WO2021049566A1 - Display device - Google Patents

Display device Download PDF

Info

Publication number
WO2021049566A1
WO2021049566A1 PCT/JP2020/034270 JP2020034270W WO2021049566A1 WO 2021049566 A1 WO2021049566 A1 WO 2021049566A1 JP 2020034270 W JP2020034270 W JP 2020034270W WO 2021049566 A1 WO2021049566 A1 WO 2021049566A1
Authority
WO
WIPO (PCT)
Prior art keywords
light
display
display device
display panel
liquid crystal
Prior art date
Application number
PCT/JP2020/034270
Other languages
French (fr)
Japanese (ja)
Inventor
慶成 岩浪
鈴木 剛
安藤 伸也
Original Assignee
凸版印刷株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 凸版印刷株式会社 filed Critical 凸版印刷株式会社
Publication of WO2021049566A1 publication Critical patent/WO2021049566A1/en

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1334Constructional arrangements; Manufacturing methods based on polymer dispersed liquid crystals, e.g. microencapsulated liquid crystals
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1347Arrangement of liquid crystal layers or cells in which the final condition of one light beam is achieved by the addition of the effects of two or more layers or cells
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09FDISPLAYING; ADVERTISING; SIGNS; LABELS OR NAME-PLATES; SEALS
    • G09F9/00Indicating arrangements for variable information in which the information is built-up on a support by selection or combination of individual elements
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09FDISPLAYING; ADVERTISING; SIGNS; LABELS OR NAME-PLATES; SEALS
    • G09F9/00Indicating arrangements for variable information in which the information is built-up on a support by selection or combination of individual elements
    • G09F9/30Indicating arrangements for variable information in which the information is built-up on a support by selection or combination of individual elements in which the desired character or characters are formed by combining individual elements
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09FDISPLAYING; ADVERTISING; SIGNS; LABELS OR NAME-PLATES; SEALS
    • G09F9/00Indicating arrangements for variable information in which the information is built-up on a support by selection or combination of individual elements
    • G09F9/30Indicating arrangements for variable information in which the information is built-up on a support by selection or combination of individual elements in which the desired character or characters are formed by combining individual elements
    • G09F9/302Indicating arrangements for variable information in which the information is built-up on a support by selection or combination of individual elements in which the desired character or characters are formed by combining individual elements characterised by the form or geometrical disposition of the individual elements
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09FDISPLAYING; ADVERTISING; SIGNS; LABELS OR NAME-PLATES; SEALS
    • G09F9/00Indicating arrangements for variable information in which the information is built-up on a support by selection or combination of individual elements
    • G09F9/46Indicating arrangements for variable information in which the information is built-up on a support by selection or combination of individual elements in which the desired character is selected from a number of characters arranged one behind the other
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B33/00Electroluminescent light sources
    • H05B33/02Details
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00

Definitions

  • the present invention relates to a display device capable of selectively using different methods of different power consumption.
  • Thin display devices equipped with liquid crystal display panels and organic EL display panels are widely used as the main elements of personal digital assistants (PDAs) such as smartphones, tablet PCs, and wearable terminals.
  • PDAs personal digital assistants
  • small terminals such as wristwatches that are worn on the wrist, the capacity of the battery that can be installed is small, and it is difficult to operate for a long time with a display method that consumes a lot of power. It is requested.
  • a proposal relating to a type of device in which a non-emission display element (liquid crystal: LCD) and a light emission display element (organic electroluminescence: OLED) having different display methods are provided in the same display device is known.
  • the present invention does not switch different display methods using the same pixel according to the brightness of the usage environment, but selects a display method having different pixels with different arrangements and resolutions according to the difference in the display target.
  • the display device is a first display panel composed of a non-emission display element in which a light modulation element reflects external light to display from the observation side of the display, and an opaque light diffusion having translucency.
  • the layer and the second display panel composed of a light emitting display element in which the light emitting element directly modulates and displays are superimposed.
  • the present invention it is possible to provide a display device suitable for a usage mode in which power consumption is reduced by selecting a display method having different pixels having different arrangements and resolutions according to a difference in display target.
  • FIG. 1 is a cross-sectional view showing a schematic configuration of the display device 100 according to the first embodiment.
  • FIG. 2 is a cross-sectional view showing a schematic structural example of a transflective liquid crystal display device (first display panel 10).
  • FIG. 3 is an explanatory diagram showing a display example by the first display panel 10.
  • FIG. 4 is a cross-sectional view showing a schematic structural example of the second display panel 20.
  • FIG. 5 is a cross-sectional view showing a schematic configuration of the display device 100 according to the second embodiment.
  • FIG. 6 is an enlarged cross-sectional view of an example of the dimming panel 50.
  • FIG. 7 is a diagram showing an axial direction (vibration direction) exhibited by the incident light to the display light in the usage mode (1) of the display device.
  • FIG. 8 is a diagram showing an axial direction (vibration direction) exhibited by the incident light to the display light in the usage mode (2) of the display device.
  • FIG. 9 is a diagram showing an axial direction (vibration direction) exhibited by the incident light to the display light in the usage mode (3) of the display device.
  • FIG. 1 is a cross-sectional view showing a schematic configuration of the display device 100 according to the first embodiment.
  • the display device 100 is a first display panel 10 composed of a non-emission display element in which a light modulation element reflects external light to display from the observation side of the upper display in the figure, and opaque light diffusion having translucency.
  • Layer 30 a second display panel 20 composed of a light emitting display element in which the light emitting element directly modulates and displays. Is superimposed.
  • a typical example of the first display panel 10 composed of a non-emission display element is a liquid crystal display device.
  • the liquid crystal display device is a reflective liquid crystal display device that does not require a special observation light source such as a backlight or edge light, and the back light is radiated from the back of the liquid crystal panel (opposite to the observer).
  • There are usage patterns such as a transmissive liquid crystal display device of a type that uses display light and a semi-transmissive liquid crystal display device of a type that selectively switches and adopts them.
  • FIG. 2 is a cross-sectional view showing a schematic structural example of the antitransmissive liquid crystal display device (first display panel 10).
  • the structure is such that a reflector 13 also serving as an electrode, a liquid crystal element 12, a transparent electrode 14, a glass substrate 11, and a polarizing plate 15 are stacked in this order on a glass substrate 11.
  • a color filter, a retardation film, an optical path modulation film having a prism array, and other optical films may be used together. Further, in FIG.
  • the back side (opposite side to the observer) of the liquid crystal element 12 is not the same member as the transparent electrode 14 having high translucency represented by ITO, but an electrode (referred to as a reflective electrode) made of a semitransmissive reflective film.
  • an electrode referred to as a reflective electrode
  • the back side of the liquid crystal element 12 is also used as the transparent electrode 14, and a reflecting plate (semi-transmissive reflecting film) as a separate member is placed on the back side of the glass substrate 11.
  • the external light a incident on the device is reflected by the reflector 13 and emitted to the observer side as the display light b.
  • the display light b is shown as scattered light centered on the specular reflection direction of the external light a, but an optical path control member for appropriately controlling the emission direction and range of the display light b is used. In some cases.
  • the ratio of forward scattering and backward scattering is such that a large amount of light scattering occurs when the external light a is incident and no light scattering occurs when the display light b is emitted. Is also controlled as appropriate.
  • the second display panel 20 composed of the light emitting display element of FIG. 1 is not used as an image display by itself, but as a backlight (surface light source) of the liquid crystal display device that defines an image display pattern. use.
  • the second display panel 20 does not form a specific pattern by selecting light emission / non-light emission, brightness, and hue for each pixel, but exhibits a uniform single color (white) light emission state over the entire screen. Drive to.
  • a liquid crystal in which the molecules are twisted by 90 degrees is sandwiched between two polarizing plates. Arrangement of two polarizing plates with the directions of the linear polarization axes orthogonal to each other so that light can pass through when no voltage is applied and light is blocked when voltage is applied (and vice versa).
  • the liquid crystal functions as a light shutter.
  • the incident light (external light a) that has passed through the polarizing plate 15 is modulated by the liquid crystal element 12 in phase difference, reflected by the reflecting plate 13, and displayed again through the liquid crystal elements 12 to the polarizing plate 15. It emits as light b.
  • the two polarizing plates are arranged on the front and back sides of the liquid crystal element 12, if the two polarizing plates are passed through each of the two polarizing plates at the time of incident to the time of reflection a total of 4 degrees, the light absorption at the time of passing is large and the harmful effect of light loss is remarkable.
  • a polarizing plate on the opposite side there is also a type of reflective liquid crystal display device that employs a reflective polarizing plate having a function of reflecting light other than a specific transmission axis (or reflecting only light of a specific reflection axis). To do.
  • the polarizing plate 15 passes through the polarizing plate 15 once, but the liquid crystal.
  • the light emitted from the second display panel 20 has a linearly polarized light component. In this case, it is necessary to dispose the polarizing plate on the back surface side of the liquid crystal element 12.
  • FIG. 3 is a display example by the first display panel 10. It is preferable to easily display characters with a small number of pixels, and in the illustrated example, numbers and alphabets with 7 segments are displayed. The black and white may be inverted in the figure.
  • the time display as a wristwatch can be considered, but a static display with less movement may be used. In terms of saving power consumption, it is preferable to use it as a reflective liquid crystal display device that does not use a backlight.
  • the light diffusion layer 30 is colorless in order to clarify the contrast between the portion where the liquid crystal element shows a light-shielding state (black) and the portion showing a light-transmitting state (white) in the visual sense of the display image by the reflective liquid crystal display device. Make the transparent background opaque white.
  • a transparent electrode 14 made of ITO or the like is used instead of the reflector 13 that also serves as an electrode on the back side of the liquid crystal element 12, it also functions as a reflecting layer for generating reflected light as display light. Therefore, it also has a function of controlling the range of diffuse reflection according to the light diffusivity.
  • the light rays serving as the display light source incident from the back side (opposite side to the observer) of the light diffusion layer 30 are not blocked.
  • the light diffusing agent in the adhesive to give the light diffusing layer 30 an adhesive function
  • the light diffusing layer 30 also serves as an adhesive layer, so that the first display panel 10 and the second display panel 20 are laminated at the same time. Can be integrated.
  • the light diffusion layer that also serves as the adhesive layer is a filler containing polyvinyl chloride resin, polyvinyl acetate resin, vinyl chloride-vinyl acetate copolymer resin, ethyl polyacrylate resin, polymethyl methacrylate resin, etc., which are widely used as adhesives. It is prepared by dispersing a diffusing agent such as glass sphere, titanium oxide, silica, or calcium carbonate with an alcohol-based solvent such as acetone, ethyl acetate, or ethanol.
  • a diffusing agent such as glass sphere, titanium oxide, silica, or calcium carbonate
  • an alcohol-based solvent such as acetone, ethyl acetate, or ethanol.
  • a typical example of the second display panel 20 including a light emitting display element in which the light emitting element directly modulates and displays is an organic EL (OLED) display.
  • the organic EL display panel includes a substrate provided with a thin film transistor (TFT), a pixel electrode provided with a thin film transistor for each pixel, a partition wall formed by partitioning the pixel electrode, and a light emitting medium layer formed above the pixel electrode.
  • a counter electrode formed above the light emitting medium layer is provided.
  • the light emitting medium layer includes, for example, a hole transport layer, an interlayer, and a light emitting layer.
  • Organic EL display panels are prone to problems such as reflection of external light and reflection of the background. Therefore, it is known that these problems can be prevented by providing a circular polarizing plate having a ⁇ / 4 plate on the observation side (visual recognition side).
  • a retardation film typically, a ⁇ / 4 plate
  • COP cycloolefin
  • the organic EL display panel as the second display panel 20 is not arranged on the observation side (visual side) of the display device 100, but is arranged on the back side of the first display panel 10 and the light diffusion layer 30. Therefore, there is no influence of external light reflection or background reflection.
  • the second display panel 20 (organic EL display panel) is used as a backlight as a surface light source of the first display panel 10 (transmissive liquid crystal display device), not for defining an image display pattern, it is mainly a reflective type. Since the first display panel 10 used in the form of the liquid crystal display device has only one polarizing plate 15 corresponding to the front polarizing plate, it is assumed that the light emitted from the second display panel 20 has passed through the rear polarizing plate. It is required to have the same characteristics.
  • the surface light source is not a form in which the edge light light incident from the incident end surface of the light guide plate is propagated and emitted from the entire emission surface toward the liquid crystal display device, but for each pixel arranged in a matrix in the emission surface.
  • the light emitting medium layer functions as a direct backlight.
  • the first display panel 10 transmitmissive liquid crystal display device
  • incident light c from the backlight (surface light source) shown in FIG. 2 it functions as a front polarizing plate.
  • a retardation film and a polarizing plate are arranged on the exit surface of the second display panel 20 in order to modulate the light emitted from the second display panel 20 so that the polarization is orthogonal to the transmission axis of the polarizing plate 15.
  • FIG. 4 is a cross-sectional view showing a schematic structural example of the second display panel 20 (organic EL display panel).
  • the organic EL display panel is formed above the substrate 25a provided with the thin film transistor (TFT), the pixel electrode 23 provided with the thin film transistor for each pixel, the partition wall 24 formed by partitioning the pixel electrode 23, and the pixel electrode 23.
  • the light emitting medium layer and the counter electrode 26 formed above the light emitting medium layer are provided.
  • the light emitting medium layer includes, for example, a hole transport layer 21, an interlayer (not shown), and a light emitting layer 22.
  • the circularly polarizing plate 29 is laminated on the surface (diffusion layer 30 side) of the glass substrate 25b on the upper side of the second display panel 20 (organic EL display panel).
  • the circular polarizing plate 29 of the present embodiment includes a polarizing plate 28 and a retardation plate 27 arranged on one side of the polarizing plate 28. If necessary, protective films may be arranged on both sides of the polarizing plate 28. Further, light diffusion layers may be arranged on both sides of the retardation plate 27 (not shown).
  • the retardation plate 27 has a refractive index characteristic of nx> ny and has a slow phase axis.
  • nx is the refractive index in the direction in which the in-plane refractive index is maximized (that is, the slow-phase axis direction)
  • ny is the refractive index in the in-plane direction orthogonal to the slow-phase axis (that is, the phase-advancing axis direction). is there.
  • the polarizing plate 28 and the retardation plate 27 are laminated so that the absorption axis of the polarizing plate 28 and the slow axis of the retardation plate 27 form a predetermined angle.
  • ⁇ / 4 capable of converting linearly polarized light ⁇ circularly polarized light is preferable.
  • the polarizing plate 28 may be a reflective polarizing plate having a transmission axis and a reflection axis.
  • the reflective polarizing plate is arranged so that its transmission axis is substantially perpendicular to the transmission axis of the polarizing plate 15 corresponding to the front polarizing plate in the first display panel 10 (transmissive liquid crystal display device).
  • FIG. 5 is a cross-sectional view showing a schematic configuration of the display device 100 according to the second embodiment.
  • the light diffusing property, the light reflecting property, and the light transmitting property are fixed and invariant, and the light diffusing layer of another design (formulation, composition) is used for modulating the optical characteristics. It is necessary to prepare 30.
  • a dimming panel 50 including a dimming element capable of switching between a transparent state and an opaque state is arranged.
  • FIG. 6 is an enlarged cross-sectional view of an example of the dimming panel 50.
  • the dimming layer 52 is sandwiched between a transparent base material 55 having a dimming layer 52 including a liquid crystal material capable of switching haze in two or more stages according to an applied voltage and having a transparent electrode 56 for applying a voltage to the dimming layer 52. It is a configured configuration.
  • a liquid crystal display element having high light utilization efficiency without using a polarizing plate instead of switching between a translucent state and a light-shielding state, a liquid crystal transmissive state (transparent state) and a scattered state (opaque state) are used. It is preferable to use a liquid crystal display element that switches between the two.
  • PDLC Polymer Dispersed Liquid Crystal
  • the light control panel 50 provided with the light control layer 52 made of PNLC
  • a mixture of a liquid crystal and a photopolymerizable compound (monomer) is sandwiched between a pair of transparent electrode substrates 53, and ultraviolet rays are emitted under certain conditions.
  • the photopolymerizable compound is transformed into a polymer by photopolymerization, and a polymer network having innumerable fine domains (polymer voids) is formed in the liquid crystal by photopolymerization and cross-linking.
  • the drive voltage of the PNLC generally depends on the structural characteristics of the polymer network (domain size and shape, film thickness of the polymer network, etc.), and the relationship between the structure of the polymer network and the obtained light transmission and scattering degree. In, the drive voltage is determined.
  • each domain In order to construct a PNLC that can obtain sufficient light transmission and scattering degree in a voltage region of 100 V or less, each domain must have an appropriate size and be uniform, and the shape must be uniform. It is necessary to form a polymer network so as to.
  • the domain size depending on the polymer network structure is controlled to be 3 ⁇ m or less, preferably 2 ⁇ m or less, and more preferably about 1 ⁇ m.
  • the light control panel 50 includes a light control layer 52 made of PNLC and a transparent conductive film 53 (a, b).
  • the transparent conductive film 53 (a, b) sandwiches the dimming layer 52 (PNLC), and a voltage is applied from the feeding portion (not shown) to the dimming layer 52 (PNLC) to achieve a high haze (scattering state). ), Low haze (transparency state) is changed.
  • the dimming layer 52 is preferably manufactured with a thickness of 5 ⁇ m to 50 ⁇ m (preferably about 10 ⁇ m to 25 ⁇ m).
  • a transparent conductive film 53 formed by forming a transparent electrode 56 made of a transparent conductive material such as ITO, IZO, or an organic conductive material on a transparent base material 55 is opposed to each other on the transparent electrode 56 side.
  • the dimming layer 52 is sandwiched between the two.
  • the suitable thickness of the transparent electrode 56 is approximately 80 nm or more and 150 nm or less.
  • PNLC it is also possible to express an arbitrary halftone haze state according to the applied voltage.
  • the normal mode refers to a mode in which a transmission state is obtained by applying a voltage (ON) and a scattering state is obtained by removing a voltage (OFF).
  • the reverse mode refers to a mode in which a transmission state is established by voltage removal (OFF) and a scattering state is achieved by voltage application (ON).
  • a film base material having an alignment film formed on the transparent electrode 56 is required.
  • the alignment film either a horizontal alignment film or a vertical alignment film may be used as long as it is a conventionally known alignment film, and it can be appropriately selected according to the application.
  • a polyethylene terephthalate (PET) film, a polyethylene (PE) film, a polycarbonate (PC) film, or the like can be used as the transparent base material 55 constituting the transparent conductive film 53.
  • the thickness of the transparent base material 55 is preferably about 50 to 200 ⁇ m.
  • a metal oxide such as ITO is generally used for the transparent conductive layer 56 constituting the transparent conductive film 53, but a low-resistance conductive polymer can be used instead of ITO.
  • the conductive polymer it is preferable to use a material containing a polyanion doped in a ⁇ -conjugated conductive polymer exemplified by PEDOT / PSS.
  • the dimming panel 50 is in an opaque state (high haze scattering state) when displayed by the first display panel 10, and is in a transparent state (or low haze scattering state) when displayed by the second display panel 20. It is desirable to switch and use it so that it becomes (state). In consideration of power saving, when the display state by the first display panel 10 occupies most of the display state, the light control panel 50 is adjusted so that an opaque state (high haze scattering state) is maintained without applying a voltage (ON).
  • the optical panel 50 is preferably in the normal mode.
  • the usage pattern of the display device 10 in which the resolution of the display image is low and the power consumption is the lowest is the first method in which the second display panel is turned off in a bright place.
  • the display panel 10 is used as a reflective liquid crystal display device.
  • the display image by the reflective liquid crystal display device has a small amount of information in a 7-segment display with few dynamic elements such as a time display of a digital clock, and is suitable for suppressing battery consumption.
  • the light diffusion layer 30 (or the light control panel 50) is in an opaque state (high haze scattering state).
  • the first display panel 10 As a transmissive liquid crystal display device
  • the front light component that illuminates the liquid crystal display screen from the observer side. Since there is no such situation, the second display panel 20 is used as the backlight (surface light source) of the liquid crystal display device.
  • Both the first display panel 10 and the second display panel 20 are in the ON state, but the second display panel 20 is also driven so as to exhibit a uniformly solid single color (white) light emitting state with few dynamic elements. Is fine.
  • the light diffusing layer 30 (or the dimming panel 50) is in a scattered state that is not excessively high haze so that the liquid crystal display screen can be evenly illuminated without reducing the irradiation brightness by blocking the backlight. It is desirable to present.
  • the usage pattern of the display device 10 which has a high resolution of the display image and consumes a lot of power including full-color display and dynamic display is the second display panel 20. It is a form used as an organic EL (OLED) display.
  • the first display panel 10 is turned off to make it transparent, and the light diffusing layer 30 (or the dimming panel 50) shields the display light by the organic EL (OLED) to block the display light and does not reduce the irradiation brightness. It is desired to exhibit a transparent state (or a low-haze scattering state) so as not to reduce the resolution of the display by (OLED).
  • Table 1 shows a summary of the above usage patterns (1) to (3).
  • FIGS. 7 to 9 The axial directions (vibration directions) of the incident light to the display light in the above usage modes (1) to (3) are shown in FIGS. 7 to 9, respectively.
  • FIG. 7 is a diagram showing an axial direction (vibration direction) exhibited by the incident light to the display light in the usage mode (1) of the display device.
  • FIG. 8 is a diagram showing an axial direction (vibration direction) exhibited by the incident light to the display light in the usage mode (2) of the display device.
  • FIG. 9 is a diagram showing an axial direction (vibration direction) exhibited by the incident light to the display light in the usage mode (3) of the display device.
  • the display device assumed for the sample is LCD (polarizing plate, liquid crystal,) 10 ⁇ diffusion layer 30 (polarizing plate panel 50) ⁇ reflective polarizing plate ⁇ OLED (polarizing plate) from the observation side (top).
  • Phase difference plate) 20 is provided, and the amount of phase modulation associated with the passage of light rays from the liquid crystal display and the retardation plate is assumed to be ⁇ / 2 and ⁇ / 4, respectively.
  • the arrows indicating the axial direction (vibration direction) are black (when the traveling direction of the light beam is "up ⁇ down") and white (when the traveling direction of the light beam is "down ⁇ up”) according to the traveling direction of the light beam. ).
  • External light and light emitted from an organic EL (OLED) display panel are light (omnidirectional light) having components in all vibration directions. Since omnidirectional light can be divided into two orthogonal components, it is indicated by a cross arrow in the figure.
  • the display state should be set according to the usage mode (1), which consumes less information and power consumption, such as the time display of a wristwatch with a reflective liquid crystal display, and the usage mode (2) should be used when checking the time in a dark place. ) Is adopted, and the usage mode (3) is appropriately adopted only when it is desired to confirm image information (moving image) having a large amount of information, thereby saving battery power in a small terminal.
  • the usage mode (1) which consumes less information and power consumption
  • the usage mode (2) should be used when checking the time in a dark place.
  • the liquid crystal mode (TN, STN, VA, IPS) in the liquid crystal display device and the combination with the corresponding retardation film and polarizing film are adopted.
  • Various changes can be made to the display device of the type corresponding to the displayed display method within a range that does not deviate from the gist of the present invention.
  • the present invention is not limited to the above embodiment, and can be variously modified at the implementation stage without departing from the gist thereof.
  • each embodiment may be carried out in combination as appropriate, and in that case, the combined effect can be obtained.
  • the above-described embodiment includes various inventions, and various inventions can be extracted by a combination selected from a plurality of disclosed constituent requirements. For example, even if some constituent requirements are deleted from all the constituent requirements shown in the embodiment, if the problem can be solved and the effect is obtained, the configuration in which the constituent requirements are deleted can be extracted as an invention.

Abstract

Provided is a display device configured by superposing, from the display viewing side, a first display panel (10) comprising a non-light emitting display element in which a light modulation element performs display by reflecting external light, an opaque light diffusion layer (30) having light transparency, and a second display panel (20) comprising a light emitting display element in which a light emitting element performs display by performing direct modulation.

Description

表示装置Display device
 本発明は、消費電力の大小が異なる方式を選択的に使い分けることが可能な表示装置に関する。 The present invention relates to a display device capable of selectively using different methods of different power consumption.
 スマートフォン,タブレット型PC,ウェアラブル端末などの携帯情報端末(PDA: Personal Data Assistant)の主要な要素として、液晶表示パネルや有機EL表示パネルを搭載した薄型の表示装置が広く普及している。手首に装着して使用する腕時計型など小型の端末では、搭載できる電池の容量が小さく、消費電力の大きい表示方式で長時間の稼働は困難であり、節電を考慮した表示方式や使用形態についても要望されている。 Thin display devices equipped with liquid crystal display panels and organic EL display panels are widely used as the main elements of personal digital assistants (PDAs) such as smartphones, tablet PCs, and wearable terminals. For small terminals such as wristwatches that are worn on the wrist, the capacity of the battery that can be installed is small, and it is difficult to operate for a long time with a display method that consumes a lot of power. It is requested.
 表示方式の異なる非発光表示素子(液晶:LCD)と発光表示素子(有機エレクトロルミネッセンス:OLED)を同一の表示装置内で併設するタイプの装置に係る提案が公知である。 A proposal relating to a type of device in which a non-emission display element (liquid crystal: LCD) and a light emission display element (organic electroluminescence: OLED) having different display methods are provided in the same display device is known.
 本発明は、使用環境の明暗に応じて、同一の画素による別々の表示方式を切り替えるのではなく、表示対象の相違に応じて、配列や解像度の異なる互いに別々の画素を有する表示方式を選択し、消費電力の低減を図った使用形態に好適な表示装置を提供する。 The present invention does not switch different display methods using the same pixel according to the brightness of the usage environment, but selects a display method having different pixels with different arrangements and resolutions according to the difference in the display target. Provided is a display device suitable for a usage pattern in which power consumption is reduced.
 本発明の一態様に係る表示装置は、表示の観察側から、光変調素子が外光を反射させて表示を行なう非発光表示素子からなる第1表示パネル、透光性を持つ不透明な光拡散層、発光素子が直接変調し表示を行なう発光表示素子からなる第2表示パネル、が重畳されてなる構成である。 The display device according to one aspect of the present invention is a first display panel composed of a non-emission display element in which a light modulation element reflects external light to display from the observation side of the display, and an opaque light diffusion having translucency. The layer and the second display panel composed of a light emitting display element in which the light emitting element directly modulates and displays are superimposed.
 本発明によれば、表示対象の相違に応じて、配列や解像度の異なる互いに別々の画素を有する表示方式を選択し、消費電力の低減を図った使用形態に好適な表示装置を提供できる。 According to the present invention, it is possible to provide a display device suitable for a usage mode in which power consumption is reduced by selecting a display method having different pixels having different arrangements and resolutions according to a difference in display target.
図1は、実施形態1に係る表示装置100の概略構成を示す断面図である。FIG. 1 is a cross-sectional view showing a schematic configuration of the display device 100 according to the first embodiment. 図2は、半透過型液晶表示装置(第1表示パネル10)の概略構造例を示す断面図である。FIG. 2 is a cross-sectional view showing a schematic structural example of a transflective liquid crystal display device (first display panel 10). 図3は、第1表示パネル10による表示例を示す説明図である。FIG. 3 is an explanatory diagram showing a display example by the first display panel 10. 図4は、第2表示パネル20の概略構造例を示す断面図である。FIG. 4 is a cross-sectional view showing a schematic structural example of the second display panel 20. 図5は、実施形態2に係る表示装置100の概略構成を示す断面図である。FIG. 5 is a cross-sectional view showing a schematic configuration of the display device 100 according to the second embodiment. 図6は、調光パネル50の一例に係る拡大断面図である。FIG. 6 is an enlarged cross-sectional view of an example of the dimming panel 50. 図7は、表示装置の使用形態(1)における入射光~表示光の呈する軸方位(振動方向)を示す図である。FIG. 7 is a diagram showing an axial direction (vibration direction) exhibited by the incident light to the display light in the usage mode (1) of the display device. 図8は、表示装置の使用形態(2)における入射光~表示光の呈する軸方位(振動方向)を示す図である。FIG. 8 is a diagram showing an axial direction (vibration direction) exhibited by the incident light to the display light in the usage mode (2) of the display device. 図9は、表示装置の使用形態(3)における入射光~表示光の呈する軸方位(振動方向)を示す図である。FIG. 9 is a diagram showing an axial direction (vibration direction) exhibited by the incident light to the display light in the usage mode (3) of the display device.
 以下、図面を参照しながら本発明の実施形態について説明する。ここで、図面は模式的なものであり、説明の便宜上、平面寸法との関係や各層の厚みの比率等は実際の縮尺とは異なるサイズで誇張して図示する場合もある。また、以下に示す実施形態は、本発明の技術的思想を具体化するための構成を例示するものであって、本発明の技術的思想は、構成部品の材質,形状,構造等が下記のものに特定されるものではない。本発明の技術的思想は、特許請求の範囲に記載された請求項が規定する技術的範囲内において、種々の変更を加えることができる。 Hereinafter, embodiments of the present invention will be described with reference to the drawings. Here, the drawings are schematic, and for convenience of explanation, the relationship with the plane dimensions, the ratio of the thickness of each layer, and the like may be exaggerated to a size different from the actual scale. Further, the embodiments shown below exemplify a configuration for embodying the technical idea of the present invention, and the technical idea of the present invention describes the materials, shapes, structures, etc. of the constituent parts as follows. It is not specific to anything. The technical idea of the present invention may be modified in various ways within the technical scope specified by the claims stated in the claims.
 <実施形態1>
 図1は、実施形態1に係る表示装置100の概略構成を示す断面図である。
<Embodiment 1>
FIG. 1 is a cross-sectional view showing a schematic configuration of the display device 100 according to the first embodiment.
 表示装置100は、同図で上方の表示の観察側から、光変調素子が外光を反射させて表示を行なう非発光表示素子からなる第1表示パネル10、透光性を持つ不透明な光拡散層30、発光素子が直接変調し表示を行なう発光表示素子からなる第2表示パネル20、
 が重畳されてなる構成である。
The display device 100 is a first display panel 10 composed of a non-emission display element in which a light modulation element reflects external light to display from the observation side of the upper display in the figure, and opaque light diffusion having translucency. Layer 30, a second display panel 20 composed of a light emitting display element in which the light emitting element directly modulates and displays.
Is superimposed.
 <第1表示パネル10>
 非発光表示素子からなる第1表示パネル10の代表例は液晶表示装置である。液晶表示装置には、バックライトやエッジライトなどの特殊な観察用光源を必要としないタイプの反射型液晶表示装置、液晶パネルの背面(観察者に対して反対側)からバックライトを照射して表示光とするタイプの透過型液晶表示装置、それらを選択的に切り替えて採用するタイプの半透過型液晶表示装置などの使用形態が存在する。
<First display panel 10>
A typical example of the first display panel 10 composed of a non-emission display element is a liquid crystal display device. The liquid crystal display device is a reflective liquid crystal display device that does not require a special observation light source such as a backlight or edge light, and the back light is radiated from the back of the liquid crystal panel (opposite to the observer). There are usage patterns such as a transmissive liquid crystal display device of a type that uses display light and a semi-transmissive liquid crystal display device of a type that selectively switches and adopts them.
 液晶表示装置の消費電力のうち、バックライトやエッジライトなどの特殊な観察用光源が占めるウェイトが非常に高く、外光(照明光,太陽光などの周辺光)を利用した反射表示が省エネルギーの点で有効である。しかし、暗所での表示装置の使用にあたっては観察用光源に依存した視覚が必要となる。以降は主として半透過型液晶表示装置について説明する。 Of the power consumption of liquid crystal display devices, special observation light sources such as backlights and edge lights occupy a very high weight, and reflection display using external light (illumination light, ambient light such as sunlight) saves energy. It is effective in terms of points. However, when using the display device in a dark place, vision that depends on the observation light source is required. Hereinafter, the semitransmissive liquid crystal display device will be mainly described.
 図2は、反透過型液晶表示装置(第1表示パネル10)の概略構造例を示す断面図である。ガラス基板11の上に電極を兼ねた反射板13,液晶素子12,透明電極14,ガラス基板11,偏光板15をこの順で重ねた構造である。尚、液晶の種類や装置の仕様によっては、カラーフィルタ,位相差フィルム,プリズムアレイを有する光路変調フィルム,その他の光学フィルムが併用される場合もある。また、図2では液晶素子12の背面側(観察者に対して反対側)にITOに代表される透光性の高い透明電極14と同部材でなく半透過反射膜による電極(反射電極と称することもある)を配置した構成であるが、液晶素子12の背面側も透明電極14として、ガラス基板11の背面側に別部材としての反射板(半透過反射膜)を配置する構成もある。 FIG. 2 is a cross-sectional view showing a schematic structural example of the antitransmissive liquid crystal display device (first display panel 10). The structure is such that a reflector 13 also serving as an electrode, a liquid crystal element 12, a transparent electrode 14, a glass substrate 11, and a polarizing plate 15 are stacked in this order on a glass substrate 11. Depending on the type of liquid crystal and the specifications of the device, a color filter, a retardation film, an optical path modulation film having a prism array, and other optical films may be used together. Further, in FIG. 2, the back side (opposite side to the observer) of the liquid crystal element 12 is not the same member as the transparent electrode 14 having high translucency represented by ITO, but an electrode (referred to as a reflective electrode) made of a semitransmissive reflective film. However, there is also a configuration in which the back side of the liquid crystal element 12 is also used as the transparent electrode 14, and a reflecting plate (semi-transmissive reflecting film) as a separate member is placed on the back side of the glass substrate 11.
 反射型液晶表示装置としての使用形態では、装置に入射する外光aが反射板13で反射されて表示光bとして観察者側に出射する。図2では、表示光bは外光aの正反射方向を中心とした散乱光として図示されているが、表示光bの出射方向・範囲を適切に制御するための光路制御部材が使用される場合もある。また、表示光bの解像度を適切に設定する上で、外光aの入射時に多く光散乱を生じさせ、表示光bの出射時には光散乱を生じさせないという様に、前方散乱,後方散乱の割合を制御することも適宜行なわれる。 In the usage mode as a reflective liquid crystal display device, the external light a incident on the device is reflected by the reflector 13 and emitted to the observer side as the display light b. In FIG. 2, the display light b is shown as scattered light centered on the specular reflection direction of the external light a, but an optical path control member for appropriately controlling the emission direction and range of the display light b is used. In some cases. Further, in order to appropriately set the resolution of the display light b, the ratio of forward scattering and backward scattering is such that a large amount of light scattering occurs when the external light a is incident and no light scattering occurs when the display light b is emitted. Is also controlled as appropriate.
 透過型液晶表示装置としての使用形態では、図1の発光表示素子からなる第2表示パネル20をそれ自身による画像表示でなく、画像表示パターンを規定する液晶表示装置のバックライト(面光源)として使用する。この場合、第2表示パネル20では、画素毎に発光/非発光,輝度,色相を選択して特定パターンを構成するのではなく、画面全体で一様な単色(白色)の発光状態を呈する様に駆動する。 In the usage mode as a transmissive liquid crystal display device, the second display panel 20 composed of the light emitting display element of FIG. 1 is not used as an image display by itself, but as a backlight (surface light source) of the liquid crystal display device that defines an image display pattern. use. In this case, the second display panel 20 does not form a specific pattern by selecting light emission / non-light emission, brightness, and hue for each pixel, but exhibits a uniform single color (white) light emission state over the entire screen. Drive to.
 液晶素子として代表的なTN型液晶を透過型液晶表示装置に用いる場合、分子の並び方が90度ねじれた液晶を、2枚の偏光板で挟んでいる。電圧をかけていない状態では光が通り、電圧をかけると光が遮断される様に(その逆の場合もあり得る)、直線偏光軸の方向を直交させた2枚の偏光板の配置と、電圧の印加/非印加に応じた液晶分子の挙動に伴う位相差の関係を適切に設定することで、液晶が光のシャッターの機能を果たすことになる。 When a TN type liquid crystal, which is a typical liquid crystal element, is used in a transmissive liquid crystal display device, a liquid crystal in which the molecules are twisted by 90 degrees is sandwiched between two polarizing plates. Arrangement of two polarizing plates with the directions of the linear polarization axes orthogonal to each other so that light can pass through when no voltage is applied and light is blocked when voltage is applied (and vice versa). By appropriately setting the relationship of the phase difference accompanying the behavior of the liquid crystal molecules according to the application / non-application of voltage, the liquid crystal functions as a light shutter.
 反射型液晶表示装置では、偏光板15を通過した入射光(外光a)が液晶素子12で位相差を変調され、反射板13で反射し、再度液晶素子12~偏光板15を通って表示光bとして出射する。液晶素子12の表裏で2枚の偏光板が配置される場合、入射時~反射時にそれぞれ2枚の偏光板を計4度通過するのでは、通過時の光吸収が多く光量損失の弊害が顕著であるため、液晶素子12の表裏で2枚の偏光板は要さず、直線偏光軸の方向が同一な1枚の偏光板15を2度通過する際(入射時,出射時)の液晶分子の挙動に伴う外光aと表示光bの位相差が設定されるタイプの反射型液晶表示装置も開発されている。一方で、光量損失の問題よりも、直線偏光軸の方向の厳格な制御(コントラスト)を優先し、依然として液晶素子12の表裏で2枚の偏光板を採用し、背面側(観察者に対して反対側)の偏光板として、特定の透過軸以外の光を反射する(あるいは、特定の反射軸の光のみを反射する)機能を持つ反射偏光板を採用するタイプの反射型液晶表示装置も存在する。 In the reflective liquid crystal display device, the incident light (external light a) that has passed through the polarizing plate 15 is modulated by the liquid crystal element 12 in phase difference, reflected by the reflecting plate 13, and displayed again through the liquid crystal elements 12 to the polarizing plate 15. It emits as light b. When two polarizing plates are arranged on the front and back sides of the liquid crystal element 12, if the two polarizing plates are passed through each of the two polarizing plates at the time of incident to the time of reflection a total of 4 degrees, the light absorption at the time of passing is large and the harmful effect of light loss is remarkable. Therefore, two polarizing plates are not required on the front and back sides of the liquid crystal element 12, and the liquid crystal molecules when passing through one polarizing plate 15 having the same direction of the linear polarization axes twice (at the time of incident and at the time of exit). A reflective liquid crystal display device of a type in which the phase difference between the outside light a and the display light b is set according to the behavior of the above has also been developed. On the other hand, strict control (contrast) of the direction of the linear polarization axis is prioritized over the problem of light loss, and two polarizing plates are still used on the front and back of the liquid crystal element 12, and the back side (for the observer). As a polarizing plate on the opposite side), there is also a type of reflective liquid crystal display device that employs a reflective polarizing plate having a function of reflecting light other than a specific transmission axis (or reflecting only light of a specific reflection axis). To do.
 透過型液晶表示装置としての使用形態では、図2でバックライト(面光源)からの入射光cをパターン変調して表示光として出射する際、偏光板15の通過は1度であるが、液晶素子にシャッター機能を付与する上で、第2表示パネル20からの出射光に直線偏光の成分を持たせることが要求される。この場合には、液晶素子12の背面側にも偏光板が配置されることが必要となる。 In the usage mode as a transmissive liquid crystal display device, when the incident light c from the backlight (surface light source) is pattern-modulated and emitted as display light in FIG. 2, the polarizing plate 15 passes through the polarizing plate 15 once, but the liquid crystal. In order to impart a shutter function to the element, it is required that the light emitted from the second display panel 20 has a linearly polarized light component. In this case, it is necessary to dispose the polarizing plate on the back surface side of the liquid crystal element 12.
 図3は、第1表示パネル10による表示例である。少ない画素数でのキャラクタ(文字)の表示を簡便に行なうことが好ましく、図示の例では7セグメントによる数字,アルファベットを表示している。同図で白黒を反転した表示でも良い。表示例では、腕時計としての時刻表示が考えられるが、さらに動きの少ない静的な表示でも良い。消費電力の節約の上では、バックライトを用いない反射型液晶表示装置としての使用が好ましい。 FIG. 3 is a display example by the first display panel 10. It is preferable to easily display characters with a small number of pixels, and in the illustrated example, numbers and alphabets with 7 segments are displayed. The black and white may be inverted in the figure. In the display example, the time display as a wristwatch can be considered, but a static display with less movement may be used. In terms of saving power consumption, it is preferable to use it as a reflective liquid crystal display device that does not use a backlight.
 <透光性を持つ不透明な光拡散層30>
 光拡散層30は、反射型液晶表示装置による表示画像の視覚において、液晶素子が遮光状態(黒)を示す部分と透光状態(白)を示す部分とのコントラストを明瞭にする上で、無色透明な背景を不透明な白色とする。また、液晶素子12の背面側で電極を兼ねた反射板13を採用せずにITOなどによる透明電極14を採用した場合、表示光となる反射光を生成するための反射層としての機能も受け持つことになり、光拡散性に応じた拡散反射の範囲を制御する機能も受け持つ。
<Opaque light diffusion layer 30 with translucency>
The light diffusion layer 30 is colorless in order to clarify the contrast between the portion where the liquid crystal element shows a light-shielding state (black) and the portion showing a light-transmitting state (white) in the visual sense of the display image by the reflective liquid crystal display device. Make the transparent background opaque white. Further, when a transparent electrode 14 made of ITO or the like is used instead of the reflector 13 that also serves as an electrode on the back side of the liquid crystal element 12, it also functions as a reflecting layer for generating reflected light as display light. Therefore, it also has a function of controlling the range of diffuse reflection according to the light diffusivity.
 透過型液晶表示装置(あるいは、第2表示パネル20)による表示画像の視覚においては、光拡散層30の背面側(観察者に対して反対側)から入射する表示光源となる光線を遮断せずに拡散透過する機能を受け持つ。また、第2表示パネル20で生成された画像表示パターン光を結像させて、観察者に視覚させる機能も受け持つ。粘着剤中に光拡散剤を分散して光拡散層30に粘着機能を持たせることで、光拡散層30が粘着層を兼ねるため、第1表示パネル10と第2表示パネル20を積層すると同時に一体化することができる。 In the visual sense of the display image by the transmissive liquid crystal display device (or the second display panel 20), the light rays serving as the display light source incident from the back side (opposite side to the observer) of the light diffusion layer 30 are not blocked. Responsible for the function of spreading and transmitting. It also has a function of forming an image display pattern light generated by the second display panel 20 and visualizing it to the observer. By dispersing the light diffusing agent in the adhesive to give the light diffusing layer 30 an adhesive function, the light diffusing layer 30 also serves as an adhesive layer, so that the first display panel 10 and the second display panel 20 are laminated at the same time. Can be integrated.
 粘着層を兼ねる光拡散層は、接着剤として汎用されているポリ塩化ビニル樹脂,ポリ酢酸ビニル樹脂,塩化ビニル-酢酸ビニル共重合体樹脂,ポリアクリル酸エチル樹脂,ポリメタクリル酸メチル樹脂等とフィラーとしてガラス球,酸化チタン,シリカ,炭酸カルシウム等の拡散剤とをアセトン,酢酸エチル,エタノール等のアルコール系等の溶剤を用いて分散させて作製される。 The light diffusion layer that also serves as the adhesive layer is a filler containing polyvinyl chloride resin, polyvinyl acetate resin, vinyl chloride-vinyl acetate copolymer resin, ethyl polyacrylate resin, polymethyl methacrylate resin, etc., which are widely used as adhesives. It is prepared by dispersing a diffusing agent such as glass sphere, titanium oxide, silica, or calcium carbonate with an alcohol-based solvent such as acetone, ethyl acetate, or ethanol.
 <第2表示パネル20>
 発光素子が直接変調し表示を行なう発光表示素子からなる第2表示パネル20の代表例は有機EL(OLED)ディスプレイである。有機ELディスプレイパネルは、薄膜トランジスタ(TFT)を備えた基板と、画素毎に薄膜トランジスタを備えた画素電極と、画素電極を区画し形成された隔壁と、画素電極の上方に形成された発光媒体層と、発光媒体層の上方に形成された対向電極とを備えている。発光媒体層は、例えば正孔輸送層とインターレイヤと発光層とを備えている。
<Second display panel 20>
A typical example of the second display panel 20 including a light emitting display element in which the light emitting element directly modulates and displays is an organic EL (OLED) display. The organic EL display panel includes a substrate provided with a thin film transistor (TFT), a pixel electrode provided with a thin film transistor for each pixel, a partition wall formed by partitioning the pixel electrode, and a light emitting medium layer formed above the pixel electrode. , A counter electrode formed above the light emitting medium layer is provided. The light emitting medium layer includes, for example, a hole transport layer, an interlayer, and a light emitting layer.
 有機ELディスプレイパネルでは、外光反射や背景の映り込み等の問題を生じやすい。そこで、λ/4板を有する円偏光板を観察側(視認側)に設けることにより、これらの問題を防ぐことが知られている。一般的な円偏光板として、シクロオレフィン(COP)系樹脂フィルムに代表される位相差フィルム(代表的には、λ/4板)を、その遅相軸が偏光子の吸収軸に対して約45°の角度をなすように積層したものが知られている。 Organic EL display panels are prone to problems such as reflection of external light and reflection of the background. Therefore, it is known that these problems can be prevented by providing a circular polarizing plate having a λ / 4 plate on the observation side (visual recognition side). As a general circular polarizing plate, a retardation film (typically, a λ / 4 plate) typified by a cycloolefin (COP) resin film is used, and its slow phase axis is approximately relative to the absorber absorption axis. Those laminated so as to form an angle of 45 ° are known.
 本発明では、第2表示パネル20としての有機ELディスプレイパネルは表示装置100の観察側(視認側)に配置されず、第1表示パネル10や光拡散層30の背面側に配置される構成であるため、外光反射や背景の映り込み等の影響は皆無である。 In the present invention, the organic EL display panel as the second display panel 20 is not arranged on the observation side (visual side) of the display device 100, but is arranged on the back side of the first display panel 10 and the light diffusion layer 30. Therefore, there is no influence of external light reflection or background reflection.
 第2表示パネル20(有機ELディスプレイパネル)を、画像表示パターンを規定する用途でなく、第1表示パネル10(透過型液晶表示装置)の面光源となるバックライトとして使用するにあたって、主として反射型液晶表示装置の形態で使用される第1表示パネル10には偏光板15は前側偏光板にあたる1枚だけであるので、第2表示パネル20からの出射光に後側偏光板を通過したものと同等の特性を持たせることが要求される。 When the second display panel 20 (organic EL display panel) is used as a backlight as a surface light source of the first display panel 10 (transmissive liquid crystal display device), not for defining an image display pattern, it is mainly a reflective type. Since the first display panel 10 used in the form of the liquid crystal display device has only one polarizing plate 15 corresponding to the front polarizing plate, it is assumed that the light emitted from the second display panel 20 has passed through the rear polarizing plate. It is required to have the same characteristics.
 面光源としては、導光板の入射端面から入射したエッジライト光を伝搬させて出射面の全体から液晶表示装置に向けて出射する形態でなく、出射面内にマトリクス状に配列された画素ごとの発光媒体層が直下式バックライトとして機能する形態となる。 The surface light source is not a form in which the edge light light incident from the incident end surface of the light guide plate is propagated and emitted from the entire emission surface toward the liquid crystal display device, but for each pixel arranged in a matrix in the emission surface. The light emitting medium layer functions as a direct backlight.
 第2表示パネル20からの出射光が、図2で示すバックライト(面光源)からの入射光cとして第1表示パネル10(透過型液晶表示装置)に入射する際、前側偏光板として機能する偏光板15の透過軸と直交する偏光となるように、第2表示パネル20からの出射光を変調するため、第2表示パネル20の出射面に位相差フィルムと偏光板を配置する。 When the light emitted from the second display panel 20 is incident on the first display panel 10 (transmissive liquid crystal display device) as incident light c from the backlight (surface light source) shown in FIG. 2, it functions as a front polarizing plate. A retardation film and a polarizing plate are arranged on the exit surface of the second display panel 20 in order to modulate the light emitted from the second display panel 20 so that the polarization is orthogonal to the transmission axis of the polarizing plate 15.
 図4は、第2表示パネル20(有機ELディスプレイパネル)の概略構造例を示す断面図である。有機ELディスプレイパネルは、薄膜トランジスタ(TFT)を備えた基板25aと、画素毎に薄膜トランジスタを備えた画素電極23と、画素電極23を区画し形成された隔壁24と、画素電極23の上方に形成された発光媒体層と、発光媒体層の上方に形成された対向電極26とを備える。ここで、発光媒体層は、例えば正孔輸送層21とインターレイヤ(図示せず)と発光層22とを備えている。 FIG. 4 is a cross-sectional view showing a schematic structural example of the second display panel 20 (organic EL display panel). The organic EL display panel is formed above the substrate 25a provided with the thin film transistor (TFT), the pixel electrode 23 provided with the thin film transistor for each pixel, the partition wall 24 formed by partitioning the pixel electrode 23, and the pixel electrode 23. The light emitting medium layer and the counter electrode 26 formed above the light emitting medium layer are provided. Here, the light emitting medium layer includes, for example, a hole transport layer 21, an interlayer (not shown), and a light emitting layer 22.
 第2表示パネル20(有機ELディスプレイパネル)の上側のガラス基板25bの表面(拡散層30側)に、円偏光板29が積層される。本実施形態の円偏光板29は、偏光板28と、偏光板28の片側に配置された位相差板27とを備える。必要に応じて、偏光板28の両面に保護フィルムを配置しても良い。また、位相差板27の両面に光拡散層を配置しても良い(図示せず)。 The circularly polarizing plate 29 is laminated on the surface (diffusion layer 30 side) of the glass substrate 25b on the upper side of the second display panel 20 (organic EL display panel). The circular polarizing plate 29 of the present embodiment includes a polarizing plate 28 and a retardation plate 27 arranged on one side of the polarizing plate 28. If necessary, protective films may be arranged on both sides of the polarizing plate 28. Further, light diffusion layers may be arranged on both sides of the retardation plate 27 (not shown).
 位相差板27は、屈折率特性がnx>nyの関係を示し、遅相軸を有する。nxは面内の屈折率が最大になる方向(すなわち、遅相軸方向)の屈折率であり、nyは面内で遅相軸と直交する方向(すなわち、進相軸方向)の屈折率である。偏光板28と位相差板27とは、偏光板28の吸収軸と位相差板27の遅相軸とが所定の角度をなすように積層されている。位相差板27としては、直線偏光⇔円偏光の変換が可能なλ/4が好適である。 The retardation plate 27 has a refractive index characteristic of nx> ny and has a slow phase axis. nx is the refractive index in the direction in which the in-plane refractive index is maximized (that is, the slow-phase axis direction), and ny is the refractive index in the in-plane direction orthogonal to the slow-phase axis (that is, the phase-advancing axis direction). is there. The polarizing plate 28 and the retardation plate 27 are laminated so that the absorption axis of the polarizing plate 28 and the slow axis of the retardation plate 27 form a predetermined angle. As the retardation plate 27, λ / 4 capable of converting linearly polarized light ⇔ circularly polarized light is preferable.
 偏光板28は、透過軸および反射軸を有する反射偏光板であっても良い。反射偏光板では、その透過軸を第1表示パネル10(透過型液晶表示装置)での前側偏光板に相当する偏光板15の透過軸と実質的に垂直にして配置される。 The polarizing plate 28 may be a reflective polarizing plate having a transmission axis and a reflection axis. The reflective polarizing plate is arranged so that its transmission axis is substantially perpendicular to the transmission axis of the polarizing plate 15 corresponding to the front polarizing plate in the first display panel 10 (transmissive liquid crystal display device).
 <実施形態2>
 図5は、実施形態2に係る表示装置100の概略構成を示す断面図である。
<Embodiment 2>
FIG. 5 is a cross-sectional view showing a schematic configuration of the display device 100 according to the second embodiment.
 実施形態1の表示装置100における光拡散層30では、光拡散性,光反射性,光透過性は固定されて不変であり、光学特性の変調にあたっては別設計(処方,組成)の光拡散層30を準備する必要がある。実施形態2では、上記光拡散層30に代えて、透明状態と不透明状態とを切り替え可能な調光素子を含む調光パネル50を配置してなる構成である。 In the light diffusing layer 30 in the display device 100 of the first embodiment, the light diffusing property, the light reflecting property, and the light transmitting property are fixed and invariant, and the light diffusing layer of another design (formulation, composition) is used for modulating the optical characteristics. It is necessary to prepare 30. In the second embodiment, instead of the light diffusion layer 30, a dimming panel 50 including a dimming element capable of switching between a transparent state and an opaque state is arranged.
 図6は、調光パネル50の一例に係る拡大断面図である。 FIG. 6 is an enlarged cross-sectional view of an example of the dimming panel 50.
 印加電圧に応じてヘイズを2段階以上に切り替え可能な液晶材料を含む調光層52を備え、調光層52に電圧を印加する透明電極56を有する透明基材55に調光層52が挟持された構成である。 The dimming layer 52 is sandwiched between a transparent base material 55 having a dimming layer 52 including a liquid crystal material capable of switching haze in two or more stages according to an applied voltage and having a transparent electrode 56 for applying a voltage to the dimming layer 52. It is a configured configuration.
 本実施形態では、透光状態-遮光状態の切り替えでなく、偏光板を用いることがなく光の利用効率の高い液晶表示素子として、液晶の透過状態(透明状態)と散乱状態(不透明状態)との間でスイッチングを行う液晶表示素子の採用が好適である。三次元の網目状に形成された樹脂からなるポリマーネットワークの内部に形成された空隙内に配置された液晶分子を有する構成のポリマーネットワーク型液晶(PNLC:Polymer Network LiquidCrystal)、または、液晶分子がポリマー中に分散配置された構成の高分子分散型液晶(PDLC:Polymer Dispersed Liquid Crystal)を用いたものが代表的であり、以降はPNLCについて説明する。 In the present embodiment, as a liquid crystal display element having high light utilization efficiency without using a polarizing plate, instead of switching between a translucent state and a light-shielding state, a liquid crystal transmissive state (transparent state) and a scattered state (opaque state) are used. It is preferable to use a liquid crystal display element that switches between the two. A polymer network liquid crystal (PNLC) having liquid crystal molecules arranged in voids formed inside a polymer network made of a resin formed in a three-dimensional network, or a polymer network liquid crystal (PNLC), or a polymer in which liquid crystal molecules are polymers. A typical one using a polymer dispersed liquid crystal (PDLC: Polymer Dispersed Liquid Crystal) having a configuration dispersed inside is described, and PNLC will be described below.
 PNLCからなる調光層52を具備する調光パネル50の製造にあたっては、液晶と光重合性化合物(モノマー)との混合物を一対の透明電極基板53の間に挟み、一定の条件下で紫外線を照射し、光重合によって光重合性化合物が高分子に変化すると共に、光重合および架橋結合により、微細なドメイン(高分子の空隙)を無数に有するポリマーネットワークが液晶中に形成される。 In manufacturing the light control panel 50 provided with the light control layer 52 made of PNLC, a mixture of a liquid crystal and a photopolymerizable compound (monomer) is sandwiched between a pair of transparent electrode substrates 53, and ultraviolet rays are emitted under certain conditions. Upon irradiation, the photopolymerizable compound is transformed into a polymer by photopolymerization, and a polymer network having innumerable fine domains (polymer voids) is formed in the liquid crystal by photopolymerization and cross-linking.
 PNLCの駆動電圧は、一般にポリマーネットワークの構造上の特性(ドメインの大きさや形状,ポリマーネットワークの膜厚など)に依存しており、ポリマーネットワークの構造と、得られる光透過と散乱度との関係において、駆動電圧が決定されている。100V以下の電圧領域において、十分な光透過と散乱度とが得られるようなPNLCを構成するには、各ドメインがいずれも適正な大きさで均一となるように、かつ、形状も均一となるようにポリマーネットワークを形成する必要がある。本発明では、ポリマーネットワーク構造に依存するドメインサイズを3μm以下、好ましくは2μm以下、一層好ましくは約1μmとなる様に制御する。 The drive voltage of the PNLC generally depends on the structural characteristics of the polymer network (domain size and shape, film thickness of the polymer network, etc.), and the relationship between the structure of the polymer network and the obtained light transmission and scattering degree. In, the drive voltage is determined. In order to construct a PNLC that can obtain sufficient light transmission and scattering degree in a voltage region of 100 V or less, each domain must have an appropriate size and be uniform, and the shape must be uniform. It is necessary to form a polymer network so as to. In the present invention, the domain size depending on the polymer network structure is controlled to be 3 μm or less, preferably 2 μm or less, and more preferably about 1 μm.
 調光パネル50は、PNLCからなる調光層52と透明導電フィルム53(a,b)とを備えている。透明導電フィルム53(a,b)は、調光層52(PNLC)を挟持しており、給電部(不図示)から調光層52(PNLC)に電圧を印加して、高ヘイズ(散乱状態),低ヘイズ(透過状態)を変化させる。 The light control panel 50 includes a light control layer 52 made of PNLC and a transparent conductive film 53 (a, b). The transparent conductive film 53 (a, b) sandwiches the dimming layer 52 (PNLC), and a voltage is applied from the feeding portion (not shown) to the dimming layer 52 (PNLC) to achieve a high haze (scattering state). ), Low haze (transparency state) is changed.
 調光層52は、5μm~50μm(好適には10μm~25μm程度)の厚さでの製造が好ましい。透明導電フィルム53は、透明基材55上にITOやIZOや有機導電膜などの透明な導電材料からなる透明電極56を成膜してなる透明導電フィルム53を互いの透明電極56側を対向して調光層52を挟持する。透明電極56の好適な厚さは略80nm以上150nm以下である。尚、PNLCでは印加電圧に応じて、任意の中間調のヘイズ状態を表現することも可能である。 The dimming layer 52 is preferably manufactured with a thickness of 5 μm to 50 μm (preferably about 10 μm to 25 μm). In the transparent conductive film 53, a transparent conductive film 53 formed by forming a transparent electrode 56 made of a transparent conductive material such as ITO, IZO, or an organic conductive material on a transparent base material 55 is opposed to each other on the transparent electrode 56 side. The dimming layer 52 is sandwiched between the two. The suitable thickness of the transparent electrode 56 is approximately 80 nm or more and 150 nm or less. In PNLC, it is also possible to express an arbitrary halftone haze state according to the applied voltage.
 液晶素子からなる調光層52には、その使用態様により、ノーマルモードとリバースモードの二種が知られている。ノーマルモードとは、電圧印加(ON)により透過状態となり、電圧除去(OFF)により散乱状態となるモードを言う。また、リバースモードとは、電圧除去(OFF)により透過状態となり、電圧印加(ON)により散乱状態となるモードを言う。リバースモードの場合、透明電極56の上に配向膜が形成されたフィルム基材を要することとなる。配向膜は従来公知の配向膜であれば、水平配向膜,垂直配向膜のいずれが用いられていても良く、用途に応じて適宜選定することができる。 There are two known dimming layers 52 made of liquid crystal elements, a normal mode and a reverse mode, depending on the mode of use. The normal mode refers to a mode in which a transmission state is obtained by applying a voltage (ON) and a scattering state is obtained by removing a voltage (OFF). Further, the reverse mode refers to a mode in which a transmission state is established by voltage removal (OFF) and a scattering state is achieved by voltage application (ON). In the case of the reverse mode, a film base material having an alignment film formed on the transparent electrode 56 is required. As the alignment film, either a horizontal alignment film or a vertical alignment film may be used as long as it is a conventionally known alignment film, and it can be appropriately selected according to the application.
 透明導電フィルム53を構成する透明基材55には、ポリエチレンテレフタレート(PET)フィルム,ポリエチレン(PE)フィルム,ポリカーボネート(PC)フィルムなどを用いることができる。透明基材55の厚みは、約50~200μm程度が望ましい。 A polyethylene terephthalate (PET) film, a polyethylene (PE) film, a polycarbonate (PC) film, or the like can be used as the transparent base material 55 constituting the transparent conductive film 53. The thickness of the transparent base material 55 is preferably about 50 to 200 μm.
 透明導電フィルム53を構成する透明導電層56には、一般的にITOなどの金属酸化物が用いられるが、ITOに替えて低抵抗の導電性ポリマーを採用することも可能である。導電性ポリマーとしては、PEDOT/PSSに例示されるπ共役系導電性高分子にドープされたポリアニオンを含む材料の採用が好適である。 A metal oxide such as ITO is generally used for the transparent conductive layer 56 constituting the transparent conductive film 53, but a low-resistance conductive polymer can be used instead of ITO. As the conductive polymer, it is preferable to use a material containing a polyanion doped in a π-conjugated conductive polymer exemplified by PEDOT / PSS.
 調光パネル50は、第1表示パネル10による表示を行なう際には不透明状態(高ヘイズな散乱状態)となり、第2表示パネル20による表示を行なう際には透明状態(あるいは、低ヘイズな散乱状態)となるように切り替えて使用することが望ましい。節電を考慮して、第1表示パネル10による表示状態が大半を占める場合、調光パネル50には電圧印加(ON)することなく不透明状態(高ヘイズな散乱状態)が維持される様、調光パネル50はノーマルモードであることが好ましい。 The dimming panel 50 is in an opaque state (high haze scattering state) when displayed by the first display panel 10, and is in a transparent state (or low haze scattering state) when displayed by the second display panel 20. It is desirable to switch and use it so that it becomes (state). In consideration of power saving, when the display state by the first display panel 10 occupies most of the display state, the light control panel 50 is adjusted so that an opaque state (high haze scattering state) is maintained without applying a voltage (ON). The optical panel 50 is preferably in the normal mode.
 <表示装置10の使用形態>
 以下、表示装置10の各種使用形態について説明する。
<Usage form of display device 10>
Hereinafter, various usage patterns of the display device 10 will be described.
 (1)第1表示パネル10を反射型液晶表示装置として使用
 表示画像の解像度が低く、最も消費電力が抑えられる表示装置10の使用形態は、明所において第2表示パネルをOFFにして第1表示パネル10を反射型液晶表示装置として使用する形態である。反射型液晶表示装置による表示画像は、デジタル時計の時刻表示など動的要素の少ない7セグメント表示の情報量が少なく、バッテリー消費を抑制する上で好適である。この際、光拡散層30(あるいは、調光パネル50)は不透明状態(高ヘイズな散乱状態)とされる。
(1) Using the first display panel 10 as a reflective liquid crystal display device The usage pattern of the display device 10 in which the resolution of the display image is low and the power consumption is the lowest is the first method in which the second display panel is turned off in a bright place. The display panel 10 is used as a reflective liquid crystal display device. The display image by the reflective liquid crystal display device has a small amount of information in a 7-segment display with few dynamic elements such as a time display of a digital clock, and is suitable for suppressing battery consumption. At this time, the light diffusion layer 30 (or the light control panel 50) is in an opaque state (high haze scattering state).
 (2)第1表示パネル10を透過型液晶表示装置として使用
 暗所において第1表示パネル10(液晶表示装置)による表示を確認する場合は、液晶表示画面を観察者側から照射するフロントライト成分がない状況であるので、第2表示パネル20を液晶表示装置のバックライト(面光源)とする。第1表示パネル10,第2表示パネル20は共にONの状態となるが、第2表示パネル20でも動的要素の少ない一様にベタな単色(白色)の発光状態を呈する様に駆動するだけで良い。この際、光拡散層30(あるいは、調光パネル50)は、バックライトを遮光して照射輝度を落とさずに液晶表示画面を均等に照明できる様に、過度に高ヘイズではない程度の散乱状態を呈することが望まれる。
(2) Using the first display panel 10 as a transmissive liquid crystal display device When confirming the display by the first display panel 10 (liquid crystal display device) in a dark place, the front light component that illuminates the liquid crystal display screen from the observer side. Since there is no such situation, the second display panel 20 is used as the backlight (surface light source) of the liquid crystal display device. Both the first display panel 10 and the second display panel 20 are in the ON state, but the second display panel 20 is also driven so as to exhibit a uniformly solid single color (white) light emitting state with few dynamic elements. Is fine. At this time, the light diffusing layer 30 (or the dimming panel 50) is in a scattered state that is not excessively high haze so that the liquid crystal display screen can be evenly illuminated without reducing the irradiation brightness by blocking the backlight. It is desirable to present.
 (3)第2表示パネル10を有機EL(OLED)ディスプレイとして使用
 表示画像の解像度が高く、フルカラー表示,動的表示も含み消費電力が多い表示装置10の使用形態は、第2表示パネル20を有機EL(OLED)ディスプレイとして使用する形態である。第1表示パネル10をOFFにして透明状態にしておき、光拡散層30(あるいは、調光パネル50)は、有機EL(OLED)による表示光を遮光して照射輝度を落とさずに、有機EL(OLED)による表示の解像度を低下させない様に、透明状態(あるいは、低ヘイズな散乱状態)を呈することが望まれる。
(3) Using the Second Display Panel 10 as an Organic EL (OLED) Display The usage pattern of the display device 10 which has a high resolution of the display image and consumes a lot of power including full-color display and dynamic display is the second display panel 20. It is a form used as an organic EL (OLED) display. The first display panel 10 is turned off to make it transparent, and the light diffusing layer 30 (or the dimming panel 50) shields the display light by the organic EL (OLED) to block the display light and does not reduce the irradiation brightness. It is desired to exhibit a transparent state (or a low-haze scattering state) so as not to reduce the resolution of the display by (OLED).
 上記使用形態(1)~(3)の要約を表1に示す。 Table 1 shows a summary of the above usage patterns (1) to (3).
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
 上記使用形態(1)~(3)における入射光~表示光の呈する軸方位(振動方向)を、それぞれ、図7~図9に示す。図7は、表示装置の使用形態(1)における入射光~表示光の呈する軸方位(振動方向)を示す図である。図8は、表示装置の使用形態(2)における入射光~表示光の呈する軸方位(振動方向)を示す図である。図9は、表示装置の使用形態(3)における入射光~表示光の呈する軸方位(振動方向)を示す図である。 The axial directions (vibration directions) of the incident light to the display light in the above usage modes (1) to (3) are shown in FIGS. 7 to 9, respectively. FIG. 7 is a diagram showing an axial direction (vibration direction) exhibited by the incident light to the display light in the usage mode (1) of the display device. FIG. 8 is a diagram showing an axial direction (vibration direction) exhibited by the incident light to the display light in the usage mode (2) of the display device. FIG. 9 is a diagram showing an axial direction (vibration direction) exhibited by the incident light to the display light in the usage mode (3) of the display device.
 図7~図9において、サンプルに想定する表示装置は、観察側(上)から、LCD(偏光板,液晶,)10→拡散層30(調板パネル50)→反射偏光板→OLED(偏光板,位相差板)20を有する構成であり、液晶,位相差板の光線通過に伴う位相変調量はそれぞれλ/2,λ/4という前提である。軸方位(振動方向)を表す矢印は、光線の進行方向に応じて、黒(光線の進行方向が「上→下」のとき),白抜き(光線の進行方向が「下→上」のとき)で表記している。 In FIGS. 7 to 9, the display device assumed for the sample is LCD (polarizing plate, liquid crystal,) 10 → diffusion layer 30 (polarizing plate panel 50) → reflective polarizing plate → OLED (polarizing plate) from the observation side (top). , Phase difference plate) 20 is provided, and the amount of phase modulation associated with the passage of light rays from the liquid crystal display and the retardation plate is assumed to be λ / 2 and λ / 4, respectively. The arrows indicating the axial direction (vibration direction) are black (when the traveling direction of the light beam is "up → down") and white (when the traveling direction of the light beam is "down → up") according to the traveling direction of the light beam. ).
 外光および有機EL(OLED)ディスプレイパネルから発する光は、全ての振動方向の成分を持った光(全方位光)である。全方位光は直交する2つの成分に分けることができるため、同図では十字の矢印で示す。 External light and light emitted from an organic EL (OLED) display panel are light (omnidirectional light) having components in all vibration directions. Since omnidirectional light can be divided into two orthogonal components, it is indicated by a cross arrow in the figure.
 通常時は、反射型液晶表示による腕時計の時刻表示の様な情報量および消費電力が共に少ない使用形態(1)による表示状態にしておき、暗所での時刻確認の際には使用形態(2)を採用し、情報量の多い画像情報(動画)などを確認したい場合にのみ使用形態(3)を採用するという使い分けを適切に行なうことで、小型端末でのバッテリー節電が好適に行なわれる。 Normally, the display state should be set according to the usage mode (1), which consumes less information and power consumption, such as the time display of a wristwatch with a reflective liquid crystal display, and the usage mode (2) should be used when checking the time in a dark place. ) Is adopted, and the usage mode (3) is appropriately adopted only when it is desired to confirm image information (moving image) having a large amount of information, thereby saving battery power in a small terminal.
 尚、図7~図9で例示したサンプルの表示装置に限らず、液晶表示装置での液晶モード(TN,STN,VA,IPS)やそれらに対応する位相差フィルム,偏光フィルムとの組合せが採用された表示方式に応じたタイプの表示装置についても、本発明の主旨を逸脱しない範囲内で種々の変更を加えることができる。 Not limited to the sample display devices illustrated in FIGS. 7 to 9, the liquid crystal mode (TN, STN, VA, IPS) in the liquid crystal display device and the combination with the corresponding retardation film and polarizing film are adopted. Various changes can be made to the display device of the type corresponding to the displayed display method within a range that does not deviate from the gist of the present invention.
 本発明は、上記実施形態に限定されるものではなく、実施段階ではその要旨を逸脱しない範囲で種々に変形することが可能である。また、各実施形態は適宜組み合わせて実施してもよく、その場合組み合わせた効果が得られる。更に、上記実施形態には種々の発明が含まれており、開示される複数の構成要件から選択された組み合わせにより種々の発明が抽出され得る。例えば、実施形態に示される全構成要件からいくつかの構成要件が削除されても、課題が解決でき、効果が得られる場合には、この構成要件が削除された構成が発明として抽出され得る。 The present invention is not limited to the above embodiment, and can be variously modified at the implementation stage without departing from the gist thereof. In addition, each embodiment may be carried out in combination as appropriate, and in that case, the combined effect can be obtained. Further, the above-described embodiment includes various inventions, and various inventions can be extracted by a combination selected from a plurality of disclosed constituent requirements. For example, even if some constituent requirements are deleted from all the constituent requirements shown in the embodiment, if the problem can be solved and the effect is obtained, the configuration in which the constituent requirements are deleted can be extracted as an invention.

Claims (10)

  1.  表示の観察側から、
     光変調素子が外光を反射させて表示を行なう非発光表示素子からなる第1表示パネル(10)、
     透光性を持つ不透明な光拡散層(30)、
     発光素子が直接変調し表示を行なう発光表示素子からなる第2表示パネル(20)、
     が重畳されてなる構成である、表示装置。
    From the observation side of the display
    A first display panel (10) composed of a non-emission display element in which a light modulation element reflects external light for display.
    Opaque light diffusing layer (30) with translucency,
    A second display panel (20) composed of a light emitting display element in which the light emitting element directly modulates and displays.
    A display device having a structure in which the above are superimposed.
  2.  前記第1表示パネル(10)は、反射型または半透過型の液晶表示装置である、請求項1記載の表示装置。 The display device according to claim 1, wherein the first display panel (10) is a reflective or semi-transmissive liquid crystal display device.
  3.  前記第1表示パネル(10)は、7セグメントディスプレイである、請求項1または2に記載の表示装置。 The display device according to claim 1 or 2, wherein the first display panel (10) is a 7-segment display.
  4.  前記第2表示パネル(20)は、前記発光素子が有機エレクトロルミネッセンス素子である、請求項1記載の表示装置。 The display device according to claim 1, wherein the second display panel (20) is an organic electroluminescence element.
  5.  前記第2表示パネル(20)は、液晶表示装置のバックライトとして機能する、請求項2記載の表示装置。 The display device according to claim 2, wherein the second display panel (20) functions as a backlight of the liquid crystal display device.
  6.  前記光拡散層(30)の前記第2表示パネル(20)側に反射偏光板(28)を備え、
     前記反射偏光板(28)は、互いに直交する方向に光の振動面を有する2つの直線偏光のうちの一方の直線偏光を透過させる透過軸と他方の直線偏光を反射する反射軸とを有しており、
     前記第2表示パネル(20)の光拡散層(30)側に位相差フィルムと偏光板を備え、
     前記偏光板は、互いに直交する方向に光の振動面を有する2つの直線偏光のうちの一方の直線偏光を透過させる透過軸を有しており、
     前記反射偏光板(28)と前記偏光板の透過軸が一致する方向である、請求項1記載の表示装置。
    A reflective polarizing plate (28) is provided on the second display panel (20) side of the light diffusion layer (30).
    The reflective polarizing plate (28) has a transmission axis that transmits one of the two linearly polarized light having vibration planes of light in directions orthogonal to each other and a reflection axis that reflects the other linearly polarized light. Polarized light
    A retardation film and a polarizing plate are provided on the light diffusion layer (30) side of the second display panel (20).
    The polarizing plate has a transmission axis that transmits linearly polarized light of one of two linearly polarized light having vibration planes of light in directions orthogonal to each other.
    The display device according to claim 1, wherein the reflective polarizing plate (28) and the transmission axis of the polarizing plate are in the same direction.
  7.  前記光拡散層(30)は、前記第1表示パネル(10)と前記第2表示パネル(20)を接合する粘着性を有する層である、請求項1記載の表示装置。 The display device according to claim 1, wherein the light diffusion layer (30) is a layer having adhesiveness for joining the first display panel (10) and the second display panel (20).
  8.  前記光拡散層(30)に代えて、透明状態と不透明状態とを切り替え可能な調光素子を含む調光パネル(50)を配置してなる、請求項1記載の表示装置。 The display device according to claim 1, wherein a dimming panel (50) including a dimming element capable of switching between a transparent state and an opaque state is arranged in place of the light diffusing layer (30).
  9.  前記調光パネル(50)は、
     印加電圧に応じてヘイズを2段階以上に切り替え可能な液晶材料を含む調光層(52)を備え、当該調光層(52)に電圧を印加する透明電極を有する透明基材(55)に前記調光層(52)が挟持された構成である、請求項8記載の表示装置。
    The dimming panel (50) is
    A transparent base material (55) provided with a dimming layer (52) containing a liquid crystal material capable of switching haze in two or more stages according to an applied voltage, and having a transparent electrode for applying a voltage to the dimming layer (52). The display device according to claim 8, wherein the dimming layer (52) is sandwiched between the display devices.
  10.  前記調光パネル(50)は、前記第1表示パネル(10)による表示を行なう際には不透明状態となり、前記第2表示パネル(20)による表示を行なう際には透明状態となるように切り替わる、請求項8または9に記載の表示装置。 The dimming panel (50) is switched so as to be in an opaque state when displaying by the first display panel (10) and to be in a transparent state when displaying by the second display panel (20). , The display device according to claim 8 or 9.
PCT/JP2020/034270 2019-09-12 2020-09-10 Display device WO2021049566A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2019166082A JP2021043365A (en) 2019-09-12 2019-09-12 Display device
JP2019-166082 2019-09-12

Publications (1)

Publication Number Publication Date
WO2021049566A1 true WO2021049566A1 (en) 2021-03-18

Family

ID=74863944

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/034270 WO2021049566A1 (en) 2019-09-12 2020-09-10 Display device

Country Status (2)

Country Link
JP (1) JP2021043365A (en)
WO (1) WO2021049566A1 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004093754A (en) * 2002-08-30 2004-03-25 Nippon Seiki Co Ltd Display unit
WO2004053819A1 (en) * 2002-12-06 2004-06-24 Citizen Watch Co., Ltd. Liquid crystal display
US20090073369A1 (en) * 2005-10-17 2009-03-19 Jui-Hsi Hsu Display apparatus including self-luminescent device and non-self-luminescent device
JP2013148687A (en) * 2012-01-19 2013-08-01 Konica Minolta Inc Light control film, and method of manufacturing light control film
US20180329245A1 (en) * 2017-05-08 2018-11-15 Reald Spark, Llc Reflective optical stack for privacy display

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004093754A (en) * 2002-08-30 2004-03-25 Nippon Seiki Co Ltd Display unit
WO2004053819A1 (en) * 2002-12-06 2004-06-24 Citizen Watch Co., Ltd. Liquid crystal display
US20090073369A1 (en) * 2005-10-17 2009-03-19 Jui-Hsi Hsu Display apparatus including self-luminescent device and non-self-luminescent device
JP2013148687A (en) * 2012-01-19 2013-08-01 Konica Minolta Inc Light control film, and method of manufacturing light control film
US20180329245A1 (en) * 2017-05-08 2018-11-15 Reald Spark, Llc Reflective optical stack for privacy display

Also Published As

Publication number Publication date
JP2021043365A (en) 2021-03-18

Similar Documents

Publication Publication Date Title
US10782466B2 (en) Backlight module and display apparatus
JP3460588B2 (en) Display device and electronic device using the same
KR100723111B1 (en) Display unit
CN100385309C (en) Liquid crystal display device using dual light units
US8384861B2 (en) Diffractive liquid crystal display
US20060221631A1 (en) Planar light source device, display device, terminal device, and method for driving planar light source device
JP2003015133A (en) Liquid crystal display device
CN102955284B (en) Display and electronic unit
US20190265521A1 (en) Reflective display and preparation method thereof
US20210055582A1 (en) Viewing angle control device and display apparatus
JP2001083509A (en) Liquid crystal display device and electronic instrument using the same
CN109073921B (en) Switch type mirror panel and switch type mirror device
US10191325B2 (en) Liquid crystal display device and liquid crystal display panel thereof
CN109946870A (en) Display device
CN103323972B (en) Display device
CN100520524C (en) Liquid crystal display device
US6930738B1 (en) Liquid crystal display with particular reflective switched states
JP4327473B2 (en) Liquid crystal display
US20070242198A1 (en) Transflective LC Display Having Backlight With Temporal Color Separation
CN212112044U (en) Automatically controlled visual angle switch and display device
JP2004354818A (en) Display device
WO2021049566A1 (en) Display device
JP3271264B2 (en) Display device and electronic device using the same
KR100765434B1 (en) Transflective display device
JP2000066189A (en) Liquid crystal display device and electronic equipment using the same

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20862056

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20862056

Country of ref document: EP

Kind code of ref document: A1