WO2021049368A1 - Substrate processing device and method for conctrolling substrate processing device - Google Patents

Substrate processing device and method for conctrolling substrate processing device Download PDF

Info

Publication number
WO2021049368A1
WO2021049368A1 PCT/JP2020/033011 JP2020033011W WO2021049368A1 WO 2021049368 A1 WO2021049368 A1 WO 2021049368A1 JP 2020033011 W JP2020033011 W JP 2020033011W WO 2021049368 A1 WO2021049368 A1 WO 2021049368A1
Authority
WO
WIPO (PCT)
Prior art keywords
chamber
processing
control unit
load lock
maintenance
Prior art date
Application number
PCT/JP2020/033011
Other languages
French (fr)
Japanese (ja)
Inventor
大輔 森澤
Original Assignee
東京エレクトロン株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 東京エレクトロン株式会社 filed Critical 東京エレクトロン株式会社
Publication of WO2021049368A1 publication Critical patent/WO2021049368A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/677Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for conveying, e.g. between different workstations

Definitions

  • the present invention relates to a substrate processing apparatus and a substrate processing apparatus control method.
  • a process such as a film forming process and an etching process is repeated a plurality of times on a substrate to be processed, for example, a semiconductor wafer (hereinafter, also simply referred to as a “wafer”).
  • a substrate to be processed for example, a semiconductor wafer (hereinafter, also simply referred to as a “wafer”).
  • a plurality of processing chambers for performing various treatments such as film formation on wafers and a vacuum transfer chamber for loading and unloading wafers are provided for each processing chamber.
  • Cluster tool type substrate processing equipment is becoming widespread.
  • a wafer processed in one processing chamber can be conveyed to another processing chamber without being exposed to the atmosphere, and the next processing can be performed.
  • Such a substrate processing apparatus has an exhaust system for evacuating the inside of the vacuum transfer chamber and adjusting the degree of vacuum to a predetermined degree in order to prevent the wafer being conveyed from being exposed to the atmosphere.
  • Such a substrate processing apparatus is provided with an atmospheric transport chamber for transporting a wafer placed under atmospheric pressure to a processing unit in a vacuum state.
  • the air transport chamber and the vacuum transport chamber are connected by a chamber called a load lock chamber, which controls pressure between atmospheric pressure and vacuum.
  • Wafers placed under atmospheric pressure are placed in the load lock chamber by a transport mechanism provided in the atmospheric transport chamber. Then, after the load lock chamber is evacuated by the pump, the wafer is sent to each processing chamber by the transport mechanism provided in the vacuum transport chamber, and various treatments are performed.
  • Patent Document 1 discloses a technique of pausing the maintenance recipe, executing the production recipe, and then restarting the maintenance recipe during the execution of the maintenance recipe of the reserve room for adjusting the pressure.
  • Cited Document 2 discloses a technique in which load lock chambers are arranged in parallel and the load lock chambers are alternately used in the order of wafer transfer.
  • the disclosed substrate processing apparatus and substrate processing apparatus control method have, in one embodiment, a first chamber having a vacuum atmosphere and a second chamber having an atmospheric pressure atmosphere.
  • Each of the plurality of transport relay chambers is arranged between the first chamber and the second chamber, and can be switched between an atmospheric pressure atmosphere and a vacuum atmosphere.
  • the transport mechanism transports the substrate between the first chamber and the second chamber via each of the transport relay chambers.
  • the maintenance execution unit executes maintenance processing on one or several of the plurality of the transfer relay chambers.
  • the control unit causes the transport mechanism to transport the substrate between the first chamber and the second chamber by using the transport relay chamber that is not subject to the maintenance process by the maintenance execution unit.
  • the substrate processing apparatus and the substrate processing apparatus control method disclosed it is possible to improve productivity while maintaining reliability.
  • FIG. 1 is a diagram showing an example of a schematic configuration of a substrate processing apparatus.
  • FIG. 2 is a block diagram of an example of the overall control unit.
  • FIG. 3 is a flowchart of an example of control of production processing by the production processing control unit.
  • FIG. 4 is a flowchart of an example of control of leak rate measurement by the maintenance process control unit.
  • FIG. 1 is a diagram showing an example of a schematic configuration of a substrate processing apparatus.
  • the substrate processing device 100 includes a processing unit 110, a transfer unit 120, and an overall control unit 130.
  • the processing unit 110 performs various processes such as a film forming process and an etching process on the wafer W which is the substrate to be processed.
  • the transfer unit 120 causes the processing unit 110 to carry in and out the wafer W.
  • the overall control unit 130 controls the operation of the entire substrate processing device 100. Details of each part will be described below.
  • the transport unit 120 has an atmospheric transport chamber 300. Ports 311 to 313 for mounting a carrier (FOUP or the like) C for accommodating the wafer W are provided on one wall in the longitudinal direction of the air transport chamber 300. Further, an alignment chamber 301 for aligning the wafer W is provided on the side wall of the air transfer chamber 300. The inside of the air transport chamber 300 is configured so that a downflow of clean air is formed.
  • the number of ports 311 to 313 is not limited to the case shown in FIG. Further, an atmospheric gate valve G2 is provided on the wall of the atmospheric transport chamber 330 opposite to the ports 311 to 313.
  • a transport unit side transport mechanism 302 that transports the wafer W by a linear drive mechanism is arranged inside the atmospheric transport chamber 300. Specifically, the transfer unit side transfer mechanism 302 transfers the wafer W between the carrier C, the load lock chambers 231 to 233, and the alignment chamber 301.
  • the transport unit side transport mechanism 302 may be a single arm mechanism having one pick as shown in FIG. 1, or a double arm mechanism having two picks.
  • the atmospheric transport chamber 300 corresponds to an example of the "second chamber".
  • the processing unit 110 of the substrate processing apparatus 100 includes a vacuum transfer chamber 210, processing chambers 201 to 204, and load lock chambers 231 to 233.
  • the processing chamber 200 when each of the processing chambers 201 to 204 is not distinguished, it is simply referred to as the processing chamber 200.
  • the load lock chamber 230 when each of the load lock chambers 231 to 233 is not distinguished, it is simply referred to as the load lock chamber 230.
  • the number of processing chambers 200 and load lock chambers 230 is not limited to the case shown in FIG.
  • the vacuum transfer chamber 210 is formed with a polygonal cross section.
  • the vacuum transfer chamber 210 has a heptagonal planar shape.
  • the inside of the vacuum transfer chamber 210 has a vacuum atmosphere having a degree of vacuum determined by being exhausted by a vacuum pump.
  • This vacuum transfer chamber 210 corresponds to an example of the “first chamber”.
  • the processing chamber 200 performs various processes such as a film formation process such as a CVD (Chemical Vapor Deposition) process using plasma or a PVD (Physical Vapor Deposition) process and an etching process such as a plasma etching process on the wafer W.
  • a film formation process such as a CVD (Chemical Vapor Deposition) process using plasma or a PVD (Physical Vapor Deposition) process
  • an etching process such as a plasma etching process on the wafer W.
  • Each processing chamber 200 can be configured as a processing chamber 200 for performing any type of processing.
  • the processing chambers 201 and 202 may be PVD processing chambers
  • the processing chambers 203 and 204 may be CVD processing chambers.
  • Each of the processing chambers 200 is airtightly connected to the periphery of the vacuum transfer chamber 210 via a gate valve G.
  • a processing unit side transfer mechanism 220 having transfer arms 221 and 222 that are configured to be able to bend / extend / elevate / swivel and can operate independently is provided inside the vacuum transfer chamber 210.
  • the processing unit-side transfer mechanism 220 transfers and carries out the wafer W to each of the processing chambers 200 and the load lock chamber 230.
  • the substrate processing apparatus 100 is a multi-chamber type vacuum processing system, and can continuously perform the processing executed on the wafer W in each processing chamber 200 without breaking the vacuum. That is, all the steps performed in the processing container of each processing chamber 200 are performed without exposing the wafer W to the atmosphere.
  • three load lock chambers 230 are connected to the vacuum transfer chamber 210 via the vacuum side gate valve G1. Further, the load lock chamber 230 is connected to the atmosphere transport chamber 300 via the atmosphere side gate valve G2. The load lock chamber 230 has a delivery table on which the wafer W can be placed.
  • the load lock chamber 230 receives the wafer W by the transport unit side transport mechanism 302 under atmospheric pressure. Then, the load lock chamber 230 temporarily holds the wafer W on the delivery table while adjusting the pressure.
  • the load lock chamber 230 has a vacuum atmosphere having a degree of vacuum determined by being exhausted by a vacuum pump while holding the wafer W on the delivery table. After that, the wafer W held on the delivery table of the load lock chamber 230 is carried out by the processing unit side transport mechanism 220 in a vacuum atmosphere and transported to the processing chamber 200.
  • This load lock chamber 230 corresponds to an example of a "transport relay chamber”. Further, the processing unit side transport mechanism 220 and the transport unit side transport mechanism 302 are examples of the “convey mechanism”.
  • FIG. 2 is a block diagram of an example of the overall control unit.
  • the overall control unit 130 has a main control unit 131 including a CPU (Central Processing Unit) that executes various controls.
  • the main control unit 131 includes each component of the processing chamber 200, an exhaust mechanism of the vacuum transfer chamber 210, a gas supply mechanism and a processing unit side transfer mechanism 220, an exhaust mechanism and a gas supply mechanism of the load lock chamber 230, and an atmospheric transfer chamber. Controls the transport unit side transport mechanism 302 of 300. Further, the main control unit 131 controls the drive system of the gate valve G, the vacuum side gate valve G1 and the atmosphere side gate valve G2.
  • a CPU Central Processing Unit
  • the overall control unit 130 includes an input device 134 such as a keyboard and a mouse, an output device 135 such as a printer, a display device 136 such as a display, and a storage device 137 including a storage medium such as a hard disk.
  • an input device 134 such as a keyboard and a mouse
  • an output device 135 such as a printer
  • a display device 136 such as a display
  • a storage device 137 including a storage medium such as a hard disk.
  • the main control unit 131 of the overall control unit 130 controls the overall operation of the substrate processing device 100.
  • the main control unit 131 controls the processing of the wafer W in each processing chamber 200 based on the processing recipe stored in the storage medium of the storage device 137.
  • the main control unit 131 controls the operation of the transfer unit side transfer mechanism 302 and the processing unit side transfer mechanism 220, the operation control of the gate valve G, the vacuum side gate valve G1 and the atmosphere side gate valve G2, and the alignment chamber. Alignment control of the wafer W in 301 and the like are performed.
  • the main control unit 131 has a production process control unit 132 and a maintenance process control unit 133.
  • the production processing control unit 132 transfers the wafer W from the carrier C to the processing chamber 200, executes various processes on the wafer W using the processing chamber 200, and completes the processing of the carrier C from the processing chamber 200. It controls the production process that integrates a series of processes such as the transfer of wafers.
  • This production processing control unit 132 corresponds to an example of a “control unit”.
  • the maintenance process control unit 133 controls the maintenance process for the load lock chamber 230.
  • the maintenance process includes, for example, a process such as a leak rate measurement and a cycle purge.
  • the leak rate measurement is a process of measuring and confirming the airtightness of the load lock chamber 320.
  • the cycle purge is a process of flying particles inside the load lock chamber 230.
  • This maintenance process control unit 133 corresponds to an example of a "maintenance execution unit".
  • the operation of each part in the production processing and maintenance processing of the substrate processing apparatus 100 having the above configuration will be described.
  • the following operations of the substrate processing device 100 are executed based on the processing recipe stored in the storage medium of the storage device 137 of the overall control unit 130. More specifically, in the production process, the production process control unit 132 controls each unit using the production recipe. Further, in the maintenance process, the maintenance process control unit 133 controls each unit using the maintenance recipe.
  • a case on which a plurality of wafers W are mounted is placed on the carrier C.
  • the unit of the wafer W placed in one case is called one lot.
  • the transport unit side transport mechanism 302 takes out one wafer W from a plurality of wafers W held by the carrier C connected to the atmospheric transport chamber 300. Next, the transfer unit side transfer mechanism 302 transfers the wafer W to the alignment chamber 301. The alignment chamber 301 adjusts the position of the wafer W and the like. After that, the production processing control unit 132 opens the atmospheric side gate valve G2 of any of the load lock chambers 230. The transfer unit-side transfer mechanism 302 carries the wafer W taken out from the alignment chamber 301 into the load lock chamber 230 connected to the opened atmosphere-side gate valve G2. After that, the production processing control unit 132 closes the atmosphere side gate valve G2 and evacuates the inside of the load lock chamber 230.
  • the production processing control unit 132 opens the vacuum side gate valve G1 after the pressure inside the load lock chamber 230 reaches a predetermined degree of vacuum. Then, the wafer W is taken out from the load lock chamber 230 by either the transfer arm 221 or 222 of the processing unit side transfer mechanism 220. After that, the production processing control unit 132 closes the vacuum side gate valve G1 connected to the load lock chamber 230 from which the wafer W is taken out.
  • the production processing control unit 132 opens the gate valve G connected to the processing chamber 200 that processes the wafer W. Then, the processing unit side transfer mechanism 220 carries the wafer W to be held into the processing chamber 200 connected to the open gate valve G. Next, the processing unit side transfer mechanism 220 returns the transfer arms 221 and 222 to the vacuum transfer chamber 210. After that, the production processing control unit 132 closes the opened gate valve G. Next, the wafer W is processed in the processing chamber 200 into which the wafer W is carried. After that, the wafer W is conveyed to the processing chamber 200 to be subjected to the next processing by the processing unit side conveying mechanism 220 according to the processing applied to the wafer W, and the wafer W is processed in each processing chamber 200.
  • the production processing control unit 132 opens the gate valve G connected to the processing chamber 200 in which the final processing is performed. Then, either the transfer arm 221 or 222 of the processing unit side transfer mechanism 220 carries out the wafer W from the processing chamber 200. Next, the production processing control unit 132 opens the vacuum side gate valve G1 connected to one of the load lock chambers 230. Then, the processing unit side transfer mechanism 220 carries the wafer W to be held into the load lock chamber 230 connected to the open vacuum side gate valve G1.
  • the production processing control unit 132 returns the pressure inside the load lock chamber 230 into which the wafer W is carried to atmospheric pressure. After that, the production processing control unit 132 opens the atmosphere side gate valve G2 connected to the load lock chamber 230 into which the wafer W is carried.
  • the transfer unit-side transfer mechanism 302 carries out the wafer W placed in the load lock chamber 230 connected to the open atmosphere-side gate valve G2. Then, the transfer unit side transfer mechanism 302 returns the wafer W to be held back to the carrier C.
  • the substrate processing apparatus 100 performs the above processing on a plurality of wafers W in parallel at the same time. When the processing is completed for all the wafers W in the case placed on one carrier C, the processing for one lot of wafers W is completed. When the processing of the wafer W of one lot is completed, the substrate processing apparatus 100 shifts to the processing of the wafer W held by the other carrier C. The substrate processing apparatus 100 repeats the processing in this way to complete the processing of the predetermined number of wafers W.
  • the maintenance process control unit 133 periodically executes a maintenance process for each load lock chamber 230.
  • execution of leak rate measurement will be described as an example.
  • the maintenance process control unit 133 is set so that the leak rate measurement is periodically executed at different timings for each load lock chamber 230. For example, the maintenance processing control unit 133 executes the leak rate measurement for the load lock chamber 231 at 10 o'clock, the leak rate processing for the load lock chamber 232 at 15:00, and the load lock at 20:00 in a 7-day cycle.
  • the room 233 is set so that the leak rate processing is executed.
  • the leak rate processing executed for the load lock chamber 231 will be described as an example.
  • the maintenance process control unit 133 confirms whether or not it is time to execute the leak rate measurement set for the load lock chamber 231. When the timing for executing the leak rate measurement arrives, the maintenance processing control unit 133 waits until the processing for the wafer W of the lot being executed at that time is completed. Then, when the processing of the wafer W of the lot being executed at that time is completed, the maintenance processing control unit 133 starts the leak rate measurement of the load lock chamber 231. The maintenance process control unit 133 notifies the production process control unit 132 of the start of the leak rate measurement of the load lock chamber 231.
  • the production processing control unit 132 receives a notification from the maintenance processing control unit 133 of the start of the leak rate measurement. While the leak rate measurement is being executed, the production processing control unit 132 does not allow the load lock chamber 231 to perform the production processing. Therefore, the production processing control unit 132 continues the production processing of the wafer W of the next lot when the timing for executing the leak rate measurement has arrived, using the load lock chambers 232 and 233 excluding the load lock chamber 231.
  • the maintenance processing control unit 133 After starting the leak rate measurement, the maintenance processing control unit 133 opens the valve of the vacuum pump connected to the load lock chamber 231 and executes evacuation for a certain period of time, for example, 2 minutes. After a lapse of a certain period of time, the maintenance process control unit 133 closes the valve of the vacuum pump.
  • the maintenance processing control unit 133 starts measuring the pressure inside the load lock chamber 230. Then, the maintenance process control unit 133 stops the measurement after a certain measurement time such as 10 minutes elapses.
  • the maintenance processing control unit 133 obtains the difference between the pressure inside the load lock chamber 230 at the start of measurement and the pressure inside the load lock chamber 230 after a certain measurement time has elapsed, and finds the difference between the pressure inside the load lock chamber 230 and the pressure inside the load lock chamber 230 in one minute. Calculate the amount of leak. Then, the maintenance processing control unit 133 compares the calculated amount of air leakage for one minute with a predetermined reference value.
  • the maintenance processing control unit 133 determines that the load lock chamber 231 is abnormal and notifies the operator of an alarm. On the other hand, when the amount of air leakage for one minute is equal to or less than the reference value, the maintenance processing control unit 133 notifies the production processing control unit 132 of the completion of the leak rate measurement of the load lock chamber 231.
  • the production processing control unit 132 Upon receiving the notification of the completion of the leak rate measurement of the load lock chamber 231, the production processing control unit 132 returns the load lock chamber 231 to the production processing for the wafer W of the lot currently being executed at that time. That is, after the return of the load lock chamber 231 to the production process, the production process control unit 132 continues the production process by using the three load lock chambers 231 to 233.
  • the maintenance process control unit 133 executes the above-mentioned leak rate measurement process in each load lock chamber 231 to 233 at each timing. It takes about 30 to 45 minutes from the start of the leak rate measurement for one load lock chamber 230 to the return of the production process.
  • the production process is interrupted during the execution of the leak rate measurement of the load lock chamber 230, the leak rate measurement of the load lock chamber 230 is stopped, and the load lock chamber 230 is used as the load lock chamber 230 for the production process. If it is restored, the production efficiency may decrease. Specifically, the time required for the leak rate measurement halfway, the time until the load lock chamber 230 is returned to production, and the time for re-doing the leak rate measurement after the production process is completed are lost.
  • the substrate processing apparatus 100 executes the maintenance process of each load lock chamber 230 at different timings, and during that time, the production process is continued by using the other load lock chamber 230. It is possible to reduce the decrease in production efficiency.
  • FIG. 3 is a flowchart of an example of control of production processing by the production processing control unit.
  • the production process control unit 132 selects all the load lock chambers 230 as the load lock chambers 230 used for the production process (step S1).
  • the production process control unit 132 executes the production process using the selected load lock chamber 230 (step S2).
  • the production processing control unit 132 confirms whether or not the maintenance processing control unit 133 has received the notification of the start of the leak rate processing. Then, the production processing control unit 132 determines whether or not the leak rate measurement has been started and executed (step S3). If the leak rate measurement is not started (step S3: negative), the production processing control unit 132 proceeds to step S7.
  • step S3 when the leak rate measurement is started (step S3: affirmative), the production process control unit 132 selects the load lock chamber 230 to be measured as the load lock chamber 230 used for the production process. Exclude from 230 (step S4).
  • the production processing control unit 132 confirms whether or not the maintenance processing control unit 133 has received the notification of the end of the leak rate measurement. Then, the production processing control unit 132 determines whether or not the leak rate measurement is completed (step S5). If the leak rate measurement is not completed (step S5: negative), the production processing control unit 132 proceeds to step S7.
  • step S5 when the leak rate measurement is completed (step S5: affirmative), the production process control unit 132 reselects the load lock chamber 230 to be measured as the load lock chamber 230 used for the production process (step S6). ). As a result, all the load lock chambers 230 are returned to the state in which the load lock chamber 230 to be measured is selected as the load lock chamber 230 used for the production process.
  • step S7 determines whether or not the production processing of the current lot is completed. If the processing of the current lot is not completed (step S7: negative), the production processing control unit 132 proceeds to step S9.
  • step S7 affirmative
  • the production processing control unit 132 notifies the maintenance processing control unit 133 of the completion of the production of the current lot (step S8).
  • the production processing control unit 132 determines whether or not the production processing of the predetermined number of wafers W has been completed (step S9). When the production process of the determined number of wafers W is not completed (step S9: negation), the production process control unit 132 returns to step S2.
  • step S9 affirmative
  • the production process control unit 132 ends the production process.
  • FIG. 4 is a flowchart of an example of control of leak rate measurement by the maintenance process control unit.
  • the maintenance process control unit 133 determines whether or not the timing for executing the leak rate measurement has arrived (step S11). When the timing for executing the leak rate measurement has not arrived (step S11: negative), the maintenance process control unit 133 waits until the timing for executing the leak rate measurement arrives.
  • step S11 affirmative
  • step S12 determines whether or not the production process of the current lot is completed.
  • step S12 negation
  • step S12 when the production process of the current lot is completed (step S12: affirmative), the maintenance process control unit 133 produces the start of the leak rate measurement for the load lock chamber 230 when the timing of executing the leak rate measurement has arrived. Notify the processing control unit 132 (step S13).
  • the maintenance processing control unit 133 executes the leak rate measurement for the load lock chamber 230 when the timing for executing the leak rate measurement has arrived (step S14).
  • step S15 determines whether or not the leak rate measurement is completed. If the leak rate measurement is not completed (step S15: negative), the maintenance process control unit 133 returns to step S14.
  • step S15 affirmative
  • the maintenance process control unit 133 notifies the production process control unit 132 of the completion of the leak rate measurement (step S16). After that, the maintenance process control unit 133 ends the leak rate measurement.
  • the substrate processing apparatus when the substrate processing apparatus according to the present embodiment performs maintenance processing on the load lock chamber, the production processing is continued using another load lock chamber. As a result, the load lock chamber can be maintained without interrupting the production process, and the productivity can be improved while maintaining the reliability.
  • the leak rate measurement process is suspended once the production process begins. For example, if the process is interrupted during evacuation, evacuation will be restarted from the beginning. In this way, if the leak rate measurement is interrupted, it may be restarted from the beginning, and in that case, the period during which the load lock chamber targeted for the leak rate measurement does not perform the production process becomes long. If the period during which the load lock chamber does not perform production processing becomes long in this way, the throughput of the substrate processing apparatus as a whole drops.
  • the production process is performed by another load lock chamber in parallel with the maintenance process of the load lock chamber, the production process is compared with the technique of suspending the maintenance process. It can be expected to improve sex.
  • the substrate processing apparatus 100 according to the present embodiment is different from the first embodiment in that the cycle for executing the leak rate measurement is changed according to the measurement result of the leak rate measurement.
  • the substrate processing apparatus 100 according to this embodiment is also represented by FIGS. 1 and 2. In the following description, description of the same functions as those of the respective parts described in the first embodiment will be omitted.
  • the maintenance process control unit 133 of the overall control unit 130 has an initial value of the measurement cycle of the leak rate measurement that is periodically executed.
  • the maintenance process control unit 133 executes the leak rate measurement of each load lock chamber 230 in the measurement cycle of the initial value held in advance.
  • the maintenance processing control unit 133 acquires the measurement result of the leak rate measurement of each load lock chamber 230. Then, the maintenance processing control unit 133 changes the measurement cycle according to the processing result.
  • the maintenance processing control unit 133 has an upper threshold value for determining that the state of the load lock chamber 230 tends to deteriorate due to a large amount of air leakage, in addition to the reference value for determining the abnormality of the load lock chamber 230. Has. Further, the maintenance processing control unit 133 has a lower threshold value which is a threshold value of the inflow amount for determining that the amount of air leakage is small and the state of the load lock chamber 230 is good.
  • the maintenance process control unit 133 When the amount of air leakage in the load lock chamber 230 to be measured is equal to or greater than the upper threshold value, the maintenance process control unit 133 shortens the measurement cycle of the load lock chamber 230. However, when the amount of air leakage in the load lock chamber 230 to be measured exceeds the reference value, the maintenance processing control unit 133 determines that an abnormality has occurred in the load lock chamber 230 and produces the load lock chamber 230. Notify the operator of the alarm, leaving it excluded from processing.
  • the maintenance processing control unit 133 lengthens the measurement cycle of the load lock chamber 230. If the amount of air leakage from the load lock chamber 230 to be measured is equal to or greater than the lower threshold value and less than the upper threshold value, the maintenance processing control unit 133 maintains the measurement cycle of the load lock chamber 230 at that time.
  • the maintenance process control unit 133 changes the measurement cycle by adding or reducing a predetermined period with respect to the measurement cycle.
  • the maintenance process control unit 133 may determine the period for increasing or decreasing according to the measurement result by using a predetermined function.
  • the maintenance processing control unit 133 may determine the deterioration tendency by another method. For example, the maintenance processing control unit 133 may compare the previous measurement result with the current measurement result and determine that the increase in the amount of air leakage exceeds a certain standard and that the measurement tendency tends to deteriorate.
  • the substrate processing apparatus changes the measurement cycle according to the result of the leak rate measurement.
  • the measurement result is good, the maintenance processing frequency of the load lock chamber that does not require frequent maintenance can be reduced, and the time allocated to the production processing of the load lock chamber can be increased. it can. Therefore, the production efficiency of the entire substrate processing apparatus can be further improved.
  • the maintenance frequency of the load lock chamber which tends to be in an abnormal state, can be increased, and the reliability of the substrate processing apparatus can be further improved. If the measurement result exceeds the threshold range, the load lock chamber is left excluded from production and the operator is notified by an alarm.
  • the substrate processing apparatus 100 may perform a cycle purge in addition to the leak rate measurement as a maintenance process, or may execute another maintenance process.
  • the maintenance process control unit 133 executes the leak rate measurement from the next lot when the timing of executing the leak rate measurement arrives. Therefore, the load lock chamber 230 to be measured from the next lot was removed from the production process.
  • the timing of starting the leak rate measurement may be another timing, and for example, the leak rate measurement may be started immediately after the timing of executing the leak rate measurement arrives. In this case, the load lock chamber 230 to be measured is excluded from the production process from the middle of the current lot.
  • the number of load lock chambers 230 is not particularly limited as long as there are a plurality of load lock chambers 230. Further, when three or more load lock chambers 230 are present, maintenance processing may be performed on the two or more load lock chambers 230 at the same time as long as the production efficiency is not lowered.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Container, Conveyance, Adherence, Positioning, Of Wafer (AREA)

Abstract

Provided is a substrate processing device in which each of a plurality of load lock chambers is disposed between a vacuum transfer chamber and an atmospheric transfer chamber, and is switched between an atmospheric ambient and a vacuum ambient. A processing unit-side transfer mechanism and a transfer unit-side transfer mechanism perform wafer transfer between the vacuum transfer chamber and the atmospheric transfer chamber via the load lock chambers. A maintenance execution unit of an overall control unit executes maintenance processing with respect to one or some of the plurality of load lock chambers. A production process control unit of the overall control unit causes the processing unit-side transfer mechanism and the transfer unit-side transfer mechanism to execute wafer transfer between the vacuum transfer chamber and the atmospheric transfer chamber using a load lock chamber which is not subject to the maintenance processing by the maintenance execution unit.

Description

基板処理装置及び基板処理装置制御方法Board processing device and board processing device control method
 本発明は、基板処理装置及び基板処理装置制御方法に関する。 The present invention relates to a substrate processing apparatus and a substrate processing apparatus control method.
 一般に半導体デバイスの製造工程では、被処理基板例えば半導体ウエハ(以下,単に「ウエハ」ともいう)に対して成膜処理、エッチング処理等の処理が複数回繰り返し行なわれる。近年、半導体デバイスの生産性を向上させるために、ウエハに対して成膜などの様々な処理を施す複数の処理室と、各処理室に対してウエハを搬出入する真空搬送室とを備えたクラスタツール型の基板処理装置の普及が進んでいる。この基板処理装置では、ある処理室にて処理を施したウエハを大気に晒すことなく他の処理室に搬送して次の処理を施すことができる。このような基板処理装置は、搬送中のウエハを大気に晒さないようにするために、真空搬送室の内部を排気して決められた真空度に調整するための排気系を有する。 Generally, in the manufacturing process of a semiconductor device, a process such as a film forming process and an etching process is repeated a plurality of times on a substrate to be processed, for example, a semiconductor wafer (hereinafter, also simply referred to as a “wafer”). In recent years, in order to improve the productivity of semiconductor devices, a plurality of processing chambers for performing various treatments such as film formation on wafers and a vacuum transfer chamber for loading and unloading wafers are provided for each processing chamber. Cluster tool type substrate processing equipment is becoming widespread. In this substrate processing apparatus, a wafer processed in one processing chamber can be conveyed to another processing chamber without being exposed to the atmosphere, and the next processing can be performed. Such a substrate processing apparatus has an exhaust system for evacuating the inside of the vacuum transfer chamber and adjusting the degree of vacuum to a predetermined degree in order to prevent the wafer being conveyed from being exposed to the atmosphere.
 さらに、このような基板処理装置には、大気圧下に置かれたウエハを真空状態の処理ユニットに搬送する大気搬送室が設けられる。この大気搬送室と真空搬送室との間は、ロードロック室と呼ばれる大気圧と真空との間で圧力を制御する部屋で接続される。 Further, such a substrate processing apparatus is provided with an atmospheric transport chamber for transporting a wafer placed under atmospheric pressure to a processing unit in a vacuum state. The air transport chamber and the vacuum transport chamber are connected by a chamber called a load lock chamber, which controls pressure between atmospheric pressure and vacuum.
 大気圧下に置かれたウエハは、大気搬送室に設けられた搬送機構によりロードロック室に載置される。そしてロードロック室がポンプにより真空状態にされた後に、ウエハは、真空搬送室に設けられた搬送機構により各処理室に送られ、各種処理が施される。 Wafers placed under atmospheric pressure are placed in the load lock chamber by a transport mechanism provided in the atmospheric transport chamber. Then, after the load lock chamber is evacuated by the pump, the wafer is sent to each processing chamber by the transport mechanism provided in the vacuum transport chamber, and various treatments are performed.
 このような機構を有する基板処理装置において、ロードロック室の気密性の保持は重要であり、ロードロック室に対する気密性の計測などのメンテナンス処理が頻繁に行われる。メンテナンス処理が実行される場合、その処理が施されるロードロック室を用いたウエハの搬送は停止される。 In a substrate processing device having such a mechanism, it is important to maintain the airtightness of the load lock chamber, and maintenance processing such as measurement of the airtightness of the load lock chamber is frequently performed. When the maintenance process is executed, the transfer of the wafer using the load lock chamber to which the process is performed is stopped.
 特許文献1には、圧力を調整する予備室の保守レシピの実行中に、保守レシピを一時停止して生産レシピを実行し、その後、保守レシピを再開させる技術が開示されている。また、引用文献2には、ロードロック室を並列に配置して、ウエハの搬送順でロードロック室を交互に使用する技術が開示されている。 Patent Document 1 discloses a technique of pausing the maintenance recipe, executing the production recipe, and then restarting the maintenance recipe during the execution of the maintenance recipe of the reserve room for adjusting the pressure. Further, Cited Document 2 discloses a technique in which load lock chambers are arranged in parallel and the load lock chambers are alternately used in the order of wafer transfer.
国際公開第2017/175408号International Publication No. 2017/175408 特開平11-50256号公報Japanese Unexamined Patent Publication No. 11-50256
 信頼性を維持しつつ生産性を向上させることができる技術を提供する。 Providing technology that can improve productivity while maintaining reliability.
 開示する基板処理装置及び基板処理装置制御方法は、1つの実施態様において、真空雰囲気の第1室及び大気圧雰囲気の第2室を有する。複数の搬送中継室は、前記第1室と前記第2室との間にそれぞれが配置され、大気圧雰囲気と真空雰囲気とに切り替えられる。搬送機構は、各前記搬送中継室を介して前記第1室と前記第2室との間の基板の搬送を行う。メンテナンス実行部は、複数の前記搬送中継室のうち1つ又はいくつかに対してメンテナンス処理を実行する。制御部は、前記メンテナンス実行部による前記メンテナンス処理の対象とされていない前記搬送中継室を用いて前記第1室と前記第2室との間の前記基板の搬送を前記搬送機構に実行させる。 The disclosed substrate processing apparatus and substrate processing apparatus control method have, in one embodiment, a first chamber having a vacuum atmosphere and a second chamber having an atmospheric pressure atmosphere. Each of the plurality of transport relay chambers is arranged between the first chamber and the second chamber, and can be switched between an atmospheric pressure atmosphere and a vacuum atmosphere. The transport mechanism transports the substrate between the first chamber and the second chamber via each of the transport relay chambers. The maintenance execution unit executes maintenance processing on one or several of the plurality of the transfer relay chambers. The control unit causes the transport mechanism to transport the substrate between the first chamber and the second chamber by using the transport relay chamber that is not subject to the maintenance process by the maintenance execution unit.
 開示する基板処理装置及び基板処理装置制御方法の1つの態様によれば、信頼性を維持しつつ生産性を向上させることができるという効果を奏する。 According to one aspect of the substrate processing apparatus and the substrate processing apparatus control method disclosed, it is possible to improve productivity while maintaining reliability.
図1は、基板処理装置の概略構成の一例を示す図である。FIG. 1 is a diagram showing an example of a schematic configuration of a substrate processing apparatus. 図2は、全体制御部の一例のブロック図である。FIG. 2 is a block diagram of an example of the overall control unit. 図3は、生産処理制御部による生産処理の制御の一例のフローチャートである。FIG. 3 is a flowchart of an example of control of production processing by the production processing control unit. 図4は、メンテナンス処理制御部によるリークレート測定の制御の一例のフローチャートである。FIG. 4 is a flowchart of an example of control of leak rate measurement by the maintenance process control unit.
 以下、図面を参照して本願の開示する基板処理装置の実施形態について詳細に説明する。なお、各図面において同一又は相当の部分に対しては同一の符号を付すこととする。また、本実施形態により開示する発明が限定されるものではない。各実施形態は、処理内容を矛盾させない範囲で適宜組み合わせることが可能である。各図面において同一又は相当の部分に対しては同一の符号を附すこととする。 Hereinafter, embodiments of the substrate processing apparatus disclosed in the present application will be described in detail with reference to the drawings. In each drawing, the same or corresponding parts are designated by the same reference numerals. Further, the invention disclosed by the present embodiment is not limited. Each embodiment can be appropriately combined as long as the processing contents do not contradict each other. The same reference numerals shall be attached to the same or corresponding parts in each drawing.
(第1実施形態)
[基板処理装置の構成]
 図1を参照して、本発明の実施形態に係る基板処理装置について説明する。図1は基板処理装置の概略構成の一例を示す図である。基板処理装置100は、処理ユニット110、搬送ユニット120及び全体制御部130を有する。
(First Embodiment)
[Configuration of board processing equipment]
The substrate processing apparatus according to the embodiment of the present invention will be described with reference to FIG. FIG. 1 is a diagram showing an example of a schematic configuration of a substrate processing apparatus. The substrate processing device 100 includes a processing unit 110, a transfer unit 120, and an overall control unit 130.
 処理ユニット110は、被処理基板であるウエハWに対して成膜処理、エッチング処理等の各種処理を施す。搬送ユニット120は、処理ユニット110に対してウエハWを搬出入させる。全体制御部130は、基板処理装置100全体の動作を制御する。以下に各部の詳細について説明する。 The processing unit 110 performs various processes such as a film forming process and an etching process on the wafer W which is the substrate to be processed. The transfer unit 120 causes the processing unit 110 to carry in and out the wafer W. The overall control unit 130 controls the operation of the entire substrate processing device 100. Details of each part will be described below.
 搬送ユニット120は、大気搬送室300を有する。大気搬送室300の長手方向の一方の壁には、ウエハWを収容するキャリア(FOUP等)Cを取り付けるポート311~313が設けられる。また、大気搬送室300の側壁には、ウエハWのアライメントを行うアライメントチャンバ301が設けられる。大気搬送室300の内部は、清浄空気のダウンフローが形成されるように構成される。なおポート311~313の数は、図1に示す場合に限られない。さらに、大気搬送室330のポート311~313とは反対側の壁には、大気側ゲートバルブG2が設けられる。 The transport unit 120 has an atmospheric transport chamber 300. Ports 311 to 313 for mounting a carrier (FOUP or the like) C for accommodating the wafer W are provided on one wall in the longitudinal direction of the air transport chamber 300. Further, an alignment chamber 301 for aligning the wafer W is provided on the side wall of the air transfer chamber 300. The inside of the air transport chamber 300 is configured so that a downflow of clean air is formed. The number of ports 311 to 313 is not limited to the case shown in FIG. Further, an atmospheric gate valve G2 is provided on the wall of the atmospheric transport chamber 330 opposite to the ports 311 to 313.
 また、大気搬送室300の内部には,例えばリニア駆動機構によってウエハWを搬送する搬送ユニット側搬送機構302が配置される。具体的には、搬送ユニット側搬送機構302は、キャリアC,ロードロック室231~233、アライメントチャンバ301の間でウエハWを搬送する。なお、搬送ユニット側搬送機構302は、図1に示すような1つのピックを有するシングルアーム機構であってもよく、2つのピックを有するダブルアーム機構であってもよい。この大気搬送室300が、「第2室」の一例にあたる。 Further, inside the atmospheric transport chamber 300, for example, a transport unit side transport mechanism 302 that transports the wafer W by a linear drive mechanism is arranged. Specifically, the transfer unit side transfer mechanism 302 transfers the wafer W between the carrier C, the load lock chambers 231 to 233, and the alignment chamber 301. The transport unit side transport mechanism 302 may be a single arm mechanism having one pick as shown in FIG. 1, or a double arm mechanism having two picks. The atmospheric transport chamber 300 corresponds to an example of the "second chamber".
 次に、処理ユニット110の具体的な構成例について説明する。本実施形態に係る基板処理装置100の処理ユニット110は、真空搬送室210、処理室201~204及びロードロック室231~233を有する。以下の説明では、処理室201~204のそれぞれを区別しない場合、単に処理室200と呼ぶ。また、ロードロック室231~233のそれぞれを区別しない場合、単にロードロック室230と呼ぶ。ここで、処理室200及びロードロック室230の数は、図1に示す場合に限られない。 Next, a specific configuration example of the processing unit 110 will be described. The processing unit 110 of the substrate processing apparatus 100 according to the present embodiment includes a vacuum transfer chamber 210, processing chambers 201 to 204, and load lock chambers 231 to 233. In the following description, when each of the processing chambers 201 to 204 is not distinguished, it is simply referred to as the processing chamber 200. Further, when each of the load lock chambers 231 to 233 is not distinguished, it is simply referred to as the load lock chamber 230. Here, the number of processing chambers 200 and load lock chambers 230 is not limited to the case shown in FIG.
 真空搬送室210は、図1に示すように、断面多角形に形成される。本実施例では、真空搬送室210は、平面形状が七角形をなす。真空搬送室210内は、真空ポンプにより排気されて決められた真空度の真空雰囲気となる。この真空搬送室210が、「第1室」の一例にあたる。 As shown in FIG. 1, the vacuum transfer chamber 210 is formed with a polygonal cross section. In this embodiment, the vacuum transfer chamber 210 has a heptagonal planar shape. The inside of the vacuum transfer chamber 210 has a vacuum atmosphere having a degree of vacuum determined by being exhausted by a vacuum pump. This vacuum transfer chamber 210 corresponds to an example of the “first chamber”.
 処理室200は、例えばプラズマを用いたCVD(Chemical Vapor Deposition)処理又はPVD(Physical Vapor Deposition)処理などの成膜処理やプラズマエッチング処理などのエッチング処理といった各種処理をウエハWに施す。各処理室200は、いずれのタイプの処理を行わせる処理室200として構成することも可能である。例えば、処理室201及び202をPVD処理室とし、処理室203及び204をCVD処理室とすることができる。処理室200はそれぞれ、真空搬送室210の周囲にゲートバルブGを介して気密に接続される。 The processing chamber 200 performs various processes such as a film formation process such as a CVD (Chemical Vapor Deposition) process using plasma or a PVD (Physical Vapor Deposition) process and an etching process such as a plasma etching process on the wafer W. Each processing chamber 200 can be configured as a processing chamber 200 for performing any type of processing. For example, the processing chambers 201 and 202 may be PVD processing chambers, and the processing chambers 203 and 204 may be CVD processing chambers. Each of the processing chambers 200 is airtightly connected to the periphery of the vacuum transfer chamber 210 via a gate valve G.
 また、真空搬送室210の内部には、屈伸・昇降・旋回可能に構成され独立に稼動可能な搬送アーム221及び222を有する処理ユニット側搬送機構220が設けられる。処理ユニット側搬送機構220は、各処理室200及びロードロック室230に対してウエハWの搬送及び搬出を行う。 Further, inside the vacuum transfer chamber 210, a processing unit side transfer mechanism 220 having transfer arms 221 and 222 that are configured to be able to bend / extend / elevate / swivel and can operate independently is provided. The processing unit-side transfer mechanism 220 transfers and carries out the wafer W to each of the processing chambers 200 and the load lock chamber 230.
 基板処理装置100は、マルチチャンバータイプの真空処理システムであり、各処理室200でウエハWに対して実行される処理を、真空を破ることなく連続して行える。つまり、各処理室200の処理容器内で行われる工程のすべては、ウエハWを大気に曝露せずに行われる。 The substrate processing apparatus 100 is a multi-chamber type vacuum processing system, and can continuously perform the processing executed on the wafer W in each processing chamber 200 without breaking the vacuum. That is, all the steps performed in the processing container of each processing chamber 200 are performed without exposing the wafer W to the atmosphere.
 さらに、真空搬送室210には、3つのロードロック室230が真空側ゲートバルブG1を介して接続される。また、ロードロック室230は、大気側ゲートバルブG2を介して大気搬送室300に接続される。ロードロック室230は、その内部にウエハWを載置可能な受渡台を有する。 Further, three load lock chambers 230 are connected to the vacuum transfer chamber 210 via the vacuum side gate valve G1. Further, the load lock chamber 230 is connected to the atmosphere transport chamber 300 via the atmosphere side gate valve G2. The load lock chamber 230 has a delivery table on which the wafer W can be placed.
 ロードロック室230は、大気圧下で搬送ユニット側搬送機構302によるウエハWの搬送を受ける。そして、ロードロック室230は、圧力を調整する間にウエハWを受渡台の上に一時的に保持する。ロードロック室230は、受渡台上にウエハWを保持した状態で、真空ポンプにより排気されて決められた真空度の真空雰囲気となる。その後、ロードロック室230の受渡台上に保持されたウエハWは、真空雰囲気下で処理ユニット側搬送機構220により搬出され、処理室200へ搬送される。このロードロック室230が、「搬送中継室」の一例にあたる。さらに、処理ユニット側搬送機構220及び搬送ユニット側搬送機構302が「搬送機構」の一例にあたる。 The load lock chamber 230 receives the wafer W by the transport unit side transport mechanism 302 under atmospheric pressure. Then, the load lock chamber 230 temporarily holds the wafer W on the delivery table while adjusting the pressure. The load lock chamber 230 has a vacuum atmosphere having a degree of vacuum determined by being exhausted by a vacuum pump while holding the wafer W on the delivery table. After that, the wafer W held on the delivery table of the load lock chamber 230 is carried out by the processing unit side transport mechanism 220 in a vacuum atmosphere and transported to the processing chamber 200. This load lock chamber 230 corresponds to an example of a "transport relay chamber". Further, the processing unit side transport mechanism 220 and the transport unit side transport mechanism 302 are examples of the “convey mechanism”.
 図2は、全体制御部の一例のブロック図である。全体制御部130は、各種制御を実行するCPU(Central Processing Unit)を備えた主制御部131を有する。主制御部131は、処理室200の各構成部、真空搬送室210の排気機構、ガス供給機構及び処理ユニット側搬送機構220、ロードロック室230の排気機構及びガス供給機構、並びに、大気搬送室300の搬送ユニット側搬送機構302を制御する。また、主制御部131は、ゲートバルブG、真空側ゲートバルブG1及び大気側ゲートバルブG2の駆動系等を制御する。また、全体制御部130は、キーボードやマウスなどの入力装置134、プリンタなどの出力装置135、ディスプレイなどの表示装置136及びハードディスクなどの記憶媒体を備えた記憶装置137を有する。 FIG. 2 is a block diagram of an example of the overall control unit. The overall control unit 130 has a main control unit 131 including a CPU (Central Processing Unit) that executes various controls. The main control unit 131 includes each component of the processing chamber 200, an exhaust mechanism of the vacuum transfer chamber 210, a gas supply mechanism and a processing unit side transfer mechanism 220, an exhaust mechanism and a gas supply mechanism of the load lock chamber 230, and an atmospheric transfer chamber. Controls the transport unit side transport mechanism 302 of 300. Further, the main control unit 131 controls the drive system of the gate valve G, the vacuum side gate valve G1 and the atmosphere side gate valve G2. Further, the overall control unit 130 includes an input device 134 such as a keyboard and a mouse, an output device 135 such as a printer, a display device 136 such as a display, and a storage device 137 including a storage medium such as a hard disk.
 全体制御部130の主制御部131は、基板処理装置100の全体の動作を制御する。例えば、主制御部131は、記憶装置137が有する記憶媒体に格納された処理レシピに基づいて、各処理室200におけるウエハWに対する処理の制御を行う。他にも、主制御部131は、搬送ユニット側搬送機構302、処理ユニット側搬送機構220の動作制御、ゲートバルブG、真空側ゲートバルブG1及び大気側ゲートバルブG2の動作制御、並びに、アライメントチャンバ301におけるウエハWの位置合わせ制御などを行う。 The main control unit 131 of the overall control unit 130 controls the overall operation of the substrate processing device 100. For example, the main control unit 131 controls the processing of the wafer W in each processing chamber 200 based on the processing recipe stored in the storage medium of the storage device 137. In addition, the main control unit 131 controls the operation of the transfer unit side transfer mechanism 302 and the processing unit side transfer mechanism 220, the operation control of the gate valve G, the vacuum side gate valve G1 and the atmosphere side gate valve G2, and the alignment chamber. Alignment control of the wafer W in 301 and the like are performed.
 ここで、主制御部131は、生産処理制御部132及びメンテナンス処理制御部133を有する。生産処理制御部132は、キャリアCから処理室200へのウエハWの搬送、処理室200を用いたウエハWへの各種処理の実行、及び、処理室200からキャリアCの処理が完了したウエハWの搬送といった一連の処理をまとめた生産処理の制御を行う。この生産処理制御部132が、「制御部」の一例にあたる。 Here, the main control unit 131 has a production process control unit 132 and a maintenance process control unit 133. The production processing control unit 132 transfers the wafer W from the carrier C to the processing chamber 200, executes various processes on the wafer W using the processing chamber 200, and completes the processing of the carrier C from the processing chamber 200. It controls the production process that integrates a series of processes such as the transfer of wafers. This production processing control unit 132 corresponds to an example of a “control unit”.
 また、メンテナンス処理制御部133は、ロードロック室230に対するメンテナンス処理の制御を行う。メンテナンス処理としては、例えば、リークレート測定やサイクルパージなどの処理がある。リークレート測定は、ロードロック室320の気密性を測定し確認する処理である。また、サイクルパージは、ロードロック室230の内部のパーティクルを飛ばす処理である。このメンテナンス処理制御部133が、「メンテナンス実行部」の一例にあたる。 Further, the maintenance process control unit 133 controls the maintenance process for the load lock chamber 230. The maintenance process includes, for example, a process such as a leak rate measurement and a cycle purge. The leak rate measurement is a process of measuring and confirming the airtightness of the load lock chamber 320. Further, the cycle purge is a process of flying particles inside the load lock chamber 230. This maintenance process control unit 133 corresponds to an example of a "maintenance execution unit".
 次に、以上の構成を有する基板処理装置100の生産処理及びメンテナンス処理における各部の動作について説明する。以下の基板処理装置100の動作は、全体制御部130の記憶装置137が有する記憶媒体に記憶された処理レシピに基づいて実行される。より具体的には、生産処理では、生産処理制御部132が生産レシピを用いて各部を制御する。また、メンテナンス処理では、メンテナンス処理制御部133が保守レシピを用いて各部を制御する。 Next, the operation of each part in the production processing and maintenance processing of the substrate processing apparatus 100 having the above configuration will be described. The following operations of the substrate processing device 100 are executed based on the processing recipe stored in the storage medium of the storage device 137 of the overall control unit 130. More specifically, in the production process, the production process control unit 132 controls each unit using the production recipe. Further, in the maintenance process, the maintenance process control unit 133 controls each unit using the maintenance recipe.
[生産処理]
 キャリアCには、複数のウエハWが搭載されたケースが載置される。1つのケースに載置されたウエハWの単位を1ロットと呼ぶ。
[Production processing]
A case on which a plurality of wafers W are mounted is placed on the carrier C. The unit of the wafer W placed in one case is called one lot.
 搬送ユニット側搬送機構302は、大気搬送室300に接続されたキャリアCが保持する複数のウエハWの中から1つのウエハWを取り出す。次に、搬送ユニット側搬送機構302は、ウエハWをアライメントチャンバ301に搬送する。アライメントチャンバ301は、ウエハWの位置の調整などを実行する。その後、生産処理制御部132は、いずれかのロードロック室230の大気側ゲートバルブG2を開ける。搬送ユニット側搬送機構302は、アライメントチャンバ301から取り出したウエハWを、開けられた大気側ゲートバルブG2に繋がるロードロック室230内に搬入する。その後、生産処理制御部132は、大気側ゲートバルブG2を閉じて、ロードロック室230の内部を真空排気する。 The transport unit side transport mechanism 302 takes out one wafer W from a plurality of wafers W held by the carrier C connected to the atmospheric transport chamber 300. Next, the transfer unit side transfer mechanism 302 transfers the wafer W to the alignment chamber 301. The alignment chamber 301 adjusts the position of the wafer W and the like. After that, the production processing control unit 132 opens the atmospheric side gate valve G2 of any of the load lock chambers 230. The transfer unit-side transfer mechanism 302 carries the wafer W taken out from the alignment chamber 301 into the load lock chamber 230 connected to the opened atmosphere-side gate valve G2. After that, the production processing control unit 132 closes the atmosphere side gate valve G2 and evacuates the inside of the load lock chamber 230.
 生産処理制御部132は、ロードロック室230の内部の圧力が決められた真空度に到達後に真空側ゲートバルブG1を開ける。そして、処理ユニット側搬送機構220の搬送アーム221又は222のいずれかによりウエハWがロードロック室230から取り出される。その後、生産処理制御部132は、ウエハWが取り出されたロードロック室230に繋がる真空側ゲートバルブG1を閉じる。 The production processing control unit 132 opens the vacuum side gate valve G1 after the pressure inside the load lock chamber 230 reaches a predetermined degree of vacuum. Then, the wafer W is taken out from the load lock chamber 230 by either the transfer arm 221 or 222 of the processing unit side transfer mechanism 220. After that, the production processing control unit 132 closes the vacuum side gate valve G1 connected to the load lock chamber 230 from which the wafer W is taken out.
 次に、生産処理制御部132は、ウエハWに処理を施す処理室200に繋がるゲートバルブGを開ける。そして、処理ユニット側搬送機構220は、保持するウエハWを、開いたゲートバルブGに繋がる処理室200に搬入する。次に、処理ユニット側搬送機構220は、搬送アーム221及び222を真空搬送室210に戻す。その後、生産処理制御部132は、開けられたゲートバルブGを閉じる。次に、ウエハWが搬入された処理室200において、ウエハWに対して処理が施される。その後、ウエハWに施す処理に応じて、処理ユニット側搬送機構220により次の処理を施す処理室200にウエハWが搬送され、各処理室200でウエハWに対して処理が施される。 Next, the production processing control unit 132 opens the gate valve G connected to the processing chamber 200 that processes the wafer W. Then, the processing unit side transfer mechanism 220 carries the wafer W to be held into the processing chamber 200 connected to the open gate valve G. Next, the processing unit side transfer mechanism 220 returns the transfer arms 221 and 222 to the vacuum transfer chamber 210. After that, the production processing control unit 132 closes the opened gate valve G. Next, the wafer W is processed in the processing chamber 200 into which the wafer W is carried. After that, the wafer W is conveyed to the processing chamber 200 to be subjected to the next processing by the processing unit side conveying mechanism 220 according to the processing applied to the wafer W, and the wafer W is processed in each processing chamber 200.
 最後の処理が完了すると、生産処理制御部132は、最後の処理を行った処理室200に繋がるゲートバルブGを開く。そして、処理ユニット側搬送機構220の搬送アーム221又は222のいずれかが、その処理室200からウエハWを搬出する。次に、生産処理制御部132は、いずれかのロードロック室230に繋がる真空側ゲートバルブG1を開ける。そして、処理ユニット側搬送機構220は、保持するウエハWを、開いた真空側ゲートバルブG1に繋がるロードロック室230に搬入する。 When the final processing is completed, the production processing control unit 132 opens the gate valve G connected to the processing chamber 200 in which the final processing is performed. Then, either the transfer arm 221 or 222 of the processing unit side transfer mechanism 220 carries out the wafer W from the processing chamber 200. Next, the production processing control unit 132 opens the vacuum side gate valve G1 connected to one of the load lock chambers 230. Then, the processing unit side transfer mechanism 220 carries the wafer W to be held into the load lock chamber 230 connected to the open vacuum side gate valve G1.
 生産処理制御部132は、ウエハWが搬入されたロードロック室230の内部の圧力を大気圧に戻す。その後、生産処理制御部132は、ウエハWが搬入されたロードロック室230に繋がる大気側ゲートバルブG2を開ける。搬送ユニット側搬送機構302は、開いた大気側ゲートバルブG2に繋がるロードロック室230に載置されたウエハWを搬出する。そして、搬送ユニット側搬送機構302は、保持するウエハWをキャリアCへ戻す。 The production processing control unit 132 returns the pressure inside the load lock chamber 230 into which the wafer W is carried to atmospheric pressure. After that, the production processing control unit 132 opens the atmosphere side gate valve G2 connected to the load lock chamber 230 into which the wafer W is carried. The transfer unit-side transfer mechanism 302 carries out the wafer W placed in the load lock chamber 230 connected to the open atmosphere-side gate valve G2. Then, the transfer unit side transfer mechanism 302 returns the wafer W to be held back to the carrier C.
 以上のような処理を、基板処理装置100は、複数のウエハWについて、同時並行的に行う。1つのキャリアCに載置されたケース内の全てウエハWについて処理が完了すると、1ロットのウエハWについての処理が完了する。1ロットのウエハWの処理が完了すると、基板処理装置100は、他のキャリアCが保持するウエハWに対する処理に移行する。基板処理装置100は、このように処理を繰り返して決められた枚数のウエハWの処理を完了させる。 The substrate processing apparatus 100 performs the above processing on a plurality of wafers W in parallel at the same time. When the processing is completed for all the wafers W in the case placed on one carrier C, the processing for one lot of wafers W is completed. When the processing of the wafer W of one lot is completed, the substrate processing apparatus 100 shifts to the processing of the wafer W held by the other carrier C. The substrate processing apparatus 100 repeats the processing in this way to complete the processing of the predetermined number of wafers W.
[メンテナンス処理]
 メンテナンス処理制御部133は、各ロードロック室230に対して周期的にメンテナンス処理を実行する。ここでは、リークレート測定の実行を例に説明する。
[Maintenance process]
The maintenance process control unit 133 periodically executes a maintenance process for each load lock chamber 230. Here, execution of leak rate measurement will be described as an example.
 メンテナンス処理制御部133は、各ロードロック室230に対して異なるタイミングで周期的にリークレート測定が実行されるように設定する。例えば、メンテナンス処理制御部133は、7日周期で、10時にロードロック室231に対してリークレート測定が実行され、15時にロードロック室232に対してリークレート処理が実行され、20時にロードロック室233にリークレート処理が実行されるように設定する。ここでは、ロードロック室231に対して実行されるリークレート処理を例に説明する。 The maintenance process control unit 133 is set so that the leak rate measurement is periodically executed at different timings for each load lock chamber 230. For example, the maintenance processing control unit 133 executes the leak rate measurement for the load lock chamber 231 at 10 o'clock, the leak rate processing for the load lock chamber 232 at 15:00, and the load lock at 20:00 in a 7-day cycle. The room 233 is set so that the leak rate processing is executed. Here, the leak rate processing executed for the load lock chamber 231 will be described as an example.
 メンテナンス処理制御部133は、ロードロック室231に対して設定したリークレート測定を実行するタイミングになったか否かを確認する。リークレート測定の実行のタイミングが到来した場合、メンテナンス処理制御部133は、その時点で実行中のロットのウエハWに対する処理が完了するまで待機する。そして、その時点で実行中のロットのウエハWに対する処理が完了すると、メンテナンス処理制御部133は、ロードロック室231のリークレート測定を開始する。メンテナンス処理制御部133は、ロードロック室231のリークレート測定の開始を生産処理制御部132に通知する。 The maintenance process control unit 133 confirms whether or not it is time to execute the leak rate measurement set for the load lock chamber 231. When the timing for executing the leak rate measurement arrives, the maintenance processing control unit 133 waits until the processing for the wafer W of the lot being executed at that time is completed. Then, when the processing of the wafer W of the lot being executed at that time is completed, the maintenance processing control unit 133 starts the leak rate measurement of the load lock chamber 231. The maintenance process control unit 133 notifies the production process control unit 132 of the start of the leak rate measurement of the load lock chamber 231.
 生産処理制御部132は、リークレート測定の開始の通知をメンテナンス処理制御部133から受ける。リークレート測定を実行中には、生産処理制御部132は、ロードロック室231に生産処理を行わせない。そのため、生産処理制御部132は、リークレート測定を実行するタイミングが到来した次のロットのウエハWの生産処理は、ロードロック室231を除いたロードロック室232及び233を用いて継続する。 The production processing control unit 132 receives a notification from the maintenance processing control unit 133 of the start of the leak rate measurement. While the leak rate measurement is being executed, the production processing control unit 132 does not allow the load lock chamber 231 to perform the production processing. Therefore, the production processing control unit 132 continues the production processing of the wafer W of the next lot when the timing for executing the leak rate measurement has arrived, using the load lock chambers 232 and 233 excluding the load lock chamber 231.
 リークレート測定を開始後、メンテナンス処理制御部133は、ロードロック室231に繋がる真空ポンプのバルブを開けて、真空引きを例えば2分間といった一定時間かけて実行する。一定時間経過後、メンテナンス処理制御部133は、真空ポンプのバルブを閉める。 After starting the leak rate measurement, the maintenance processing control unit 133 opens the valve of the vacuum pump connected to the load lock chamber 231 and executes evacuation for a certain period of time, for example, 2 minutes. After a lapse of a certain period of time, the maintenance process control unit 133 closes the valve of the vacuum pump.
 その後、一定の待機時間が経過すると、メンテナンス処理制御部133は、ロードロック室230の内部の圧力の測定を開始する。そして、メンテナンス処理制御部133は、例えば10分間といった一定の測定時間が経過すると測定を停止する。 After that, when a certain standby time elapses, the maintenance processing control unit 133 starts measuring the pressure inside the load lock chamber 230. Then, the maintenance process control unit 133 stops the measurement after a certain measurement time such as 10 minutes elapses.
 次に、メンテナンス処理制御部133は、測定開始時のロードロック室230の内部の圧力と一定の測定時間経過後のロードロック室230の内部の圧力との差分を求め、1分間での大気のリーク量を算出する。そして、メンテナンス処理制御部133は、算出した1分間の大気のリーク量と予め決められた基準値とを比較する。 Next, the maintenance processing control unit 133 obtains the difference between the pressure inside the load lock chamber 230 at the start of measurement and the pressure inside the load lock chamber 230 after a certain measurement time has elapsed, and finds the difference between the pressure inside the load lock chamber 230 and the pressure inside the load lock chamber 230 in one minute. Calculate the amount of leak. Then, the maintenance processing control unit 133 compares the calculated amount of air leakage for one minute with a predetermined reference value.
 1分間の大気のリーク量が基準値を上回った場合、メンテナンス処理制御部133は、ロードロック室231が異常と判定し、オペレータにアラームを報知する。これに対して、1分間の大気のリーク量が基準値以下の場合、メンテナンス処理制御部133は、ロードロック室231のリークレート測定の完了を生産処理制御部132に通知する。 When the amount of air leakage for one minute exceeds the reference value, the maintenance processing control unit 133 determines that the load lock chamber 231 is abnormal and notifies the operator of an alarm. On the other hand, when the amount of air leakage for one minute is equal to or less than the reference value, the maintenance processing control unit 133 notifies the production processing control unit 132 of the completion of the leak rate measurement of the load lock chamber 231.
 生産処理制御部132は、ロードロック室231のリークレート測定の完了の通知を受けると、その時点で実行中のロットのウエハWに対する生産処理にロードロック室231を復帰させる。すなわち、生産処理制御部132は、生産処理にロードロック室231の復帰以降は、ロードロック室231~233の3つを用いて生産処理を継続する。 Upon receiving the notification of the completion of the leak rate measurement of the load lock chamber 231, the production processing control unit 132 returns the load lock chamber 231 to the production processing for the wafer W of the lot currently being executed at that time. That is, after the return of the load lock chamber 231 to the production process, the production process control unit 132 continues the production process by using the three load lock chambers 231 to 233.
 メンテナンス処理制御部133は、上述したリークレート測定の処理をそれぞれのタイミングで各ロードロック室231~233に実行する。1つのロードロック室230に対するリークレート測定開始から生産処理の復帰までには、30~45分程度掛かる。 The maintenance process control unit 133 executes the above-mentioned leak rate measurement process in each load lock chamber 231 to 233 at each timing. It takes about 30 to 45 minutes from the start of the leak rate measurement for one load lock chamber 230 to the return of the production process.
 ここで、ロードロック室230のリークレート測定の実行中に生産処理を割り込ませて、ロードロック室230のリークレート測定を中止し、そのロードロック室230を生産処理に使用するロードロック室230として復帰させると生産効率が低下するおそれがある。具体的には、途中までのリークレート測定に要した時間、ロードロック室230を生産に復帰させる迄の時間、及び、生産処理完了後にリークレート測定をやり直す時間がロスとなる。これに対して、本実施例に係る基板処理装置100は、異なるタイミングで各ロードロック室230のメンテナンス処理を実行し、その間は他のロードロック室230を用いて生産処理を継続することで、生産効率の低下を軽減させることが可能となる。 Here, the production process is interrupted during the execution of the leak rate measurement of the load lock chamber 230, the leak rate measurement of the load lock chamber 230 is stopped, and the load lock chamber 230 is used as the load lock chamber 230 for the production process. If it is restored, the production efficiency may decrease. Specifically, the time required for the leak rate measurement halfway, the time until the load lock chamber 230 is returned to production, and the time for re-doing the leak rate measurement after the production process is completed are lost. On the other hand, the substrate processing apparatus 100 according to the present embodiment executes the maintenance process of each load lock chamber 230 at different timings, and during that time, the production process is continued by using the other load lock chamber 230. It is possible to reduce the decrease in production efficiency.
 次に、図3を参照して、生産処理制御部132による生産処理の制御の流れについて説明する。図3は、生産処理制御部による生産処理の制御の一例のフローチャートである。 Next, with reference to FIG. 3, the flow of production process control by the production process control unit 132 will be described. FIG. 3 is a flowchart of an example of control of production processing by the production processing control unit.
 生産処理制御部132は、全てのロードロック室230を生産処理に使用するロードロック室230として選択する(ステップS1)。 The production process control unit 132 selects all the load lock chambers 230 as the load lock chambers 230 used for the production process (step S1).
 生産処理制御部132は、選択したロードロック室230を用いて生産処理を実行する(ステップS2)。 The production process control unit 132 executes the production process using the selected load lock chamber 230 (step S2).
 次に、生産処理制御部132は、リークレート処理開始の通知をメンテナンス処理制御部133から受けたか否かを確認する。そして、生産処理制御部132は、リークレート測定が開始されて実行されたか否かを判定する(ステップS3)。リークレート測定が開始されない場合(ステップS3:否定)、生産処理制御部132は、ステップS7へ進む。 Next, the production processing control unit 132 confirms whether or not the maintenance processing control unit 133 has received the notification of the start of the leak rate processing. Then, the production processing control unit 132 determines whether or not the leak rate measurement has been started and executed (step S3). If the leak rate measurement is not started (step S3: negative), the production processing control unit 132 proceeds to step S7.
 これに対して、リークレート測定が開始された場合(ステップS3:肯定)、生産処理制御部132は、測定対象のロードロック室230を生産処理に使用するロードロック室230として選択したロードロック室230の中から除外する(ステップS4)。 On the other hand, when the leak rate measurement is started (step S3: affirmative), the production process control unit 132 selects the load lock chamber 230 to be measured as the load lock chamber 230 used for the production process. Exclude from 230 (step S4).
 その後、生産処理制御部132は、リークレート測定終了の通知をメンテナンス処理制御部133から受けたか否かを確認する。そして、生産処理制御部132は、リークレート測定が終了したか否かを判定する(ステップS5)。リークレート測定が終了していない場合(ステップS5:否定)、生産処理制御部132は、ステップS7へ進む。 After that, the production processing control unit 132 confirms whether or not the maintenance processing control unit 133 has received the notification of the end of the leak rate measurement. Then, the production processing control unit 132 determines whether or not the leak rate measurement is completed (step S5). If the leak rate measurement is not completed (step S5: negative), the production processing control unit 132 proceeds to step S7.
 これに対して、リークレート測定が終了した場合(ステップS5:肯定)、生産処理制御部132は、測定対象のロードロック室230を生産処理に使用するロードロック室230として再選択する(ステップS6)。これにより、測定対象のロードロック室230を生産処理に使用するロードロック室230として全てのロードロック室230が選択された状態に戻る。 On the other hand, when the leak rate measurement is completed (step S5: affirmative), the production process control unit 132 reselects the load lock chamber 230 to be measured as the load lock chamber 230 used for the production process (step S6). ). As a result, all the load lock chambers 230 are returned to the state in which the load lock chamber 230 to be measured is selected as the load lock chamber 230 used for the production process.
 その後、生産処理制御部132は、現ロットの生産処理が完了したか否を判定する(ステップS7)。現ロットの処理が完了していない場合(ステップS7:否定)、生産処理制御部132は、ステップS9へ進む。 After that, the production processing control unit 132 determines whether or not the production processing of the current lot is completed (step S7). If the processing of the current lot is not completed (step S7: negative), the production processing control unit 132 proceeds to step S9.
 これに対して、現ロットの処理が完了した場合(ステップS7:肯定)、生産処理制御部132は、現ロットの生産完了をメンテナンス処理制御部133に通知する(ステップS8)。 On the other hand, when the processing of the current lot is completed (step S7: affirmative), the production processing control unit 132 notifies the maintenance processing control unit 133 of the completion of the production of the current lot (step S8).
 その後、生産処理制御部132は、決められた数のウエハWの生産処理が完了したか否を判定する(ステップS9)。決められた数のウエハWの生産処理が完了していない場合(ステップS9:否定)、生産処理制御部132は、ステップS2へ戻る。 After that, the production processing control unit 132 determines whether or not the production processing of the predetermined number of wafers W has been completed (step S9). When the production process of the determined number of wafers W is not completed (step S9: negation), the production process control unit 132 returns to step S2.
 これに対して、決められた数のウエハWの生産処理が完了した場合(ステップS9:肯定)、生産処理制御部132は、生産処理を終了する。 On the other hand, when the production process of the determined number of wafers W is completed (step S9: affirmative), the production process control unit 132 ends the production process.
 次に、図4を参照して、メンテナンス処理制御部133によるリークレート測定の制御の流れについて説明する。図4は、メンテナンス処理制御部によるリークレート測定の制御の一例のフローチャートである。 Next, with reference to FIG. 4, the flow of control of the leak rate measurement by the maintenance processing control unit 133 will be described. FIG. 4 is a flowchart of an example of control of leak rate measurement by the maintenance process control unit.
 メンテナンス処理制御部133は、リークレート測定の実行のタイミングが到来したか否かを判定する(ステップS11)。リークレート測定の実行のタイミングが到来していない場合(ステップS11:否定)、メンテナンス処理制御部133は、リークレート測定の実行のタイミングが到来するまで待機する。 The maintenance process control unit 133 determines whether or not the timing for executing the leak rate measurement has arrived (step S11). When the timing for executing the leak rate measurement has not arrived (step S11: negative), the maintenance process control unit 133 waits until the timing for executing the leak rate measurement arrives.
 これに対して、リークレート測定の実行のタイミングが到来した場合(ステップS11:肯定)、メンテナンス処理制御部133は、現ロットの生産処理完了の通知を生産処理制御部132から受信したか否かを確認する。そして、メンテナンス処理制御部133は、現ロットの生産処理が完了したか否かを判定する(ステップS12)。現ロットの生産処理が完了していない場合(ステップS12:否定)、メンテナンス処理制御部133は、現ロットの生産処理が完了するまで待機する。 On the other hand, when the timing for executing the leak rate measurement has arrived (step S11: affirmative), whether or not the maintenance process control unit 133 has received the notification of the completion of the production process of the current lot from the production process control unit 132. To confirm. Then, the maintenance process control unit 133 determines whether or not the production process of the current lot is completed (step S12). When the production process of the current lot is not completed (step S12: negation), the maintenance process control unit 133 waits until the production process of the current lot is completed.
 これに対して、現ロットの生産処理が完了した場合(ステップS12:肯定)、メンテナンス処理制御部133は、リークレート測定の実行のタイミングが到来したロードロック室230に対するリークレート測定の開始を生産処理制御部132に通知する(ステップS13)。 On the other hand, when the production process of the current lot is completed (step S12: affirmative), the maintenance process control unit 133 produces the start of the leak rate measurement for the load lock chamber 230 when the timing of executing the leak rate measurement has arrived. Notify the processing control unit 132 (step S13).
 次に、メンテナンス処理制御部133は、リークレート測定の実行のタイミングが到来したロードロック室230に対するリークレート測定を実行する(ステップS14)。 Next, the maintenance processing control unit 133 executes the leak rate measurement for the load lock chamber 230 when the timing for executing the leak rate measurement has arrived (step S14).
 その後、メンテナンス処理制御部133は、リークレート測定が完了したか否かを判定する(ステップS15)。リークレート測定が完了していない場合(ステップS15:否定)、メンテナンス処理制御部133は、ステップS14に戻る。 After that, the maintenance process control unit 133 determines whether or not the leak rate measurement is completed (step S15). If the leak rate measurement is not completed (step S15: negative), the maintenance process control unit 133 returns to step S14.
 これに対して、リークレート測定が完了した場合(ステップS15:肯定)、メンテナンス処理制御部133は、リークレート測定完了を生産処理制御部132に通知する(ステップS16)。その後、メンテナンス処理制御部133は、リークレート測定を終了する。 On the other hand, when the leak rate measurement is completed (step S15: affirmative), the maintenance process control unit 133 notifies the production process control unit 132 of the completion of the leak rate measurement (step S16). After that, the maintenance process control unit 133 ends the leak rate measurement.
 以上に説明したように、本実施形態に係る基板処理装置は、ロードロック室に対してメンテナンス処理を施す場合に、他のロードロック室を用いて生産処理を継続させる。これにより、生産処理を中断することなくロードロック室のメンテナンスを行うことができ、信頼性を維持しつつ生産性を向上させることができる。 As described above, when the substrate processing apparatus according to the present embodiment performs maintenance processing on the load lock chamber, the production processing is continued using another load lock chamber. As a result, the load lock chamber can be maintained without interrupting the production process, and the productivity can be improved while maintaining the reliability.
 ここで、圧力を調整する予備室の保守レシピを実行中に、生産レシピを実行する場合に、保守レシピを一時停止して生産レシピを実行し、その後、保守レシピを再開させる従来技術について考える。この従来技術では、生産処理が開始すると、リークレート測定の処理は一時中断する。例えば、真空引きをしている間に処理が中断した場合、最初から真空引きを再開することになる。このように、リークレート測定は中断されるともう一度最初からやり直すことになる場合があり、その場合リークレート測定の対象となるロードロック室が生産処理を行わない期間が長くなる。このようにロードロック室が生産処理を行わない期間が長くなると、基板処理装置全体としてのスループットが落ちてしまう。 Here, when executing the production recipe while executing the maintenance recipe of the spare room for adjusting the pressure, consider the conventional technique of suspending the maintenance recipe, executing the production recipe, and then restarting the maintenance recipe. In this prior art, the leak rate measurement process is suspended once the production process begins. For example, if the process is interrupted during evacuation, evacuation will be restarted from the beginning. In this way, if the leak rate measurement is interrupted, it may be restarted from the beginning, and in that case, the period during which the load lock chamber targeted for the leak rate measurement does not perform the production process becomes long. If the period during which the load lock chamber does not perform production processing becomes long in this way, the throughput of the substrate processing apparatus as a whole drops.
 これに対して、本実施形態に係る基板処理装置は、ロードロック室のメンテナンス処理と並行して他のロードロック室により生産処理が行われるため、メンテナンス処理を一時停止させる技術に比べて、生産性の向上が期待できる。 On the other hand, in the substrate processing apparatus according to the present embodiment, since the production process is performed by another load lock chamber in parallel with the maintenance process of the load lock chamber, the production process is compared with the technique of suspending the maintenance process. It can be expected to improve sex.
(第2実施形態)
 本実施形態に係る基板処理装置100は、リークレート測定の測定結果に応じてリークレート測定を実行する周期を変更することが第1実施形態と異なる。本実施例に係る基板処理装置100も図1及び図2で表される。以下の説明では、第1実施形態で説明した各部の機能と同じ機能については説明を省略する。
(Second Embodiment)
The substrate processing apparatus 100 according to the present embodiment is different from the first embodiment in that the cycle for executing the leak rate measurement is changed according to the measurement result of the leak rate measurement. The substrate processing apparatus 100 according to this embodiment is also represented by FIGS. 1 and 2. In the following description, description of the same functions as those of the respective parts described in the first embodiment will be omitted.
 本実施形態に係る全体制御部130のメンテナンス処理制御部133は、周期的に実行するリークレート測定の測定周期の初期値を有する。メンテナンス処理制御部133は、予め保持する初期値の測定周期で各ロードロック室230のリークレート測定を実行する。 The maintenance process control unit 133 of the overall control unit 130 according to the present embodiment has an initial value of the measurement cycle of the leak rate measurement that is periodically executed. The maintenance process control unit 133 executes the leak rate measurement of each load lock chamber 230 in the measurement cycle of the initial value held in advance.
 その後、メンテナンス処理制御部133は、各ロードロック室230のリークレート測定の測定結果を取得する。そして、メンテナンス処理制御部133は、処理結果に応じて測定周期を変更する。 After that, the maintenance processing control unit 133 acquires the measurement result of the leak rate measurement of each load lock chamber 230. Then, the maintenance processing control unit 133 changes the measurement cycle according to the processing result.
 例えば、メンテナンス処理制御部133は、ロードロック室230の異常を判定するための基準値に加えて、大気のリーク量が多くロードロック室230の状態が悪化傾向にあると判定するための上方閾値を有する。また、メンテナンス処理制御部133は、大気のリーク量が少なくロードロック室230の状態が良好であると判定するための流入量の閾値である下方閾値を有する。 For example, the maintenance processing control unit 133 has an upper threshold value for determining that the state of the load lock chamber 230 tends to deteriorate due to a large amount of air leakage, in addition to the reference value for determining the abnormality of the load lock chamber 230. Has. Further, the maintenance processing control unit 133 has a lower threshold value which is a threshold value of the inflow amount for determining that the amount of air leakage is small and the state of the load lock chamber 230 is good.
 メンテナンス処理制御部133は、測定対象のロードロック室230の大気のリーク量が上方閾値以上の場合、メンテナンス処理制御部133は、そのロードロック室230の測定周期を短くする。ただし、測定対象のロードロック室230の大気のリーク量が基準値を上回った場合、メンテナンス処理制御部133は、そのロードロック室230に異常が発生したと判定し、そのロードロック室230を生産処理から除外したままにして、オペレータにアラームを報知する。 When the amount of air leakage in the load lock chamber 230 to be measured is equal to or greater than the upper threshold value, the maintenance process control unit 133 shortens the measurement cycle of the load lock chamber 230. However, when the amount of air leakage in the load lock chamber 230 to be measured exceeds the reference value, the maintenance processing control unit 133 determines that an abnormality has occurred in the load lock chamber 230 and produces the load lock chamber 230. Notify the operator of the alarm, leaving it excluded from processing.
 これに対して、測定対象のロードロック室230の大気のリーク量が下方閾値未満の場合、メンテナンス処理制御部133は、そのロードロック室230の測定周期を長くする。また、測定対象のロードロック室230の大気のリーク量が下方閾値以上であり上方閾値未満であれば、メンテナンス処理制御部133は、その時点でのそのロードロック室230の測定周期を維持する。 On the other hand, when the amount of air leakage in the load lock chamber 230 to be measured is less than the lower threshold value, the maintenance processing control unit 133 lengthens the measurement cycle of the load lock chamber 230. If the amount of air leakage from the load lock chamber 230 to be measured is equal to or greater than the lower threshold value and less than the upper threshold value, the maintenance processing control unit 133 maintains the measurement cycle of the load lock chamber 230 at that time.
 ここで、測定周期の変更方法として、例えば、メンテナンス処理制御部133は、予め決められた期間を測定周期にたいして追加もしくは減少させて測定周期を変更する。他にも、メンテナンス処理制御部133は、予め決められた関数を用いて、測定結果に応じて増減させる期間を決定してもよい。 Here, as a method of changing the measurement cycle, for example, the maintenance process control unit 133 changes the measurement cycle by adding or reducing a predetermined period with respect to the measurement cycle. In addition, the maintenance process control unit 133 may determine the period for increasing or decreasing according to the measurement result by using a predetermined function.
 また、ここでは悪化傾向を判定するための上方閾値を設けたが、メンテナンス処理制御部133は、悪化傾向を他の方法で判定してもよい。例えば、メンテナンス処理制御部133は、前回の測定結果と今回の測定結果とを比較して大気のリーク量の増加が一定の基準を超えている場合に悪化傾向にあると判定してもよい。 Further, although an upper threshold value for determining the deterioration tendency is provided here, the maintenance processing control unit 133 may determine the deterioration tendency by another method. For example, the maintenance processing control unit 133 may compare the previous measurement result with the current measurement result and determine that the increase in the amount of air leakage exceeds a certain standard and that the measurement tendency tends to deteriorate.
 以上に説明したように、本実施形態に係る基板処理装置は、リークレート測定の結果に応じて測定周期を変更する。これにより、測定結果が良好であり、頻繁にメンテナンスを実行しなくてもよいロードロック室のメンテナンス処理頻度を下げることができ、そのロードロック室の生産処理に割り当てられる時間をより長くすることができる。したがって、基板処理装置全体の生産効率をより向上させることができる。また、測定結果が悪化傾向にある場合、異常状態になり易いロードロック室のメンテナンス頻度を上げることができ、基板処理装置の信頼性をより向上させることができる。また、測定結果が閾値の範囲を超えた場合、ロードロック室を生産から除外したままとし、アラームでオペレータへ通知する。 As described above, the substrate processing apparatus according to the present embodiment changes the measurement cycle according to the result of the leak rate measurement. As a result, the measurement result is good, the maintenance processing frequency of the load lock chamber that does not require frequent maintenance can be reduced, and the time allocated to the production processing of the load lock chamber can be increased. it can. Therefore, the production efficiency of the entire substrate processing apparatus can be further improved. Further, when the measurement result tends to deteriorate, the maintenance frequency of the load lock chamber, which tends to be in an abnormal state, can be increased, and the reliability of the substrate processing apparatus can be further improved. If the measurement result exceeds the threshold range, the load lock chamber is left excluded from production and the operator is notified by an alarm.
 以上、いくつかの実施形態について記述したが、本発明はかかる特定の実施の形態に限定されるものではなく、請求の範囲内に記載された本発明の要旨の範囲内において、種々の変形又は変更が可能である。 Although some embodiments have been described above, the present invention is not limited to such specific embodiments, and various modifications or modifications are made within the scope of the gist of the present invention described within the claims. It can be changed.
 例えば、基板処理装置100は、メンテナンス処理としてリークレート測定の他にサイクルパージを行ってもよいし、他のメンテナンス処理を実行してもよい。また、各実施形態では、メンテナンス処理制御部133は、リークレート測定の実行のタイミングが到来した場合、次のロットからリークレート測定を実行した。このため、次のロットから測定対象となったロードロック室230が生産処理からはずされた。ただし、リークレート測定を開始するタイミングは他のタイミングでもよく、例えば、リークレート測定の実行のタイミングが到来して直ぐにリークレート測定を開始してもよい。この場合、現ロットの途中から測定対象となったロードロック室230が生産処理から除外される。 For example, the substrate processing apparatus 100 may perform a cycle purge in addition to the leak rate measurement as a maintenance process, or may execute another maintenance process. Further, in each embodiment, the maintenance process control unit 133 executes the leak rate measurement from the next lot when the timing of executing the leak rate measurement arrives. Therefore, the load lock chamber 230 to be measured from the next lot was removed from the production process. However, the timing of starting the leak rate measurement may be another timing, and for example, the leak rate measurement may be started immediately after the timing of executing the leak rate measurement arrives. In this case, the load lock chamber 230 to be measured is excluded from the production process from the middle of the current lot.
 また、各実施形態では、ロードロック室230が3つ存在する場合で説明したが、各実施形態で説明した構成は、ロードロック室230は複数であればその数に特に制限は無い。さらに、3つ以上のロードロック室230が存在する場合、生産効率が低下しない程度であれば2つ以上のロードロック室230に対して同時にメンテナンス処理を実行してもよい。 Further, in each embodiment, the case where there are three load lock chambers 230 has been described, but in the configuration described in each embodiment, the number of load lock chambers 230 is not particularly limited as long as there are a plurality of load lock chambers 230. Further, when three or more load lock chambers 230 are present, maintenance processing may be performed on the two or more load lock chambers 230 at the same time as long as the production efficiency is not lowered.
 W ウエハ
 C キャリア
 G ゲートバルブ
 G1 真空側ゲートバルブ
 G2 大気側ゲートバルブ
 100 基板処理装置
 110 処理ユニット
 120 搬送ユニット
 130 全体制御部
 131 主制御部
 132 生産処理制御部
 133 メンテナンス処理制御部
 200~204 処理室
 210 真空搬送室
 220 処理ユニット側搬送機構
 221、222 搬送アーム
 230~233 ロードロック室
 300 大気搬送室
 301 アライメントチャンバ
 302 搬送ユニット側搬送機構
 311~313 ポート
W Wafer C Carrier G Gate valve G1 Vacuum side gate valve G2 Atmospheric side gate valve 100 Board processing device 110 Processing unit 120 Conveying unit 130 Overall control unit 131 Main control unit 132 Production processing control unit 133 Maintenance processing control unit 200 to 204 Processing room 210 Vacuum transfer chamber 220 Processing unit side transfer mechanism 221, 222 Transfer arm 230 to 233 Load lock room 300 Atmospheric transfer room 301 Alignment chamber 302 Transfer unit side transfer mechanism 311 to 313 ports

Claims (6)

  1.  真空雰囲気の第1室と、
     大気圧雰囲気の第2室と、
     前記第1室と前記第2室との間にそれぞれが配置され、大気圧雰囲気と真空雰囲気とに切り替えられる複数の搬送中継室と、
     各前記搬送中継室を介して前記第1室と前記第2室との間の基板の搬送を行う搬送機構と、
     複数の前記搬送中継室のうち1つ又はいくつかに対してメンテナンス処理を実行するメンテナンス実行部と、
     前記メンテナンス実行部による前記メンテナンス処理の対象とされていない前記搬送中継室を用いて前記第1室と前記第2室との間の前記基板の搬送を前記搬送機構に実行させる制御部と
     を備えたことを特徴とする基板処理装置。
    The first room with a vacuum atmosphere and
    The second room with an atmospheric pressure atmosphere and
    A plurality of transport relay chambers, each of which is arranged between the first chamber and the second chamber and can be switched between an atmospheric pressure atmosphere and a vacuum atmosphere,
    A transport mechanism that transports the substrate between the first chamber and the second chamber via each of the transport relay chambers.
    A maintenance execution unit that executes maintenance processing for one or several of the plurality of the transfer relay rooms,
    A control unit for causing the transfer mechanism to transfer the substrate between the first chamber and the second chamber by using the transfer relay chamber that is not subject to the maintenance process by the maintenance execution unit is provided. A substrate processing device characterized in that.
  2.  前記メンテナンス実行部は、前記メンテナンス処理を前記搬送中継室毎に周期的に実行することを特徴とする請求項1に記載の基板処理装置。 The substrate processing apparatus according to claim 1, wherein the maintenance execution unit periodically executes the maintenance process for each of the transfer relay chambers.
  3.  前記メンテナンス実行部は、前記メンテナンス処理の結果を基に、前記メンテナンス処理の周期を変更することを特徴とする請求項2に記載の基板処理装置。 The substrate processing apparatus according to claim 2, wherein the maintenance execution unit changes the cycle of the maintenance process based on the result of the maintenance process.
  4.  前記基板に対して処理を施す、前記第1室に接続された複数の処理室をさらに有し、
     前記制御部は、前記搬送機構に前記処理室へ前記基板を搬送させ、前記処理室で前記基板に対して前記処理を施させる
     ことを特徴とする請求項1~3のいずれか一つに記載の基板処理装置。
    Further having a plurality of processing chambers connected to the first chamber for processing the substrate,
    The control unit according to any one of claims 1 to 3, wherein the transfer mechanism transmits the substrate to the processing chamber, and the substrate is subjected to the processing in the processing chamber. Substrate processing equipment.
  5.  前記メンテナンス実行部は、前記メンテナンス処理として前記搬送中継室の気密性を測定するリークレート測定を実行することを特徴とする請求項1~4のいずれか一つに記載の基板処理装置。 The substrate processing apparatus according to any one of claims 1 to 4, wherein the maintenance execution unit executes a leak rate measurement for measuring the airtightness of the transport relay chamber as the maintenance process.
  6.  真空雰囲気の第1室と大気圧雰囲気の第2室との間にそれぞれが配置され、大気圧雰囲気と真空雰囲気とに切り替えられる複数の搬送中継室のそれぞれを用いて前記第1室と前記第2室との間の基板の搬送を搬送機構に実行させ、
     複数の前記搬送中継室のうち1つ又はいくつかに対してメンテナンス処理を実行し、
     前記メンテナンス処理を実行する間、前記メンテナンス処理の対象とされていない前記搬送中継室を用いて前記第1室と前記第2室との間の前記基板の搬送を前記搬送機構に実行させる
     ことを特徴とする基板処理装置制御方法。
    Each of the first chamber and the second chamber of the atmospheric pressure atmosphere is arranged between the first chamber of the vacuum atmosphere and the second chamber of the atmospheric pressure atmosphere, and each of the plurality of transport relay chambers that can be switched between the atmospheric pressure atmosphere and the vacuum atmosphere is used. Let the transfer mechanism execute the transfer of the board between the two chambers,
    A maintenance process is performed on one or several of the plurality of the transfer relay chambers, and the maintenance process is performed.
    During the maintenance process, the transfer mechanism is allowed to transfer the substrate between the first chamber and the second chamber by using the transfer relay chamber which is not the target of the maintenance process. A characteristic substrate processing device control method.
PCT/JP2020/033011 2019-09-13 2020-09-01 Substrate processing device and method for conctrolling substrate processing device WO2021049368A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2019166923A JP2021044472A (en) 2019-09-13 2019-09-13 Substrate processing device and method for controlling the same
JP2019-166923 2019-09-13

Publications (1)

Publication Number Publication Date
WO2021049368A1 true WO2021049368A1 (en) 2021-03-18

Family

ID=74863173

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/033011 WO2021049368A1 (en) 2019-09-13 2020-09-01 Substrate processing device and method for conctrolling substrate processing device

Country Status (2)

Country Link
JP (1) JP2021044472A (en)
WO (1) WO2021049368A1 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001273336A (en) * 2000-03-27 2001-10-05 Matsushita Electric Ind Co Ltd Data collection method
JP2012204698A (en) * 2011-03-26 2012-10-22 Tokyo Electron Ltd Substrate processing apparatus
JP2014090013A (en) * 2012-10-29 2014-05-15 Tokyo Electron Ltd Substrate processing apparatus
WO2017175408A1 (en) * 2016-04-08 2017-10-12 株式会社日立国際電気 Substrate processing device, method for producing semiconductor devices, and program

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001273336A (en) * 2000-03-27 2001-10-05 Matsushita Electric Ind Co Ltd Data collection method
JP2012204698A (en) * 2011-03-26 2012-10-22 Tokyo Electron Ltd Substrate processing apparatus
JP2014090013A (en) * 2012-10-29 2014-05-15 Tokyo Electron Ltd Substrate processing apparatus
WO2017175408A1 (en) * 2016-04-08 2017-10-12 株式会社日立国際電気 Substrate processing device, method for producing semiconductor devices, and program

Also Published As

Publication number Publication date
JP2021044472A (en) 2021-03-18

Similar Documents

Publication Publication Date Title
US8055378B2 (en) Device for controlling processing system, method for controlling processing system and computer-readable storage medium stored processing program
KR100932168B1 (en) Method of manufacturing substrate processing apparatus and semiconductor device
JP6454201B2 (en) Substrate transport method and substrate processing apparatus
JP5785712B2 (en) Vacuum processing equipment
US20170271176A1 (en) Substrate processing apparatus
KR102471280B1 (en) Semiconductor manufacturing apparatus and substrate trasnfering method
JP2013143513A (en) Vacuum processing apparatus
US20190096702A1 (en) Substrate processing apparatus, substrate processing method, and computer storage medium
JP6290177B2 (en) Substrate processing apparatus, substrate processing apparatus cleaning method, semiconductor device manufacturing method, and program
TW201201313A (en) Vacuum processing apparatus
JP5808454B1 (en) Substrate processing apparatus, semiconductor device manufacturing method, program, and recording medium
JP2012109333A (en) Substrate processing apparatus
US8904955B2 (en) Substrate processing apparatus
JP2014179431A (en) Vacuum processing apparatus and operation method thereof
WO2021049368A1 (en) Substrate processing device and method for conctrolling substrate processing device
JP2012074496A (en) Vacuum processing apparatus
JP2001250780A (en) Application method of dummy substrate in semiconductor manufacturing device
JP5997542B2 (en) Vacuum processing apparatus and vacuum processing method
JP2011054679A (en) Substrate processor
JP4722416B2 (en) Semiconductor manufacturing apparatus, substrate transfer method, and semiconductor device manufacturing method
JP7379042B2 (en) Vacuum transfer device and vacuum transfer device control method
US20220277974A1 (en) Input/output (io) handling during update process for manufacturing system controller
WO2022130535A1 (en) Vacuum treatment device and vacuum treatment method
TW201719797A (en) Substrate housing method and substrate processing device
US20210313238A1 (en) Substrate processing method and substrate processing apparatus

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20864157

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20864157

Country of ref document: EP

Kind code of ref document: A1