WO2021051405A1 - 车辆控制方法、车辆控制装置、车辆及计算机可读存储介质 - Google Patents

车辆控制方法、车辆控制装置、车辆及计算机可读存储介质 Download PDF

Info

Publication number
WO2021051405A1
WO2021051405A1 PCT/CN2019/107071 CN2019107071W WO2021051405A1 WO 2021051405 A1 WO2021051405 A1 WO 2021051405A1 CN 2019107071 W CN2019107071 W CN 2019107071W WO 2021051405 A1 WO2021051405 A1 WO 2021051405A1
Authority
WO
WIPO (PCT)
Prior art keywords
vehicle
reference point
position information
center
gravity
Prior art date
Application number
PCT/CN2019/107071
Other languages
English (en)
French (fr)
Inventor
商志猛
应佳行
马建云
Original Assignee
深圳市大疆创新科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳市大疆创新科技有限公司 filed Critical 深圳市大疆创新科技有限公司
Priority to PCT/CN2019/107071 priority Critical patent/WO2021051405A1/zh
Priority to CN201980033201.2A priority patent/CN112166069A/zh
Publication of WO2021051405A1 publication Critical patent/WO2021051405A1/zh

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B62LAND VEHICLES FOR TRAVELLING OTHERWISE THAN ON RAILS
    • B62DMOTOR VEHICLES; TRAILERS
    • B62D15/00Steering not otherwise provided for
    • B62D15/02Steering position indicators ; Steering position determination; Steering aids
    • B62D15/025Active steering aids, e.g. helping the driver by actively influencing the steering system after environment evaluation

Definitions

  • This application relates to the field of control, in particular to a vehicle control method, a vehicle control device, a vehicle, and a computer-readable storage medium.
  • the vehicle control device Through the vehicle control device to realize automatic control or assist manual driving, improve the automation and intelligence of the vehicle, so as to reduce the driving intensity.
  • Some vehicles are equipped with sensor components in the center of gravity, and the vehicle control device controls the movement of the vehicle based on the information fed back from the sensor components.
  • the vehicle control device controls the movement of the vehicle based on the information fed back from the sensor components.
  • the reversing dynamics model has an unstable zero point in control, which makes it difficult to debug the control parameters and it is not easy to control the reversing.
  • the application provides an improved vehicle control method, vehicle control device, vehicle, and computer-readable storage medium.
  • a vehicle control method for controlling a vehicle, the vehicle includes a steered wheel and a non-steer wheel, and the vehicle control method includes: acquiring position information of a reference point of the vehicle and Speed information, the reference point is located in a stable area of the vehicle, the stable area includes: a point on the axis of the non-steer wheel and an area on the side of the axis of the non-steer wheel away from the center of gravity of the vehicle; And according to the position information and speed information of the reference point, the steering wheel is controlled to move in the direction of the non-steer wheel, so as to control the vehicle to move in the direction from the steering wheel to the non-steer wheel.
  • a vehicle control device is provided.
  • the vehicle control device is used to control a vehicle.
  • the vehicle includes a steering wheel and a non-steer wheel.
  • the vehicle control device includes a processor; A memory storing executable instructions of the processor; wherein the processor is used to obtain position information and speed information of a reference point of the vehicle, the reference point being located in a stable area of the vehicle, and the stable area includes: The point on the axis of the non-steer wheel and the area on the side of the axis of the non-steer wheel away from the center of gravity of the vehicle; and for controlling the direction of the steering wheel according to the position information and speed information of the reference point
  • the non-steer wheels move in the direction to control the vehicle to move in the direction from the steering wheels to the non-steer wheels.
  • a vehicle including steered wheels; non-steered wheels; and any of the vehicle control devices mentioned above, including: a processor; for storing executable instructions of the processor The memory; wherein the processor is used to obtain the position information and speed information of the reference point of the vehicle, the reference point is located in the stable area of the vehicle, the stable area includes: the axis of the non-steer wheel And the area on the side of the axis of the non-steered wheel far away from the center of gravity of the vehicle; and used to control the steering wheel to move in the direction of the non-steered wheel according to the position information and speed information of the reference point The vehicle is controlled to move in a direction from the steering wheel to the non-steer wheel.
  • a computer-readable storage medium having a program stored thereon, and when the program is executed by a processor, the vehicle control method according to any one of the above-mentioned items is implemented.
  • This application obtains the position information and speed information of the reference point in the stable area of the vehicle, and controls the steering wheel to move in the direction of the non-steer wheel based on the position information and speed information of the reference point, so as to make the vehicle move. In some embodiments, Makes the control of the vehicle easier.
  • Fig. 1 is a schematic diagram of an embodiment of a vehicle reversing dynamics model.
  • Fig. 2 is a schematic diagram of an embodiment of the positional relationship between the vehicle and the lane of the application.
  • FIG. 3 shows a flowchart of an embodiment of the vehicle control method of this application.
  • Fig. 4 is a schematic diagram of an embodiment of a stable area of a vehicle of this application.
  • Fig. 5 is a schematic block diagram of an embodiment of a vehicle control device for a vehicle of this application.
  • Fig. 6 is a block diagram of a module of an embodiment of the vehicle of this application.
  • the vehicle control method of the embodiment of the present application is used to control a vehicle, and the vehicle includes a steering wheel and a non-steer wheel.
  • the vehicle control method includes: obtaining the position information and speed information of the reference point of the vehicle, the reference point is located in the stable area of the vehicle, and the stable area includes: the point on the axis of the non-steer wheel and the side of the axis of the non-steer wheel away from the center of gravity of the vehicle Area: According to the position information and speed information of the reference point, control the steering wheel to move in the direction of the non-steer wheel to control the vehicle to move in the direction from the steering wheel to the non-steer wheel.
  • the position information and speed information of the reference point in the stable area of the vehicle are obtained, and the steering wheel is controlled to move in the direction of the non-steer wheel based on the position information and speed information of the reference point to make the vehicle move
  • the problem of unstable zero point in control can be avoided, which is conducive to the adjustment of control parameters, solves the problem of difficult control of the vehicle, and makes the control of the vehicle easier.
  • the vehicle is controlled to reverse by acquiring the position information and speed information of the center of gravity of the vehicle, and according to the position information and speed information of the center of gravity.
  • the steering wheel is the front wheel
  • the non-steer wheel is the rear wheel.
  • this method has the problem of unstable zero point in the dynamic model, which leads to difficult control, which is explained below in conjunction with the formula and Figure 1.
  • FIG. 1 is a schematic diagram of an embodiment of a reverse dynamics model of a vehicle
  • FIG. 2 is a schematic diagram of an embodiment of the positional relationship between the vehicle and the lane of the application.
  • V cx represents the speed of the vehicle along the x-axis (center line) in the vehicle body coordinate system
  • L r represents the coordinate difference between the detection point of the center of gravity 110 of the vehicle and the axis of the non-steer wheel 130 in the vehicle body coordinate system
  • represents the steering angle of the vehicle, such as the angle between the center line of the vehicle and the x-axis of the reference lane coordinate system, or the steering angle between the vehicle body coordinate system and the reference lane coordinate system.
  • the reference lane coordinate system is established based on the vision of the vehicle, such as the lane that the vehicle can see, or the path planned based on the visual observation of the garage.
  • the x1 axis and y1 axis shown in FIG. 1 are coordinate axes in the reference lane coordinate system, for example, the x1 axis is the length direction of the reverse garage, and the y1 axis is the width direction of the reverse garage. In another embodiment, referring to FIG.
  • the lane 140 is a curved lane 140
  • the coordinate axis of the reference lane coordinate system includes taking the tangent of the lane 140 that the vehicle can observe as the x1 axis, and taking the straight line perpendicular to the tangent as y1 axis.
  • the vehicle body coordinate system takes the centerline of the vehicle as the x2 axis, and the direction of the x2 axis from the steering wheel 120 to the non-steer wheel 130 is the positive direction, and the axis of the non-steer wheel 130 is the y2 axis in the vehicle body coordinate system.
  • the sensors on the vehicle can measure the position and speed of the vehicle in the geodetic coordinate system.
  • the position and speed of the vehicle in the reference lane coordinate system can be obtained.
  • the geodetic coordinate system uses the north-south direction as the x-axis and the east-west direction as the y-axis.
  • Both the reference lane coordinate system and the geodetic coordinate system can establish a relationship with the vehicle body coordinate system, ⁇ represents the steering angle speed of the vehicle, and the coordinate system references of ⁇ and ⁇ are the same.
  • the non-steer wheels 130 are rear wheels. Assuming that in the case of low-speed reversing, the rear wheels 130 are in the same direction as the longitudinal speed V cx , and there is no side slip.
  • the reversing dynamics model can be obtained as the following formula (1 ):
  • V y V x sin( ⁇ )- ⁇ L r (1)
  • V y is the speed of the vehicle in the direction of the y1 axis in the reference lane coordinate system
  • V x is the speed of the vehicle in the direction of the x1 axis in the reference lane coordinate system.
  • s is the Laplacian operator.
  • the steering angular velocity of the vehicle is directly proportional to the steering wheel angle, specifically as the following formula (3):
  • V cx represents the speed of the vehicle along the x-axis (center line) in the vehicle body coordinate system.
  • l is the distance between the front wheel and the rear wheel, and ⁇ is the steering wheel angle.
  • the vehicle control device has a right half-plane zero that is proportional to L r , which makes it difficult to adjust the control parameters and control the reverse.
  • the non-steer wheels 130 are front wheels.
  • the vehicle control device has an unstable zero point, which makes it difficult to control the vehicle forward.
  • the vehicle control method of the embodiment of the present application obtains the position information and speed information of the reference point of the vehicle.
  • the reference point is located in the stable area of the vehicle.
  • the stable area includes: the point on the axis of the non-steer wheel and the axis of the non-steer wheel away from the vehicle.
  • the reference point When the reference point is located on the side area of the axis 150 of the non-steer wheel 130 away from the center of gravity 110 of the vehicle, that is, the reference point is located in the negative half plane of the x2 axis of the vehicle body coordinate system, the reference point is the same as the detection point of the non-steer wheel 130
  • the coordinate difference L r between the axes 150 is less than zero. Based on the above, when the reference point is located in the stable region, the coordinate difference between the reference point and the axis 150 of the non-steer wheel 130 in the vehicle body coordinate system does not have the right half plane zero point.
  • the steering wheel 120 is controlled to move in the direction of the non-steer wheel 130 to make the vehicle move and avoid the problem of unstable zero point in control, which facilitates the adjustment of control parameters and solves the problem of difficult control of the vehicle.
  • the vehicle control device of the embodiment of the present application is used to control a vehicle, and the vehicle includes steered wheels and non-steered wheels.
  • the vehicle control device includes a processor and a memory for storing instructions executable by the processor.
  • the processor is used to obtain the position information and speed information of the reference point of the vehicle.
  • the reference point is located in the stable area of the vehicle, and the stable area includes: a point on the axis of the non-steer wheel and an area on the side of the axis of the non-steer wheel away from the center of gravity of the vehicle.
  • the vehicle of the embodiment of the present application includes a steering wheel, a non-steer wheel, and a vehicle control device, including a processor and a memory for storing executable instructions of the processor.
  • the processor is used to obtain the position information and speed information of the reference point of the vehicle.
  • the reference point is located in the stable area of the vehicle.
  • the stable area includes: the point on the axis of the non-steered wheel and the side of the axis of the non-steered wheel away from the center of gravity of the vehicle Area; and used to control the movement of the steering wheel to the direction of the non-steer wheel according to the position information and speed information of the reference point, so as to control the movement of the vehicle in the direction from the steering wheel to the non-steer wheel.
  • FIG. 3 shows a flowchart of an embodiment of the vehicle control method of this application.
  • the vehicle control method is used to control a vehicle.
  • the vehicle may include an automobile, a passenger car, and a truck.
  • the vehicle control method can be applied to self-driving vehicles, and can also be used in semi-automatic vehicles to assist drivers in driving.
  • the vehicle includes steered wheels and non-steered wheels.
  • the steered wheels may be front wheels and the non-steered wheels are rear wheels.
  • the steered wheels may be rear wheels, and the non-steered wheels are front wheels.
  • the vehicle control method includes steps 201 and 202.
  • step 201 the position information and speed information of the reference point of the vehicle are acquired.
  • the reference point is located in the stable area of the vehicle, and the stable area includes: a point on the axis of the non-steer wheel and an area on the side of the axis of the non-steer wheel away from the center of gravity of the vehicle.
  • the position information of the reference point includes position coordinates of the reference point.
  • the speed information of the reference point includes the speed component of the x-axis and the speed component of the y-axis in the corresponding coordinate system of the reference point.
  • the position information of the reference point includes the coordinates of the reference point in the geodetic coordinate system, and the velocity information of the reference point includes the speed component of the x-axis and the velocity component of the y-axis of the reference point in the geodetic coordinate system.
  • the position information and speed information of the reference point can also be determined based on the reference lane coordinate system, which is not specifically limited in the embodiment of the present application.
  • FIG. 4 is a schematic diagram of an embodiment of the stable area 340 of the vehicle of this application.
  • the stable area 340 includes the axis 360 of the non-steered wheel 330 and an area on the side of the axis 360 of the non-steered wheel 330 away from the center of gravity 310 of the vehicle.
  • the stable area 340 may have no boundary on the side away from the center of gravity 310 of the vehicle.
  • the reference point is located on the axis 360 of the non-steer wheel 330.
  • the reference point is located at a side area 370 of the axis 360 of the non-steered wheels 330 of the vehicle away from the center of gravity 310 of the vehicle.
  • the stable area 340 includes: the intersection 380 of the centerline 350 and the axis 360 of the non-steer wheel 330 and a part of the centerline extending from the intersection 380 in a direction away from the center of gravity 310.
  • the midpoint of the axis 360 of the non-steer wheel 330 and the midpoint of the axis 360 of the non-steer wheel 330 are away from the center line 350 of the side of the vehicle's center of gravity 310, and this part of the center line 350 has no boundary.
  • the reference point is the intersection 380 of the centerline 350 passing through the center of gravity 310 of the vehicle and the axis 360 of the non-steer wheel 330.
  • intersection 380 is also the center point of the axis of the non-steer wheel 330.
  • the reference point is a point on a line extending from the aforementioned intersection 380 to a direction away from the center of gravity 310 by the center line 350. In some embodiments of the present application, the farther the reference point is from the steering wheel 320 of the vehicle, the easier the vehicle is controlled.
  • the position information and speed information of the reference point detected by the sensor assembly are acquired, and the sensor assembly is installed at the reference point.
  • the sensor component is located in a stable area, which facilitates accurate acquisition of the position information and speed information of the reference point, and the position information and speed information of the reference point are detected by the sensor component, so that the subsequent control algorithm is simple.
  • the sensor assembly is mounted on the axis 360 of the non-steer wheel 330 of the vehicle.
  • the sensor assembly is installed at the intersection 380 of the axis 360 of the non-steer wheel 330 and the centerline 350 of the vehicle.
  • the sensor assembly is installed on the side of the axis 360 of the non-steer wheel 330 of the vehicle away from the center of gravity 310.
  • the sensor assembly includes a position sensor and a speed sensor.
  • the position sensor and the speed sensor are provided separately.
  • the position sensor is integrated with the speed sensor.
  • the position sensor is used to obtain the position coordinates of the reference point.
  • Both the position sensor and the speed sensor can be GPS (Global Positioning System, global positioning device) sensors and/or IMU (Inertial Measurement Unit) to obtain the reference point. Position coordinates and speed information based on the geodetic coordinate system.
  • the position information and speed information of the center of gravity 310 detected by the sensor assembly are acquired, and the sensor assembly is installed at the center of gravity 310, and the center of gravity 310 is located outside the stable area 340. Based on the position information and speed information of the center of gravity 310, the position information and speed information of the reference point are determined. There is no need to change the installation position of the sensor assembly, and there is no need to change the hardware structure of the vehicle. It is applicable to more vehicles, is easy to implement, and has low cost, and avoids the problem that the sensor assembly affects other motion control of the vehicle due to the change of the installation position.
  • the conversion parameter values are obtained between the position information of the center of gravity 310 and the position information of the reference point, and between the speed information of the center of gravity 310 and the speed information of the reference point. And based on the conversion parameter value, the position information of the center of gravity 310 is converted into the position information of the reference point, and the speed information of the center of gravity 310 is converted into the speed information of the reference point.
  • the method of obtaining the above conversion parameter values and converting the position information and speed information of the center of gravity 310 into the position information and speed information of the reference point is simple based on the conversion parameter values, which avoids reassembling sensor components on the vehicle. Affect the control of the vehicle in other aspects.
  • the reference point is the center of the axis 350 of the non-steer wheel 330
  • the acquisition of the conversion parameter value includes: acquiring the distance between the center of gravity 310 and the reference point, and the steering angle and steering of the vehicle at the position of the center of gravity 310. Angular velocity.
  • the position information of the center of gravity 310 is converted into the position information of the reference point.
  • the speed information of the center of gravity 310 is converted into the speed information of the reference point based on the distance, the steering angle, and the steering angular speed.
  • the reference point is the center of the axis 350 of the non-steer wheel 330.
  • the position information of the center of gravity 310 is converted into the reference point by the following formula based on the geodetic coordinate system Position information, and convert the speed information of the center of gravity 310 into the speed information of the reference point:
  • x′ is the abscissa of the reference point in the geodetic coordinate system
  • y′ is the ordinate of the reference point in the geodetic coordinate system
  • V′ x is the x-axis component of the speed of the reference point in the geodetic coordinate system
  • V′ y is the component of the y-axis of the speed of the reference point in the geodetic coordinate system
  • x is the abscissa of the center of gravity 310 in the geodetic coordinate system
  • y is the ordinate of the center of gravity 310 in the geodetic coordinate system
  • V x is the speed of the center of gravity 310 in the geodetic coordinate system
  • V y is the component of the speed of the center of gravity 310 in the y-axis of the geodetic coordinate system
  • l is the distance between the center of gravity 310 and the reference point
  • is the steering angular velocity
  • is the
  • the abscissa of the center of gravity along the positive direction of the x-axis is farther away from the origin of the coordinate than the abscissa of the reference point, the abscissa of the reference point is the abscissa of the center of gravity minus lcos ⁇ , if the abscissa of the center of gravity is along the x-axis
  • the positive direction of is closer to the origin of the coordinate than the abscissa of the reference point, and the abscissa of the reference point is the abscissa of the center of gravity plus lcos ⁇ .
  • the conversion method for other coordinates is similar, so I won't go into details here.
  • step 202 according to the position information and speed information of the reference point, the steering wheel 320 is controlled to move toward the non-steer wheel 330 to control the vehicle to move in the direction from the steering wheel 320 to the non-steer wheel 330.
  • the steered wheel 320 is the front wheel
  • the non-steer wheel 330 is the rear wheel.
  • Step 202 is executed to control the front wheel to move toward the rear wheel according to the position information and speed information of the reference point to make the vehicle reverse.
  • the steered wheel 320 is the rear wheel
  • the non-steer wheel 330 is the front wheel.
  • Step 202 is executed to control the rear wheel to move toward the front wheel according to the position information and speed information of the reference point, so that the vehicle travels in the forward direction.
  • the position information and speed information of the reference point of the vehicle are acquired, and based on this, the steering wheel 320 is controlled to move to the non-steer wheel 330. Since the reference point is located in the stable area 340, this can avoid control aspects.
  • the unstable zero point of the vehicle is beneficial to the adjustment of control parameters, avoids the problem of control lag, and solves the problem of difficult control of the vehicle.
  • FIG. 5 shows a principle block diagram of an embodiment of a vehicle control device 500.
  • the vehicle control device 500 is used to control a vehicle, and the vehicle includes steered wheels and non-steered wheels.
  • the vehicle control device 500 includes a processor 510 and a memory 520 storing instructions executable by the processor 510.
  • the processor 510 is used to obtain the position information and speed information of the reference point of the vehicle.
  • the reference point is located in the stable area of the vehicle.
  • the stable area includes: the point on the axis of the non-steered wheel and the side of the axis of the non-steered wheel away from the center of gravity of the vehicle area.
  • the processor 510 is further configured to control the steering wheel to move in the direction of the non-steer wheel according to the position information and the speed information of the reference point, so as to control the vehicle to move in the direction from the steering wheel to the non-steer wheel.
  • the vehicle control device 500 further includes a sensor component 530 connected to the processor 510 and installed at a reference point.
  • the sensor component 530 detects the position information and speed information of the reference point, and the processor 510 obtains the reference point from the sensor component 530.
  • Location information and speed information The position information and speed information of the reference point acquired by the sensor component 530 are provided to the processor 510.
  • the vehicle control device 500 further includes a sensor component 530 connected to the processor 510 and installed at the center of gravity.
  • the sensor component 530 detects the position information and speed information of the center of gravity, and the center of gravity is outside the stable area.
  • the processor 510 is configured to obtain the position information and speed information of the center of gravity from the sensor assembly 530, and determine the position information and speed information of the reference point based on the position information and speed information of the center of gravity, and thus obtain the position information and speed information of the reference point, and The position information and speed information of the reference point are provided to the processor 510.
  • the processor 510 and the memory 520 are independent chips. In other embodiments, the processor 510 and the memory 520 may be integrated in the same chip.
  • the processor 510 is further configured to: obtain conversion parameter values between the position information of the center of gravity and the position information of the reference point, and between the speed information of the center of gravity and the speed information of the reference point; and based on the conversion parameter value , Convert the position information of the center of gravity to the position information of the reference point, and convert the speed information of the center of gravity to the speed information of the reference point.
  • the processor 510 is further configured to obtain the distance between the center of gravity and the reference point, and the steering angle and steering angular velocity of the vehicle at the position of the center of gravity.
  • the processor 510 is further configured to: convert the position information of the center of gravity into the position information of the reference point based on the distance and the steering angle.
  • the processor 510 is further configured to: based on the distance, the steering angle, and the steering angular velocity, convert the speed information of the center of gravity into the speed information of the reference point.
  • the steering angle is the angle between the centerline of the vehicle and the x-axis of the geodetic coordinate system.
  • the position information of the reference point includes the coordinates of the reference point in the geodetic coordinate system
  • the speed information of the reference point includes the speed component of the x-axis and the velocity component of the y-axis of the reference point in the geodetic coordinate system.
  • the reference point is the intersection of the center line of the vehicle and the axis of the non-steer wheel.
  • the steered wheels are front wheels, and the non-steered wheels are rear wheels.
  • the processor 510 is configured to control the front wheels to move toward the rear wheels according to the position information and speed information of the reference point, so as to reverse the vehicle.
  • the steered wheels are rear wheels, and the non-steered wheels are front wheels.
  • the processor 510 is configured to control the rear wheels to move toward the front wheels according to the position information and speed information of the reference point, so that the vehicle is moving forward.
  • the vehicle control device 500 obtained by the embodiment of the present application obtains the position information and speed information of the reference point of the vehicle through the processor 510, and controls the steering wheel to move to the non-steer wheel based on the position information and speed information of the reference point. Located in the stable area, this can avoid the unstable zero point problem in the control, which is conducive to the adjustment of control parameters, avoids the problem of control lag, and solves the problem of difficult control of the vehicle.
  • the memory 520 in the vehicle control and control device 500 is a computer-readable storage medium.
  • the computer-readable storage medium may store a program that can be called by the processor 510, and may include a non-volatile storage medium.
  • the vehicle control device 500 may include an interface 540 and a memory 550. In some embodiments, the vehicle control device 500 may also include other hardware according to actual applications.
  • the computer-readable storage medium of the embodiment of the present application has a program stored thereon, and when the program is executed by the processor 510, the vehicle control method executed by any of the above-mentioned controllers is implemented.
  • This application may take the form of a computer program product implemented on one or more storage media (including but not limited to disk storage, CD-ROM, optical storage, etc.) containing program codes.
  • Computer-readable storage media include permanent and non-permanent, removable and non-removable media, and information storage can be achieved by any method or technology.
  • the information can be computer-readable instructions, data structures, program modules, or other data.
  • Examples of computer-readable storage media include, but are not limited to: phase change memory (PRAM), static random access memory (SRAM), dynamic random access memory (DRAM), other types of random access memory (RAM), read-only Memory (ROM), electrically erasable programmable read-only memory (EEPROM), flash memory or other memory technology, CD-ROM, digital versatile disc (DVD) or other optical storage , Magnetic cassette tape, magnetic tape magnetic disk storage or other magnetic storage devices or any other non-transmission media that can be used to store information that can be accessed by computing devices.
  • PRAM phase change memory
  • SRAM static random access memory
  • DRAM dynamic random access memory
  • RAM random access memory
  • ROM read-only Memory
  • EEPROM electrically erasable programmable read-only memory
  • flash memory or other memory technology
  • CD-ROM compact disc
  • DVD digital versatile disc
  • Magnetic cassette tape magnetic tape magnetic disk storage or other magnetic storage devices or any other non-transmission media that can be used to store information that can be accessed by computing devices.
  • each part of this application can be implemented by hardware, software, or a combination thereof.
  • multiple steps or methods can be implemented by software or hardware stored in a memory and executed by a suitable instruction execution device.
  • a suitable instruction execution device For example, if it is implemented by hardware, it can be implemented by any one of the following technologies or a combination of them: a discrete logic circuit with logic gates for realizing logic functions on data signals, and a dedicated logic gate with suitable combinational logic gates.
  • PGA programmable gate array
  • FPGA field programmable gate array
  • FIG. 6 shows a block diagram of a module of an embodiment of a vehicle 600 of this application.
  • the vehicle 600 includes steered wheels 610, non-steered wheels 620, and any of the vehicle control devices 500 mentioned above.
  • the vehicle control device 500 includes a processor and a memory for storing executable instructions of the processor.
  • the processor is used to obtain the position information and speed information of the reference point of the vehicle.
  • the reference point is located in the stable area of the vehicle.
  • the stable area includes: the point on the axis of the non-steer wheel 620 and the axis of the non-steer wheel 620 away from the center of gravity of the vehicle.
  • One side area and used to control the steering wheel to move in the direction of the non-steer wheel 620 according to the position information and speed information of the reference point, so as to control the vehicle to move in the direction from the steering wheel 610 to the non-steer wheel 620.
  • vehicle control device 500 reference may be made to the above-mentioned related descriptions, which will not be repeated here.
  • a person of ordinary skill in the art can understand that all or part of the steps carried in the implementation method described above can be completed by a program instructing relevant hardware.
  • the program can be stored in a computer-readable storage medium. When, it includes one of the steps of the method embodiment or a combination thereof.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Transportation (AREA)
  • Mechanical Engineering (AREA)
  • Steering Control In Accordance With Driving Conditions (AREA)

Abstract

一种车辆控制方法、车辆控制装置、车辆及计算机可读存储介质,车辆控制方法用于控制车辆,车辆包括转向轮(120)和非转向轮(130),车辆控制方法包括:获取车辆的参考点的位置信息和速度信息,参考点位于车辆的稳定区域,稳定区域包括:非转向轮(130)的轴线(150)上的点以及非转向轮(130)的轴线(150)远离车辆的重心(110)的一侧区域;及根据参考点的位置信息和速度信息,控制转向轮(120)向非转向轮(130)方向运动,以控制车辆在从转向轮(120)向非转向轮(130)的方向上运动。

Description

车辆控制方法、车辆控制装置、车辆及计算机可读存储介质 技术领域
本申请涉及控制领域,尤其涉及一种车辆控制方法、车辆控制装置、车辆及计算机可读存储介质。
背景技术
通过车辆控制装置来实现自动控制或辅助人工驾驶,提高车辆的自动化和智能化,以减轻驾驶强度。一些车辆的重心安装有传感器组件,车辆控制装置基于传感器组件反馈的信息来控制车辆运动。然而,车辆控制装置基于传感器组件反馈的信息,对车辆一个或一些方向的控制比较困难。比如,在倒车轨迹跟踪时,倒车动力学模型存在着控制上的不稳定零点,导致控制参数难以调试,不容易控制倒车。
发明内容
本申请提供改进的车辆控制方法、车辆控制装置、车辆及计算机可读存储介质。
根据本申请实施例的一个方面,提供一种车辆控制方法,用于控制车辆,所述车辆包括转向轮和非转向轮,所述车辆控制方法包括:获取所述车辆的参考点的位置信息和速度信息,所述参考点位于所述车辆的稳定区域,所述稳定区域包括:所述非转向轮的轴线上的点以及所述非转向轮的轴线远离所述车辆的重心的一侧区域;及根据所述参考点的位置信息和速度信息,控制所述转向轮向所述非转向轮方向运动,以控制所述车辆在 从所述转向轮向所述非转向轮的方向上运动。
根据本申请实施例的另一个方面,提供一种车辆控制装置,所述车辆控制装置用于控制车辆,所述车辆包括转向轮和非转向轮,所述车辆控制装置包括:处理器;用于存储所述处理器可执行指令的存储器;其中,所述处理器用于获取所述车辆的参考点的位置信息和速度信息,所述参考点位于所述车辆的稳定区域,所述稳定区域包括:所述非转向轮的轴线上的点以及所述非转向轮的轴线远离所述车辆的重心的一侧区域;及用于根据所述参考点的位置信息和速度信息控制所述转向轮向所述非转向轮方向运动,以控制所述车辆在从所述转向轮向所述非转向轮的方向上运动。
根据本申请实施例的另一个方面,提供一种车辆,包括转向轮;非转向轮;及上述提及的任一种车辆控制装置,包括:处理器;用于存储所述处理器可执行指令的存储器;其中,所述处理器用于获取所述车辆的参考点的位置信息和速度信息,所述参考点位于所述车辆的稳定区域,所述稳定区域包括:所述非转向轮的轴线上的点以及所述非转向轮的轴线远离所述车辆的重心的一侧区域;及用于根据所述参考点的位置信息和速度信息控制所述转向轮向所述非转向轮方向运动,以控制所述车辆在从所述转向轮向所述非转向轮的方向上运动。
根据本申请实施例的另一个方面,提供一种计算机可读存储介质,其上存储有程序,该程序被处理器执行时,实现如上述提及的任意一项所述的车辆控制方法。
本申请通过获取车辆的稳定区域中的参考点的位置信息和速度信息,并基于参考点的位置信息和速度信息来控制转向轮向非转向轮方向运动,以使车辆运动,一些实施例中,使得车辆的控制较容易。
附图说明
为了更清楚地说明本发明实施例中的技术方案,下面将对实施例描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本发明的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动性的前提下,还可以根据这些附图获得其他的附图。
图1为车辆倒车动力学模型的一个实施例的示意图。
图2所示为本申请车辆与车道位置关系的一个实施例的示意图。
图3所示为本申请车辆控制方法的一个实施例的流程图。
图4所示为本申请车辆的稳定区域的一个实施例的示意图。
图5所示为本申请车辆的车辆控制装置的一个实施例的原理框图。
图6所示为本申请车辆的一个实施例的模块框图。
具体实施方式
下面将结合本申请实施例中的附图,对本申请实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本申请一部分实施例,而不是全部的实施例。基于本申请中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本申请保护的范围。
这里将详细地对示例性实施例进行说明,其示例表示在附图中。下面的描述涉及附图时,除非另有表示,不同附图中的相同数字表示相同或相似的要素。以下示例性实施例中所描述的实施方式并不代表与本申请相一致的所有实施方式。相反,它们仅是与如所附权利要求书中所详述的、本申请的一些方面相一致的装置和方法的例子。
在本申请使用的术语是仅仅出于描述特定实施例的目的,而非旨在限制本申请。在本申请和所附权利要求书中所使用的单数形式的“一种”、“所述”和“该”也旨在包括多数形式,除非上下文清楚地表示其他含义。还应当理解,本文中使用的术语“和/或”是指并包含一个或多个相关联的列出项目的任何或所有可能组合。除非另行指出,“前部”、“后部”、“下部”和/或“上部”等类似词语只是为了便于说明,而并非限于一个位置或者一种空间定向。“连接”或者“相连”等类似的词语并非限定于物理的或者机械的连接,而且可以包括电性的连接,不管是直接的还是间接的。“多个”或者“若干”等类似词语表示至少两个。
本申请实施例的车辆控制方法,用于控制车辆,车辆包括转向轮和非转向轮。车辆控制方法包括:获取车辆的参考点的位置信息和速度信息,参考点位于车辆的稳定区域,稳定区域包括:非转向轮的轴线上的点以及非转向轮的轴线远离车辆的重心的一侧区域;根据参考点的位置信息和速度信息,控制转向轮向非转向轮方向运动,以控制车辆在从转向轮向非转向轮的方向上运动。
通过本申请实施例的车辆控制方法,获取车辆的稳定区域中参考点的位置信息和速度信息,并基于参考点的位置信息和速度信息来控制转向轮向非转向轮方向运动,以使车辆运动,在一些实施例中,可以避免控制上的不稳定零点问题,利于控制参数调试,解决车辆的不容易控制问题,使得车辆控制较容易。
相关技术中,通过获取车辆的重心的位置信息和速度信息,并根据重心的位置信息和速度信息,控制车辆倒车。其中,转向轮为前轮,非转向轮为后轮。但是,这种方法在动力学模型中存在不稳定零点导致控制困难的问题,以下结合公式及图1解释说明。
图1为车辆的倒车动力学模型的一个实施例的示意图,图2所示为本申请车辆与车道位置关系的一个实施例的示意图。在图1中:V cx表示车 辆在车体坐标系中沿x轴(中心线)方向的速度。L r表示车辆的重心110这一检测点与非转向轮130轴线在车体坐标系中的坐标差值。θ表示车辆的转向角,比如车辆的中心线与参考车道坐标系的x轴之间的夹角,或者车体坐标系和参考车道坐标系之间的转向角。一些实施例中,参考车道坐标系以车辆的视觉而建立,比如车辆能看到的车道,或者是基于视觉观测到的车库而规划的路径。在一个实施例中,图1中所示的x1轴和y1轴为参考车道坐标系中的坐标轴,比如x1轴为倒车车库的长度方向,y1轴为倒车车库的宽度方向。在另一个实施例中,参考图2,车道140为弯曲的车道140,参考车道坐标系的坐标轴包括以车辆所能观测到车道140的切线为x1轴,以与该切线垂直的直线为y1轴。车体坐标系以车辆的中心线为x2轴,且x2轴由转向轮120指向非转向轮130的方向为正向,非转向轮130的轴线为车体坐标系中的y2轴。在实际情况中,设于车辆上的传感器能够测量得到车辆在大地坐标系下的位置和速度,经过大地坐标系与参考坐标系的转换,可以得到车辆在参考车道坐标系中的位置和速度。一些实施例中,大地坐标系以南北方向为x轴,以东西方向为y轴。参考车道坐标系和大地坐标系均可与车体坐标系建立关系,ω表示车辆的转向角速度,θ和ω的坐标系基准相同。
在一个实施例中,非转向轮130为后轮,假设在低速倒车的情况下,后轮130与纵向速度V cx方向一致,没有侧滑,可以得出倒车动力学模型为下述公式(1):
V y=V xsin(θ)-ωL r   (1)
其中,V y为车辆在参考车道坐标系中y1轴方向的速度,V x为车辆在参考车道坐标系中x1轴方向的速度。
基于小角度近似sin(θ)≈θ,该倒车动力学模型的传递函数为下述公式(2):
Figure PCTCN2019107071-appb-000001
其中,s为拉普拉斯算子。
而车辆的转向角速度正比于方向盘转角,具体为下述公式(3):
Figure PCTCN2019107071-appb-000002
其中,V cx表示车辆在车体坐标系中沿x轴(中心线)方向的速度。l为前轮与后轮之间的距离,δ为方向盘转角。
基于公式(2)和(3)可知,车辆控制装置存在着正比于L r的右半平面零点,这导致控制参数难以调试,不容易控制倒车。
在另一个实施例中,非转向轮130为前轮,车辆前进时,类似于上述原理,车辆控制装置存在不稳定零点,不容易控制车辆前进。
本申请实施例的车辆控制方法,获取车辆的参考点的位置信息和速度信息,参考点位于车辆的稳定区域,稳定区域包括:非转向轮的轴线上的点以及非转向轮的轴线远离车辆的重心的一侧区域。参考图2,当参考点位于非转向轮130的轴线150上时,即参考点位于车体坐标系的y2轴上,参考点这一检测点与非转向轮130的轴线150之间的坐标差值L r为零。当参考点位于非转向轮130的轴线150远离车辆的重心110的一侧区域时,即参考点位于车体坐标系的x2轴的负半平面,参考点这一检测点与非转向轮130的轴线150之间的坐标差值L r小于零。基于上述,当参考点位于稳定区域时,参考点与非转向轮130的轴线150在车体坐标系中的坐标差值不存在右半平面零点。基于参考点的位置信息和速度信息来控制转向轮120向非转向轮130方向运动,以使车辆运动,避免控制上的不稳定零点问题,这利于控制参数调试,解决车辆的不容易控制问题。
本申请实施例的车辆控制装置,用于控制车辆,车辆包括转向轮和 非转向轮。车辆控制装置包括:处理器以及用于存储处理器可执行指令的存储器。其中,处理器用于获取车辆的参考点的位置信息和速度信息。参考点位于车辆的稳定区域,稳定区域包括:非转向轮的轴线上的点以及非转向轮的轴线远离车辆的重心的一侧区域。以及根据参考点的位置信息和速度信息控制转向轮向非转向轮方向运动,以控制车辆在从转向轮向非转向轮的方向上运动。本申请实施例的车辆包括转向轮、非转向轮以及车辆控制装置,包括:处理器以及用于存储处理器可执行指令的存储器。其中,处理器用于获取车辆的参考点的位置信息和速度信息,参考点位于车辆的稳定区域,稳定区域包括:非转向轮的轴线上的点以及非转向轮的轴线远离车辆的重心的一侧区域;及用于根据参考点的位置信息和速度信息控制转向轮向非转向轮方向运动,以控制车辆在从转向轮向非转向轮的方向上运动。
图3所示为本申请车辆控制方法的一个实施例的流程图。车辆控制方法用于控制车辆,在一些实施例中,车辆可以包括汽车、客车、货车。该车辆控制方法可应用于自动驾驶车辆,也可用于半自动车辆,辅助司机驾驶。车辆包括转向轮和非转向轮。在一些实施例中,转向轮可以是前轮,非转向轮是后轮。在另一些实施例中,转向轮可以是后轮,非转向轮是前轮。
车辆控制方法包括步骤201和202。在步骤201中,获取车辆的参考点的位置信息和速度信息。参考点位于车辆的稳定区域,稳定区域包括:非转向轮的轴线上的点以及非转向轮的轴线远离车辆的重心的一侧区域。
在一个实施例中,参考点的位置信息包括参考点的位置坐标。在一个实施例中,参考点的速度信息包括参考点在对应坐标系中x轴的速度分量以及y轴的速度分量。在一个实施例中,参考点的位置信息包括参考点在大地坐标系中的坐标,参考点的速度信息包括参考点在大地坐标系中x轴的速度分量以及y轴的速度分量。参考点的位置信息和速度信息还可基 于参考车道坐标系而确定,本申请实施例对此不作具体限定。
图4所示为本申请车辆的稳定区域340的一个实施例的示意图。稳定区域340包括:非转向轮330的轴线360以及非转向轮330的轴线360远离车辆的重心310的一侧区域。稳定区域340在远离车辆的重心310的一侧可以没有边界。在一个实施例中,参考点位于非转向轮330的轴线360上。在另一个实施例中,参考点位于车辆的非转向轮330的轴线360远离车辆的重心310的一侧区域370。
在一个实施例中,继续参考图4,稳定区域340包括:中心线350与非转向轮330的轴线360的交点380以及由交点380向远离重心310方向延伸的部分中心线。非转向轮330的轴线360的中点以及非转向轮330的轴线360的中点远离车辆重心310的一侧的中心线350,且该部分中心线350没有边界。在一个实施例中,参考点为车辆的穿过重心310的中心线350与非转向轮330的轴线360的交点380,需要说明的是,交点380也为非转向轮330轴线的中心点。在另一些实施例中,参考点为中心线350从前述交点380向远离重心310方向延伸的线上的点。在本申请一些实施例中,参考点越远离车辆的转向轮320,车辆越容易被控制。
在一个实施例中,获取传感器组件(未图示)所检测的参考点的位置信息和速度信息,传感器组件安装于参考点。一些实施例中,传感器组件位于稳定区域内,利于准确地获取参考点的位置信息和速度信息,且通过传感器组件检测参考点的位置信息和速度信息,使得后续的控制算法简单。在一个实施例中,传感器组件安装于车辆的非转向轮330的轴线360上。在另一个实施例中,传感器组件安装于车辆的非转向轮330的轴线360与中心线350的交点380。在另一个实施例中,传感器组件安装于车辆的非转向轮330的轴线360远离重心310的一侧。
在一个实施例中,传感器组件包括位置传感器和速度传感器。在一个实施例中,位置传感器与速度传感器分离设置。在另一个实施例中,位 置传感器与速度传感器集成于一体。位置传感器用于获取参考点的位置坐标,位置传感器和速度传感器均可以为GPS(Global Positioning System,全球定位装置)传感器和/或IMU(Inertial Measurement Unit,惯性测量单元),用于获取参考点以大地坐标系为基准的位置坐标及速度信息。
在另一个实施例中,获取传感器组件所检测的重心310的位置信息和速度信息,传感器组件安装于重心310,重心310位于稳定区域340之外。基于重心310的位置信息和速度信息,确定参考点的位置信息和速度信息。可以无需改变传感器组件的安装位置,可以无需对车辆的硬件结构进行改变,适用的车辆较多,易于实现,成本低,且避免传感器组件由于安装位置变化而影响车辆的其他运动控制的问题。
在一个实施例中,通过获得重心310的位置信息与参考点的位置信息之间,以及重心310的速度信息与参考点的速度信息之间的转换参数值。并基于转换参数值,将重心310的位置信息转换为参考点的位置信息,且将重心310的速度信息转换为参考点的速度信息。一些实施例中,通过获取上述转换参数值,并基于转换参数值将重心310的位置信息和速度信息转换为参考点的位置信息和速度信息的方式简单,避免在车辆上重新组装传感器组件,不影响车辆在其他方面的控制。
在一个实施例中,所述参考点为非转向轮330的轴线350的中心,则转换参数值的获取包括:获取重心310与参考点的距离,以及车辆在重心310的位置的转向角和转向角速度。在一个实施例中,基于距离和转向角,将重心310的位置信息转换为参考点的位置信息。在一个实施例中,基于距离、转向角及转向角速度,将重心310的速度信息转换为参考点的速度信息。在一优选实施例中,所述参考点为非转向轮330的轴线350的中心,则基于上述转换参数值,以大地坐标系为基准,通过以下公式将重心310的位置信息转换为参考点的位置信息,且将重心310的速度信息转换为参考点的速度信息:
Figure PCTCN2019107071-appb-000003
其中,x′为参考点在大地坐标系中的横坐标;y′为参考点在大地坐标系中的纵坐标;V′ x为参考点的速度在大地坐标系中x轴的分量;V′ y为参考点的速度在大地坐标系中y轴的分量;x为重心310在大地坐标系中的横坐标;y为重心310在大地坐标系中的纵坐标;V x为重心310的速度在大地坐标系中x轴的分量;V y为重心310的速度在大地坐标系中y轴的分量;l为重心310与参考点的距离,ω为转向角速度,θ为转向角。在大地坐标系中,若重心的横坐标沿x轴的正向比参考点的横坐标更远离坐标原点,参考点的横坐标为重心的横坐标减去lcosθ,若重心的横坐标沿x轴的正向比参考点的横坐标更靠近坐标原点,参考点的横坐标为重心的横坐标加上lcosθ。对于其他坐标的换算方式类似,此处不再详述。
在本实施例中,L r=0,不存在不稳定零点。
在步骤202中,根据参考点的位置信息和速度信息,控制转向轮320向非转向轮330方向运动,以控制车辆在从转向轮320向非转向轮330的方向上运动。在一个实施例中,转向轮320为前轮,非转向轮330为后轮,步骤202执行根据参考点的位置信息和速度信息控制前轮向后轮方向运动,使车辆倒车。
在另一个实施例中,转向轮320为后轮,非转向轮330为前轮,步骤202执行根据参考点的位置信息和速度信息控制后轮向前轮方向运动,使车辆正向行驶。
通过本申请实施例的车辆控制方法,获取车辆的参考点的位置信息 和速度信息,并基于此来控制转向轮320向非转向轮330运动,由于参考点位于稳定区域340,这能够避免控制方面的不稳定零点问题,利于控制参数调试,避免控制滞后的问题,解决车辆的不易控制问题。
图5所示为车辆控制装置500的一个实施例的原理框图。车辆控制装置500用于控制车辆,车辆包括转向轮和非转向轮。车辆控制装置500包括处理器510及存储处理器510可执行指令的存储器520。处理器510用于获取车辆的参考点的位置信息和速度信息,参考点位于车辆的稳定区域,稳定区域包括:非转向轮的轴线上的点以及非转向轮的轴线远离车辆的重心的一侧区域。处理器510还用于根据参考点的位置信息和速度信息控制转向轮向非转向轮方向运动,以控制车辆在从转向轮向非转向轮的方向上运动。
在一个实施例中,车辆控制装置500还包括与处理器510连接的传感器组件530,安装于参考点,传感器组件530检测参考点的位置信息和速度信息,处理器510从传感器组件530获取参考点的位置信息和速度信息。传感器组件530获取的参考点的位置信息和速度信息提供给处理器510。
在一个实施例中,车辆控制装置500还包括与处理器510连接的传感器组件530,安装于重心,传感器组件530检测重心的位置信息和速度信息,重心位于稳定区域之外。处理器510用于从传感器组件530获取重心的位置信息和速度信息,并基于重心的位置信息和速度信息,确定参考点的位置信息和速度信息,如此获取参考点的位置信息和速度信息,并将参考点的位置信息和速度信息提供给处理器510。在一些实施例中,处理器510和存储器520为相互独立的芯片。在另一些实施例中,处理器510和存储器520可以集成于同一芯片中。
在一个实施例中,处理器510还用于:获得重心的位置信息与参考点的位置信息之间,以及重心的速度信息与参考点的速度信息之间的转换 参数值;并基于转换参数值,将重心的位置信息转换为参考点的位置信息,且将重心的速度信息转换为参考点的速度信息。
在一个实施例中,处理器510还用于:获取重心与参考点的距离,以及车辆在重心的位置的转向角和转向角速度。
在一个实施例中,处理器510还用于:基于距离和转向角,将重心的位置信息转换为参考点的位置信息。
在一个实施例中,处理器510还用于:基于距离、转向角及转向角速度,将重心的速度信息转换为参考点的速度信息。
在一个实施例中,转向角为车辆的中心线与大地坐标系的x轴之间的夹角。
在一个实施例中,参考点的位置信息包括参考点在大地坐标系中的坐标,参考点的速度信息包括参考点在大地坐标系中x轴的速度分量以及y轴的速度分量。
在一个实施例中,参考点为车辆的中心线与非转向轮的轴线的交点。
在一个实施例中,转向轮为前轮,非转向轮为后轮,处理器510用于根据参考点的位置信息和速度信息控制前轮向后轮方向运动,使车辆倒车。
在一个实施例中,转向轮为后轮,非转向轮为前轮,处理器510用于根据参考点的位置信息和速度信息控制后轮向前轮方向运动,使车辆正向行驶。
本申请实施例提供的车辆控制装置500,通过处理器510获取车辆的参考点的位置信息和速度信息,并基于参考点的位置信息和速度信息来控制转向轮向非转向轮运动,由于参考点位于稳定区域,这能够避免控制方面的不稳定零点问题,利于控制参数调试,避免控制滞后的问题,解决车辆的不易控制问题。
车辆控制控制装置500中的存储器520为计算机可读存储介质,计算机可读存储介质可以存储有可被处理器510调用的程序,可以包括非易失性存储介质。在一些实施例中,车辆控制控制装置500可以包括接口540和内存550。在一些实施例中,车辆控制控制装置500还可以根据实际应用包括其他硬件。
本申请实施例的计算机可读存储介质,其上存储有程序,该程序被处理器510执行时,实现上述任一控制器所执行的车辆控制方法。
本申请可采用在一个或多个其中包含有程序代码的存储介质(包括但不限于磁盘存储器、CD-ROM、光学存储器等)上实施的计算机程序产品的形式。计算机可读存储介质包括永久性和非永久性、可移动和非可移动媒体,可以由任何方法或技术来实现信息存储。信息可以是计算机可读指令、数据结构、程序的模块或其他数据。计算机可读存储介质的例子包括但不限于:相变内存(PRAM)、静态随机存取存储器(SRAM)、动态随机存取存储器(DRAM)、其他类型的随机存取存储器(RAM)、只读存储器(ROM)、电可擦除可编程只读存储器(EEPROM)、快闪记忆体或其他内存技术、只读光盘只读存储器(CD-ROM)、数字多功能光盘(DVD)或其他光学存储、磁盒式磁带,磁带磁磁盘存储或其他磁性存储设备或任何其他非传输介质,可用于存储可以被计算设备访问的信息。
应当理解,本申请的各部分可以用硬件、软件或它们的组合来实现。在上述实施例中,多个步骤或方法可以用存储在存储器中且由合适的指令执行装置执行的软件或硬件来实现。例如,如果用硬件来实现,可用下列技术中的任一项或他们的组合来实现:具有用于对数据信号实现逻辑功能的逻辑门电路的离散逻辑电路,具有合适的组合逻辑门电路的专用集成电路,可编程门阵列(PGA),现场可编程门阵列(FPGA)等。
图6所示为本申请车辆600的一个实施例的模块框图。车辆600包括转向轮610、非转向轮620、以及上述提及的任一种车辆控制装置500。 车辆控制装置500包括:处理器以及用于存储处理器可执行指令的存储器。其中,处理器用于获取车辆的参考点的位置信息和速度信息,参考点位于车辆的稳定区域,稳定区域包括:非转向轮620的轴线上的点以及非转向轮620的轴线远离车辆的重心的一侧区域;及用于根据参考点的位置信息和速度信息控制转向轮向非转向轮620方向运动,以控制车辆在从转向轮610向非转向轮620的方向上运动。关于车辆控制装置500可参见上述相关描述,此处不再赘述。
本技术领域的普通技术人员可以理解实现上述实施方法携带的全部或部分步骤是可以通过程序来指令相关的硬件完成,所述的程序可以存储于一种计算机可读存储介质中,该程序在执行时,包括方法实施例的步骤之一或其组合。
需要说明的是,在本文中,诸如“第一”和“第二”等之类的关系术语仅仅用来将一个实体或者操作与另一个实体或操作区分开来,而不一定要求或者暗示这些实体或操作之间存在任何这种实际的关系或者顺序。术语“包括”、“包含”或者其任何其他变体意在涵盖非排他性的包含,从而使得包括一系列要素的过程、方法、物品或者设备不仅包括那些要素,而且还包括没有明确列出的其他要素,或者是还包括为这种过程、方法、物品或者设备所固有的要素。在没有更多限制的情况下,由语句“包括一个……”限定的要素,并不排除在包括所述要素的过程、方法、物品或者设备中还存在另外的相同要素。
以上对本发明实施例所提供的方法和装置进行了详细介绍,本文中应用了具体个例对本发明的原理及实施方式进行了阐述,以上实施例的说明只是用于帮助理解本发明的方法及其核心思想;同时,对于本领域的一般技术人员,依据本发明的思想,在具体实施方式及应用范围上均会有改变之处,综上所述,本说明书内容不应理解为对本发明的限制。
本专利文件披露的内容包含受版权保护的材料。该版权为版权所有 人所有。版权所有人不反对任何人复制专利与商标局的官方记录和档案中所存在的该专利文件或者该专利披露。

Claims (40)

  1. 一种车辆控制方法,其特征在于,用于控制车辆,所述车辆包括转向轮和非转向轮,所述车辆控制方法包括:
    获取所述车辆的参考点的位置信息和速度信息,所述参考点位于所述车辆的稳定区域,所述稳定区域包括:所述非转向轮的轴线上的点以及所述非转向轮的轴线远离所述车辆的重心的一侧区域;及
    根据所述参考点的位置信息和速度信息,控制所述转向轮向所述非转向轮方向运动,以控制所述车辆在从所述转向轮向所述非转向轮的方向上运动。
  2. 根据权利要求1所述的车辆控制方法,其特征在于,所述获取所述车辆的参考点的位置信息和速度信息,包括:
    获取传感器组件所检测的所述参考点的位置信息和速度信息,所述传感器组件安装于所述参考点。
  3. 根据权利要求1所述的车辆控制方法,其特征在于,所述获取所述车辆的参考点的位置信息和速度信息,包括:
    获取传感器组件所检测的所述重心的位置信息和速度信息,所述传感器组件安装于所述重心,所述重心位于所述稳定区域之外;及
    基于所述重心的位置信息和速度信息,确定所述参考点的位置信息和速度信息。
  4. 据权利要求3所述的车辆控制方法,其特征在于,所述基于所述重心的位置信息和速度信息,确定所述参考点的位置信息和速度信息,包括:
    获得所述重心的位置信息与所述参考点的位置信息之间,以及所述重心的速度信息与所述参考点的速度信息之间的转换参数值;及
    基于所述转换参数值,将所述重心的位置信息转换为所述参考点的位置信息,且将所述重心的速度信息转换为所述参考点的速度信息。
  5. 根据权利要求4所述的车辆控制方法,其特征在于,所述获得所述重心的位置信息与所述参考点的位置信息之间,以及所述重心的速度信息与所 述参考点的速度信息之间的转换参数值,包括:
    获取所述重心与所述参考点的距离,以及所述车辆在所述重心的位置的转向角和转向角速度。
  6. 根据权利要求5所述的车辆控制方法,其特征在于,所述基于所述转换参数值,将所述重心的位置信息转换为所述参考点的位置信息,包括:
    基于所述距离和所述转向角,将所述重心的位置信息转换为所述参考点的位置信息。
  7. 根据权利要求5所述的车辆控制方法,其特征在于,所述基于所述转换参数值,将所述重心的速度信息转换为所述参考点的速度信息,包括:
    基于所述距离、所述转向角及所述转向角速度,将所述重心的速度信息转换为所述参考点的速度信息。
  8. 根据权利要求5所述的车辆控制方法,其特征在于,所述转向角为所述车辆的中心线与大地坐标系的x轴之间的夹角。
  9. 根据权利要求8所述的车辆控制方法,其特征在于,所述参考点的位置信息包括所述参考点在所述大地坐标系中的坐标,所述参考点的速度信息包括所述参考点在所述大地坐标系中x轴的速度分量以及y轴的速度分量。
  10. 根据权利要求1所述的车辆控制方法,其特征在于,所述参考点为所述车辆的中心线与所述非转向轮的轴线的交点。
  11. 根据权利要求1所述的车辆控制方法,其特征在于,所述转向轮为前轮,所述非转向轮为后轮,所述根据所述参考点的位置信息和速度信息控制所述转向轮向所述非转向轮方向运动,以控制所述车辆在从所述转向轮向所述非转向轮的方向上运动,包括:
    根据所述参考点的位置信息和速度信息控制所述前轮向所述后轮方向运动,使所述车辆倒车。
  12. 根据权利要求1所述的车辆控制方法,其特征在于,所述转向轮为后轮,所述非转向轮为前轮,所述根据所述参考点的位置信息和速度信息控制所述转向轮向所述非转向轮方向运动,以控制所述车辆在从所述转向轮向所 述非转向轮的方向上运动,包括:
    根据所述参考点的位置信息和速度信息控制所述后轮向所述前轮方向运动,使所述车辆正向行驶。
  13. 一种车辆控制装置,其特征在于,所述车辆控制装置用于控制车辆,所述车辆包括转向轮和非转向轮,所述车辆控制装置包括:
    处理器;
    用于存储所述处理器可执行指令的存储器;
    其中,所述处理器用于获取所述车辆的参考点的位置信息和速度信息,所述参考点位于所述车辆的稳定区域,所述稳定区域包括:所述非转向轮的轴线上的点以及所述非转向轮的轴线远离所述车辆的重心的一侧区域;及
    用于根据所述参考点的位置信息和速度信息控制所述转向轮向所述非转向轮方向运动,以控制所述车辆在从所述转向轮向所述非转向轮的方向上运动。
  14. 根据权利要求13所述的车辆控制装置,其特征在于,所述车辆控制装置还包括与所述处理器连接的传感器组件,安装于所述参考点,所述传感器组件用于检测所述参考点的位置信息和速度信息,所述处理器用于从所述传感器组件获取所述参考点的位置信息和速度信息。
  15. 根据权利要求13所述的车辆控制装置,其特征在于,所述车辆控制装置还包括与所述处理器连接的传感器组件,安装于所述重心,所述传感器组件用于检测所述重心的位置信息和速度信息,所述重心位于所述稳定区域之外;
    所述处理器用于从所述传感器组件获取所述重心的位置信息和速度信息,并基于所述重心的位置信息和速度信息,确定所述参考点的位置信息和速度信息。
  16. 根据权利要求15所述的车辆控制装置,其特征在于,所述处理器还用于:获得所述重心的位置信息与所述参考点的位置信息之间,以及所述重心的速度信息与所述参考点的速度信息之间的转换参数值;并基于所述转换 参数值,将所述重心的位置信息转换为所述参考点的位置信息,且将所述重心的速度信息转换为所述参考点的速度信息。
  17. 根据权利要求16所述的车辆控制装置,其特征在于,所述处理器还用于:获取所述重心与所述参考点的距离,以及所述车辆在所述重心的位置的转向角和转向角速度。
  18. 根据权利要求17所述的车辆控制装置,其特征在于,所述处理器还用于:基于所述距离和所述转向角,将所述重心的位置信息转换为所述参考点的位置信息。
  19. 根据权利要求17所述的车辆控制装置,其特征在于,所述处理器还用于:基于所述距离、所述转向角及所述转向角速度,将所述重心的速度信息转换为所述参考点的速度信息。
  20. 根据权利要求17所述的车辆控制装置,其特征在于,所述转向角为所述车辆的中心线与大地坐标系的x轴之间的夹角。
  21. 根据权利要求20所述的车辆控制装置,其特征在于,所述参考点的位置信息包括所述参考点在所述大地坐标系中的坐标,所述参考点的速度信息包括所述参考点在所述大地坐标系中x轴的速度分量以及y轴的速度分量。
  22. 根据权利要求13所述的车辆控制装置,其特征在于,所述参考点为所述车辆的中心线与所述非转向轮的轴线的交点。
  23. 根据权利要求13所述的车辆控制装置,其特征在于,所述转向轮为前轮,所述非转向轮为后轮,所述处理器用于根据所述参考点的位置信息和速度信息控制所述前轮向所述后轮方向运动,使所述车辆倒车。
  24. 根据权利要求13所述的车辆控制装置,其特征在于,所述转向轮为后轮,所述非转向轮为前轮,所述处理器用于根据所述参考点的位置信息和速度信息控制所述后轮向所述前轮方向运动,使所述车辆正向行驶。
  25. 根据权利要求13-24任一项所述的车辆控制装置,其特征在于,所述传感器组件包括位置传感器和速度传感器。
  26. 一种车辆,其特征在于,包括:
    转向轮;
    非转向轮;及
    车辆控制装置,包括:
    处理器;
    用于存储所述处理器可执行指令的存储器;
    其中,所述处理器用于获取所述车辆的参考点的位置信息和速度信息,所述参考点位于所述车辆的稳定区域,所述稳定区域包括:所述非转向轮的轴线上的点以及所述非转向轮的轴线远离所述车辆的重心的一侧区域;及
    用于根据所述参考点的位置信息和速度信息控制所述转向轮向所述非转向轮方向运动,以控制所述车辆在从所述转向轮向所述非转向轮的方向上运动。
  27. 根据权利要求26所述的车辆,其特征在于,所述车辆控制装置还包括与所述处理器连接的传感器组件,安装于所述参考点,所述传感器组件用于检测所述参考点的位置信息和速度信息,所述处理器用于从所述传感器组件获取所述参考点的位置信息和速度信息。
  28. 根据权利要求26所述的车辆,其特征在于,所述车辆控制装置还包括与所述处理器连接的传感器组件,安装于所述重心,所述传感器组件用于检测所述重心的位置信息和速度信息,所述重心位于所述稳定区域之外;
    所述处理器用于从所述传感器组件获取所述重心的位置信息和速度信息,并基于所述重心的位置信息和速度信息,确定所述参考点的位置信息和速度信息。
  29. 根据权利要求28所述的车辆,其特征在于,所述处理器还用于:获得所述重心的位置信息与所述参考点的位置信息之间,以及所述重心的速度信息与所述参考点的速度信息之间的转换参数值;并基于所述转换参数值,将所述重心的位置信息转换为所述参考点的位置信息,且将所述重心的速度信息转换为所述参考点的速度信息。
  30. 根据权利要求29所述的车辆,其特征在于,所述处理器还用于:获取所述重心与所述参考点的距离,以及所述车辆在所述重心的位置的转向角和转向角速度。
  31. 根据权利要求30所述的车辆,其特征在于,所述处理器还用于:基于所述距离和所述转向角,将所述重心的位置信息转换为所述参考点的位置信息。
  32. 根据权利要求30所述的车辆,其特征在于,所述处理器还用于:基于所述距离、所述转向角及所述转向角速度,将所述重心的速度信息转换为所述参考点的速度信息。
  33. 根据权利要求30所述的车辆,其特征在于,所述转向角为所述车辆的中心线与大地坐标系的x轴之间的夹角。
  34. 根据权利要求33所述的车辆,其特征在于,所述参考点的位置信息包括所述参考点在所述大地坐标系中的坐标,所述参考点的速度信息包括所述参考点在所述大地坐标系中x轴的速度分量以及y轴的速度分量。
  35. 根据权利要求26所述的车辆,其特征在于,所述参考点为所述车辆的中心线与所述非转向轮的轴线的交点。
  36. 根据权利要求26所述的车辆,其特征在于,所述转向轮为前轮,所述非转向轮为后轮,所述处理器用于根据所述参考点的位置信息和速度信息控制所述前轮向所述后轮方向运动,使所述车辆倒车。
  37. 根据权利要求26所述的车辆,其特征在于,所述转向轮为后轮,所述非转向轮为前轮,所述处理器用于根据所述参考点的位置信息和速度信息控制所述后轮向所述前轮方向运动,使所述车辆正向行驶。
  38. 根据权利要求26-37任一项所述的车辆,其特征在于,所述传感器组件包括位置传感器和速度传感器。
  39. 根据权利要求26-37任一项所述的车辆,其特征在于,所述车辆包括自动驾驶车辆。
  40. 一种计算机可读存储介质,其特征在于,其上存储有程序,该程序被 处理器执行时,实现如权利要求1-12中任意一项所述的车辆控制方法。
PCT/CN2019/107071 2019-09-20 2019-09-20 车辆控制方法、车辆控制装置、车辆及计算机可读存储介质 WO2021051405A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
PCT/CN2019/107071 WO2021051405A1 (zh) 2019-09-20 2019-09-20 车辆控制方法、车辆控制装置、车辆及计算机可读存储介质
CN201980033201.2A CN112166069A (zh) 2019-09-20 2019-09-20 车辆控制方法、车辆控制装置、车辆及计算机可读存储介质

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2019/107071 WO2021051405A1 (zh) 2019-09-20 2019-09-20 车辆控制方法、车辆控制装置、车辆及计算机可读存储介质

Publications (1)

Publication Number Publication Date
WO2021051405A1 true WO2021051405A1 (zh) 2021-03-25

Family

ID=73859373

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/107071 WO2021051405A1 (zh) 2019-09-20 2019-09-20 车辆控制方法、车辆控制装置、车辆及计算机可读存储介质

Country Status (2)

Country Link
CN (1) CN112166069A (zh)
WO (1) WO2021051405A1 (zh)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2915716A1 (en) * 2014-03-06 2015-09-09 Fujitsu Limited Locus estimation device, locus estimation method and program
CN105589458A (zh) * 2015-05-19 2016-05-18 中国人民解放军国防科学技术大学 一种导引参数显示方法及装置
CN108762219A (zh) * 2018-06-15 2018-11-06 广东嘉腾机器人自动化有限公司 单舵轮agv点镇定控制方法及装置
CN109405837A (zh) * 2018-11-14 2019-03-01 蔚来汽车有限公司 物体定位方法、应用和车辆
CN109791049A (zh) * 2016-10-06 2019-05-21 大陆-特韦斯贸易合伙股份公司及两合公司 用于确定车辆的姿态的方法

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102343912B (zh) * 2011-06-20 2013-09-11 中南大学 一种汽车行驶过程中的状态估计方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2915716A1 (en) * 2014-03-06 2015-09-09 Fujitsu Limited Locus estimation device, locus estimation method and program
CN105589458A (zh) * 2015-05-19 2016-05-18 中国人民解放军国防科学技术大学 一种导引参数显示方法及装置
CN109791049A (zh) * 2016-10-06 2019-05-21 大陆-特韦斯贸易合伙股份公司及两合公司 用于确定车辆的姿态的方法
CN108762219A (zh) * 2018-06-15 2018-11-06 广东嘉腾机器人自动化有限公司 单舵轮agv点镇定控制方法及装置
CN109405837A (zh) * 2018-11-14 2019-03-01 蔚来汽车有限公司 物体定位方法、应用和车辆

Also Published As

Publication number Publication date
CN112166069A (zh) 2021-01-01

Similar Documents

Publication Publication Date Title
EP4170282A1 (en) Method for calibrating mounting deviation angle between sensors, combined positioning system, and vehicle
CN113432553B (zh) 一种挂车夹角的测量方法、装置及车辆
CN110667563B (zh) 自动驾驶车辆横向控制方法、装置及车辆
CN105984464A (zh) 车辆控制装置
CN113311873B (zh) 一种基于视觉的无人机伺服跟踪方法
CN108759822B (zh) 一种移动机器人3d定位系统
CN110244292A (zh) 用于确定移动物体的指向角的方法和系统
CN116080754B (zh) 一种车辆自主驾驶横向控制方法
CN111123950A (zh) 行车控制方法、装置及车辆
Han et al. Robust ego-motion estimation and map matching technique for autonomous vehicle localization with high definition digital map
WO2016157428A1 (ja) 計測装置、計測方法、及び、プログラム
WO2021051405A1 (zh) 车辆控制方法、车辆控制装置、车辆及计算机可读存储介质
CN116946138A (zh) 车辆的转向控制方法、装置、计算机设备及存储介质
Zhou et al. Vision-based control of an industrial vehicle in unstructured environments
WO2022161271A1 (zh) 斜坡定位校正方法、装置、机器人及可读存储介质
Lamon et al. 3D-Odometry for rough terrain-Towards real 3D navigation
CN114291117A (zh) 一种四轮转向无人车辆轨迹跟踪控制方法
CN109737950B (zh) 基于vio和动力学模型的水下机器人定位系统及方法
CN115848404A (zh) 一种铰接式车辆控制方法及铰接式车辆
JP4269170B2 (ja) 軌道追従制御方法および装置
CN113030504B (zh) 车辆测速方法、装置、车载计算机设备和存储介质
CN112415516A (zh) 一种车辆前方障碍区域感知方法及装置
US20230406308A1 (en) Towing vehicle control device, towing vehicle control method, and non-transitory computer-readable medium
WO2021100318A1 (ja) 推定装置、推定方法、推定プログラム
CN117782102A (zh) 一种基于环视视觉的全自动泊车定位与建图方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19946151

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19946151

Country of ref document: EP

Kind code of ref document: A1