WO2021052032A1 - 一种基于宽带物理随机源的密钥分配方法及系统 - Google Patents

一种基于宽带物理随机源的密钥分配方法及系统 Download PDF

Info

Publication number
WO2021052032A1
WO2021052032A1 PCT/CN2020/105973 CN2020105973W WO2021052032A1 WO 2021052032 A1 WO2021052032 A1 WO 2021052032A1 CN 2020105973 W CN2020105973 W CN 2020105973W WO 2021052032 A1 WO2021052032 A1 WO 2021052032A1
Authority
WO
WIPO (PCT)
Prior art keywords
physical random
generated
signal
random source
key distribution
Prior art date
Application number
PCT/CN2020/105973
Other languages
English (en)
French (fr)
Inventor
江宁
赵安可
刘世勤
Original Assignee
电子科技大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 电子科技大学 filed Critical 电子科技大学
Priority to US17/423,901 priority Critical patent/US11336443B2/en
Publication of WO2021052032A1 publication Critical patent/WO2021052032A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B10/00Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
    • H04B10/80Optical aspects relating to the use of optical transmission for specific applications, not provided for in groups H04B10/03 - H04B10/70, e.g. optical power feeding or optical transmission through water
    • H04B10/85Protection from unauthorised access, e.g. eavesdrop protection
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B10/00Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
    • H04B10/50Transmitters
    • H04B10/516Details of coding or modulation
    • H04B10/548Phase or frequency modulation
    • H04B10/556Digital modulation, e.g. differential phase shift keying [DPSK] or frequency shift keying [FSK]
    • H04B10/5561Digital phase modulation
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L9/00Cryptographic mechanisms or cryptographic arrangements for secret or secure communications; Network security protocols
    • H04L9/001Cryptographic mechanisms or cryptographic arrangements for secret or secure communications; Network security protocols using chaotic signals
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L9/00Cryptographic mechanisms or cryptographic arrangements for secret or secure communications; Network security protocols
    • H04L9/08Key distribution or management, e.g. generation, sharing or updating, of cryptographic keys or passwords
    • H04L9/0816Key establishment, i.e. cryptographic processes or cryptographic protocols whereby a shared secret becomes available to two or more parties, for subsequent use
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L9/00Cryptographic mechanisms or cryptographic arrangements for secret or secure communications; Network security protocols
    • H04L9/08Key distribution or management, e.g. generation, sharing or updating, of cryptographic keys or passwords
    • H04L9/0816Key establishment, i.e. cryptographic processes or cryptographic protocols whereby a shared secret becomes available to two or more parties, for subsequent use
    • H04L9/0819Key transport or distribution, i.e. key establishment techniques where one party creates or otherwise obtains a secret value, and securely transfers it to the other(s)
    • H04L9/0825Key transport or distribution, i.e. key establishment techniques where one party creates or otherwise obtains a secret value, and securely transfers it to the other(s) using asymmetric-key encryption or public key infrastructure [PKI], e.g. key signature or public key certificates
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L9/00Cryptographic mechanisms or cryptographic arrangements for secret or secure communications; Network security protocols
    • H04L9/08Key distribution or management, e.g. generation, sharing or updating, of cryptographic keys or passwords
    • H04L9/0861Generation of secret information including derivation or calculation of cryptographic keys or passwords
    • H04L9/0869Generation of secret information including derivation or calculation of cryptographic keys or passwords involving random numbers or seeds
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L9/00Cryptographic mechanisms or cryptographic arrangements for secret or secure communications; Network security protocols
    • H04L9/12Transmitting and receiving encryption devices synchronised or initially set up in a particular manner

Definitions

  • the invention relates to the fields of chaos, semiconductor lasers, key distribution and the like, and in particular to a high-speed key distribution method and system based on a broadband physical random source.
  • the encryption and decryption mechanism is abstracted as a pair of converters for encryption and decryption between the communicating parties, and the secure communication system is summarized into two channels, including a public channel for transmitting the encryption and decryption transformation structure and a secret channel for transmitting the key.
  • the two parties in communication first share the key through the secret channel, and the sender encrypts the plaintext with the key and sends the ciphertext to the receiver through the public channel. Since the eavesdropper cannot participate in the exchange of key information on the secret channel, even if they obtain the ciphertext information, they cannot obtain the plaintext information.
  • the purpose of the present invention is to design a physical random source to generate a synchronous broadband high-complexity random signal, and extract a synchronous high-speed physical random number from it, so that it can become a synchronous key in a one-time encryption system. Encrypt information to achieve high-speed and reliable key distribution.
  • the present invention proposes a method and system for key distribution based on a broadband physical random source.
  • the technical scheme adopted by the present invention is as follows: firstly, after phase modulation driven by a random signal, the optical signal generated by the master laser is divided into two identical optical signals and injected into the slave lasers at the Alice and Bob ends of the communication parties respectively, thereby generating the initial Sync signal. Then use the generated initial synchronization signal as a drive signal to phase-modulate the optical signal generated by the CW light source, and input the modulated optical signal to the dispersion module. After the dispersion module, a synchronized broadband noise-like random signal will be generated, and a high-speed synchronization key will be extracted from the post-processing method.
  • FIG. 1 is a schematic structural diagram of the broadband physical random source proposed by the present invention.
  • FIG. 1 The power spectrum of the output signal of the broadband physical random source in the communication parties
  • Figure 3 (a) Time-domain waveform diagram of the DSL output signal (point A in Figure 1); (b) Time-domain waveform diagram of the output signal at the Alice terminal (point D in Figure 1); (c) the output signal at the Bob terminal ( Figure 1 1 point E) the time-domain waveform diagram; (d) the cross-correlation diagram between the DSL output signal and the output signal at the Alice end; (e) the cross-correlation diagram between the output signals of the two communicating parties;
  • Figure 4 The consistency and rate analysis diagram of the synchronization keys generated by the two communicating parties
  • DSL master laser
  • SSL slave laser
  • PM phase modulator
  • AWG arbitrary waveform generator
  • PC polarization controller
  • FC fiber coupler
  • PD photodetector
  • Amp electronic amplifier
  • D dispersion module
  • VOA adjustable optical attenuator
  • ISO optical fiber isolator.
  • the system proposed by the present invention includes two modules, namely a broadband physical random source and a post-processing module.
  • the broadband physical random source is shown in FIG. 1, the output optical signal of the main laser (Driving Semiconductor Laser, DSL) is input to a phase modulator (PM1) after passing through a polarization controller.
  • the drive signal of the phase modulator is a Gaussian white noise signal generated by an arbitrary waveform generator (AWG).
  • the optical signal output by PM1 is divided into two identical paths by a fiber coupler, and after passing through an adjustable optical attenuator and an optical isolator, respectively, it is injected into the slave laser (Slave Semiconductor Laser, DSL) at the Alice end and the Bob end. After the output optical signal from the laser passes through the photodetector and the electronic amplifier, an initial synchronization signal will be generated.
  • DSL Double Semiconductor Laser
  • the initial synchronization signal is used as the drive signal of the Alice and Bob side phase modulators PM2 and PM3, respectively, to perform phase modulation on the CW optical signal generated by the DFB laser.
  • the output optical signals of PM2 and PM3 respectively pass through the dispersion modules D1 and D2, and then are input to the photodetector, and finally a synchronous broadband random signal is generated.
  • the phase modulator can be a Mach-Zehnder modulator (MZM) or an electro-optic phase modulator
  • the dispersion module can be a single-mode fiber (SMF), a dispersion compensation module (DCM) or a chirped fiber Bragg grating (CFBG).
  • the synchronization signal generated by the physical random source is used to generate a synchronized high-speed key through the post-processing method.
  • the post-processing method includes dual-threshold quantization and delayed bit exclusive OR.
  • Figure 2 shows the power spectrum of the output signals of the wideband physical random source at Alice and Bob.
  • the effective bandwidth in this result is mainly limited by the bandwidth of the electronic devices (photodetectors and oscilloscopes) in the experiment. Therefore, when using higher bandwidth electronic devices, the actual signal bandwidth will be wider.
  • FIG 3 shows the synchronization effect diagram of the broadband physical random source of the two communication parties.
  • CC cross-correlation coefficient
  • Fig. 4 shows the consistency and rate analysis diagram of the synchronization key extracted from the above-mentioned broadband physical entropy source.
  • BER bit error rate
  • Figure 5 shows the randomness test chart of the generated synchronization key. As shown in the figure, the synchronization key passed all 15 NIST randomness tests.
  • the solution proposed by the present invention has the following benefits: (1)
  • the physical random source designed by the present invention can generate random signals with high bandwidth and high spectral flatness, and the effective bandwidth exceeds 22 GHz; (2) Broadband for both parties There is a high correlation between physical random sources, and the cross-correlation coefficient of the generated signals is as high as 0.95; (3) A high-speed synchronization key with a rate exceeding Gb/s can be extracted from the broadband physical random source, and it has passed the random Sex test. Therefore, applying the generated synchronization key to a one-time encryption system can realize high-speed secure communication.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Computer Security & Cryptography (AREA)
  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Optical Communication System (AREA)

Abstract

一种基于宽带物理随机源的密钥分配方案。该方案提出的物理随机源,在共同的外部光注入条件下,能产生同步的高带宽类噪声信号。从宽带物理随机源中能提取出速率超过Gb/s的高速同步密钥,并且产生的同步密钥能通过15项NIST随机性标准测试。利用该方案产生的同步密钥对信息进行加密解密,可以实现高速的一次一密保密通信。该方案实现了高速密钥分发,解决了传统密钥分发系统中密钥速率不足的缺陷。

Description

一种基于宽带物理随机源的密钥分配方法及系统 技术领域
本发明涉及混沌、半导体激光器、密钥分配等领域,具体涉及一种基于宽带物理随机源的高速密钥分配方法及系统。
背景技术
近年来,随着通信技术的飞速发展,人们的生活发生了巨大变革。一方面,通信使人们的生活更加地方便快捷,生活效率也越来越高效,资源共享也更加顺畅。但是,随之而来的信息隐患也越来越严重,使得保密通信越来越受到人们的关注。保密通信不仅关系到个人隐私和财产安全,还关系到国家的发展和稳定等方方面面。随着通信速率的不断提升,高速的保密通信成为人们不断探索并寻求的目标。
信息论奠基人Claude E.Shannon在1949年提出了保密通信系统的模型。在该模型中,加解密机制被抽象为通信双方加密和解密的一对变换器,保密通信系统被概括为两种信道,包括传输加密解密变换结构的公共信道和传输密钥的秘密信道。通信双方先通过秘密信道共享密钥,发送者将明文用密钥加密并将密文通过公共信道发送给接受者。由于窃听者无法在秘密信道上参与密钥信息的交流,使其即便得到密文信息也无法获得明文信息。香农(Shannon)的理论证明,“一次一密”的加密方案是无条件安全的,要实现这种无条件安全的保密通信,需要同时保证:1)密钥必须是随机的;2)密钥生成速率必须不低于明文的速率;3)密钥不能重复利用,使用一次后就必须舍弃。一次一密实现的关键在于通信过程中实现安全的密钥分发。现今,通信技术的发展使得传输速率越来越高,因此为了实现高速的保密通信,需要产生高速密钥用于信息的加密 传输。
发明内容
针对上述问题,本发明目的在于,设计一种物理随机源,产生同步的宽带高复杂度随机信号,从中提取出同步的高速物理随机数,使其能成为一次一密加密系统中的同步密钥对信息进行加密,从而实现高速、可靠的密钥分发。
为实现上述发明目的,本发明提出了一种基于宽带物理随机源的密钥分配方法与系统。本发明采用的技术方案为:首先将主激光器产生的光信号,经过由随机信号驱动的相位调制后,分成相同的两路光信号,分别注入通信双方Alice和Bob端的从激光器,从而产生初始的同步信号。然后将产生的初始同步信号作为驱动信号,对由CW光源产生的光信号进行相位调制,并将调制后的光信号输入至色散模块。经过色散模块后将生成同步的宽带类噪声随机信号,结合后处理方法,从中提取出高速的同步密钥。
附图说明
图1本发明提出的宽带物理随机源的结构示意图;
图2通信双方中宽带物理随机源输出信号的功率谱;
图3(a)DSL输出信号(图1点A处)的时域波形图;(b)Alice端输出信号(图1点D处)的时域波形图;(c)Bob端输出信号(图1点E处)的时域波形图;(d)DSL输出信号和Alice端输出信号的互相关图;(e)通信双方输出信号之间的互相关图;
图4通信双方生成的同步密钥的一致性及速率分析图;
图5同步密钥的NIST随机性测试结果。
DSL,主激光器;SSL,从激光器;PM,相位调制器;AWG,任意波形发生器;PC,偏振控制器;FC,光纤耦合器;PD,光电探测器;Amp:电子放大器;D,色散 模块;VOA,可调光衰减器;ISO,光纤隔离器。
具体实施方式
为使本发明的目的、技术方案和优点更加清楚,下面结合附图,对本发明的方案作进一步地详细描述。
本发明提出的系统包括两个模块,分别是宽带物理随机源和后处理模块。所述宽带物理随机源如图1所示,主激光器(Driving Semiconductor Laser,DSL)的输出光信号经过偏振控制器后,输入至一个相位调制器(Phase Modulator,PM1)。该相位调制器的驱动信号,是由一个任意波形发生器(AWG)所产生的高斯白噪声信号。
PM1输出的光信号,由一个光纤耦合器分为相同的两路,分别经过可调光衰减器和光隔离器后,注入至Alice端和Bob端的从激光器(Slave Semiconductor Laser,DSL)。所述从激光器的输出光信号进过光电探测器和电子放大器后,将产生初始的同步信号。
所述初始同步信号分别作为Alice和Bob端相位调制器PM2和PM3的驱动信号,对由DFB激光器产生的CW光信号进行相位调制。PM2和PM3的输出光信号分别经过色散模块D1和D2后,输入至光电探测器,最终产生同步的宽带随机信号。所述相位调制器可以采用马赫-曾德尔调制器(MZM)或电光相位调制器,色散模块可以采用单模光纤(SMF)、色散补偿模块(DCM)或啁啾光纤布拉格光栅(CFBG)。
在后处理模块中,将物理随机源产生的同步信号,通过后处理方法产生同步的高速密钥。所述后处理方法包括双阈值量化和延时比特异或。
实施例
下面对本发明进行进一步说明。
附图2展示了产生的Alice和Bob端宽带物理随机源输出信号的功率谱。我们采用功率谱能量的80%作为有效带宽。可以看到,通过本发明提出的方案,能产生高带宽和具有平坦功率谱的随机信号,有效带宽超过22GHz。此外,该结果中的有效带宽主要受限于实验中电子器件(光电探测器和示波器)的带宽。因此,当使用带宽更高的电子器件,实际信号的带宽会更宽。
附图3展示了通信双方宽带物理随机源的同步效果图。我们用互相关系数(CC)来量化其输出信号之间的相关性。一方面,Alice端(图1点D处)和Bob端(图1点E处)产生的宽带随机信号之间具有很高的相关性,互相关系数高达0.951,因此可以结合后处理方法从中提取出同步密钥。另一方面,DSL产生的外部注入信号(图1点A处)与通信双方产生的宽带随机信号之间没有相关性(CC=0.097),由于只有DSL的输出信号将在公共链路中传输,因此保证了通信双方的本地宽带物理随机源产生信号的安全性。
附图4展示了从上述宽带物理熵源中提取出的同步密钥的一致性及速率分析图。我们采用误比特率BER来测试同步密钥的一致性,可以看到,BER随着双阈值量化系数α的增加而减小。当α增加至0.55时,BER降低至10-5以下,此时对应的密钥速率高达3.1Gb/s。
附图5展示了产生的同步密钥的随机性测试图。如图所示,同步密钥通过了所有的15项NIST随机性测试。
综上所述,本发明所提出的方案有以下益处:(1)本发明设计的物理随机源能产生高带宽,频谱平坦度高的随机信号,有效带宽超过22GHz;(2)通信双方的宽带物理随机源之间具有很高的相关性,其产生信号的互相关系数高达0.95;(3)从该宽带物理随机源中能提取出速率超过Gb/s的高速同步密钥,并且通过了随机性测试。因此,将产生的同步密钥应用于一次一密加密系统中,能实现 高速保密通信。

Claims (8)

  1. 一种基于宽带物理随机源的密钥分配方法,其特征在于,首先将主激光器产生的光信号,经过由随机信号驱动的相位调制后,分成相同的两路光信号,分别注入通信双方Alice端和Bob端的从激光器,从而产生初始的同步信号;然后将产生的初始同步信号作为驱动信号,对由CW光源产生的光信号进行相位调制,并将调制后的光信号输入至色散模块;经过色散模块后将生成同步的宽带类噪声随机信号,通过后处理方法,产生高速的同步密钥。
  2. 根据权利要求1所述的一种基于宽带物理随机源的密钥分配方法,其特征在于,所述后处理方法包括双阈值量化和延时比特异或。
  3. 根据权利要求1所述的一种基于宽带物理随机源的密钥分配方法,其特征在于,所述相位调制器可以采用马赫-曾德尔调制器(MZM)或电光相位调制器。
  4. 根据权利要求1所述的一种基于宽带物理随机源的密钥分配方法,其特征在于,所述色散模块可以采用单模光纤(SMF)、色散补偿模块(DCM)或啁啾光纤布拉格光栅(CFBG)。
  5. 一种基于宽带物理随机源的密钥分配系统,其特征在于,包括两个模块,分别是宽带物理随机源和后处理模块;
    在所述宽带物理随机源中,主激光器(DSL)的输出光信号经过偏振控制器后,输入至一个相位调制器(PM1);该相位调制器的驱动信号,是由一个任意波形发生器(AWG)所产生的高斯白噪声信号;
    PM1输出的光信号,由一个光纤耦合器分为相同的两路,分别经过可调光衰减器和光隔离器后,注入至Alice端和Bob端的从激光器(SSL);所述从激光器的输出光信号经过光电探测器和电子放大器后,将产生初始的同步信号;
    所述初始同步信号分别作为Alice端和Bob端相位调制器PM2和PM3的驱动信号,对由DFB激光器产生的CW光信号进行相位调制。PM2和PM3的输出光 信号分别经过色散模块D1和D2后,输入至光电探测器,最终产生同步的宽带随机信号;
    在所述后处理模块中,将物理随机源产生的同步信号,通过后处理方法产生同步的高速密钥。
  6. 根据权利要求5所述的一种基于宽带物理随机源的密钥分配系统,其特征在于,所述后处理方法包括双阈值量化和延时比特异或。
  7. 根据权利要求5所述的一种基于宽带物理随机源的密钥分配系统,其特征在于,所述相位调制器可以采用马赫-曾德尔调制器(MZM)或电光相位调制器。
  8. 根据权利要求5所述的一种基于宽带物理随机源的密钥分配系统,其特征在于,所述色散模块可以采用单模光纤(SMF)、色散补偿模块(DCM)或啁啾光纤布拉格光栅(CFBG)。
PCT/CN2020/105973 2019-09-20 2020-07-30 一种基于宽带物理随机源的密钥分配方法及系统 WO2021052032A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US17/423,901 US11336443B2 (en) 2019-09-20 2020-07-30 Key distribution method and system based on synchronized broadband physical random sources

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201910896569.3A CN110768780B (zh) 2019-09-20 2019-09-20 一种基于宽带物理随机源的密钥分配方法及系统
CN201910896569.3 2019-09-20

Publications (1)

Publication Number Publication Date
WO2021052032A1 true WO2021052032A1 (zh) 2021-03-25

Family

ID=69330212

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/105973 WO2021052032A1 (zh) 2019-09-20 2020-07-30 一种基于宽带物理随机源的密钥分配方法及系统

Country Status (3)

Country Link
US (1) US11336443B2 (zh)
CN (1) CN110768780B (zh)
WO (1) WO2021052032A1 (zh)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110768780B (zh) 2019-09-20 2021-04-23 电子科技大学 一种基于宽带物理随机源的密钥分配方法及系统
CN112260816B (zh) * 2020-09-18 2022-06-21 太原理工大学 一种安全性增强的高速物理密钥分发系统
CN115311763A (zh) * 2022-06-24 2022-11-08 北京电子科技学院 一种身份识别方法及系统
CN116743347B (zh) * 2023-08-09 2023-10-20 山西工程科技职业大学 基于多模激光器同步的物理密钥多路并行分发系统及方法
CN116722932B (zh) * 2023-08-10 2023-10-10 山西工程科技职业大学 基于dfb激光器同步键控的物理密钥分发系统及方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017204440A1 (ko) * 2016-05-25 2017-11-30 한국과학기술원 코드 기반 양자 암호 키 분배 방법, 장치 및 시스템
CN107769859A (zh) * 2017-10-19 2018-03-06 华中科技大学 一种基于相位‑幅度转换的保密光通信系统
CN109462479A (zh) * 2019-01-16 2019-03-12 电子科技大学 一种保密光纤通信系统
CN110768780A (zh) * 2019-09-20 2020-02-07 电子科技大学 一种基于宽带物理随机源的密钥分配方法及系统

Family Cites Families (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3586123B2 (ja) * 1998-12-07 2004-11-10 三菱電機株式会社 チャネルチェックテストシステム
JP2004356996A (ja) * 2003-05-29 2004-12-16 National Institute Of Advanced Industrial & Technology 受信兼再送信機および送信兼再受信機からなる量子暗号通信システム及びそのタイミング信号作成法
JP4800674B2 (ja) * 2005-06-10 2011-10-26 株式会社日立製作所 通信方法および通信システム
GB2430123B (en) * 2005-09-09 2008-01-23 Toshiba Res Europ Ltd A quantum communication system
JP5023575B2 (ja) * 2006-06-23 2012-09-12 株式会社日立製作所 アンチスクイズド光生成器
US9696133B2 (en) * 2014-08-14 2017-07-04 Kabushiki Kaisha Toshiba Interference system and an interference method
JP6696752B2 (ja) * 2015-10-13 2020-05-20 古河電気工業株式会社 光増幅器、光増幅システム、波長変換器および光通信システム
EP3182638B1 (en) * 2015-12-18 2019-12-25 ID Quantique S.A. Apparatus and method for adding an entropy source to quantum key distribution systems
CN105577359B (zh) * 2016-03-18 2018-09-25 杭州电子科技大学 一种基于混沌序列导频映射的oofdm加密系统
EP3516333B1 (en) * 2016-09-20 2023-05-03 The Board of Trustees of the Leland Stanford Junior University Optical system and method utilizing a laser-driven light source with white noise modulation
US10211591B2 (en) * 2016-10-13 2019-02-19 Nlight, Inc. Tandem pumped fiber amplifier
GB2559801B (en) * 2017-02-20 2021-04-28 Toshiba Kk An optical quantum communication system
CN108880780B (zh) * 2018-05-23 2020-12-18 太原理工大学 基于混沌同步公共信道特征的密钥安全分发系统及方法
CN109039601B (zh) * 2018-07-18 2021-03-19 电子科技大学 一种基于后处理的混沌安全密钥分发方法及系统
US11695551B2 (en) * 2019-02-26 2023-07-04 Ut-Battelle, Llc Quantum frequency processor for provable cybersecurity

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017204440A1 (ko) * 2016-05-25 2017-11-30 한국과학기술원 코드 기반 양자 암호 키 분배 방법, 장치 및 시스템
CN107769859A (zh) * 2017-10-19 2018-03-06 华中科技大学 一种基于相位‑幅度转换的保密光通信系统
CN109462479A (zh) * 2019-01-16 2019-03-12 电子科技大学 一种保密光纤通信系统
CN110768780A (zh) * 2019-09-20 2020-02-07 电子科技大学 一种基于宽带物理随机源的密钥分配方法及系统

Also Published As

Publication number Publication date
CN110768780A (zh) 2020-02-07
US11336443B2 (en) 2022-05-17
CN110768780B (zh) 2021-04-23
US20220045857A1 (en) 2022-02-10

Similar Documents

Publication Publication Date Title
WO2021052032A1 (zh) 一种基于宽带物理随机源的密钥分配方法及系统
Zhao et al. Physical layer encryption for WDM optical communication systems using private chaotic phase scrambling
CN106685658B (zh) 一种基于连续变量测量设备无关的量子密钥分发系统及其方法
Gao et al. 0.75 Gbit/s high-speed classical key distribution with mode-shift keying chaos synchronization of Fabry–Perot lasers
US10972187B1 (en) Light source for quantum communication system, and encoding device
CN106330428A (zh) 基于相位变换的二次加密混沌保密光通信系统
US6704420B1 (en) Device for sending or receiving a signal encrypted using deterministic chaos
Zhao et al. Wideband time delay signature-suppressed chaos generation using self-phase-modulated feedback semiconductor laser cascaded with dispersive component
CN112260816B (zh) 一种安全性增强的高速物理密钥分发系统
Jiang et al. Physically enhanced secure wavelength division multiplexing chaos communication using multimode semiconductor lasers
CN113179149B (zh) 一种基于双混沌相位编码加密的保密光通信系统
Zhang et al. 2.7 Gb/s secure key generation and distribution using bidirectional polarization scrambler in fiber
Zhao et al. Synchronized random bit sequences generation based on analog-digital hybrid electro-optic chaotic sources
Liu et al. Exploiting optical chaos with time-delay signature suppression for long-distance secure communication
Wang et al. Fast random bit generation in optical domain with ultrawide bandwidth chaotic laser
CN106888053B (zh) 基于复合逻辑的超高速全光数据实时加/解密系统及方法
Gao et al. Physical secure key distribution based on chaotic self-carrier phase modulation and time-delayed shift keying of synchronized optical chaos
CN206698225U (zh) 基于复合逻辑的超高速全光数据实时加/解密系统
CN116192284B (zh) 一种用于在光通信系统物理层中无痕加密的装置及方法
Liu et al. Secondary-encryption optical chaotic communication system based on one driving laser and two responding lasers
CN114928411A (zh) 一种基于色散-相位反馈环加密的物理层保密通信系统
Mohammed et al. Design and implementation of cipher algorithm based secure optical communication system
Zhang et al. Enhanced bidirection secure communication based on digital key and chaotic random optical feedback
KR102576065B1 (ko) 직교 위상 성분 값의 제어된 분포를 갖는 광학 펄스의 생성
CN113794559A (zh) 一种基于色散-相位加密的物理层保密通信系统和方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20865448

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20865448

Country of ref document: EP

Kind code of ref document: A1