WO2021049680A1 - Method for mass synthesis of carbon nanotubes using alkali metal catalyst and carbon nanotubes synthesized thereby - Google Patents

Method for mass synthesis of carbon nanotubes using alkali metal catalyst and carbon nanotubes synthesized thereby Download PDF

Info

Publication number
WO2021049680A1
WO2021049680A1 PCT/KR2019/011746 KR2019011746W WO2021049680A1 WO 2021049680 A1 WO2021049680 A1 WO 2021049680A1 KR 2019011746 W KR2019011746 W KR 2019011746W WO 2021049680 A1 WO2021049680 A1 WO 2021049680A1
Authority
WO
WIPO (PCT)
Prior art keywords
alkali metal
carbon nanotubes
metal catalyst
precursor solution
carbon
Prior art date
Application number
PCT/KR2019/011746
Other languages
French (fr)
Korean (ko)
Inventor
강준
김대영
Original Assignee
한국해양대학교 산학협력단
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 한국해양대학교 산학협력단 filed Critical 한국해양대학교 산학협력단
Publication of WO2021049680A1 publication Critical patent/WO2021049680A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B32/00Carbon; Compounds thereof
    • C01B32/15Nano-sized carbon materials
    • C01B32/158Carbon nanotubes
    • C01B32/16Preparation
    • C01B32/162Preparation characterised by catalysts
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/02Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the alkali- or alkaline earth metals or beryllium
    • B01J23/04Alkali metals
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J31/00Catalysts comprising hydrides, coordination complexes or organic compounds
    • B01J31/02Catalysts comprising hydrides, coordination complexes or organic compounds containing organic compounds or metal hydrides
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J31/00Catalysts comprising hydrides, coordination complexes or organic compounds
    • B01J31/02Catalysts comprising hydrides, coordination complexes or organic compounds containing organic compounds or metal hydrides
    • B01J31/0201Oxygen-containing compounds
    • B01J31/0209Esters of carboxylic or carbonic acids
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/30Catalysts, in general, characterised by their form or physical properties characterised by their physical properties
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B32/00Carbon; Compounds thereof
    • C01B32/15Nano-sized carbon materials
    • C01B32/158Carbon nanotubes
    • C01B32/16Preparation
    • C01B32/166Preparation in liquid phase

Definitions

  • the present invention relates to a method for mass synthesis of carbon nanotubes using an alkali metal catalyst and to carbon nanotubes synthesized therefrom, and more particularly, without using a non-alkali metal catalyst such as iron, cobalt, nickel, and excluding hydrogen. It relates to the synthesis of pure carbon nanotubes using an alkali metal catalyst based on a group 1 element.
  • the carbon nanotubes discovered by Sumio Iijima in 1991 form a honeycomb-shaped hexagon by combining three neighboring carbon atoms with one carbon atom. This hexagonal structure is repeated to form a cylindrical shape or a tube shape. Say that.
  • carbon nanotubes Since the discovery of carbon nanotubes, many theoretical studies and industrial applications have been attempted to date.In particular, carbon nanotubes have excellent mechanical properties, electrical selectivity, excellent field emission characteristics, and high-efficiency hydrogen storage media characteristics. Therefore, it is known as a new material with few defects among existing materials.
  • carbon nanotubes are synthesized by dispersing and reacting a metal catalyst particle and a hydrocarbon-based raw material gas in a high-temperature fluidized bed reactor.
  • the metal catalyst particles are suspended in the fluidized bed reactor by the raw material gas and react with the raw material gas to grow the carbon nanotubes.
  • the present invention was invented to solve the above problems, and a mass synthesis method of carbon nanotubes using an alkali metal catalyst based on a group 1 element excluding hydrogen without using a non-alkali metal catalyst such as iron, cobalt, nickel And it is an object to provide a carbon nanotube synthesized therefrom.
  • the present invention for achieving the above object, the step of preparing a carbon source (carbon source); Dissolving an alkali metal-based alkali metal-containing compound in a solvent to form an alkali metal catalyst precursor solution; And heat treatment while spraying the alkali metal catalyst precursor solution while supplying the carbon source, whereby the alkali metal of the sprayed alkali metal catalyst precursor solution is aggregated into a nano catalyst, and the carbon source is dissolved and crystallized in the nano catalyst.
  • the nanocatalyst is removed while evaporating, and a method for mass-synthesizing carbon nanotubes using an alkali metal catalyst is a technical gist of the present invention.
  • the alkali metal catalyst precursor solution is characterized in that it is formed by dissolving 0.1 to 0.5 g of the alkali metal-containing compound per 100 ml of the solvent.
  • the solvent is a non-polar solvent
  • crown ether is added so that the alkali metal cation of the alkali metal-containing compound is the cavity of the crown ether.
  • the alkali metal cation is solvated to prepare an alkali metal catalyst precursor solution.
  • the alkali metal-containing compound is selected from the group consisting of a lithium precursor, a sodium precursor, a potassium precursor, and a mixture thereof.
  • the carbon source is composed of any one or more of a liquid CNT growth material, a gaseous CNT growth material, and a solid CNT growth material
  • the liquid CNT growth material is ethanol (C 2 H 6 O), benzene (C 6 H 6 ), xylene (xylene), toluene (C 7 H 8 ) and a mixture thereof
  • the gaseous CNT growth material is methane (CH 4 ), propylene (C 3 H 6 ), propene (C 3 Group consisting of H 4 ), propane (C 3 H 8 ), butane (C 4 H 10 ), butylene (C 4 H 8 ), butadiene (C 4 H 6 ), ethylene (C 2 H 2 ), and mixtures thereof
  • the solid CNT growth material is characterized in that the camphor (C 10 H 16 O).
  • the carbon nanotubes are synthesized through heat treatment in a temperature range of 500 to 1,200°C.
  • the present invention for achieving the above object is, in the presence of a carbon source, in a carbon nanotube, an alkali metal catalyst precursor solution in a state in which an alkali metal-based alkali metal-containing compound is dissolved in a solvent is sprayed while heat treatment
  • the alkali metal of the alkali metal catalyst precursor solution is agglomerated into a nano catalyst, and the carbon source is dissolved in the nano catalyst to crystallize and synthesized in the form of a powder.
  • the existing catalysts based on non-alkali metals of groups 8, 9, and 10 such as iron (Fe), cobalt (Co), and nickel (Ni) were used to synthesize carbon nanotubes, excluding hydrogen.
  • alkali metal-based catalysts such as lithium (Li), sodium (Na), and potassium (K) have the effect of synthesizing carbon nanotubes.
  • the alkali metal aggregated in the alkali metal catalyst precursor solution is much lower than that of the carbon nanotubes at 500°C. There is an effect that the synthesis is sufficiently performed.
  • the alkali metal of the sprayed alkali metal catalyst precursor solution is agglomerated into a nano-catalyst through heat treatment, and the carbon source is dissolved in the agglomerated nano-catalyst and grown into carbon nanotubes, synthesized, and vaporized and removed. After synthesis, there is no need for additional heat treatment or acid treatment to remove the nanocatalyst attached to the carbon nanotubes, thereby enabling continuous mass synthesis of carbon nanotubes.
  • FIG. 1 is a block diagram of an apparatus according to a preferred embodiment of the present invention.
  • Figure 2 is a crown ether coordinated with an alkali metal cation according to a preferred embodiment of the present invention.
  • FIG. 3 is a SEM photograph of a carbon nanotube synthesized using a Li precursor according to a preferred embodiment of the present invention.
  • FIG. 5 is a SEM photograph of a carbon nanotube synthesized using a K precursor according to a preferred embodiment of the present invention.
  • the present invention uses alkali metals such as lithium (Li), sodium (Na), and potassium (K) rather than non-alkali metals such as iron (Fe), cobalt (Co), and nickel (Ni) to form carbon nanotubes.
  • alkali metals such as lithium (Li), sodium (Na), and potassium (K)
  • non-alkali metals such as iron (Fe), cobalt (Co), and nickel (Ni)
  • an alkali metal catalyst precursor solution in which an alkali metal-containing compound based on a group 1 element other than hydrogen is dissolved in a solvent is sprayed.
  • the metal catalyst precursor solution alkali metals are aggregated into nano-catalysts, and carbon sources are dissolved and crystallized in these nano-catalysts, growing and synthesizing carbon nanotubes, and simultaneously evaporating and removing carbon nanoparticles in the form of pure powder. It is characterized by being able to produce tubes.
  • 'catalyst' referred to in the present invention will be interpreted as the same meaning as'nano catalyst' and'alkali metal catalyst'.
  • FIG. 1 is a block diagram of an apparatus according to a preferred embodiment of the present invention.
  • a carbon source supply unit 100, a chamber unit 200, and an injection unit ( 300), a CNT synthesis unit 400 and a collector unit 500 can be seen in a mass synthesis apparatus for carbon nanotubes.
  • the carbon source supply unit 100 is a tank 110 in which a carbon source in a liquid phase, a gas phase, or a solid phase is accommodated, and a predetermined space in which the tank 110 can be seated.
  • a gas supplier 130 connected by a second flow path (L2) to supply a carrier gas (carrier gas).
  • a carrier gas it is to export unnecessary elements such as hydrogen and oxygen separated from the carbon precursor contained in the carbon source contained in the carbon source supply unit 100 to the outside, argon (Ar), nitrogen (N 2 ), hydrogen ( It may be one or more selected from the group consisting of H 2 ), ammonia (NH 3 ) and mixed gases thereof, but in the case of hydrogen (H 2 ), there is a risk of explosion and may not be stable in use, so nitrogen (N 2 ) It is preferable to use or a mixed gas of hydrogen and nitrogen.
  • the chamber unit 200 can be installed at a relatively higher position than the carbon source supply unit 100, and is an alkali metal catalyst precursor formed by dissolving an alkali metal-containing compound based on a Group 1 alkali metal element excluding hydrogen in a solvent. Provide a space in which the solution can be accommodated.
  • the difference in height at which the carbon source supply unit 100 and the chamber unit 200 can be installed is not limited.
  • the injection unit 300 is installed between the chamber unit 200 and the CNT synthesis unit 400 to connect the alkali metal catalyst precursor solution accommodated and stored in the chamber unit 200 to the injection unit 300. ) To the CNT synthesis unit 400 through the spray in a droplet state.
  • the CNT synthesis unit 400 is a furnace constituting a reactor for heat treatment, and is supplied while being sprayed in the state of particles or droplets through the atomizer (A) of the injection unit 300 installed under the chamber unit 200
  • the alkali metal in the alkali metal catalyst precursor solution is agglomerated into the nano catalyst.
  • the carbon source is dissolved and crystallized, the carbon source is eventually grown to produce carbon nanotubes in a manner that can be continuously mass-synthesized.
  • the collector unit 500 collects and accommodates only pure carbon nanotubes synthesized from the CNT synthesis unit 400.
  • the alkali metal in the alkali metal catalyst precursor solution is agglomerated into a nano-catalyst by heat treatment in the CNT synthesis unit 400, the carbon source is dissolved and crystallized in the nano-catalyst to grow and synthesize the carbon nanotubes and vaporize and remove them.
  • a method of synthesizing carbon nanotubes in large quantities by simply spraying an alkali metal catalyst precursor solution is a carbon source supply unit 100, a chamber unit 200, an injection unit 300, and a CNT synthesis unit 400 shown in FIG. 1. And it can be achieved through a carbon nanotube mass synthesis apparatus consisting of the collector unit 500.
  • the carbon nanotubes using an alkali metal catalyst are synthesized through the step of preparing a carbon source (S10), the step of forming an alkali metal catalyst precursor solution (S20), and the step of synthesizing carbon nanotubes (S30). The description of the steps will be described in more detail below.
  • a liquid type CNT growth material in order to supply a material capable of growing and synthesizing carbon nanotubes to the CNT synthesis unit 400, a liquid type CNT growth material, a gas type gaseous CNT growth material, and a solid type Any one or more of solid CNT growth materials may be selected and used.
  • any one or more of ethanol (C 2 H 6 O), benzene (C 6 H 6 ), xylene and toluene (C 7 H 8 ) may be selected. .
  • camphor C 10 H 16 O
  • a solid type camphor (C 10 H 16 O)
  • C 10 H 16 O which is one of the monoterpene ketones
  • the gas supplier 130 in which a carrier gas is accommodated in the second flow path L2 connected to the first flow path L1 that allows the CNT growth material to be moved to the CNT synthesis unit 400. Can be connected and installed, such a carrier gas is to export unnecessary elements such as hydrogen and oxygen separated from the carbon precursor contained in the CNT growth material to the outside.
  • an alkali metal-containing compound based on a Group 1 alkali metal element excluding hydrogen is dissolved in a solvent to form an alkali metal catalyst precursor solution (S20).
  • metal-based non-alkali metal catalysts such as iron (Fe), cobalt (Co), and nickel (Ni) have been mainly used.
  • Fe iron
  • Co cobalt
  • Ni nickel
  • an additional process such as acid treatment is required to remove these metals again when the synthesis of carbon nanotubes is completed.
  • an alkali metal-containing compound based on an element of Group 1 excluding hydrogen is used.
  • the alkali metal-containing compound may be referred to as a term for generically referring to metallic salts and organometallic compounds.
  • the alkali metal catalyst precursor solution using the alkali metal-containing compound as described above it can be explained in the following two ways.
  • an alkali metal catalyst is dissolved by dissolving 0.1 to 0.5 g of an alkali metal-containing compound selected from the group consisting of lithium precursor, sodium precursor, potassium precursor, and mixtures thereof per 100 ml of deionized water, that is, a solvent such as water.
  • an alkali metal-containing compound selected from the group consisting of lithium precursor, sodium precursor, potassium precursor, and mixtures thereof per 100 ml of deionized water, that is, a solvent such as water.
  • an alkali metal-containing compound in the case of an alkali metal-containing compound, as mentioned above, it may be selected from alkali metal salts, organometallic compounds, and mixtures thereof, for example, any one of a lithium precursor, a sodium precursor, and a potassium precursor. It can be more than that.
  • lithium precursor it is preferable to use at least one of lithium benzoate and lithium chloride.
  • sodium precursor it is preferable to use at least one of sodium benzoate and sodium chloride.
  • potassium precursor it is preferable to use at least one of potassium benzoate, potassium hydroxide, and potassium chloride.
  • the amount of alkali metal-containing compound is not particularly limited, but if it is mixed with less than 0.1 g per 100 ml of solvent, the amount of agglomeration by nano catalyst is not sufficient, and the reaction speed is increased until synthesis by growing into carbon nanotubes. It is not desirable in terms of production efficiency.
  • the alkali metal-containing compound is mixed in excess of 0.5 g, the nano-catalyst aggregated from the alkali metal catalyst precursor solution during heat treatment in the furnace cannot be vaporized and remains partially attached to the carbon nanotubes. Since the purity of the collected carbon nanotubes may be lowered, it is not preferable.
  • the alkali metal-containing compound is preferably dissolved in the range of 0.1 to 0.5 g per 100 ml of the solvent, and more preferably 0.2 g is dissolved per 100 ml of the solvent.
  • a polar solvent or a non-polar solvent may be selectively used, examples of which are as follows. That is, the solvent is preferably a polar solvent selected from water, a lower alcohol having 1 to 5 carbon atoms, and a mixture thereof, or a non-polar solvent selected from benzene, xylene, toluene, and a mixture thereof.
  • the alkali metal cation of the alkali metal-containing compound is coordinated in the cavity of the crown ether by the addition of crown ether to form a complex, so that the alkali metal cation is solvated to form an alkali metal catalyst precursor solution.
  • crown ether (x-Crown ether-y; x is the number of all atoms in the ring, y is the number of oxygen atoms) is an oligomer of ethylene oxide in which ethyleneoxy (-CH 2 CH 2 O-) units are repeated. (oligomer), by putting the alkali metal cation in the alkali metal catalyst precursor solution into the cavity at the center of the crown ether, forming a stable structure with the alkali metal cation, so that the alkali metal cation is solvated and dissolved, especially in non-polar solvents. It is a method of increasing the solubility of the alkali metal-containing compound as a solute.
  • crown ether makes a stable complex with metal ions, that is, alkali metal cations such as Li + , Na + , and K + , so that alkali metal-containing compounds such as benzene, xylene, and toluene are insoluble in non-polar solvents composed of hydrocarbons. It can be solvated to dissolve well.
  • alkali metal cations such as Li + , Na + , and K +
  • alkali metal-containing compounds such as benzene, xylene, and toluene are insoluble in non-polar solvents composed of hydrocarbons. It can be solvated to dissolve well.
  • an alkali metal-containing compound When an alkali metal-containing compound is dissolved in a solvent through crown ether, it is converted into a transparent alkali metal catalyst precursor solution.
  • crown ether e.g., alkali metal
  • the weight ratio of the metal-containing compound and the crown ether may be 1:0.1 to 100.
  • the amount in which the alkali metal-containing compound and the crown ether can be mixed is not limited.
  • crown ether it can be used by selecting from the group consisting of 12-Crown-4, 15-Crown-5, 18-Crown-6, and a mixture thereof, which is coordinated with an alkali metal cation according to a preferred embodiment of the present invention. It can be confirmed through FIG. 2 showing an exemplary crown ether.
  • Figure 2-(a) exemplarily shows 12-Crown-4 forming a complex with Li +
  • Figure 2-(b) exemplarily shows 15-Crown-5 forming a complex with Na +
  • FIG. 2-(c) exemplarily shows 18-Crown-6 forming a complex with K +.
  • the oxygen atom constituting the crown helps coordinate alkali metal cations in the cavity within the crown, and the types of ions in which a stable complex is formed are different depending on the size of the crown. That is, Li + forms the most stable complex with 12-Crown-4, Na + forms the most stable complex with 15-Crown-5, and K + forms the most stable complex with 18-Crown-6. It is possible to check.
  • the alkali metal of the sprayed alkali metal catalyst precursor solution is aggregated into the nano catalyst, and the carbon source is dissolved in the nano catalyst and crystallized to grow carbon nanotubes. Simultaneously, the nanocatalyst is removed while evaporating (S30).
  • carbon nanotubes are generally synthesized as follows.
  • carbon nanotubes are grown in various materials through a method such as CVD (Chemical Vapor Deposition).
  • CVD Chemical Vapor Deposition
  • iron-based non-alkali metal catalyst to contain carbon dioxide and other carbon.
  • a carbon source e.g., liquid CNT growth material and The vapor phase CNT growth material
  • the alkali metal catalyst precursor solution stored in the chamber part 200 is connected to the spray part 300 and the installed atomizer (A) is sprayed. It is sprayed together into a furnace and is atomized and charged.
  • the carbon source and the alkali metal catalyst precursor solution are supplied to the inside of the SUS pipe. desirable.
  • the alkali metal in the atomized alkali metal catalyst precursor solution is aggregated in the form of a nano catalyst, and the carbon source is formed in the aggregated nano catalyst.
  • the alkali metal catalyst precursor solution that is atomized including the nano catalyst is simply vaporized or evaporated and removed due to the temperature in the furnace, so that only pure carbon nanotubes are collected into the collector unit 500. .
  • an alkali metal catalyst precursor solution in which an alkali metal-containing compound is dissolved through a solvent or crown ether in the presence of a carbon source that helps the growth of carbon nanotubes is used in the CNT synthesis unit.
  • the synthesis of carbon nanotubes can be achieved just by spraying with 400.
  • the time conditions during the heat treatment it can be made for 10 to 30 minutes, but when an alkali metal catalyst precursor solution in which 0.2 g of an alkali metal-containing compound is dissolved in 100 ml of a solvent is sprayed for about 20 minutes, 2 g of carbon nanotubes are synthesized. Therefore, the time can be varied in various ways depending on the amount of carbon nanotubes desired.
  • the alkali metal catalyst precursor solution sprayed through the atomizer (A) connected to the spray unit 300 is heat-treated in the CNT synthesis unit 400 to aggregate the alkali metal in the form of a nano catalyst, and the carbon source is formed in the nano catalyst.
  • the carbon nanotubes are grown and synthesized while being dissolved, they are vaporized and removed at the same time, so that the carbon nanotubes synthesized through the CNT synthesis unit 400 and collected by the collector unit 500 are not attached to the nanocatalyst in a bonded state. There is no need to remove the nanocatalyst by performing a separate additional heat treatment or post-treatment process such as acid treatment.
  • the advantages of the process can be maintained because the alkali ions have high reactivity with water, so that they can be removed by dissolving in water rather than acid treatment.
  • Lithium precursor solution was made into a catalyst material by dissolving 0.2 g of lithium benzoate in 100 ml of deionized water.
  • Carbon nanotube synthesis temperature 700 ⁇ 1,000°C Catalyst spraying medium Atomizer(25psi) Carrier gas N 2 (0.5L/min)
  • Example 2 0.2 g of sodium benzoate was dissolved in 100 ml of deionized water to make the Na precursor solution as a catalyst material. Carbon nanotubes were synthesized under the same spraying conditions as in Example 1, and then naturally cooled to ambient temperature to finish.
  • FIG. 3 is a SEM photograph of a carbon nanotube synthesized using a Li precursor according to a preferred embodiment of the present invention.
  • 3-(a) and 3-(b) show SEM photographs of carbon nanotubes synthesized by spraying a Li precursor solution according to Example 1 at different positions.
  • FIG. 4 is a SEM photograph of carbon nanotubes synthesized using Na precursors according to a preferred embodiment of the present invention.
  • 4-(a) and 4-(b) show SEM photographs of carbon nanotubes synthesized by spraying the Na precursor solution according to Example 2 at different positions.
  • 5 is a SEM photograph of a carbon nanotube synthesized using a K precursor according to a preferred embodiment of the present invention.
  • 5-(a) and 5-(b) show SEM photographs of carbon nanotubes synthesized by spraying the K precursor solution according to Example 3 at different positions.
  • the yield of the synthesized carbon nanotubes was confirmed to be about 80 to 90%, and the diameter of the carbon nanotubes was confirmed to be about 20 nm to 2 ⁇ m.
  • carbon nanotubes can be easily mass-synthesized by using various substances (eg, salt, seawater, etc.) containing sodium (Na) among the Group 1 elements as a catalyst.
  • various substances eg, salt, seawater, etc.
  • sodium (Na) among the Group 1 elements as a catalyst.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Nanotechnology (AREA)
  • Inorganic Chemistry (AREA)
  • Carbon And Carbon Compounds (AREA)
  • Catalysts (AREA)

Abstract

The present invention relates to a method for mass synthesis of carbon nanotubes using an alkali metal catalyst and carbon nanotubes synthesized thereby and, more specifically, to the synthesis of pure carbon nanotubes using an alkali metal catalyst based on a Group 1 element other than hydrogen, not using non-alkali metal catalysts such as iron, cobalt, and nickel. The subject matters of the present invention are a method for mass synthesis of carbon nanotubes using an alkali metal catalyst, and carbon nanotubes synthesized thereby, the method comprising the steps of: preparing a carbon source; forming an alkali metal catalyst precursor solution by dissolving, in a solvent, an alkali-metal-containing compound, which is based on an alkali metal; and spraying and heat-treating the alkali metal catalyst precursor solution while the carbon source is supplied, so that the alkali metal of the alkali metal catalyst precursor solution being sprayed agglomerates as a nanocatalyst, and the carbon source is dissolved by the nanocatalyst and crystallized to grow into carbon nanotubes and at the same time, the nanocatalyst is removed as the nanocatalyst vaporizes.

Description

알칼리금속촉매를 이용한 탄소나노튜브의 대량 합성방법 및 이로부터 합성된 탄소나노튜브Mass synthesis method of carbon nanotubes using alkali metal catalyst and carbon nanotubes synthesized therefrom
본 발명은 알칼리금속촉매를 이용한 탄소나노튜브의 대량 합성방법 및 이로부터 합성된 탄소나노튜브에 관한 것으로, 더욱 상세하게는 철, 코발트, 니켈과 같은 비알칼리금속촉매를 이용하지 않고, 수소를 제외한 1족 원소 기반의 알칼리금속촉매를 이용한 순수 탄소나노튜브의 합성에 관한 것이다.The present invention relates to a method for mass synthesis of carbon nanotubes using an alkali metal catalyst and to carbon nanotubes synthesized therefrom, and more particularly, without using a non-alkali metal catalyst such as iron, cobalt, nickel, and excluding hydrogen. It relates to the synthesis of pure carbon nanotubes using an alkali metal catalyst based on a group 1 element.
1991년 Sumio Iijima에 의해 발견된 탄소나노튜브는 하나의 탄소원자에 이웃하는 세 개의 탄소원자가 결합되어 벌집 모양의 육각형을 이루는 것으로, 이러한 육각형의 구조가 반복되면서 원통형으로 말리거나 튜브 형태를 형성하고 있는 것을 말한다.The carbon nanotubes discovered by Sumio Iijima in 1991 form a honeycomb-shaped hexagon by combining three neighboring carbon atoms with one carbon atom. This hexagonal structure is repeated to form a cylindrical shape or a tube shape. Say that.
탄소나노튜브가 발견된 이후 지금까지 많은 이론적인 연구와 산업적 응용으로써의 개발이 시도되고 있는데, 특히 탄소나노튜브는 우수한 기계적 특성, 전기적 선택성, 뛰어난 전계 방출 특성, 고효율의 수소저장매체 특성 등을 지니기 때문에 현존하는 물질 중 결함이 거의 없는 신소재로 알려져 있다.Since the discovery of carbon nanotubes, many theoretical studies and industrial applications have been attempted to date.In particular, carbon nanotubes have excellent mechanical properties, electrical selectivity, excellent field emission characteristics, and high-efficiency hydrogen storage media characteristics. Therefore, it is known as a new material with few defects among existing materials.
하지만 탄소나노튜브는 고가이기 때문에 다양한 분야에 유용하게 적용하기 위해서는 탄소나노튜브를 값싸게 대량으로의 합성이 요구됨에 따라, 최근에는 고순도의 탄소나노튜브를 한번에 많은 양으로 합성할 수 있는 기술에 대한 연구가 활발히 진행 중이며, 예컨대, 아크 방전법, 레이저 증착법, CVD법 및 HiPco법 등이 있다.However, since carbon nanotubes are expensive, it is required to synthesize carbon nanotubes in large quantities at low cost in order to be useful in various fields. Research is actively underway, such as arc discharge method, laser deposition method, CVD method, and HiPco method.
그 중 CVD법에서는 통상적으로 고온의 유동층 반응기 안에서 금속촉매입자와 탄화수소 계열의 원료기체를 분산 및 반응시킴으로써 탄소나노튜브가 합성된다. 즉 금속촉매입자는 원료기체에 의해 유동층 반응기 안에서 부유(浮游)하면서 원료기체와 반응하여 탄소나노튜브를 성장시키는 것이다.Among them, in the CVD method, carbon nanotubes are synthesized by dispersing and reacting a metal catalyst particle and a hydrocarbon-based raw material gas in a high-temperature fluidized bed reactor. In other words, the metal catalyst particles are suspended in the fluidized bed reactor by the raw material gas and react with the raw material gas to grow the carbon nanotubes.
예를 들어, '유동층 반응기에서 탄소나노튜브를 제조하는 방법(공개번호: 10-2018-0134241)'에서는 내부 압력이 0.5~12barg(게이지 압력)인 유동층 반응기 내에 철(Fe), 코발트(Co), 니켈(Ni)과 같은 금속촉매 또는 금속합금촉매와 탄소 공급원을 공급하여 탄소나노튜브를 합성하는 내용이 언급되어 있다.For example, in the'method of manufacturing carbon nanotubes in a fluidized bed reactor (Publication No.: 10-2018-0134241)', iron (Fe) and cobalt (Co) in a fluidized bed reactor with an internal pressure of 0.5 to 12 barg (gauge pressure). , The content of synthesizing carbon nanotubes by supplying a metal catalyst such as nickel (Ni) or a metal alloy catalyst and a carbon source is mentioned.
이처럼 현재 탄소나노튜브를 대량으로 합성하는 경우, 철, 코발트, 니켈 등 탄소나노튜브 성장에 필요한 금속촉매들을 나노입자 형태로 만들어 담체에 담지함으로써 이들 담체로부터 탄소나노튜브를 성장시키는 방식이 주로 이루어졌으나, 금속들을 제거하기 위해 굉장히 높은 온도에서 열처리하거나, 산처리 등이 필수적으로 수행되어야 하는 문제점이 있다.As such, in the case of synthesizing carbon nanotubes in large quantities, the method of growing carbon nanotubes from these carriers by making metal catalysts necessary for carbon nanotube growth, such as iron, cobalt, nickel, etc., in the form of nanoparticles and supporting them on the carrier has been mainly made In order to remove metals, heat treatment at a very high temperature or acid treatment must be performed indispensably.
따라서 촉매로 사용된 금속 또는 합금의 조합, 사용된 담체, 촉매와 담체 사이의 상호작용, 반응 온도, 체류시간, 사용된 반응기에 의존하지 않고 새로운 시각에서 탄소나노튜브를 대량 합성할 수 있는 기술개발 연구가 절실히 요구되는 시점이다.Therefore, the development of technology that can mass synthesize carbon nanotubes from a new perspective without depending on the combination of metals or alloys used as catalysts, the carrier used, the interaction between the catalyst and the carrier, the reaction temperature, residence time, and the reactor used. This is the time when research is desperately required.
본 발명은 상기한 문제점을 해소하기 위하여 발명된 것으로, 철, 코발트, 니켈과 같은 비알칼리금속촉매를 이용하지 않고, 수소를 제외한 1족 원소 기반의 알칼리금속촉매를 이용한 탄소나노튜브의 대량 합성방법 및 이로부터 합성된 탄소나노튜브를 제공하는데 그 목적이 있다.The present invention was invented to solve the above problems, and a mass synthesis method of carbon nanotubes using an alkali metal catalyst based on a group 1 element excluding hydrogen without using a non-alkali metal catalyst such as iron, cobalt, nickel And it is an object to provide a carbon nanotube synthesized therefrom.
상기의 목적을 달성하기 위한 본 발명은, 탄소원(carbon source)을 준비하는 단계; 알칼리금속 기반의 알칼리금속 함유 화합물을 용매에 용해시켜 알칼리금속촉매 전구체용액을 형성하는 단계; 및 상기 탄소원을 공급하는 중에 상기 알칼리금속촉매 전구체용액을 분사하면서 열처리함으로써, 상기 분사되는 알칼리금속촉매 전구체용액의 알칼리금속이 나노촉매로 응집되고, 상기 나노촉매에 상기 탄소원이 용해되어 결정화되면서 탄소나노튜브를 성장시킴과 동시에 상기 나노촉매는 기화되면서 제거되는 단계;를 포함하는 것을 특징으로 하는 알칼리금속촉매를 이용한 탄소나노튜브의 대량 합성방법을 기술적 요지로 한다.The present invention for achieving the above object, the step of preparing a carbon source (carbon source); Dissolving an alkali metal-based alkali metal-containing compound in a solvent to form an alkali metal catalyst precursor solution; And heat treatment while spraying the alkali metal catalyst precursor solution while supplying the carbon source, whereby the alkali metal of the sprayed alkali metal catalyst precursor solution is aggregated into a nano catalyst, and the carbon source is dissolved and crystallized in the nano catalyst. At the same time as the tube is grown, the nanocatalyst is removed while evaporating, and a method for mass-synthesizing carbon nanotubes using an alkali metal catalyst is a technical gist of the present invention.
바람직하게는 알칼리금속촉매 전구체용액은, 상기 알칼리금속 함유 화합물을 상기 용매 100㎖ 당 0.1~0.5g을 용해시켜 형성되는 것을 특징으로 한다.Preferably, the alkali metal catalyst precursor solution is characterized in that it is formed by dissolving 0.1 to 0.5 g of the alkali metal-containing compound per 100 ml of the solvent.
바람직하게는 상기 알칼리금속촉매 전구체용액을 형성하는 단계에서는, 상기 용매가 비극성용매인 경우, 크라운에테르(Crown ether)를 첨가하여 상기 알칼리금속 함유 화합물의 알칼리금속 양이온이 상기 크라운에테르의 공동(cavity)에 배위되도록 하여 착물을 이룸으로써, 상기 알칼리금속 양이온을 용매화하여 알칼리금속촉매 전구체용액을 제조하는 것을 특징으로 한다.Preferably, in the step of forming the alkali metal catalyst precursor solution, when the solvent is a non-polar solvent, crown ether is added so that the alkali metal cation of the alkali metal-containing compound is the cavity of the crown ether. By forming a complex by coordinating to, the alkali metal cation is solvated to prepare an alkali metal catalyst precursor solution.
바람직하게는 상기 알칼리금속 함유 화합물은, 리튬전구체, 나트륨전구체, 칼륨전구체 및 이의 혼합으로 이루어진 군으로부터 선택되는 것을 특징으로 한다.Preferably, the alkali metal-containing compound is selected from the group consisting of a lithium precursor, a sodium precursor, a potassium precursor, and a mixture thereof.
바람직하게는 상기 탄소원은, 액상 CNT성장소재, 기상 CNT성장소재 및 고상 CNT성장소재 중 어느 하나 이상으로 이루어지되, 상기 액상 CNT성장소재는 에탄올(C2H6O), 벤젠(C6H6), 자일렌(xylene), 톨루엔(C7H8) 및 이의 혼합으로 이루어진 군으로부터 선택되고, 상기 기상 CNT성장소재는 메탄(CH4), 프로필렌(C3H6), 프로핀(C3H4), 프로판(C3H8), 부탄(C4H10), 부틸렌(C4H8), 부타디엔(C4H6), 에틸렌(C2H2) 및 이의 혼합으로 이루어진 군으로부터 선택되며, 상기 고상 CNT성장소재는 캄퍼(C10H16O)인 것을 특징으로 한다.Preferably, the carbon source is composed of any one or more of a liquid CNT growth material, a gaseous CNT growth material, and a solid CNT growth material, but the liquid CNT growth material is ethanol (C 2 H 6 O), benzene (C 6 H 6 ), xylene (xylene), toluene (C 7 H 8 ) and a mixture thereof, and the gaseous CNT growth material is methane (CH 4 ), propylene (C 3 H 6 ), propene (C 3 Group consisting of H 4 ), propane (C 3 H 8 ), butane (C 4 H 10 ), butylene (C 4 H 8 ), butadiene (C 4 H 6 ), ethylene (C 2 H 2 ), and mixtures thereof It is selected from, and the solid CNT growth material is characterized in that the camphor (C 10 H 16 O).
바람직하게는 상기 탄소나노튜브는, 500~1,200℃ 온도 범위의 열처리를 통해 합성되는 것을 특징으로 한다.Preferably, the carbon nanotubes are synthesized through heat treatment in a temperature range of 500 to 1,200°C.
상기의 목적을 달성하기 위한 본 발명은, 탄소나노튜브에 있어서, 탄소원(carbon source)의 존재 하에서, 알칼리금속 기반의 알칼리금속 함유 화합물이 용매에 용해된 상태의 알칼리금속촉매 전구체용액이 분사되면서 열처리를 통해 상기 알칼리금속촉매 전구체용액의 알칼리금속이 나노촉매로 응집되고, 상기 나노촉매에 상기 탄소원이 용해되어 결정화되면서 합성되는 분말(powder) 형태인 것을 특징으로 하는 알칼리금속촉매를 이용한 탄소나노튜브의 대량 합성방법으로부터 합성된 탄소나노튜브를 기술적 요지로 한다.The present invention for achieving the above object is, in the presence of a carbon source, in a carbon nanotube, an alkali metal catalyst precursor solution in a state in which an alkali metal-based alkali metal-containing compound is dissolved in a solvent is sprayed while heat treatment The alkali metal of the alkali metal catalyst precursor solution is agglomerated into a nano catalyst, and the carbon source is dissolved in the nano catalyst to crystallize and synthesized in the form of a powder. The technical gist of carbon nanotubes synthesized by mass synthesis method.
상기 과제의 해결 수단에 의한 본 발명에 따른 알칼리금속촉매를 이용한 탄소나노튜브의 대량 합성방법 및 이로부터 합성된 탄소나노튜브는, 다음과 같은 효과가 있다.The method for mass synthesis of carbon nanotubes using an alkali metal catalyst according to the present invention, and the carbon nanotubes synthesized therefrom, according to the present invention by means of solving the above problems, have the following effects.
첫째, 기존의 철(Fe), 코발트(Co), 니켈(Ni)과 같은 8족, 9족, 10족의 비알칼리금속 기반의 촉매로 탄소나노튜브를 합성하던 방식에서 탈피하여 수소를 제외한 나머지 1족 원소 중 리튬(Li), 나트륨(Na), 칼륨(K)과 같은 알칼리금속 기반의 촉매로도 탄소나노튜브를 합성할 수 있는 효과가 있다.First, the existing catalysts based on non-alkali metals of groups 8, 9, and 10 such as iron (Fe), cobalt (Co), and nickel (Ni) were used to synthesize carbon nanotubes, excluding hydrogen. Among the elements of Group 1, alkali metal-based catalysts such as lithium (Li), sodium (Na), and potassium (K) have the effect of synthesizing carbon nanotubes.
둘째, 기존에 비알칼리금속촉매 사용으로 800℃와 같은 높은 온도의 열처리를 통해서만 탄소나노튜브가 합성되었던 것과 달리, 알칼리금속촉매 전구체용액 중 응집되는 알칼리금속은 그보다 훨씬 낮은 500℃에서도 탄소나노튜브의 합성이 충분히 이루어지는 효과가 있다.Second, unlike the existing carbon nanotubes were synthesized only through heat treatment at a high temperature such as 800℃ by using a non-alkali metal catalyst, the alkali metal aggregated in the alkali metal catalyst precursor solution is much lower than that of the carbon nanotubes at 500℃. There is an effect that the synthesis is sufficiently performed.
셋째, 분사되는 알칼리금속촉매 전구체용액의 알칼리금속이 열처리를 통해 나노촉매로 응집되고, 이렇게 응집된 나노촉매에 탄소원이 용해되면서 탄소나노튜브로 성장시켜 합성함과 함께 기화되어 제거됨으로써, 탄소나노튜브 합성 후 탄소나노튜브에 붙은 나노촉매를 제거하기 위해 별도의 추가적인 열처리 또는 산처리를 할 필요가 없어 탄소나노튜브의 연속적인 대량 합성이 가능한 효과가 있다.Third, the alkali metal of the sprayed alkali metal catalyst precursor solution is agglomerated into a nano-catalyst through heat treatment, and the carbon source is dissolved in the agglomerated nano-catalyst and grown into carbon nanotubes, synthesized, and vaporized and removed. After synthesis, there is no need for additional heat treatment or acid treatment to remove the nanocatalyst attached to the carbon nanotubes, thereby enabling continuous mass synthesis of carbon nanotubes.
도 1은 본 발명의 바람직한 실시예에 따른 장치 구성도.1 is a block diagram of an apparatus according to a preferred embodiment of the present invention.
도 2는 본 발명의 바람직한 실시예에 따라 알칼리금속 양이온이 배위된 크라운에테르.Figure 2 is a crown ether coordinated with an alkali metal cation according to a preferred embodiment of the present invention.
도 3은 본 발명의 바람직한 실시예에 따라 Li전구체를 이용하여 합성된 탄소나노튜브의 SEM 사진.3 is a SEM photograph of a carbon nanotube synthesized using a Li precursor according to a preferred embodiment of the present invention.
도 4는 본 발명의 바람직한 실시예에 따라 Na전구체를 이용하여 합성된 탄소나노튜브의 SEM 사진.4 is a SEM photograph of carbon nanotubes synthesized using Na precursors according to a preferred embodiment of the present invention.
도 5는 본 발명의 바람직한 실시예에 따라 K전구체를 이용하여 합성된 탄소나노튜브의 SEM 사진.5 is a SEM photograph of a carbon nanotube synthesized using a K precursor according to a preferred embodiment of the present invention.
이하, 본 발명의 바람직한 실시예를 첨부한 도면을 참조하여 상세하게 설명하면 다음과 같다.Hereinafter, preferred embodiments of the present invention will be described in detail with reference to the accompanying drawings.
본 발명은 철(Fe), 코발트(Co), 니켈(Ni)과 같은 비알칼리금속이 아닌, 리튬(Li), 나트륨(Na), 칼륨(K)과 같은 알칼리금속을 이용하여 탄소나노튜브를 대량으로 합성할 수 있는 것에 기술적 요지가 있다.The present invention uses alkali metals such as lithium (Li), sodium (Na), and potassium (K) rather than non-alkali metals such as iron (Fe), cobalt (Co), and nickel (Ni) to form carbon nanotubes. There is a technical gist of what can be synthesized in large quantities.
즉 본 발명은 탄소원(carbon source)의 존재 하에서, 수소를 제외한 1족 원소 기반의 알칼리금속 함유 화합물이 용매에 용해된 상태의 알칼리금속촉매 전구체용액을 분사하는 것만으로, 열처리를 통해 분사되고 있는 알칼리금속촉매 전구체용액 중에서 알칼리금속이 나노촉매로 응집되고, 이러한 나노촉매 내에 탄소원이 용해되고 결정화되면서 탄소나노튜브를 성장시켜 합성함과 동시에 기화되면서 제거됨으로써, 최종적으로 순수한 파우더(powder) 형태의 탄소나노튜브를 생산할 수 있는 것이 특징이다. 단, 본 발명에서 언급되는 '촉매'는 '나노촉매' 및 '알칼리금속촉매'와 동일한 의미로 해석하기로 한다.That is, in the present invention, in the presence of a carbon source, an alkali metal catalyst precursor solution in which an alkali metal-containing compound based on a group 1 element other than hydrogen is dissolved in a solvent is sprayed. In the metal catalyst precursor solution, alkali metals are aggregated into nano-catalysts, and carbon sources are dissolved and crystallized in these nano-catalysts, growing and synthesizing carbon nanotubes, and simultaneously evaporating and removing carbon nanoparticles in the form of pure powder. It is characterized by being able to produce tubes. However,'catalyst' referred to in the present invention will be interpreted as the same meaning as'nano catalyst' and'alkali metal catalyst'.
도 1은 본 발명의 바람직한 실시예에 따른 장치 구성도이다. 도 1을 참조하면, 비알칼리금속촉매가 아닌 알칼리금속촉매 전구체용액을 이용하여 분사하는 것만으로 탄소나노튜브를 연속적으로 대량 합성할 수 있도록 탄소원공급부(100), 챔버부(200), 분사부(300), CNT합성부(400) 및 콜렉터부(500)로 이루어진 탄소나노튜브 대량 합성장치를 확인할 수 있다.1 is a block diagram of an apparatus according to a preferred embodiment of the present invention. Referring to FIG. 1, a carbon source supply unit 100, a chamber unit 200, and an injection unit ( 300), a CNT synthesis unit 400 and a collector unit 500 can be seen in a mass synthesis apparatus for carbon nanotubes.
첫째, 탄소원공급부(100)는 액상(液相) 또는 기상(氣相) 또는 고상(固相)의 탄소원(carbon source)이 수용된 탱크(110)와, 탱크(110)가 안착될 수 있는 일정공간을 가져 탄소원에 열을 가하는 핫플레이트(120)와, 탱크(110)에 수용된 탄소원이 퍼니스(furnace) 열처리 공정을 위한 CNT합성부(400)로 이송될 수 있도록 하는 제1유로(L1) 상에 캐리어 가스(carrier gas) 공급을 위하여 제2유로(L2)에 의해 연결된 가스공급기(130)로 이루어질 수 있다.First, the carbon source supply unit 100 is a tank 110 in which a carbon source in a liquid phase, a gas phase, or a solid phase is accommodated, and a predetermined space in which the tank 110 can be seated. On the hot plate 120 to apply heat to the carbon source and the carbon source accommodated in the tank 110 to be transferred to the CNT synthesis unit 400 for the furnace heat treatment process. It may be made of a gas supplier 130 connected by a second flow path (L2) to supply a carrier gas (carrier gas).
캐리어 가스의 경우, 탄소원공급부(100)에 수용되어 있는 탄소원에 포함된 탄소전구체로부터 분리되는 수소 및 산소 등의 불필요한 원소를 외부로 내보내기 위한 것으로, 아르곤(Ar), 질소(N2), 수소(H2), 암모니아(NH3) 및 이들의 혼합가스로 이루어진 군에서 선택된 하나 이상일 수 있으나, 수소(H2)의 경우 폭발의 위험이 있어 사용에 안정적이지 못할 우려가 있으므로, 질소(N2)를 사용하거나 수소와 질소의 혼합가스를 사용하는 것이 바람직하다.In the case of a carrier gas, it is to export unnecessary elements such as hydrogen and oxygen separated from the carbon precursor contained in the carbon source contained in the carbon source supply unit 100 to the outside, argon (Ar), nitrogen (N 2 ), hydrogen ( It may be one or more selected from the group consisting of H 2 ), ammonia (NH 3 ) and mixed gases thereof, but in the case of hydrogen (H 2 ), there is a risk of explosion and may not be stable in use, so nitrogen (N 2 ) It is preferable to use or a mixed gas of hydrogen and nitrogen.
둘째, 챔버부(200)는 탄소원공급부(100)보다 상대적으로 높은 위치에 설치될 수 있는 것으로, 수소를 제외한 1족 알칼리금속원소 기반의 알칼리금속 함유 화합물을 용매에 용해시켜 형성한 알칼리금속촉매 전구체용액이 수용될 수 있는 공간을 마련한다. 단, 탄소원공급부(100)와 챔버부(200)의 설치될 수 있는 높이 차는 한정하지 않기로 한다.Second, the chamber unit 200 can be installed at a relatively higher position than the carbon source supply unit 100, and is an alkali metal catalyst precursor formed by dissolving an alkali metal-containing compound based on a Group 1 alkali metal element excluding hydrogen in a solvent. Provide a space in which the solution can be accommodated. However, the difference in height at which the carbon source supply unit 100 and the chamber unit 200 can be installed is not limited.
셋째, 분사부(300)는 챔버부(200)와 CNT합성부(400) 사이에 설치되어 챔버부(200)에 수용 및 저장된 알칼리금속촉매 전구체용액을 분사부(300)에 연결 설치된 Atomizer(A)를 통해 CNT합성부(400)로 향해 액적 상태로 분무한다.Third, the injection unit 300 is installed between the chamber unit 200 and the CNT synthesis unit 400 to connect the alkali metal catalyst precursor solution accommodated and stored in the chamber unit 200 to the injection unit 300. ) To the CNT synthesis unit 400 through the spray in a droplet state.
넷째, CNT합성부(400)는 열처리를 위한 반응기를 이루는 퍼니스(furnace)로써, 챔버부(200)의 하부에 설치된 분사부(300)의 Atomizer(A)를 통해 입자 또는 액적 상태로 분사되면서 공급받는 알칼리금속촉매 전구체용액과, 탄소원공급부(100)로부터 제1유로(L1)를 따라 공급되는 탄소원이 열처리를 통해 반응되면서, 알칼리금속촉매 전구체용액 중에서 알칼리금속이 나노촉매로 응집되고, 이들 촉매 속으로 탄소원이 용해되어 결정화되면서 결국 탄소원을 성장시켜 탄소나노튜브를 연속적으로 대량 합성될 수 있는 방식으로 생산한다.Fourth, the CNT synthesis unit 400 is a furnace constituting a reactor for heat treatment, and is supplied while being sprayed in the state of particles or droplets through the atomizer (A) of the injection unit 300 installed under the chamber unit 200 As the received alkali metal catalyst precursor solution and the carbon source supplied from the carbon source supply unit 100 along the first flow path (L1) are reacted through heat treatment, the alkali metal in the alkali metal catalyst precursor solution is agglomerated into the nano catalyst. As the carbon source is dissolved and crystallized, the carbon source is eventually grown to produce carbon nanotubes in a manner that can be continuously mass-synthesized.
다섯째, 콜렉터부(500)는 CNT합성부(400)로부터 합성이 완료된 순수 탄소나노튜브만을 모아 수용한다. 특히 알칼리금속촉매 전구체용액 중의 알칼리금속이 CNT합성부(400)에서 열처리에 의해 나노촉매로 응집되면, 이러한 나노촉매에 탄소원이 용해되어 결정화되면서 탄소나노튜브를 성장시켜 합성함과 동시에 기화되어 제거됨으로써, 콜렉터부(500)에서 수집한 탄소나노튜브를 별도의 산처리와 같은 후처리 공정을 실시하여 촉매를 제거해야 할 필요가 없는 장점이 있다.Fifth, the collector unit 500 collects and accommodates only pure carbon nanotubes synthesized from the CNT synthesis unit 400. In particular, when the alkali metal in the alkali metal catalyst precursor solution is agglomerated into a nano-catalyst by heat treatment in the CNT synthesis unit 400, the carbon source is dissolved and crystallized in the nano-catalyst to grow and synthesize the carbon nanotubes and vaporize and remove them. , There is an advantage that there is no need to remove the catalyst by performing a post-treatment process such as a separate acid treatment on the carbon nanotubes collected by the collector unit 500.
이처럼 알칼리금속촉매 전구체용액을 분사하는 것만으로 탄소나노튜브를 대량으로 합성하는 방법은 도 1에 도시된 탄소원공급부(100), 챔버부(200), 분사부(300), CNT합성부(400) 및 콜렉터부(500)로 이루어진 탄소나노튜브 대량 합성장치를 통하여 달성될 수 있다.In this way, a method of synthesizing carbon nanotubes in large quantities by simply spraying an alkali metal catalyst precursor solution is a carbon source supply unit 100, a chamber unit 200, an injection unit 300, and a CNT synthesis unit 400 shown in FIG. 1. And it can be achieved through a carbon nanotube mass synthesis apparatus consisting of the collector unit 500.
단, 알칼리금속촉매를 이용한 탄소나노튜브는 탄소원을 준비하는 단계(S10), 알칼리금속촉매 전구체용액을 형성하는 단계(S20) 및 탄소나노튜브를 합성하는 단계(S30)를 거쳐 합성되며, 각각의 단계에 대한 설명은 아래에서 더욱 상세하게 해보고자 한다.However, the carbon nanotubes using an alkali metal catalyst are synthesized through the step of preparing a carbon source (S10), the step of forming an alkali metal catalyst precursor solution (S20), and the step of synthesizing carbon nanotubes (S30). The description of the steps will be described in more detail below.
먼저, 탄소원(carbon source)을 준비한다(S10).First, a carbon source is prepared (S10).
즉 탄소나노튜브를 성장 및 합성시킬 수 있는 소재를 CNT합성부(400)로 공급하기 위하여 액체 타입의 액상(液相) CNT성장소재, 기체 타입의 기상(氣相) CNT성장소재 및 고체 타입의 고상(固相) CNT성장소재 중에서 어느 하나 이상을 선택하여 사용될 수 있다.That is, in order to supply a material capable of growing and synthesizing carbon nanotubes to the CNT synthesis unit 400, a liquid type CNT growth material, a gas type gaseous CNT growth material, and a solid type Any one or more of solid CNT growth materials may be selected and used.
액상(液相) CNT성장소재의 경우, 에탄올(C2H6O), 벤젠(C6H6), 자일렌(xylene) 및 톨루엔(C7H8) 중에서 어느 하나 이상이 선택될 수 있다.In the case of a liquid CNT growth material, any one or more of ethanol (C 2 H 6 O), benzene (C 6 H 6 ), xylene and toluene (C 7 H 8 ) may be selected. .
기상(氣相) CNT성장소재의 경우, 메탄(CH4), 프로필렌(C3H6), 프로핀(C3H4), 프로판(C3H8), 부탄(C4H10), 부틸렌(C4H8), 부타디엔(C4H6), 에틸렌(C2H2) 및 이의 혼합으로 이루어진 군으로부터 선택되는 탄화수소 화합물일 수 있다.For gaseous CNT growth materials, methane (CH 4 ), propylene (C 3 H 6 ), propene (C 3 H 4 ), propane (C 3 H 8 ), butane (C 4 H 10 ), It may be a hydrocarbon compound selected from the group consisting of butylene (C 4 H 8 ), butadiene (C 4 H 6 ), ethylene (C 2 H 2 ), and mixtures thereof.
고상(固相) CNT성장소재의 경우, 모노테르펜케톤의 하나인 캄퍼(C10H16O)가 선택될 수 있으며, 고체 타입의 경우, CNT합성부(400) 내부에 설치될 수 있다.In the case of a solid CNT growth material, camphor (C 10 H 16 O), which is one of the monoterpene ketones, may be selected, and in the case of a solid type, it may be installed inside the CNT synthesis unit 400.
단, 상술된 종류에만 한정되는 것은 아니고 탄소나노튜브로 성장될 수 있도록 하는 탄소원이라면 다양하게 사용 가능하다.However, it is not limited to the above-described types, and can be used in various ways as long as it is a carbon source capable of growing into carbon nanotubes.
앞서 설명한바 있듯이, CNT성장소재가 CNT합성부(400)로 이동될 수 있도록 하는 제1유로(L1) 상에 연결된 제2유로(L2)에는 캐리어 가스(carrier gas)가 수용된 가스공급기(130)가 연결 설치될 수 있는데, 이러한 캐리어 가스는 CNT성장소재에 포함된 탄소전구체로부터 분리되는 수소 및 산소 등의 불필요한 원소를 외부로 내보내기 위한 것이다.As described above, the gas supplier 130 in which a carrier gas is accommodated in the second flow path L2 connected to the first flow path L1 that allows the CNT growth material to be moved to the CNT synthesis unit 400. Can be connected and installed, such a carrier gas is to export unnecessary elements such as hydrogen and oxygen separated from the carbon precursor contained in the CNT growth material to the outside.
다음으로, 수소를 제외한 1족 알칼리금속원소 기반의 알칼리금속 함유 화합물을 용매에 용해시켜 알칼리금속촉매 전구체용액을 형성한다(S20).Next, an alkali metal-containing compound based on a Group 1 alkali metal element excluding hydrogen is dissolved in a solvent to form an alkali metal catalyst precursor solution (S20).
우선, 탄소나노튜브 합성을 위해 기존에는 철(Fe), 코발트(Co) 및 니켈(Ni)과 같은 금속 기반의 비알칼리금속촉매가 주로 사용되어져 왔다. 하지만 비알칼리금속촉매를 나노입자 형태로 만들어 담체에 담지한 후, 탄소나노튜브의 합성이 완료되면 다시 이들 금속들을 제거하기 위해 산처리 등의 추가적인 공정이 필요한 문제점이 있었다.First, for the synthesis of carbon nanotubes, metal-based non-alkali metal catalysts such as iron (Fe), cobalt (Co), and nickel (Ni) have been mainly used. However, after the non-alkali metal catalyst is made in the form of nanoparticles and supported on a carrier, there is a problem that an additional process such as acid treatment is required to remove these metals again when the synthesis of carbon nanotubes is completed.
이러한 문제점을 해소하여 탄소나노튜브를 쉽게 대량 합성이 가능하도록, 본 발명에서는 수소를 제외한 1족 원소를 기반으로 한 알칼리금속 함유 화합물을 이용하기로 한 것이다.In order to solve this problem and easily mass-synthesize carbon nanotubes, in the present invention, an alkali metal-containing compound based on an element of Group 1 excluding hydrogen is used.
여기서 알칼리금속 함유 화합물이라 함은, 알칼리금속염(metallic salts), 알칼리금속 유기화합물(organometallic compounds) 등을 포괄적으로 지칭하기 위한 용어라 할 수 있다. 이처럼 알칼리금속 함유 화합물을 이용하여 알칼리금속촉매 전구체용액을 제조함에 있어서, 다음과 같은 두 가지 방식으로 설명될 수 있다.Here, the alkali metal-containing compound may be referred to as a term for generically referring to metallic salts and organometallic compounds. In preparing the alkali metal catalyst precursor solution using the alkali metal-containing compound as described above, it can be explained in the following two ways.
첫번째 방식으로, 탈이온수(deionized water) 즉, 물과 같은 용매 100㎖ 당 리튬전구체, 나트륨전구체, 칼륨전구체 및 이의 혼합으로 이루어진 군으로부터 선택되는 알칼리금속 함유 화합물 0.1~0.5g을 용해시켜 알칼리금속촉매 전구체용액을 제조한다.In the first method, an alkali metal catalyst is dissolved by dissolving 0.1 to 0.5 g of an alkali metal-containing compound selected from the group consisting of lithium precursor, sodium precursor, potassium precursor, and mixtures thereof per 100 ml of deionized water, that is, a solvent such as water. Prepare a precursor solution.
알칼리금속 함유 화합물의 경우, 앞서 언급한 바와 같이 알칼리금속염(metallic salts), 알칼리금속 유기화합물(Organometallic compounds) 및 이의 혼합으로부터 선택될 수 있으며, 그 예로는 리튬전구체, 나트륨전구체 및 칼륨전구체 중 어느 하나 이상일 수 있다.In the case of an alkali metal-containing compound, as mentioned above, it may be selected from alkali metal salts, organometallic compounds, and mixtures thereof, for example, any one of a lithium precursor, a sodium precursor, and a potassium precursor. It can be more than that.
리튬전구체로는 리튬 벤조에이트(Lithium benzoate), 염화리튬(Llithium chloride) 중 어느 하나 이상을 사용하는 것이 바람직하다. 나트륨전구체로는 나트륨 벤조에이트(Sodium benzoate), 염화나트륨(Sodium chloride) 중 어느 하나 이상을 사용하는 것이 바람직하다. 칼륨전구체로는 포타슘 벤조에이트(Potassium benzoate), 포타슘 하이드록사이드(Potassium hydroxide) 및 염화칼륨(Potassium chloride) 중 어느 하나 이상을 사용하는 것이 바람직하다. 단, 상술된 종류에만 한정하는 것은 아니고 알칼리금속 함유 화합물로 적용할 수 있는 알칼리금속 기반의 물질이라면 다양하게 적용 가능하다.As the lithium precursor, it is preferable to use at least one of lithium benzoate and lithium chloride. As the sodium precursor, it is preferable to use at least one of sodium benzoate and sodium chloride. As the potassium precursor, it is preferable to use at least one of potassium benzoate, potassium hydroxide, and potassium chloride. However, it is not limited to the above-described types, and can be applied in various ways if it is an alkali metal-based material applicable as an alkali metal-containing compound.
알칼리금속 함유 화합물의 사용량은 특별히 제한되지는 않으나, 먼저 용매 100㎖ 당 0.1g 미만으로 혼합되면 나노촉매로 응집되는 양이 충분하지 못할 뿐만 아니라, 탄소나노튜브로 성장시켜 합성되는데까지 반응속도를 높일 수 없어 생산효율 측면에서 바람직하지 못하다.The amount of alkali metal-containing compound is not particularly limited, but if it is mixed with less than 0.1 g per 100 ml of solvent, the amount of agglomeration by nano catalyst is not sufficient, and the reaction speed is increased until synthesis by growing into carbon nanotubes. It is not desirable in terms of production efficiency.
반면, 알칼리금속 함유 화합물이 0.5g을 초과하여 혼합되면 furnace에서 열처리되는 도중에 알칼리금속촉매 전구체용액으로부터 응집된 나노촉매가 기화되지 못하고 탄소나노튜브 내에 일부 붙은 상태로 잔류하게 되어 콜렉터부(500)에서 수집한 탄소나노튜브의 순도가 저하될 수 있으므로, 바람직하지 못하다.On the other hand, if the alkali metal-containing compound is mixed in excess of 0.5 g, the nano-catalyst aggregated from the alkali metal catalyst precursor solution during heat treatment in the furnace cannot be vaporized and remains partially attached to the carbon nanotubes. Since the purity of the collected carbon nanotubes may be lowered, it is not preferable.
상술된 이유로, 알칼리금속 함유 화합물은 용매 100㎖ 당 0.1~0.5g의 범위로 용해시키는 것이 바람직하며, 용매 100㎖ 당 0.2g을 용해시키는 것이 더욱 바람직하다.For the reasons described above, the alkali metal-containing compound is preferably dissolved in the range of 0.1 to 0.5 g per 100 ml of the solvent, and more preferably 0.2 g is dissolved per 100 ml of the solvent.
용매의 경우, 극성용매 또는 비극성용매를 선택적으로 사용할 수 있으며, 그 예로는 다음과 같다. 즉 용매는 물, 탄소수 1 내지 5의 저급 알코올 및 이의 혼합으로부터 선택되는 극성용매이거나, 벤젠, 자일렌, 톨루엔 및 이의 혼합으로부터 선택되는 비극성용매를 사용하는 것이 바람직하다.In the case of a solvent, a polar solvent or a non-polar solvent may be selectively used, examples of which are as follows. That is, the solvent is preferably a polar solvent selected from water, a lower alcohol having 1 to 5 carbon atoms, and a mixture thereof, or a non-polar solvent selected from benzene, xylene, toluene, and a mixture thereof.
부가적으로 알칼리금속 함유 화합물 0.2g의 사용으로 추후 탄소나노튜브 분말이 대략 2g 합성되므로, 탄소나노튜브는 알칼리금속 함유 화합물이 사용된 중량 기준 9~11배(대략 10배)의 양으로 합성됨을 알 수 있다.In addition, with the use of 0.2 g of an alkali metal-containing compound, approximately 2 g of carbon nanotube powder is synthesized later, so that the carbon nanotube is synthesized in an amount of 9 to 11 times (approximately 10 times) by weight of the alkali metal-containing compound. Able to know.
두번째 방식으로, 크라운에테르(Crown ether)의 첨가로 알칼리금속 함유 화합물의 알칼리금속 양이온이 크라운에테르의 공동(cavity)에 배위되도록 하여 착물을 이룸으로써, 알칼리금속 양이온을 용매화하여 알칼리금속촉매 전구체용액을 제조한다.In the second method, the alkali metal cation of the alkali metal-containing compound is coordinated in the cavity of the crown ether by the addition of crown ether to form a complex, so that the alkali metal cation is solvated to form an alkali metal catalyst precursor solution. To manufacture.
즉 크라운에테르(x-Crown ether-y; x는 고리에 있는 모든 원자수, y는 산소 원자수)는 에틸렌옥시(-CH2CH2O-) 단위가 반복되는 에틸렌옥사이드(ethylene oxide)의 올리고머(oligomer)인데, 알칼리금속촉매 전구체용액 중의 알칼리금속 양이온을 크라운에테르의 중심에 있는 공동에 넣음에 따라 알칼리금속 양이온으로 안정된 구조를 형성함으로써, 알칼리금속 양이온이 용매화되면서 용해되도록 하여 특히 비극성용매 중에 용질인 알칼리금속 함유 화합물의 용해도를 높이는 방식이다.That is, crown ether (x-Crown ether-y; x is the number of all atoms in the ring, y is the number of oxygen atoms) is an oligomer of ethylene oxide in which ethyleneoxy (-CH 2 CH 2 O-) units are repeated. (oligomer), by putting the alkali metal cation in the alkali metal catalyst precursor solution into the cavity at the center of the crown ether, forming a stable structure with the alkali metal cation, so that the alkali metal cation is solvated and dissolved, especially in non-polar solvents. It is a method of increasing the solubility of the alkali metal-containing compound as a solute.
내용인즉 크라운에테르는 금속이온 즉, Li+, Na+, K+과 같은 알칼리금속 양이온과 안정된 착물을 만들기 때문에, 벤젠, 자일렌, 톨루엔과 같이 탄화수소로 이루어진 비극성용매에 녹지 않는 알칼리금속 함유 화합물을 잘 녹게 용매화할 수 있다.In other words, crown ether makes a stable complex with metal ions, that is, alkali metal cations such as Li + , Na + , and K + , so that alkali metal-containing compounds such as benzene, xylene, and toluene are insoluble in non-polar solvents composed of hydrocarbons. It can be solvated to dissolve well.
알칼리금속 함유 화합물이 크라운에테르를 통해 용매에 용해되면 투명색의 알칼리금속촉매 전구체용액으로 전환되고, 최대한 많은 양의 알칼리금속 함유 화합물을 용해시키기 위해서는 크라운에테르와의 비율을 조절하는 것이 좋으며(예컨대, 알칼리금속 함유 화합물과 크라운에테르의 중량비는 1:0.1~100일 수도 있다.), 크라운에테르의 양 조절로 알칼리금속촉매 전구체용액의 용해도 조절도 가능하다. 단, 알칼리금속 함유 화합물과 크라운에테르가 혼합될 수 있는 양은 한정하지 않기로 한다.When an alkali metal-containing compound is dissolved in a solvent through crown ether, it is converted into a transparent alkali metal catalyst precursor solution. In order to dissolve the alkali metal-containing compound as much as possible, it is recommended to adjust the ratio with crown ether (e.g., alkali metal). The weight ratio of the metal-containing compound and the crown ether may be 1:0.1 to 100.) It is also possible to control the solubility of the alkali metal catalyst precursor solution by adjusting the amount of crown ether. However, the amount in which the alkali metal-containing compound and the crown ether can be mixed is not limited.
특히 첫번째 방식에서 제시된 물과 같은 용매는 극성이어서 알칼리금속 함유 화합물이 잘 녹으나, 극성용매와 다른 비극성용매(예를 들면, 자일렌) 중에는 알칼리금속 함유 화합물이 녹지 않기 때문에 크라운에테르가 용질을 용매화시켜 용해도를 높이는데 중요한 역할을 한다 할 수 있다.In particular, since the solvent such as water suggested in the first method is polar, alkali metal-containing compounds are well dissolved, but since alkali metal-containing compounds do not dissolve in polar solvents and other non-polar solvents (eg, xylene), crown ether uses solutes. It can play an important role in increasing solubility by making plum.
크라운에테르의 경우, 12-Crown-4, 15-Crown-5, 18-Crown-6 및 이의 혼합으로 이루어진 군으로부터 선택하여 사용할 수 있는데, 이는 본 발명의 바람직한 실시예에 따라 알칼리금속 양이온이 배위된 크라운에테르를 예시적으로 도시한 도 2를 통해 확인 가능하다.In the case of crown ether, it can be used by selecting from the group consisting of 12-Crown-4, 15-Crown-5, 18-Crown-6, and a mixture thereof, which is coordinated with an alkali metal cation according to a preferred embodiment of the present invention. It can be confirmed through FIG. 2 showing an exemplary crown ether.
도 2-(a)는 Li+와 착물을 형성하는 12-Crown-4를 예시적으로 나타낸 것이고, 도 2-(b)는 Na+와 착물을 형성하는 15-Crown-5를 예시적으로 나타낸 것이며, 도 2-(c)는 K+과 착물을 형성하는 18-Crown-6을 예시적으로 나타낸 것이다.Figure 2-(a) exemplarily shows 12-Crown-4 forming a complex with Li +, and Figure 2-(b) exemplarily shows 15-Crown-5 forming a complex with Na + And FIG. 2-(c) exemplarily shows 18-Crown-6 forming a complex with K +.
도 2를 참조하면, 크라운에테르는 Crown을 구성하는 산소원자가 Crown 내의 공동에 알칼리금속 양이온을 배위하는데 도움을 주며, Crown 크기에 따라 안정된 착물이 형성되는 이온의 종류가 다름을 알 수 있다. 즉 Li+은 12-Crown-4와 가장 안정적인 착물을 형성시키고, Na+은 15-Crown-5과 가장 안정적인 착물을 형성시키며, K+은 18-Crown-6과 가장 안정적인 착물을 형성시키는 것을 통해 확인 가능하다.Referring to FIG. 2, it can be seen that the oxygen atom constituting the crown helps coordinate alkali metal cations in the cavity within the crown, and the types of ions in which a stable complex is formed are different depending on the size of the crown. That is, Li + forms the most stable complex with 12-Crown-4, Na + forms the most stable complex with 15-Crown-5, and K + forms the most stable complex with 18-Crown-6. It is possible to check.
마지막으로, 탄소원을 공급하는 중에 알칼리금속촉매 전구체용액을 분사하면서 열처리함으로써, 분사되는 알칼리금속촉매 전구체용액의 알칼리금속이 나노촉매로 응집되고, 나노촉매에 탄소원이 용해되어 결정화되면서 탄소나노튜브를 성장시킴과 동시에 나노촉매는 기화되면서 제거된다(S30).Finally, by heat treatment while spraying the alkali metal catalyst precursor solution while supplying the carbon source, the alkali metal of the sprayed alkali metal catalyst precursor solution is aggregated into the nano catalyst, and the carbon source is dissolved in the nano catalyst and crystallized to grow carbon nanotubes. Simultaneously, the nanocatalyst is removed while evaporating (S30).
우선 탄소나노튜브 합성을 위해 CVD법의 성장이 오랜 시간 동안 연구되어 왔지만 현재까지 알칼리금속원소를 기반으로 한 촉매를 시도하려고 한 적은 없었다.First of all, the growth of the CVD method for the synthesis of carbon nanotubes has been studied for a long time, but so far, there has been no attempt to try a catalyst based on an alkali metal element.
이는 다음과 같이 탄소나노튜브가 일반적으로 합성되는 방법으로 설명될 수 있다. 즉 탄소나노튜브는 CVD(Chemical Vapor Deposition)법과 같은 방식을 통해 다양한 물질에 탄소나노튜브를 성장시켰는데, 예를 들어 탄소섬유가 철을 기반으로 한 비알칼리금속촉매에 코팅되어 이산화탄소와 기타 탄소 함유 가스가 통과하는 furnace에 놓인 후 800℃와 같은 높은 온도에서 철입자에 탄소원자가 용해되기 시작하면서 결국 탄소섬유 주위에 탄소원자의 버티컬 튜브를 형성하게 되었다.This can be explained by a method in which carbon nanotubes are generally synthesized as follows. In other words, carbon nanotubes are grown in various materials through a method such as CVD (Chemical Vapor Deposition).For example, carbon fibers are coated on an iron-based non-alkali metal catalyst to contain carbon dioxide and other carbon. After being placed in a gas-passing furnace, carbon atoms began to dissolve in iron particles at a high temperature such as 800°C, eventually forming a vertical tube of carbon atoms around the carbon fibers.
탄소나노튜브가 일반적으로 합성되는 방법과는 달리, 본 단계에서는 훨씬 낮은 온도인 500℃부터 1,200℃까지의 온도범위로 설정된 furnace로 탱크(110)에 수용되어 있던 탄소원(예컨대, 액상 CNT성장소재 및 기상 CNT성장소재)이 제1유로(L1)를 통해 증기 상태로 이송 및 장입되고, 챔버부(200)에 저장된 알칼리금속촉매 전구체용액이 분사부(300)에 연결 설치된 Atomizer(A)를 분사 매체로 하여 furnace로 함께 분사되면서 분무화되어 장입된다.Unlike the method in which carbon nanotubes are generally synthesized, in this step, a carbon source (e.g., liquid CNT growth material and The vapor phase CNT growth material) is transferred and charged in a vapor state through the first flow path (L1), and the alkali metal catalyst precursor solution stored in the chamber part 200 is connected to the spray part 300 and the installed atomizer (A) is sprayed. It is sprayed together into a furnace and is atomized and charged.
단, furnace 내부에서 충분한 반응시간을 갖도록 하기 위하여 일종의 스크린 역할을 할 수 있는 직경 5cm, 길이 20cm 가량되는 SUS pipe를 위치시킨 후, 이러한 SUS pipe 내부로 탄소원과 알칼리금속촉매 전구체용액이 공급되도록 하는 것이 바람직하다.However, in order to have a sufficient reaction time inside the furnace, after placing a SUS pipe with a diameter of 5 cm and a length of about 20 cm that can serve as a screen, the carbon source and the alkali metal catalyst precursor solution are supplied to the inside of the SUS pipe. desirable.
이렇게 furnace 내로 공급된 탄소원의 존재 하에 10~30분 동안 알칼리금속촉매 전구체용액을 분사하면 예컨대, 분무화되는 알칼리금속촉매 전구체용액 중의 알칼리금속이 나노촉매 형태로 응집되고, 응집된 나노촉매에 탄소원이 용해되어 탄소나노튜브를 합성하게 되면서, 나노촉매를 포함하여 분무화되는 알칼리금속촉매 전구체용액은 furnace 내의 온도로 인해 간단히 기화 또는 증발되어 제거됨으로써 순수 탄소나노튜브만이 콜렉터부(500)로 수집된다.When the alkali metal catalyst precursor solution is sprayed for 10 to 30 minutes in the presence of the carbon source supplied into the furnace, for example, the alkali metal in the atomized alkali metal catalyst precursor solution is aggregated in the form of a nano catalyst, and the carbon source is formed in the aggregated nano catalyst. As the carbon nanotubes are dissolved and synthesized, the alkali metal catalyst precursor solution that is atomized including the nano catalyst is simply vaporized or evaporated and removed due to the temperature in the furnace, so that only pure carbon nanotubes are collected into the collector unit 500. .
따라서 1족 원소들을 입자 형태의 촉매로 별도 제조할 필요없이, 탄소나노튜브의 성장을 도와주는 탄소원의 존재 하에서 용매 또는 크라운에테르를 통해 알칼리금속 함유 화합물이 용해된 알칼리금속촉매 전구체용액을 CNT합성부(400)로 분사하는 것만으로 탄소나노튜브의 합성이 이루어질 수 있다.Therefore, without the need to separately prepare Group 1 elements as a catalyst in the form of particles, an alkali metal catalyst precursor solution in which an alkali metal-containing compound is dissolved through a solvent or crown ether in the presence of a carbon source that helps the growth of carbon nanotubes is used in the CNT synthesis unit. The synthesis of carbon nanotubes can be achieved just by spraying with 400.
열처리 시 온도조건과 관련하여, 기존의 비알칼리금속촉매를 통한 열처리는 800℃ 이상의 높은 온도를 가해야만 탄소나노튜브가 합성되었으나, 본 단계에서는 800℃보다 훨씬 낮은 최소 500℃ 온도만으로도 탄소나노튜브의 합성이 가능하다. 물론 1,200℃의 고온에서도 탄소나노튜브의 합성이 가능하지만 알칼리금속촉매 전구체용액의 사용으로 500℃의 낮은 온도에서도 탄소나노튜브의 합성이 가능한데에 중요한 의미가 있다.Regarding the temperature conditions during heat treatment, in the conventional heat treatment through a non-alkali metal catalyst, carbon nanotubes were synthesized only when a high temperature of 800℃ or higher was applied. Synthesis is possible. Of course, it is possible to synthesize carbon nanotubes even at a high temperature of 1,200°C, but the use of an alkali metal catalyst precursor solution has an important meaning in that the synthesis of carbon nanotubes is possible even at a low temperature of 500°C.
열처리 시 시간조건과 관련하여, 10~30분 동안 이루어질 수 있으나 용매 100㎖에 알칼리금속 함유 화합물이 0.2g 용해된 알칼리금속촉매 전구체용액을 대략 20분 동안 분사한 경우 2g의 탄소나노튜브가 합성되기 때문에 원하는 탄소나노튜브의 양에 따라 시간은 다양하게 변경 가능하다.Regarding the time conditions during the heat treatment, it can be made for 10 to 30 minutes, but when an alkali metal catalyst precursor solution in which 0.2 g of an alkali metal-containing compound is dissolved in 100 ml of a solvent is sprayed for about 20 minutes, 2 g of carbon nanotubes are synthesized. Therefore, the time can be varied in various ways depending on the amount of carbon nanotubes desired.
중요한 점은, 분사부(300)에 연결된 Atomizer(A)를 통해 분사되는 알칼리금속촉매 전구체용액이 CNT합성부(400)에서 열처리를 통해 알칼리금속이 나노촉매 형태로 응집되고, 나노촉매에 탄소원이 용해되면서 탄소나노튜브를 성장시켜 합성함과 동시에 기화되어 제거됨으로써, CNT합성부(400)를 통해 합성되어 콜렉터부(500)에서 수집한 탄소나노튜브에는 나노촉매가 결합된 상태로 붙어있지 않기 때문에 별도의 추가적인 열처리 또는 산처리와 같은 후처리 공정을 실시하여 나노촉매를 제거할 할 필요가 없다.The important point is that the alkali metal catalyst precursor solution sprayed through the atomizer (A) connected to the spray unit 300 is heat-treated in the CNT synthesis unit 400 to aggregate the alkali metal in the form of a nano catalyst, and the carbon source is formed in the nano catalyst. As the carbon nanotubes are grown and synthesized while being dissolved, they are vaporized and removed at the same time, so that the carbon nanotubes synthesized through the CNT synthesis unit 400 and collected by the collector unit 500 are not attached to the nanocatalyst in a bonded state. There is no need to remove the nanocatalyst by performing a separate additional heat treatment or post-treatment process such as acid treatment.
혹시 탄소나노튜브에 나노촉매의 일부가 잔존하게 되더라도, 알칼리이온의 물에 대한 높은 반응성으로 인해 굳이 산처리가 아닌 일반 물(water)에 용해하여 제거하면 되기 때문에 공정상 장점은 유지될 수 있다.Even if some of the nanocatalysts remain in the carbon nanotubes, the advantages of the process can be maintained because the alkali ions have high reactivity with water, so that they can be removed by dissolving in water rather than acid treatment.
이하, 본 발명의 알칼리금속촉매를 이용한 탄소나노튜브의 대량 합성방법 및 이로부터 합성된 탄소나노튜브에 따른 실시예를 설명해 보고자 하며, 다음의 실시예에서는 알칼리금속 함유 화합물을 물에 용해시킨 알칼리금속촉매 전구체용액을 분사하는 것만으로 탄소나노튜브를 합성하는 과정에 대하여 기술하였다.Hereinafter, a method for mass synthesis of carbon nanotubes using an alkali metal catalyst of the present invention and examples according to the carbon nanotubes synthesized therefrom will be described. In the following examples, an alkali metal in which an alkali metal-containing compound is dissolved in water The process of synthesizing carbon nanotubes by simply spraying the catalyst precursor solution has been described.
단, 이하의 실시예는 본 발명의 이해를 돕기 위하여 예시하는 것일 뿐, 이에 의하여 본 발명의 범위가 한정되는 것은 아니다.However, the following examples are merely illustrative to aid in understanding of the present invention, and the scope of the present invention is not limited thereby.
<실시예 1><Example 1>
탈이온수(deionized water) 100㎖에 리튬 벤조에이트(Lithium benzoate) 0.2g을 용해시켜 Li전구체용액을 촉매물질로 만들었다.Lithium precursor solution was made into a catalyst material by dissolving 0.2 g of lithium benzoate in 100 ml of deionized water.
탄소나노튜브 합성온도Carbon nanotube synthesis temperature 700~1,000℃700~1,000℃
촉매 분사 매체Catalyst spraying medium Atomizer(25psi)Atomizer(25psi)
Carrier gasCarrier gas N2(0.5L/min)N 2 (0.5L/min)
열처리를 위한 furnace 내부에 SUS pipe(직경 5cm, 길이 20cm)를 중앙에 위치시킨 후, 표 1의 분사조건에서와 같이 furnace 내부를 설정온도로 승온시켜 도달 시 Atomizer를 통해 Li전구체용액을 SUS pipe로 분사하였다. 단, furnace 내부의 승온되는 속도는 탄소나노튜브 합성에 영향을 미치지 않았다.Li전구체용액의 분사와 함께, N2 bubbling을 통해 탄소원인 Ethanol vapor를 furnace 내로 20분 동안 분사하여 탄소나노튜브를 합성하였으며, 이후 대기 온도까지 자연냉각시켜 마무리하였다.After placing a SUS pipe (diameter 5cm, length 20cm) in the center of the furnace for heat treatment, the inside of the furnace is heated to a set temperature as in the spray conditions in Table 1, and when reached, the Li precursor solution is transferred to the SUS pipe through the atomizer. Sprayed. However, the heating rate inside the furnace did not affect the synthesis of carbon nanotubes. Ethanol vapor, a carbon source, was injected into the furnace for 20 minutes through N 2 bubbling along with the injection of the Li precursor solution to synthesize carbon nanotubes. Then, it was finished by natural cooling to the ambient temperature.
<실시예 2><Example 2>
탈이온수(deionized water) 100㎖에 나트륨 벤조에이트(Sodium benzoate) 0.2g을 용해시켜 Na전구체용액을 촉매물질로 만들었다. 실시예 1과 동일한 분사조건으로 탄소나노튜브를 합성하였으며, 이후 대기 온도까지 자연냉각시켜 마무리하였다.0.2 g of sodium benzoate was dissolved in 100 ml of deionized water to make the Na precursor solution as a catalyst material. Carbon nanotubes were synthesized under the same spraying conditions as in Example 1, and then naturally cooled to ambient temperature to finish.
<실시예 3><Example 3>
탈이온수(deionized water) 100㎖에 포타슘 하이드록사이드(Potassium hydroxide) 0.2g을 용해시켜 K전구체용액을 촉매물질로 만들었다. 실시예 1과 동일한 분사조건으로 탄소나노튜브를 합성하였으며, 이후 대기 온도까지 자연냉각시켜 마무리하였다.0.2 g of potassium hydroxide was dissolved in 100 ml of deionized water to make the K precursor solution as a catalyst material. Carbon nanotubes were synthesized under the same spraying conditions as in Example 1, and then naturally cooled to ambient temperature to finish.
도 3은 본 발명의 바람직한 실시예에 따라 Li전구체를 이용하여 합성된 탄소나노튜브의 SEM 사진이다. 도 3-(a) 및 도 3-(b)는 실시예 1에 따른 Li전구체용액의 분사로 합성된 탄소나노튜브를 각각 다른 위치에서 찍은 SEM 사진을 나타낸 것이다.3 is a SEM photograph of a carbon nanotube synthesized using a Li precursor according to a preferred embodiment of the present invention. 3-(a) and 3-(b) show SEM photographs of carbon nanotubes synthesized by spraying a Li precursor solution according to Example 1 at different positions.
도 4는 본 발명의 바람직한 실시예에 따라 Na전구체를 이용하여 합성된 탄소나노튜브의 SEM 사진이다. 도 4-(a) 및 도 4-(b)는 실시예 2에 따른 Na전구체용액의 분사로 합성된 탄소나노튜브를 각각 다른 위치에서 찍은 SEM 사진을 나타낸 것이다.4 is a SEM photograph of carbon nanotubes synthesized using Na precursors according to a preferred embodiment of the present invention. 4-(a) and 4-(b) show SEM photographs of carbon nanotubes synthesized by spraying the Na precursor solution according to Example 2 at different positions.
도 5는 본 발명의 바람직한 실시예에 따라 K전구체를 이용하여 합성된 탄소나노튜브의 SEM 사진이다. 도 5-(a) 및 도 5-(b)는 실시예 3에 따른 K전구체용액의 분사로 합성된 탄소나노튜브를 각각 다른 위치에서 찍은 SEM 사진을 나타낸 것이다.5 is a SEM photograph of a carbon nanotube synthesized using a K precursor according to a preferred embodiment of the present invention. 5-(a) and 5-(b) show SEM photographs of carbon nanotubes synthesized by spraying the K precursor solution according to Example 3 at different positions.
정리하자면, 실시예 1, 실시예 2, 실시예 3에 따라 알칼리금속촉매 전구체용액을 Atomizer(25psi)를 통해 20분 동안 분사 시, 약 2g의 탄소나노튜브 파우더가 생성되었다. 이때 에탄올은 200cc 소모된 것으로 확인되었다.In summary, when the alkali metal catalyst precursor solution was sprayed for 20 minutes through an atomizer (25 psi) according to Examples 1, 2, and 3, about 2 g of carbon nanotube powder was produced. At this time, it was confirmed that 200 cc of ethanol was consumed.
아울러 도 3 내지 도 5에 나타난 SEM 사진에서 볼 수 있듯이, 합성된 탄소나노튜브의 수율을 약 80~90%로 확인되었고, 탄소나노튜브의 직경은 약 20㎚~2㎛임이 확인되었다.In addition, as can be seen from the SEM photographs shown in FIGS. 3 to 5, the yield of the synthesized carbon nanotubes was confirmed to be about 80 to 90%, and the diameter of the carbon nanotubes was confirmed to be about 20 nm to 2 μm.
상술된 실시예와 더불어 도 3 내지 도 5의 결과로부터, 기존에 탄소나노튜브 합성을 위해 철(Fe), 코발트(Co), 니켈(Ni)과 같은 비알칼리금속 기반의 촉매 사용에서 탈피하여 수소를 제외한 나머지 1족 원소 중 리튬(Li), 나트륨(Na), 칼륨(K)과 같은 알칼리금속 기반의 촉매로도 탄소나노튜브의 연속적인 대량 합성이 가능함을 알 수 있다.In addition to the above-described embodiment, from the results of FIGS. 3 to 5, hydrogen was removed from the use of non-alkali metal-based catalysts such as iron (Fe), cobalt (Co), and nickel (Ni) for carbon nanotube synthesis. Among the remaining Group 1 elements, it can be seen that the continuous mass synthesis of carbon nanotubes is possible even with alkali metal-based catalysts such as lithium (Li), sodium (Na), and potassium (K).
또한 탄소나노튜브 합성 후 탄소나노튜브에 붙은 촉매를 제거하기 위한 별도의 열처리 또는 산처리를 할 필요가 없기 때문에 생산시간을 절감할 수 있을 뿐만 아니라, 이를 통해 탄소나노튜브를 연속적으로 합성할 수 있음을 알 수 있다.In addition, since there is no need to perform a separate heat treatment or acid treatment to remove the catalyst attached to the carbon nanotubes after synthesis of the carbon nanotubes, not only the production time can be saved, but also the carbon nanotubes can be continuously synthesized through this. Can be seen.
특히 1족 원소 중 나트륨(Na)이 포함된 다양한 물질(예를 들어, 소금, 바닷물 등)을 촉매로 하여 탄소나노튜브를 용이하게 대량 합성할 수 있을 것으로 기대된다.In particular, it is expected that carbon nanotubes can be easily mass-synthesized by using various substances (eg, salt, seawater, etc.) containing sodium (Na) among the Group 1 elements as a catalyst.
이상의 설명은 본 발명의 기술 사상을 예시적으로 설명한 것에 불과한 것으로, 본 발명이 속하는 기술분야에서 통상의 지식을 가진 자라면 본 발명의 본질적인 특성에서 벗어나지 않는 범위에서 다양한 수정 및 변형이 가능할 것이다.The above description is merely illustrative of the technical idea of the present invention, and those of ordinary skill in the art to which the present invention pertains will be able to make various modifications and variations without departing from the essential characteristics of the present invention.
따라서 본 발명에 개시된 실시예는 본 발명의 기술 사상을 한정하기 위한 것이 아니라, 설명하기 위한 것이고, 이러한 실시예에 의하여 본 발명의 기술 사상의 범위가 한정되는 것도 아니다.Accordingly, the embodiments disclosed in the present invention are not intended to limit the technical idea of the present invention, but to explain the technical idea, and the scope of the technical idea of the present invention is not limited by these embodiments.
본 발명의 보호 범위는 특허청구범위에 의하여 해석되어야 하며, 그와 동등한 범위 내에 있는 모든 기술사상은 본 발명의 권리범위에 포함되는 것으로 해석되어야 할 것이다.The scope of protection of the present invention should be construed by the claims, and all technical thoughts within the scope equivalent thereto should be construed as being included in the scope of the present invention.

Claims (7)

  1. 탄소원(carbon source)을 준비하는 단계;Preparing a carbon source;
    알칼리금속 기반의 알칼리금속 함유 화합물을 용매에 용해시켜 알칼리금속촉매 전구체용액을 형성하는 단계; 및Dissolving an alkali metal-based alkali metal-containing compound in a solvent to form an alkali metal catalyst precursor solution; And
    상기 탄소원을 공급하는 중에 상기 알칼리금속촉매 전구체용액을 분사하면서 열처리함으로써, 상기 분사되는 알칼리금속촉매 전구체용액의 알칼리금속이 나노촉매로 응집되고, 상기 나노촉매에 상기 탄소원이 용해되어 결정화되면서 탄소나노튜브를 성장시킴과 동시에 상기 나노촉매는 기화되면서 제거되는 단계;를 포함하는 것을 특징으로 하는 알칼리금속촉매를 이용한 탄소나노튜브의 대량 합성방법.By heat treatment while spraying the alkali metal catalyst precursor solution while supplying the carbon source, the alkali metal of the sprayed alkali metal catalyst precursor solution is aggregated into a nanocatalyst, and the carbon source is dissolved and crystallized in the nanocatalyst. The method of mass synthesis of carbon nanotubes using an alkali metal catalyst comprising; the step of removing the nanocatalyst while being evaporated while growing at the same time.
  2. 제1항에 있어서,The method of claim 1,
    알칼리금속촉매 전구체용액은,The alkali metal catalyst precursor solution,
    상기 알칼리금속 함유 화합물을 상기 용매 100㎖ 당 0.1~0.5g을 용해시켜 형성되는 것을 특징으로 하는 알칼리금속촉매를 이용한 탄소나노튜브의 대량 합성방법.A method for mass synthesis of carbon nanotubes using an alkali metal catalyst, characterized in that the alkali metal-containing compound is formed by dissolving 0.1 to 0.5 g per 100 ml of the solvent.
  3. 제1항에 있어서,The method of claim 1,
    상기 알칼리금속촉매 전구체용액을 형성하는 단계에서는,In the step of forming the alkali metal catalyst precursor solution,
    상기 용매가 비극성용매인 경우, 크라운에테르(Crown ether)를 첨가하여 상기 알칼리금속 함유 화합물의 알칼리금속 양이온이 상기 크라운에테르의 공동(cavity)에 배위되도록 하여 착물을 이룸으로써, 상기 알칼리금속 양이온을 용매화하여 알칼리금속촉매 전구체용액을 제조하는 것을 특징으로 하는 알칼리금속촉매를 이용한 탄소나노튜브의 대량 합성방법.When the solvent is a non-polar solvent, crown ether is added so that the alkali metal cation of the alkali metal-containing compound is coordinated in the cavity of the crown ether to form a complex, thereby dissolving the alkali metal cation. Mass synthesis method of carbon nanotubes using an alkali metal catalyst, characterized in that to prepare a precursor solution of an alkali metal catalyst by plumbing.
  4. 제1항에 있어서,The method of claim 1,
    상기 알칼리금속 함유 화합물은,The alkali metal-containing compound,
    리튬전구체, 나트륨전구체, 칼륨전구체 및 이의 혼합으로 이루어진 군으로부터 선택되는 것을 특징으로 하는 알칼리금속촉매를 이용한 탄소나노튜브의 대량 합성방법.A method for mass synthesis of carbon nanotubes using an alkali metal catalyst, characterized in that it is selected from the group consisting of a lithium precursor, a sodium precursor, a potassium precursor, and a mixture thereof.
  5. 제1항에 있어서,The method of claim 1,
    상기 탄소원은,The carbon source is,
    액상 CNT성장소재, 기상 CNT성장소재 및 고상 CNT성장소재 중 어느 하나 이상으로 이루어지되,Consisting of at least one of a liquid CNT growth material, a gaseous CNT growth material, and a solid CNT growth material,
    상기 액상 CNT성장소재는 에탄올(C2H6O), 벤젠(C6H6), 자일렌(xylene), 톨루엔(C7H8) 및 이의 혼합으로 이루어진 군으로부터 선택되고,The liquid CNT growth material is selected from the group consisting of ethanol (C 2 H 6 O), benzene (C 6 H 6 ), xylene, toluene (C 7 H 8 ), and a mixture thereof,
    상기 기상 CNT성장소재는 메탄(CH4), 프로필렌(C3H6), 프로핀(C3H4), 프로판(C3H8), 부탄(C4H10), 부틸렌(C4H8), 부타디엔(C4H6), 에틸렌(C2H2) 및 이의 혼합으로 이루어진 군으로부터 선택되며,The gaseous CNT growth material is methane (CH 4 ), propylene (C 3 H 6 ), propene (C 3 H 4 ), propane (C 3 H 8 ), butane (C 4 H 10 ), butylene (C 4 H 8 ), butadiene (C 4 H 6 ), ethylene (C 2 H 2 ) and a mixture thereof,
    상기 고상 CNT성장소재는 캄퍼(C10H16O)인 것을 특징으로 하는 알칼리금속촉매를 이용한 탄소나노튜브의 대량 합성방법.The solid CNT growth material is a mass synthesis method of carbon nanotubes using an alkali metal catalyst, characterized in that the camphor (C 10 H 16 O).
  6. 제1항에 있어서,The method of claim 1,
    상기 탄소나노튜브는,The carbon nanotubes,
    500~1,200℃ 온도 범위의 열처리를 통해 합성되는 것을 특징으로 하는 알칼리금속촉매를 이용한 탄소나노튜브의 대량 합성방법.A method for mass synthesis of carbon nanotubes using an alkali metal catalyst, characterized in that it is synthesized through heat treatment in a temperature range of 500 to 1,200°C.
  7. 탄소나노튜브에 있어서,In the carbon nanotube,
    제1항 내지 제6항 중 어느 한 항의 합성방법에 의해 합성되되,Synthesized by the synthesis method of any one of claims 1 to 6,
    탄소원(carbon source)의 존재 하에서, 알칼리금속 기반의 알칼리금속 함유 화합물이 용매에 용해된 상태의 알칼리금속촉매 전구체용액이 분사되면서 열처리를 통해 상기 알칼리금속촉매 전구체용액의 알칼리금속이 나노촉매로 응집되고, 상기 나노촉매에 상기 탄소원이 용해되어 결정화되면서 합성되는 분말(powder) 형태인 것을 특징으로 하는 알칼리금속촉매를 이용한 탄소나노튜브의 대량 합성방법으로부터 합성된 탄소나노튜브.In the presence of a carbon source, the alkali metal catalyst precursor solution in which an alkali metal-based alkali metal-containing compound is dissolved in a solvent is sprayed, and the alkali metal of the alkali metal catalyst precursor solution is aggregated into the nano catalyst through heat treatment. , Carbon nanotubes synthesized from a mass synthesis method of carbon nanotubes using an alkali metal catalyst, characterized in that in the form of a powder synthesized while the carbon source is dissolved and crystallized in the nanocatalyst.
PCT/KR2019/011746 2019-09-09 2019-09-10 Method for mass synthesis of carbon nanotubes using alkali metal catalyst and carbon nanotubes synthesized thereby WO2021049680A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR10-2019-0111345 2019-09-09
KR1020190111345A KR102375946B1 (en) 2019-09-09 2019-09-09 Method for mass production of carbon nanotubes by alkali metal catalyst and carbon nanotube synthesized from it

Publications (1)

Publication Number Publication Date
WO2021049680A1 true WO2021049680A1 (en) 2021-03-18

Family

ID=74865765

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2019/011746 WO2021049680A1 (en) 2019-09-09 2019-09-10 Method for mass synthesis of carbon nanotubes using alkali metal catalyst and carbon nanotubes synthesized thereby

Country Status (2)

Country Link
KR (1) KR102375946B1 (en)
WO (1) WO2021049680A1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023190783A1 (en) * 2022-03-29 2023-10-05 株式会社大阪ソーダ Production method for carbon nanotubes

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20050048908A (en) * 2003-11-20 2005-05-25 삼성전자주식회사 A ink composition containing crown ethers and a method of the same
KR20100028894A (en) * 2008-09-05 2010-03-15 주식회사 디엠에스 Chemical reactor for carbon nano tube
KR20170073095A (en) * 2015-12-18 2017-06-28 한국철도기술연구원 Apparatus and method for synthesizing carbon nanotube using electrostatic spray
JP2018083169A (en) * 2016-11-25 2018-05-31 国立研究開発法人産業技術総合研究所 Catalyst substrate for production of carbon nanotube assembly, and method for producing carbon nanotube assembly

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102384914B1 (en) 2017-06-08 2022-04-08 에스케이이노베이션 주식회사 Method for the production of carbon nanotubes in a fluidized bed reactor

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20050048908A (en) * 2003-11-20 2005-05-25 삼성전자주식회사 A ink composition containing crown ethers and a method of the same
KR20100028894A (en) * 2008-09-05 2010-03-15 주식회사 디엠에스 Chemical reactor for carbon nano tube
KR20170073095A (en) * 2015-12-18 2017-06-28 한국철도기술연구원 Apparatus and method for synthesizing carbon nanotube using electrostatic spray
JP2018083169A (en) * 2016-11-25 2018-05-31 国立研究開発法人産業技術総合研究所 Catalyst substrate for production of carbon nanotube assembly, and method for producing carbon nanotube assembly

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
RICHARD LI, ANTUNES ERICA F, KALFON-COHEN ESTELLE, KUDO AKIRA, UIZ L, ACAUAN, YANG WEI-CHANG D, WANG CANHUI, EHANG CUI K, LIOTTA : "Low-Temperature Growth of Carbon Nanotubes Catalyzed by Sodium-Based Ingredients", ANGEWANDTE CHEMIE INTERNATIONAL EDITION, vol. 58, no. 27, 27 May 2019 (2019-05-27), pages 9204 - 9209, XP055805392 *

Also Published As

Publication number Publication date
KR102375946B1 (en) 2022-03-17
KR20210029985A (en) 2021-03-17

Similar Documents

Publication Publication Date Title
US9862604B2 (en) Boron nitride nanotubes and process for production thereof
WO2017039132A1 (en) Method for purification of carbon nanotubes
NL2026635B1 (en) Integrated manufacturing of core-shell particles for Li-ion batteries
KR20080082646A (en) Carbon nanotubes functionalized with fullerenes
JP6890187B2 (en) Catalyst for mass production of multiwalled carbon nanotubes
KR20100067048A (en) Metal nano catalyst, method for preparing thereof and carbon nanotube synthesized using the same
WO2021049680A1 (en) Method for mass synthesis of carbon nanotubes using alkali metal catalyst and carbon nanotubes synthesized thereby
WO2017018667A1 (en) Carbon nanotubes having improved thermal stability
JP4608863B2 (en) Carbon nanotube production apparatus and method, and gas decomposer used therefor
KR100913369B1 (en) Process for Preparing Catalyst for Synthesis of Carbon Nanotubes using Atomizing Pyrolysis Method
JP2009148758A (en) Apparatus and method for manufacturing catalyst for carbon nanotube by using spray pyrolysis method
WO2013100382A1 (en) Preparation method of graphene-carbon nanotube composite using spray pyrolysis, and graphene-carbon nanotube composite prepared thereby
WO2017048053A1 (en) Carbon nanotube having improved crystallizability
KR100892753B1 (en) Apparatus and method for preparing catalyst for systhesis of carbon-nano-tube
WO2020141649A1 (en) Method for mass synthesis of carbon nanotubes and carbon nanotubes synthesized thereby
WO2022047600A1 (en) Method for preparing multi-walled carbon nanotubes
WO2018190672A1 (en) Method for producing metal-organic complex comprising group 4b element
US20150093579A1 (en) Method of preparation of alane-etherate and alane
WO2021157756A1 (en) Method for preparing carbon nanotube-carbon nanofiber composite, and carbon nanotube-carbon nanofiber composite prepared thereby
TWI306834B (en) A method for manufacturing carbonaceous nanofiber
WO2013184617A1 (en) Method of manufacturing alane including desolvation of an alane -etherate complex
JP2018016521A (en) Method for producing single layer carbon nanotube-containing composition
WO2013066105A1 (en) Double wall carbon nanotubes and method for manufacturing same
KR100956421B1 (en) Process for Preparing Catalyst for Synthesis of Carbon Nanotubes using Atomizing Pyrolysis Method
Avraham et al. Inducing porosity and growing carbon nanofibers in ferroin perchlorate: an example of morphological transitions in coordination complexes

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19945222

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19945222

Country of ref document: EP

Kind code of ref document: A1