WO2018190672A1 - Method for producing metal-organic complex comprising group 4b element - Google Patents

Method for producing metal-organic complex comprising group 4b element Download PDF

Info

Publication number
WO2018190672A1
WO2018190672A1 PCT/KR2018/004338 KR2018004338W WO2018190672A1 WO 2018190672 A1 WO2018190672 A1 WO 2018190672A1 KR 2018004338 W KR2018004338 W KR 2018004338W WO 2018190672 A1 WO2018190672 A1 WO 2018190672A1
Authority
WO
WIPO (PCT)
Prior art keywords
metal
organic
acid
organic framework
framework
Prior art date
Application number
PCT/KR2018/004338
Other languages
French (fr)
Korean (ko)
Inventor
류삼곤
이해완
황영규
홍도영
조경호
장종산
이우황
차가영
Original Assignee
국방과학연구소
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 국방과학연구소 filed Critical 국방과학연구소
Publication of WO2018190672A1 publication Critical patent/WO2018190672A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07FACYCLIC, CARBOCYCLIC OR HETEROCYCLIC COMPOUNDS CONTAINING ELEMENTS OTHER THAN CARBON, HYDROGEN, HALOGEN, OXYGEN, NITROGEN, SULFUR, SELENIUM OR TELLURIUM
    • C07F7/00Compounds containing elements of Groups 4 or 14 of the Periodic Table
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • C23C14/12Organic material
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/24Vacuum evaporation

Definitions

  • the present invention relates to a method for preparing a metal-organic composite having excellent performance in removing a chemical agent based on a metal-organic framework (MOF), which is a porous material.
  • MOF metal-organic framework
  • Activated carbon used in gas masks in the seventh and eighties was mainly ASC impregnated activated carbon containing hexavalent chromium, which caused problems with disposal methods and environmental hazards due to the toxicity of hexavalent chromium.
  • ASZM-TEDA activated carbon containing triethylenediamine (TEDA) an organic amine that does not contain chromium, has been developed and used until recently to solve this problem.
  • U.S. Patent No. 5,063,196 discloses about 5% copper by controlling the ratio of metal precursor and organic amine in the case of ASZM-TEDA activated carbon including silver (Ag), copper (Cu), zinc (Zn) and molybdenum (Mo). , 0.05% silver, impregnated with 5% zinc, 2% molybdenum and 3% TEDA to propose an activated carbon manufacturing method supported on activated carbon.
  • the porous carbon carrier is impregnated with a transition metal such as copper, zinc, molybdenum, silver, vanadium, and organic amine, it can be dispersed or dissolved in solution.
  • a transition metal such as copper, zinc, molybdenum, silver, vanadium, and organic amine
  • the amount of the metal and the organic amine is limited, and in particular, because of the nature of the activated carbon has a fine pores, when the content of the metal precursor is large, it is difficult to support a large amount of the metal active material in the pores by blocking the inlet of the micropores of the carrier.
  • expensive silver since expensive silver is used, it is difficult to secure economic feasibility.
  • Metal-organic frameworks are also commonly referred to as 'porous coordination polymers' or 'porous organic-inorganic hybrids'. They have the advantage of providing a large surface area with nano-sized pores. It is used in adsorbents, gas storage materials, sensors, membranes, functional thin films, drug delivery materials, catalysts and catalyst carriers, and is used for adsorption and removal of substances by carrying the composition in the pores. It has been actively studied because it can be used to capture molecules or use pores to separate molecules according to size, and can also be applied to catalysis using various active metals present in the structure of the metal-organic framework.
  • the present invention is to solve the problems as described above by a vapor-vacuum deposition method in the pores of the metal-organic skeleton containing elements of group 4B based on the periodic table (IUPAC inorganic chemical nomenclature revised edition, 1989) as a metal element It is an object to provide a method for preparing a metal-organic composite having at least 10% by weight of organic amine deposited to have excellent performance in removing chemical agents.
  • Metal-organic composite manufacturing method of the present invention for achieving the above object is the first step (S100) to prepare a metal-organic framework and the organic amine by vapor-vacuum deposition method in the pores of the metal-organic framework And depositing a second step (S200), which is performed as shown in the flowchart shown in FIG.
  • the first step (S100) is a step for preparing a metal-organic framework containing an element of Group 4B based on the periodic table (IUPAC Inorganic Chemistry Nomenclature, 1989), and a solvent with a metal precursor and an organic ligand.
  • Preparing a precursor solution by mixing in a step (S110), heating the prepared precursor solution at a crystallization temperature to synthesize a metal-organic framework (S120), and purifying to obtain a synthesized metal-organic framework. It may be made, including (S130).
  • the metal precursor is a compound containing any one metal of zirconium (Zr), titanium (Ti), and hafnium (Hf) as an element of Group 4B.
  • Zr zirconium
  • Ti titanium
  • Hf hafnium
  • Each independently may be any one or more selected from chloride, nitrate, sulfate and acetate compounds of each metal.
  • the metal precursor is a zirconium precursor, a titanium precursor and a hafnium precursor, preferably a metal oxyhydroxide material, such as titanium oxyhydroxide, zirconium oxyhydroxide and zirconium oxyhydroxide.
  • a metal oxyhydroxide material such as titanium oxyhydroxide, zirconium oxyhydroxide and zirconium oxyhydroxide.
  • Hafnium oxyhydroxide may be used, but is not limited thereto.
  • the organic ligand which is another component of the metal-organic framework, is also called a linker, and any organic compound having a coordinating functional group can be used.
  • the organic ligand may be a carboxyl group (-COOH), carboxylic acid anion group (-COO -), an amine group (-NH 2), and an imino group (-NH), a nitro group (-NO 2), a hydroxy group (-OH), a halogen group (-X) and diepon acid ( -SO 3 H), a sulfonic acid anion group (-SO 3 -), methane dithiol Osan group (-CS 2 H), methane dithiol Osan anion group (-CS 2 -), one selected from the group consisting of a pyridine group and a pyrazine Compounds or mixtures thereof having the above functional groups can be used.
  • organic ligands include benzenedicarboxylic acid, naphthalenedicarboxylic acid, benzenetricarboxylic acid, naphthalenetricarboxylic acid, benzenetribenzoic acid, pyridinedicarboxylic acid, bipyridyldicarboxylic acid, and formic acid.
  • (formic acid), oxalic acid, malonic acid, succinic acid, glutamic acid, hexanedioic acid, heptanedioic acid and cyclohexyldicarboxylic acid may be used, and more preferably, the chemical formula of FIG. Benzene-1,3,5-tricarboxylic acid (BTC), such as 1 ').
  • the metal-organic skeleton having a hydroxide functional group such as the acid (HCl), which is a decomposition product of cyanide chloride (CK) having a molecular formula of CNCl
  • the metal used in the present invention it is preferable that the organic skeleton uses what contains a hydroxide functional group.
  • the solvent used to prepare the precursor solution may be used without limitation as long as it is a solvent capable of dissolving both a metal component and an organic ligand.
  • a solvent capable of dissolving both a metal component and an organic ligand for example, water, N, N-dimethylformamide (DMF), N, N-diethylformamide (DEF), N, N-dimethylacetamide (DMAc), ethylene glycol, glycerol, polyethylene Glycol, acetone, methyl ethyl ketone, hexane, heptane, octane, acetonitrile, dioxane, chlorobenzene, pyridine, N-methyl pyrrolidone (NMP), sulfolane, tetrahydrofuran (THF), gamma-butyrolactone , Cyclohexanol and alcohols such as methanol, ethanol, and propanol may be used, and two
  • a solvent heat synthesis or microwave synthesis for synthesizing the metal-organic framework is performed by performing a crystallization reaction by heating a predetermined time by heating solvent heat, microwaves or ultrasonic waves.
  • Metal-organic frameworks can be synthesized.
  • the synthesized metal-organic skeleton is purified for a predetermined time in the presence of a solution (solvent) for a predetermined time to obtain a synthesized metal-organic skeleton.
  • the purification method may be performed by a conventional centrifugation method and the like, but is not limited thereto.
  • the metal-organic framework of the present invention synthesized in this manner may be represented by the following Chemical Formula 2 as a non-limiting example.
  • M is any one metal selected from Ti 4 + , Zr 4 +, and Hf 4 +
  • L is a carboxyl group (-COOH), a carboxylic acid anion group (-COO ⁇ ), or an amine group (-NH 2) and the imino group (-NH), a nitro group (-NO 2), a hydroxy group (-OH), a halogen group (-X) and diepon acid group (-SO 3 H), a sulfonic acid anion group (-SO 3 -), Osan methane dithiol group (-CS 2 H), methane dithiol Osan anion group (-CS 2 -), a compound or a mixture thereof is an organic ligand having at least one functional group selected from the group consisting of pyridine group and pyrazinyl group.
  • ⁇ 3 in Formula 2 means a structure in which oxygen (O) is bonded to three zirconiums (Zr).
  • the second step (S200) is a metal-deposited organic amine of 1 to 30% by weight based on 100% by weight of the total metal-organic framework in the pores of the metal-organic framework prepared in the first step (S100)- It is a step of preparing an organic complex.
  • the second step (S200) is an activation step (S210) for activating the metal-organic framework by placing the metal-organic framework in a reactor and heating to a predetermined temperature under vacuum reduced pressure conditions, the organic amine powder by vacuum decompression Vacuum drying step (S220) for removing excess water present in the amine powder, and the dried organic amine is heated to a certain temperature under vacuum decompression conditions to form a gaseous organic amine, and activated the formed gaseous organic amine It can be made by including a deposition step (S230) to be injected into the reactor having a metal-organic skeleton at a constant rate and deposited in the pores of the activated metal-organic framework.
  • S210 activation step for activating the metal-organic framework by placing the metal-organic framework in a reactor and heating to a predetermined temperature under vacuum reduced pressure conditions
  • the organic amine powder by vacuum decompression Vacuum drying step (S220) for removing excess water present in the amine powder
  • the organic amine may be any one selected from triethylenediamine, triethylamine and pyridine-4-carboxylic acid, or a mixture thereof, preferably Triethylenediamine can be used.
  • the activation step (S210) is to put the metal-organic skeleton in the reactor and heated the reactor to a temperature of 110 to 150 °C under vacuum reduced pressure conditions of 1 ⁇ 10 -1 to 1 ⁇ 10 -5 torr, the metal-organic skeleton It can be activated by removing the moisture and impurities present in the pores of the sieve. If the pressure and the temperature ranges below the water and impurities in the pores of the metal-organic framework is not properly removed, the activation of the metal-organic framework is not properly made, there is a problem that the production of metal-organic complex is difficult, If the range exceeds, there is a problem in that excess energy is consumed in terms of energy efficiency compared to the activation reaction.
  • the organic amine powder is vacuum-reduced to 1 ⁇ 10 ⁇ 1 to 1 ⁇ 10 ⁇ 5 torr at a temperature of 15 to 30 ° C. to remove moisture, and the temperature and pressure presented in the vacuum drying step. Outside the range, since the water removal of the organic amine is not made properly, it is difficult to form a gaseous organic amine in a later step, it is preferable to satisfy the conditions presented.
  • the dried organic amine may be heated to a temperature of 110 to 150 ° C. under a vacuum decompression condition of 1 ⁇ 10 ⁇ 1 to 1 ⁇ 10 ⁇ 5 torr to form an organic amine in a gaseous state.
  • a vacuum decompression condition 1 ⁇ 10 ⁇ 1 to 1 ⁇ 10 ⁇ 5 torr to form an organic amine in a gaseous state.
  • the organic amine in the gaseous state is less than the pressure and temperature ranges described above, it is difficult to deposit in the pores of the activated metal-organic framework because the organic amines in the gaseous state are not properly changed, and when the pressure and temperature ranges are exceeded.
  • Metal-Organic Frameworks Due to the rather high temperature, the deposition of organic amines in the pores of activated metal-organic frameworks is difficult.
  • the crystal size of the metal-organic composite prepared by the above-described manufacturing method is preferably 100 nm or more on average.
  • the "metal-organic complex” means a metal-organic framework in which organic amine is deposited or supported on pores of the metal-organic framework.
  • the metal-organic composite including the Group 4B element prepared through the production method of the present invention has a crystal size of 100 nm or more and is excellent in crystallinity, and the metal-organic composite is prepared through the vapor-vapor deposition method. At least 10% by weight of organic amine is deposited in the pores of the metal-organic framework with respect to 100% by weight of the organic framework, which minimizes the reduction of the area of the active surface of the pores and has an excellent effect on the removal of chemical agents.
  • FIG. 1 is a flowchart illustrating a method for preparing a metal-organic composite of the present invention.
  • BTC 2 is a chemical formula of benzene-1,3,5-tricarboxylic acid (BTC).
  • 3 is X of a metal-organic framework (MOF-808) including zirconium (Zr) having a crystal size of 100 nm or more prepared through microwave synthesis (a) and solvent thermal synthesis (b) according to an embodiment of the present invention.
  • MOF-808 metal-organic framework
  • Zr zirconium
  • FIG. 4 is a photograph of a zirconium (Zr) -based metal-organic framework (MOF-808) synthesized by microwave synthesis according to an embodiment of the present invention with a scanning electron microscope (SEM).
  • Zr zirconium
  • MOF-808 metal-organic framework
  • FIG. 5 is a photograph of a zirconium (Zr) -based metal-organic framework (MOF-808) synthesized by solvent thermal synthesis according to an embodiment of the present invention with a scanning electron microscope (SEM).
  • Zr zirconium
  • MOF-808 metal-organic framework
  • Figure 6 shows a system for producing a metal-organic composite according to the present invention.
  • XRD 7 is an X-ray diffraction (XRD) before and after deposition of triethylenediamine (TEDA) on a zirconium (Zr) -based metal-organic framework (MOF-808) according to an embodiment of the present invention. The analysis results are shown.
  • FIG. 8 is a graph showing nitrogen adsorption results and BET specific surface areas before and after deposition of triethylenediamine (TEDA) on a zirconium (Zr) -based metal-organic framework (MOF-808) according to an embodiment of the present invention.
  • TAA triethylenediamine
  • Zr zirconium
  • MOF-808 metal-organic framework
  • process conditions such as reaction temperature, and the like are not particularly limited as long as they do not depart from the object of the present invention, and are considered to be optimal for the purpose of the present invention. Indicates the conditions.
  • Example 1 synthesized a metal-organic composite named MOF-808 in Preparation Example 1 below as a method for preparing a metal-organic composite of the present invention.
  • Preparation Example 1 relates to a method for producing a metal-organic skeleton containing zirconium (Zr), and a method for producing MOF-808 as a metal-organic framework containing zirconium (Zr). Chem. Soc. 2014, 136, 4369-4381).
  • the preparation of the metal-organic framework of the present invention includes zirconium oxyhydroxide including zirconium (Zr) as a metal precursor and benzene-1,3,5-tricarboxylic acid (benzene-1) as an organic ligand.
  • Precursor solution was prepared using N, N-dimethylformamide (DMF) as a solvent using 3,5-tricarbozylic acid (BTC) and formic acid.
  • DMF N, N-dimethylformamide
  • BTC 3,5-tricarbozylic acid
  • the prepared precursor solution was heated at a crystallization temperature for a predetermined time to proceed with the synthesis of the metal-organic framework, in which the synthesis was performed by dissolution heat synthesis or microwave synthesis to shorten the reaction time.
  • Dissolution heat synthesis synthesized the metal-organic framework by injecting the precursor solution into the tube through a micro metering pump and passing the heated section to a temperature of about 100 ° C.
  • the synthesized metal-organic framework was called 'MOF- It is also indicated as 808-R '.
  • a microwave was heated to a precursor solution at a temperature of 100 ° C. for 3 hours to form a metal-organic framework.
  • the metal-organic framework synthesized by the microwave synthesis method is 'MOF-808-M'. Also referred to as.
  • the metal-organic frameworks synthesized from the reaction solution after the reaction were sufficiently washed with N, N-dimethylformamide (DMF) and ethanol, and then the metal-organic framework crystals were recovered by centrifugation. It was then dried at a temperature of 100 °C.
  • DMF N, N-dimethylformamide
  • Table 1 summarizes the reaction conditions for preparing MOF-808.
  • M represents a metal precursor
  • L * represents an organic ligand
  • DMF represents N, N-dimethylformamide
  • FA ** represents formic acid.
  • MOF-808 a metal-organic framework containing zirconium (Zr) as its core metal, is a porous nanostructure with a Zr 6 O 4 (OH) 4 (OOCH) 6 (BTC) 2 structure and has pores with sizes of 0.48 nm and 1.82 nm. It has a cage and its surface area is between 1300 and 2000 m 2 / g according to the synthesis method of MOF-808, and includes various zirconium (Zr) active sites such as metal hydroxides including acid / base functional groups. It is included.
  • the metal-organic framework thus synthesized was analyzed by X-ray diffraction (XRD) analysis of the crystal structure of the powder after drying, as shown in FIG. 3, as shown in MOF-808-R and MOF-808. -M was confirmed to be consistent with the structure of the MOF-808 previously reported.
  • XRD X-ray diffraction
  • the synthesized metal-organic framework was confirmed crystal size through a scanning electron microscope.
  • the crystal size was 500 to 600 nm on average, and the metal synthesized by the heat of melting synthesis method-
  • MOF-808-R which is an organic skeleton, it was confirmed that it has a particle size of 200-400 nm on average. All of them have a crystal size of 100 nm or more, so the crystallinity is excellent.
  • the active surface of the metal-organic framework is generally almost inside the pores of the metal-organic framework, it is necessary to secure the surface pore volume for quick and easy access to the interior of the pores during the deposition or adsorption of organic amines.
  • the surface area of the metal-organic framework synthesized as described above is about 1300 ⁇ 2000 m 2 / g, it can be seen that the deposition of the organic amine is easy.
  • Preparation Example 2 relates to a method of preparing a metal-organic composite by depositing an organic amine on the metal-organic framework prepared in Preparation Example 1, and a metal by vapor-vacuum deposition through a system as shown in FIG. 6. Organic complexes were prepared.
  • the production system for manufacturing the metal-organic composite of the present invention is a quartz tubular reactor in which a furnace is formed in which a furnace is formed for depositing an organic amine in the pores of the metal-organic framework.
  • a mass flow controller (MFC) for controlling the flow rate of an inert gas such as a helium (He) gas and an organic amine supply bulb which is prepared by heating the organic amine to form a gaseous organic amine and then supplied to the reactor.
  • MFC mass flow controller
  • FIG. 6 looks at the manufacturing method of the metal-organic composite of the present invention.
  • the pores in the reduced pressure of 5 torr-metal prepared in Preparative Example 1 to an organic backbone chain MOF-808 frit disc (Fritted disk) is installed quartz temperature and 10 -1 to 10 into a 150 °C (quartz) tube reactor It activates by removing existing water and impurities.
  • a bulb containing a certain amount of solid triethylenediamine (TEDA) as an organic amine was treated at room temperature and under reduced pressure (1 ⁇ 10 ⁇ 1 to 1 ⁇ 10 ⁇ 5 torr) to obtain a bulb and a tree. After removing the water present in ethylenediamine (TEDA), it is connected to a quartz reactor containing an activated metal-organic framework.
  • X- X-ray diffraction
  • TAA triethylenediamine
  • MOF-808 zirconium -based metal-organic framework
  • XRD ray diffraction
  • Example 1 prepared a metal-organic composite by the same method as Preparation Example 2, except that the amount of triethylenediamine (TEDA) deposited, 8.4 wt%, 10 wt%, 14 wt%, 22 wt% and 23 A metal-organic composite was prepared in which wt% triethylenediamine (TEDA) was deposited.
  • TAA triethylenediamine
  • the deposition amount is indicated before 'TEDA-MOF-808', for example, 8.4 wt% of triethylenediamine (TEDA) was deposited in the form of "8.4 wt% TEDA-MOF-808" or "8.4 wt% TEDA-MOF-808".
  • FIG. 8 shows nitrogen adsorption isotherms before and after the deposition of triethylenediamine (TEDA) on a zirconium (Zr) -based metal-organic framework (MOF-808), and a metal obtained by applying a BET equation to the measured nitrogen adsorption isotherms.
  • the BET surface area value (cm 3 / g) per weight before and after triethylenediamine (TEDA) deposition on the organic framework was measured.
  • FIG 8 (a) is the nitrogen adsorption curve of the metal-organic framework MOF-808 prior to the deposition of triethylenediamine (TEDA), (b) is a metal-organic deposition of 23% by weight of triethylenediamine (TEDA) The nitrogen adsorption curve of the framework is shown.
  • the BET surface area of diamine (TEDA) -deposited metal-organic ear was 1092m 2 / g, the pore volume was 0.49 ml / g, and the BET surface area and the pore volume were confirmed to be small.
  • CK cyanogen chloride
  • CK cyanide breakthrough experiment uses a 4 mm inner diameter glass tube as the adsorption reactor, and the adsorption reactor was filled with a metal-organic composite of 0.1 ml and a filling height of about 8 cm. Do this.
  • the metal-organic composite is formed by pulverizing the metal-organic composite in powder form in order to evaluate the adsorption performance, and then pulverized, and has a particle size in which the pressure drop in the adsorption reactor can be minimized. 70 mesh) size particles were used.
  • the metal-organic complex of the present invention is chloride
  • the deposition amount of organotriethylenediamine (TEDA) increased, it was confirmed that the removal efficiency was increased due to the good adsorption to cyanogen chloride (CK).
  • Example 2 was 29 wt% by the same method as Preparation Example 2, except that the BET surface area of MOF-808, a metal-organic framework on which triethylenediamine (TEDA) was deposited, was 1610 m 2 / g. And 29 wt% TEDA-MOF-808 and 30 wt% TEDA-MOF-808 with 30 wt% triethylenediamine (TEDA) deposited.
  • the BET surface area of MOF-808 a metal-organic framework on which triethylenediamine (TEDA) was deposited.
  • CK cyanogen chloride
  • the TEDA-MOF-808 produced by the vapor-vacuum deposition method according to the present invention is up to three times more than the CK removal performance of the conventional ASZM-TEDA activated carbon.
  • the metal-organic composite prepared by the vapor-vacuum deposition method according to the metal-organic composite manufacturing method of the present invention is a tree which is an organic amine substance having high decomposition activity to chemical agents in the pores of the metal-organic framework.
  • Ethylenediamine (TEDA) was confirmed to be deposited at 10 to 30% by weight.
  • the pore size is measured in the present specification, although not shown in the drawings of the present invention, when the metal-organic composite is prepared using the vapor-vacuum vapor deposition method of the present invention, it is included in the structure of the MOF-808.
  • UPUPAC International Union of Pureand Applied Chemistry
  • the volume of mesoporous cells with a range of 2-50 nm is maintained at about 50%, indicating that the active surface, which is an adsorption site for the removal of chemical agents, is activated. I could confirm it.
  • the metal-organic composite prepared according to the production method of the present invention can minimize the pore volume and surface area of the metal-organic framework, which is a porous material, to deposit an organic amine material at 1 to 30% by weight, in particular, As deposited as 10-30% by weight or more, it has excellent performance in removing chemical agents including cyanide chloride (CK).
  • CK cyanide chloride

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Solid-Sorbent Or Filter-Aiding Compositions (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)

Abstract

The present invention relates to a method for producing a metal-organic complex comprising a Group 4B element, and more specifically, to a method for producing a metal-organic complex exhibiting an excellent function of removing chemical warfare agents, the method comprising: a first step for preparing a metal-organic framework comprising any one Group 4B element among zirconium (Zr), titanium (Ti) and hafnium (Hf); and a second step for producing a metal-organic complex by depositing organic amine in pores of the metal-organic framework by means of a vapor-vacuum deposition method.

Description

4B족 원소를 포함하는 금속-유기 복합체의 제조방법Method for preparing metal-organic composite containing group 4B element
본 발명은 다공성 소재인 금속-유기 골격체(metal-organic framework, MOF)를 토대로 화학작용제의 제거에 탁월한 성능을 가진 금속-유기 복합체의 제조방법에 관한 것이다.The present invention relates to a method for preparing a metal-organic composite having excellent performance in removing a chemical agent based on a metal-organic framework (MOF), which is a porous material.
7~80년대 방독면에 사용되는 활성탄은 주로 6가 크롬을 포함하는 ASC 첨착 활성탄으로 6가 크롬의 독성으로 인해 사용 후 폐기 방법 및 환경 유해성이 문제가 되었다. 한국등록특허 제10-0148793호에서는 이를 해결하기 위하여 크롬을 함유하지 않는 유기아민인 트리에틸렌디아민(triethylenediamine, TEDA)이 함유된 ASZM-TEDA 활성탄이 개발되어 최근까지 사용하고 있다.Activated carbon used in gas masks in the seventh and eighties was mainly ASC impregnated activated carbon containing hexavalent chromium, which caused problems with disposal methods and environmental hazards due to the toxicity of hexavalent chromium. In Korean Patent No. 10-0148793, ASZM-TEDA activated carbon containing triethylenediamine (TEDA), an organic amine that does not contain chromium, has been developed and used until recently to solve this problem.
미국등록특허 제5,063,196호에서는 은(Ag), 구리(Cu), 아연(Zn) 및 몰리브데늄(Mo)을 포함한 ASZM-TEDA 활성탄의 경우 금속 전구체와 유기아민의 비율을 조절하여 약 5% 구리, 0.05% 은, 5% 아연, 2% 몰리브데늄 및 3% TEDA를 함침시켜 활성탄에 담지하는 활성탄 제조방법을 제시하였다.U.S. Patent No. 5,063,196 discloses about 5% copper by controlling the ratio of metal precursor and organic amine in the case of ASZM-TEDA activated carbon including silver (Ag), copper (Cu), zinc (Zn) and molybdenum (Mo). , 0.05% silver, impregnated with 5% zinc, 2% molybdenum and 3% TEDA to propose an activated carbon manufacturing method supported on activated carbon.
그러나 함침법을 이용한 금속-TEDA 함유 활성탄 제조방법의 경우 다공성 카본 담체에 활성 금속인 구리, 아연, 몰리브데늄, 은, 바나듐 및 유기아민 등 전이금속을 함침 시킬 때 용액 상에서 분산 또는 용해시킬 수 있는 금속 및 유기아민의 양이 제한적이고, 특히 활성탄의 특성상 미세 기공을 갖고 있어 금속 전구체의 함량이 많은 경우 담지체의 미세 기공 입구를 막아 기공 내에 많은 양의 금속 활성 물질을 담지하기 어려운 단점이 있다. 또한, 고가의 은을 사용하므로 경제성 확보에 어려움이 있었다.However, in the method of manufacturing metal-TEDA-containing activated carbon by impregnation, when the porous carbon carrier is impregnated with a transition metal such as copper, zinc, molybdenum, silver, vanadium, and organic amine, it can be dispersed or dissolved in solution. The amount of the metal and the organic amine is limited, and in particular, because of the nature of the activated carbon has a fine pores, when the content of the metal precursor is large, it is difficult to support a large amount of the metal active material in the pores by blocking the inlet of the micropores of the carrier. In addition, since expensive silver is used, it is difficult to secure economic feasibility.
따라서 금속 활성 물질인 구리, 아연 및 6B족 원소인 크롬(Cr), 텅스텐(W), 몰리브데늄(Mo) 등의 활성금속 물질의 함량을 증가시키는데 한계가 있어 고함량의 금속 및 유기 아민이 고분산된 새로운 다공성 복합 소재의 개발이 요구되고 있다.Therefore, there is a limit to increase the content of active metal materials such as copper, zinc, and 6B elements, metals such as chromium (Cr), tungsten (W), and molybdenum (Mo), which are high content metals and organic amines. There is a need for the development of highly dispersed new porous composite materials.
금속-유기 골격체(metal organic framework, MOF)는 일반적으로 '다공성 배위고분자(porous coordination polymers)' 또는 '다공성 유무기 혼성체'라고도 하며, 나노 크기의 기공을 가지고 있어 넓은 표면적을 제공한다는 장점을 가지므로 물질을 흡착시켜 제거하거나 또는 기공 내에 조성물을 담지하여 전달하는 용도로 흡착제, 기체 저장 물질, 센서, 멤브레인, 기능성 박막, 약물전달물질, 촉매 및 촉매 담체 등에 사용될 뿐만 아니라, 기공크기보다 작은 게스트 분자를 포집하거나 기공을 이용하여 분자들을 크기에 따라 분리하는데 사용되고, 또한 금속-유기 골격체의 구조 내에 존재하는 다양한 활성금속을 사용하여 촉매반응에 적용할 수 있기 때문에 활발히 연구되고 있다.Metal-organic frameworks (MOFs) are also commonly referred to as 'porous coordination polymers' or 'porous organic-inorganic hybrids'. They have the advantage of providing a large surface area with nano-sized pores. It is used in adsorbents, gas storage materials, sensors, membranes, functional thin films, drug delivery materials, catalysts and catalyst carriers, and is used for adsorption and removal of substances by carrying the composition in the pores. It has been actively studied because it can be used to capture molecules or use pores to separate molecules according to size, and can also be applied to catalysis using various active metals present in the structure of the metal-organic framework.
화학작용제를 제거하기 위한 다양한 금속-유기 골격체 물질이 보고되고 있으나, 기공의 활성 표면적 감소 등으로 인해 기본 금속-유기 골격체 구조 내에 화학작용제 제거용 유기 아민을 10 중량% 이상 증착하는데 어려움이 있다. 이에 금속-유기 골격체의 기공의 활성 표면의 면적의 감소를 최소화시키는 동시에 화학작용제의 제거 성능이 극대화할 수 있는 금속-유기 복합체의 제조하는 방법에 대해 필요성이 요구되고 있다.Various metal-organic framework materials for the removal of chemical agents have been reported, but it is difficult to deposit more than 10% by weight of the organic amine for chemical agent removal in the basic metal-organic framework structure due to the reduction of the active surface area of the pores. . Accordingly, there is a need for a method of preparing a metal-organic composite that can minimize the reduction of the area of the active surface of the pores of the metal-organic framework and maximize the removal performance of the chemical agent.
본 발명은 전술한 바와 같은 문제점을 해결하기 위한 것으로 금속 원소로 주기율표(IUPAC 무기화학 명명법 개정판, 1989)를 기준으로 4B족의 원소를 포함하는 금속-유기 골격체의 기공에 기상-진공 증착 방법으로 유기 아민이 10 중량% 이상 증착되어 화학작용제의 제거에 탁월한 성능을 가진 금속-유기 복합체의 제조방법을제공하는 것에 목적이 있다.The present invention is to solve the problems as described above by a vapor-vacuum deposition method in the pores of the metal-organic skeleton containing elements of group 4B based on the periodic table (IUPAC inorganic chemical nomenclature revised edition, 1989) as a metal element It is an object to provide a method for preparing a metal-organic composite having at least 10% by weight of organic amine deposited to have excellent performance in removing chemical agents.
상기와 같은 목적을 달성하기 위한 본 발명의 금속-유기 복합체 제조방법은 금속-유기 골격체를 준비하는 제1단계(S100) 및 상기 금속-유기 골격체의 기공에 기상-진공 증착방법으로 유기 아민을 증착시키는 제2단계(S200)를 포함하며, 이는 도 1에 도시된 순서도와 같이 이루어진다.Metal-organic composite manufacturing method of the present invention for achieving the above object is the first step (S100) to prepare a metal-organic framework and the organic amine by vapor-vacuum deposition method in the pores of the metal-organic framework And depositing a second step (S200), which is performed as shown in the flowchart shown in FIG.
먼저, 상기 제1단계(S100)는 주기율표(IUPAC 무기화학 명명법 개정판, 1989)를 기준으로 4B족의 원소를 포함하는 금속-유기 골격체의 제조를 위한 단계로서, 금속 전구체와 유기 리간드와 함께 용매에 혼합하여 전구체 용액을 제조하는 단계(S110), 제조된 전구체 용액을 결정화 온도에서 가열하여 금속-유기 골격체를 합성하는 단계(S120), 및 정제하여 합성된 금속-유기 골격체를 수득하는 단계(S130)를 포함하여 이루어질 수 있다.First, the first step (S100) is a step for preparing a metal-organic framework containing an element of Group 4B based on the periodic table (IUPAC Inorganic Chemistry Nomenclature, 1989), and a solvent with a metal precursor and an organic ligand. Preparing a precursor solution by mixing in a step (S110), heating the prepared precursor solution at a crystallization temperature to synthesize a metal-organic framework (S120), and purifying to obtain a synthesized metal-organic framework. It may be made, including (S130).
상기 전구체 용액을 제조하는 단계(S110)에서 상기 금속 전구체는 4B족의 원소로 지르코늄(Zr), 타이타늄(Ti) 및 하프늄(Hf) 중의 어느 하나의 금속을 포함하는 화합물이며, 구체적으로 금속 전구체는 각각 독립적으로 각 금속의 클로라이드(chloride)계, 나이트레이트(nitrate)계, 설페이트(sulfate)계 및 아세테이트(acetate)계 화합물 중에서 선택되는 어느 하나 이상일 수 있다.In the preparing of the precursor solution (S110), the metal precursor is a compound containing any one metal of zirconium (Zr), titanium (Ti), and hafnium (Hf) as an element of Group 4B. Each independently may be any one or more selected from chloride, nitrate, sulfate and acetate compounds of each metal.
예를 들어, 상기 금속 전구체는 지르코늄 전구체, 타이타늄 전구체 및 하프늄 전구체로 바람직하게 금속 옥시하이드록사이드(metal oxyhydroxide) 물질로 타이타늄 옥시하이드록사이드(titanium oxyhydroxide), 지르코늄 옥시하이드록사이드(zirconium oxyhydroxide) 및 하프늄 옥시하이드록사이드(hafnium oxyhydroxide)를 사용할 수 있으나, 이에 한정되지 않는다.For example, the metal precursor is a zirconium precursor, a titanium precursor and a hafnium precursor, preferably a metal oxyhydroxide material, such as titanium oxyhydroxide, zirconium oxyhydroxide and zirconium oxyhydroxide. Hafnium oxyhydroxide may be used, but is not limited thereto.
금속-유기 골격체의 또 하나의 구성요소인 유기 리간드는 링커(linker)라고도 하며, 배위결합 할 수 있는 작용기를 가진 어떠한 유기 화합물도 가능하며, 예를 들어 상기 유기 리간드는 카르복실기(-COOH), 카르복실산 음이온기(-COO-), 아민기(-NH2) 및 이미노기(-NH), 니트로기(-NO2), 히드록시기(-OH), 할로겐기(-X) 및 슬폰산기(-SO3H), 술폰산 음이온기(-SO3 -), 메탄디티오산기(-CS2H), 메탄디티오산 음이온기(-CS2 -), 피리딘기 및 피라진기로 이루어진 군에서 선택되는 하나 이상의 작용기를 갖는 화합물 또는 이의 혼합물을 사용할 수 있다.The organic ligand, which is another component of the metal-organic framework, is also called a linker, and any organic compound having a coordinating functional group can be used. For example, the organic ligand may be a carboxyl group (-COOH), carboxylic acid anion group (-COO -), an amine group (-NH 2), and an imino group (-NH), a nitro group (-NO 2), a hydroxy group (-OH), a halogen group (-X) and seulpon acid ( -SO 3 H), a sulfonic acid anion group (-SO 3 -), methane dithiol Osan group (-CS 2 H), methane dithiol Osan anion group (-CS 2 -), one selected from the group consisting of a pyridine group and a pyrazine Compounds or mixtures thereof having the above functional groups can be used.
본 발명에서 유기 리간드로는 벤젠디카르복실산, 나프탈렌디카르복실산, 벤젠트리카르복실산, 나프탈렌트리카르복실산, 벤젠트리벤조산, 피리딘디카르복실산, 비피리딜디카르복실산, 포름산(formic acid), 옥살산, 말론산, 숙신산, 글루타민산, 헥산디오산, 헵탄디오산 및 시클로헥실디카르복실산 중에서 선택되는 어느 하나 이상을 사용할 수 있으며, 더욱 바람직하게, 도 2의 화학식('화학식 1'이라고도 함)과 같은 벤젠-1,3,5-트리카르복시산(benzene-1,3,5-tricarboxylic acid, BTC)을 포함하여 사용할 수 있다.In the present invention, organic ligands include benzenedicarboxylic acid, naphthalenedicarboxylic acid, benzenetricarboxylic acid, naphthalenetricarboxylic acid, benzenetribenzoic acid, pyridinedicarboxylic acid, bipyridyldicarboxylic acid, and formic acid. (formic acid), oxalic acid, malonic acid, succinic acid, glutamic acid, hexanedioic acid, heptanedioic acid and cyclohexyldicarboxylic acid may be used, and more preferably, the chemical formula of FIG. Benzene-1,3,5-tricarboxylic acid (BTC), such as 1 ').
이처럼 수산화물(hydroxid) 기능기를 갖는 금속-유기 골격체의 경우에는 CNCl의 분자식을 갖는 염화시안(CK)의 분해산물인 산(HCl) 등을 효과적으로 제거 할 수 있는 바, 본 발명에서 사용되는 금속-유기 골격체는 바람직하게 수산화물 기능기를 포함하는 것을 사용하는 것이 바람직하다.In the case of the metal-organic skeleton having a hydroxide functional group, such as the acid (HCl), which is a decomposition product of cyanide chloride (CK) having a molecular formula of CNCl, the metal used in the present invention- It is preferable that the organic skeleton uses what contains a hydroxide functional group.
상기 전구체 용액을 제조하는데 사용하는 용매는 금속 성분과 유기 리간드를 모두 용해시킬 수 있는 용매이면 제한 없이 사용할 수 있다. 예를 들어, 물, N,N-디메틸포름아미드(DMF), N,N-디에틸포름아미드(DEF), N,N-디메틸아세트아미드(DMAc), 에틸렌 글리콜(ethylene glycol), 글리세롤, 폴리에틸렌 글리콜, 아세톤, 메틸에틸케톤, 헥산, 헵탄, 옥탄, 아세토니트릴, 디옥산, 클로로벤젠, 피리딘, N-메틸 피롤리돈(NMP), 설포란, 테트라하이드로퓨란(THF), 감마-부티로락톤, 시클로헥산올 및 메탄올, 에탄올, 프로판올 등의 알코올류 등을 사용 가능하고, 또한 이 중에서 두 가지 이상의 용매를 섞어 사용할 수 있으며, 가장 바람직하게는 N,N-디메틸포름아미드(DMF)를 사용할 수 있다.The solvent used to prepare the precursor solution may be used without limitation as long as it is a solvent capable of dissolving both a metal component and an organic ligand. For example, water, N, N-dimethylformamide (DMF), N, N-diethylformamide (DEF), N, N-dimethylacetamide (DMAc), ethylene glycol, glycerol, polyethylene Glycol, acetone, methyl ethyl ketone, hexane, heptane, octane, acetonitrile, dioxane, chlorobenzene, pyridine, N-methyl pyrrolidone (NMP), sulfolane, tetrahydrofuran (THF), gamma-butyrolactone , Cyclohexanol and alcohols such as methanol, ethanol, and propanol may be used, and two or more solvents may be mixed, and most preferably N, N-dimethylformamide (DMF) may be used. have.
그리고 금속-유기 골격체를 합성하는 단계(S120)에서는 용매열, 마이크로파(microwave)나 초음파를 조사하여 일정 시간 가열함으로써 결정화 반응을 수행하여 금속-유기 골격체를 합성하는 용매열 합성 또는 마이크로파 합성을 통해 금속-유기 골격체를 합성할 수 있다.In the step of synthesizing the metal-organic framework (S120), a solvent heat synthesis or microwave synthesis for synthesizing the metal-organic framework is performed by performing a crystallization reaction by heating a predetermined time by heating solvent heat, microwaves or ultrasonic waves. Metal-organic frameworks can be synthesized.
그 다음 과정으로 금속-유기 골격체를 수득하는 단계(S130)에서는 합성된 금속-유기 골격체를 용액(solvent) 존재하에 기 설정된 온도에서 일정 시간동안 정제하여 합성된 금속-유기 골격체를 수득할 수 있으며, 여기서 정제 방법은 통상의 방법인 원심분리 방법 등으로 수행될 수 있으며, 이에 제한되지 않는다.Next, in the step of obtaining a metal-organic skeleton by the process (S130), the synthesized metal-organic skeleton is purified for a predetermined time in the presence of a solution (solvent) for a predetermined time to obtain a synthesized metal-organic skeleton. In this case, the purification method may be performed by a conventional centrifugation method and the like, but is not limited thereto.
이와 같은 방법으로 합성된 본 발명의 금속-유기 골격체는 비제한적인 예로 하기 화학식 2로 표시될 수 있다.The metal-organic framework of the present invention synthesized in this manner may be represented by the following Chemical Formula 2 as a non-limiting example.
[화학식 2][Formula 2]
M(μ3-O)43-OH)4(L)2(HCOO)6 M (μ 3 -O) 43 -OH) 4 (L) 2 (HCOO) 6
상기 화학식 2에서 M은 Ti4 +, Zr4 + 및 Hf4 + 중에서 선택되는 어느 하나의 금속이고, L은 카르복실기(-COOH), 카르복실산 음이온기(-COO-), 아민기(-NH2) 및 이미노기(-NH), 니트로기(-NO2), 히드록시기(-OH), 할로겐기(-X) 및 슬폰산기(-SO3H), 술폰산 음이온기(-SO3 -), 메탄디티오산기(-CS2H), 메탄디티오산 음이온기(-CS2 -), 피리딘기 및 피라진기로 이루어진 군에서 선택되는 하나 이상의 작용기를 갖는 화합물 또는 이의 혼합물인 유기 리간드이다. 상기 화학식 2에 μ3는 산소(O)가 3개의 지르코늄(Zr)과 결합한 구조를 의미한다.In Formula 2, M is any one metal selected from Ti 4 + , Zr 4 +, and Hf 4 + , and L is a carboxyl group (-COOH), a carboxylic acid anion group (-COO ), or an amine group (-NH 2) and the imino group (-NH), a nitro group (-NO 2), a hydroxy group (-OH), a halogen group (-X) and seulpon acid group (-SO 3 H), a sulfonic acid anion group (-SO 3 -), Osan methane dithiol group (-CS 2 H), methane dithiol Osan anion group (-CS 2 -), a compound or a mixture thereof is an organic ligand having at least one functional group selected from the group consisting of pyridine group and pyrazinyl group. Μ 3 in Formula 2 means a structure in which oxygen (O) is bonded to three zirconiums (Zr).
제2단계(S200)는 상기 제1단계(S100)를 통해 준비된 금속-유기 골격체의 기공에 전체 금속-유기 골격체 100 중량%를 기준으로 유기 아민을 1 내지 30 중량%로 증착한 금속-유기 복합체를 제조하는 단계이다.The second step (S200) is a metal-deposited organic amine of 1 to 30% by weight based on 100% by weight of the total metal-organic framework in the pores of the metal-organic framework prepared in the first step (S100)- It is a step of preparing an organic complex.
구체적으로 상기 제2단계(S200)는 금속-유기 골격체를 반응기에 넣고 진공 감압조건에서 일정 온도로 가열하여 금속-유기 골격체를 활성화시키는 활성화 단계(S210), 유기 아민 분말을 진공 감압하여 유기 아민 분말에 존재하는 여분의 수분을 제거하는 진공건조 단계(S220), 및 건조된 유기 아민을 진공 감압조건에서 일정 온도까지 가온하여 기체 상태의 유기 아민을 형성하고, 형성된 기체 상태의 유기 아민을 활성화된 금속-유기 골격체가 있는 반응기에 일정속도로 주입하여 활성화된 금속-유기 골격체의 기공에 증착시키는 증착 단계(S230)를 포함하여 이루어질 수 있다.Specifically, the second step (S200) is an activation step (S210) for activating the metal-organic framework by placing the metal-organic framework in a reactor and heating to a predetermined temperature under vacuum reduced pressure conditions, the organic amine powder by vacuum decompression Vacuum drying step (S220) for removing excess water present in the amine powder, and the dried organic amine is heated to a certain temperature under vacuum decompression conditions to form a gaseous organic amine, and activated the formed gaseous organic amine It can be made by including a deposition step (S230) to be injected into the reactor having a metal-organic skeleton at a constant rate and deposited in the pores of the activated metal-organic framework.
상기 유기 아민은 트리에틸렌디아민(triethylenediamine), 트리에틸아민(triethylamine) 및 피리딘-4-카르복실산(pyridine-4-carboxylic acid) 중에서 선택되는 어느 하나 또는 이들의 혼합물을 사용할 수 있으며, 바람직하게는 트리에틸렌디아민(triethylenediamine)를 사용할 수 있다.The organic amine may be any one selected from triethylenediamine, triethylamine and pyridine-4-carboxylic acid, or a mixture thereof, preferably Triethylenediamine can be used.
상기 활성화 단계(S210)는 금속-유기 골격체를 반응기에 넣고 반응기를 1×10-1 내지 1×10-5 torr의 진공 감압조건에서 110 내지 150℃의 온도로 가열하여, 상기 금속-유기 골격체의 기공 내에 존재하는 수분 및 불순물을 제거하여 활성화시킬 수 있다. 상기 제시된 압력과 온도 범위 미만에서는 금속-유기 골격체의 기공 내의 수분 및 불순물의 제거가 제대로 이루어지지 않아 금속-유기 골격체의 활성화가 제대로 이루어지지 않으므로 금속-유기 복합체 제조가 어려운 문제점이 있고, 상기 범위 초과에서는 활성화 반응 대비 에너지 효율 측면에서 과량의 에너지가 소모되는 문제가 있다.The activation step (S210) is to put the metal-organic skeleton in the reactor and heated the reactor to a temperature of 110 to 150 ℃ under vacuum reduced pressure conditions of 1 × 10 -1 to 1 × 10 -5 torr, the metal-organic skeleton It can be activated by removing the moisture and impurities present in the pores of the sieve. If the pressure and the temperature ranges below the water and impurities in the pores of the metal-organic framework is not properly removed, the activation of the metal-organic framework is not properly made, there is a problem that the production of metal-organic complex is difficult, If the range exceeds, there is a problem in that excess energy is consumed in terms of energy efficiency compared to the activation reaction.
상기 진공건조 단계(S220)는 유기 아민 분말을 15 내지 30℃ 온도에서 1×10-1 내지 1×10-5 torr로 진공 감압하여 수분을 제거하는 것이 바람직하며, 진공 건도 단계에서 제시된 온도 및 압력 범위를 벗어나면, 유기 아민의 수분 제거가 제대로 이루어지지 않아 이후 단계에서 기체 상태의 유기 아민의 형성이 어려운 문제점이 있으므로, 제시된 조건을 만족하는 것이 바람직하다.In the vacuum drying step (S220), the organic amine powder is vacuum-reduced to 1 × 10 −1 to 1 × 10 −5 torr at a temperature of 15 to 30 ° C. to remove moisture, and the temperature and pressure presented in the vacuum drying step. Outside the range, since the water removal of the organic amine is not made properly, it is difficult to form a gaseous organic amine in a later step, it is preferable to satisfy the conditions presented.
상기 증착 단계(S230)는 건조된 유기 아민을 1×10-1 내지 1×10-5 torr의 진공 감압조건에서 110 내지 150℃ 온도까지 가온하여 기체 상태의 유기 아민을 형성할 수 있다. 상기 제시된 압력과 온도 범위 미만에서는 기체 상태의 유기 아민이 기체 상태로 변화가 제대로 이루어지지 않아 활성화된 금속-유기 골격체의 기공에 증착이 어려운 문제가 있으며, 또한 상기 제시된 압력과 온도 범위 초과하는 경우도 금속-유기 골격체 오히려 높은 온도로 인해 활성화된 금속-유기 골격체의 기공에 유기 아민의 증착이 어렵다.In the deposition step (S230), the dried organic amine may be heated to a temperature of 110 to 150 ° C. under a vacuum decompression condition of 1 × 10 −1 to 1 × 10 −5 torr to form an organic amine in a gaseous state. When the organic amine in the gaseous state is less than the pressure and temperature ranges described above, it is difficult to deposit in the pores of the activated metal-organic framework because the organic amines in the gaseous state are not properly changed, and when the pressure and temperature ranges are exceeded. Metal-Organic Frameworks Due to the rather high temperature, the deposition of organic amines in the pores of activated metal-organic frameworks is difficult.
이와 같이 앞서 설명한 제조 방법으로 제조된 금속-유기 복합체의 결정 크기는 평균 100nm 이상인 것이 바람직하다.As such, the crystal size of the metal-organic composite prepared by the above-described manufacturing method is preferably 100 nm or more on average.
한편, 본 명세서에서 "금속-유기 복합체"는 금속-유기 골격체의 기공에 유기 아민이 증착 또는 담지된 상태의 금속-유기 골격체를 의미한다.Meanwhile, in the present specification, the "metal-organic complex" means a metal-organic framework in which organic amine is deposited or supported on pores of the metal-organic framework.
본 발명의 제조방법을 통해 제조된 4B족 원소를 포함하는 금속-유기 복합체는 100nm 이상의 결정 크기를 가지므로 결정성이 뛰어나며, 또한 금속-유기 복합체는 기상-증기 증착법을 통해 제조됨으로써, 전체 금속-유기 골격체 100 중량%에 대해 금속-유기 골격체의 기공에 유기 아민을 10 중량% 이상 증착하고, 기공의 활성 표면의 면적의 감소를 최소화 시키는 동시에 화학작용제의 제거에 뛰어난 효과를 갖는다.The metal-organic composite including the Group 4B element prepared through the production method of the present invention has a crystal size of 100 nm or more and is excellent in crystallinity, and the metal-organic composite is prepared through the vapor-vapor deposition method. At least 10% by weight of organic amine is deposited in the pores of the metal-organic framework with respect to 100% by weight of the organic framework, which minimizes the reduction of the area of the active surface of the pores and has an excellent effect on the removal of chemical agents.
도 1은 본 발명의 금속-유기 복합체의 제조방법 순서도이다.1 is a flowchart illustrating a method for preparing a metal-organic composite of the present invention.
도 2는 벤젠-1,3,5-트리카르복시산(benzene-1,3,5-tricarboxylic acid, BTC)의 화학식이다.2 is a chemical formula of benzene-1,3,5-tricarboxylic acid (BTC).
도 3은 본 발명의 실시예에 따라 마이크로파 합성법(a)와 용매열 합성법(b)를 통해서 제조된 100nm 이상의 결정크기를 갖는 지르코늄(Zr)을 포함한 금속-유기 골격체(MOF-808)의 X선 회절분석 결과이다.3 is X of a metal-organic framework (MOF-808) including zirconium (Zr) having a crystal size of 100 nm or more prepared through microwave synthesis (a) and solvent thermal synthesis (b) according to an embodiment of the present invention. The result of the line diffraction analysis.
도 4는 본 발명의 실시예에 따라 마이크로파 합성법으로 합성한 지르코늄(Zr)계 금속-유기 골격체(MOF-808)를 주사전자현미경(scanning electron microscope, SEM)으로 본 사진이다.4 is a photograph of a zirconium (Zr) -based metal-organic framework (MOF-808) synthesized by microwave synthesis according to an embodiment of the present invention with a scanning electron microscope (SEM).
도 5는 본 발명의 실시예에 따라 용매열 합성법으로 합성한 지르코늄(Zr)계 금속-유기 골격체(MOF-808)를 주사전자현미경(scanning electron microscope, SEM)으로 본 사진이다.FIG. 5 is a photograph of a zirconium (Zr) -based metal-organic framework (MOF-808) synthesized by solvent thermal synthesis according to an embodiment of the present invention with a scanning electron microscope (SEM).
도 6은 본 발명에 따른 금속-유기 복합체를 제조 시스템을 나타낸 것이다.Figure 6 shows a system for producing a metal-organic composite according to the present invention.
도 7은 본 발명의 실시예를 따라 지르코늄(Zr)계 금속-유기 골격체(MOF-808)에 트리에틸렌디아민(triethylenediamine, TEDA)의 증착 전과 후의 X-선 회절(X-ray diffraction, XRD) 분석 결과를 나타낸 것이다.7 is an X-ray diffraction (XRD) before and after deposition of triethylenediamine (TEDA) on a zirconium (Zr) -based metal-organic framework (MOF-808) according to an embodiment of the present invention. The analysis results are shown.
도 8은 본 발명의 실시예를 따라 지르코늄(Zr)계 금속-유기 골격체(MOF-808)에 트리에틸렌디아민(triethylenediamine, TEDA)의 증착 전과 후의 질소 흡착 결과 및 BET 비표면적을 나타낸 그래프이다.FIG. 8 is a graph showing nitrogen adsorption results and BET specific surface areas before and after deposition of triethylenediamine (TEDA) on a zirconium (Zr) -based metal-organic framework (MOF-808) according to an embodiment of the present invention.
도 9는 본 발명의 실시예를 따라 제조된 금속-유기 복합체에서 트리에틸렌디아민(TEDA) 증착량에 따른 염화시안(cyanogen chloride, CK)의 제거 성능을 비교한 결과이다.9 is a result of comparing the removal performance of cyanogen chloride (CK) according to the amount of triethylenediamine (TEDA) deposition in the metal-organic composite prepared according to the embodiment of the present invention.
도 10은 본 발명의 실시예를 따라 제조된 금속-유기 복합체와 ASZM-TEDA 활성탄의 염화시안(cyanogen chloride, CK)의 제거 성능을 비교한 결과이다.10 is a result of comparing the removal performance of cyanogen chloride (CK) of the metal-organic composite and ASZM-TEDA activated carbon prepared according to an embodiment of the present invention.
본 발명의 금속-유기 복합체의 제조방법에서 설명되는 각 단계의 반복 횟수, 반응 온도와 같은 공정 조건 등은 본 발명의 목적을 벗어나지 않는 한 특별히 한정되지 않으며, 본 발명이 이루고자 하는 목적의 최적이라고 여겨지는 조건을 기재한 것이다.The number of repetitions of each step described in the method for producing a metal-organic composite of the present invention, process conditions such as reaction temperature, and the like are not particularly limited as long as they do not depart from the object of the present invention, and are considered to be optimal for the purpose of the present invention. Indicates the conditions.
이하, 실시예 및 비교예를 이용하여 본 발명을 보다 구체적으로 설명한다. 그러나 이들 실시예 및 비교예는 한 예시일 뿐이며 본 발명의 범위가 이들 실시예 및 비교 예에 한정되지 않고, 본 발명이 속하는 기술 분야에서 통상의 지식을 가진 자가 다양하게 수정 및 변경하여 구현될 수 있으므로, 여기에서 설명하는 것에 한정되지 않는다.Hereinafter, the present invention will be described in more detail using examples and comparative examples. However, these Examples and Comparative Examples are only one example and the scope of the present invention is not limited to these Examples and Comparative Examples, and can be implemented by variously modified and changed by those skilled in the art. Therefore, it is not limited to what is described here.
실시예 1은 본 발명의 금속-유기 복합체의 제조 방법으로 하기 제조예 1에서 MOF-808로 명명되는 금속-유기 복합체를 합성하였다.Example 1 synthesized a metal-organic composite named MOF-808 in Preparation Example 1 below as a method for preparing a metal-organic composite of the present invention.
제조예 1는 지르코늄(Zr)을 포함한 금속-유기 골격체의 제조방법에 관한 것으로, 지르코늄(Zr)을 포함한 금속-유기 골격체로서 MOF-808을 제조하는 방법으로 비특허문헌 1(J. Am. Chem. Soc. 2014, 136, 4369-4381)에서 제시된 방법을 토대로 제조하였다.Preparation Example 1 relates to a method for producing a metal-organic skeleton containing zirconium (Zr), and a method for producing MOF-808 as a metal-organic framework containing zirconium (Zr). Chem. Soc. 2014, 136, 4369-4381).
구체적으로 본 발명의 금속-유기 골격체의 제조는 금속 전구체로 지르코늄(Zr)을 포함하는 지르코늄옥시하이드록사이드(zirconium oxyhydroxide)와 유기 리간드로 벤젠-1,3,5-트리카르복시산(benzene-1,3,5-tricarbozylic acid, BTC) 와 포름산(formic acid)를 용매로서 N,N-디메틸포름아미드(N,N-dimethylformamide, DMF)를 사용하여 전구체 용액을 제조하고, 이때 전구체 용액의 조성은 하기 표 1에 기재된 바와 같이 몰비를 기준으로 금속 전구체 : 유기 리간드 : DMF : 포름산 = 1 : 1 : 246 : 521 비율이 되도록 조절하여 혼합한다.Specifically, the preparation of the metal-organic framework of the present invention includes zirconium oxyhydroxide including zirconium (Zr) as a metal precursor and benzene-1,3,5-tricarboxylic acid (benzene-1) as an organic ligand. Precursor solution was prepared using N, N-dimethylformamide (DMF) as a solvent using 3,5-tricarbozylic acid (BTC) and formic acid. As shown in Table 1 below, the mixture is controlled to have a ratio of metal precursor: organic ligand: DMF: formic acid = 1: 1: 246: 521 based on the molar ratio.
그 다음 제조된 전구체 용액을 결정화 온도에서 일정한 시간 가열하여 금속-유기 골격체를 합성을 진행하였으며, 이때 합성은 반응시간을 단축하기 위해서 용해열 합성 또는 마이크로파 합성을 수행하였다.Then, the prepared precursor solution was heated at a crystallization temperature for a predetermined time to proceed with the synthesis of the metal-organic framework, in which the synthesis was performed by dissolution heat synthesis or microwave synthesis to shorten the reaction time.
용해열 합성은 전구체 용액을 미세 정량 펌프를 통해 관으로 주입하고 100℃ 정도의 온도로 가열되어 있는 구간을 통과시키게 함으로서 금속-유기 골격체를 합성하였으며, 이처럼 합성된 금속-유기 골격체는 'MOF-808-R'라고도 표기하였다.Dissolution heat synthesis synthesized the metal-organic framework by injecting the precursor solution into the tube through a micro metering pump and passing the heated section to a temperature of about 100 ° C. The synthesized metal-organic framework was called 'MOF- It is also indicated as 808-R '.
그리고 마이크로파 합성은 전구체 용액에 마이크로파(microwave)를 100℃의 온도로 3시간 동안 가열하여 금속-유기 골격체를 하였으며, 이렇게 마이크로파 합성 방법으로 합성된 금속-유기 골격체는 'MOF-808-M'이라고도 표기하였다.In the microwave synthesis, a microwave was heated to a precursor solution at a temperature of 100 ° C. for 3 hours to form a metal-organic framework. The metal-organic framework synthesized by the microwave synthesis method is 'MOF-808-M'. Also referred to as.
그리고 정제 과정은 반응이 완료된 반응용액으로부터 합성된 금속-유기 골격체를 N,N-디메틸포름아미드(DMF)와 에탄올을 이용하여 충분히 세척한 후 원심분리를 통해 금속-유기 골격체 결정을 회수한 후 100℃의 온도에서 건조하였다.In the purification process, the metal-organic frameworks synthesized from the reaction solution after the reaction were sufficiently washed with N, N-dimethylformamide (DMF) and ethanol, and then the metal-organic framework crystals were recovered by centrifugation. It was then dried at a temperature of 100 ℃.
다음 표 1에 MOF-808을 제조하는 반응 조건을 정리하였다.Table 1 summarizes the reaction conditions for preparing MOF-808.
하기 표 1의 몰비에서 M은 금속전구체, L*은 유기 리간드, DMF는 N,N-디메틸포름아미드, FA**는 포름산을 나타낸다.In the molar ratio of Table 1, M represents a metal precursor, L * represents an organic ligand, DMF represents N, N-dimethylformamide, and FA ** represents formic acid.
구분division 금속-유기 골격체 합성 방법Metal-organic framework synthesis method 몰비(M:L*:DMF:FA**)Molar ratio (M: L *: DMF: FA **) Reactor scaleReactor scale
MOF-808-RMOF-808-R 용해열 합성(3일, 100℃)Heat of dissolution synthesis (3 days, 100 ℃) 1:1:246:5211: 1: 246: 521 100 ml100 ml
MOF-808-MMOF-808-M 마이크로파 합성(3시간, 100℃)Microwave Synthesis (3 hours, 100 ° C) 1:1:246:5211: 1: 246: 521 100 ml100 ml
지르코늄(Zr)을 중심금속으로 포함한 금속-유기 골격체인 MOF-808은 Zr6O4(OH)4(OOCH)6(BTC)2의 구조식을 갖는 다공성 나노 구조체로 0.48 nm 및 1.82 nm 크기의 기공 케이지(cage)를 갖고, 표면적은 MOF-808의 합성 방법에 따라서 1300 ~ 2000 m2/g사이를 갖으며, 산/염기 작용기를 포함하여 금속 하이드록사이드 등의 다양한 지르코늄(Zr) 활성자리를 포함하고 있다.MOF-808, a metal-organic framework containing zirconium (Zr) as its core metal, is a porous nanostructure with a Zr 6 O 4 (OH) 4 (OOCH) 6 (BTC) 2 structure and has pores with sizes of 0.48 nm and 1.82 nm. It has a cage and its surface area is between 1300 and 2000 m 2 / g according to the synthesis method of MOF-808, and includes various zirconium (Zr) active sites such as metal hydroxides including acid / base functional groups. It is included.
이렇게 합성된 금속-유기 골격체는 건조 후 분말의 결정구조를 -선 회절(X-ray diffraction, XRD) 분석 방법으로 분석한 결과 도 3에 도시된 바와 같이, MOF-808-R과 MOF-808-M는 모두 종래에 보고된 MOF-808의 구조와 일치함을 확인할 수 있었다.The metal-organic framework thus synthesized was analyzed by X-ray diffraction (XRD) analysis of the crystal structure of the powder after drying, as shown in FIG. 3, as shown in MOF-808-R and MOF-808. -M was confirmed to be consistent with the structure of the MOF-808 previously reported.
또한, 합성된 금속-유기 골격체는 주사전자현미경을 통하여 결정크기를 확인하였다.In addition, the synthesized metal-organic framework was confirmed crystal size through a scanning electron microscope.
그 결과는 도 4와 도 5에 나타낸 바와 같이, 마이크로파의 합성방법으로 합성된 금속-유기 골격체인 MOF-808-M의 경우 결정의 크기가 평균 500 내지 600nm 이었고, 용해열 합성방법으로 합성된 금속-유기 골격체인 MOF-808-R의 경우는, 평균 200 내지 400nm의 입자 크기를 갖는 것으로 확인할 수 있었다. 이는 모두 100nm 이상의 결정의 크기를 가지므로 결정성이 뛰어나다.As a result, as shown in Fig. 4 and 5, in the case of MOF-808-M, a metal-organic framework synthesized by the method of microwave synthesis, the crystal size was 500 to 600 nm on average, and the metal synthesized by the heat of melting synthesis method- In the case of MOF-808-R which is an organic skeleton, it was confirmed that it has a particle size of 200-400 nm on average. All of them have a crystal size of 100 nm or more, so the crystallinity is excellent.
또한, 일반적으로 금속-유기 골격체의 활성표면이 거의 대부분 금속-유기 골격체의 기공 내부에 존재하기 때문에 유기 아민이 증착 또는 흡착되는 과정에서 기공 내부에 접근이 빠르고 용이하도록 표면 기공 부피의 확보가 중요한데, 앞서 설명한 바와 같이 합성된 금속-유기 골격체의 표면적은 1300 ~ 2000 m2/g 정도인 바, 이는 유기 아민의 증착이 용이함을 알 수 있다.In addition, since the active surface of the metal-organic framework is generally almost inside the pores of the metal-organic framework, it is necessary to secure the surface pore volume for quick and easy access to the interior of the pores during the deposition or adsorption of organic amines. Importantly, the surface area of the metal-organic framework synthesized as described above is about 1300 ~ 2000 m 2 / g, it can be seen that the deposition of the organic amine is easy.
제조예 2는 상기 제조예 1에서 제조된 금속-유기 골격체에 유기 아민을 증착하여 금속-유기 복합체를 제조하는 방법에 관한 것으로, 도 6에 도시된 바와 같은 시스템을 통해 기상-진공 증착법으로 금속-유기 복합체를 제조하였다.Preparation Example 2 relates to a method of preparing a metal-organic composite by depositing an organic amine on the metal-organic framework prepared in Preparation Example 1, and a metal by vapor-vacuum deposition through a system as shown in FIG. 6. Organic complexes were prepared.
도 6에 도시된 바와 같이, 본 발명의 금속-유기 복합체를 제조하기 위한 제조 시스템은 금속-유기 골격체의 기공에 유기 아민을 증착시키는 가열로(furnace)가 형성된 반응기로 석영(quartz) 관형 반응기와, 유기 아민을 가열하여 기상의 유기 아민으로 제조한 후 상기 반응기로 공급하는 유기 아민 공급기인 벌브(bulb)와, 헬륨(He) 가스와 같은 불활성 기체의 흐름량을 조절하는 MFC(Mass Flow Controller)가 설치되어 불활성 기체를 공급하는 공급관을 포함하여 구성되어 있다.As shown in FIG. 6, the production system for manufacturing the metal-organic composite of the present invention is a quartz tubular reactor in which a furnace is formed in which a furnace is formed for depositing an organic amine in the pores of the metal-organic framework. And a mass flow controller (MFC) for controlling the flow rate of an inert gas such as a helium (He) gas and an organic amine supply bulb which is prepared by heating the organic amine to form a gaseous organic amine and then supplied to the reactor. Is configured to include a supply pipe for supplying an inert gas.
도 6을 참조하여 본 발명의 금속-유기 복합체의 제조 방법을 살펴보면 다음과 같다.Referring to Figure 6 looks at the manufacturing method of the metal-organic composite of the present invention.
상기 제조예 1에서 제조된 금속-유기 골격체인 MOF-808을 프릿 디스크(Fritted disk)가 설치된 석영(quartz) 관형 반응기에 넣고 150℃ 온도와 10-1 내지 10- 5torr의 감압조건에서 기공 내 존재하는 수분 및 불순물을 제거하여 활성화 시킨다. 그리고 유기 아민으로 고형의 트리에틸렌디아민(triethylenediamine, TEDA)이 일정량 들어 있는 벌브(bulb)를 상온과 감압조건(1×10-1 내지 1×10-5 torr)에서 처리하여 벌브(bulb)와 트리에틸렌디아민(TEDA)에 존재하는 수분을 제거한 후, 활성화된 금속-유기 골격체가 들어 있는 석영(quartz) 반응기에 연결한다. 감압조건에서 벌브(bulb)의 온도를 천천히 증가시켜 트리에틸렌디아민(TEDA) 승화속도를 제어하여 시스템 내 기상 트리에틸렌디아민(TEDA)의 분압 조절을 통하여 활성화된 금속-유기 골격체의 기공 내 존재하는 내부 기공벽에 선택적으로 증착시킨다. 마지막으로 벌브(bulb) 내 고형 트리에틸렌디아민(TEDA)가 모두 승화되면 헬륨(He)가스를 이용하여 잔류하는 기상 트리에틸렌디아민(TEDA)을 제거시킴으로써, 트리에틸렌디아민(TEDA)가 증착된 금소-유기 골격체인 금속-유기 복합체를 제조하였으며, 이렇게 제조된 금속-유기 복합체는 'TEDA-MOF-808'로 표기하였다.The pores in the reduced pressure of 5 torr-metal prepared in Preparative Example 1 to an organic backbone chain MOF-808 frit disc (Fritted disk) is installed quartz temperature and 10 -1 to 10 into a 150 ℃ (quartz) tube reactor It activates by removing existing water and impurities. A bulb containing a certain amount of solid triethylenediamine (TEDA) as an organic amine was treated at room temperature and under reduced pressure (1 × 10 −1 to 1 × 10 −5 torr) to obtain a bulb and a tree. After removing the water present in ethylenediamine (TEDA), it is connected to a quartz reactor containing an activated metal-organic framework. Slowly increasing the temperature of the bulb under reduced pressure to control the sublimation rate of triethylenediamine (TEDA) to control the partial pressure of gaseous triethylenediamine (TEDA) in the system. It is selectively deposited on the inner pore wall. Finally, when all of the solid triethylenediamine (TEDA) in the bulb is sublimated, helium (He) gas is used to remove the remaining gaseous triethylenediamine (TEDA), thereby reducing the amount of triethylenediamine (TEDA) deposited. An organic framework, a metal-organic complex, was prepared, and the metal-organic complex thus prepared was designated as 'TEDA-MOF-808'.
도 7은 본 발명의 실시예를 따라 합성된 금속-유기 복합체로서 지르코늄(Zr)계 금속-유기 골격체(MOF-808)에 트리에틸렌디아민(TEDA)을 증착 전과 후의 X-선 회절(X-ray diffraction, XRD) 분석 결과를 나타낸 것이며, 도 6의 그래프에서 (a)는 트리에틸렌디아민(TEDA)을 증착 전 금속-유기 골격체 MOF-808의 X-선 회절 패턴이고, (b)는 트리에틸렌디아민(TEDA) 증착 후 금속-유기 골격체의 X-선 회절 패턴을 나타낸 것이다.7 is X-ray diffraction (X-) before and after deposition of triethylenediamine (TEDA) on a zirconium (Zr) -based metal-organic framework (MOF-808) as a metal-organic composite synthesized according to an embodiment of the present invention. ray diffraction (XRD) analysis results, in the graph of Figure 6 (a) is the X-ray diffraction pattern of the metal-organic framework MOF-808 before the deposition of triethylenediamine (TEDA), (b) is a tree X-ray diffraction pattern of the metal-organic framework after ethylenediamine (TEDA) deposition is shown.
도 7에 도시된 바와 같이 트리에틸렌디아민(TEDA) 증착 후 금속-유기 골격체의 결정성이 상대적으로 낮아지긴 하였으나, MOF-808와 동일한 결정구조를 갖는 특징적인 X-선 회절 패턴은 그대로 유지하고 있음을 확인할 수 있었다.Although the crystallinity of the metal-organic framework is relatively low after triethylenediamine (TEDA) deposition as shown in FIG. 7, the characteristic X-ray diffraction pattern having the same crystal structure as MOF-808 is maintained. It could be confirmed.
실시예 1은 상기 제조예 2와 동일한 방법에 의하여 금속-유기 복합체를 제조하였으며 다만 트리에틸렌디아민(TEDA)의 증착량이 달리하여, 8.4 중량%, 10 중량%, 14 중량%, 22 중량% 및 23 중량% 트리에틸렌디아민(TEDA)가 증착된 금속-유기 복합체를 제조하였다.Example 1 prepared a metal-organic composite by the same method as Preparation Example 2, except that the amount of triethylenediamine (TEDA) deposited, 8.4 wt%, 10 wt%, 14 wt%, 22 wt% and 23 A metal-organic composite was prepared in which wt% triethylenediamine (TEDA) was deposited.
본 발명의 실시예 1에서 금속-유기 골격체에 증착되는 트리에틸렌디아민(TEDA)의 양에 따라 'TEDA-MOF-808' 표기 앞에 증착량을 표기하며 예를 들어, 8.4 중량%의 트리에틸렌디아민(TEDA)이 증착되어 있는 경우에는 "8.4 중량% TEDA-MOF-808" 또는 "8.4 wt% TEDA-MOF-808"의 형식으로 명명하였다.According to the amount of triethylenediamine (TEDA) deposited on the metal-organic framework in Example 1 of the present invention, the deposition amount is indicated before 'TEDA-MOF-808', for example, 8.4 wt% of triethylenediamine (TEDA) was deposited in the form of "8.4 wt% TEDA-MOF-808" or "8.4 wt% TEDA-MOF-808".
도 8은 지르코늄(Zr)계 금속-유기 골격체(MOF-808)에 트리에틸렌디아민(triethylenediamine, TEDA)의 증착 전과 후의 질소 흡착등온선을 나타낸 것이며, 측정한 질소 흡착등온선에 BET식을 적용하여 금속-유기 골격체에 트리에틸렌디아민(TEDA) 증착 전과 후의 중량 당 BET 표면적 값(cm3/g)을 측정하였다.FIG. 8 shows nitrogen adsorption isotherms before and after the deposition of triethylenediamine (TEDA) on a zirconium (Zr) -based metal-organic framework (MOF-808), and a metal obtained by applying a BET equation to the measured nitrogen adsorption isotherms. The BET surface area value (cm 3 / g) per weight before and after triethylenediamine (TEDA) deposition on the organic framework was measured.
도 8에서 (a)는 트리에틸렌디아민(TEDA)을 증착 전 금속-유기 골격체 MOF-808의 질소 흡착 곡선이고, (b)는 23 중량%의 트리에틸렌디아민(TEDA)이 증착된 금속-유기 골격체의 질소 흡착 곡선을 나타낸 것이다.In Figure 8 (a) is the nitrogen adsorption curve of the metal-organic framework MOF-808 prior to the deposition of triethylenediamine (TEDA), (b) is a metal-organic deposition of 23% by weight of triethylenediamine (TEDA) The nitrogen adsorption curve of the framework is shown.
도 8의 질소 흡착 곡선을 살펴보면, 지르코늄(Zr)계 금속-유기 골격체(MOF-808)의 BET 표면적이 1733 m2/g, 기공 부피가 0.74 ml/g 정도이나, 23 중량%의 트리에틸렌디아민(TEDA)가 증착된 금속-유기 얼개의 BET 표면적은 1092m2/g, 기공 부피가 0.49 ml/g 으로 BET 표면적과 기공 부피가 작아지는 것을 확인하였다.Looking at the nitrogen adsorption curve of Figure 8, the zirconium (Zr) -based metal-organic framework (MOF-808) BET surface area of 1733 m 2 / g, pore volume of about 0.74 ml / g, but 23% by weight of triethylene The BET surface area of diamine (TEDA) -deposited metal-organic ear was 1092m 2 / g, the pore volume was 0.49 ml / g, and the BET surface area and the pore volume were confirmed to be small.
상기 실시예 1에서 제조된 금속-유기 복합체를 화학작용제 중 하나인 염화시안(cyanogen chloride, CK)의 파과 실험을 수행하였으며, 구체적인 방법은 다음과 같다.The breakthrough experiment of cyanogen chloride (CK), which is one of the chemical agents, was performed on the metal-organic complex prepared in Example 1, and the specific method is as follows.
염화시안(CK) 파과 실험은 흡착 반응기로 내경이 4 mm 유리관을 사용하였고, 이 흡착 반응기에 금속-유기 복합체의 충전량은 0.1 ml이며 충전높이는 약 8 cm가 되도록 충전하여 염화시안(CK) 파과 실험을 수행한다. 여기서 금속-유기 복합체는 흡착성능을 평가하기 위해 분말형태의 금속-유기 복합체를 펠렛으로 성형한 후 분쇄하여, 흡착 반응기 내 압력강하가 최소로 발생할 수 있는 입자크기로 212 ㎛ ~ 250 ㎛ (60 ~ 70 mesh) 크기 입자를 선택하여 사용하였다.CK cyanide breakthrough experiment uses a 4 mm inner diameter glass tube as the adsorption reactor, and the adsorption reactor was filled with a metal-organic composite of 0.1 ml and a filling height of about 8 cm. Do this. Here, the metal-organic composite is formed by pulverizing the metal-organic composite in powder form in order to evaluate the adsorption performance, and then pulverized, and has a particle size in which the pressure drop in the adsorption reactor can be minimized. 70 mesh) size particles were used.
이렇게 흡착제로 금속-유기 복합체를 충전한 흡착 반응기로 2시간 동안 20℃, 상대습도 60%인 습한 공기를 통과시켜 전처리를 실시한 후에, 염화시안(CK) 농도가 4,000 mg/m3으로 포함된 혼합공기(20℃, 상대습도 60%)를 2.65 cm/s의 선속도로 흡착 반응기를 통과시켜 파괴실험을 수행하였다. 금속-유기 복합체가 충전된 흡착 반응기의 앞단과 후단에서 각각 실시간으로 흡착 반응기의 입구로 주입되고 출구로 배출되는 공기를 샘플링하여 염화시안(CK)의 농도를 분석하며, 출구 농도(C)를 입구 농도(Co)로 나누어 그 결과를 실험 시간에 따른 함수로 나타내었으며, 그 결과는 도 9에 나타낸 바와 같다.After the pretreatment was carried out through a humid air of 20 ° C. and a relative humidity of 60% for 2 hours in a adsorption reactor filled with a metal-organic complex with an adsorbent, a mixture containing cyan chloride (CK) concentration of 4,000 mg / m 3 Destruction experiments were carried out by passing air (20 ° C., relative humidity 60%) through an adsorption reactor at a linear speed of 2.65 cm / s. Analyze the concentration of cyan chloride (CK) by sampling the air injected into the inlet and outlet of the adsorption reactor in real time at the front and rear ends of the adsorption reactor filled with the metal-organic complex, and measuring the outlet concentration (C). Divided by the concentration (Co), the results are expressed as a function of the experiment time, the results are as shown in FIG.
도 9에서 확인할 수 있듯이, 트리에틸렌디아민(TEDA)의 증착량이 증가할수록 염화시안(cyanogen chloride, CK)가 금속-유기 복합체 내부에 머무르는 시간이 점차 증가되는 바, 본 발명의 금속-유기 복합체는 염화 유기인 트리에틸렌디아민(TEDA)의 증착량이 증가할수록 염화시안(cyanogen chloride, CK)에 흡착성이 좋아 제거효율이 증가됨을 확인할 수 있었다.As can be seen in Figure 9, as the deposition amount of triethylenediamine (TEDA) increases, the time for the cyanogen chloride (CK) to stay inside the metal-organic complex is gradually increased, the metal-organic complex of the present invention is chloride As the deposition amount of organotriethylenediamine (TEDA) increased, it was confirmed that the removal efficiency was increased due to the good adsorption to cyanogen chloride (CK).
실시예 2는 트리에틸렌디아민(TEDA)이 증착되는 금속-유기 골격체인 MOF-808의 BET 표면적이 1610 m2/g인 것을 제외하고 제조예 2와 동일한 방법에 의해서 29 중량%. 및 30중량% 트리에틸렌디아민(TEDA)가 증착된 29 중량% TEDA-MOF-808 및 30 중량% TEDA-MOF-808를 제조하였다.Example 2 was 29 wt% by the same method as Preparation Example 2, except that the BET surface area of MOF-808, a metal-organic framework on which triethylenediamine (TEDA) was deposited, was 1610 m 2 / g. And 29 wt% TEDA-MOF-808 and 30 wt% TEDA-MOF-808 with 30 wt% triethylenediamine (TEDA) deposited.
그리고 비교를 위해서 종래 군용방독면에 사용되고 있는 표면적이 1000m2/g 정도의 상용 제품인 ASZM-TEDA 활성탄을 사용하여 화학작용제 중 하나인 염화시안(cyanogen chloride, CK)의 파과 실험을 수행하였다.For comparison, a breakthrough experiment of cyanogen chloride (CK), one of chemical agents, was performed using ASZM-TEDA activated carbon, a commercial product having a surface area of about 1000 m 2 / g, which is used in conventional military gas masks.
도 10에서 확인할 수 있듯이 본 발명에 따라 기상-진공 증착법을 통하여 제조된 TEDA-MOF-808의 경우 종래의 ASZM-TEDA 활성탄의 CK제거 성능대비 최대 3배 이상 향상되는 것을 확인할 수 있었다.As can be seen in Figure 10 it can be seen that the TEDA-MOF-808 produced by the vapor-vacuum deposition method according to the present invention is up to three times more than the CK removal performance of the conventional ASZM-TEDA activated carbon.
전술된 바와 같이 본 발명의 금속-유기 복합체 제조방법에 따라 기상-진공 증착법을 사용하여 제조된 금속-유기 복합체는 금속-유기 골격체의 기공 내에 화학작용제에 높은 분해 활성을 갖는 유기 아민 물질인 트리에틸렌디아민(TEDA)이 10 내지 30 중량%로 증착됨을 확인할 수 있었다.As described above, the metal-organic composite prepared by the vapor-vacuum deposition method according to the metal-organic composite manufacturing method of the present invention is a tree which is an organic amine substance having high decomposition activity to chemical agents in the pores of the metal-organic framework. Ethylenediamine (TEDA) was confirmed to be deposited at 10 to 30% by weight.
또한, 본 명세서에서 기공 크기를 측정한 결과에 대해 비록 본 발명의 도면에는 도시되지 않았으나, 본 발명의 기상-진공 증착법을 사용하여 금속-유기 복합체를 제조할 경우, MOF-808의 구조 내에 포함되어 있는 IUPAC(International Union of Pureand Applied Chemistry)의 정의에 따라 2~50nm 범위를 갖는 메조포러스(mesoporous)의 부피가 50% 정도 유지하고 있어 화학작용제의 제거를 위한 흡착자리인 활성표면이 활성화되어 있음을 확인할 수 있었다.In addition, although the pore size is measured in the present specification, although not shown in the drawings of the present invention, when the metal-organic composite is prepared using the vapor-vacuum vapor deposition method of the present invention, it is included in the structure of the MOF-808. According to the definition of the International Union of Pureand Applied Chemistry (UPUPAC), the volume of mesoporous cells with a range of 2-50 nm is maintained at about 50%, indicating that the active surface, which is an adsorption site for the removal of chemical agents, is activated. I could confirm it.
따라서 본 발명의 제조 방법에 따라 제조된 금속-유기 복합체는 다공성 소재인 금속-유기 골격체의 기공 부피 및 표면적을 최소화하여 유기 아민 물질이 1 내지 30 중량%로 증착될 수 있으며, 특히 유기 아민이 10 중량% 이상으로서 10 내지 30 중량% 증착됨에 따라 염화시안(CK)을 포함한 화학작용제의 제거에 탁월한 성능을 갖는다.Therefore, the metal-organic composite prepared according to the production method of the present invention can minimize the pore volume and surface area of the metal-organic framework, which is a porous material, to deposit an organic amine material at 1 to 30% by weight, in particular, As deposited as 10-30% by weight or more, it has excellent performance in removing chemical agents including cyanide chloride (CK).
앞서 살펴본 실시 예는 본 발명이 속하는 기술 분야에서 통상의 지식을 가진자가 본 발명을 용이하게 실시할 수 있도록 하는 바람직한 실시 예일 뿐, 전술한 실시 예에 한정되는 것은 아니므로 이로 인해 본 발명의 권리범위가 한정되는 것은 아니다. 따라서 본 발명의 기술적 사상을 벗어나지 않는 범위 내에서 여러 가지 치환, 변형 및 변경이 가능하다는 것이 당업자에게 있어 명백할 것이며, 당업자에 의해 용이하게 변경 가능한 부분도 본 발명의 권리범위에 포함됨은 자명하다.The above-described embodiment is not only limited to the above-described embodiment but is a preferred embodiment that can be easily carried out by those of ordinary skill in the art to which the present invention pertains because of this the scope of the present invention Is not limited. Therefore, it will be apparent to those skilled in the art that various substitutions, modifications, and changes can be made without departing from the technical spirit of the present invention, and it is obvious that parts easily changed by those skilled in the art are included in the scope of the present invention.

Claims (11)

  1. 4B족 원소로 지르코늄(Zr), 타이타늄(Ti) 및 하프늄(Hf) 중 어느 하나를 포함하는 금속-유기 골격체를 준비하는 제1단계; 및Preparing a metal-organic framework including any one of zirconium (Zr), titanium (Ti), and hafnium (Hf) as a Group 4B element; And
    상기 금속-유기 골격체의 기공에 유기 아민을 기상-진공 증착방법으로 증착시켜 금속-유기 복합체를 제조하는 제2단계;를 포함하는 것을 특징으로 금속-유기 복합체 제조방법.And depositing an organic amine in the pores of the metal-organic framework by a vapor-vacuum deposition method to produce a metal-organic composite.
  2. 제1항에 있어서,The method of claim 1,
    상기 유기 아민은 트리에틸렌디아민(triethylenediamine), 트리에틸아민(triethylamine) 및 피리딘-4-카르복실산(pyridine-4-carboxylic acid) 중에서 선택되는 어느 하나 또는 이들의 혼합물인 것을 특징으로 하는 특징으로 하는 금속-유기 복합체 제조방법.The organic amine is characterized in that any one or a mixture thereof selected from triethylenediamine, triethylamine and pyridine-4-carboxylic acid (pyridine-4-carboxylic acid) Method for preparing metal-organic composite.
  3. 제1항에 있어서,The method of claim 1,
    상기 제2단계는,The second step,
    금속-유기 골격체를 반응기에 넣고 진공 감압조건에서 일정 온도로 가열하여 금속-유기 골격체를 활성화시키는 활성화 단계;An activation step of activating the metal-organic framework by placing the metal-organic framework into a reactor and heating to a constant temperature under vacuum reduced pressure;
    유기 아민 분말을 진공 감압하여 유기 아민 분말에 존재하는 여분의 수분을 제거하는 진공건조 단계;Vacuum drying the organic amine powder under vacuum to remove excess moisture present in the organic amine powder;
    건조된 유기 아민을 진공 감압조건에서 일정 온도까지 가온하여 기체 상태의 유기 아민을 형성하고, 형성된 기체 상태의 유기 아민을 활성화된 금속-유기 골격체가 있는 반응기에 일정속도로 주입하여 활성화된 금속-유기 골격체의 기공에 증착시키는 증착 단계;를 포함하는 것을 특징으로 하는 금속-유기 복합체 제조방법.The dried organic amine is heated to a constant temperature under vacuum decompression conditions to form a gaseous organic amine, and the formed gaseous organic amine is injected at a constant rate into a reactor having an activated metal-organic framework to activate the metal-organic Deposition step of depositing in the pores of the skeleton; Metal-organic composite manufacturing method comprising a.
  4. 제3항에 있어서,The method of claim 3,
    상기 활성화 단계는 금속-유기 골격체를 반응기에 넣고 반응기를 1×10-1 내지 1×10-5 torr의 진공 감압조건에서 110 내지 150℃의 온도로 가열하여, 상기 금속-유기 골격체의 기공 내에 존재하는 수분 및 불순물을 제거하여 활성화시키는 것을 특징으로 하는 금속-유기 복합체 제조방법.In the activation step, the metal-organic framework is placed in a reactor, and the reactor is heated to a temperature of 110 to 150 ° C. under a vacuum decompression condition of 1 × 10 −1 to 1 × 10 −5 torr, so that the pores of the metal-organic framework are Method for producing a metal-organic composite, characterized in that to activate by removing the water and impurities present in the.
  5. 제3항에 있어서,The method of claim 3,
    상기 진공건조 단계는 유기 아민 분말을 15 내지 30℃ 온도에서 1×10-1 내지 1×10-5 torr로 진공 감압하여 수분을 제거하는 것을 특징으로 하는 금속-유기 복합체 제조방법.The vacuum drying step is a method for producing a metal-organic composite, characterized in that to remove the water by vacuum decompression of the organic amine powder to 1 × 10 -1 to 1 × 10 -5 torr at a temperature of 15 to 30 ℃.
  6. 제3항에 있어서,The method of claim 3,
    상기 증착 단계는 건조된 유기 아민을 1×10-1 내지 1×10-5 torr의 진공 감압조건에서 110 내지 150℃ 온도까지 가온하여 기체 상태의 유기 아민을 형성하는 것을 특징으로 하는 금속-유기 복합체 제조방법.In the deposition step, the dried organic amine is heated to a temperature of 110 to 150 ° C. under a vacuum reduced pressure of 1 × 10 −1 to 1 × 10 −5 torr to form a gaseous organic amine. Manufacturing method.
  7. 제1항에 있어서,The method of claim 1,
    상기 제2단계에서는 전체 금속-유기 골격체 100 중량%를 기준으로 유기 아민을 1 내지 30 중량% 증착한 금속-유기 복합체를 제조하는 것을 특징으로 하는 금속-유기 복합체 제조방법.In the second step, a metal-organic composite manufacturing method comprising preparing a metal-organic composite in which 1 to 30% by weight of organic amine is deposited based on 100% by weight of the total metal-organic framework.
  8. 제1항에 있어서,The method of claim 1,
    상기 제1단계는,The first step,
    금속 전구체와 유기 리간드를 함께 용매에 혼합하여 전구체 용액을 제조하는 단계;Mixing the metal precursor and the organic ligand together in a solvent to prepare a precursor solution;
    제조된 전구체 용액을 결정화 온도에서 가열하여 금속-유기 골격체를 합성하는 단계; 및Heating the prepared precursor solution at a crystallization temperature to synthesize a metal-organic framework; And
    용액(solvent) 존재하에 기 설정된 온도에서 일정 시간동안 정제하여 금속-유기 골격체를 수득하는 단계;를 포함하여 이루어지는 것을 특징으로 하는 금속-유기 복합체 제조방법.Purifying for a predetermined time at a predetermined temperature in the presence of a solution (solvent) to obtain a metal-organic framework; metal-organic composite manufacturing method comprising a.
  9. 제8항에 있어서,The method of claim 8,
    상기 금속 전구체는 지르코늄(Zr), 타이타늄(Ti) 및 하프늄(Hf) 중에서 선택되는 어느 하나의 금속을 포함하는 화합물로, 상기 금속의 클로라이드계, 나이트레이트계, 설페이트계 및 아세테이트계 화합물 중에서 선택되는 어느 하나 이상인 것을 특징으로 하는 금속-유기 복합체 제조방법.The metal precursor is a compound containing any one metal selected from zirconium (Zr), titanium (Ti) and hafnium (Hf), and selected from chloride, nitrate, sulfate and acetate compounds of the metal. Method for producing a metal-organic composite, characterized in that any one or more.
  10. 제8항에 있어서,The method of claim 8,
    상기 유기 리간드는 벤젠디카르복실산, 나프탈렌디카르복실산, 벤젠트리카르복실산, 나프탈렌트리카르복실산, 벤젠트리벤조산, 피리딘디카르복실산, 비피리딜디카르복실산, 포름산, 옥살산, 말론산, 숙신산, 글루타민산, 헥산디오산, 헵탄디오산 및 시클로헥실디카르복실산 중에서 선택되는 어느 하나 이상인 것을 특징으로 하는 금속-유기 복합체 제조방법.The organic ligands include benzenedicarboxylic acid, naphthalenedicarboxylic acid, benzenetricarboxylic acid, naphthalenetricarboxylic acid, benzenetribenzoic acid, pyridinedicarboxylic acid, bipyridyldicarboxylic acid, formic acid, oxalic acid, Method of producing a metal-organic composite, characterized in that any one or more selected from malonic acid, succinic acid, glutamic acid, hexanedioic acid, heptanedioic acid and cyclohexyldicarboxylic acid.
  11. 제8항에 있어서,The method of claim 8,
    상기 용매는 물, 메탄올, 에탄올, 프로판올, 아세톤, N,N-디메틸포름아미드(N,N-dimethylformamide, DMF), N,N-디에틸포름아미드(N,N-diethylformamide, DEF), N,N-디메틸아세트아미드(N,N-dimethylacetamide, DMAc), 아세토니트릴, 클로로벤젠, 피리딘, N-메틸 피롤리돈(N-methyl pyrrolidone, NMP) 및 테트라하이드로퓨란(tetrahydrofuran, THF) 중에서 선택되는 어느 하나 이상인 것을 특징으로 하는 금속-유기 복합체 제조방법.The solvent may be water, methanol, ethanol, propanol, acetone, N, N-dimethylformamide (DMF), N, N-diethylformamide (DEF), N, N-dimethylacetamide (DMAc), acetonitrile, chlorobenzene, pyridine, N-methyl pyrrolidone (NMP) and tetrahydrofuran (THF) Method for producing a metal-organic composite, characterized in that at least one.
PCT/KR2018/004338 2017-04-13 2018-04-13 Method for producing metal-organic complex comprising group 4b element WO2018190672A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR1020170047896A KR101911173B1 (en) 2017-04-13 2017-04-13 Method for preparing metal-organic composite of containing 4b group metal elements
KR10-2017-0047896 2017-04-13

Publications (1)

Publication Number Publication Date
WO2018190672A1 true WO2018190672A1 (en) 2018-10-18

Family

ID=63793568

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2018/004338 WO2018190672A1 (en) 2017-04-13 2018-04-13 Method for producing metal-organic complex comprising group 4b element

Country Status (2)

Country Link
KR (1) KR101911173B1 (en)
WO (1) WO2018190672A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112619399A (en) * 2020-12-18 2021-04-09 浙江解氏新材料股份有限公司 Tail gas treatment method in nitrosyl sulfuric acid preparation process

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102158250B1 (en) * 2019-02-14 2020-09-21 한국화학연구원 Method for preparing hetero-metal ion-exchanged MOF and composition based on MOF for hetero-metal cation-exchange produced by post-synthetic modification used therein

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR910000222B1 (en) * 1982-06-04 1991-01-23 더 다우 케미칼 캄파니 Rubber reinforced monovinylidene aromatic compound polymer
KR20090009849A (en) * 2006-04-18 2009-01-23 바스프 에스이 Metal-organic zirconium-based framework materials
KR20090033172A (en) * 2006-04-18 2009-04-01 바스프 에스이 Methods for producing metal-organic framework materials containing metals of subgroup iv

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR910000222B1 (en) * 1982-06-04 1991-01-23 더 다우 케미칼 캄파니 Rubber reinforced monovinylidene aromatic compound polymer
KR20090009849A (en) * 2006-04-18 2009-01-23 바스프 에스이 Metal-organic zirconium-based framework materials
KR20090033172A (en) * 2006-04-18 2009-04-01 바스프 에스이 Methods for producing metal-organic framework materials containing metals of subgroup iv

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
DECOSTE, JARED B.: "Removal of chlorine gas by an amine functionalized metal-organic framework via electrophilic aromatic substitution", CHEMICAL COMMUNICATIONS, 2015, pages 12474 - 12477 *
PETERSON, GREGORY W.: "Zirconium hydroxide-metal-organic framework composites for toxic chemical removal", INDUSTRIAL & ENGINEERING CHEMISTRY RESEARCH, 2013, pages 5462 - 5469 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112619399A (en) * 2020-12-18 2021-04-09 浙江解氏新材料股份有限公司 Tail gas treatment method in nitrosyl sulfuric acid preparation process
CN112619399B (en) * 2020-12-18 2022-07-12 浙江解氏新材料股份有限公司 Tail gas treatment method in nitrosyl sulfuric acid preparation process

Also Published As

Publication number Publication date
KR20180115503A (en) 2018-10-23
KR101911173B1 (en) 2018-10-24

Similar Documents

Publication Publication Date Title
KR102373799B1 (en) Multi-functional metal-organic composite having active sites for adsorbing or reacting with two or more kinds of substances and use thereof
Kaur et al. A metal–organic framework based multifunctional catalytic platform for organic transformation and environmental remediation
US9688700B2 (en) Metal-organic frameworks based on on 2,5-furandicarboxylic acid or 2,5-thiophenedicarboxylic acid
WO2011062412A2 (en) Crystalline porous organic-inorganic hybrid material and a production method therefor
EP1070537A2 (en) Oxygen-selective adsorbents
WO2013025046A2 (en) Complex comprising crystalline hybrid nanoporous material powder
WO2018190672A1 (en) Method for producing metal-organic complex comprising group 4b element
KR20190026352A (en) Chemical method for room-temperature activation of metal-organic framework materials and metal organic framework materials prepared therefrom
KR20190105465A (en) Composition for removal of toxic gases containing multi-functional metal-organic composite
KR102158250B1 (en) Method for preparing hetero-metal ion-exchanged MOF and composition based on MOF for hetero-metal cation-exchange produced by post-synthetic modification used therein
US11794163B1 (en) Metal-organic framework for adsorptive separation of acetylene/ethylene mixture and preparation method therefor
US20210354107A1 (en) Metal organic frameworks for removal of elemental impurities in pharmaceutical products
JP5686674B2 (en) Method for producing composite catalyst
CN108285465B (en) Metal organic framework material, preparation method thereof, modified metal organic framework material and preparation method thereof
KR102099247B1 (en) Useof modified metal-organic framework for removing radioactive gas
CN112958033B (en) Gaseous iodine adsorption material with foamed nickel as framework and preparation method and application thereof
CN112642487B (en) UiO-67 encapsulated metal nanoparticle catalyst and preparation method and application thereof
CN115894955B (en) Zirconium-based metal organic framework material, synthesis method and application thereof
Huang et al. Oriented assembly of copper metal–organic framework membranes as tandem catalysts to enhance C–H hydroxyalkynylation reactions with regiocontrol
Veeramani et al. Decoration of silver nanoparticles on nitrogen-doped nanoporous carbon derived from zeolitic imidazole framework-8 (ZIF-8) via in situ auto-reduction
KR102592489B1 (en) Mass manufacturing method of metal-organic polyhedra and metal-organic polyhedra manufactured using the same
KR100967632B1 (en) Metal-organic framework and process for gas separation or metal-nanoparticle preparation using the same
CN113136037A (en) Synthesis modification method of modified MIL-101 material
CN112979971B (en) Triazole-based biological MOF material, and preparation method and application thereof
KR20100089340A (en) Highly porous metal organic framework and its use for gas storage material and method for manufacturing metal organic framework

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18784635

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18784635

Country of ref document: EP

Kind code of ref document: A1