人工拆机,因此本申请实施例所提供的技术方案有利于简化对终端线圈的检测过程。

Description

一种整流芯片及终端设备
相关申请的交叉引用
本申请要求在2019年09月18日提交中国专利局、申请号为201910880663.X、申请名称为“一种整流芯片及终端设备”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及无线充电技术领域,尤其涉及一种整流芯片及终端设备。
背景技术
近年来,无线充电技术在终端设备中得到了日益广泛的应用,如智能手机、平板电脑等越来越多的终端设备可以实现无线充电功能。
一般来说,无线充电技术的核心器件是终端线圈。以智能手机为例,终端线圈多安装于智能手机内部靠近终端后壳的位置。在对智能手机充电时,智能手机的后壳与无线充电座接触,使得智能手机内部的终端线圈与无线充电座内部的充电座线圈磁耦合。基于电磁耦合效应,无线充电座可以通过充电座线圈向终端线圈提供电能,从而实现为智能手机供电。智能手机进而可以利用终端线圈接收到的电能实现充电。
然而,由于无线充电技术中终端线圈安装于终端设备的内部,因此在终端设备充电异常时,只有将终端设备拆机才可以检测终端线圈的连接情况。综上,目前对无线充电技术中终端线圈的检测方法还有待进一步研究。
发明内容
有鉴于此,本申请提供一种整流芯片及终端设备,通过整流芯片检测终端线圈是否断路,从而可以省去人工拆机的过程,因此有利于简化对终端线圈的检测。
第一方面,本申请实施例提供一种整流芯片,整流芯片中主要包括整流电路和控制电路;其中,整流电路可以与终端设备中的电感电路耦合,该电感电路包括第一电容和终端线圈,第一电容的第一电极与终端线圈的第一端耦合,第一电容的第二电极与整流电路的第一交流端耦合,终端线圈的第二端与整流电路的第二交流端耦合;控制电路可以在第一时间段,控制整流电路导通检测电压向第一电容的传输回路,以及控制整流电路断开检测电压向终端线圈的传输回路,其中,检测电压为施加在第一电容的第一电极的电压,从而使得第一电容可以利用检测电压储能。控制电路在第二时间段,控制整流电路导通第一电容与终端线圈之间的传输回路,根据LC耦合电压确定终端线圈是否断路,其中,LC耦合电压为第一电容的第一电极的电压。采用上述技术方案,若终端线圈没有断路,则在第二时间段中第一电容可以向终端线圈放电,使得LC耦合电压降低。若终端线圈断路,则在第二时间段中第一电容无法向终端线圈正常放电,使得LC耦合电压保持不变,或LC耦合电压非常缓慢地降低。也就是说,在终端线圈断路和没有断路两种情况下,LC耦合电压在第二时间段内的变化情况并不相同,因此,在本申请实施例中控制电路可以根据LC 耦合电压确定终端线圈是否断路。
在第一方面的第一种可能的设计中,整流电路包括第一开关管、第二开关管、第三开关管和第四开关管;第一开关管的第二电极和第四开关管的第一电极耦合,第一开关管的第一电极与第二开关管的第一电极耦合,第一开关管的第二电极为整流电路的第二交流端,第四开关管的第二电极与接地电路耦合;第二开关管的第二电极和第三开关管的第一电极耦合,第二开关管的第二电极为整流电路的第一交流端,第三开关管的第二电极与接地电路耦合;第一开关管的控制电极、第二开关管的控制电极、第三开关管的控制电极和第四开关管的控制电极分别与控制电路耦合;控制电路可以在第一时间段,导通第三开关管,并断开第一开关管、第二开关管和第四开关管,从而导通检测电压向第一电容的传输回路;控制电路还可以在第二时间段,导通第三开关管和第四开关管,并断开第一开关管和第二开关管,从而可以导通第一电容向终端线圈之间的传输回路。
在第一方面的第二种可能的设计中,整流芯片还包括采样电路,采样电路的一端与终端线圈的第一端耦合,采样电路另一端与控制电路耦合;采样电路,用于检测LC耦合电压,并将LC耦合电压的电压值提供给控制电路;控制电路可以在第二时间段的第一时间点,控制整流电路导通第一电容与终端线圈之间的传输回路之后,监测LC耦合电压的电压值;若在第一时间点之后的第一时延内,LC耦合电压的电压值的降低幅度不大于第一电压阈值,则确定终端线圈断路。
在第一方面的第三种可能的设计中,整流芯片还包括供电电路;供电电路可以与第一电容的第一电极耦合,并输出第一电压,该第一电压可以用于生成检测电压。
在第一方面的第四种可能的设计中,整流芯片还包括开关电路,该开关电路的一端与供电电路耦合,另一端与第一电容的第一电极耦合;控制电路还可以在第一时间段,控制开关电路根据第一电压产生检测电压,并将检测电压提供给电感电路;控制电路还可以在第二时间段,控制开关电路停止向电感电路提供检测电压。采用上述技术方案,在整流芯片中集成开关电路,控制电路可以通过开关电路向第一电容的第一电极提供检测电压。在第二时间段,控制电路控制开关电路停止向电感电路提供检测电压,可以防止检测电压对LC耦合电压产生干扰,进而影响终端线圈的检测结果。
在第一方面的第五种可能的设计中,开关电路包括第五开关管,第五开关管的第一电极与供电电路耦合,第五开关管的第二电极和第一电容的第一电极耦合,第五开关管的控制电极与控制电路耦合;控制电路,具体用于:在第一时间段,导通第一开关管;在第二时间段,断开第一开关管。
在第一方面的第六种可能的设计中,开关电路还包括第一电阻,第一电阻与第一开关管的第一电极和第二电极串联于供电电路和第一电容的第一电极之间。第一电阻可以在开关电路导通时产生一定的电阻压降,有利于保护第五开关管。
在第一方面的第七种可能的设计中,所述开关电路还包括第一二极管,第一二极管与第一开关管的第一电极和第二电极串联,且第一二极管的阳极与供电电路耦合,第一二极管的阴极与电感电路耦合。在对终端设备充电时,第一电容的第一电极往往会具有较高的电压值。有鉴于此,在开关电路中增设第一二极管,使得当第一电容的第一电极电压较高时,第一二极管处于截止状态,有利于包括第五开关管。
第二方面,本申请实施例提供一种终端设备,主要包括开关电路、系统芯片、电感电路和如上述第一方面及第一方面第一至第三种可能的设计中的任一个所提供的整流芯片, 整流芯片中的整流电路与电感电路耦合,其中,电感电路包括第一电容和终端线圈;第一电容的第一电极与终端线圈的第一端耦合,第一电容的第二电极与整流电路的第一交流端耦合,终端线圈的第二端与整流电路的第二交流端耦合;开关电路第一端用于接收第一电压;开关电路的第二端与第一电容的第一电极耦合,开关电路的第二端用于在第一电容的第一电极施加检测电压;开关电路的控制端与系统芯片耦合;系统芯片可以在第一时间段,控制开关电路根据第一电压产生检测电压,并将检测电压提供给第一电容的第一电极;控制芯片还可以在第二时间段,控制开关电路停止向第一电容的第一电极提供检测电压。采用上述技术方案,在终端设备中设置开关电路,并通过系统芯片控制开关电路在第一时间段为第一电容的第一电极施加检测电压,在第二时间段停止为第一电容的第一电极施加检测电压,有利于防止在第二时间段检测电压干扰LC耦合电压,进而影响终端线圈的检测结果。
在一种可能的设计中,系统芯片还可以根据用户操作生成控制指令,并将控制指令发送给整流芯片的控制电路;控制电路还可以在接收到控制指令后,确定终端线圈是否断路,并将终端线圈的检测结果发送给系统芯片;系统芯片还可以向用户反馈检测结果。采用上述技术方案,系统芯片可以根据用户操作触发控制电路对终端线圈进行检测,例如,该用户操作可以为用户点击检测APP的检测键,也就是说,用户通过点击检测APP的检测键既可以获得终端线圈的检测结果。
在一种可能的设计中,开关电路包括第五开关管,第五开关管的第一电极用于接收第一电压,第五开关管的第二电极和第一电容的第一电极耦合,第五开关管的控制电极与系统芯片耦合;系统芯片,具体用于:在第一时间段,导通第五开关管;在第二时间段,断开第五开关管。
在一种可能的设计中,开关电路还包括第一电阻,第一电阻与第一开关管的第一电极和第二电极串联。
在一种可能的设计中,开关电路还包括第一二极管,第一二极管与第一开关管的第一电极和第二电极串联,且第一二极管的阴极与电感电路耦合。
第三方面,本申请实施例提供一种终端设备,主要包括电感电路和如上述第一方面的第四至第七种可能的设计中任一项所提供的整流芯片,且,整流芯片中的整流电路与电感电路耦合,其中,电感电路,包括第一电容和终端线圈;第一电容的第一电极与终端线圈的第一端耦合,第一电容的第二电极与整流电路的第一交流端耦合,终端线圈的第二端与整流电路的第二交流端耦合。
在一种可能的设计中,终端设备还包括系统芯片,系统芯片与控制电路耦合;系统芯片用于:根据用户操作生成控制指令,并将控制指令发送给整流芯片的控制电路;控制电路还用于:在接收到控制指令后,确定终端线圈是否断路,并将终端线圈的检测结果发送给系统芯片;系统芯片还用于:向用户反馈检测结果。
第四方面,本申请实施例提供一种整流芯片,主要包括整流电路和控制电路;整流电路与控制电路耦合,整流电路的直流端用于接收检测电压,整流电路的第一交流端和第二交流端用于与电感电路耦合,电感电路包括用于无线充电的终端线圈;控制电路用于:控制整流电路向电感电路传输检测电流,检测电流是在检测电压的驱动下产生的;根据检测电流的电流值确定终端线圈是否断路。在上述方案中,若终端线圈没有断路,则在检测电压的驱动下可以正常产生检测电流,若终端线圈断路,则无法产生检测电流,或者产生的 检测电流的电流值较小。因此,本申请实施例中控制电路可以根据检测电流的电流值确定终端线圈是否断路。
在一种可能的设计中,整流电路包括第一开关管、第二开关管、第三开关管和第四开关管;第一开关管的第二电极和第四开关管的第一电极耦合,第一开关管的第一电极与第二开关管的第一电极耦合,第一开关管的第一电极为整流电路的直流端,第一开关管的第二电极为整流电路的第一交流端,第四开关管的第二电极与接地电路耦合;第二开关管的第二电极和第三开关管的第一电极耦合,第二开关管的第二电极为整流电路的第二交流端,第三开关管的第二电极与接地电路耦合;第一开关管的控制电极、第二开关管的控制电极、第三开关管的控制电极和第四开关管的控制电极分别与控制电路耦合;控制电路具体用于:在第三时间段,导通第一开关管和第四开关管,并断开第二开关管和第三开关管;在第四时间段,导通第二开关管和第三开关管,并断开第一开关管和第四开关管。该过程可以利用常规逆变过程中,控制电路对整流电路的控制方式实现。
在一种可能的设计中,整流芯片还包括采样电路;采样电路的一端与控制电路耦合,采样电路的另一端用于与检测电阻耦合,检测电阻的一端与整流电路的直流端耦合,另一端用于接收检测电压;采样电路,用于检测检测电阻的电阻电压,并将电阻电压的电压值提供给控制电路;控制电路具体用于:根据检测电阻的电压值和检测电阻的电阻阻值得到检测电流的电流值;若检测电流的电流值小于电流阈值,则确定终端线圈断路。
第五方面,本申请实施例提供一种终端设备,主要包括电感电路和如上述第四方面中任一项所提供的整流芯片,其中,整流电路与电感电路耦合,电感电路包括用于无线充电的终端线圈。
在一种可能的设计中,电感电路还包括第一电容,第一电容的第一电极与整流电路的第一交流端耦合,第一电容的第二电极与终端线圈的第一端耦合,终端线圈的第二端与整流电路的第二交流端耦合。
在一种可能的设计中,整流电路的直流端与终端设备的充电芯片耦合,充电芯片用于向整流电路提供检测电压。对于具备双向充电功能的终端设备,充电芯片可以向整流芯片传输直流电,由整流芯片将直流电转换为交流电后通过终端线圈输出,该过程也可以称为逆变过程。有鉴于此,在本申请实施例中可以由充电芯片为整流电路的直流端施加检测电压。
在一种可能的设计中,终端设备还包括检测电阻;检测电阻的一端与整流电路的直流端耦合,另一端用于接收检测电压;整流芯片还包括采样电路,采样电路分别与检测电阻和控制电路耦合,采样电路用于检测检测电阻的电阻电压,并将电阻电压的电压值提供给控制电路;控制电路具体用于:根据检测电阻的电压值和检测电阻的电阻阻值得到检测电流的电流值;若检测电流的电流值小于电流阈值,则确定终端线圈断路。
在一种可能的设计中,终端设备还包括系统芯片,系统芯片与控制电路耦合;系统芯片用于:根据用户操作生成控制指令,并将控制指令发送给整流芯片的控制电路;控制电路还用于:在接收到控制指令后,确定终端线圈是否断路,并将终端线圈的检测结果发送给系统芯片;系统芯片还用于:向用户反馈检测结果。
本申请的这些方面或其他方面在以下实施例的描述中会更加简明易懂。
附图说明
图1为一种无线充电终端设备示意图;
图2为一种终端设备结构示意图;
图3为本申请实施例提供的一种终端设备结构示意图;
图4为本申请实施例提供的一种终端设备结构示意图。
具体实施方式
下面将结合本申请实施例中的附图,对本申请实施例中的技术方案进行清楚、完整地描述。
近年来,无线充电技术在电子领域得到了越来越广泛的应用,例如在智能手机领域,无线充电技术已成为各类智能手机的标配。图1示例性示出了一种无线充电终端设备100示意图,终端设备100中包括终端线圈,无线充电座200中包括充电座线圈(图中未示出)。终端用户在为终端设备100充电时,可以将无线充电座200与家用交流电插口连接,并将终端设备100放置于无线充电座200上,使得终端线圈和充电座线圈可以实现电磁感应。无线充电座200可以从家用交流电插口接收电能,并通过充电座线圈和终端线圈之间的电磁感应,将接收到的电能部分或全部提供给终端设备100。终端设备100进而可以利用无线充电座200提供的电能完成充电。
然而,由于终端设备制造工艺的限制,终端线圈常因连接性问题而断路,致使终端设备无法正常充电。目前在发现终端设备无法正常充电时,多需要操作人员拆机检测以确定终端线圈是否断路,这种方式操作较为繁琐,且人工成本较高。
有鉴于此,本申请实施例提供了一种整流芯片和终端设备,其中,整流芯片可以自动检测终端线圈是否断路,从而使得终端线圈的检测更为简便。下面将结合附图对本申请作进一步地详细描述。方法实施例中的具体操作方法也可以应用于装置实施例或系统实施例中。需要说明的是,在本申请的描述中“至少一个”是指一个或多个,其中,多个是指两个或两个以上。鉴于此,本发明实施例中也可以将“多个”理解为“至少两个”。“和/或”,描述关联对象的关联关系,表示可以存在三种关系,例如,A和/或B,可以表示:单独存在A,同时存在A和B,单独存在B这三种情况。另外,字符“/”,如无特殊说明,一般表示前后关联对象是一种“或”的关系。另外,需要理解的是,在本申请的描述中,“第一”、“第二”等词汇,仅用于区分描述的目的,而不能理解为指示或暗示相对重要性,也不能理解为指示或暗示顺序。
示例性地,下面以图2中的终端设备100为例,对本申请实施例所适用的无线充电系统进行具体说明。其中,终端设备100可以是智能手机、平板电脑、智能阅读器等等,本申请实施例对此并不多做限制。如图2所示,终端设备100主要可以包括系统芯片110、电感电路120、充电芯片130、终端电池140,以及用于无线充电的整流芯片150。
其中,系统芯片(system on chip,SoC)110可以包括一个或多个处理单元,例如:系统芯片110可以包括应用处理器(application processor,AP),调制解调处理器,图形处理器(graphics processing unit,GPU),图像信号处理器(image signal processor,ISP),控制器,存储器,视频编解码器,数字信号处理器(digital signal processor,DSP),基带处理器,和/或神经网络处理器(Neural-network Processing Unit,NPU)等。其中,不同的处理单元可 以是独立的器件,也可以集成在一个或多个处理器中。
其中,控制器可以是终端设备100的神经中枢和指挥中心。控制器可以根据指令操作码和时序信号,产生操作控制信号,完成取指令和执行指令的控制。
系统芯片110中还可以设置存储器,用于存储指令和数据。在一些实施例中,系统芯片110中的存储器为高速缓冲存储器。该存储器可以保存系统芯片110刚用过或循环使用的指令或数据。如果系统芯片110需要再次使用该指令或数据,可从所述存储器中直接调用。避免了重复存取,减少了处理器110的等待时间,因而提高了系统的效率。
在一些实施例中,系统芯片110可以包括一个或多个接口。接口可以包括集成电路(inter-integrated circuit,I2C)接口,集成电路内置音频(inter-integrated circuit sound,I2S)接口,脉冲编码调制(pulse code modulation,PCM)接口,通用异步收发传输器(universal asynchronous receiver/transmitter,UART)接口,移动产业处理器接口(mobile industry processor interface,MIPI),通用输入输出(general-purpose input/output,GPIO)接口,用户标识模块(subscriber identity module,SIM)接口,和/或通用串行总线(universal serial bus,USB)接口等。
I2C接口是一种双向同步串行总线,包括一根串行数据线(serial data line,SDA)和一根串行时钟线(derail clock line,SCL)。
在一些实施例中,系统芯片110可以包含多组I2C总线。系统芯片110可以通过不同的I2C总线接口分别耦合不同的芯片。例如:系统芯片110可以通过不同的I2C接口分别耦合充电芯片130和整流芯片150,使系统芯片110可以分别与充电芯片130和整流芯片150之间通过I2C总线接口通信,实现无线充电功能。
如图2所示,电感电路120包括终端线圈,在无线充电过程中,电感电路120可以通过终端线圈和充电座线圈之间的电磁感应,接收无线充电座提供的电能,即充电电能。电感电路120将充电电能输出给整流芯片150,其中,电感电路120输出的充电电能为交流电,整流芯片150可以对充电电能进行整流,使其转换为直流电。充电芯片130可以利用整流芯片150提供的直流电形式的充电电能对终端电池140进行充电。
此外,充电芯片130为还可以利用终端电池140所提供的电池电能为终端设备100供电,如为系统芯片110和整流芯片150供电。充电芯片130的具体实现可以参考本领域常规方案,本申请实施例对此并不多作赘述。
可以理解的是,本发明实施例示意的结构并不构成对终端设备100的具体限定。在本申请另一些实施例中,终端设备100可以包括比图示更多或更少的部件,或者组合某些部件,或者拆分某些部件,或者不同的部件布置。图示的部件可以以硬件,软件或软件和硬件的组合实现。例如,整流芯片150和充电芯片130可以集成于同一芯片之中,整流芯片150和/或充电芯片130也可以集成于系统芯片110之中,等等,这些情形下的具体实现方式皆可以在本申请实施例的基础上得到,也应包含于本申请实施例中。
接下来,通过以下几个实施例为例,对本申请实施例所提供的整流芯片150和终端设备100作进一步说明。
实施例一
图3示例性示出了本申请实施例提供的一种终端设备100结构示意图。如图3所示,整流芯片150包括整流电路1502和控制电路1501。其中,控制电路1501与整流电路1502 耦合。
整流芯片150与电感电路120耦合。其中,电感电路120包括第一电容C1和终端线圈L1。第一电容C1的第一电极与终端线圈L1的第一端耦合,第一电容C1的第二电极与整流电路1502的第一交流端(P1)耦合,终端线圈L1的第二端与整流电路1502的第二交流端(P2)耦合。
其中,整流电路1502可以通过第一交流端和第二交流端接收电感电路120提供的交流形式的充电电能。示例性的,整流电路1502可以是由四个开关管构成的桥式整流电路1502结构。如图2所示,整流电路1502包括第一开关管(S1)、第二开关管(S2)、第三开关管(S3)和第四开关管(S4)。
具体来说,开关管S1的第二电极和开关管S4的第一电极耦合,开关管S1的第一电极与开关管S2的第一电极耦合,开关管S1的第二电极可以作为整流电路1502的交流端P2与终端线圈L1的第二端耦合,开关管S4的第二电极与接地电路耦合。开关管S2的第二电极和开关管S3的第一电极耦合,开关管S2的第二电极可以作为整流电路1502的交流端P1与第一电容C1的第二电极耦合,开关管S3的第二电极与接地电路耦合。开关管S1的控制电极、开关管S2的控制电极、开关管S3的控制电极和开关管S4的控制电极分别与控制电路1501耦合。
在对终端设备100充电过程中,控制电路1501可以分别控制开关管S1至S4导通或断开,从而实现整流。具体来说,交流形式的充电电能在一个交流周期内可以分为正半周期和负半周期。在正半周期内,交流端P1为低电势,交流端P2为高电势,在此期间,控制电路1501导通开关管S1和S4,并断开开关管S2和S3,从而可以通过直流端(P3)向充电芯片130输出直流形式的充电电能。在负半周期内,交流端P2为低电势,交流端P1为高电势,在此期间,控制电路1501断开开关管S1和S4,并导通开关管S2和S3,从而可以通过直流端(P3)向充电芯片130输出直流形式的充电电能。控制电路1501交替重复上述正半周期和负半周期中对各个开关管的控制,便可以将多个交流周期内的充电电能转换为直流电。
由上述整流过程可见,控制电路1501可以通过控制整流电路1502导通不同方向的传输回路,以控制电流在整流电路1502中的走向,从而可以将充电电能由交流电转换为直流电。在此基础上,本申请实施例中控制电路1501可以利用整流电路1502实现对终端线圈L1的检测。
具体来说,控制电路1501可以在第一时间段,控制整流电路1502导通检测电压向第一电容C1的传输回路,以及控制整流电路1502断开检测电压向终端线圈L1的传输回路。其中,检测电压为施加在第一电容C1的第一电极上的电压。以图3所示的整流电路1502为例,控制电路1501可以在第一时间段内导通开关管S3,从而导通检测电压向第一电容C1的传输回路,从而使得检测第一电容C1储能。
在接下来的第二时间段,控制电路1501可以控制整流电路1502导通第一电容C1与终端线圈L1之间的传输回路。以图3所示的整流电路1502为例,控制电路1501可以在第二时间段内导通开关管S3和开关管S4,从而导通第一电容C1、终端线圈L1、开关管S4和开关管S3之间的传输回路,使得第一电容C1放电。
在本申请实施例中,第一电容C1的第一电极的电压也可以称为LC耦合电压。控制电路1501可以监控LC耦合电压,根据LC耦合电压在第二时间段内的变化情况确定终端线 圈L1是否断路。具体来说,在第一时间段内对第一电容C1充电之后,LC耦合电压升高,假设在第一时间段结束时LC耦合电压的电压值为V1。在第二时间段,若终端线圈L1没有断路,则第一电容C1可以正常放电,致使LC耦合电压降低,若终端线圈L1断路,则第一电容C1无法正常放电,LC耦合电压将会保持不变,也有可能会缓慢降低。因此,本申请实施例中控制电路1501根据LC耦合电压便可以确定终端线圈L1是否断路。
具体来说,控制电路1501可以在导通控制整流电路1502导通第一电容C1与终端线圈L1之间的传输回路之后,开始计时,例如,控制电路1501可以在时间点t1控制整流电路1502导通了第一电容C1与终端线圈L1之间的传输回路。控制电路1501监测LC耦合电压的电压值,若在第一时间点之后的第一时延内,LC耦合电压的电压值的降低幅度不大于第一电压阈值,则可以确定终端线圈L1断路。例如,在第一时延结束时,LC耦合电压的电压值为V2,且V1-V2不大于第一电压阈值,在此情况下,说明第一电容C1无法正常放电,终端线圈L1可能断路。例如,V1取值为1.8V,第一时延为1ms,若在第一时间点之后,LC耦合电压一直维持在1.8V,则可以确定终端线圈L1断路。
综上,在本申请实施例中,可以通过整流芯片150检测终端线圈L1是否断路,省去了人工拆机的过程,因此有利于简化终端线圈L1的检测过程。
一般来说,大多数的控制电路1501可以微处理器实现,因此控制电路1501仅支持处理数字信号。有鉴于此,在一种可能的实现方式中,整流芯片150中还可以包括采样电路1504。如图3所示,采样电路1504的一端与终端线圈L1的第一端耦合,采样电路1504另一端与控制电路1501耦合。通常,采样电路1504可以为模数转换器(analog-to-digital converter,ADC)。采样电路1504可以检测LC耦合电压,并将LC耦合电压的电压值提供给控制电路1501。也可以理解为,采样电路1504检测到的LC耦合电压的电压信号为模拟信号,采样电路1504将其转换为数字信号后提供给控制电路1501,控制电路1501可以根据该数字信号得到LC耦合电压的电压值。进而,控制电路1501可以通过采样电路1504监控LC耦合电压的电压值,并根据监控到的LC耦合电压的电压值确定终端线圈L1是否断路。
实施例二
由实施例一可见,控制电路1501在第二时间段需要根据LC耦合电压的变化情况以确定终端线圈L1是否断路,因此,在第二时间段内需要停止在第一电容C1的第一电极施加检测电压,以防止检测电压对LC耦合电压的变化情况产生干扰。
有鉴于此,如图3所示,终端设备100中还可以包括开关电路160,该开关电路160可以是整流芯片150外围电路中的一部分。开关电路160的第一端用于接收第一电压,开关电路160的第二端与第一电容C1的第一电极耦合,开关电路160的控制端与系统芯片110耦合。
系统芯片110可以在第一时间段,控制开关电路160根据第一电压产生检测电压,并将检测电压提供给第一电容C1的第一电极;在第二时间段,控制开关电路160停止向第一电容C1的第一电极提供检测电压,以防止检测电压干扰控制电路1501的检测结果。应理解,开关电路160根据第一电压产生检测电压,指的是开关电路160在第一电压的基础上输出了检测电压,检测电压来源于第一电压,但检测电压的电压值可以与第一电压的电压值相同或不同。
在本申请实施例中,开关电路160至少存在以下三种可能的实现方式:
实现方式一:开关电路160可以包括第五开关管(S5),开关管S5的第一电极用于接收第一电压V0,开关管S5的第二电极和第一电容C1的第一电极耦合,开关管S5的控制电极与系统芯片110耦合。系统芯片110可以在第一时间段,导通第五开关管,使得开关电路160可以向第一电容C1的第一电极输出检测电压。在第二时间段,系统芯片110断开第一开关管,使得开关电路160停止向第一电容C1的第一电极输出检测电压。
实现方式二:开关电路160可以包括第一电阻(R1)和开关管S5,电阻R1与开关管S5的第一电极和第二电极串联。具体来说,在一种可能的实现方式中,电阻R1的一端接收第一电压V0,电阻R1的另一端与开关管S5的第一电极耦合,开关管S5的第二电极与第一电容C1的第一电极耦合。在另一种可能的实现方式中,开关管S5的第一电极接收第一电压V0,开关管S5的第二电极与电阻R1的一端耦合,电阻R1的另一端与第一电容C1的第一电极耦合。电阻R1可以产生一定的电阻压降,从而保护开关管S5。
实现方式三:如图3所示,开关电路160可以包括第一电阻(R1)、第一二极管(D1)和开关管S5,二极管D1、电阻R1和开关管S5的第一电极和第二电极串联,且二极管D1的阴极与电感电路120耦合。在对终端设备100充电时,第一电容C1的第一电极往往会达到较高的电压,而在本申请实施例中,由于二极管D1的阴极与电感电路120耦合,因此在终端设备100充电时,二极管D1可以截止,以防止击穿开关管S5。
在本申请实施例中,第一电压可以是整流芯片150提供给开关电路160的。具体来说,如图3所示,整流芯片150中还可以包括供电电路1503,控制电路1501在启动检测终端线圈L1后,可以控制供电电路1503向开关电路160提供第一电压,一般来说,第一电压的电压值可以是1.8V。在终端设备100中,整流芯片150可以接收充电芯片130或与终端电池140耦合的升压(boost)芯片提供的电压,一般来说,该电压约为5V。整流芯片150中的供电电路1503可以在控制电路1501的控制下,根据充电芯片130或boost芯片提供的电压,输出上述第一电压。供电电路1503的具体实现可以参考现有的整流芯片150,本申请实施例对此并不多作限制。
可以理解,也可以由系统芯片110向开关电路160提供第一电压,或者系统芯片110指示其它芯片向开关电路160提供第一电压等等,本申请实施例对此并不多作限制。
需要指出的是,开关电路160也可以集成于整流芯片150中,在此情况下,可以由控制电路1501控制开关电路160的导通或断开。具体来说,控制电路1501在第一时间段内导通开关电路160,在第二时间段内断开开关电路160。在此情况下的具体实现方式与图3所示结构类似,对此不再赘述。
实施例三
目前,大多数终端设备100可以支持逆变功能,也就是说,充电芯片130可以从终端电池140获取电池电能,将电池电能提供给整流芯片150。整流芯片150对充电芯片130提供的电池电能进行逆变(直流转换为交流)后,通过终端线圈L1输出。
有鉴于此,本申请实施例还提供另外一种终端设备100,如图4所示。其中,电感电路120、整流电路1502的具体实现与实施例一类似,对此不再赘述。
在图4所示的终端设备100中,整流电路1502的直流端P3可以接收检测电压,控制电路1501可以控制整流电路1502向电感电路120传输检测电流,其中,该检测电流是在 检测电压的驱动下产生的,也就是说,控制电路1501可以控制整流电路1502导通检测电压向电感电路120的传输路径,在此情况下,直流端P3与电感电路120之间便会有检测电流产生。
其中,控制电路1501可以按照与逆变过程类似的控制方式分别控制开关管S1至S4的导通和断开,示例性的,控制电路1501可以在第三时间段,导通第一开关管和第四开关管,并断开第二开关管和第三开关管,从而可以通过终端线圈L1输出交流电的正半周期。在第四时间段,导通第二开关管和第三开关管,并断开第一开关管和第四开关管,从而可以通过终端线圈L1输出交流电的负半周期。
控制电路1501在控制整流电路1502进行逆变的过程中,可以根据此时检测电流的电流值,确定终端线圈L1是否断路。具体来说,若终端线圈L1断路,则检测电流无法正常流通,因此可能检测不到检测电流,也可能检测到较小的检测电流。若终端线圈L1没有断路,则可以检测到较为明显的检测电流。有鉴于此,控制电路1501可以在确定检测电流的电流值小于电流阈值时,确定终端线圈L1断路。
可以理解,图4所示的整流芯片150中也可以包括采样电路1504,采样电路1504的一端与控制电路1501耦合,采样电路1504的另一端与检测电阻(R2)耦合。其中,电阻R2的一端与整流电路1502的直流端P3耦合,另一端用于接收检测电压。采样电路1504可以检测检测电阻的电阻电压,并将电阻电压的电压值提供给控制电路1501。控制电路1501中预设有检测电阻的电阻阻值,控制电路1501可以根据采样电路1504提供的电阻电压和检测电阻的电阻阻值,计算得到检测电流的电流值,进而可以根据检测电流的电流值确定终端线圈L1是否断路。
对比图4和图3所示的终端结构可见,图4利用终端设备100的逆变功能,无需在终端设备100或整流芯片150中增加开关电路160,因此其结构更加简单,成本更低。
需要指出的是,在图4所示的终端结构中,检测电压可以是充电芯片130提供的。具体来说,充电芯片130与整流电路1502的直流端P3耦合(通过电阻R2耦合)。充电芯片130可以从终端电池140获取电池电能,并向整流芯片150提供检测电压。其中,充电芯片130向整流芯片150提供检测电压,也可以理解为,检测电压是在充电芯片130的输出电压的基础上得到的。
实施例四
通过实施例一至实施例三可见,本申请实施例中整流芯片150可以完成终端线圈L1检测,无需人工拆机。在一种可能的实现方式中,可以由系统芯片110触发整流芯片150执行检测过程。
具体来说,系统芯片110中安装有终端设备100的操作系统,系统芯片110运行该操作系统,可以在终端设备100的显示屏上显示用户界面(user interface,UI界面)。UI界面中包括一个或多个应用(application,APP)。其中,存在一检测APP,用户可以通过触控、点击等操作,触发系统芯片110生成控制指令。系统芯片110将该控制指令发送给整流芯片150。整流芯片150中的控制电路1501在接收到控制指令后,通过实施例一或实施例二中提供的任一种可能的实现方式,确定终端线圈L1是否断路,并将对终端线圈L1的检测结果发送给系统芯片110。系统芯片110则可以通过语音、画面、文字等任意方式向用户反馈该检测结果。
也就是说,通过上述方案,用户使用检测APP便可以完成对终端线圈L1的检测,操作更加便捷。
显然,本领域的技术人员可以对本申请进行各种改动和变型而不脱离本申请的精神和范围。这样,倘若本申请的这些修改和变型属于本申请权利要求及其等同技术的范围之内,则本申请也意图包含这些改动和变型在内。

Claims (23)

  1. 一种整流芯片,其特征在于,包括整流电路和控制电路;
    所述整流电路用于与电感电路耦合,所述电感电路,包括第一电容和终端线圈;所述第一电容的第一电极与所述终端线圈的第一端耦合,所述第一电容的第二电极与所述整流电路的第一交流端耦合,所述终端线圈的第二端与所述整流电路的第二交流端耦合;
    所述控制电路,用于:
    在第一时间段,控制所述整流电路导通检测电压向第一电容的传输回路,以及控制所述整流电路断开所述检测电压向所述终端线圈的传输回路,其中,所述检测电压为施加在所述第一电容的第一电极的电压;
    在第二时间段,控制所述整流电路导通所述第一电容与所述终端线圈之间的传输回路,根据LC耦合电压确定所述终端线圈是否断路,所述LC耦合电压为所述第一电容的第一电极的电压。
  2. 根据权利要求1所述的整流芯片,其特征在于,所述整流电路包括第一开关管、第二开关管、第三开关管和第四开关管;
    所述第一开关管的第二电极和所述第四开关管的第一电极耦合,所述第一开关管的第一电极与所述第二开关管的第一电极耦合,所述第一开关管的第二电极为所述整流电路的第二交流端,所述第四开关管的第二电极与接地电路耦合;
    所述第二开关管的第二电极和所述第三开关管的第一电极耦合,所述第二开关管的第二电极为所述整流电路的第一交流端,所述第三开关管的第二电极与接地电路耦合;
    所述第一开关管的控制电极、所述第二开关管的控制电极、所述第三开关管的控制电极和所述第四开关管的控制电极分别与所述控制电路耦合;
    所述控制电路具体用于:
    在所述第一时间段,导通所述第三开关管,并断开所述第一开关管、所述第二开关管和所述第四开关管;
    在所述第二时间段,导通所述第三开关管和所述第四开关管,并断开所述第一开关管和所述第二开关管。
  3. 根据权利要求1或2所述的整流芯片,其特征在于,所述整流芯片还包括采样电路,所述采样电路的一端与所述终端线圈的第一端耦合,所述采样电路另一端与所述控制电路耦合;
    所述采样电路,用于检测所述LC耦合电压,并将所述LC耦合电压的电压值提供给所述控制电路;
    所述控制电路具体用于:
    在所述第二时间段的第一时间点,控制所述整流电路导通所述第一电容与所述终端线圈之间的传输回路之后,监测所述LC耦合电压的电压值;
    若在所述第一时间点之后的第一时延内,所述LC耦合电压的电压值的降低幅度不大于第一电压阈值,则确定所述终端线圈断路。
  4. 根据权利要求1至3中任一项所述的整流芯片,其特征在于,还包括供电电路;
    所述供电电路用于与所述第一电容的第一电极耦合,并输出第一电压,所述第一电压用于生成所述检测电压。
  5. 根据权利要求4所述的整流芯片,其特征在于,还包括开关电路,所述开关电路的一端与所述供电电路耦合,另一端与所述第一电容的第一电极耦合;
    所述控制电路,还用于:
    在所述第一时间段,控制所述开关电路根据所述第一电压产生所述检测电压,并将所述检测电压提供给所述电感电路;
    在所述第二时间段,控制所述开关电路停止向所述电感电路提供所述检测电压。
  6. 根据权利要求5所述的整流芯片,其特征在于,所述开关电路包括第五开关管,所述第五开关管的第一电极与所述供电电路耦合,所述第五开关管的第二电极和所述第一电容的第一电极耦合,所述第五开关管的控制电极与所述控制电路耦合;
    所述控制电路,具体用于:
    在所述第一时间段,导通所述第一开关管;
    在所述第二时间段,断开所述第一开关管。
  7. 根据权利要求6所述的整流芯片,其特征在于,所述开关电路还包括第一电阻,所述第一电阻与所述第一开关管的第一电极和第二电极串联于所述供电电路和所述第一电容的第一电极之间。
  8. 根据权利要求6或7所述的整流芯片,其特征在于,所述开关电路还包括第一二极管,所述第一二极管与所述第一开关管的第一电极和第二电极串联,且所述第一二极管的阳极与所述供电电路耦合,所述第一二极管的阴极与所述电感电路耦合。
  9. 一种终端设备,其特征在于,包括开关电路、系统芯片、电感电路和如权利要求1至4中任一项所述的整流芯片,所述整流芯片中的整流电路与所述电感电路耦合,其中,所述电感电路,包括第一电容和终端线圈;
    所述第一电容的第一电极与所述终端线圈的第一端耦合,所述第一电容的第二电极与所述整流电路的第一交流端耦合,所述终端线圈的第二端与所述整流电路的第二交流端耦合;
    所述开关电路第一端用于接收第一电压;所述开关电路的第二端与所述第一电容的第一电极耦合,所述开关电路的第二端用于在所述第一电容的第一电极施加检测电压;所述开关电路的控制端与所述系统芯片耦合;
    所述系统芯片,用于:
    在所述第一时间段,控制所述开关电路根据所述第一电压产生所述检测电压,并将所述检测电压提供给所述第一电容的第一电极;
    在所述第二时间段,控制所述开关电路停止向所述第一电容的第一电极提供所述检测电压。
  10. 根据权利要求9所述的终端设备,其特征在于,所述系统芯片还用于:根据用户操作生成控制指令,并将所述控制指令发送给所述整流芯片的控制电路;
    所述控制电路还用于:在接收到所述控制指令后,确定所述终端线圈是否断路,并将所述终端线圈的检测结果发送给所述系统芯片;
    所述系统芯片还用于:向用户反馈所述检测结果。
  11. 根据权利要求9或10所述的终端设备,其特征在于,所述开关电路包括第五开关管,所述第五开关管的第一电极用于接收所述第一电压,所述第五开关管的第二电极和所述第一电容的第一电极耦合,所述第五开关管的控制电极与所述系统芯片耦合;
    所述系统芯片,具体用于:
    在所述第一时间段,导通所述第五开关管;
    在所述第二时间段,断开所述第五开关管。
  12. 根据权利要求11所述的终端设备,其特征在于,所述开关电路还包括第一电阻,所述第一电阻与所述第一开关管的第一电极和第二电极串联。
  13. 根据权利要求11或12所述的终端设备,其特征在于,所述开关电路还包括第一二极管,所述第一二极管与所述第一开关管的第一电极和第二电极串联,且所述第一二极管的阴极与所述电感电路耦合。
  14. 一种终端设备,其特征在于,包括电感电路和如权利要求5至8中任一项所述的整流芯片,所述整流芯片中的整流电路与所述电感电路耦合,其中,所述电感电路,包括第一电容和终端线圈;
    所述第一电容的第一电极与所述终端线圈的第一端耦合,所述第一电容的第二电极与所述整流电路的第一交流端耦合,所述终端线圈的第二端与所述整流电路的第二交流端耦合。
  15. 根据权利要求14所述的终端设备,其特征在于,还包括系统芯片,所述系统芯片与所述控制电路耦合;
    所述系统芯片用于:根据用户操作生成控制指令,并将所述控制指令发送给所述整流芯片的控制电路;
    所述控制电路还用于:在接收到所述控制指令后,确定所述终端线圈是否断路,并将所述终端线圈的检测结果发送给所述系统芯片;
    所述系统芯片还用于:向用户反馈所述检测结果。
  16. 一种整流芯片,其特征在于,包括整流电路和控制电路;
    所述整流电路与所述控制电路耦合,所述整流电路的直流端用于接收检测电压,所述整流电路的第一交流端和第二交流端用于与电感电路耦合,所述电感电路包括用于无线充电的终端线圈;
    所述控制电路用于:
    控制所述整流电路向所述电感电路传输检测电流,所述检测电流是在所述检测电压的驱动下产生的;
    根据所述检测电流的电流值确定所述终端线圈是否断路。
  17. 根据权利要求16所述的整流芯片,其特征在于,所述整流电路包括第一开关管、第二开关管、第三开关管和第四开关管;
    所述第一开关管的第二电极和所述第四开关管的第一电极耦合,所述第一开关管的第一电极与所述第二开关管的第一电极耦合,所述第一开关管的第一电极为所述整流电路的直流端,所述第一开关管的第二电极为所述整流电路的第一交流端,所述第四开关管的第二电极与接地电路耦合;
    所述第二开关管的第二电极和所述第三开关管的第一电极耦合,所述第二开关管的第二电极为所述整流电路的第二交流端,所述第三开关管的第二电极与接地电路耦合;
    所述第一开关管的控制电极、所述第二开关管的控制电极、所述第三开关管的控制电极和所述第四开关管的控制电极分别与所述控制电路耦合;
    所述控制电路具体用于:
    在第三时间段,导通所述第一开关管和所述第四开关管,并断开所述第二开关管和所述第三开关管;
    在第四时间段,导通所述第二开关管和所述第三开关管,并断开所述第一开关管和所述第四开关管。
  18. 根据权利要求16或17所述的整流芯片,其特征在于,所述整流芯片还包括采样电路;
    所述采样电路的一端与所述控制电路耦合,所述采样电路的另一端用于与检测电阻耦合,所述检测电阻的一端与所述整流电路的直流端耦合,另一端用于接收所述检测电压;
    所述采样电路,用于检测所述检测电阻的电阻电压,并将所述电阻电压的电压值提供给所述控制电路;
    所述控制电路具体用于:
    根据所述检测电阻的电压值和所述检测电阻的电阻阻值得到所述检测电流的电流值;
    若所述检测电流的电流值小于电流阈值,则确定所述终端线圈断路。
  19. 一种终端设备,其特征在于,包括电感电路和如权利要求16至18中任一项所述的整流芯片,其中,所述整流电路与所述电感电路耦合,所述电感电路包括用于无线充电的终端线圈。
  20. 根据权利要求19所述的终端设备,其特征在于,所述电感电路还包括第一电容,所述第一电容的第一电极与所述整流电路的第一交流端耦合,所述第一电容的第二电极与所述终端线圈的第一端耦合,所述终端线圈的第二端与所述整流电路的第二交流端耦合。
  21. 根据权利要求19或20所述的终端设备,其特征在于,所述整流电路的直流端与所述终端设备的充电芯片耦合,所述充电芯片用于向所述整流电路提供所述检测电压。
  22. 根据权利要求19至21中任一项所述的终端设备,其特征在于,所述终端设备还包括检测电阻;
    所述检测电阻的一端与所述整流电路的直流端耦合,另一端用于接收所述检测电压;
    所述整流芯片还包括采样电路,所述采样电路分别与所述检测电阻和所述控制电路耦合,所述采样电路用于检测所述检测电阻的电阻电压,并将所述电阻电压的电压值提供给所述控制电路;
    所述控制电路具体用于:
    根据所述检测电阻的电压值和所述检测电阻的电阻阻值得到所述检测电流的电流值;
    若所述检测电流的电流值小于电流阈值,则确定所述终端线圈断路。
  23. 根据权利要求19至22中任一项所述的终端设备,其特征在于,所述终端设备还包括系统芯片,所述系统芯片与所述控制电路耦合;
    所述系统芯片用于:根据用户操作生成控制指令,并将所述控制指令发送给所述整流芯片的控制电路;
    所述控制电路还用于:在接收到所述控制指令后,确定所述终端线圈是否断路,并将所述终端线圈的检测结果发送给所述系统芯片;
    所述系统芯片还用于:向用户反馈所述检测结果。
PCT/CN2020/113318 2019-09-18 2020-09-03 一种整流芯片及终端设备 WO2021052188A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201910880663.X 2019-09-18
CN201910880663.XA CN110764023B (zh) 2019-09-18 2019-09-18 一种整流芯片及终端设备

Publications (1)

Publication Number Publication Date
WO2021052188A1 true WO2021052188A1 (zh) 2021-03-25

Family

ID=69330275

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/113318 WO2021052188A1 (zh) 2019-09-18 2020-09-03 一种整流芯片及终端设备

Country Status (2)

Country Link
CN (1) CN110764023B (zh)
WO (1) WO2021052188A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023275651A1 (en) 2021-06-30 2023-01-05 3M Innovative Properties Company Radio-wave anti-reflection sheet, tape and vehicle member

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110764023B (zh) * 2019-09-18 2021-07-09 华为技术有限公司 一种整流芯片及终端设备

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105473375A (zh) * 2013-08-30 2016-04-06 高通股份有限公司 用于对无线电力传送系统进行对准及兼容性检测的系统及方法
US20170155285A1 (en) * 2015-11-30 2017-06-01 Electronics And Telecommunications Research Institute Open type resonance coil without dual loops having serial type in-phase direct power feeding method without dual loops
CN106953425A (zh) * 2015-11-18 2017-07-14 美国博通公司 多模电力接收单元及其使用方法
JP2017139854A (ja) * 2016-02-02 2017-08-10 トヨタ自動車株式会社 受電装置
CN107565702A (zh) * 2017-09-27 2018-01-09 哈尔滨工业大学 一种基于接收端开路电压等效的动态无线供电的静态模拟方法
CN109274147A (zh) * 2018-09-28 2019-01-25 北京小米移动软件有限公司 无线充电接收装置、充电系统及终端
CN209402575U (zh) * 2019-04-01 2019-09-17 北京小米移动软件有限公司 终端设备及整机电流检测系统
CN110764023A (zh) * 2019-09-18 2020-02-07 华为技术有限公司 一种整流芯片及终端设备

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101515781B (zh) * 2009-03-31 2011-01-05 沈阳工业大学 高压开关设备电机操动机构通用伺服控制平台装置及方法
CA2773102C (en) * 2009-09-03 2018-01-23 Exro Technologies Inc. Variable coil configuration system, apparatus and method
EP2940830B1 (en) * 2014-04-30 2020-03-04 WITS Co., Ltd. Wireless power reception device
KR102267415B1 (ko) * 2015-01-15 2021-06-21 엘지이노텍 주식회사 무선 전력 송신 코일 이상 판단 장치
CN204515032U (zh) * 2015-01-30 2015-07-29 深圳市贝壳电气技术有限公司 一种能量回馈单元的测试装置
CN206212318U (zh) * 2016-11-03 2017-05-31 佛山市顺德区美的电热电器制造有限公司 电磁加热系统及其保护装置
CN109256823A (zh) * 2017-07-14 2019-01-22 南京理工大学 一种无线充电系统中的新型控制装置
CN109861353B (zh) * 2019-01-25 2022-07-29 华为数字能源技术有限公司 一种无线充电接收器以及无线充电方法
CN110146760A (zh) * 2019-05-30 2019-08-20 上海瞳鳗智能科技有限公司 检测无线充电耦合度的方法及系统

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105473375A (zh) * 2013-08-30 2016-04-06 高通股份有限公司 用于对无线电力传送系统进行对准及兼容性检测的系统及方法
CN106953425A (zh) * 2015-11-18 2017-07-14 美国博通公司 多模电力接收单元及其使用方法
US20170155285A1 (en) * 2015-11-30 2017-06-01 Electronics And Telecommunications Research Institute Open type resonance coil without dual loops having serial type in-phase direct power feeding method without dual loops
JP2017139854A (ja) * 2016-02-02 2017-08-10 トヨタ自動車株式会社 受電装置
CN107565702A (zh) * 2017-09-27 2018-01-09 哈尔滨工业大学 一种基于接收端开路电压等效的动态无线供电的静态模拟方法
CN109274147A (zh) * 2018-09-28 2019-01-25 北京小米移动软件有限公司 无线充电接收装置、充电系统及终端
CN209402575U (zh) * 2019-04-01 2019-09-17 北京小米移动软件有限公司 终端设备及整机电流检测系统
CN110764023A (zh) * 2019-09-18 2020-02-07 华为技术有限公司 一种整流芯片及终端设备

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023275651A1 (en) 2021-06-30 2023-01-05 3M Innovative Properties Company Radio-wave anti-reflection sheet, tape and vehicle member

Also Published As

Publication number Publication date
CN110764023B (zh) 2021-07-09
CN110764023A (zh) 2020-02-07

Similar Documents

Publication Publication Date Title
JP5981043B2 (ja) 高電圧専用充電ポート
JP5917778B2 (ja) 高電圧専用充電ポート
WO2017113684A1 (zh) 充电器
US20120194124A1 (en) Wireless Battery Charging System
US20160336779A1 (en) Charging Method, Alternating Current Adaptor, Charging Management Device and Terminal
WO2021082731A1 (zh) 一种电子设备及反向充电方法
US11527905B2 (en) Wireless charging receiver, charging system and terminal
CN108988431B (zh) 一种多协议充电装置以及多协议充电方法
JP2016208600A (ja) バスコントローラおよび電源装置、電源アダプタ
WO2021052188A1 (zh) 一种整流芯片及终端设备
CN109904913B (zh) 一种充电设备及其快速充电电路
US20180205237A1 (en) Two Way Charging-Discharging Circuit Structure
WO2023197699A1 (zh) 充电电路、充电控制方法和电子设备
TWI773261B (zh) 具有多個Type-C介面的系統及其控制方法
CN115864609B (zh) 一种电子设备及充电方法
CN116707047A (zh) 充放电电路、电子设备及电子系统
CN114079302B (zh) 充电电路、充电芯片、电子设备及充电方法
US10164461B2 (en) Wireless charging device, system, and method based on back cover mobile power supply
TW201814543A (zh) 一種usb充電與通訊的裝置與方法
CN114498811B (zh) 充电管理模块、充电电路、充电控制方法及电子设备
TW202332159A (zh) 受電裝置及供電路徑的控制方法
TWI598730B (zh) 供電裝置及供電方法
CN202737511U (zh) 电源控制装置与电子装置
WO2024067646A1 (zh) 开关电源电路、电源适配器及充电系统
TWI829240B (zh) 電子裝置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20864411

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20864411

Country of ref document: EP

Kind code of ref document: A1