WO2021051387A1 - 无线体域网及其密钥生成方法、分配方法和相关装置 - Google Patents

无线体域网及其密钥生成方法、分配方法和相关装置 Download PDF

Info

Publication number
WO2021051387A1
WO2021051387A1 PCT/CN2019/106987 CN2019106987W WO2021051387A1 WO 2021051387 A1 WO2021051387 A1 WO 2021051387A1 CN 2019106987 W CN2019106987 W CN 2019106987W WO 2021051387 A1 WO2021051387 A1 WO 2021051387A1
Authority
WO
WIPO (PCT)
Prior art keywords
key
acceleration signal
signal
gait
information
Prior art date
Application number
PCT/CN2019/106987
Other languages
English (en)
French (fr)
Inventor
孙方敏
李烨
Original Assignee
中国科学院深圳先进技术研究院
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中国科学院深圳先进技术研究院 filed Critical 中国科学院深圳先进技术研究院
Priority to JP2020552721A priority Critical patent/JP7034327B2/ja
Priority to KR1020207027987A priority patent/KR102477582B1/ko
Priority to PCT/CN2019/106987 priority patent/WO2021051387A1/zh
Priority to US17/036,222 priority patent/US11212672B2/en
Publication of WO2021051387A1 publication Critical patent/WO2021051387A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L63/00Network architectures or network communication protocols for network security
    • H04L63/06Network architectures or network communication protocols for network security for supporting key management in a packet data network
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W12/00Security arrangements; Authentication; Protecting privacy or anonymity
    • H04W12/04Key management, e.g. using generic bootstrapping architecture [GBA]
    • H04W12/043Key management, e.g. using generic bootstrapping architecture [GBA] using a trusted network node as an anchor
    • H04W12/0431Key distribution or pre-distribution; Key agreement
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L9/00Cryptographic mechanisms or cryptographic arrangements for secret or secure communications; Network security protocols
    • H04L9/08Key distribution or management, e.g. generation, sharing or updating, of cryptographic keys or passwords
    • H04L9/0816Key establishment, i.e. cryptographic processes or cryptographic protocols whereby a shared secret becomes available to two or more parties, for subsequent use
    • H04L9/0819Key transport or distribution, i.e. key establishment techniques where one party creates or otherwise obtains a secret value, and securely transfers it to the other(s)
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01PMEASURING LINEAR OR ANGULAR SPEED, ACCELERATION, DECELERATION, OR SHOCK; INDICATING PRESENCE, ABSENCE, OR DIRECTION, OF MOVEMENT
    • G01P15/00Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration
    • G01P15/18Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration in two or more dimensions
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B1/00Details of transmission systems, not covered by a single one of groups H04B3/00 - H04B13/00; Details of transmission systems not characterised by the medium used for transmission
    • H04B1/38Transceivers, i.e. devices in which transmitter and receiver form a structural unit and in which at least one part is used for functions of transmitting and receiving
    • H04B1/3827Portable transceivers
    • H04B1/385Transceivers carried on the body, e.g. in helmets
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B13/00Transmission systems characterised by the medium used for transmission, not provided for in groups H04B3/00 - H04B11/00
    • H04B13/005Transmission systems in which the medium consists of the human body
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L67/00Network arrangements or protocols for supporting network services or applications
    • H04L67/01Protocols
    • H04L67/04Protocols specially adapted for terminals or networks with limited capabilities; specially adapted for terminal portability
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L9/00Cryptographic mechanisms or cryptographic arrangements for secret or secure communications; Network security protocols
    • H04L9/08Key distribution or management, e.g. generation, sharing or updating, of cryptographic keys or passwords
    • H04L9/0816Key establishment, i.e. cryptographic processes or cryptographic protocols whereby a shared secret becomes available to two or more parties, for subsequent use
    • H04L9/0819Key transport or distribution, i.e. key establishment techniques where one party creates or otherwise obtains a secret value, and securely transfers it to the other(s)
    • H04L9/083Key transport or distribution, i.e. key establishment techniques where one party creates or otherwise obtains a secret value, and securely transfers it to the other(s) involving central third party, e.g. key distribution center [KDC] or trusted third party [TTP]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L9/00Cryptographic mechanisms or cryptographic arrangements for secret or secure communications; Network security protocols
    • H04L9/08Key distribution or management, e.g. generation, sharing or updating, of cryptographic keys or passwords
    • H04L9/0861Generation of secret information including derivation or calculation of cryptographic keys or passwords
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L9/00Cryptographic mechanisms or cryptographic arrangements for secret or secure communications; Network security protocols
    • H04L9/08Key distribution or management, e.g. generation, sharing or updating, of cryptographic keys or passwords
    • H04L9/0861Generation of secret information including derivation or calculation of cryptographic keys or passwords
    • H04L9/0866Generation of secret information including derivation or calculation of cryptographic keys or passwords involving user or device identifiers, e.g. serial number, physical or biometrical information, DNA, hand-signature or measurable physical characteristics
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L9/00Cryptographic mechanisms or cryptographic arrangements for secret or secure communications; Network security protocols
    • H04L9/08Key distribution or management, e.g. generation, sharing or updating, of cryptographic keys or passwords
    • H04L9/0861Generation of secret information including derivation or calculation of cryptographic keys or passwords
    • H04L9/0877Generation of secret information including derivation or calculation of cryptographic keys or passwords using additional device, e.g. trusted platform module [TPM], smartcard, USB or hardware security module [HSM]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L9/00Cryptographic mechanisms or cryptographic arrangements for secret or secure communications; Network security protocols
    • H04L9/12Transmitting and receiving encryption devices synchronised or initially set up in a particular manner
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W12/00Security arrangements; Authentication; Protecting privacy or anonymity
    • H04W12/03Protecting confidentiality, e.g. by encryption
    • H04W12/037Protecting confidentiality, e.g. by encryption of the control plane, e.g. signalling traffic
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W12/00Security arrangements; Authentication; Protecting privacy or anonymity
    • H04W12/04Key management, e.g. using generic bootstrapping architecture [GBA]
    • H04W12/041Key generation or derivation
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W4/00Services specially adapted for wireless communication networks; Facilities therefor
    • H04W4/80Services using short range communication, e.g. near-field communication [NFC], radio-frequency identification [RFID] or low energy communication
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L2209/00Additional information or applications relating to cryptographic mechanisms or cryptographic arrangements for secret or secure communication H04L9/00
    • H04L2209/24Key scheduling, i.e. generating round keys or sub-keys for block encryption
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L2209/00Additional information or applications relating to cryptographic mechanisms or cryptographic arrangements for secret or secure communication H04L9/00
    • H04L2209/80Wireless
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L2209/00Additional information or applications relating to cryptographic mechanisms or cryptographic arrangements for secret or secure communication H04L9/00
    • H04L2209/80Wireless
    • H04L2209/805Lightweight hardware, e.g. radio-frequency identification [RFID] or sensor

Definitions

  • This application belongs to the field of computer science and application technology, and in particular relates to a wireless body area network, a coordinator node, a wearable device, a key generation method, a distribution method and a computer-readable storage medium for the wireless body area network.
  • the data collected and transmitted by the wearable device has the requirements of privacy and high security.
  • traditional data transmission security methods are not suitable for wearable devices with limited resources; however, the security level of network security methods for large-scale sensor networks cannot meet the requirements of wearable devices.
  • the security application requirements of the equipment are not limited to the wireless body area network.
  • the embodiments of the present application provide a key generation method, distribution method, and computer-readable storage medium of a wireless body area network, a coordinator node, a wearable device, and a wireless body area network, aiming to solve the current wireless body area network key
  • the security and consistency of the allocation is poor, and the problem of consuming more resources.
  • an embodiment of the present application provides a wireless body area network.
  • the wireless body area network includes a coordinator node and at least one wearable device communicatively connected to the coordinator node.
  • the coordinator node and the Wearable devices are integrated with acceleration acquisition devices;
  • the coordinator node is used to send a data collection synchronization message to the wearable device; collect the first-stage acceleration signal; extract the first-stage common information in the first-stage acceleration signal; according to the key to be distributed Sharing information with the first state to generate key encryption information; sending the key encryption information to the wearable device;
  • the wearable device is configured to receive the data collection synchronization message, synchronously collect a second gait acceleration signal according to the data collection synchronization message; extract second gait common information in the second gait acceleration signal; Receiving the key encryption information; decrypting the key encryption information according to the second gait information to obtain the key to be distributed;
  • the first step state common information is the position information of the peak value and the bottom value of the first step state acceleration signal
  • the second gait common information is the peak value and the bottom value of the second gait acceleration signal Location information.
  • the gait acceleration signal is synchronously collected through the acceleration acquisition device integrated by the coordinator and the wearable device, and the peak and valley position information in the gait acceleration signal is extracted accordingly as the gait common information, and the gait common information is used for
  • the key distribution of the wireless body area network has high security and consistency, simple calculation, and is suitable for wearable devices with limited resources.
  • the extraction process of the position information of the peak and valley values of the gait acceleration signal is simpler and more convenient, so that the key distribution process of the wireless body area network consumes less computing resources, and is suitable for resource-constrained wearable devices.
  • the location information is used as the gait common information for encryption and decryption.
  • the security is high, and only the coordinator node is required to generate the key, and the gait common information shared by the coordinator node and the wearable device is used for encryption and decryption. Key distribution, high consistency.
  • the coordinator node is specifically configured to:
  • the key to be distributed is generated according to the noise signal in the first-stage acceleration signal.
  • the method of generating the key to be distributed can be arbitrary. Compared with other methods, the noise signal in the gait acceleration signal is used to generate the key to be distributed, which can improve the performance of the key. Randomness and information entropy.
  • an embodiment of the present application provides a key distribution method for a wireless body area network, using a coordinator node of the wireless body area network, the coordinator node is integrated with an acceleration acquisition device, and the coordinator node is connected to at least one Wearable device communication connection; the method includes:
  • Collect the first-stage acceleration signal extract the first-stage state common information in the first-stage state acceleration signal; generate key encryption information according to the key to be distributed and the first-stage state common information; send the Key encryption information to the wearable device to instruct the wearable device to decrypt the key encryption information according to the second gait common information extracted from the second gait acceleration signal to obtain the Describe the key to be distributed;
  • the first step state common information is the position information of the peak value and the bottom value of the first step state acceleration signal
  • the second gait common information is the peak value and the bottom value of the second gait acceleration signal Location information.
  • the embodiments of the present application provide a key distribution method for a wireless body area network, which is applied to a wearable device of the wireless body area network.
  • the wearable device is integrated with an acceleration acquisition device, and the wearable device cooperates with Device node communication connection; the method includes:
  • the key encryption information sent by the coordinator node, the key encryption information is generated by the coordinator node based on the first-step state common information extracted from the collected first-step state acceleration signal and the key to be distributed ⁇ ; Decrypt the key encrypted information according to the second gait information to obtain the key to be distributed;
  • the first step state common information is the position information of the peak value and the bottom value of the first step state acceleration signal
  • the second gait common information is the peak value and the bottom value of the second gait acceleration signal Location information.
  • an embodiment of the present application provides a key generation method for a wireless body area network, which is applied to a coordinator node of a wireless body area network, the coordinator node is integrated with an acceleration acquisition device, and the method includes:
  • Collect the first-stage acceleration signal extract the noise signal in the first-stage acceleration signal; generate the key to be distributed according to the noise signal.
  • an embodiment of the present application provides a coordinator node, including an acceleration acquisition device, a memory, a processor, and a computer program stored in the memory and running on the processor, and the processor executes all
  • the computer program implements the method according to any one of the second aspect or the fourth aspect.
  • an embodiment of the present application provides a wearable device, including an acceleration acquisition device, a memory, a processor, and a computer program stored in the memory and running on the processor, and the processor executes all
  • the computer program implements the method described in any one of the above third aspects.
  • an embodiment of the present application provides a computer-readable storage medium that stores a computer program that, when executed by a processor, implements any of the above-mentioned second aspect or the above-mentioned fourth aspect. The method described in one item.
  • embodiments of the present application provide a computer program product, which when the computer program product runs on a coordinator node, causes the coordinator node to execute the method described in any one of the second aspect or the fourth aspect.
  • an embodiment of the present application provides a computer program product that, when the computer program product runs on a wearable device, causes the wearable device to execute the method described in any one of the foregoing third aspects.
  • the gait acceleration signal is synchronously collected through the acceleration acquisition device integrated by the coordinator and the wearable device, and the peak and valley position information in the gait acceleration signal are extracted accordingly as the gait common information, and the gait common information is used.
  • Information is used for key distribution of wireless body area network, which has high security and consistency, simple calculation, and is suitable for wearable devices with limited resources.
  • FIG. 1 is a schematic block diagram of a system architecture of a wireless body area network provided by an embodiment of this application;
  • Figure 2 is a schematic diagram of a signed window coding provided by an embodiment of the application
  • FIG. 3 is a schematic diagram of a zero-phase filtering process provided by an embodiment of the application.
  • FIG. 4 is a schematic diagram of coding based on noise signals provided by an embodiment of the application.
  • FIG. 5 is a schematic block diagram of the flow of a key distribution method for a wireless body area network according to an embodiment of the application
  • FIG. 6 is a schematic block diagram of a process of generating a key to be distributed according to a noise signal according to an embodiment of the application
  • FIG. 7 is a schematic block diagram of the flow of a key distribution method for a wireless body area network according to an embodiment of the application.
  • FIG. 8 is a schematic block diagram of the flow of a method for generating a key for a wireless body area network according to an embodiment of the application
  • FIG. 9 is a schematic diagram of interaction between a coordinator node and a wearable device provided by an embodiment of the application.
  • FIG. 10 is a schematic block diagram of the structure of a key distribution device for a wireless body area network according to an embodiment of the application.
  • FIG. 11 is a schematic block diagram of a structure of a key distribution device for a wireless body area network according to an embodiment of the application.
  • FIG. 12 is a schematic block diagram of the structure of a key generation device for a wireless body area network according to an embodiment of the application.
  • FIG. 13 is a schematic structural diagram of a coordinator node provided by an embodiment of the application.
  • FIG. 14 is a schematic structural diagram of a wearable device provided by an embodiment of the application.
  • Wireless Body Area Network is a communication network centered on the human body and composed of various network elements related to the human body. These network elements can be sensors deployed on various parts of the body, and/or wearable devices worn on various parts of the human body.
  • Wearable device refers to a portable device that can be worn directly on the body or integrated into the user's clothes or accessories. For example, smart watches, smart glasses, smart bracelets or other wearable physical sign monitoring devices.
  • FIG. 1 is a schematic block diagram of a system architecture of a wireless body area network according to an embodiment of the present application.
  • the wireless body area network includes a coordinator node 11 and at least one wearable device 12 communicatively connected to the coordinator node. Both the coordinator node 11 and the wearable device 12 are integrated with acceleration collection devices.
  • the acceleration collection device may be, but is not limited to, a three-axis acceleration sensor, and the coordinator node and the wearable device can collect the user's gait acceleration signal through the acceleration collection device.
  • the coordinator node is used to send data acquisition synchronization messages to the wearable device; collect the first-stage acceleration signal; extract the first-stage state common information in the first-stage acceleration signal; according to the key to be distributed and the first step State common information, generate key encryption information; send the key encryption information to the wearable device.
  • the common information of the first state is the position information of the peak and valley values of the acceleration signal of the first state.
  • the wearable device is used to receive the data collection synchronization message, according to the data collection synchronization message, synchronously collect the second gait acceleration signal; extract the second gait common information in the second gait acceleration signal; receive the key encryption information; The two-gait shared information decrypts the key encrypted information to obtain the key to be distributed.
  • the second gait common information is the position information of the peak and valley values of the second gait acceleration signal.
  • the aforementioned coordinator node may also be referred to as a wearable gateway, and the coordinator node may function as a gateway in a wireless body area network.
  • the coordinator node is wirelessly connected to at least one wearable device, and the wireless communication mode can be any.
  • the coordinator node sends a broadcast data collection synchronization message to each wearable device. After the wearable device receives the data collection synchronization message, it completes the synchronization of the gait acceleration signal according to the data collection synchronization message.
  • Synchronous collection of gait acceleration signals means that the coordinator node and the wearable device collect the gait acceleration information at the same time through their own acceleration collection devices. That is to say, the first step acceleration signal and the second gait acceleration signal are collected synchronously, which are the gait acceleration information at the same time. The first and second gait acceleration signals are only to distinguish which device collected the gait acceleration signal.
  • the coordinator node and the wearable device synchronously collect the gait acceleration signal, the corresponding key distribution process can be carried out.
  • the coordinator node After the coordinator node collects the first-stage acceleration signal, it can extract the gait common information according to the first-stage acceleration signal, and then encrypt the key to be distributed according to the extracted first-stage common information, and the encrypted key The encrypted information is sent to each wearable device.
  • the wearable device collects the second gait acceleration signal, extract the second gait common information in the second gait acceleration signal; when the wearable device receives the key encryption information sent by the coordinator node, use the second step The state information is decrypted, and the key to be distributed is obtained.
  • the key to be distributed generated by the coordinator node can be shared to each wearable device of the wireless body area network to realize the key distribution of the wireless body area network.
  • the key can be used for data encryption transmission between the coordinator node and each wearable device.
  • the above-mentioned gait common information is the position information of the peak and valley values of the gait acceleration signal. Specifically, on a gait acceleration signal curve, corresponding encoding is performed according to the position of the peak value and the time sequence position of the valley value to obtain the above-mentioned position information. For example, when extracting gait common information through a sliding window, use the sliding window to slide on the gait acceleration signal curve. When the peak value appears in the first sliding window, it is coded as 1, and when the valley value appears in the two sliding windows, Then the code is -1. Correspondingly, when there are no peaks and valleys in the third sliding window, no coding is performed, and the position information of the peaks and valleys on the gait acceleration signal curve is extracted accordingly.
  • the coordinator node is specifically used to: perform low-pass filtering on the first-stage acceleration signal; perform a dimensionality reduction operation on the first-stage acceleration signal after the low-pass filtering, to obtain the first step after dimensionality reduction State acceleration signal; extract the first position information of the peak and valley value of the first step state acceleration signal after dimensional reduction in time domain and frequency domain respectively.
  • the filtering operation performed on the acceleration signal of the first state may be specifically, but not limited to, Butterworth low-pass filtering.
  • the dimensionality reduction operation can be, but is not limited to, principal components analysis (PCA), and subsequent analysis is performed based on the first-stage acceleration signal after the dimensionality reduction.
  • PCA principal components analysis
  • r_signal is the acceleration signal of the first state above
  • x, y, and z respectively represent the x-axis, y-axis and z-axis of the three-axis acceleration
  • pca_signal is the first principal component after dimensionality reduction using PCA.
  • the dimensionality reduction algorithm can also be other algorithms, which are not limited here.
  • the position information of the peak and valley values of the first-stage acceleration signal in the time domain and the peak and valley values of the first-stage acceleration signal in the frequency domain can be extracted Location information.
  • the method of extracting location information can be arbitrary.
  • a signed sliding coding algorithm can be used for extraction.
  • the coordinator node is specifically used to extract the peak sum of the fast Fourier transform results of the first-stage acceleration signal after dimensionality reduction and the first-stage acceleration signal after dimensionality reduction based on the signed sliding window coding algorithm The first position information of the valley;
  • the signed sliding window coding algorithm (Signed Sliding Window Coding, SSWC) process specifically includes:
  • the window coding in the frequency domain is followed by the coding in the time domain.
  • the size of the sliding window in the time domain and the frequency domain is W t and W f , respectively.
  • the values of W t and W f are determined by the sampling frequency of the gait acceleration signal. Decided. Refer to the schematic diagram of signed window coding shown in Fig. 2, W t is set to 20 sampling points, W f is set to 1 Hz, and for the gait acceleration signal in the time domain, it is coded as ⁇ 1 according to the positions of the peak and valley values.
  • the signed sliding window algorithm can further improve the convenience of extracting gait common information and reduce the amount of calculation.
  • the peak value and the bottom value can be expressed by different symbol values, which can increase the coding rate.
  • the process of extracting common gait information of wearable devices is similar to the process of extracting common gait information of coordinator nodes.
  • the above-mentioned wearable device is specifically used to: perform low-pass filtering on the second gait acceleration signal; perform a dimensionality reduction operation on the low-pass filtered second gait acceleration signal to obtain the second dimensionality reduction Gait acceleration signal: extract the second position information of the peak and valley value of the second gait acceleration signal after dimension reduction in time domain and frequency domain respectively.
  • the aforementioned dimensionality reduction operation may be, but not limited to, the PCA dimensionality reduction algorithm.
  • the position information of the peak and valley of the second gait acceleration signal in the time domain and the position information of the peak and valley of the second gait acceleration signal in the frequency domain can be extracted respectively.
  • the location information can be extracted by a signed sliding window coding algorithm.
  • wearable device is specifically used for:
  • the process of the signed sliding window coding algorithm specifically includes:
  • the signed sliding window slides on the second gait acceleration signal after dimensionality reduction.
  • the total information pool increases by i; when a valley appears in the i-th window, the total information pool increases by -i;
  • i is an integer.
  • the signed sliding window slides on the acceleration signal of the first step after dimensionality reduction.
  • the i-th window has a peak value
  • the total information pool increases by -i
  • the i-th window has a valley value
  • the total information pool increases i
  • the window continues to slide, and i is an integer.
  • the signed sliding window coding algorithm in the wearable device is the same as the signed sliding window coding algorithm in the coordinator node.
  • the signed sliding window coding algorithm in the coordinator node please refer to the corresponding content above, which will not be repeated here.
  • the signed sliding window coding algorithm can make the extraction process of gait common information simpler and more convenient, with less calculation, and suitable for wearable devices with limited computing resources.
  • the coordinator node After the coordinator node extracts the first state common information from the first state acceleration signal, it can use the first state common information to encrypt the key to be distributed to obtain the encrypted key encryption information.
  • a fuzzy safe can be constructed based on the fuzzy vault algorithm, using the first-step common information to encrypt the key to be distributed.
  • the aforementioned coordinator node is specifically used to: divide the key to be distributed into N segments, each segment of the key to be distributed is a coefficient of an N-th order polynomial; according to the first-step state common information and the N-th order polynomial, Construct a fuzzy safe, and the fuzzy safe encrypts information with a key.
  • the M-bit key to be distributed is key_M
  • each segment is Is a coefficient of the N-order polynomial
  • the coordinator node sends the vault set V to the wearable device.
  • the way to obtain the key encryption information may not be limited to Fuzzy Vault.
  • the wearable device After the wearable device extracts the second gait common information, it can always wait to receive the key encryption information sent by the coordinator node. After the wearable device receives the key encryption information, it can use the second gait common information to decrypt the key encryption information to obtain the key to be distributed.
  • the wearable device is specifically used to unlock the fuzzy safe according to the second gait common information to obtain the key to be distributed.
  • the wearable device After receiving the vault set V, the wearable device finds the set P from the set V according to the common information of the second gait, and solves the above polynomial f(x) according to the set P to obtain the polynomial coefficients C 0 , C 1 , C 2 ,...,C N , and then concatenate the polynomial coefficients to obtain the above-mentioned M-bit key to be distributed.
  • the above-mentioned method of generating the key to be distributed can be arbitrary.
  • the gait acceleration signal can be used to generate the key to be distributed.
  • the key to be distributed can be generated by the noise signal superimposed on the gait acceleration signal.
  • the aforementioned coordinator node is specifically configured to generate the key to be distributed according to the noise signal in the first-stage acceleration signal.
  • the coordinator node After the coordinator node collects the acceleration signal of the first state, it can first extract the noise signal in the acceleration signal of the first state, and then generate the aforementioned key to be distributed based on the noise signal. That is, the aforementioned coordinator node can be specifically used to: extract the noise signal in the first-stage acceleration signal; encode the noise signal to obtain the key; perform key enhancement operations on the key to obtain the key to be distributed.
  • Generating the key to be distributed according to the noise signal superimposed on the gait acceleration signal may include steps such as noise extraction, noise encoding, and key enhancement.
  • the first-stage acceleration signal can be filtered first, and then the filtered first-stage acceleration signal and the first-stage acceleration signal before filtering are subtracted to obtain the noise information sum. That is, the above-mentioned coordinator node is specifically used to: perform zero-phase filtering on the acceleration signal of the first state to obtain the filtered first state acceleration signal; subtract the filtered first state acceleration signal from the first state acceleration signal , Get the noise signal.
  • the above-mentioned zero-phase filtering process specifically includes: inputting the first-stage acceleration signal to the low-pass Butterworth filter to obtain the first-stage filtered output of the low-pass Butterworth filter. Acceleration signal; perform time reversal operation on the first-stage acceleration signal after the first filtering to obtain the first-stage acceleration signal after the first reversal; the first-stage acceleration after the first reversal The signal is input to the low-pass Butterworth filter to obtain the first-stage acceleration signal after the second filtering output from the low-pass Butterworth filter; the first-stage acceleration signal after the second filtering is time-reversed The first state acceleration signal after the second reversal is obtained by the turning operation, and the first-state acceleration signal after the second reversal is the filtered first-state acceleration signal.
  • the first-step state acceleration signal f_sig x′ 1 ,x′ 2 ,x′ 3 ,...,x′ N-1 ,x′ N after the second filtering; then f_sig is time-reversed to obtain the first
  • ff_sig is reversed in time for the second time to obtain the first-step
  • n_sig r_sig-rev_ff_sig
  • n_sig is the noise signal in the first-stage acceleration signal.
  • the noise signal in the acceleration signal of the first state After the noise signal in the acceleration signal of the first state is extracted, the noise signal can be encoded.
  • the acceleration collection device on the coordinator node is a three-axis acceleration sensor.
  • the acceleration signals of the x-axis, y-axis and z-axis are collected by the three-axis acceleration sensor.
  • the noise signal includes the first noise signal of the x-axis ,
  • the aforementioned coordinator node is specifically used to: set the corresponding bit of the first binary random sequence to the corresponding value according to the value of each bit in the first noise signal , Get the first key; according to the value of each bit in the second noise signal, set the corresponding bit of the second binary random sequence to the corresponding value to get the second key; according to the value of each bit in the third noise signal, The corresponding bit of the third binary random sequence is set to the corresponding value, and the third key is obtained;
  • k-th bit in the noise signal if the k-th bit in the noise signal is greater than or equal to 0, set the k-th bit of the binary random sequence to the first value; if the k-th bit in the noise signal is less than 0, set the k-th bit of the binary random sequence Set to the second value, and k is an integer.
  • the above-mentioned first value may be 1, and correspondingly, the second value is 0.
  • the above-mentioned first value can also be 0, and correspondingly, the second value is 1.
  • the first bit in the first noise signal is greater than or equal to 0, then the first bit in the first binary random sequence is set to 1, and the second bit in the first noise signal is less than 0, then the first two The second bit of the binary random sequence is set to 0, and so on, according to the value of each bit in the first noise signal, the corresponding bit of the first binary random sequence is set to the corresponding value.
  • the key enhancement operation is performed on the obtained key.
  • the process of key enhancement may specifically include: performing an exclusive OR operation on the first key, the second key, and the third key to obtain the M-bit key to be distributed. which is
  • the process of key enhancement further includes: XORing the first key, the second key, and the third key to obtain the XORed key; and for the XORed key Down-sampling is performed to obtain the key to be distributed.
  • performing an exclusive OR operation on the key can further improve the randomness and information entropy of the generated key to be distributed. Further, after the exclusive OR operation, a down-sampling operation is also performed, which can further improve the randomness and information entropy of the key to be distributed.
  • FIG. 5 is a schematic block diagram of the flow of a key distribution method for a wireless body area network according to an embodiment of this application.
  • the method can be applied to a coordinator node of the wireless body area network, and the coordinator node is integrated with an acceleration collection device.
  • the coordinator node is in communication connection with at least one wearable device.
  • the above method may include the following steps:
  • Step S501 Send a data collection synchronization message to the wearable device, and the data collection synchronization information is used to instruct the wearable device to synchronously collect the second gait acceleration signal.
  • Step S502 Collect the acceleration signal of the first state.
  • the extraction process of the first-stage state common information specifically includes: low-pass filtering the first-stage acceleration signal; performing a dimensionality reduction operation on the first-stage acceleration signal after the low-pass filtering to obtain the first-stage acceleration signal after dimensionality reduction.
  • Gait acceleration signal extract the first position information of the peak and valley value of the first-step acceleration signal after dimensionality reduction in the time domain and frequency domain, respectively.
  • the process of separately extracting the first position information of the peak and valley values of the first-stage acceleration signal after the dimensional reduction in the time domain and the frequency domain may include:
  • the process of the signed sliding window coding algorithm specifically includes:
  • the signed sliding window slides on the first-stage acceleration signal after dimensionality reduction.
  • the total information pool increases by i; when a valley occurs in the i-th window, the total information pool increases by -i;
  • i is an integer.
  • Step S504 Generate key encryption information according to the key to be distributed and the shared information of the first step.
  • Step S505 Send the key encryption information to the wearable device to instruct the wearable device to decrypt the key encryption information according to the second gait common information extracted from the second gait acceleration signal to obtain the key to be distributed;
  • the first step state common information is the position information of the peak value and valley value of the first state acceleration signal;
  • the second gait common information is the position information of the peak value and the bottom value of the second gait acceleration signal.
  • the wearable device can interface according to the second gait common information extracted by itself to obtain the key to be distributed.
  • the method of generating the key to be distributed can be arbitrary. However, in order to improve the randomness and information entropy of the key, the key can be generated based on the noise signal superimposed on the gait acceleration signal.
  • FIG. 6 is a schematic block diagram of the process of generating the key to be distributed according to the noise signal.
  • the process of generating the key to be distributed according to the noise signal superimposed on the acceleration signal of the first state specifically includes:
  • Step S601 Extract a noise signal in the acceleration signal of the first state.
  • the extraction process of the noise signal specifically includes: performing zero-phase filtering on the first-stage acceleration signal; then subtracting the filtered first-stage acceleration signal from the first-stage acceleration signal to obtain the first-stage acceleration The noise signal superimposed on the signal.
  • the zero-phase filtering process can be referred to the relevant introduction corresponding to FIG. 3 above, and will not be repeated here.
  • Step S602 Encode the noise signal to obtain a key.
  • noise coding process can be referred to the corresponding content above, which will not be repeated here.
  • Step S603 Perform a key enhancement operation on the key to obtain the key to be distributed.
  • the first key, the second key, and the third key can be XORed to obtain the key to be distributed. It is also possible to perform an XOR operation on the first key, the second key, and the third key to obtain the XOR key; then down-sample the XOR key to obtain the key to be distributed.
  • the process of generating the key to be distributed is specifically: generating the key to be distributed according to the noise signal in the first-stage acceleration signal.
  • the above process of generating the key to be distributed according to the noise signal in the first-stage acceleration signal may specifically include: extracting the noise signal in the first-stage acceleration signal; encoding the noise signal to obtain the secret key; The key performs key enhancement operations to obtain the key to be distributed.
  • the above-mentioned process of extracting the noise signal in the acceleration signal of the first state may include: performing zero-phase filtering on the acceleration signal of the first state to obtain the filtered acceleration signal of the first state; Subtract the filtered first-stage acceleration signal to obtain the noise signal.
  • the zero-phase filtering process specifically includes: inputting the first-stage acceleration signal to the low-pass Butterworth filter to obtain the first-stage acceleration signal after the first filtering output by the low-pass Butterworth filter;
  • the first step is the acceleration signal.
  • the acceleration acquisition device is a three-axis acceleration sensor
  • the noise signal includes a first noise signal on the x-axis, a second noise signal on the y-axis, and a third noise signal on the z-axis;
  • the specific process of encoding the noise signal to obtain the key may include:
  • the corresponding bit of the first binary random sequence is set to the corresponding value to obtain the first key
  • the corresponding bit of the second binary random sequence is set to the corresponding value to obtain the second key
  • k-th bit in the noise signal if the k-th bit in the noise signal is greater than or equal to 0, set the k-th bit of the binary random sequence to the first value; if the k-th bit in the noise signal is less than 0, set the k-th bit of the binary random sequence Set to the second value, and k is an integer.
  • process of performing the key enhancement operation on the key to obtain the key to be distributed may include:
  • the process of extracting the common information of the first state in the acceleration signal of the first state may include:
  • the first position information of the peak value and the bottom value of the first-stage acceleration signal after the dimensional reduction in the time domain and the frequency domain are respectively extracted.
  • the process of the signed sliding window coding algorithm specifically includes:
  • the signed sliding window slides on the first-stage acceleration signal after dimensionality reduction.
  • the total information pool increases by i; when a valley occurs in the i-th window, the total information pool increases by -i;
  • i is an integer.
  • the above-mentioned process of generating key encryption information according to the key to be distributed and the first-step state information specifically includes:
  • a fuzzy safe is constructed, and the fuzzy safe is the key to encrypt the information.
  • FIG. 7 a schematic block diagram of the flow of a key distribution method for a wireless body area network provided by an embodiment of this application.
  • the method can be applied to a wearable device of a wireless body area network, and the wearable device is integrated with an acceleration collection device.
  • the wearable device communicates with the coordinator node.
  • the above method may include the following steps:
  • Step S701 Receive a data collection synchronization message sent by the coordinator node.
  • Step S702 Synchronously collect the second gait acceleration signal according to the data collection synchronization message.
  • Step S703 Extract the second gait common information in the second gait acceleration signal.
  • Step S705 Decrypt the key encrypted information according to the second gait common information to obtain the key to be distributed; wherein the first-step state common information is the position information of the peak and valley value of the acceleration signal of the first state; second The gait common information is the position information of the peak and valley of the second gait acceleration signal.
  • the foregoing process of extracting the second gait common information in the second gait acceleration signal may include:
  • the second position information of the peak value and the valley value of the second gait acceleration signal after the dimensional reduction in the time domain and the frequency domain are respectively extracted.
  • the above-mentioned process of separately extracting the second position information of the peak and valley values of the second gait acceleration signal after the dimensional reduction in the time domain and the frequency domain may include:
  • the process of the signed sliding window coding algorithm specifically includes:
  • the signed sliding window slides on the second gait acceleration signal after dimensionality reduction.
  • the total information pool increases by i; when a valley appears in the i-th window, the total information pool increases by -i;
  • i is an integer.
  • the key encryption information is a fuzzy safe
  • the above-mentioned decryption of the key encryption information according to the second gait common information, and the specific process of obtaining the key to be distributed may include:
  • the fuzzy safe is unlocked according to the common information of the second gait, and the key to be distributed is obtained.
  • FIG. 8 shows a schematic block diagram of the flow of a key generation method of a wireless body area network
  • the key generation method is applied to a coordinator node of the wireless body area network
  • the coordinator node is integrated with an acceleration collection device.
  • the above method can It includes the following steps:
  • Step S801 Collect the first-stage acceleration signal.
  • Step S802 Extract the noise signal in the acceleration signal of the first state.
  • Step S803 Generate a key to be distributed according to the noise signal.
  • zero-phase filtering can be performed on the first-stage acceleration signal, and then the filtered first-stage acceleration signal can be subtracted from the first-stage acceleration signal to extract Out the above-mentioned noise signal. Then, the noise signal is encoded again, and then the key enhancement operation is performed after encoding to generate the above-mentioned key to be distributed.
  • the process of extracting the noise signal in the first-stage acceleration signal may include: performing zero-phase filtering on the first-stage acceleration signal to obtain the filtered first-stage acceleration signal; The first-step state acceleration signal after filtering is subtracted from the state acceleration signal to obtain a noise signal. Further, the above-mentioned process of performing zero-phase filtering on the first-stage acceleration signal to obtain the filtered first-stage acceleration signal may include: inputting the first-stage acceleration signal to a low-pass Butterworth filter to obtain a low-pass The first-stage acceleration signal after the first filtering output by the Butterworth filter; time-reverse operation is performed on the first-stage acceleration signal after the first filtering to obtain the first-stage acceleration signal after the first reversal.
  • Gait acceleration signal input the first-stage acceleration signal after the first inversion to the low-pass Butterworth filter to obtain the first-stage acceleration after the second filtering output from the low-pass Butterworth filter Signal; time-reverse the acceleration signal of the first state after the second filtering, and get the acceleration signal of the first state after the second reversal, and the acceleration signal of the first state after the second reversal is The filtered first state acceleration signal.
  • the above-mentioned process of generating the key to be distributed based on the noise signal may include: encoding the noise signal to obtain the key; performing a key enhancement operation on the key to obtain the key to be distributed.
  • the acceleration acquisition device is a three-axis acceleration sensor
  • the noise signal includes a first noise signal on the x-axis, a second noise signal on the y-axis, and a third noise signal on the z-axis;
  • the process of encoding the noise signal to obtain the key may include: according to the value of each bit in the first noise signal, setting the corresponding bit of the first binary random sequence to the corresponding value to obtain the first key; For the value of each bit in the noise signal, the corresponding bit of the second binary random sequence is set to the corresponding value to obtain the second key; according to the value of each bit in the third noise signal, the corresponding bit of the third binary random sequence Set to the corresponding value to get the third key;
  • k-th bit in the noise signal if the k-th bit in the noise signal is greater than or equal to 0, set the k-th bit of the binary random sequence to the first value; if the k-th bit in the noise signal is less than 0, set the k-th bit of the binary random sequence Set to the second value, and k is an integer.
  • the process of performing the key enhancement operation on the key to obtain the key to be distributed may include: performing an exclusive OR operation on the first key, the second key, and the third key to obtain the key to be distributed. Key; or, the first key, the second key, and the third key are XORed to obtain the XORed key; the XORed key is down-sampled to obtain the key to be distributed.
  • the interaction process between the coordinator node and the wearable device will be introduced and explained below in conjunction with the schematic diagram of the interaction between the coordinator node and the wearable device shown in FIG. 9.
  • the interaction process can include:
  • Step S901 The coordinator node sends a data collection synchronization message to the wearable device.
  • Step S902 The coordinator node collects the first-stage acceleration signal.
  • Step S903 The wearable device synchronously collects the second gait acceleration signal according to the data collection synchronization message.
  • Step S904 The coordinator node extracts the noise signal in the first-stage acceleration signal.
  • Step S905 After the coordinator node encodes the noise signal, the key enhancement operation is performed to generate the key to be distributed.
  • the to-be-distributed key may also be generated through the first-stage acceleration signal or other methods.
  • the randomness and information entropy of the key can be improved.
  • Step S906 The coordinator node extracts the first-step state common information in the first-step state acceleration signal.
  • the common information of the first state refers to the position information of the peak and valley values of the acceleration signal of the first state.
  • the process of extracting gait common information can be referred to the corresponding content above, and will not be repeated here.
  • Step S907 The coordinator node constructs a fuzzy safe according to the gait common information and the key to be distributed.
  • Step S908 The coordinator node sends the fuzzy safe to the wearable device.
  • Step S909 The wearable device extracts the second gait common information in the second gait acceleration signal.
  • the second gait common information refers to the position information of the peak and valley values of the second gait acceleration signal.
  • the process of extracting gait common information can be referred to the corresponding content above, and will not be repeated here.
  • Step S910 After receiving the fuzzy safe, the wearable device unlocks the fuzzy safe according to the second gait common information to obtain the key to be distributed.
  • FIG. 10 is a schematic block diagram of the structure of a wireless body area network key distribution device provided by an embodiment of this application.
  • the coordinator node of the wireless body area network is applied.
  • Communicatingly connected with at least one wearable device; the device may include:
  • the synchronization message sending module 101 is configured to send a data collection synchronization message to the wearable device, and the data collection synchronization information is used to instruct the wearable device to synchronously collect the second gait acceleration signal;
  • the first acquisition module 102 is used to acquire the acceleration signal of the first state
  • the encrypted information generating module 104 is configured to generate key encrypted information according to the key to be distributed and the first-step state information;
  • the encrypted information sending module 105 is used to send the key encrypted information to the wearable device to instruct the wearable device to decrypt the key encrypted information according to the second gait common information extracted from the second gait acceleration signal to obtain Key to be distributed;
  • the first step state common information is the position information of the peak value and valley value of the first state acceleration signal
  • the second gait common information is the position information of the peak value and the bottom value of the second gait acceleration signal.
  • the key distribution device of the wireless body area network may be a software program in the coordinator node, and each module of the key distribution device of the wireless body area network is a corresponding software program module.
  • the above-mentioned key generation module is specifically configured to: extract the noise signal in the first-stage acceleration signal; encode the noise signal to obtain the key; perform key enhancement operations on the key to obtain the key to be distributed.
  • the above-mentioned key generation module is specifically used to: input the first-stage acceleration signal to the low-pass Butterworth filter to obtain the first-stage acceleration after the first filtering output by the low-pass Butterworth filter. signal;
  • the acceleration acquisition device is a three-axis acceleration sensor
  • the noise signal includes a first noise signal on the x-axis, a second noise signal on the y-axis, and a third noise signal on the z-axis;
  • the above-mentioned key generation module is specifically used to: according to the value of each bit in the first noise signal, set the corresponding bit of the first binary random sequence to the corresponding value to obtain the first key; according to the value of each bit in the second noise signal , Set the corresponding bit of the second binary random sequence to the corresponding value to obtain the second key; according to the value of each bit in the third noise signal, set the corresponding bit of the third binary random sequence to the corresponding value to obtain Third key
  • k-th bit in the noise signal if the k-th bit in the noise signal is greater than or equal to 0, set the k-th bit of the binary random sequence to the first value; if the k-th bit in the noise signal is less than 0, set the k-th bit of the binary random sequence Set to the second value, and k is an integer.
  • the above-mentioned key generation module is specifically configured to: perform an exclusive OR operation on the first key, the second key, and the third key to obtain the key to be distributed;
  • the first key, the second key, and the third key are XORed to obtain the XORed key; the XORed key is down-sampled to obtain the key to be distributed.
  • the above-mentioned first extraction module is specifically configured to: perform low-pass filtering on the first-stage acceleration signal; perform a dimensionality reduction operation on the first-stage acceleration signal after the low-pass filtering to obtain the reduced-dimensional first state acceleration signal One-step acceleration signal; extract the first position information of the peak and valley value of the first-step acceleration signal after dimensional reduction in time domain and frequency domain respectively.
  • the above-mentioned first extraction module is specifically used for:
  • the process of the signed sliding window coding algorithm specifically includes:
  • the signed sliding window slides on the first-stage acceleration signal after dimensionality reduction.
  • the total information pool increases by i; when a valley occurs in the i-th window, the total information pool increases by -i;
  • i is an integer.
  • the aforementioned encrypted information generating module is specifically used for:
  • a fuzzy safe is constructed, and the fuzzy safe is the key to encrypt the information.
  • FIG. 11 is a schematic block diagram of the structure of a wireless body area network key distribution device provided by an embodiment of this application, which is applied to a wearable device of a wireless body area network.
  • the wearable device integrates an acceleration collection device, and the wearable device Communication connection with the coordinator node; the device may include:
  • the synchronization acquisition module 112 is configured to synchronously acquire the second gait acceleration signal according to the data acquisition synchronization message;
  • the second receiving module 114 is configured to receive the key encryption information sent by the coordinator node.
  • the key encryption information is the first-stage state common information and the to-be-distributed secret information extracted from the collected first-stage acceleration signal by the coordinator node Information generated by the key;
  • the decryption module 115 is used to decrypt the key encrypted information according to the second gait common information to obtain the key to be distributed;
  • the above-mentioned second extraction module is specifically configured to: perform low-pass filtering on the second gait acceleration signal; perform a dimensionality reduction operation on the low-pass filtered second gait acceleration signal to obtain the reduced-dimensionality first
  • Two gait acceleration signals extract the second position information of the peak and valley values of the second gait acceleration signal after dimension reduction in the time domain and frequency domain respectively.
  • the process of the signed sliding window coding algorithm specifically includes:
  • the signed sliding window slides on the second gait acceleration signal after dimensionality reduction.
  • the total information pool increases by i; when a valley appears in the i-th window, the total information pool increases by -i;
  • i is an integer.
  • the key encryption information is a fuzzy safe
  • the decryption module is specifically used to unlock the fuzzy safe according to the second gait common information to obtain the key to be distributed.
  • FIG. 12 a schematic block diagram of the structure of a key generation device for a wireless body area network provided by an embodiment of this application.
  • the device is applied to a coordinator node of the wireless body area network, and the coordinator node is integrated with an acceleration collection device.
  • the device may include:
  • the second collection module 121 is used to collect the acceleration signal of the first state.
  • the noise extraction module 122 is used to extract the noise signal in the first-stage acceleration signal.
  • FIG. 10, FIG. 11, and FIG. 12 correspond to the above method one-to-one.
  • FIG. 10 For related introduction, please refer to the corresponding content above, which will not be repeated here.
  • the key generation device of the wireless body area network may be a software program in the coordinator node, and each module of the key generation device of the wireless body area network is a corresponding software program module.
  • the aforementioned noise extraction module is specifically used for:
  • the aforementioned noise extraction module is specifically used to: input the first-stage acceleration signal to the low-pass Butterworth filter to obtain the first-stage acceleration signal output by the low-pass Butterworth filter after the first filtering. ; Perform time reversal operation on the first-stage acceleration signal after the first filtering to obtain the first-stage acceleration signal after the first reversal; input the first-stage acceleration signal after the first reversal To the low-pass Butterworth filter, get the first-stage acceleration signal after the second filtering output from the low-pass Butterworth filter; perform the time reversal operation on the first-stage acceleration signal after the second filtering , The acceleration signal of the first state after the second reversal is obtained, and the acceleration signal of the first state after the second reversal is the filtered first-state acceleration signal.
  • the above-mentioned key generation module is specifically configured to: encode the noise signal to obtain a key; perform a key enhancement operation on the key to obtain the key to be distributed.
  • the above-mentioned key generation module is specifically used to: according to the value of each bit in the first noise signal, set the corresponding bit of the first binary random sequence to the corresponding value to obtain the first key; according to the value of each bit in the second noise signal , Set the corresponding bit of the second binary random sequence to the corresponding value to obtain the second key; according to the value of each bit in the third noise signal, set the corresponding bit of the third binary random sequence to the corresponding value to obtain Third key
  • FIG. 13 is a schematic structural diagram of a coordinator node provided by an embodiment of this application.
  • the coordinator node 13 of this embodiment includes: at least one processor 130, a memory 131, and a computer program 132 that is stored in the memory 131 and can run on the at least one processor 130, so When the processor 130 executes the computer program 132, the steps in any of the above-mentioned embodiments of the key distribution method of the wireless body area network or the embodiment of the key generation method of the wireless body area network are implemented.
  • the coordinator node 13 may be a wearable gateway.
  • the coordinator node may include, but is not limited to, a processor 130, a memory 131, and an acceleration acquisition device 133.
  • FIG. 13 is only an example of the coordinator node 13, and does not constitute a limitation on the coordinator node 13. It may include more or less components than shown in the figure, or combine some components, or different The components of, for example, can also include input and output devices, network access devices, and so on.
  • the so-called processor 130 may be a central processing unit (Central Processing Unit, CPU), and the processor 130 may also be other general-purpose processors, digital signal processors (Digital Signal Processors, DSPs), and application specific integrated circuits (Application Specific Integrated Circuits). , ASIC), ready-made programmable gate array (Field-Programmable Gate Array, FPGA) or other programmable logic devices, discrete gates or transistor logic devices, discrete hardware components, etc.
  • the general-purpose processor may be a microprocessor or the processor may also be any conventional processor or the like.
  • FIG. 14 is a schematic structural diagram of a wearable device provided by an embodiment of this application.
  • the wearable device 14 of this embodiment includes: at least one processor 140, a memory 141, and a computer program 142 that is stored in the memory 141 and can run on the at least one processor 140, so When the processor 140 executes the computer program 142, the steps in any of the foregoing wireless body area network key distribution method embodiments are implemented.
  • the so-called processor 140 may be a central processing unit (Central Processing Unit, CPU), and the processor 140 may also be other general-purpose processors, digital signal processors (Digital Signal Processor, DSP), and application specific integrated circuits (Application Specific Integrated Circuits). , ASIC), ready-made programmable gate array (Field-Programmable Gate Array, FPGA) or other programmable logic devices, discrete gates or transistor logic devices, discrete hardware components, etc.
  • the general-purpose processor may be a microprocessor or the processor may also be any conventional processor or the like.
  • the memory 141 may be an internal storage unit of the wearable device 14 in some embodiments, such as a hard disk or a memory of the wearable device 14. In other embodiments, the memory 141 may also be an external storage device of the wearable device 14, for example, a plug-in hard disk equipped on the wearable device 14, a smart media card (SMC), Secure Digital (SD) card, Flash Card, etc. Further, the memory 141 may also include both an internal storage unit of the wearable device 14 and an external storage device.
  • the memory 141 is used to store an operating system, an application program, a boot loader (BootLoader), data, and other programs, such as the program code of the computer program. The memory 141 can also be used to temporarily store data that has been output or will be output.
  • the embodiments of the present application also provide a computer-readable storage medium, the computer-readable storage medium stores a computer program, and when the computer program is executed by a processor, it can realize the implementation of the key distribution method of each wireless body area network described above. Examples or steps in the embodiment of the key generation method of the wireless body area network.
  • the embodiments of the present application provide a computer program product.
  • the coordinator node realizes the key distribution method embodiments or wireless body domains that can realize the above-mentioned wireless body area network when the coordinator node is executed. Steps in the embodiment of the key generation method of the network. Or, when the computer program product runs on the wearable device, the steps in the above-mentioned key distribution method embodiments of the wireless body area network can be realized when the wearable device is executed.
  • the integrated unit is implemented in the form of a software functional unit and sold or used as an independent product, it can be stored in a computer readable storage medium.
  • the computer program can be stored in a computer-readable storage medium. When executed by the processor, the steps of the foregoing method embodiments can be implemented.
  • the computer program includes computer program code, and the computer program code may be in the form of source code, object code, executable file, or some intermediate forms.
  • the computer-readable medium may at least include: any entity or device capable of carrying the computer program code to the photographing device/terminal device, recording medium, computer memory, read-only memory (ROM, Read-Only Memory), and random access memory (RAM, Random Access Memory), electric carrier signal, telecommunications signal and software distribution medium.
  • ROM read-only memory
  • RAM random access memory
  • electric carrier signal telecommunications signal and software distribution medium.
  • U disk mobile hard disk, floppy disk or CD-ROM, etc.
  • computer-readable media cannot be electrical carrier signals and telecommunication signals.
  • the disclosed apparatus/network equipment and method may be implemented in other ways.
  • the device/network device embodiments described above are only illustrative.
  • the division of the modules or units is only a logical function division, and there may be other divisions in actual implementation, such as multiple units.
  • components can be combined or integrated into another system, or some features can be omitted or not implemented.
  • the displayed or discussed mutual coupling or direct coupling or communication connection may be indirect coupling or communication connection through some interfaces, devices or units, and may be in electrical, mechanical or other forms.
  • the units described as separate components may or may not be physically separated, and the components displayed as units may or may not be physical units, that is, they may be located in one place, or they may be distributed on multiple network units. Some or all of the units may be selected according to actual needs to achieve the objectives of the solutions of the embodiments.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Computer Security & Cryptography (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Computing Systems (AREA)
  • General Engineering & Computer Science (AREA)
  • Mobile Radio Communication Systems (AREA)
  • Measurement Of The Respiration, Hearing Ability, Form, And Blood Characteristics Of Living Organisms (AREA)
  • Selective Calling Equipment (AREA)

Abstract

本申请实施例适用于计算机科学与应用技术领域,公开了一种无线体域网及其密钥生成方法、分配方法和相关装置,通过协调器和可穿戴设备各自集成的加速度采集装置,同步采集步态加速度信号,相应地提取步态加速度信号中峰值和谷值的位置信息作为步态共信息,使用步态共信息进行无线体域网的密钥分配,安全性和一致性较高,计算简单,适用于资源受限的可穿戴设备。

Description

无线体域网及其密钥生成方法、分配方法和相关装置 技术领域
本申请属于计算机科学与应用技术领域,尤其涉及一种无线体域网、协调器节点、可穿戴设备、无线体域网的密钥生成方法、分配方法以及计算机可读存储介质。
背景技术
随着无线体域网的快速发展,越来越多的可穿戴设备被应用到生活的各个方面,包括个人健康管理,移动支付,跟踪与定位,社交与娱乐等。
在无线体域网中,可穿戴设备采集与传输的数据具有私密性和高安全性的需求。此外,可穿戴设备由于其体积小,能量、计算资源有限,传统的数据传输安全方法不适合于资源受限的可穿戴设备;而针对大规模传感器网络的网络安全方法的安全等级不能满足可穿戴设备的安全应用需求。
目前,无线体域网的密钥分配的安全性和一致性较差,且计算十分复杂,需要耗费较多的计算资源,不适用于资源受限的可穿戴设备。
技术问题
本申请实施例提供一种无线体域网、协调器节点、可穿戴设备、无线体域网的密钥生成方法、分配方法以及计算机可读存储介质,旨以解决目前无线体域网的密钥分配的安全性和一致性较差,耗费较多资源的问题。
技术解决方案
第一方面,本申请实施例提供一种无线体域网,所述无线体域网包括协调器节点以及与所述协调器节点通信连接的至少一个可穿戴设备,所述协调器节点和所述可穿戴设备上均集成有加速度采集装置;
所述协调器节点用于发送数据采集同步消息至所述可穿戴设备;采集第一步态加速度信号;提取所述第一步态加速度信号中的第一步态共信息;根据待分配密钥和所述第一步态共信息,生成密钥加密信息;发送所述密钥加密信息至所述可穿戴设备;
所述可穿戴设备用于接收所述数据采集同步消息,根据所述数据采集同步消息,同步采集第二步态加速度信号;提取所述第二步态加速度信号中的第二步态共信息;接收所述密钥加密信息;根据所述第二步态共信息对所述密钥加密信息进行解密,得到所述待分配密钥;
其中,所述第一步态共信息为所述第一步态加速度信号的峰值和谷值的位置信息;所述第二步态共信息为所述第二步态加速度信号的峰值和谷值的位置信息。
可见,通过协调器和可穿戴设备各自集成的加速度采集装置,同步采集步态加速度信号,相应地提取步态加速度信号中峰值和谷值的位置信息作为步态共信息,使用步态共信息进行无线体域网的密钥分配,安全性和一致性较高,计算简单,适用于资源受限的可穿戴设备。
具体地,步态加速度信号的峰值和谷值的位置信息的提取过程更加简单便利,从而使得无线体域网的密钥分配过程耗费的计算资源较少,适用于资源受限的可穿戴设备。在密钥分配过程中,使用位置信息作为步态共信息进行加密和解密,安全性较高,且只需要协调器节点生成密钥,使用协调器节点和可穿戴设备共有的步态共信息进行密钥分配,一致性较高。
结合第一方面,在一种可能的实现方式中,所述协调器节点具体用于:
根据所述第一步态加速度信号中的噪声信号生成所述待分配密钥。
值得指出的是,在本申请实施例中,待分配密钥的生成方式可以是任意的,相较于其它方式,通过步态加速度信号中的噪声信号生成待分配密钥,可以提高密钥的随机性和信息熵。
第二方面,本申请实施例提供一种无线体域网的密钥分配方法,应用无线体域网的协调器节点,所述协调器节点集成有加速度采集装置,所述协调器节点与至少一个可穿戴设备通信连接;所述方法包括:
发送数据采集同步消息至所述可穿戴设备,所述数据采集同步信息用于指示所述可穿戴设备同步采集第二步态加速度信号;
采集第一步态加速度信号;提取所述第一步态加速度信号中的第一步态共信息;根据待分配密钥和所述第一步态共信息,生成密钥加密信息;发送所述密钥加密信息至所述可穿戴设备,以指示所述可穿戴设备根据从所述第二步态加速度信号中提取的第二步态共信息,对所述密钥加密信息进行解密,得到所述待分配密钥;
其中,所述第一步态共信息为所述第一步态加速度信号的峰值和谷值的位置信息;所述第二步态共信息为所述第二步态加速度信号的峰值和谷值的位置信息。
第三方面,本申请实施例提供一种无线体域网的密钥分配方法,应用于无线体域网的可穿戴设备,所述可穿戴设备集成有加速度采集装置,所述可穿戴设备与协调器节点通信连接;所述方法包括:
接收所述协调器节点发送的数据采集同步消息;根据所述数据采集同步消息,同步采集第二步态加速度信号;提取所述第二步态加速度信号中的第二步态共信息;接收所述协调器节点发送的所述密钥加密信息,所述密钥加密信息为所述协调器节点根据从采集的第一步态加速度信号中提取的第一步态共信息和待分配密钥生成的信息;根据所述第二步态 共信息对所述密钥加密信息进行解密,得到所述待分配密钥;
其中,所述第一步态共信息为所述第一步态加速度信号的峰值和谷值的位置信息;所述第二步态共信息为所述第二步态加速度信号的峰值和谷值的位置信息。
第四方面,本申请实施例提供一种无线体域网的密钥生成方法,应用于无线体域网的协调器节点,所述协调器节点集成有加速度采集装置,所述方法包括:
采集第一步态加速度信号;提取所述第一步态加速度信号中的噪声信号;根据所述噪声信号生成待分配密钥。
第五方面,本申请实施例提供一种协调器节点,包括加速度采集装置、存储器、处理器以及存储在所述存储器中并可在所述处理器上运行的计算机程序,所述处理器执行所述计算机程序时实现如上述第二方面或第四方面任一项所述的方法。
第六方面,本申请实施例提供一种可穿戴设备,包括加速度采集装置、存储器、处理器以及存储在所述存储器中并可在所述处理器上运行的计算机程序,所述处理器执行所述计算机程序时实现如上述第三方面任一项所述的方法。
第七方面,本申请实施例提供一种计算机可读存储介质,所述计算机可读存储介质存储有计算机程序,所述计算机程序被处理器执行时实现如上述第二方面或上述第四方面任一项所述的方法。
第八方面,本申请实施例提供一种计算机可读存储介质,所述计算机可读存储介质存储有计算机程序,所述计算机程序被处理器执行时实现如上述第三方面任一项所述的方法。
第九方面,本申请实施例提供一种计算机程序产品,当计算机程序产品在协调器节点上运行时,使得协调器节点执行上述第二方面或第四方面中任一项所述的方法。
第十方面,本申请实施例提供一种计算机程序产品,当计算机程序产品在可穿戴设备上运行时,使得可穿戴设备执行上述第三方面中任一项所述的方法。
有益效果
本申请实施例通过协调器和可穿戴设备各自集成的加速度采集装置,同步采集步态加速度信号,相应地提取步态加速度信号中峰值和谷值的位置信息作为步态共信息,使用步态共信息进行无线体域网的密钥分配,安全性和一致性较高,计算简单,适用于资源受限的可穿戴设备。
附图说明
为了更清楚地说明本申请实施例中的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本申请的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动性的前提下,还可以根据这些附图获得其他的附图。
图1为本申请实施例提供的一种无线体域网的系统架构示意框图;
图2为本申请实施例提供的有符号窗口编码示意图;
图3为本申请实施例提供的零相位滤波流程示意图;
图4为本申请实施例提供的基于噪声信号的编码示意图;
图5为本申请实施例提供的一种无线体域网的密钥分配方法的流程示意框图;
图6为本申请实施例提供的根据噪声信号生成待分配密钥的流程示意框图;
图7为本申请实施例提供的一种无线体域网的密钥分配方法的流程示意框图;
图8为本申请实施例提供的一种无线体域网的密钥生成方法的流程示意框图;
图9为本申请实施例提供的协调器节点和可穿戴设备间的交互示意图;
图10为本申请实施例提供的一种无线体域网的密钥分配装置的结构示意框图;
图11为本申请实施例提供的一种无线体域网的密钥分配装置的结构示意框图;
图12为本申请实施例提供的一种无线体域网的密钥生成装置的结构示意框图;
图13为本申请实施例提供的协调器节点的结构示意图;
图14为本申请实施例提供的可穿戴设备的结构示意图。
本发明的实施方式
以下描述中,为了说明而不是为了限定,提出了诸如特定系统结构、技术之类的具体细节,以便透彻理解本申请实施例。
无线体域网(Wireless Body Area Network,WBAN)是一种以人体为中心,由与人体相关的各种网络元素组成的通信网络。这些网络元素可以是部署于身体各个部位的传感器,和/或穿戴在人体各个部位的可穿戴设备。可穿戴设备是指可以直接穿在身上或是整合到用户的衣服或配件的一种便携式设备。例如,智能手表、智能眼镜、智能手环或者其它可穿戴的体征监测设备。
请参见图1,图1为本申请实施例提供的一种无线体域网的系统架构示意框图。该无线体域网包括协调器节点11以及与协调器节点通信连接的至少一个可穿戴设备12,协调器节点11和可穿戴设备上12均集成有加速度采集装置。该加速度采集装置可以为但不限于三轴加速度传感器,协调器节点和可穿戴设备通过该加速度采集装置可以采集用户的步态加速度信号。
其中,协调器节点用于发送数据采集同步消息至可穿戴设备;采集第一步态加速度信号;提取第一步态加速度信号中的第一步态共信息;根据待分配密钥和第一步态共信息,生成密钥加密信息;发送密钥加密信息至可穿戴设备。第一步态共信息为第一步态加速度信号的峰值和谷值的位置信息。
可穿戴设备用于接收数据采集同步消息,根据数据采集同步消息,同步采集第二步态加速度信号;提取第二步态加速度信号中的第二步态共信息;接收密钥加密信息;根据第二步态共信息对密钥加密信息进行解密,得到待分配密钥。第二步态共信息为第二步态加速度信号的峰值和谷值的位置信息。
需要说明的是,上述协调器节点也可以称为可穿戴网关,该协调器节点在无线体域网络中可以起到网关的作用。协调器节点与至少一个可穿戴设备无线通信连接,无线通信的方式可以是任意的。
在密钥分配过程中,协调器节点发送广播数据采集同步消息至各个可穿戴设备,可穿戴设备接收到数据采集同步消息后,根据该数据采集同步消息完成步态加速度信号的同步采集。步态加速度信号的同步采集是指协调器节点和可穿戴设备通过自身的加速度采集装置,采集同一时刻的步态加速度信息。即上述第一步态加速度信号和第二步态加速度信号是同步采集的,是同一时刻的步态加速度信息,第一和第二仅仅是区分哪个设备采集的步态加速度信号。
协调器节点和可穿戴设备同步采集步态加速度信号之后,可以进行相应的密钥分配流程。
协调器节点采集第一步态加速度信号之后,可以根据第一步态加速度信号进行步态共信息提取,再根据提取的第一步态共信息对待分配密钥进行加密,将加密得到的密钥加密信息发送至各个可穿戴设备。
可穿戴设备采集第二步态加速度信号之后,提取第二步态加速度信号中的第二步态共信息;当可穿戴设备接收到协调器节点发送的密钥加密信息之后,再使用第二步态共信息进行解密,得到待分配密钥。这样,即可将协调器节点生成的待分配密钥共享至无线体域网的各个可穿戴设备,实现无线体域网的密钥分配。在密钥分配之后,协调器节点和各个可穿戴设备之间可以使用密钥进行数据加密传输。
需要说明的是,上述步态共信息是步态加速度信号的峰值和谷值的位置信息。具体地,在一个步态加速度信号曲线上,根据峰值的位置和谷值的时序位置进行相应编码,得到上述位置信息。例如,通过滑动窗口提取步态共信息时,使用滑动窗口在步态加速度信号曲线上滑动,当第1个滑动窗口内出现峰值时,则编码为1,当2个滑动窗口出现谷值时,则编码为-1,相应地,当第3个滑动窗口没有出现峰值和谷值时,则不编码,依此提取出步态加速度信号曲线上峰值和谷值的位置信息。
在一些实施例中,协调器节点具体用于:对第一步态加速度信号进行低通滤波;对低通滤波后的第一步态加速度信号进行降维操作,得到降维后的第一步态加速度信号;分别 提取时域和频域下降维后的第一步态加速度信号的峰值和谷值的第一位置信息。
其中,对第一步态加速度信号进行的滤波操作可以具体为但不限于巴特沃斯低通滤波。降维操作可以为但不限于主成分分析算法(principal components analysis,PCA),并基于降维后的第一步态加速度信号进行后续分析。
例如,
Figure PCTCN2019106987-appb-000001
pca_signal=E(:,1)*r_signal
其中,r_signal为上述第一步态加速度信号,x,y,z分别表示三轴加速度的x轴、y轴和z轴,pca_signal为使用PCA降维后的第一主成成分。当然,降维算法还可以为其它算法,在此不作限定。
在对第一步态加速度信号进行降维之后,可以提取时域下的第一步态加速度信号的峰值和谷值的位置信息,以及频域下的第一步态加速度信号的峰值和谷值的位置信息。位置信息的提取方式可以是任意的。在一些实施例中,可以使用有符号滑动编码算法进行提取。
进一步地,协调器节点具体用于:基于有符号滑动窗口编码算法,提取降维后的第一步态加速度信号和降维后的第一步态加速度信号的快速傅里叶变换结果的峰值和谷值的第一位置信息;
其中,有符号滑动窗口编码算法(Signed sliding window coding,SSWC)的过程具体包括:
有符号滑动窗口在降维后的第一步态加速度信号上滑动,当第i个窗口出现峰值时,共信息池增加i;当第i个窗口出现谷值时,共信息池增加-i;当第i个窗口没有出现峰值和/或谷值时,窗口继续滑动,i为整数。例如,当第1个窗口出现峰值,则共信息池增加1,当第5个窗口出现谷值,则共信息池增加-5。
或者,有符号滑动窗口在降维后的第一步态加速度信号上滑动,当第i个窗口出现峰值时,共信息池增加-i;当第i个窗口出现谷值时,共信息池增加i;当第i个窗口没有出现峰值和/或谷值时,窗口继续滑动,i为整数。例如,当第1个窗口出现峰值,则共信息池增加-1,当第5个窗口出现谷值,则共信息池增加5。
具体地,分别使用有符号滑动窗口编码算法,提取降维后的第一步态加速度信号的峰值和谷值的位置信息,以及降维后的第一步态加速度信号的快速傅里叶变换结果的峰值和谷值的位置信息,以得到上述第一位置信息。
频域的窗口编码接着时域窗口继续编码,在具体应用中,时域和频域的滑动窗口的大小分别为W t和W f,W t和W f的值由步态加速度信号的采样频率决定。参见图2示出的有符号窗口编码示意图,W t设为20采样点,W f设为1Hz,且对于时域下的步态加速度信号,根据峰值和谷值的位置相应地编码为±1、±2、±3、…、±24、±25,时域的步态加速度信号编码完成后,接着对频域下的步态加速度信号曲线进行编码,继续编码为±26、±27、±28、…、±40、±41,对时域和频域下的步态加速度信号编码完成后,即可得到相应的编码信息。
可以看出,通过有符号滑动窗口算法可以进一步提高步态共信息的提取便利性,减少计算量。此外,通过不同的符号数值表示峰值和谷值,可以提高编码率。
可穿戴设备的步态共信息提取过程与协调器节点的步态共信息提取过程类似。在一些实施例中,上述可穿戴设备具体用于:对第二步态加速度信号进行低通滤波;对低通滤波后的第二步态加速度信号进行降维操作,得到降维后的第二步态加速度信号;分别提取时域和频域下降维后的第二步态加速度信号的峰值和谷值的第二位置信息。
其中,上述降维操作可以为但不限于PCA降维算法。降维之后,可以分别提取时域下的第二步态加速度信号的峰值和谷值的位置信息,以及频域下的第二步态加速度信号的峰值和谷值的位置信息。位置信息可以通过有符号滑动窗口编码算法进行提取。
进一步地,上述可穿戴设备具体用于:
基于有符号滑动窗口编码算法,提取降维后的第二步态加速度信号和降维后的第二步态加速度信号的快速傅里叶变换结果的峰值和谷值的第二位置信息;
其中,有符号滑动窗口编码算法的过程具体包括:
有符号滑动窗口在降维后的第二步态加速度信号上滑动,当第i个窗口出现峰值时,共信息池增加i;当第i个窗口出现谷值时,共信息池增加-i;当第i个窗口没有出现峰值和/或谷值时,窗口继续滑动,i为整数。
或者,有符号滑动窗口在降维后的第一步态加速度信号上滑动,当第i个窗口出现峰值时,共信息池增加-i;当第i个窗口出现谷值时,共信息池增加i;当第i个窗口没有出现峰值和/或谷值时,窗口继续滑动,i为整数。
需要说明的是,可穿戴设备中的有符号滑动窗口编码算法与协调器节点中的有符号滑动窗口编码算法相同,相关介绍请参见上文相应内容,在此不再赘述。
值得指出的是,有符号滑动窗口编码算法可以使得步态共信息的提取过程更加简单便利,计算量较少,适用于计算资源有限的可穿戴设备。
协调器节点从第一步态加速度信号提取出第一步态共信息之后,可以使用第一步态共 信息对待分配密钥进行加密,得到加密后的密钥加密信息。具体应用中,可以基于模糊保险箱算法(Fuzzy Vault),使用第一步态共信息对待分配密钥进行加密,构建出模糊保险箱。
在一些实施例中,上述协调器节点具体用于:将待分配密钥分割成N段,每段待分配密钥为N阶多项式的一个系数;根据第一步态共信息和N阶多项式,构建模糊保险箱,模糊保险箱为密钥加密信息。
具体地,M位待分配密钥为key_M,将M位待分配密钥分割成N段,即key_M=C 0//C 1//C 2//...//C N,每段均为N阶多项式的一个系数,N阶多项式具体为f(x)=C 0+C 1x+C 2x 2+...+C Nx N
协调器节点提取的第一步态共信息为(g 1,g 2,...,g k),k大于N,将第一步态共信息代入上述f(x),得出集合p={(g 1,f(g 1),(g 2,f(g 2),...,(g k,f(g k)},再在集合P中加入杂点集合C,公共构成Vault集合V。构建完成后,协调器节点在将vault集合V发送至可穿戴设备。
当然,根据第一步态共信息和待分配密钥,得到密钥加密信息的方式可以不限于Fuzzy Vault。
可穿戴设备在提取出第二步态共信息之后,可以一直等待接收协调器节点发送的密钥加密信息。当可穿戴设备接收到密钥加密信息之后,可以使用第二步态共信息对密钥加密信息进行解密,得到待分配密钥。
具体应用中,当密钥加密信息为模糊保险箱时,上述可穿戴设备具体用于:根据第二步态共信息对模糊保险箱进行解锁,得到待分配密钥。
可穿戴设备在接收到vault集合V之后,根据第二步态共信息从集合V中找出集合P,并根据集合P求解上述多项式f(x),以得到多项式系数C 0,C 1,C 2,...,C N,然后在将多项式系数进行拼接,以得到上述M位的待分配密钥。
这样,通过步态加速度信号中的步态共信息,协调器节点将待分配密钥共享至无线体域网中的各个可穿戴设备。
值得指出的是,上述待分配密钥的生成方式可以是任意的。例如,可以使用步态加速度信号生成待分配密钥。为了提高待分配密钥的随机性和信息熵,可以通过步态加速度信号上叠加的噪声信号生成待分配密钥。在一些实施例中,上述协调器节点具体用于:根据第一步态加速度信号中的噪声信号生成待分配密钥。
协调器节点在采集到第一步态加速度信号之后,可以先提取出第一步态加速度信号中 的噪声信号,再根据噪声信号生成上述待分配密钥。即上述协调器节点可以具体用于:提取第一步态加速度信号中的噪声信号;对噪声信号进行编码,得到密钥;对密钥进行密钥增强操作,得到待分配密钥。
根据步态加速度信号上叠加的噪声信号生成待分配密钥可以包括噪声提取、噪声编码和密钥增强等步骤。
对于噪声提取步骤,可以先对第一步态加速度信号进行滤波,然后再将滤波后的第一步态加速度信号和滤波前的第一步态加速度信号相减,得到噪声信息和。即上述协调器节点具体用于:对第一步态加速度信号进行零相位滤波,得到滤波后的第一步态加速度信号;将第一步态加速度信号减去滤波后的第一步态加速度信号,得到噪声信号。
更具体地,上述零相位滤波的过程具体包括:将第一步态加速度信号输入至低通巴特沃斯滤波器,得到低通巴特沃斯滤波器输出的第一次滤波后的第一步态加速度信号;对第一次滤波后的第一步态加速度信号进行时间反转操作,得到第一次反转后的第一步态加速度信号;将第一次反转后的第一步态加速度信号输入至低通巴特沃斯滤波器,得到低通巴特沃斯滤波器输出的第二次滤波后的第一步态加速度信号;对第二次滤波后的第一步态加速度信号进行时间反转操作,得到第二次反转后的第一步态加速度信号,第二次反转后的第一步态加速度信号为滤波后的第一步态加速度信号。
为了更好地介绍本申请实施例提供的零相位滤波过程,下面将结合图3示出的零相位滤波流程示意图进行介绍。
如图3所示,将原始的第一步态加速度信号r_sig=x 1,x 2,x 3,...,x N-1,x N输入至低通巴特沃斯滤波器,得到第一次滤波后的第一步态加速度信号f_sig=x′ 1,x′ 2,x′ 3,...,x′ N-1,x′ N;然后将f_sig进行时间反转操作,得到第一次反转后的第一步态加速度信号rev_f_sig=x′ N,x′ N-1,x′ N-2,...,x′ 2,x′ 1;再将rev_f_sig输入至低通巴特沃斯滤波器,进行第二次滤波,得到第二次滤波后的第一步态加速度信号ff_sig=x″ N,x″ N-1,x″ N-2,...,x″ 2,x″ 1;最后将ff_sig进行第二次时间反转,得到第二次反转后的第一步态加速度信号rev_ff_sig=x″ 1,x″ 2,x″ 3,...,x″ N-1,x″ N。rev_ff_sig即为零相位滤波后的第一步态加速度信号。
接着,再将原始的第一步态加速度信号减去零相位滤波后的第一步态加速度信号,得到噪声信号。即n_sig=r_sig-rev_ff_sig,n_sig为第一步态加速度信号中的噪声信号。
提取出第一步态加速度信号中的噪声信号之后,可以对噪声信号进行编码。一般情况 下,协调器节点上的加速度采集装置为三轴加速度传感器,通过三轴加速度传感器采集的x轴、y轴和z轴的加速度信号,此时,噪声信号包括x轴的第一噪声信号、y轴的第二噪声信号以及z轴的第三噪声信号,上述协调器节点具体用于:依据第一噪声信号中各位的数值,将第一二进制随机序列的对应位设为相应数值,得到第一密钥;依据第二噪声信号中各位的数值,将第二二进制随机序列的对应位设为相应数值,得到第二密钥;依据第三噪声信号中各位的数值,将第三二进制随机序列的对应位设为相应数值,得到第三密钥;
其中,若噪声信号中的第k位大于或等于0时,将二进制随机序列的第k位设为第一数值;若噪声信号中的第k位小于0时,将二进制随机序列的第k位设为第二数值,k为整数。
具体地,上述第一数值可以为1,相应地,第二数值为0。当然,上述第一数值也可以为0,相应地,第二数值为1。
例如,第一噪声信号中的第1位大于或等于0,则将第一二进制随机序列的第1位设为1,第一噪声信号中的第2位小于0,则将第一二进制随机序列的第2位设为0,依次类推,根据第一噪声信号中各位的数值大小,将第一二进制随机序列的相应位设置为相应数值。
参见图4示出的基于噪声信号的编码示意图,其包括三幅图像,从上往下分别为x轴、y轴和z轴对应的步态加速度信号曲线和零相位滤波后的步态加速度信号曲线。依据原始步态加速度信号和滤波后的步态加速度信号,得到二进制随机序列key_x、key_y和key_z,其中,key_x=0000011100…110000,key_y=0111111001…011111,key_z=0000110001…111000。
在对噪声信号进行编码后,再对得到密钥进行密钥增强操作。在一些实施例中,密钥增强的过程可以具体包括:将第一密钥、第二密钥以及第三密钥进行异或操作,得到M位待分配密钥。即
Figure PCTCN2019106987-appb-000002
在另一些实施例中,密钥增强的过程还包括:将第一密钥、第二密钥以及第三密钥进行异或操作,得到异或后的密钥;对异或后的密钥进行下采样,得到待分配密钥。
值得指出的是,对密钥进行异或操作可以进一步提高所生成的待分配密钥的随机性和信息熵。进一步地,在异或操作之后,还进行下采样操作,可以进一步提高待分配密钥的随机性和信息熵。
在介绍完无线体域网的协调器节点和可穿戴设备之后,下面将分别介绍协调器节点一 侧的工作流程和可穿戴设备一侧的工作流程。
首先介绍协调器节点一侧的工作流程。请参见图5,为本申请实施例提供的一种无线体域网的密钥分配方法的流程示意框图,该方法可以应用无线体域网的协调器节点,协调器节点集成有加速度采集装置,该协调器节点与至少一个可穿戴设备通信连接。上述方法可以包括以下步骤:
步骤S501、发送数据采集同步消息至可穿戴设备,数据采集同步信息用于指示可穿戴设备同步采集第二步态加速度信号。
具体地,协调器节点广播上述数据采集同步消息,使得无线体域网中的各个可穿戴设备根据该数据采集同步信息,在协调器节点采集第一步态加速度信号时,通过各自的加速度传感器同步采集第二步态加速度信号。
步骤S502、采集第一步态加速度信号。
步骤S503、提取第一步态加速度信号中的第一步态共信息。
其中,第一步态共信息的提取过程具体包括:对第一步态加速度信号进行低通滤波;对低通滤波后的第一步态加速度信号进行降维操作,得到降维后的第一步态加速度信号;分别提取时域和频域下降维后的第一步态加速度信号的峰值和谷值的第一位置信息。
更具体地,分别提取时域和频域下降维后的第一步态加速度信号的峰值和谷值的第一位置信息的过程可以包括:
基于有符号滑动窗口编码算法,提取降维后的第一步态加速度信号和降维后的第一步态加速度信号的快速傅里叶变换结果的峰值和谷值的第一位置信息;
其中,有符号滑动窗口编码算法的过程具体包括:
有符号滑动窗口在降维后的第一步态加速度信号上滑动,当第i个窗口出现峰值时,共信息池增加i;当第i个窗口出现谷值时,共信息池增加-i;当第i个窗口没有出现峰值和/或谷值时,窗口继续滑动,i为整数。
需要说明的是,第一步态共信息的提取过程的相关介绍请参见上文相应内容,在此不再赘述。
步骤S504、根据待分配密钥和第一步态共信息,生成密钥加密信息。
需要说明的是,密钥加密信息的生成方式可以为但不限于Fuzzy Vault。在一些实施例中,当密钥加密信息为模糊保险箱时,具体过程包括:将待分配密钥分割成N段,每段待分配密钥为N阶多项式的一个系数;根据第一步态共信息和N阶多项式,构建模糊保险箱,模糊保险箱为密钥加密信息。相关介绍请参见上文相应内容,在此不再赘述。
步骤S505、发送密钥加密信息至可穿戴设备,以指示可穿戴设备根据从第二步态加速 度信号中提取的第二步态共信息,对密钥加密信息进行解密,得到待分配密钥;其中,第一步态共信息为第一步态加速度信号的峰值和谷值的位置信息;第二步态共信息为第二步态加速度信号的峰值和谷值的位置信息。
具体地,协调器节点发送密钥加密信息至无线体域网内的各个可穿戴设备之后,可穿戴设备可以根据自身提取的第二步态共信息进行界面,以得到待分配密钥。
值得指出的是,待分配密钥的生成方式可以是任意的。但为了提高密钥的随机性和信息熵,可以基于步态加速度信号上叠加的噪声信号生成密钥。
参见图6,为根据噪声信号生成待分配密钥的流程示意框图,根据第一步态加速度信号上叠加的噪声信号生成待分配密钥的过程具体包括:
步骤S601、提取第一步态加速度信号中的噪声信号。
具体地,噪声信号的提取过程具体包括:对第一步态加速度信号进行零相位滤波;再用第一步态加速度信号减去滤波后的第一步态加速度信号,以得到第一步态加速度信号上叠加的噪声信号。其中,零相位滤波过程可以参见上文图3对应的相关介绍,在此不再赘述。
步骤S602、对噪声信号进行编码,得到密钥。
需要说明的是,噪声编码过程可以参见上文相应内容,在此不再赘述。
步骤S603、对密钥进行密钥增强操作,得到待分配密钥。
具体地,可以将第一密钥、第二密钥以及第三密钥进行异或操作,得到待分配密钥。也可以将第一密钥、第二密钥以及第三密钥进行异或操作,得到异或后的密钥;然后在对异或后的密钥进行下采样,得到待分配密钥。
在一些实施例中,待分配密钥的生成过程具体为:根据第一步态加速度信号中的噪声信号生成待分配密钥。
进一步地,上述根据第一步态加速度信号中的噪声信号生成待分配密钥的过程可以具体包括:提取第一步态加速度信号中的噪声信号;对噪声信号进行编码,得到密钥;对密钥进行密钥增强操作,得到待分配密钥。
具体地,上述提取第一步态加速度信号中的噪声信号的过程可以包括:对第一步态加速度信号进行零相位滤波,得到滤波后的第一步态加速度信号;将第一步态加速度信号减去滤波后的第一步态加速度信号,得到噪声信号。
零相位滤波过程具体包括:将第一步态加速度信号输入至低通巴特沃斯滤波器,得到低通巴特沃斯滤波器输出的第一次滤波后的第一步态加速度信号;
对第一次滤波后的第一步态加速度信号进行时间反转操作,得到第一次反转后的第一 步态加速度信号;
将第一次反转后的第一步态加速度信号输入至低通巴特沃斯滤波器,得到低通巴特沃斯滤波器输出的第二次滤波后的第一步态加速度信号;
对第二次滤波后的第一步态加速度信号进行时间反转操作,得到第二次反转后的第一步态加速度信号,第二次反转后的第一步态加速度信号为滤波后的第一步态加速度信号。
在一些实施例中,加速度采集装置为三轴加速度传感器,噪声信号包括x轴的第一噪声信号、y轴的第二噪声信号以及z轴的第三噪声信号;
上述对噪声信号进行编码,得到密钥的具体过程可以包括:
依据第一噪声信号中各位的数值,将第一二进制随机序列的对应位设为相应数值,得到第一密钥;
依据第二噪声信号中各位的数值,将第二二进制随机序列的对应位设为相应数值,得到第二密钥;
依据第三噪声信号中各位的数值,将第三二进制随机序列的对应位设为相应数值,得到第三密钥;
其中,若噪声信号中的第k位大于或等于0时,将二进制随机序列的第k位设为第一数值;若噪声信号中的第k位小于0时,将二进制随机序列的第k位设为第二数值,k为整数。
进一步地,上述对密钥进行密钥增强操作,得到待分配密钥的过程可以包括:
将第一密钥、第二密钥以及第三密钥进行异或操作,得到待分配密钥;
或者,
将第一密钥、第二密钥以及第三密钥进行异或操作,得到异或后的密钥;
对异或后的密钥进行下采样,得到待分配密钥。
在一些实施例中,上述提取第一步态加速度信号中的第一步态共信息的过程可以包括:
对第一步态加速度信号进行低通滤波;
对低通滤波后的第一步态加速度信号进行降维操作,得到降维后的第一步态加速度信号;
分别提取时域和频域下降维后的第一步态加速度信号的峰值和谷值的第一位置信息。
在一些实施例中,上述分别提取时域和频域下降维后的第一步态加速度信号的峰值和谷值的第一位置信息的过程具体包括:
基于有符号滑动窗口编码算法,提取降维后的第一步态加速度信号和降维后的第一步态加速度信号的快速傅里叶变换结果的峰值和谷值的第一位置信息;
其中,有符号滑动窗口编码算法的过程具体包括:
有符号滑动窗口在降维后的第一步态加速度信号上滑动,当第i个窗口出现峰值时,共信息池增加i;当第i个窗口出现谷值时,共信息池增加-i;当第i个窗口没有出现峰值和/或谷值时,窗口继续滑动,i为整数。
在一些实施例中,上述根据待分配密钥和第一步态共信息,生成密钥加密信息的过程具体包括:
将待分配密钥分割成N段,每段待分配密钥为N阶多项式的一个系数;
根据第一步态共信息和N阶多项式,构建模糊保险箱,模糊保险箱为密钥加密信息。
需要说明的是,上述协调器节点的工作流程的相关介绍请参见其他实施例,在此不再赘述。
在介绍完协调器节点一侧的工作流程之后,接着介绍可穿戴设备一侧的工作流程。
参见图7,为本申请实施例提供的一种无线体域网的密钥分配方法的流程示意框图,该方法可以应用于无线体域网的可穿戴设备,可穿戴设备集成有加速度采集装置,可穿戴设备与协调器节点通信连接。上述方法可以包括以下步骤:
步骤S701、接收协调器节点发送的数据采集同步消息。
步骤S702、根据数据采集同步消息,同步采集第二步态加速度信号。
步骤S703、提取第二步态加速度信号中的第二步态共信息。
需要说明的是,第二步态共信息的提取过程与第一步态共信息的提取过程类似,此外,关于步态共信息的提取过程还可以参见上文相关内容。在此不再赘述。
步骤S704、接收协调器节点发送的密钥加密信息,密钥加密信息为协调器节点根据从采集的第一步态加速度信号中提取的第一步态共信息和待分配密钥生成的信息。
步骤S705、根据第二步态共信息对密钥加密信息进行解密,得到待分配密钥;其中,第一步态共信息为第一步态加速度信号的峰值和谷值的位置信息;第二步态共信息为第二步态加速度信号的峰值和谷值的位置信息。
在一些实施例中,上述提取第二步态加速度信号中的第二步态共信息的过程可以包括:
对第二步态加速度信号进行低通滤波;
对低通滤波后的第二步态加速度信号进行降维操作,得到降维后的第二步态加速度信号;
分别提取时域和频域下降维后的第二步态加速度信号的峰值和谷值的第二位置信息。
进一步地,上述分别提取时域和频域下降维后的第二步态加速度信号的峰值和谷值的第二位置信息的过程可以包括:
基于有符号滑动窗口编码算法,提取降维后的第二步态加速度信号和降维后的第二步态加速度信号的快速傅里叶变换结果的峰值和谷值的第二位置信息;
其中,有符号滑动窗口编码算法的过程具体包括:
有符号滑动窗口在降维后的第二步态加速度信号上滑动,当第i个窗口出现峰值时,共信息池增加i;当第i个窗口出现谷值时,共信息池增加-i;当第i个窗口没有出现峰值和/或谷值时,窗口继续滑动,i为整数。
在一些实施例中,密钥加密信息为模糊保险箱,上述根据第二步态共信息对密钥加密信息进行解密,得到待分配密钥的具体过程可以包括:
根据第二步态共信息对模糊保险箱进行解锁,得到待分配密钥。
需要说明的是,上述可穿戴设备的工作流程的相关介绍请参见其他实施例,在此不再赘述。
在介绍完协调器节点一侧和可穿戴设备一侧的工作流程之后,下面将单独对协调器节点一次的密钥生成过程进行介绍。
参见图8示出的一种无线体域网的密钥生成方法的流程示意框图,该密钥生成方法应用于无线体域网的协调器节点,协调器节点集成有加速度采集装置,上述方法可以包括以下步骤:
步骤S801、采集第一步态加速度信号。
步骤S802、提取第一步态加速度信号中的噪声信号。
步骤S803、根据噪声信号生成待分配密钥。
具体地,在采集到第一步态加速度信号之后,可以先对第一步态加速度信号进行零相位滤波,再用第一步态加速度信号减去滤波后的第一步态加速度信号,以提取出上述噪声信号。然后,再对噪声信号进行编码,编码后再进行密钥增强操作,生成上述待分配密钥。
通过第一步态加速度信号上叠加的噪声信号生成上述待分配密钥,可以提高密钥的随机性和信息熵。
在一些实施例中,上述提取第一步态加速度信号中的噪声信号的过程可以包括:对第一步态加速度信号进行零相位滤波,得到滤波后的第一步态加速度信号;将第一步态加速度信号减去滤波后的第一步态加速度信号,得到噪声信号。进一步地,上述对第一步态加速度信号进行零相位滤波,得到滤波后的第一步态加速度信号的过程可以包括:将第一步态加速度信号输入至低通巴特沃斯滤波器,得到低通巴特沃斯滤波器输出的第一次滤波后的第一步态加速度信号;对第一次滤波后的第一步态加速度信号进行时间反转操作,得到第一次反转后的第一步态加速度信号;将第一次反转后的第一步态加速度信号输入至低通 巴特沃斯滤波器,得到低通巴特沃斯滤波器输出的第二次滤波后的第一步态加速度信号;对第二次滤波后的第一步态加速度信号进行时间反转操作,得到第二次反转后的第一步态加速度信号,第二次反转后的第一步态加速度信号为滤波后的第一步态加速度信号。
在一些实施例中,上述根据噪声信号生成待分配密钥的过程可以包括:对噪声信号进行编码,得到密钥;对密钥进行密钥增强操作,得到待分配密钥。
在一些实施例中,加速度采集装置为三轴加速度传感器,噪声信号包括x轴的第一噪声信号、y轴的第二噪声信号以及z轴的第三噪声信号;
上述对噪声信号进行编码,得到密钥的过程可以包括:依据第一噪声信号中各位的数值,将第一二进制随机序列的对应位设为相应数值,得到第一密钥;依据第二噪声信号中各位的数值,将第二二进制随机序列的对应位设为相应数值,得到第二密钥;依据第三噪声信号中各位的数值,将第三二进制随机序列的对应位设为相应数值,得到第三密钥;
其中,若噪声信号中的第k位大于或等于0时,将二进制随机序列的第k位设为第一数值;若噪声信号中的第k位小于0时,将二进制随机序列的第k位设为第二数值,k为整数。
在一些实施例中,上述对密钥进行密钥增强操作,得到待分配密钥的过程可以包括:将第一密钥、第二密钥以及第三密钥进行异或操作,得到待分配密钥;或者,将第一密钥、第二密钥以及第三密钥进行异或操作,得到异或后的密钥;对异或后的密钥进行下采样,得到待分配密钥。
需要说明的是,关于根据第一步态加速度信号上叠加的噪声信号,生成待分配密钥的过程,具体介绍可以参见上文相应内容,在此不再赘述。
应理解,单独使用本申请实施例提供的通过噪声信号生成密钥的技术方案,也落入本申请实施例的保护范围。
下面将结合图9示出的协调器节点和可穿戴设备间的交互示意图,对协调器节点和可穿戴设备之间的交互过程进行介绍说明。该交互过程可以包括:
步骤S901、协调器节点发送数据采集同步消息至可穿戴设备。
步骤S902、协调器节点采集第一步态加速度信号。
步骤S903、可穿戴设备根据数据采集同步消息,同步采集第二步态加速度信号。
步骤S904、协调器节点提取第一步态加速度信号中的噪声信号。
步骤S905、协调器节点对噪声信号进行编码后,再进行密钥增强操作,生成待分配密钥。
其中,在其它一些实施例中,也可以通过第一步态加速度信号或者是其它方式生成待 分配密钥。但通过步态加速度信号中的噪声信号生成待分配密钥,可以提高密钥的随机性和信息熵。
步骤S906、协调器节点提取第一步态加速度信号中的第一步态共信息。
其中,该第一步态共信息是指第一步态加速度信号的峰值和谷值的位置信息。步态共信息的提取过程可以参见上文相应内容,在此不再赘述。
步骤S907、协调器节点根据步态共信息和待分配密钥,构建模糊保险箱。
可以理解的是,在其它一些实施例中,也可以使用其它方式对待分配密钥进行加密。
步骤S908、协调器节点发生模糊保险箱至可穿戴设备。
步骤S909、可穿戴设备提取第二步态加速度信号中的第二步态共信息。
其中,第二步态共信息是指第二步态加速度信号的峰值和谷值的位置信息。步态共信息的提取过程可以参见上文相应内容,在此不再赘述。
步骤S910、可穿戴设备在接收到模糊保险箱之后,根据第二步态共信息解锁模糊保险箱,得到待分配密钥。
应理解,上述实施例中各步骤的序号的大小并不意味着执行顺序的先后,各过程的执行顺序应以其功能和内在逻辑确定,而不应对本申请实施例的实施过程构成任何限定。
下面将对上述方法对应的装置进行介绍说明。请参见图10,为本申请实施例提供的一种无线体域网的密钥分配装置的结构示意框图,应用无线体域网的协调器节点,协调器节点集成有加速度采集装置,协调器节点与至少一个可穿戴设备通信连接;该装置可以包括:
同步消息发送模块101,用于发送数据采集同步消息至可穿戴设备,数据采集同步信息用于指示可穿戴设备同步采集第二步态加速度信号;
第一采集模块102,用于采集第一步态加速度信号;
第一提取模块103,用于提取第一步态加速度信号中的第一步态共信息;
加密信息生成模块104,用于根据待分配密钥和第一步态共信息,生成密钥加密信息;
加密信息发送模块105,用于发送密钥加密信息至可穿戴设备,以指示可穿戴设备根据从第二步态加速度信号中提取的第二步态共信息,对密钥加密信息进行解密,得到待分配密钥;
其中,第一步态共信息为第一步态加速度信号的峰值和谷值的位置信息;第二步态共信息为第二步态加速度信号的峰值和谷值的位置信息。
需要说明的是,上述无线体域网的密钥分配装置可以是协调器节点中的软件程序,上述无线体域网的密钥分配装置的各个模块为对应的软件程序模块。
在一些实施例中,上述装置还包括密钥生成模块,用于根据第一步态加速度信号中的 噪声信号生成待分配密钥。
进一步地,上述密钥生成模块具体用于:提取第一步态加速度信号中的噪声信号;对噪声信号进行编码,得到密钥;对密钥进行密钥增强操作,得到待分配密钥。
进一步地,上述密钥生成模块具体用于:对第一步态加速度信号进行零相位滤波,得到滤波后的第一步态加速度信号;将第一步态加速度信号减去滤波后的第一步态加速度信号,得到噪声信号。
进一步地,上述密钥生成模块具体用于:将第一步态加速度信号输入至低通巴特沃斯滤波器,得到低通巴特沃斯滤波器输出的第一次滤波后的第一步态加速度信号;
对第一次滤波后的第一步态加速度信号进行时间反转操作,得到第一次反转后的第一步态加速度信号;
将第一次反转后的第一步态加速度信号输入至低通巴特沃斯滤波器,得到低通巴特沃斯滤波器输出的第二次滤波后的第一步态加速度信号;
对第二次滤波后的第一步态加速度信号进行时间反转操作,得到第二次反转后的第一步态加速度信号,第二次反转后的第一步态加速度信号为滤波后的第一步态加速度信号。
在一些实施例中,加速度采集装置为三轴加速度传感器,噪声信号包括x轴的第一噪声信号、y轴的第二噪声信号以及z轴的第三噪声信号;
上述密钥生成模块具体用于:依据第一噪声信号中各位的数值,将第一二进制随机序列的对应位设为相应数值,得到第一密钥;依据第二噪声信号中各位的数值,将第二二进制随机序列的对应位设为相应数值,得到第二密钥;依据第三噪声信号中各位的数值,将第三二进制随机序列的对应位设为相应数值,得到第三密钥;
其中,若噪声信号中的第k位大于或等于0时,将二进制随机序列的第k位设为第一数值;若噪声信号中的第k位小于0时,将二进制随机序列的第k位设为第二数值,k为整数。
进一步地,上述密钥生成模块具体用于:将第一密钥、第二密钥以及第三密钥进行异或操作,得到待分配密钥;
或者,将第一密钥、第二密钥以及第三密钥进行异或操作,得到异或后的密钥;对异或后的密钥进行下采样,得到待分配密钥。
在一些实施例中,上述第一提取模块具体用于:对第一步态加速度信号进行低通滤波;对低通滤波后的第一步态加速度信号进行降维操作,得到降维后的第一步态加速度信号;分别提取时域和频域下降维后的第一步态加速度信号的峰值和谷值的第一位置信息。
在一些实施例中,上述第一提取模块具体用于:
基于有符号滑动窗口编码算法,提取降维后的第一步态加速度信号和降维后的第一步态加速度信号的快速傅里叶变换结果的峰值和谷值的第一位置信息;
其中,有符号滑动窗口编码算法的过程具体包括:
有符号滑动窗口在降维后的第一步态加速度信号上滑动,当第i个窗口出现峰值时,共信息池增加i;当第i个窗口出现谷值时,共信息池增加-i;当第i个窗口没有出现峰值和/或谷值时,窗口继续滑动,i为整数。
在一些实施例中,上述加密信息生成模块具体用于:
将待分配密钥分割成N段,每段待分配密钥为N阶多项式的一个系数;
根据第一步态共信息和N阶多项式,构建模糊保险箱,模糊保险箱为密钥加密信息。
需要说明的是,上述协调器节点的工作流程的相关介绍请参见其他实施例,在此不再赘述。
参见图11,为本申请实施例提供的一种无线体域网的密钥分配装置的结构示意框图,应用于无线体域网的可穿戴设备,可穿戴设备集成有加速度采集装置,可穿戴设备与协调器节点通信连接;该装置可以包括:
第一接收模块111,用于接收协调器节点发送的数据采集同步消息;
同步采集模块112,用于根据数据采集同步消息,同步采集第二步态加速度信号;
第二提取模块113,用于提取第二步态加速度信号中的第二步态共信息;
第二接收模块114,用于接收协调器节点发送的密钥加密信息,密钥加密信息为协调器节点根据从采集的第一步态加速度信号中提取的第一步态共信息和待分配密钥生成的信息;
解密模块115,用于根据第二步态共信息对密钥加密信息进行解密,得到待分配密钥;
其中,第一步态共信息为第一步态加速度信号的峰值和谷值的位置信息;第二步态共信息为第二步态加速度信号的峰值和谷值的位置信息。
需要说明的是,上述无线体域网的密钥分配装置可以是可穿戴设备中的软件程序,上述无线体域网的密钥分配装置的各个模块为对应的软件程序模块。
在一些实施例中,上述第二提取模块具体用于:对第二步态加速度信号进行低通滤波;对低通滤波后的第二步态加速度信号进行降维操作,得到降维后的第二步态加速度信号;分别提取时域和频域下降维后的第二步态加速度信号的峰值和谷值的第二位置信息。
进一步地,上述第二提取模块具体用于:
基于有符号滑动窗口编码算法,提取降维后的第二步态加速度信号和降维后的第二步态加速度信号的快速傅里叶变换结果的峰值和谷值的第二位置信息;
其中,有符号滑动窗口编码算法的过程具体包括:
有符号滑动窗口在降维后的第二步态加速度信号上滑动,当第i个窗口出现峰值时,共信息池增加i;当第i个窗口出现谷值时,共信息池增加-i;当第i个窗口没有出现峰值和/或谷值时,窗口继续滑动,i为整数。
在一些实施例中,密钥加密信息为模糊保险箱,上述解密模块具体用于:根据第二步态共信息对模糊保险箱进行解锁,得到待分配密钥。
需要说明的是,上述可穿戴设备的工作流程的相关介绍请参见其他实施例,在此不再赘述。
参见图12,为本申请实施例提供的一种无线体域网的密钥生成装置的结构示意框图,该装置应用于无线体域网的协调器节点,协调器节点集成有加速度采集装置,该装置可以包括:
第二采集模块121,用于采集第一步态加速度信号。
噪声提取模块122,用于提取第一步态加速度信号中的噪声信号。
密钥生成模块123,用于根据噪声信号生成待分配密钥。
需要说明的是,图10、图11和图12示出的装置与上文的方法一一对应,相关介绍请参见上文相应内容,在此不再赘述。
需要说明的是,上述装置之间的信息交互、执行过程等内容,由于与本申请方法实施例基于同一构思,其具体功能及带来的技术效果,具体可参见方法实施例部分,此处不再赘述。
需要说明的是,上述无线体域网的密钥生成装置可以是协调器节点中的软件程序,上述无线体域网的密钥生成装置的各个模块为对应的软件程序模块。
在一些实施例中,上述噪声提取模块具体用于:
对第一步态加速度信号进行零相位滤波,得到滤波后的第一步态加速度信号;将第一步态加速度信号减去滤波后的第一步态加速度信号,得到噪声信号。
进一步地,上述噪声提取模块具体用于:将第一步态加速度信号输入至低通巴特沃斯滤波器,得到低通巴特沃斯滤波器输出的第一次滤波后的第一步态加速度信号;对第一次滤波后的第一步态加速度信号进行时间反转操作,得到第一次反转后的第一步态加速度信号;将第一次反转后的第一步态加速度信号输入至低通巴特沃斯滤波器,得到低通巴特沃斯滤波器输出的第二次滤波后的第一步态加速度信号;对第二次滤波后的第一步态加速度信号进行时间反转操作,得到第二次反转后的第一步态加速度信号,第二次反转后的第一步态加速度信号为滤波后的第一步态加速度信号。
在一些实施例中,上述密钥生成模块具体用于:对噪声信号进行编码,得到密钥;对密钥进行密钥增强操作,得到待分配密钥。
在一些实施例中,加速度采集装置为三轴加速度传感器,噪声信号包括x轴的第一噪声信号、y轴的第二噪声信号以及z轴的第三噪声信号;
上述密钥生成模块具体用于:依据第一噪声信号中各位的数值,将第一二进制随机序列的对应位设为相应数值,得到第一密钥;依据第二噪声信号中各位的数值,将第二二进制随机序列的对应位设为相应数值,得到第二密钥;依据第三噪声信号中各位的数值,将第三二进制随机序列的对应位设为相应数值,得到第三密钥;
其中,若噪声信号中的第k位大于或等于0时,将二进制随机序列的第k位设为第一数值;若噪声信号中的第k位小于0时,将二进制随机序列的第k位设为第二数值,k为整数。
在一些实施例中,上述密钥生成模块具体用于:将第一密钥、第二密钥以及第三密钥进行异或操作,得到待分配密钥;或者,将第一密钥、第二密钥以及第三密钥进行异或操作,得到异或后的密钥;对异或后的密钥进行下采样,得到待分配密钥。
需要说明的是,关于根据第一步态加速度信号上叠加的噪声信号,生成待分配密钥的过程,具体介绍可以参见上文相应内容,在此不再赘述。
图13为本申请一实施例提供的协调器节点的结构示意图。如图13所示,该实施例的协调器节点13包括:至少一个处理器130、存储器131以及存储在所述存储器131中并可在所述至少一个处理器130上运行的计算机程序132,所述处理器130执行所述计算机程序132时实现上述任意各个无线体域网的密钥分配方法实施例或者无线体域网的密钥生成方法实施例中的步骤。
所述协调器节点13可以是可穿戴网关。该协调器节点可包括,但不仅限于,处理器130、存储器131、加速度采集装置133。本领域技术人员可以理解,图13仅仅是协调器节点13的举例,并不构成对协调器节点13的限定,可以包括比图示更多或更少的部件,或者组合某些部件,或者不同的部件,例如还可以包括输入输出设备、网络接入设备等。
所称处理器130可以是中央处理单元(Central Processing Unit,CPU),该处理器130还可以是其他通用处理器、数字信号处理器(Digital Signal Processor,DSP)、专用集成电路(Application Specific Integrated Circuit,ASIC)、现成可编程门阵列(Field-Programmable Gate Array,FPGA)或者其他可编程逻辑器件、分立门或者晶体管逻辑器件、分立硬件组件等。通用处理器可以是微处理器或者该处理器也可以是任何常规的处理器等。
所述存储器131在一些实施例中可以是所述协调器节点13的内部存储单元,例如协调器节点13的硬盘或内存。所述存储器131在另一些实施例中也可以是所述协调器节点13的外部存储设备,例如所述协调器节点13上配备的插接式硬盘,智能存储卡(Smart Media Card,SMC),安全数字(Secure Digital,SD)卡,闪存卡(Flash Card)等。进一步地,所述存储器131还可以既包括所述协调器节点13的内部存储单元也包括外部存储设备。所述存储器131用于存储操作系统、应用程序、引导装载程序(BootLoader)、数据以及其他程序等,例如所述计算机程序的程序代码等。所述存储器131还可以用于暂时地存储已经输出或者将要输出的数据。
图14为本申请一实施例提供的可穿戴设备的结构示意图。如图14所示,该实施例的可穿戴设备14包括:至少一个处理器140、存储器141以及存储在所述存储器141中并可在所述至少一个处理器140上运行的计算机程序142,所述处理器140执行所述计算机程序142时实现上述任意各个无线体域网的密钥分配方法实施例中的步骤。
所述可穿戴设备14可以是可穿戴手表、智能手环以及智能眼镜等。该可穿戴设备可包括,但不仅限于,处理器140、存储器141、加速度采集装置143。本领域技术人员可以理解,图14仅仅是可穿戴设备14的举例,并不构成对可穿戴设备14的限定,可以包括比图示更多或更少的部件,或者组合某些部件,或者不同的部件,例如还可以包括输入输出设备、网络接入设备等。
所称处理器140可以是中央处理单元(Central Processing Unit,CPU),该处理器140还可以是其他通用处理器、数字信号处理器(Digital Signal Processor,DSP)、专用集成电路(Application Specific Integrated Circuit,ASIC)、现成可编程门阵列(Field-Programmable Gate Array,FPGA)或者其他可编程逻辑器件、分立门或者晶体管逻辑器件、分立硬件组件等。通用处理器可以是微处理器或者该处理器也可以是任何常规的处理器等。
所述存储器141在一些实施例中可以是所述可穿戴设备14的内部存储单元,例如可穿戴设备14的硬盘或内存。所述存储器141在另一些实施例中也可以是所述可穿戴设备14的外部存储设备,例如所述可穿戴设备14上配备的插接式硬盘,智能存储卡(Smart Media Card,SMC),安全数字(Secure Digital,SD)卡,闪存卡(Flash Card)等。进一步地,所述存储器141还可以既包括所述可穿戴设备14的内部存储单元也包括外部存储设备。所述存储器141用于存储操作系统、应用程序、引导装载程序(BootLoader)、数据以及其他程序等,例如所述计算机程序的程序代码等。所述存储器141还可以用于暂时地存储已经输出或者将要输出的数据。
本申请实施例还提供一种计算机可读存储介质,所述计算机可读存储介质存储有计算机程序,所述计算机程序被处理器执行时实现可实现上述各个无线体域网的密钥分配方法实施例或者无线体域网的密钥生成方法实施例中的步骤。
本申请实施例提供了一种计算机程序产品,当计算机程序产品在协调器节点上运行时,使得协调器节点执行时实现可实现上述各个无线体域网的密钥分配方法实施例或无线体域网的密钥生成方法实施例中的步骤。或者,当计算机程序产品在可穿戴设备上运行时,使得可穿戴设备执行时实现可实现上述各个无线体域网的密钥分配方法实施例中的步骤。
所述集成的单元如果以软件功能单元的形式实现并作为独立的产品销售或使用时,可以存储在一个计算机可读取存储介质中。基于这样的理解,本申请实现上述实施例方法中的全部或部分流程,可以通过计算机程序来指令相关的硬件来完成,所述的计算机程序可存储于一计算机可读存储介质中,该计算机程序在被处理器执行时,可实现上述各个方法实施例的步骤。其中,所述计算机程序包括计算机程序代码,所述计算机程序代码可以为源代码形式、对象代码形式、可执行文件或某些中间形式等。所述计算机可读介质至少可以包括:能够将计算机程序代码携带到拍照装置/终端设备的任何实体或装置、记录介质、计算机存储器、只读存储器(ROM,Read-Only Memory)、随机存取存储器(RAM,Random Access Memory)、电载波信号、电信信号以及软件分发介质。例如U盘、移动硬盘、磁碟或者光盘等。在某些司法管辖区,根据立法和专利实践,计算机可读介质不可以是电载波信号和电信信号。
在上述实施例中,对各个实施例的描述都各有侧重,某个实施例中没有详述或记载的部分,可以参见其它实施例的相关描述。
本领域普通技术人员可以意识到,结合本文中所公开的实施例描述的各示例的单元及算法步骤,能够以电子硬件、或者计算机软件和电子硬件的结合来实现。这些功能究竟以硬件还是软件方式来执行,取决于技术方案的特定应用和设计约束条件。专业技术人员可以对每个特定的应用来使用不同方法来实现所描述的功能,但是这种实现不应认为超出本申请的范围。
在本申请所提供的实施例中,应该理解到,所揭露的装置/网络设备和方法,可以通过其它的方式实现。例如,以上所描述的装置/网络设备实施例仅仅是示意性的,例如,所述模块或单元的划分,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式,例如多个单元或组件可以结合或者可以集成到另一个系统,或一些特征可以忽略,或不执行。另一点,所显示或讨论的相互之间的耦合或直接耦合或通讯连接可以是通过一些接口,装置或单元的间接耦合或通讯连接,可以是电性,机械或其它的形式。
所述作为分离部件说明的单元可以是或者也可以不是物理上分开的,作为单元显示的部件可以是或者也可以不是物理单元,即可以位于一个地方,或者也可以分布到多个网络单元上。可以根据实际的需要选择其中的部分或者全部单元来实现本实施例方案的目的。
以上所述实施例仅用以说明本申请的技术方案,而非对其限制;尽管参照前述实施例对本申请进行了详细的说明,本领域的普通技术人员应当理解:其依然可以对前述各实施例所记载的技术方案进行修改,或者对其中部分技术特征进行等同替换;而这些修改或者替换,并不使相应技术方案的本质脱离本申请各实施例技术方案的精神和范围,均应包含在本申请的保护范围之内。

Claims (32)

  1. 一种无线体域网,所述无线体域网包括协调器节点以及与所述协调器节点通信连接的至少一个可穿戴设备,所述协调器节点和所述可穿戴设备上均集成有加速度采集装置,其特征在于:
    所述协调器节点用于发送数据采集同步消息至所述可穿戴设备;采集第一步态加速度信号;提取所述第一步态加速度信号中的第一步态共信息;根据待分配密钥和所述第一步态共信息,生成密钥加密信息;发送所述密钥加密信息至所述可穿戴设备;
    所述可穿戴设备用于接收所述数据采集同步消息,根据所述数据采集同步消息,同步采集第二步态加速度信号;提取所述第二步态加速度信号中的第二步态共信息;接收所述密钥加密信息;根据所述第二步态共信息对所述密钥加密信息进行解密,得到所述待分配密钥;
    其中,所述第一步态共信息为所述第一步态加速度信号的峰值和谷值的位置信息;所述第二步态共信息为所述第二步态加速度信号的峰值和谷值的位置信息。
  2. 根据权利要求1所述的无线体域网,其特征在于,所述协调器节点具体用于:
    根据所述第一步态加速度信号中的噪声信号生成所述待分配密钥。
  3. 根据权利要求2所述的无线体域网,其特征在于,所述协调器节点具体用于:
    提取所述第一步态加速度信号中的所述噪声信号;
    对所述噪声信号进行编码,得到密钥;
    对所述密钥进行密钥增强操作,得到所述待分配密钥。
  4. 根据权利要求3所述的无线体域网,其特征在于,所述协调器节点具体用于:
    对所述第一步态加速度信号进行零相位滤波,得到滤波后的第一步态加速度信号;
    将所述第一步态加速度信号减去所述滤波后的第一步态加速度信号,得到所述噪声信号。
  5. 根据权利要求4所述的无线体域网,其特征在于,所述协调器节点具体用于:
    将所述第一步态加速度信号输入至低通巴特沃斯滤波器,得到低通巴特沃斯滤波器输出的第一次滤波后的第一步态加速度信号;
    对所述第一次滤波后的第一步态加速度信号进行时间反转操作,得到第一次反转后的第一步态加速度信号;
    将所述第一次反转后的第一步态加速度信号输入至低通巴特沃斯滤波器,得到低通巴特沃斯滤波器输出的第二次滤波后的第一步态加速度信号;
    对所述第二次滤波后的第一步态加速度信号进行时间反转操作,得到第二次反转后的 第一步态加速度信号,所述第二次反转后的第一步态加速度信号为所述滤波后的第一步态加速度信号。
  6. 根据权利要求3所述的无线体域网,其特征在于,所述加速度采集装置为三轴加速度传感器,所述噪声信号包括x轴的第一噪声信号、y轴的第二噪声信号以及z轴的第三噪声信号;
    所述协调器节点具体用于:
    依据所述第一噪声信号中各位的数值,将第一二进制随机序列的对应位设为相应数值,得到第一密钥;
    依据所述第二噪声信号中各位的数值,将第二二进制随机序列的对应位设为相应数值,得到第二密钥;
    依据所述第三噪声信号中各位的数值,将第三二进制随机序列的对应位设为相应数值,得到第三密钥;
    其中,若噪声信号中的第k位大于或等于0时,将二进制随机序列的第k位设为第一数值;若噪声信号中的第k位小于0时,将二进制随机序列的第k位设为第二数值,k为整数。
  7. 根据权利要求6所述的无线体域网,其特征在于,所述协调器节点具体用于:
    将所述第一密钥、所述第二密钥以及所述第三密钥进行异或操作,得到所述待分配密钥;
    或者,
    将所述第一密钥、所述第二密钥以及所述第三密钥进行异或操作,得到异或后的密钥;
    对所述异或后的密钥进行下采样,得到所述待分配密钥。
  8. 根据权利要求1所述的无线体域网,其特征在于,所述协调器节点具体用于:
    对所述第一步态加速度信号进行低通滤波;
    对低通滤波后的第一步态加速度信号进行降维操作,得到降维后的第一步态加速度信号;
    分别提取时域和频域下所述降维后的第一步态加速度信号的峰值和谷值的第一位置信息。
  9. 根据权利要求8所述的无线体域网,其特征在于,所述协调器节点具体用于:
    基于有符号滑动窗口编码算法,提取所述降维后的第一步态加速度信号和所述降维后的第一步态加速度信号的快速傅里叶变换结果的峰值和谷值的第一位置信息;
    其中,所述有符号滑动窗口编码算法的过程具体包括:
    有符号滑动窗口在降维后的第一步态加速度信号上滑动,当第i个窗口出现峰值时, 共信息池增加i;当第i个窗口出现谷值时,共信息池增加-i;当第i个窗口没有出现峰值和/或谷值时,窗口继续滑动,i为整数。
  10. 根据权利要求1所述的无线体域网,其特征在于,所述可穿戴设备具体用于:
    对所述第二步态加速度信号进行低通滤波;
    对低通滤波后的第二步态加速度信号进行降维操作,得到降维后的第二步态加速度信号;
    分别提取时域和频域下所述降维后的第二步态加速度信号的峰值和谷值的第二位置信息。
  11. 根据权利要求10所述的无线体域网,其特征在于,所述可穿戴设备具体用于:
    基于有符号滑动窗口编码算法,提取所述降维后的第二步态加速度信号和所述降维后的第二步态加速度信号的快速傅里叶变换结果的峰值和谷值的第二位置信息;
    其中,所述有符号滑动窗口编码算法的过程具体包括:
    有符号滑动窗口在降维后的第二步态加速度信号上滑动,当第i个窗口出现峰值时,共信息池增加i;当第i个窗口出现谷值时,共信息池增加-i;当第i个窗口没有出现峰值和/或谷值时,窗口继续滑动,i为整数。
  12. 一种无线体域网的密钥分配方法,其特征在于,应用无线体域网的协调器节点,所述协调器节点集成有加速度采集装置,所述协调器节点与至少一个可穿戴设备通信连接;所述方法包括:
    发送数据采集同步消息至所述可穿戴设备,所述数据采集同步信息用于指示所述可穿戴设备同步采集第二步态加速度信号;
    采集第一步态加速度信号;
    提取所述第一步态加速度信号中的第一步态共信息;
    根据待分配密钥和所述第一步态共信息,生成密钥加密信息;
    发送所述密钥加密信息至所述可穿戴设备,以指示所述可穿戴设备根据从所述第二步态加速度信号中提取的第二步态共信息,对所述密钥加密信息进行解密,得到所述待分配密钥;
    其中,所述第一步态共信息为所述第一步态加速度信号的峰值和谷值的位置信息;所述第二步态共信息为所述第二步态加速度信号的峰值和谷值的位置信息。
  13. 根据权利要求12所述的无线体域网的密钥分配方法,其特征在于,所述待分配密钥的生成过程具体为:
    根据所述第一步态加速度信号中的噪声信号生成所述待分配密钥。
  14. 根据权利要求13所述的无线体域网的密钥分配方法,其特征在于,所述根据所 述第一步态加速度信号中的噪声信号生成所述待分配密钥,包括:
    提取所述第一步态加速度信号中的所述噪声信号;
    对所述噪声信号进行编码,得到密钥;
    对所述密钥进行密钥增强操作,得到所述待分配密钥。
  15. 根据权利要求14所述的无线体域网的密钥分配方法,其特征在于,所述提取所述第一步态加速度信号中的噪声信号,包括:
    对所述第一步态加速度信号进行零相位滤波,得到滤波后的第一步态加速度信号;
    将所述第一步态加速度信号减去所述滤波后的第一步态加速度信号,得到所述噪声信号。
  16. 根据权利要求15所述的无线体域网的密钥分配方法,其特征在于,所述对所述第一步态加速度信号进行零相位滤波,得到滤波后的第一步态加速度信号,包括:
    将所述第一步态加速度信号输入至低通巴特沃斯滤波器,得到低通巴特沃斯滤波器输出的第一次滤波后的第一步态加速度信号;
    对所述第一次滤波后的第一步态加速度信号进行时间反转操作,得到第一次反转后的第一步态加速度信号;
    将所述第一次反转后的第一步态加速度信号输入至低通巴特沃斯滤波器,得到低通巴特沃斯滤波器输出的第二次滤波后的第一步态加速度信号;
    对所述第二次滤波后的第一步态加速度信号进行时间反转操作,得到第二次反转后的第一步态加速度信号,所述第二次反转后的第一步态加速度信号为所述滤波后的第一步态加速度信号。
  17. 根据权利要求14所述的无线体域网的密钥分配方法,其特征在于,所述加速度采集装置为三轴加速度传感器,所述噪声信号包括x轴的第一噪声信号、y轴的第二噪声信号以及z轴的第三噪声信号;
    所述对所述噪声信号进行编码,得到密钥,包括:
    依据所述第一噪声信号中各位的数值,将第一二进制随机序列的对应位设为相应数值,得到第一密钥;
    依据所述第二噪声信号中各位的数值,将第二二进制随机序列的对应位设为相应数值,得到第二密钥;
    依据所述第三噪声信号中各位的数值,将第三二进制随机序列的对应位设为相应数值,得到第三密钥;
    其中,若噪声信号中的第k位大于或等于0时,将二进制随机序列的第k位设为第一数值;若噪声信号中的第k位小于0时,将二进制随机序列的第k位设为第二数值,k为 整数。
  18. 根据权利要求17所述的无线体域网的密钥分配方法,其特征在于,所述对所述密钥进行密钥增强操作,得到所述待分配密钥,包括:
    将所述第一密钥、所述第二密钥以及所述第三密钥进行异或操作,得到所述待分配密钥;
    或者,
    将所述第一密钥、所述第二密钥以及所述第三密钥进行异或操作,得到异或后的密钥;
    对所述异或后的密钥进行下采样,得到所述待分配密钥。
  19. 根据权利要求12所述的无线体域网的密钥分配方法,其特征在于,所述提取所述第一步态加速度信号中的第一步态共信息,包括:
    对所述第一步态加速度信号进行低通滤波;
    对低通滤波后的第一步态加速度信号进行降维操作,得到降维后的第一步态加速度信号;
    分别提取时域和频域下所述降维后的第一步态加速度信号的峰值和谷值的第一位置信息。
  20. 根据权利要求19所述的无线体域网的密钥分配方法,其特征在于,所述分别提取时域和频域下所述降维后的第一步态加速度信号的峰值和谷值的第一位置信息,包括:
    基于有符号滑动窗口编码算法,提取所述降维后的第一步态加速度信号和所述降维后的第一步态加速度信号的快速傅里叶变换结果的峰值和谷值的第一位置信息;
    其中,所述有符号滑动窗口编码算法的过程具体包括:
    有符号滑动窗口在降维后的第一步态加速度信号上滑动,当第i个窗口出现峰值时,共信息池增加i;当第i个窗口出现谷值时,共信息池增加-i;当第i个窗口没有出现峰值和/或谷值时,窗口继续滑动,i为整数。
  21. 一种无线体域网的密钥分配方法,其特征在于,应用于无线体域网的可穿戴设备,所述可穿戴设备集成有加速度采集装置,所述可穿戴设备与协调器节点通信连接;所述方法包括:
    接收所述协调器节点发送的数据采集同步消息;
    根据所述数据采集同步消息,同步采集第二步态加速度信号;
    提取所述第二步态加速度信号中的第二步态共信息;
    接收所述协调器节点发送的所述密钥加密信息,所述密钥加密信息为所述协调器节点根据从采集的第一步态加速度信号中提取的第一步态共信息和待分配密钥生成的信息;
    根据所述第二步态共信息对所述密钥加密信息进行解密,得到所述待分配密钥;
    其中,所述第一步态共信息为所述第一步态加速度信号的峰值和谷值的位置信息;所述第二步态共信息为所述第二步态加速度信号的峰值和谷值的位置信息。
  22. 根据权利要求21所述的无线体域网的密钥分配方法,其特征在于,所述提取所述第二步态加速度信号中的第二步态共信息,包括:
    对所述第二步态加速度信号进行低通滤波;
    对低通滤波后的第二步态加速度信号进行降维操作,得到降维后的第二步态加速度信号;
    分别提取时域和频域下所述降维后的第二步态加速度信号的峰值和谷值的第二位置信息。
  23. 根据权利要求22所述的无线体域网的密钥分配方法,其特征在于,所述分别提取时域和频域下所述降维后的第二步态加速度信号的峰值和谷值的第二位置信息,包括:
    基于有符号滑动窗口编码算法,提取所述降维后的第二步态加速度信号和所述降维后的第二步态加速度信号的快速傅里叶变换结果的峰值和谷值的第二位置信息;
    其中,所述有符号滑动窗口编码算法的过程具体包括:
    有符号滑动窗口在降维后的第二步态加速度信号上滑动,当第i个窗口出现峰值时,共信息池增加i;当第i个窗口出现谷值时,共信息池增加-i;当第i个窗口没有出现峰值和/或谷值时,窗口继续滑动,i为整数。
  24. 一种无线体域网的密钥生成方法,其特征在于,应用于无线体域网的协调器节点,所述协调器节点集成有加速度采集装置,所述方法包括:
    采集第一步态加速度信号;
    提取所述第一步态加速度信号中的噪声信号;
    根据所述噪声信号生成待分配密钥。
  25. 根据权利要求24所述的无线体域网的密钥生成方法,其特征在于,所述提取所述第一步态加速度信号中的噪声信号,包括:
    对所述第一步态加速度信号进行零相位滤波,得到滤波后的第一步态加速度信号;
    将所述第一步态加速度信号减去所述滤波后的第一步态加速度信号,得到所述噪声信号。
  26. 根据权利要求25所述的无线体域网的密钥生成方法,其特征在于,所述对所述第一步态加速度信号进行零相位滤波,得到滤波后的第一步态加速度信号,包括:
    将所述第一步态加速度信号输入至低通巴特沃斯滤波器,得到低通巴特沃斯滤波器输出的第一次滤波后的第一步态加速度信号;
    对所述第一次滤波后的第一步态加速度信号进行时间反转操作,得到第一次反转后的 第一步态加速度信号;
    将所述第一次反转后的第一步态加速度信号输入至低通巴特沃斯滤波器,得到低通巴特沃斯滤波器输出的第二次滤波后的第一步态加速度信号;
    对所述第二次滤波后的第一步态加速度信号进行时间反转操作,得到第二次反转后的第一步态加速度信号,所述第二次反转后的第一步态加速度信号为所述滤波后的第一步态加速度信号。
  27. 根据权利要求24所述的无线体域网的密钥生成方法,其特征在于,所述根据所述噪声信号生成待分配密钥,包括:
    对所述噪声信号进行编码,得到密钥;
    对所述密钥进行密钥增强操作,得到所述待分配密钥。
  28. 根据权利要求27所述的无线体域网的密钥生成方法,其特征在于,
    所述加速度采集装置为三轴加速度传感器,所述噪声信号包括x轴的第一噪声信号、y轴的第二噪声信号以及z轴的第三噪声信号;
    所述对所述噪声信号进行编码,得到密钥,包括:
    依据所述第一噪声信号中各位的数值,将第一二进制随机序列的对应位设为相应数值,得到第一密钥;
    依据所述第二噪声信号中各位的数值,将第二二进制随机序列的对应位设为相应数值,得到第二密钥;
    依据所述第三噪声信号中各位的数值,将第三二进制随机序列的对应位设为相应数值,得到第三密钥;
    其中,若噪声信号中的第k位大于或等于0时,将二进制随机序列的第k位设为第一数值;若噪声信号中的第k位小于0时,将二进制随机序列的第k位设为第二数值,k为整数。
  29. 根据权利要求28所述的无线体域网的密钥生成方法,其特征在于,所述对所述密钥进行密钥增强操作,得到所述待分配密钥,包括:
    将所述第一密钥、所述第二密钥以及所述第三密钥进行异或操作,得到所述待分配密钥;
    或者,
    将所述第一密钥、所述第二密钥以及所述第三密钥进行异或操作,得到异或后的密钥;
    对所述异或后的密钥进行下采样,得到所述待分配密钥。
  30. 一种协调器节点,包括加速度采集装置、存储器、处理器以及存储在所述存储器中并可在所述处理器上运行的计算机程序,其特征在于,所述处理器执行所述计算机程序 时实现如权利要求12至20或24至29任一项所述的方法。
  31. 一种可穿戴设备,包括加速度采集装置、存储器、处理器以及存储在所述存储器中并可在所述处理器上运行的计算机程序,其特征在于,所述处理器执行所述计算机程序时实现如权利要求21至23任一项所述的方法。
  32. 一种计算机可读存储介质,所述计算机可读存储介质存储有计算机程序,其特征在于,所述计算机程序被处理器执行时实现如权利要求12至20或21至23或24至29任一项所述的方法。
PCT/CN2019/106987 2019-09-20 2019-09-20 无线体域网及其密钥生成方法、分配方法和相关装置 WO2021051387A1 (zh)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2020552721A JP7034327B2 (ja) 2019-09-20 2019-09-20 無線ボディエリアネットワーク及びその鍵生成方法、割当方法及び関連装置
KR1020207027987A KR102477582B1 (ko) 2019-09-20 2019-09-20 무선 신체 영역 네트워크의 키 분배 장치, 무선 신체 영역 네트워크의 키 생성 방법, 무선 신체 영역 네트워크의 분배 방법 및 관련 장치
PCT/CN2019/106987 WO2021051387A1 (zh) 2019-09-20 2019-09-20 无线体域网及其密钥生成方法、分配方法和相关装置
US17/036,222 US11212672B2 (en) 2019-09-20 2020-09-29 Wireless body area network, key generation method and key distribution method in the wireless body area network, and related device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2019/106987 WO2021051387A1 (zh) 2019-09-20 2019-09-20 无线体域网及其密钥生成方法、分配方法和相关装置

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US17/036,222 Continuation-In-Part US11212672B2 (en) 2019-09-20 2020-09-29 Wireless body area network, key generation method and key distribution method in the wireless body area network, and related device

Publications (1)

Publication Number Publication Date
WO2021051387A1 true WO2021051387A1 (zh) 2021-03-25

Family

ID=74880238

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/106987 WO2021051387A1 (zh) 2019-09-20 2019-09-20 无线体域网及其密钥生成方法、分配方法和相关装置

Country Status (4)

Country Link
US (1) US11212672B2 (zh)
JP (1) JP7034327B2 (zh)
KR (1) KR102477582B1 (zh)
WO (1) WO2021051387A1 (zh)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016087476A1 (en) * 2014-12-04 2016-06-09 Koninklijke Philips N.V. System and method for providing connecting relationships between wearable devices
CN105686833A (zh) * 2016-01-13 2016-06-22 上海交通大学 基于无线体域网的可穿戴式多节点三维运动监测系统
WO2016165165A1 (zh) * 2015-04-17 2016-10-20 宇龙计算机通信科技(深圳)有限公司 设备接入的处理方法、设备接入的处理装置和终端
US20160334218A1 (en) * 2015-05-12 2016-11-17 Invensense Incorporated Systems and methods for determining a route traversed by a portable device

Family Cites Families (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102006027462B4 (de) 2006-06-12 2009-06-18 Nec Europe Ltd. Verfahren zum Betreiben eines drahtlosen Sensornetzwerks
CN101563884B (zh) 2006-12-19 2013-03-27 日本电气株式会社 共同数据生成方法和用于该方法的设备
US8688986B2 (en) 2006-12-27 2014-04-01 Intel Corporation Method for exchanging strong encryption keys between devices using alternate input methods in wireless personal area networks (WPAN)
US8295491B2 (en) 2007-04-25 2012-10-23 Nec Europe Ltd. Method for aggregating data in a network
WO2009014063A1 (ja) 2007-07-20 2009-01-29 Nec Corporation 暗号通信方法及び暗号通信システム
KR100906946B1 (ko) 2008-04-24 2009-07-10 델파이코리아 주식회사 Mems 가속도 센서를 이용한 시트벨트 리트렉터 및 그제어방법
KR101625857B1 (ko) * 2009-03-30 2016-05-31 시게이트 테크놀로지 엘엘씨 난수 생성 장치 및 그 방법
JP2011130224A (ja) 2009-12-18 2011-06-30 Lenovo Singapore Pte Ltd 通信端末装置における共有情報の作成方法
US9826400B2 (en) * 2014-04-04 2017-11-21 Qualcomm Incorporated Method and apparatus that facilitates a wearable identity manager
KR102280286B1 (ko) * 2014-09-04 2021-07-22 삼성전자주식회사 마스터 노드 및 마스터 노드의 동작 방법
KR102478651B1 (ko) * 2015-07-08 2022-12-16 삼성전자주식회사 생체 신호 분석 장치 및 방법
US9894471B1 (en) * 2015-07-25 2018-02-13 Gary M. Zalewski Wireless coded communication (WCC) devices with power harvesting power sources for processing biometric identified functions
US11398915B2 (en) * 2016-08-26 2022-07-26 Samsung Electronics Co., Ltd. Apparatus and method for two-way authentication
KR101866627B1 (ko) * 2016-03-02 2018-07-04 한국해양대학교 산학협력단 헬스 케어 및 스마트 라이프 로거를 위한 데이터 수집 및 분석 장치 그리고 이를 위한 방법
US10716495B1 (en) * 2016-03-11 2020-07-21 Fortify Technologies, LLC Accelerometer-based gait analysis
KR102026375B1 (ko) * 2017-12-18 2019-09-27 부산대학교 산학협력단 웨어러블 디바이스 통신 지원 장치 및 방법
KR102008932B1 (ko) * 2017-12-22 2019-08-08 인천대학교 산학협력단 하둡 기반 지능형 의료 시스템 및 그 방법
US11147459B2 (en) * 2018-01-05 2021-10-19 CareBand Inc. Wearable electronic device and system for tracking location and identifying changes in salient indicators of patient health
EP3782547B1 (en) * 2019-08-21 2024-04-10 The Swatch Group Research and Development Ltd Method and system for gait detection of a person

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016087476A1 (en) * 2014-12-04 2016-06-09 Koninklijke Philips N.V. System and method for providing connecting relationships between wearable devices
WO2016165165A1 (zh) * 2015-04-17 2016-10-20 宇龙计算机通信科技(深圳)有限公司 设备接入的处理方法、设备接入的处理装置和终端
US20160334218A1 (en) * 2015-05-12 2016-11-17 Invensense Incorporated Systems and methods for determining a route traversed by a portable device
CN105686833A (zh) * 2016-01-13 2016-06-22 上海交通大学 基于无线体域网的可穿戴式多节点三维运动监测系统

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
RAFFAELE GRAVINA;PARASTOO ALINIA;HASSAN GHASEMZADEH;GIANCARLO FORTINO: "Multi-sensor fusion in body sensor networks: State-of-the-art and research challenges", INFORMATION FUSION, vol. 35, 1 May 2017 (2017-05-01), pages 68 - 80, XP029813302, ISSN: 1566-2535, DOI: 10.1016/j.inffus.2016.09.005 *
WANG CAIHUA , CHEN YONG , SUN FANGMIN: "Wireless Body Area Network based on IPv6", GUANGDONG COMMUNICATION TECHNOLOGY, vol. 35, no. 12, 15 December 2015 (2015-12-15), pages 45 - 47+62, XP055793541, ISSN: 1006-6403, DOI: 10.3969/j.issn.1006-6403.2015.12.012 *

Also Published As

Publication number Publication date
US11212672B2 (en) 2021-12-28
KR20210035076A (ko) 2021-03-31
JP7034327B2 (ja) 2022-03-11
KR102477582B1 (ko) 2022-12-14
JP2022502874A (ja) 2022-01-11
US20210092600A1 (en) 2021-03-25

Similar Documents

Publication Publication Date Title
Kakkad et al. Biometric authentication and image encryption for image security in cloud framework
Talhaoui et al. A new fractional one dimensional chaotic map and its application in high-speed image encryption
Talhaoui et al. Fast image encryption algorithm with high security level using the Bülban chaotic map
Chen et al. Exploiting self-adaptive permutation–diffusion and DNA random encoding for secure and efficient image encryption
Kumar et al. IEHC: An efficient image encryption technique using hybrid chaotic map
CN107769910B (zh) 一种基于Latch PUF的抗边信道攻击DES防护方法及电路
Murillo-Escobar et al. Pseudorandom number generator based on novel 2D Hénon-Sine hyperchaotic map with microcontroller implementation
Matsuda et al. Fuzzy signatures: relaxing requirements and a new construction
CN111222645B (zh) 基于物联网区块链量子算法人工智能的管理系统及方法
Pande et al. The secure wavelet transform
CN108696354A (zh) 一种使用量子随机数的量子非对称加密设备
CN110730453B (zh) 无线体域网及其密钥生成方法、分配方法和相关装置
CN116561787A (zh) 视觉图像分类模型的训练方法、装置及电子设备
Manikandan et al. A novel random error approximate adder-based lightweight medical image encryption scheme for secure remote monitoring of health data
Li et al. A image encryption algorithm based on coexisting multi-attractors in a spherical chaotic system
CN111950003A (zh) 生成用户设备唯一识别信息的方法、装置、电子设备
CN115913537A (zh) 基于隐私保护的数据求交方法、系统及相关设备
Raj et al. Reconfigurable color medical image encryptor using hardware accelerated Chao (S)-box triplets
CN107248914B (zh) 一种iOS设备上新型对称加密系统及加密方法
WO2021051387A1 (zh) 无线体域网及其密钥生成方法、分配方法和相关装置
CN112906715A (zh) 一种基于深度神经网络的安全图像特征提取与分类方法
Wang et al. Simultaneous encryption and compression of medical images based on optimized tensor compressed sensing with 3D Lorenz
Darwish et al. Secure image compression approach based on fusion of 3D chaotic maps and arithmetic coding
Murillo-Escobar et al. Biosignal encryption algorithm based on Ushio chaotic map for e-health
Chen et al. Secure and resource-efficient communications for telemedicine systems

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2020552721

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19945823

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19945823

Country of ref document: EP

Kind code of ref document: A1

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205N DATED 13/05/2022)

122 Ep: pct application non-entry in european phase

Ref document number: 19945823

Country of ref document: EP

Kind code of ref document: A1