WO2021051273A1 - 电磁流量计、喷洒装置和可移动平台 - Google Patents

电磁流量计、喷洒装置和可移动平台 Download PDF

Info

Publication number
WO2021051273A1
WO2021051273A1 PCT/CN2019/106214 CN2019106214W WO2021051273A1 WO 2021051273 A1 WO2021051273 A1 WO 2021051273A1 CN 2019106214 W CN2019106214 W CN 2019106214W WO 2021051273 A1 WO2021051273 A1 WO 2021051273A1
Authority
WO
WIPO (PCT)
Prior art keywords
electromagnetic flowmeter
pipe
pipes
fluid
electrodes
Prior art date
Application number
PCT/CN2019/106214
Other languages
English (en)
French (fr)
Inventor
舒展
周乐
常子敬
Original Assignee
深圳市大疆创新科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳市大疆创新科技有限公司 filed Critical 深圳市大疆创新科技有限公司
Priority to PCT/CN2019/106214 priority Critical patent/WO2021051273A1/zh
Priority to CN201980030885.0A priority patent/CN112119285B/zh
Publication of WO2021051273A1 publication Critical patent/WO2021051273A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01FMEASURING VOLUME, VOLUME FLOW, MASS FLOW OR LIQUID LEVEL; METERING BY VOLUME
    • G01F1/00Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow
    • G01F1/56Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow by using electric or magnetic effects
    • G01F1/58Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow by using electric or magnetic effects by electromagnetic flowmeters
    • G01F1/588Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow by using electric or magnetic effects by electromagnetic flowmeters combined constructions of electrodes, coils or magnetic circuits, accessories therefor
    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01MCATCHING, TRAPPING OR SCARING OF ANIMALS; APPARATUS FOR THE DESTRUCTION OF NOXIOUS ANIMALS OR NOXIOUS PLANTS
    • A01M7/00Special adaptations or arrangements of liquid-spraying apparatus for purposes covered by this subclass
    • A01M7/0025Mechanical sprayers
    • A01M7/0032Pressure sprayers
    • A01M7/0042Field sprayers, e.g. self-propelled, drawn or tractor-mounted
    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01MCATCHING, TRAPPING OR SCARING OF ANIMALS; APPARATUS FOR THE DESTRUCTION OF NOXIOUS ANIMALS OR NOXIOUS PLANTS
    • A01M7/00Special adaptations or arrangements of liquid-spraying apparatus for purposes covered by this subclass
    • A01M7/0089Regulating or controlling systems
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64CAEROPLANES; HELICOPTERS
    • B64C39/00Aircraft not otherwise provided for
    • B64C39/02Aircraft not otherwise provided for characterised by special use
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64DEQUIPMENT FOR FITTING IN OR TO AIRCRAFT; FLIGHT SUITS; PARACHUTES; ARRANGEMENT OR MOUNTING OF POWER PLANTS OR PROPULSION TRANSMISSIONS IN AIRCRAFT
    • B64D1/00Dropping, ejecting, releasing, or receiving articles, liquids, or the like, in flight
    • B64D1/16Dropping or releasing powdered, liquid, or gaseous matter, e.g. for fire-fighting
    • B64D1/18Dropping or releasing powdered, liquid, or gaseous matter, e.g. for fire-fighting by spraying, e.g. insecticides
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01FMEASURING VOLUME, VOLUME FLOW, MASS FLOW OR LIQUID LEVEL; METERING BY VOLUME
    • G01F1/00Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow
    • G01F1/56Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow by using electric or magnetic effects
    • G01F1/58Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow by using electric or magnetic effects by electromagnetic flowmeters
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64UUNMANNED AERIAL VEHICLES [UAV]; EQUIPMENT THEREFOR
    • B64U2101/00UAVs specially adapted for particular uses or applications

Definitions

  • the invention relates to the technical field of flow measurement, in particular to an electromagnetic flow meter, a spraying device and a movable platform.
  • the first aspect of the embodiments of the present invention provides an electromagnetic flowmeter, and the electromagnetic flowmeter includes:
  • At least two pairs of electrodes are used to detect the electric potential induced by the fluid in the pipe flowing in the magnetic field.
  • Each pair of the electrodes includes two electrodes arranged oppositely on the sidewall of each pipe, each The detection ends of each of the electrodes pass through the side wall of the pipe and can be in contact with the fluid flowing through the pipe.
  • a spraying device comprising:
  • At least two water pumps for pumping fluid in the medicine tank
  • At least two spray heads for spraying the fluid At least two spray heads for spraying the fluid.
  • the electromagnetic flowmeter is used to detect the flow rate of each of the water pumps in real time, and one end of each of the pipes of the electromagnetic flowmeter is connected to the at least two water pumps One of the two nozzles is connected to one of the at least two nozzles at the other end.
  • a movable platform including:
  • the movable platform body The movable platform body
  • At least one spray device according to the embodiment of the present invention is mounted on the movable platform body.
  • the electromagnetic flowmeter, spraying device and movable platform of the embodiment of the present invention integrate two or more pipelines into the same electromagnetic flowmeter, so that the flow rate of the fluid in each pipeline can be detected separately, and the electromagnetic flowmeter
  • the layout of the middle pipe, electrode and excitation coil enables the same pair of excitation coils to simultaneously apply a magnetic field to the fluid in multiple pipes, which increases the compactness of the structure, reduces the volume of the electromagnetic flowmeter, and reduces the size of the electromagnetic flowmeter. weight.
  • Figure 1 is a cross-sectional view of an electromagnetic flowmeter in a first direction according to an embodiment of the present invention
  • Figure 2 is a cross-sectional view of an electromagnetic flowmeter in a second direction according to an embodiment of the present invention
  • FIG. 3 is a cross-sectional view of the electromagnetic flowmeter of the embodiment of the present invention in the third direction;
  • Figure 4 is a perspective view of the exterior of the electromagnetic flowmeter housing of the embodiment of the present invention.
  • Figure 5 is a perspective view of the inside of the electromagnetic flowmeter housing of the embodiment of the present invention.
  • Figure 6 is a schematic diagram of a spraying device according to an embodiment of the present invention.
  • Fig. 7 is a schematic diagram of a movable platform according to an embodiment of the present invention.
  • the electromagnetic flowmeter includes a housing 101, a group of pipes arranged in the housing 101, and the group of pipes includes at least two spacers.
  • a pair of excitation coils 103 for applying a magnetic field to the fluid flowing through the at least two pipes 102, the pair of excitation coils 103 are respectively arranged on both sides of the pipe group; and at least two pairs The electrodes are used to detect the electric potential induced by the fluid in the pipe 102 flowing in the magnetic field.
  • Each pair of the electrodes includes two electrodes 104 arranged opposite to each other on the sidewall of each pipe 102, each The detection end of each electrode 104 passes through the side wall of the pipe 102 and can be in contact with the fluid flowing through the pipe.
  • the housing 101 includes a housing 1011 and a cover plate 1012.
  • the housing 1011 has an accommodation space for accommodating the pipe 102, the excitation coil 103, the electrode 104, the electrode plate 105, etc.
  • An opening is provided, and the cover plate 1012 is used to cover the opening.
  • the housing 1011 and the cover plate 1012 are made of conductive material, and the conductive material includes metal.
  • the cover plate 1012 is in conductive contact with the housing 1011.
  • the cover plate 1012 is in direct contact with the housing 1011 to achieve electrical contact.
  • the cover plate 1012 and/or the housing 1011 are of aluminum structure, such as aluminum alloy.
  • the outer surface of the cover plate 1012 and/or the housing 1011 can be coated with laser engraving technology to prevent the cover plate 1012 and/or the housing 1011 from being corroded.
  • one of the open ends of the pipe 102 protrudes from a side wall of the housing 1011 opposite to the opening, and the other open end of the pipe 102 protrudes from the cover plate 1012.
  • the two open ends of the pipe 102 may also protrude from other positions of the housing 101.
  • the pipe 102 in this embodiment is used for fluid to flow through.
  • the fluid is a fluid whose flow needs to be detected.
  • the fluid may be water or liquid pesticide.
  • the pipe 102 in this embodiment is a straight pipe, and two open ends of the pipe 102 are respectively exposed from two opposite side walls of the housing 101.
  • At least two pipes 102 are integrated into the same electromagnetic flowmeter 100, and the flow rate of each pipe 102 is detected separately.
  • the number of pipes 102 is two or more, which can be specifically set according to actual needs. For example, four pipes 102 are shown in FIG. 1, FIG. 2, FIG. 4, and FIG. 5.
  • the at least two pipes 102 can be arranged in multiple ways, as long as the two pipes 102 are located in the electromagnetic field generated by the two excitation coils 103, so that the fluid in the pipe 102 can be subjected to the electromagnetic field to generate electromotive force.
  • At least two pipes 102 can be arranged in parallel and spaced apart, as shown in FIG. 1; in another embodiment, at least two pipes 102 can also be distributed in a fan shape; or, at least two pipes 102 can also be arranged in a fan shape. Aligned in a straight line. At least two of the pipes 102 can be arranged at equal intervals, as shown in FIG. 1; or the distance between at least two pipes 102 can be gradually changed in the same way. For example, the distance between multiple pipes 102 can be gradually increased or decreased. small.
  • Two excitation coils 103 are respectively arranged on opposite sides of the pipe group formed by a plurality of pipes 102, and in one embodiment, the two excitation coils 103 are arranged coaxially.
  • the two excitation coils 103 are used to generate an electromagnetic field, and the electromagnetic field acts on a plurality of pipes 102 in the pipe group at the same time.
  • the direction of the magnetic field formed by the two excitation coils 103 is substantially perpendicular to the extending direction of the at least two pipes 102.
  • the electromagnetic field is an alternating magnetic field, and the electromagnetic fields generated by the two excitation coils 103 can pass through the pipe 102 and act on the fluid in the pipe 102.
  • the excitation coil 103 may include an iron core 1031 and a coil 1032 wound on the iron core 1031. Furthermore, the excitation coil 103 further includes a coil support 1033.
  • the iron core 1031 and the coil 1032 are provided with a shock absorbing sheet 1034 to prevent the magnetic field fluctuation caused by the vibration of the coil 1032.
  • a silicon steel sheet 1035 is also provided on the shock-absorbing pressing sheet 1034 for restricting the direction of the magnetic field and reducing magnetic flux leakage.
  • the electromotive force induced by the fluid in each pipe 102 is detected by a pair of electrodes 104 arranged on the pipe 102 respectively.
  • the detection ends of two electrodes 104 in a pair of electrodes are arranged opposite to each other, and the detection end of each electrode 104 passes through the side wall of the pipe 102 and can be in contact with the fluid flowing through the pipe 102.
  • the pipe group includes four pipes 102, and each pipe 102 is provided with a pair of electrodes, and the electromagnetic flowmeter 100 includes four pairs of eight electrodes in total.
  • each pair of the electrodes 104 are arranged coaxially, that is, the detection ends of the two electrodes 104 in each pair of electrodes are directly opposite, and the axes of the two electrodes 104 are on the same straight line.
  • the extending direction of the electrode 104 is substantially perpendicular to the direction of the electromagnetic field generated by the excitation coil 103.
  • the extending direction of the electrode 104 is substantially perpendicular to the extending direction of the pipe 102.
  • the axes of the at least two pairs of electrodes 104 are located on the same plane, for example, each pair of electrodes 104 is arranged at the center of the pipe 102; at the same time, the axis of the excitation coil 103 and the axis of the electrode 104 are located on the same plane on. That is, in this embodiment, the axial direction of the electrode 104, the axial direction of the excitation coil 103, and the axial direction of the pipe 102 are distributed orthogonally.
  • two or more pipelines 102 are integrated into the same electromagnetic flowmeter 100, so that the flow rate of each pipeline 102 can be detected separately, and the pipeline 102, electrode 104, and excitation in the electromagnetic flowmeter 100
  • the layout of the coil 103 enables the same pair of excitation coils 103 to simultaneously apply a magnetic field to the fluid in multiple pipes 102, which increases the compactness of the structure, reduces the volume of the electromagnetic flowmeter 100, and reduces the weight of the electromagnetic flowmeter 100 .
  • the electromagnetic flowmeter 100 further includes two electrode plates 105, the two electrode plates 105 are respectively located above the electrode 104 on one side, and are used to collect the signals of the at least two electrodes 104 on the corresponding side.
  • the electromagnetic flowmeter 100 further includes two electrode plates 105, the two electrode plates 105 are respectively located above the electrode 104 on one side, and are used to collect the signals of the at least two electrodes 104 on the corresponding side.
  • signal interference can be reduced.
  • the electrode 104 is compressed by a compression screw 106 above the electrode plate 105, and fixed by an electrode pressing piece 107 above the pipe 102, so as to prevent the electrode 104 from falling off the pipe 102 or the electrode plate 105.
  • the electromagnetic flowmeter 100 further includes a main board 108, which is electrically coupled to the two electrode plates 105, and the main board 108 can calculate the signals flowing through each pair of electrode plates 105 according to the signals collected by each pair of electrode plates 105.
  • the flow rate of the fluid in the root pipe 102 is as follows:
  • B is the magnetic field strength
  • U is the induced electromotive force measured by the two electrodes 104
  • A is the cross-sectional area of the pipe 102
  • d is the diameter of the pipe 102
  • k is the correction factor to reduce the flow calculated by the formula The error between the flow rate Q of the liquid passing through the pipe 102 and the flow rate of the liquid actually flowing through the pipe 102.
  • the rate of the liquid flowing through the pipe 102 can also be calculated according to the flow rate Q of the liquid flowing through the pipe 102.
  • the main board 108 and one of the electrode plates 105 are integrated on the same circuit board, thereby further increasing the compactness of the structure, reducing the volume of the electromagnetic flowmeter 100 and reducing the weight of the electromagnetic flowmeter 100.
  • the function of the main board 108 can also be integrated on one of the electrode plates 105, and the two electrode plates 105 can be electrically coupled and connected.
  • a pin 116 is provided on the main board 108 for the quick plug connection between the electromagnetic flowmeter 100 and the line plug.
  • one of the electrode plates 105 needs to be connected to the main board 108 through a signal line.
  • the signal line crosses the electromagnetic field, it will cause a closed conductor loop in the electromagnetic field.
  • the electromagnetic field in the electromagnetic flowmeter is an alternating magnetic field, if the signal loop plane is not parallel to the direction of the magnetic field, it will be affected by the changing magnetic field to generate induced electromotive force and interfere with the measurement signal, thereby affecting the stability and reduction of the flow rate signal. measurement accuracy.
  • the embodiment of the present invention connects the two electrode plates 105 through a flexible circuit board (FPC) 109.
  • the flexible circuit board 109 can be easily bent, so that the electrode plates 105 on both sides can be connected more conveniently.
  • the direction of the flexible circuit board 109 is parallel to the direction of the magnetic field, so that the projected area of the conductor loop in the direction of the electromagnetic field is reduced as much as possible, the differential interference is suppressed within a reasonable range to reduce the degree of interference, and effectively control the differences between individuals , To ensure that the difference of the assembled flowmeter is small.
  • both ends of the flexible circuit board 109 are electrically coupled to the two electrode plates 105, and the flexible circuit board 109 is arranged around the outside of the end of one of the excitation coils 103.
  • the two excitation coils 103 are arranged coaxially, and the multiple pipes 102 are arranged in parallel.
  • the routing direction of the flexible circuit board 109 intersects the axes of the two excitation coils 103, is substantially perpendicular to the extension direction of the pipe 102, and is connected to the excitation
  • the axes of the coils 103 are perpendicular to each other.
  • a shock-absorbing material 110 is provided between the flexible circuit board 109 and the excitation coil 103 to stabilize the distance between the flexible circuit board 109 and the excitation coil 103.
  • the shock-absorbing material 110 may be made of a flexible material to prevent the flexible circuit board 109 from being worn out.
  • the flexible material can be a foam piece or a rubber piece, or other flexible materials.
  • connection between the flexible circuit board 109 and the two electrode plates 105 can be selected as required.
  • both ends of the flexible circuit board 109 are detachably connected to the corresponding electrode plates 105 through electrical connectors.
  • the two electrode plates 105 are electrically coupled and connected.
  • both ends of the flexible circuit board 109 are connected to the center positions of the sides of the two electrode plates 105 respectively.
  • the electromagnetic flowmeter 100 of this embodiment may further include a first pipe connector 111 and a second pipe connector 112, one of the first pipe connector 111 and the pipe 102 The open end is connected, and the second pipe connector 112 is connected with the other open end of the pipe 102.
  • the first pipe connector 111 and the second pipe connector 112 can be connected to an external structure, so as to realize the connection of the electromagnetic flowmeter 100 with the external structure.
  • both the first pipe connector 111 and the second pipe connector 112 are made of metal materials.
  • the first pipe connector 111 is fixed on the cover plate 1012, and the second pipe connector 112 is fixed on the housing 1011 to improve the electromagnetic The stability of the flow meter 100.
  • the fixed connection between the first pipe connector 111 and the cover plate 1012 and between the second pipe connector and the housing 1011 can be designed as required.
  • a fastening nut can be used. 113 connections.
  • the connection between the first pipe connector 111 and the second pipe connector 112 and the pipe 102 is provided with a sealing member 114, which is used to prevent the liquid in the pipe 102 from gapping at the connection. It flows into the housing 101, thereby preventing the electrode plate 105, the main board 108, etc. in the housing 1011 from being short-circuited by water, and preventing other components in the housing 101 from being damaged by water.
  • the seal 114 may be a rubber seal or a seal made of other materials.
  • both the first pipe connector 111 and the second pipe connector 112 need to be grounded (connected water).
  • the fluid in the pipe 102, the first pipe connector 111, the housing 101 (including the cover plate 1012 and the housing 1011), and the second pipe connector 112 form a grounding path, refer to FIG. 3.
  • the grounding of the first pipe connector 111 and the second pipe connector 112 enables the electrode 104 to detect the electromotive force based on the zero potential of the liquid, thereby improving the accuracy of detection.
  • realizing the grounding of the housing 101 enables the housing 101 to act as an electromagnetic shield, so that the grounding of the housing 101 prevents the electrode plate 105, the main board 108, etc. from being interfered by external signals without adding an additional electromagnetic shielding cover. Will not increase the volume and weight of the electromagnetic flowmeter.
  • a sealing ring 115 may also be provided at the electrode mounting hole of the pipe 102.
  • the sealing ring may It is a rubber sealing ring, and it can also be a sealing ring of other materials.
  • the electromagnetic flowmeter of the embodiment of the present invention integrates two or more pipelines into the same electromagnetic flowmeter, so that the flow rate of the fluid in each pipeline can be detected separately, and the pipeline in the electromagnetic flowmeter
  • the layout of electrodes and excitation coils enables the same pair of excitation coils to simultaneously apply a magnetic field to the fluid in multiple pipes, which increases the compactness of the structure, reduces the volume of the electromagnetic flowmeter, and reduces the weight of the electromagnetic flowmeter.
  • a spraying device is provided. See FIG. 6, which shows a schematic diagram of a spraying device according to an embodiment of the present invention.
  • the spraying device 600 includes: a medicine box 610; at least Two water pumps 620 are used to pump the fluid in the medicine tank; at least two spray heads 640 are used to spray the fluid; and the electromagnetic flowmeter 630 according to the first aspect of the present invention, the electromagnetic flowmeter 630 is used for To detect the flow rate of each water pump 620 in real time, one end of each pipe of the electromagnetic flowmeter 630 is connected to one of the at least two water pumps 620, and the other end is connected to the at least two nozzles 640 one of.
  • the specific structure of the electromagnetic flowmeter 630 may adopt the structure of the electromagnetic flowmeter of the above-mentioned embodiments, which will not be repeated here.
  • the spraying device further includes a controller that automatically controls the water pump to perform spraying operations according to the preset spraying task according to the preset spraying task.
  • the preset spraying task can be stored in the memory.
  • the preset spraying tasks can be set as required.
  • the spraying device further includes: a wireless communication device, which is electrically connected to the controller, and configured to receive a user's spray head control instruction, and send the spray head control instruction to the controller , To control the switching device.
  • the wireless communication device can be set independently or in the controller.
  • the wireless communication device may also receive the preset spraying task, and store the spraying task in the memory.
  • the preset spraying task can be received before the spraying operation is performed, or it can be received during the spraying operation.
  • the spraying device further includes: a ground control terminal, configured to communicate with the wireless communication device, and the user can send the spray head control instruction through the ground control terminal.
  • the ground control terminal includes at least one of the following: a remote control, a mobile phone, a tablet computer, and a ground base station.
  • the wireless communication device can be communicatively connected with the ground control terminal.
  • the manner in which the wireless communication device can communicate with the ground control terminal may be a line-of-sight communication method or a non-line-of-sight communication method.
  • the line-of-sight communication method can be WIFI, Bluetooth, etc.
  • the non-line-of-sight communication method can be a communication network such as 2G, 3G, 4G, and 5G.
  • FIG. 7 shows a schematic diagram of a movable platform 700 according to an embodiment of the present invention.
  • the movable platform 700 includes: Mobile platform body 710 and spraying device 720.
  • the spraying device 720 is mounted on the movable platform body 710; wherein, the specific structure of the spraying device 710 can refer to the spraying devices of the foregoing embodiments.
  • the movable platform includes an unmanned aerial vehicle or a ground vehicle.
  • the ground vehicle may be a ground robot, agricultural machine, etc.
  • the movable platform is an unmanned aerial vehicle
  • the movable platform body includes a central body and a plurality of arms, and the plurality of arms are fixedly connected or rotatably connected with the central body.
  • the movable platform body further includes a landing gear.
  • the medicine box may be connected to the central body or the landing gear.
  • the electromagnetic flowmeter can be connected to the arm or the center body.
  • the spraying device according to the present invention can be used for automatic spraying.
  • the spraying device of the embodiment of the present invention is applied to a movable platform, and the movable platform with the spraying device can spray the external environment, for example, for plant irrigation or liquid medicine spraying in agriculture and forestry.
  • the movable platform includes at least one of an unmanned aerial vehicle or a ground vehicle.
  • the spraying device is applied to an unmanned aerial vehicle
  • the platform body is the fuselage of the unmanned aerial vehicle.
  • the unmanned aerial vehicle can be a plant protection drone.
  • the spray device is applied to ground vehicles such as automobiles, the platform body is the body of the automobile.
  • the car can be a self-driving car or a semi-autonomous car.
  • the electromagnetic flowmeter, spraying device, and movable platform of the embodiment of the present invention integrate two or more pipelines into the same electromagnetic flowmeter, so that the flow rate of the fluid in each pipeline can be detected separately, and there is no need to perform a test for each pump.
  • Flow calibration The arrangement of pipes, electrodes and excitation coils in the electromagnetic flowmeter enables the same pair of excitation coils to simultaneously apply a magnetic field to the fluid in multiple pipes, which increases the compactness of the structure and reduces the volume of the electromagnetic flowmeter. , And reduce the weight of the electromagnetic flowmeter.

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Pest Control & Pesticides (AREA)
  • Zoology (AREA)
  • Wood Science & Technology (AREA)
  • Insects & Arthropods (AREA)
  • Environmental Sciences (AREA)
  • Electromagnetism (AREA)
  • Fluid Mechanics (AREA)
  • General Physics & Mathematics (AREA)
  • Aviation & Aerospace Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Measuring Volume Flow (AREA)

Abstract

一种电磁流量计包括:外壳(101);布置于外壳(101)中的管道组,管道组包括至少两根间隔设置的管道(102);一对励磁线圈(103),用于向流经至少两根管道(102)的流体施加磁场,一对励磁线圈(103)分别布置在管道组的两侧;至少两对电极(104),用于检测管道(102)中的流体在磁场中流动所感生的电势,每对电极(104)分别包括相对设置在每根管道(102)的侧壁上的两个电极(104),每个电极(104)的检测端穿过管道的侧壁,并能够与流经管道的流体接触。该电磁流量计集成了两根或两根以上的管道(102),分别检测每根管道中流体的流量,无需对每个泵进行流量校准,并且结构紧凑/重量轻。还提供了一种喷洒装置和一种可移动平台。

Description

电磁流量计、喷洒装置和可移动平台 技术领域
本发明涉及流量测量技术领域,尤其涉及电磁流量计、喷洒装置和可移动平台。
背景技术
随着植保无人机的逐渐推广,对喷洒精度的要求越来越高。喷洒流量偏低会造成漏喷或者防护不到位,流量偏高会造成烧苗等不利影响。另外,植保作业时,已喷药量是一项重要参数,现有的液位计精度有限,会影响飞手统计作业面积。为了提高喷洒的控制精度和已喷药量计算准确度,电磁流量计得以应用。然而,目前的电磁流量计只能检测多泵总流量,不能单独检测每个泵的流量。
发明内容
在发明内容部分中引入了一系列简化形式的概念,这将在具体实施方式部分中进一步详细说明。本发明的发明内容部分并不意味着要试图限定出所要求保护的技术方案的关键特征和必要技术特征,更不意味着试图确定所要求保护的技术方案的保护范围。
针对现有技术的不足,本发明实施例第一方面提供了一种电磁流量计,所述电磁流量计包括:
外壳;
布置于所述外壳中的管道组,所述管道组包括至少两根间隔设置的管道;
一对励磁线圈,用于向流经所述至少两根管道的流体施加磁场,所述一对励磁线圈分别布置在所述管道组的两侧;
至少两对电极,用于检测所述管道中的流体在所述磁场中流动所感生的电势,每对所述电极分别包括相对设置在每根所述管道的侧壁上的两个电极,每个所述电极的检测端穿过所述管道的侧壁,并能够与流经所述管道的流体接触。
根据本发明实施例的第二方面,提供了一种喷洒装置,所述喷洒装置包括:
药箱;
至少两个水泵,用于抽取所述药箱中的流体;
至少两个喷头,用于喷洒所述流体;以及
本发明实施例所述的电磁流量计,所述电磁流量计用于实时检测每个所述水泵的流量,所述电磁流量计的每根所述管道的其中一端连通所述至少两个水泵中的一个,另一端连通所述至少两个喷头中的一个。
根据本发明实施例的第三方面,提供了一种可移动平台,包括:
可移动平台本体;以及
搭载于所述可移动平台本体上的至少一个本发明实施例所述的喷洒装置。
本发明实施例的电磁流量计、喷洒装置和可移动平台将两根或两根以上的管道集成在同一电磁流量计中,从而能够分别检测每根管道中流体的流量,并且所述电磁流量计中管道、电极和励磁线圈的布局方式,使同一对励磁线圈能够同时对多根管道中的流体施加磁场,增加了结构紧凑性,减小了电磁流量计的体积,并减轻了电磁流量计的重量。
附图说明
为了更清楚地说明本发明实施例或现有技术中的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本发明的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1是本发明实施例的电磁流量计在第一方向上的截面图;
图2是本发明实施例的电磁流量计在第二方向上的截面图;
图3是本发明实施例的电磁流量计在第三方向上的截面图;
图4是本发明实施例的电磁流量计壳体外部的立体图;
图5是本发明实施例的电磁流量计壳体内部的立体图;
图6是本发明实施例的喷洒装置的示意图;
图7是本发明实施例的可移动平台的示意图。
具体实施方式
为了使得本发明的目的、技术方案和优点更为明显,下面将参照附图详细 描述根据本发明的示例实施例。显然,所描述的实施例仅仅是本发明的一部分实施例,而不是本发明的全部实施例,应理解,本发明不受这里描述的示例实施例的限制。基于本发明中描述的本发明实施例,本领域技术人员在没有付出创造性劳动的情况下所得到的所有其它实施例都应落入本发明的保护范围之内。
下面结合附图,对本发明的电磁流量计、喷洒装置和可移动平台进行详细说明。在不冲突的情况下,下述的实施例及实施方式中的特征可以相互组合。
如图1至图5所示,本发明实施例一方面提供一种电磁流量计,该电磁流量计包括外壳101,布置于所述外壳101中的管道组,所述管道组包括至少两根间隔设置的管道102;一对励磁线圈103,用于向流经所述至少两根管道102的流体施加磁场,所述一对励磁线圈103分别布置在所述管道组的两侧;以及至少两对电极,用于检测所述管道102中的流体在所述磁场中流动所感生的电势,每对所述电极分别包括相对设置在每根所述管道102的侧壁上的两个电极104,每个所述电极104的检测端穿过所述管道102的侧壁,并能够与流经所述管道的流体接触。
可选地,如图3所示,外壳101包括壳体1011和盖板1012,壳体1011中具有容纳空间,用于容纳管道102、励磁线圈103、电极104、电极板105等,其一侧设有开口,盖板1012用于盖设开口。
在本实施例中,壳体1011和盖板1012采用导电材料构成,所述导电材料包括金属。盖板1012与壳体1011导电接触,可选地,盖板1012与壳体1011直接接触而实现电接触。可选地,盖板1012和/或壳体1011为铝结构,如铝合金。进一步地,盖板1012和/或壳体1011的外表面可采用镭雕技术进行涂层设置,防止盖板1012和/或壳体1011腐蚀。
可选地,继续参照图3,管道102的其中一个开口端自壳体1011相对开口的一侧侧壁伸出,管道102的另一个开口端自盖板1012伸出。然而可以理解的是,管道102的两个开口端也可从外壳101的其他位置伸出。
本实施例中的管道102用于供流体流过,所述流体为需要对其流量进行检测的流体,例如当电磁流量计100应用在植保无人机上时,所述流体可以为水或液态农药。可选地,本实施例的管道102为直管道,管道102的两个开口端分别自外壳101的两个相对侧壁露出。
本发明实施例将至少两根管道102集成在同一电磁流量计100中,并分别检测每根管道102的流量。管道102的数目为两根或两根以上,具体可以根据实际需要而设置,例如,在图1、图2、图4和图5中示出了四根管道102。
其中,至少两根管道102可以有多种排布方式,只要所述两根管道102位于两个励磁线圈103产生的电磁场中,使管道102中的流体能够受到电磁场的作用产生电动势。
在一个实施例中,至少两根管道102可以平行间隔设置,如图1所示;在另一实施例中,至少两根管道102也可以呈扇形分布;或者,至少两根管道102也可以呈直线排列。至少两根所述管道102可以等间隔设置,如图1所示;或者至少两根所述管道102之间的间距渐变方式相同,例如,多根管道102之间的间距可以逐渐增大或减小。
两个励磁线圈103分别设置在多根管道102构成的所述管道组的相对的两侧,并且在一个实施例中,两个励磁线圈103同轴设置。所述两个励磁线圈103用于产生电磁场,所述电磁场同时作用在所述管道组中的多根管道102上。在一个实施例中,当至少两根管道平行设置时,所述两个励磁线圈103形成的磁场的方向与至少两根管道102的延伸方向基本垂直。在一个实施例中,该电磁场为交变磁场,两个励磁线圈103产生的电磁场能够穿过管道102作用在管道102内的流体上。当流经每根管道102的流体的流速变化时,在电磁场的作用下,两个电极104的感应电动势的差值也会随之变化。
结合图1,励磁线圈103可以包括铁芯1031以及绕设在铁芯1031上的线圈1032。进一步地,励磁线圈103还包括线圈支架1033。在一个实施例中,所述铁芯1031和所述线圈1032上设置有减震压片1034,用于防止线圈1032振动而导致的磁场波动。进一步地,所述减震压片1034上还设置有硅钢片1035,用于约束磁场方向,减少漏磁。
每根管道102中的流体感生的电动势分别由设置在所述管道102上的一对电极104进行检测。一对电极中的两个电极104的检测端相对设置,每个电极104的检测端穿过所述管道102的侧壁,并能够与流经所述管道102的流体接触。在一个实施例中,所述管道组中包含四根管道102,每根管道102上设置有一对电极,则所述电磁流量计100包括四对、共八个电极。
在一个实施例中,为了准确地检测流体的电动势,每对所述电极104同轴 设置,即每对电极中的两个电极104的检测端正对,两个电极104的轴线位于同一直线上。所述电极104的延伸方向与励磁线圈103产生的电磁场的方向基本垂直。并且,电极104的延伸方向与管道102的延伸方向基本垂直。在一个实施例中,所述至少两对电极104的轴线位于同一平面上,例如,每对电极104设置于管道102的中心位置处;同时,励磁线圈103的轴线与电极104的轴线位于同一平面上。也就是说,在本实施例中,所述电极104的轴向、所述励磁线圈103的轴向以及所述管道102的轴向呈正交分布。
本发明实施例的将两根或两根以上的管道102集成在同一电磁流量计100中,从而能够分别检测每根管道102的流量,并且所述电磁流量计100中管道102、电极104和励磁线圈103的布局方式,使同一对励磁线圈103能够同时对多根管道102中的流体施加磁场,增加了结构紧凑性,减小了电磁流量计100的体积,并减轻了电磁流量计100的重量。
进一步地,所述电磁流量计100还包括两个电极板105,两个电极板105分别位于一侧的电极104上方,用于采集对应侧的至少两个电极104的信号。本实施例中,通过每侧的电极板105采集对应侧的至少两个电极104的信号,能够降低信号干扰。
在一个实施例中,电极104在电极板105上方通过压紧螺丝106压紧,在管道102上方通过电极压片107固定,从而避免电极104从管道102或电极板105上脱落。
在一些实施例中,电磁流量计100还包括主板108,该主板108与两个电极板105分别电耦合连接,并且,该主板108能够根据每对电极板105采集的信号,分别计算流经每根管道102内的流体的流量。其中,流经每根管道102内的流体的流量Q的计算公式如下:
Figure PCTCN2019106214-appb-000001
其中,B为磁场强度;U为两个电极104测得的感应电动势;A为管道102的横截面积;d为管道102的直径;k为修正系数,用于减小通过公式计算获得的流经管道102内的液体的流量Q与实际流经管道102内的液体的流量之间的误差。
示例性地,在计算出流经管道102内的液体的流量Q后,还可以根据流 经管道102内的液体的流量Q来计算流经管道102内的液体的速率。
可选地,主板108与其中一个电极板105集成设置在同一电路板上,从而进一步增加结构的紧凑性,从减小电磁流量计100的体积,并减轻电磁流量计100的重量。在另一些实施例中,还可以将主板108的功能集成在其中一个电极板105上,并将两个电极板105电耦合连接。
在一个实施例中,主板108上设置有插针116,用于电磁流量计100与线路插头的快插连接。
由于两个电极板105采集的信号最终需要汇总到主板108才能实现处理,故其中一个电极板105需要通过信号线连接至主板108上。当信号线会穿越电磁场时,就会导致电磁场内存在封闭导体环路。又因为电磁流量计内的电磁场是一种交变磁场,信号环路平面如果不平行于磁场方向,就会受变化的磁场影响产生感生电动势而干扰测量信号,从而影响流速信号的稳定、降低测量精度。
为了解决上述问题,本发明实施例通过柔性线路板(FPC)109连接两块所述电极板105。柔性电路板109方便弯折,从而能够更加方便地连接两侧的电极板105。所述柔性线路板109的方向平行于所述磁场的方向,尽可能使导体回路在电磁场方向的投影面积缩小,将微分干扰抑制在合理的范围内以减轻干扰程度,并有效控制个体之间差异,确保装配完成的流量计差异较小。
具体地,参照图2,柔性电路板109的两端与两个电极板105分别电耦合连接,并且,柔性电路板109绕过其中一个励磁线圈103的端部外侧设置。本实施例的两个励磁线圈103共轴设置,多根管道102平行设置,柔性电路板109的走线方向与两个励磁线圈103的轴线相交,基本垂直于管道102的延伸方向,并与励磁线圈103的轴线相互垂直。这种结构设计方式能够使得信号环路平面平行于磁场方向,从而最大限度地消除微分干扰对信号的影响,提高电磁流量计100的测量精度。
进一步地,柔性电路板109与励磁线圈103之间设有减震材料110,用于使柔性电路板109与励磁线圈103之间的间距稳定存在。减震材料110可以采用柔性材料制成,以防止柔性电路板109磨损。所述柔性材料可为泡棉件或橡胶件,也可为其他柔性材料。
柔性电路板109与两个电极板105连接的实现方式可根据需要选择,例如,在一些实施例中,柔性电路板109的两端分别通过电连接器与对应的电极板 105可拆卸连接而实现两个电极板105的电耦合连接。进一步可选地,柔性电路板109的两端分别与两个电极板105的侧边的中心位置连接。
结合图1、图3以及图4和图5,本实施例的电磁流量计100还可包括第一管道连接头111和第二管道连接头112,第一管道连接头111与管道102的其中一个开口端相连接,第二管道连接头112与管道102的另一个开口端相连接。第一管道连接头111、第二管道连接头112可与外部结构连接,从而实现电磁流量计100与外部结构的连接。在一个实施例中,第一管道连接头111和第二管道连接头112均由金属材料制成。
为了避免第一管道连接头111和第二管道连接头112脱落,本实施例将第一管道连接头111固定在盖板1012上,将第二管道连接头112固定在壳体1011上,提高电磁流量计100的稳定性。第一管道连接头111与盖板1012之间和第二管道连接头与壳体1011之间的固定连接方式可根据需要设计,例如,在一实施例中,参照图3,可以采用紧固螺母113连接。
可选地,参照图1,第一管道连接头111和第二管道连接头112与管道102的连接处设有密封件114,该密封件114用于防止管道102内的液体从连接处的间隙流入外壳101内,进而避免了壳体1011内的电极板105、主板108等遇水短路,并避免了外壳101内的其他部件遇水损坏。该密封件114可为橡胶密封件,也可为其他材质的密封件。
为了避免流经管道102内的流体在管道102的不同位置处电位不相同而导致两个电极检测时参照的电位基准不一致,第一管道连接头111和第二管道连接头112均需接地(接水)。本实施例中,管道102中的流体、第一管道连接头111、外壳101(包括盖板1012和壳体1011)、第二管道连接头112构成了接地路径,参照图3。第一管道连接头111和第二管道连接头112的接地可以使电极104以液体的0电位为基准检测得到电动势,从而提高检测的精度。同时,实现外壳101的接地使外壳101能够起到电磁屏蔽的作用,从而在未增加额外的电磁屏蔽罩的情况下,通过外壳101的接地避免电极板105、主板108等受到外部信号干扰,同时不会增加电磁流量计的体积和重量。
在一个实施例中,为了防止管道102内的液体经由电极安装孔泄漏而导致电极板105短路,在一些实施例中,在管道102的电极安装孔处也可以设置密封圈115,该密封圈可以为橡胶密封圈,也可为其他材质的密封圈。
综上所述,本发明实施例的电磁流量计将两根或两根以上的管道集成在同一电磁流量计中,从而能够分别检测每根管道中流体的流量,并且所述电磁流量计中管道、电极和励磁线圈的布局方式,使同一对励磁线圈能够同时对多根管道中的流体施加磁场,增加了结构紧凑性,减小了电磁流量计的体积,并减轻了电磁流量计的重量。
根据本发明实施例的第二方面,提供了一种喷洒装置,参见图6,图6示出了本发明实施例的一种喷洒装置的示意图,所述喷洒装置600包括:药箱610;至少两个水泵620,用于抽取所述药箱中的流体;至少两个喷头640,用于喷洒所述流体;以及本发明第一方面所述的电磁流量计630,所述电磁流量计630用于实时检测每个所述水泵620的流量,所述电磁流量计630的每根所述管道的其中一端连通所述至少两个水泵620中的一个,另一端连通所述至少两个喷头640中的一个。
其中,电磁流量计630的具体结构可以采用上述各实施例的电磁流量计的结构,在此不再赘述。
可选地,所述喷洒装置还包括:控制器,所述控制器根据预设的喷洒任务,自动控制所述水泵按照预设的喷洒任务进行喷洒作业。所述预设的喷洒任务可以存储于存储器中。所述预设的喷洒任务可以根据需要进行设置。
可选地,所述喷洒装置还包括:无线通信装置,所述无线通信装置与所述控制器电连接,用于接收用户的喷头控制指令,并将所述喷头控制指令发送给所述控制器,以控制所述切换装置。所述无线通信装置可以独立设置,也可以设置于控制器中。
在一个实施例中,无线通信装置还可以接收所述预设的喷洒任务,并将所述喷洒任务存储于存储器。例如,预设的喷洒任务可以在执行喷洒作业之前接收,也可以在喷洒作业过程中接收。
可选地,所述喷洒装置还包括:地面控制端,用于与所述无线通信装置通信连接,用户能够通过所述地面控制端发送所述喷头控制指令。可选地,所述地面控制端包括如下至少一种:遥控器,手机,平板电脑,地面基站。
可选地,所述无线通信装置能够与所述地面控制终端通信连接。具体地,所述无线通信装置能够与所述地面控制终端通信方式可以为视距通信方式,或 者非视距通信方式。视距通信方式可以为WIFI、蓝牙等。非视距通信方式可以为2G、3G、4G、5G等通信网络。
根据本发明实施例的第三方面,提供了一种可移动平台,图7示出了本发明实施例的一种可移动平台700的示意图,参见图7,所述可移动平台700包括:可移动平台本体710以及喷洒装置720。
喷洒装置720搭载在所述可移动平台本体上710;其中,所述喷洒装置710的具体结构可以参见上述各实施例的喷洒装置。
可选地,所述可移动平台包括无人飞行器、或者地面载具。地面载具可以为地面机器人,农用机等。
在一个实施例中,所述可移动平台为无人飞行器,所述可移动平台本体包括中心体以及多个机臂,所述多个机臂与所述中心体固定连接或者可转动连接。
进一步地,所述可移动平台本体还包括起落架。所述药箱可以连接在中心体或所述起落架上。所述电磁流量计可以连接在机臂或中心体上。
根据本发明的喷洒装置可以用于自动喷洒。在一种实施例中,本发明实施例的喷洒装置应用于可移动平台,具有喷洒装置的可移动平台可对外部环境进行喷洒,例如,用于农业、林业等植物灌溉或药液喷洒。在某些实施例中,可移动平台包括无人飞行器或地面载具的至少一种。当喷洒装置应用于无人飞行器时,平台本体为无人飞行器的机身。该无人飞行器可以为植保无人机。当喷洒装置应用于汽车等地面载具时,平台本体为汽车的车身。该汽车可以是自动驾驶汽车或者半自动驾驶汽车。
本发明实施例的电磁流量计、喷洒装置和可移动平台将两根或两根以上的管道集成在同一电磁流量计中,从而能够分别检测每根管道中流体的流量,无需对每个泵进行流量校准,所述电磁流量计中管道、电极和励磁线圈的布局方式,使同一对励磁线圈能够同时对多根管道中的流体施加磁场,增加了结构紧凑性,减小了电磁流量计的体积,并减轻了电磁流量计的重量。
本领域的技术人员可以理解,除了特征之间相互排斥之外,可以采用任何组合对本说明书(包括伴随的权利要求、摘要和附图)中公开的所有特征以及 如此公开的任何方法或者设备的所有过程或单元进行组合。除非另外明确陈述,本说明书(包括伴随的权利要求、摘要和附图)中公开的每个特征可以由提供相同、等同或相似目的的替代特征来代替。
此外,本领域的技术人员能够理解,尽管在此所述的一些实施例包括其它实施例中所包括的某些特征而不是其它特征,但是不同实施例的特征的组合意味着处于本发明的范围之内并且形成不同的实施例。例如,在权利要求书中,所要求保护的实施例的任意之一都可以以任意的组合方式来使用。
本发明实施例中所使用的技术术语仅用于说明特定实施例而并不旨在限定本发明。在本文中,单数形式“一”、“该”及“所述”用于同时包括复数形式,除非上下文中明确另行说明。进一步地,在说明书中所使用的用于“包括”和/或“包含”是指存在所述特征、整体、步骤、操作、元件和/或构件,但是并不排除存在或增加一个或多个其它特征、整体、步骤、操作、元件和/或构件。
在所附权利要求中对应结构、材料、动作以及所有装置或者步骤以及功能元件的等同形式(如果存在的话)旨在包括结合其他明确要求的元件用于执行该功能的任何结构、材料或动作。本发明的描述出于实施例和描述的目的被给出,但并不旨在是穷举的或者将被发明限制在所公开的形式。在不偏离本发明的范围和精神的情况下,多种修改和变形对于本领域的一般技术人员而言是显而易见的。本发明中所描述的实施例能够更好地揭示本发明的原理与实际应用,并使本领域的一般技术人员可了解本发明。
本发明中所描述的流程图仅仅为一个实施例,在不偏离本发明的精神的情况下对此图示或者本发明中的步骤可以有多种修改变化。比如,可以不同次序的执行这些步骤,或者可以增加、删除或者修改某些步骤。本领域的一般技术人员可以理解实现上述实施例的全部或部分流程,并依本发明权利要求所作的等同变化,仍属于发明所涵盖的范围。

Claims (17)

  1. 一种电磁流量计,其特征在于,所述电磁流量计包括:
    外壳;
    布置于所述外壳中的管道组,所述管道组包括至少两根间隔设置的管道;
    一对励磁线圈,用于向流经所述至少两根管道的流体施加磁场,所述一对励磁线圈分别布置在所述管道组的两侧;
    至少两对电极,用于检测所述管道中的流体在所述磁场中流动所感生的电势,每对所述电极分别包括相对设置在每根所述管道的侧壁上的两个电极,每个所述电极的检测端穿过所述管道的侧壁,并能够与流经所述管道的流体接触。
  2. 根据权利要求1所述的电磁流量计,其特征在于,至少两根所述管道平行间隔设置或呈扇形分布。
  3. 根据权利要求1所述的电磁流量计,其特征在于,至少两根所述管道呈直线排列。
  4. 根据权利要求1所述的电磁流量计,其特征在于,至少两根所述管道等间隔设置,或者至少两根所述管道之间的间距渐变方式相同。
  5. 根据权利要求1所述的电磁流量计,其特征在于,所述一对励磁线圈形成的磁场的方向,与所述管道的延伸方向基本垂直,以及与所述电极的延伸方向基本垂直。
  6. 根据权利要求1所述的电磁流量计,其特征在于,所述电极的延伸方向与所述管道的延伸方向基本垂直。
  7. 根据权利要求1所述的电磁流量计,其特征在于,每对所述电极同轴设置,所述一对励磁线圈同轴设置,所述电极的轴向、所述励磁线圈的轴向以及所述管道的轴向呈正交分布。
  8. 根据权利要求1所述的电磁流量计,其特征在于,所述至少两根管道的轴线位于同一平面上。
  9. 根据权利要求1所述的电磁流量计,其特征在于,所述至少两对电极的轴线位于同一平面上。
  10. 根据权利要求1所述的电磁流量计,其特征在于,还包括两块电极板,每块所述电极板分别与对应一侧的所述电极接触,用于采集对应一侧的所述电极的信号。
  11. 根据权利要求10所述的电磁流量计,其特征在于,两块所述电极板之间通过柔性线路板连接,所述柔性线路板的方向平行于所述磁场的方向。
  12. 根据权利要求10所述的电磁流量计,其特征在于,还包括主板,所述主板与两个所述电极板分别电耦合连接,用于根据两个所述电极板采集的信号来计算流经每根所述管道的流体的流量。
  13. 根据权利要求12所述的电磁流量计,其特征在于,每根所述管道的两端分别连接有第一管道接头和第二管道接头,所述第一管道接头和所述第二管道接头与所述管道中的流体形成电导通,所述第一管道接头和所述第二管道接头分别与所述外壳形成电导通,所述外壳与所述主板形成电导通,所述第一管道接头、所述金属外壳、所述主板以及所述第二管道接头形成接地路径。
  14. 根据权利要求1所述的电磁流量计,其特征在于,所述励磁线圈包括铁芯以及包围所述铁芯的线圈,所述铁芯和所述线圈上设置有减震压片,所述减震压片上设置有硅钢片。
  15. 一种喷洒装置,其特征在于,所述喷洒装置包括:
    药箱;
    至少两个水泵,用于抽取所述药箱中的流体;
    至少两个喷头,用于喷洒所述流体;以及
    权利要求1至14中任一项所述的电磁流量计,所述电磁流量计用于实时检测每个所述水泵的流量,所述电磁流量计的每根所述管道的其中一端连通所述至少两个水泵中的一个,另一端连通所述至少两个喷头中的一个。
  16. 一种可移动平台,其特征在于,包括:
    可移动平台本体;
    搭载于所述可移动平台本体上的至少一个权利要求15所述的喷洒装置。
  17. 如权利要求16所述的可移动平台,其特征在于,所述可移动平台包括无人飞行器或地面载具。
PCT/CN2019/106214 2019-09-17 2019-09-17 电磁流量计、喷洒装置和可移动平台 WO2021051273A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
PCT/CN2019/106214 WO2021051273A1 (zh) 2019-09-17 2019-09-17 电磁流量计、喷洒装置和可移动平台
CN201980030885.0A CN112119285B (zh) 2019-09-17 2019-09-17 电磁流量计、喷洒装置和可移动平台

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2019/106214 WO2021051273A1 (zh) 2019-09-17 2019-09-17 电磁流量计、喷洒装置和可移动平台

Publications (1)

Publication Number Publication Date
WO2021051273A1 true WO2021051273A1 (zh) 2021-03-25

Family

ID=73798839

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/106214 WO2021051273A1 (zh) 2019-09-17 2019-09-17 电磁流量计、喷洒装置和可移动平台

Country Status (2)

Country Link
CN (1) CN112119285B (zh)
WO (1) WO2021051273A1 (zh)

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB1225872A (zh) * 1968-03-07 1971-03-24
FR2509459A1 (fr) * 1981-07-10 1983-01-14 Hutchins Thomas Iv Appareil de detection des variations du debit d'un fluide conducteur s'ecoulant dans un circuit
EP2169359A1 (de) * 2008-09-26 2010-03-31 Gebr. Kemper GmbH + Co. KG Metallwerke Messarmatur und Verfahren zur Ermittlung eines Differenz- oder Summenvolumenstromes
CN209043394U (zh) * 2018-11-29 2019-06-28 深圳市大疆创新科技有限公司 电磁流量计及其励磁减振结构
CN209069355U (zh) * 2018-11-29 2019-07-05 深圳市大疆创新科技有限公司 电磁流量计和具有该电磁流量计的植保无人机
CN209085688U (zh) * 2018-11-29 2019-07-09 深圳市大疆创新科技有限公司 电磁流量计和具有该电磁流量计的植保无人机
CN209085686U (zh) * 2018-11-29 2019-07-09 深圳市大疆创新科技有限公司 电磁流量计和具有该电磁流量计的植保无人机
CN209085687U (zh) * 2018-11-29 2019-07-09 深圳市大疆创新科技有限公司 电磁流量计和具有该电磁流量计的植保无人机
CN110068372A (zh) * 2018-01-24 2019-07-30 克洛纳有限公司 磁感应式流量测量仪

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1074539C (zh) * 1995-09-14 2001-11-07 株式会社椭圆 科里奥利氏流量计
JPH11108713A (ja) * 1997-09-30 1999-04-23 Yamada Electric Mfg Co Ltd 電磁流量計
CN100419386C (zh) * 2001-09-20 2008-09-17 株式会社山武 电磁流量计
JP5259452B2 (ja) * 2008-06-19 2013-08-07 一般財団法人電力中央研究所 電磁ポンプ吐出量測定方法
CN205373787U (zh) * 2016-01-25 2016-07-06 中国原子能科学研究院 一种永磁式液态金属流量计
CN109163769B (zh) * 2018-09-03 2020-02-07 山西省地质矿产研究院(山西省煤层气测试技术研究院) 一种管道流量电磁阵列传感器的检测方法
CN110044425A (zh) * 2019-05-23 2019-07-23 开封仪表有限公司 一种平行式涡轮流量传感器

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB1225872A (zh) * 1968-03-07 1971-03-24
FR2509459A1 (fr) * 1981-07-10 1983-01-14 Hutchins Thomas Iv Appareil de detection des variations du debit d'un fluide conducteur s'ecoulant dans un circuit
EP2169359A1 (de) * 2008-09-26 2010-03-31 Gebr. Kemper GmbH + Co. KG Metallwerke Messarmatur und Verfahren zur Ermittlung eines Differenz- oder Summenvolumenstromes
CN110068372A (zh) * 2018-01-24 2019-07-30 克洛纳有限公司 磁感应式流量测量仪
CN209043394U (zh) * 2018-11-29 2019-06-28 深圳市大疆创新科技有限公司 电磁流量计及其励磁减振结构
CN209069355U (zh) * 2018-11-29 2019-07-05 深圳市大疆创新科技有限公司 电磁流量计和具有该电磁流量计的植保无人机
CN209085688U (zh) * 2018-11-29 2019-07-09 深圳市大疆创新科技有限公司 电磁流量计和具有该电磁流量计的植保无人机
CN209085686U (zh) * 2018-11-29 2019-07-09 深圳市大疆创新科技有限公司 电磁流量计和具有该电磁流量计的植保无人机
CN209085687U (zh) * 2018-11-29 2019-07-09 深圳市大疆创新科技有限公司 电磁流量计和具有该电磁流量计的植保无人机

Also Published As

Publication number Publication date
CN112119285B (zh) 2024-01-19
CN112119285A (zh) 2020-12-22

Similar Documents

Publication Publication Date Title
CN211425538U (zh) 电磁流量计、喷洒装置和可移动平台
CN105531939B (zh) 天线模块、无线仪器及现场仪器控制系统
CN105716684A (zh) 无人机液位测量装置及方法
CN210893263U (zh) 电磁流量计、喷洒装置和可移动平台
WO2021051273A1 (zh) 电磁流量计、喷洒装置和可移动平台
WO2021087683A1 (zh) 电磁流量计、喷洒装置和可移动平台
CN110412339B (zh) 一种电力系统电流测量装置及方法
CN209085688U (zh) 电磁流量计和具有该电磁流量计的植保无人机
WO2020107324A1 (zh) 电磁流量计和具有该电磁流量计的植保无人机
CN205691672U (zh) 三维全向电磁场探头及电磁检测设备
CN110657790B (zh) 一种利用全站仪测量立靶坐标的方法
CN207528844U (zh) 一种微波暗箱空间衰减校准装置
CN110849357A (zh) 一种油浸式变压器微型机器鱼姿态定位方法
WO2020107323A1 (zh) 电磁流量计和具有该电磁流量计的植保无人机
CN211178609U (zh) 一种电磁流量计、喷洒系统及无人机
CN114130563B (zh) 一种电磁流量计、喷洒系统及无人机
CN113218379B (zh) 一种与飞行轨迹耦合的锂电池无人机电磁干扰抑制方法
CN209605975U (zh) 一种拆装式无源无线温度传感器
WO2020107325A1 (zh) 电磁流量计和具有该电磁流量计的植保无人机
WO2020107334A1 (zh) 电磁流量计和具有该电磁流量计的植保无人机
CN107014270A (zh) 检具
WO2021087666A1 (zh) 电磁流量计及农业植保机
WO2020107467A1 (zh) 一种电磁流量计
WO2021196206A1 (zh) 流量计、流量计组件及可移动平台
CN207379585U (zh) 一种传感器

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19945891

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19945891

Country of ref document: EP

Kind code of ref document: A1