WO2021049284A1 - インピーダンス整合膜及び電波吸収体 - Google Patents

インピーダンス整合膜及び電波吸収体 Download PDF

Info

Publication number
WO2021049284A1
WO2021049284A1 PCT/JP2020/031879 JP2020031879W WO2021049284A1 WO 2021049284 A1 WO2021049284 A1 WO 2021049284A1 JP 2020031879 W JP2020031879 W JP 2020031879W WO 2021049284 A1 WO2021049284 A1 WO 2021049284A1
Authority
WO
WIPO (PCT)
Prior art keywords
impedance matching
film
radio wave
matching film
wave absorber
Prior art date
Application number
PCT/JP2020/031879
Other languages
English (en)
French (fr)
Inventor
陽介 中西
直樹 永岡
広宣 待永
Original Assignee
日東電工株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日東電工株式会社 filed Critical 日東電工株式会社
Priority to US17/639,964 priority Critical patent/US20220330464A1/en
Priority to CN202080062220.0A priority patent/CN114342183A/zh
Priority to EP20862795.0A priority patent/EP4030880A1/en
Publication of WO2021049284A1 publication Critical patent/WO2021049284A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K9/00Screening of apparatus or components against electric or magnetic fields
    • H05K9/0073Shielding materials
    • H05K9/0081Electromagnetic shielding materials, e.g. EMI, RFI shielding
    • H05K9/0084Electromagnetic shielding materials, e.g. EMI, RFI shielding comprising a single continuous metallic layer on an electrically insulating supporting structure, e.g. metal foil, film, plating coating, electro-deposition, vapour-deposition
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B15/00Layered products comprising a layer of metal
    • B32B15/04Layered products comprising a layer of metal comprising metal as the main or only constituent of a layer, which is next to another layer of the same or of a different material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B15/00Layered products comprising a layer of metal
    • B32B15/04Layered products comprising a layer of metal comprising metal as the main or only constituent of a layer, which is next to another layer of the same or of a different material
    • B32B15/043Layered products comprising a layer of metal comprising metal as the main or only constituent of a layer, which is next to another layer of the same or of a different material of metal
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B15/00Layered products comprising a layer of metal
    • B32B15/04Layered products comprising a layer of metal comprising metal as the main or only constituent of a layer, which is next to another layer of the same or of a different material
    • B32B15/08Layered products comprising a layer of metal comprising metal as the main or only constituent of a layer, which is next to another layer of the same or of a different material of synthetic resin
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B15/00Layered products comprising a layer of metal
    • B32B15/20Layered products comprising a layer of metal comprising aluminium or copper
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B25/00Layered products comprising a layer of natural or synthetic rubber
    • B32B25/04Layered products comprising a layer of natural or synthetic rubber comprising rubber as the main or only constituent of a layer, which is next to another layer of the same or of a different material
    • B32B25/042Layered products comprising a layer of natural or synthetic rubber comprising rubber as the main or only constituent of a layer, which is next to another layer of the same or of a different material of natural rubber or synthetic rubber
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B25/00Layered products comprising a layer of natural or synthetic rubber
    • B32B25/04Layered products comprising a layer of natural or synthetic rubber comprising rubber as the main or only constituent of a layer, which is next to another layer of the same or of a different material
    • B32B25/08Layered products comprising a layer of natural or synthetic rubber comprising rubber as the main or only constituent of a layer, which is next to another layer of the same or of a different material of synthetic resin
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B25/00Layered products comprising a layer of natural or synthetic rubber
    • B32B25/20Layered products comprising a layer of natural or synthetic rubber comprising silicone rubber
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/06Layered products comprising a layer of synthetic resin as the main or only constituent of a layer, which is next to another layer of the same or of a different material
    • B32B27/08Layered products comprising a layer of synthetic resin as the main or only constituent of a layer, which is next to another layer of the same or of a different material of synthetic resin
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/28Layered products comprising a layer of synthetic resin comprising synthetic resins not wholly covered by any one of the sub-groups B32B27/30 - B32B27/42
    • B32B27/281Layered products comprising a layer of synthetic resin comprising synthetic resins not wholly covered by any one of the sub-groups B32B27/30 - B32B27/42 comprising polyimides
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/30Layered products comprising a layer of synthetic resin comprising vinyl (co)polymers; comprising acrylic (co)polymers
    • B32B27/304Layered products comprising a layer of synthetic resin comprising vinyl (co)polymers; comprising acrylic (co)polymers comprising vinyl halide (co)polymers, e.g. PVC, PVDC, PVF, PVDF
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/30Layered products comprising a layer of synthetic resin comprising vinyl (co)polymers; comprising acrylic (co)polymers
    • B32B27/306Layered products comprising a layer of synthetic resin comprising vinyl (co)polymers; comprising acrylic (co)polymers comprising vinyl acetate or vinyl alcohol (co)polymers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/30Layered products comprising a layer of synthetic resin comprising vinyl (co)polymers; comprising acrylic (co)polymers
    • B32B27/308Layered products comprising a layer of synthetic resin comprising vinyl (co)polymers; comprising acrylic (co)polymers comprising acrylic (co)polymers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/32Layered products comprising a layer of synthetic resin comprising polyolefins
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/32Layered products comprising a layer of synthetic resin comprising polyolefins
    • B32B27/325Layered products comprising a layer of synthetic resin comprising polyolefins comprising polycycloolefins
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/36Layered products comprising a layer of synthetic resin comprising polyesters
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/36Layered products comprising a layer of synthetic resin comprising polyesters
    • B32B27/365Layered products comprising a layer of synthetic resin comprising polyesters comprising polycarbonates
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/40Layered products comprising a layer of synthetic resin comprising polyurethanes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B3/00Layered products comprising a layer with external or internal discontinuities or unevennesses, or a layer of non-planar shape; Layered products comprising a layer having particular features of form
    • B32B3/10Layered products comprising a layer with external or internal discontinuities or unevennesses, or a layer of non-planar shape; Layered products comprising a layer having particular features of form characterised by a discontinuous layer, i.e. formed of separate pieces of material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B3/00Layered products comprising a layer with external or internal discontinuities or unevennesses, or a layer of non-planar shape; Layered products comprising a layer having particular features of form
    • B32B3/10Layered products comprising a layer with external or internal discontinuities or unevennesses, or a layer of non-planar shape; Layered products comprising a layer having particular features of form characterised by a discontinuous layer, i.e. formed of separate pieces of material
    • B32B3/12Layered products comprising a layer with external or internal discontinuities or unevennesses, or a layer of non-planar shape; Layered products comprising a layer having particular features of form characterised by a discontinuous layer, i.e. formed of separate pieces of material characterised by a layer of regularly- arranged cells, e.g. a honeycomb structure
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B3/00Layered products comprising a layer with external or internal discontinuities or unevennesses, or a layer of non-planar shape; Layered products comprising a layer having particular features of form
    • B32B3/10Layered products comprising a layer with external or internal discontinuities or unevennesses, or a layer of non-planar shape; Layered products comprising a layer having particular features of form characterised by a discontinuous layer, i.e. formed of separate pieces of material
    • B32B3/18Layered products comprising a layer with external or internal discontinuities or unevennesses, or a layer of non-planar shape; Layered products comprising a layer having particular features of form characterised by a discontinuous layer, i.e. formed of separate pieces of material characterised by an internal layer formed of separate pieces of material which are juxtaposed side-by-side
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B3/00Layered products comprising a layer with external or internal discontinuities or unevennesses, or a layer of non-planar shape; Layered products comprising a layer having particular features of form
    • B32B3/26Layered products comprising a layer with external or internal discontinuities or unevennesses, or a layer of non-planar shape; Layered products comprising a layer having particular features of form characterised by a particular shape of the outline of the cross-section of a continuous layer; characterised by a layer with cavities or internal voids ; characterised by an apertured layer
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B3/00Layered products comprising a layer with external or internal discontinuities or unevennesses, or a layer of non-planar shape; Layered products comprising a layer having particular features of form
    • B32B3/26Layered products comprising a layer with external or internal discontinuities or unevennesses, or a layer of non-planar shape; Layered products comprising a layer having particular features of form characterised by a particular shape of the outline of the cross-section of a continuous layer; characterised by a layer with cavities or internal voids ; characterised by an apertured layer
    • B32B3/263Layered products comprising a layer with external or internal discontinuities or unevennesses, or a layer of non-planar shape; Layered products comprising a layer having particular features of form characterised by a particular shape of the outline of the cross-section of a continuous layer; characterised by a layer with cavities or internal voids ; characterised by an apertured layer characterised by a layer having non-uniform thickness
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B3/00Layered products comprising a layer with external or internal discontinuities or unevennesses, or a layer of non-planar shape; Layered products comprising a layer having particular features of form
    • B32B3/26Layered products comprising a layer with external or internal discontinuities or unevennesses, or a layer of non-planar shape; Layered products comprising a layer having particular features of form characterised by a particular shape of the outline of the cross-section of a continuous layer; characterised by a layer with cavities or internal voids ; characterised by an apertured layer
    • B32B3/266Layered products comprising a layer with external or internal discontinuities or unevennesses, or a layer of non-planar shape; Layered products comprising a layer having particular features of form characterised by a particular shape of the outline of the cross-section of a continuous layer; characterised by a layer with cavities or internal voids ; characterised by an apertured layer characterised by an apertured layer, the apertures going through the whole thickness of the layer, e.g. expanded metal, perforated layer, slit layer regular cells B32B3/12
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B3/00Layered products comprising a layer with external or internal discontinuities or unevennesses, or a layer of non-planar shape; Layered products comprising a layer having particular features of form
    • B32B3/26Layered products comprising a layer with external or internal discontinuities or unevennesses, or a layer of non-planar shape; Layered products comprising a layer having particular features of form characterised by a particular shape of the outline of the cross-section of a continuous layer; characterised by a layer with cavities or internal voids ; characterised by an apertured layer
    • B32B3/30Layered products comprising a layer with external or internal discontinuities or unevennesses, or a layer of non-planar shape; Layered products comprising a layer having particular features of form characterised by a particular shape of the outline of the cross-section of a continuous layer; characterised by a layer with cavities or internal voids ; characterised by an apertured layer characterised by a layer formed with recesses or projections, e.g. hollows, grooves, protuberances, ribs
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B7/00Layered products characterised by the relation between layers; Layered products characterised by the relative orientation of features between layers, or by the relative values of a measurable parameter between layers, i.e. products comprising layers having different physical, chemical or physicochemical properties; Layered products characterised by the interconnection of layers
    • B32B7/04Interconnection of layers
    • B32B7/12Interconnection of layers using interposed adhesives or interposed materials with bonding properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B7/00Layered products characterised by the relation between layers; Layered products characterised by the relative orientation of features between layers, or by the relative values of a measurable parameter between layers, i.e. products comprising layers having different physical, chemical or physicochemical properties; Layered products characterised by the interconnection of layers
    • B32B7/04Interconnection of layers
    • B32B7/12Interconnection of layers using interposed adhesives or interposed materials with bonding properties
    • B32B7/14Interconnection of layers using interposed adhesives or interposed materials with bonding properties applied in spaced arrangements, e.g. in stripes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01PWAVEGUIDES; RESONATORS, LINES, OR OTHER DEVICES OF THE WAVEGUIDE TYPE
    • H01P1/00Auxiliary devices
    • H01P1/24Terminating devices
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q15/00Devices for reflection, refraction, diffraction or polarisation of waves radiated from an antenna, e.g. quasi-optical devices
    • H01Q15/14Reflecting surfaces; Equivalent structures
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q17/00Devices for absorbing waves radiated from an antenna; Combinations of such devices with active antenna elements or systems
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K9/00Screening of apparatus or components against electric or magnetic fields
    • H05K9/0073Shielding materials
    • H05K9/0081Electromagnetic shielding materials, e.g. EMI, RFI shielding
    • H05K9/0088Electromagnetic shielding materials, e.g. EMI, RFI shielding comprising a plurality of shielding layers; combining different shielding material structure
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2250/00Layers arrangement
    • B32B2250/24All layers being polymeric
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2255/00Coating on the layer surface
    • B32B2255/10Coating on the layer surface on synthetic resin layer or on natural or synthetic rubber layer
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2255/00Coating on the layer surface
    • B32B2255/20Inorganic coating
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2255/00Coating on the layer surface
    • B32B2255/20Inorganic coating
    • B32B2255/205Metallic coating
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2255/00Coating on the layer surface
    • B32B2255/26Polymeric coating
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/10Properties of the layers or laminate having particular acoustical properties
    • B32B2307/102Insulating
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/12All metal or with adjacent metals
    • Y10T428/12361All metal or with adjacent metals having aperture or cut
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/12All metal or with adjacent metals
    • Y10T428/12361All metal or with adjacent metals having aperture or cut
    • Y10T428/12368Struck-out portion type
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/12All metal or with adjacent metals
    • Y10T428/12389All metal or with adjacent metals having variation in thickness
    • Y10T428/12396Discontinuous surface component
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/12All metal or with adjacent metals
    • Y10T428/12431Foil or filament smaller than 6 mils
    • Y10T428/12438Composite
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/12All metal or with adjacent metals
    • Y10T428/12451Macroscopically anomalous interface between layers
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/12All metal or with adjacent metals
    • Y10T428/12493Composite; i.e., plural, adjacent, spatially distinct metal components [e.g., layers, joint, etc.]
    • Y10T428/12535Composite; i.e., plural, adjacent, spatially distinct metal components [e.g., layers, joint, etc.] with additional, spatially distinct nonmetal component
    • Y10T428/12556Organic component
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/12All metal or with adjacent metals
    • Y10T428/12493Composite; i.e., plural, adjacent, spatially distinct metal components [e.g., layers, joint, etc.]
    • Y10T428/12535Composite; i.e., plural, adjacent, spatially distinct metal components [e.g., layers, joint, etc.] with additional, spatially distinct nonmetal component
    • Y10T428/12556Organic component
    • Y10T428/12569Synthetic resin
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/12All metal or with adjacent metals
    • Y10T428/12493Composite; i.e., plural, adjacent, spatially distinct metal components [e.g., layers, joint, etc.]
    • Y10T428/12674Ge- or Si-base component
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/12All metal or with adjacent metals
    • Y10T428/12493Composite; i.e., plural, adjacent, spatially distinct metal components [e.g., layers, joint, etc.]
    • Y10T428/12736Al-base component
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/12All metal or with adjacent metals
    • Y10T428/12993Surface feature [e.g., rough, mirror]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/24Structurally defined web or sheet [e.g., overall dimension, etc.]
    • Y10T428/24942Structurally defined web or sheet [e.g., overall dimension, etc.] including components having same physical characteristic in differing degree
    • Y10T428/2495Thickness [relative or absolute]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/24Structurally defined web or sheet [e.g., overall dimension, etc.]
    • Y10T428/24942Structurally defined web or sheet [e.g., overall dimension, etc.] including components having same physical characteristic in differing degree
    • Y10T428/2495Thickness [relative or absolute]
    • Y10T428/24959Thickness [relative or absolute] of adhesive layers
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/24Structurally defined web or sheet [e.g., overall dimension, etc.]
    • Y10T428/24942Structurally defined web or sheet [e.g., overall dimension, etc.] including components having same physical characteristic in differing degree
    • Y10T428/2495Thickness [relative or absolute]
    • Y10T428/24967Absolute thicknesses specified
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/26Web or sheet containing structurally defined element or component, the element or component having a specified physical dimension
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/26Web or sheet containing structurally defined element or component, the element or component having a specified physical dimension
    • Y10T428/263Coating layer not in excess of 5 mils thick or equivalent
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/26Web or sheet containing structurally defined element or component, the element or component having a specified physical dimension
    • Y10T428/263Coating layer not in excess of 5 mils thick or equivalent
    • Y10T428/264Up to 3 mils
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/26Web or sheet containing structurally defined element or component, the element or component having a specified physical dimension
    • Y10T428/263Coating layer not in excess of 5 mils thick or equivalent
    • Y10T428/264Up to 3 mils
    • Y10T428/2651 mil or less

Definitions

  • the present invention relates to an impedance matching film and a radio wave absorber.
  • Patent Document 1 describes a radio wave absorber in which all layers of components are transparent or translucent.
  • this radio wave absorber the entire surface conductor layer, the first dielectric layer, the linear pattern resistance layer, the second dielectric layer, and the pattern layer are laminated in this order.
  • electromagnetic waves can be satisfactorily received in the outermost pattern layer. Since the pattern layer and the second dielectric layer are in contact with each other, the electromagnetic wave received by the pattern layer leaks greatly to the second dielectric layer. Since the second dielectric layer and the linear pattern layer are in contact with each other, the electromagnetic wave leaked to the second dielectric layer can be efficiently converted into heat by the linear pattern layer.
  • a high resistance conductor having a volume resistivity of 1.0 ⁇ 10 -4 ⁇ cm or more and 1.0 ⁇ 10 -1 ⁇ cm or less forms a linear pattern resistance layer.
  • the linear pattern layer efficiently converts the electromagnetic wave leaked to the second dielectric layer into heat, and in Patent Document 1, the linear pattern layer is used for impedance. There is no mention of matching.
  • the present invention provides a novel impedance matching film having transparency.
  • the present invention Impedance matching film It has a plurality of regularly formed openings along the main surface of the impedance matching film.
  • the value obtained by dividing the specific resistance of the material forming the impedance matching film by the thickness of the impedance matching film is 1 to 300 ⁇ / ⁇ .
  • An impedance matching film is provided.
  • a reflector that reflects radio waves and A dielectric layer arranged between the impedance matching film and the reflector in the thickness direction of the impedance matching film is provided.
  • the above impedance matching film is a novel impedance matching film having transparency.
  • FIG. 1A is a plan view showing an example of an impedance matching film according to the present invention.
  • FIG. 1B is a cross-sectional view of an impedance matching film having the IB-IB line of FIG. 1A as a cutting line.
  • FIG. 2A is a plan view showing another example of the impedance matching film according to the present invention.
  • FIG. 2B is a plan view showing still another example of the impedance matching film according to the present invention.
  • FIG. 2C is a plan view showing still another example of the impedance matching film according to the present invention.
  • FIG. 3A is a cross-sectional view showing an example of a radio wave absorber according to the present invention.
  • FIG. 3B is a cross-sectional view showing a modified example of the radio wave absorber according to the present invention.
  • FIG. 3C is a cross-sectional view showing another modified example of the radio wave absorber according to the present invention.
  • FIG. 4 is a cross-sectional view showing another example of the radio wave absorber according to the present invention.
  • the impedance matching film has a plurality of openings from the viewpoint of providing transparency to the impedance matching film.
  • a plurality of openings are regularly formed along the main surface of the impedance matching film.
  • the term "transparency” means transparency to visible light, unless otherwise specified.
  • the impedance matching film 10a has a plurality of openings 11. As a result, the impedance matching film 10a has transparency.
  • the plurality of openings 11 are regularly formed along the main surface 10f of the impedance matching film 10a.
  • the main surface 10f means a front surface and a back surface located apart from each other in the thickness direction of the impedance matching film 10a.
  • Each of the plurality of openings 11 is typically formed as a through hole in the impedance matching film 10a.
  • the value ⁇ / t obtained by dividing the specific resistance ⁇ [ ⁇ ⁇ m] of the material forming the impedance matching film 10a by the thickness t [m] of the impedance matching film 10a is 1 to 300 ⁇ / ⁇ .
  • the dimension of the value ⁇ / t is ⁇ , but the unit of the value ⁇ / t is expressed as ⁇ / ⁇ to avoid confusion with the electric resistance.
  • the value ⁇ / t of the impedance matching film 10a is 1 to 300 ⁇ / ⁇ in order to achieve the desired impedance matching while forming a plurality of openings 11 so that the impedance matching film 10a has the desired transparency. It is advantageous.
  • the specific resistance ⁇ of the material forming the impedance matching film 10a can be determined, for example, by collecting a fragment having a predetermined size from the impedance matching film 10a and measuring the electrical resistance and the dimension of the fragment. Further, the thickness t of the impedance matching film 10a can be determined by observing the cross section of the impedance matching film 10a using, for example, a transmission electron microscope (TEM).
  • TEM transmission electron microscope
  • ⁇ / t may be 250 ⁇ / ⁇ or less, 200 ⁇ / ⁇ or less, or less than 200 ⁇ / ⁇ .
  • ⁇ / t may be 2 ⁇ / ⁇ or more, 3 ⁇ / ⁇ or more, or 4 ⁇ / ⁇ or more. This makes it easy to achieve desired impedance matching with the impedance matching film 10a.
  • the maximum dimension D1 of the opening 11 on the main surface 10f is not limited to a specific value.
  • Maximum dimension D1 is, for example, 7.5 ⁇ 10 4 ⁇ m or less.
  • desired impedance matching can be achieved by the impedance matching film 10a.
  • a radio wave absorber manufactured by using the impedance matching film 10a tends to exhibit good radio wave absorption performance for radio waves of a desired frequency. ..
  • the maximum dimension D1 may correspond to the diagonal length of the quadrangle.
  • the maximum dimension D1 may be 5.0 ⁇ 10 4 ⁇ m or less, 0.5 ⁇ 10 4 ⁇ m or less, 0.1 ⁇ 10 4 ⁇ m or less, and 0.03. It may be ⁇ 10 4 ⁇ m or less.
  • the lower limit of the maximum dimension D1 is not limited to a specific value.
  • the maximum dimension D1 is, for example, 1 ⁇ m or more, 5 ⁇ m or more, or 10 ⁇ m or more. This makes it easy to manufacture the impedance matching film 10.
  • the minimum value D2 of the distance between the openings 11 is not limited to a specific value.
  • the minimum value D2 is, for example, 0.1 to 650 ⁇ m.
  • the impedance matching film 10a can be more reliably transparent, and the impedance matching film 10a can achieve desired impedance matching.
  • a radio wave absorber manufactured by using the impedance matching film 10a tends to exhibit good radio wave absorption performance for radio waves of a desired frequency.
  • the minimum value D2 may be 0.3 ⁇ m or more, or 0.5 ⁇ m or more.
  • the minimum value D2 may be 640 ⁇ m or less, 600 ⁇ m or less, 500 ⁇ m or less, 400 ⁇ m or less, or 300 ⁇ m or less.
  • the value of the thickness t of the impedance matching film 10a is not limited to a specific value as long as ⁇ / t is 1 to 300 ⁇ / ⁇ .
  • the thickness t of the impedance matching film 10a is, for example, 5 to 500 nm. In this case, the warp of the impedance matching film 10a is easily suppressed, and cracks are less likely to occur in the impedance matching film 10a. In addition, it is easy to prevent the characteristics of the impedance matching film 10a from changing when the impedance matching film 10a is placed in a predetermined environment.
  • the thickness t of the impedance matching film 10a may be 10 nm or more, or 15 nm or more. As a result, it is easier to suppress changes in the characteristics of the impedance matching film 10a when the impedance matching film 10a is placed in a predetermined environment.
  • the thickness t of the impedance matching film 10a may be 450 nm or less, or 400 nm or less. As a result, the warp of the impedance matching film 10a can be suppressed more reliably.
  • the specific resistance ⁇ of the material forming the impedance matching film 10a is not limited to a specific value as long as ⁇ / t is 1 to 300 ⁇ / ⁇ . ⁇ is, for example, 5 ⁇ 10 -6 to 2 ⁇ 10 -3 ⁇ ⁇ cm. In this case, when adjusting ⁇ / t to a desired range, the thickness t of the impedance matching film 10 tends to be a desired thickness. As a result, it is easy to prevent the characteristics of the impedance matching film 10a from changing when the impedance matching film 10a is placed in a predetermined environment. In addition, the warpage of the impedance matching film 10a is easily suppressed, and cracks are less likely to occur in the impedance matching film 10a.
  • the resistivity ⁇ of the material forming the impedance matching film 10a may be, for example, 1 ⁇ 10 -5 ⁇ ⁇ cm or more, or 5 ⁇ 10 -5 ⁇ ⁇ cm or more. As a result, the thickness t of the impedance matching film 10 can be easily reduced, and the warpage of the impedance matching film 10a can be easily suppressed. Therefore, cracks are less likely to occur in the impedance matching film 10a.
  • the resistivity ⁇ of the material forming the impedance matching film 10a may be, for example, 1.8 ⁇ 10 -3 ⁇ ⁇ cm or less, or 1.6 ⁇ 10 -3 ⁇ ⁇ cm or less. As a result, the thickness t of the impedance matching film 10 can be easily increased, and it is easy to prevent the characteristics of the impedance matching film 10a from changing when the impedance matching film 10a is placed in a predetermined environment.
  • the arrangement is not limited to a specific arrangement.
  • the plurality of openings 11 are arranged so that their centers form a square lattice on the main surface 10f.
  • the shape is not limited to a specific shape.
  • the plurality of openings 11 are square in a plan view.
  • the aperture ratio of the plurality of openings 11 in the impedance matching film 10a is not limited to a specific value.
  • the aperture ratio of the plurality of openings 11 in the impedance matching film 10a is, for example, 50% or more, 60% or more, or 70% or more.
  • the aperture ratio of the plurality of openings 11 in the impedance matching film 10a is, for example, 99% or less, 97% or less, or 95% or less.
  • the aperture ratio of the plurality of openings 11 is the sum of the sum of the opening area Sa of the plurality of openings 11 and the area Sb of the non-opening portion of the impedance matching film 10a when the impedance matching film 10a is viewed in a plan view.
  • the ratio Sa / (Sa + Sb) of the opening area Sa is the sum of the sum of the opening area Sa of the plurality of openings 11 and the area Sb of the non-opening portion of the impedance matching film 10a when the impedance matching film 10a is viewed
  • the material forming the impedance matching film 10a is not limited to a specific material as long as ⁇ / t can be adjusted to 1 to 300 ⁇ / ⁇ .
  • the material forming the impedance matching film 10a may be an inorganic material such as a metal, an alloy, and a metal oxide, or an organic material such as a conductive polymer and carbon nanotubes.
  • the impedance matching film 10a may be a film having a uniform thickness in which a plurality of through holes are formed, or may be a woven fabric.
  • the fibers forming the woven fabric may be organic materials such as conductive polymers and carbon nanotubes, or inorganic materials such as metals and alloys.
  • the impedance matching film 10a may be formed on, for example, one main surface of the base material 22.
  • the impedance matching film 10a can be provided by the impedance matching film 15a.
  • the impedance matching film 10a may be provided alone without using the base material 22.
  • the base material 22 serves, for example, as a support for supporting the impedance matching film 10a.
  • the impedance matching film 10a in the film 15 with an impedance matching film has a plurality of openings 11 by laser processing or etching on a non-porous film formed on one main surface of the base material 22 by a film forming method such as sputtering. Can be produced by forming.
  • a non-porous film for the impedance matching film 10a may be formed by a film forming method such as ion plating or coating (for example, bar coating).
  • the base material 22 has a thickness of, for example, 10 to 150 ⁇ m, preferably 15 to 100 ⁇ m. As a result, the flexural rigidity of the base material 22 is low, and when the impedance matching film 10a is formed, the base material 22 can suppress the occurrence or deformation of wrinkles.
  • the impedance matching film 10a may be changed to the impedance matching film 10b shown in FIG. 2A, the impedance matching film 10c shown in FIG. 2B, or the impedance matching film 10d shown in FIG. 2C. Good.
  • Each of the impedance matching film 10b, the impedance matching film 10c, and the impedance matching film 10d is configured in the same manner as the impedance matching film 10a except for a portion to be particularly described.
  • the components of the impedance matching film 10b, the impedance matching film 10c, and the impedance matching film 10d, which are the same as or correspond to the components of the impedance matching film 10a, are designated by the same reference numerals, and detailed description thereof will be omitted.
  • the description of the impedance matching film 10a also applies to the impedance matching film 10b, the impedance matching film 10c, and the impedance matching film 10d, unless technically inconsistent.
  • the plurality of openings 11 are circular in a plan view.
  • the plurality of openings 11 are arranged so that their centers form a square quadrilateral grid on the main surface 10f.
  • the plurality of openings 11 have a regular hexagonal shape in a plan view.
  • the plurality of openings 11 are arranged so that their centers form a square quadrilateral grid on the main surface 10f.
  • the plurality of openings 11 have a regular triangular shape in a plan view.
  • the plurality of regular triangular openings 11 having the same orientation are arranged so that their centers form a parallelogram lattice on the main surface 10f.
  • the center of gravity of the plane figure is regarded as the center of the opening in the plan view shape.
  • the plurality of openings 11 may have other polygonal shapes such as a rectangle or an ellipse in a plan view.
  • the plurality of openings 11 may be arranged so that their centers form another planar grid such as a rectangular grid on the main surface 10f.
  • a plane lattice means an array of points on a plane which is invariant by translation in two independent directions by a certain distance.
  • the radio wave absorber 1a can be provided by using the impedance matching film 10a.
  • the radio wave absorber 1a includes an impedance matching film 10a, a reflector 30 that reflects radio waves, and a dielectric layer 20.
  • the dielectric layer 20 is arranged between the impedance matching film 10a and the reflector 30 in the thickness direction of the impedance matching film 10a.
  • the radio wave absorber 1a is, for example, a ⁇ / 4 type radio wave absorber.
  • a radio wave having a wavelength ⁇ O to be absorbed is incident on the radio wave absorber 1a, the radio wave due to reflection (front surface reflection) on the surface of the impedance matching film 10a and the radio wave due to reflection (back surface reflection) on the reflector 30 interfere with each other.
  • the radio wave absorber 1a is designed.
  • the wavelength ⁇ O of the radio wave to be absorbed is determined by the thickness t of the dielectric layer and the relative permittivity ⁇ r of the dielectric layer as shown in the following equation (1). ..
  • the radio wave of the wavelength to be absorbed can be set by appropriately adjusting the relative permittivity and the thickness of the dielectric layer.
  • sqrt ( ⁇ r ) means the square root of the relative permittivity ⁇ r.
  • ⁇ O 4t ⁇ square ( ⁇ r ) Equation (1)
  • the maximum dimension D1 of the opening 11 is, for example, 1/4 or less of the absorption peak wavelength ⁇ p.
  • the absorption peak wavelength ⁇ p is the wavelength of the radio wave having the maximum absolute value of the reflection amount measured based on the Japanese Industrial Standard (JIS) R 1679: 2007 with respect to the radio wave absorber 1a.
  • the absorption peak wavelength ⁇ p is the wavelength of the radio wave having the maximum amount of radio wave absorption in the radio wave absorber 1a.
  • the radio wave absorption amount is an absolute value of the reflection amount measured based on JIS R 1679: 2007. According to such a configuration, the surface reflection of the radio wave having the absorption peak wavelength ⁇ p is appropriately generated in the radio wave absorber 1a, and the radio wave absorber 1a can satisfactorily absorb the radio wave having the absorption peak wavelength ⁇ p.
  • the radio wave absorber 1a performs impedance matching with respect to a radio wave having a frequency of 1 GHz or higher, for example. As a result, the radio wave absorber 1a can effectively absorb radio waves having a frequency of 1 GHz or higher.
  • the frequency of the radio wave whose impedance matching is performed by the radio wave absorber 1a may be 1 GHz or higher, 4 GHz or higher, or 20 GHz or higher.
  • the frequency of the radio wave whose impedance matching is performed by the radio wave absorber 1a is, for example, 3000 GHz or less, 300 GHz or less, or 100 GHz or less.
  • the reflector 30 is not limited to a specific form as long as it can reflect the radio wave to be absorbed.
  • the reflector 30 is, for example, a transparent conductive film. In this case, the reflector 30 has transparency, and the entire radio wave absorber 1a can be easily made transparent.
  • the material forming the transparent conductive film may be an inorganic material such as a metal, an alloy, and a metal oxide, or an organic material such as a conductive polymer and carbon nanotubes.
  • the transparent conductive film has, for example, a plurality of openings 31 regularly formed along the main surface of the transparent conductive film. According to such a configuration, the reflector 30 can appropriately reflect the radio wave to be absorbed and tends to have desired transparency.
  • the transparent conductive film may be a non-porous film.
  • the impedance matching film 10a may be a film having a uniform thickness in which a plurality of through holes are formed, or may be a woven fabric.
  • the fibers forming the woven fabric may be organic materials such as conductive polymers and carbon nanotubes, or inorganic materials such as metals and alloys.
  • the shape of the plurality of openings 31 in the reflector 30 is not limited to a specific shape.
  • the shape of the plurality of openings 31 may be, for example, a quadrangular shape such as a triangle, a square or a rectangle, a hexagonal shape, another polygonal shape, a circular shape, or an elliptical shape in a plan view.
  • the arrangement of the plurality of openings 31 in the reflector 30 is not limited to a specific arrangement.
  • the plurality of openings 31 may be arranged so that, for example, the centers of the plurality of openings 31 form a plane lattice such as a square lattice and a parallelogram lattice.
  • the dielectric layer 20 has a relative permittivity of, for example, 2.0 to 20.0. In this case, the thickness of the dielectric layer 20 can be easily adjusted, and the radio wave absorption performance of the radio wave absorber 1a can be easily adjusted.
  • the relative permittivity of the dielectric layer 20 is, for example, the relative permittivity at 10 GHz measured according to the cavity resonance method.
  • the dielectric layer 20 is formed of, for example, a predetermined polymer.
  • the dielectric layer 20 is, for example, an ethylene vinyl acetate copolymer, a vinyl chloride resin, a urethane resin, an acrylic resin, an acrylic urethane resin, polyethylene, polypropylene, silicone, polyethylene terephthalate, polyethylene naphthalate, polycarbonate, polyimide, and a cycloolefin polymer. Contains at least one polymer selected from the group consisting of. In this case, the thickness of the dielectric layer 20 can be easily adjusted, and the manufacturing cost of the radio wave absorber 1a can be kept low.
  • the dielectric layer 20 can be produced, for example, by hot-pressing a predetermined resin composition.
  • the dielectric layer 20 may be formed as a single layer, or may be formed of a plurality of layers made of the same or different materials.
  • the relative permittivity of the dielectric layer 20 is determined, for example, as follows.
  • the relative permittivity ⁇ i of each layer is measured (i is an integer from 1 to n).
  • ⁇ i / T the ratio of thickness to dielectric constant epsilon i of the measured respective layers
  • ⁇ i ⁇ (t i / T ) By adding the ⁇ i ⁇ (t i / T ) for all layers, it can be determined the relative dielectric constant of the dielectric layer 20.
  • the dielectric layer 20 includes, for example, a first layer 21, a second layer 22, and a third layer 23.
  • the first layer 21 is arranged between the second layer 22 and the third layer 23.
  • the first layer 21 is, for example, an ethylene vinyl acetate copolymer, a vinyl chloride resin, a urethane resin, an acrylic resin, an acrylic urethane resin, polyethylene, polypropylene, silicone, polyethylene terephthalate, polyethylene naphthalate, polycarbonate, polyimide, and a cycloolefin polymer. Contains at least one polymer selected from the group consisting of.
  • the second layer 22 also serves as a base material for the impedance matching film 10a.
  • the second layer 22 is arranged at a position closer to the reflector 30 than, for example, the impedance matching film 10a.
  • the second layer 22 may be arranged at a position farther from the reflector 30 than the impedance matching film 10a.
  • the dielectric layer 20 is composed of the first layer 21 and the third layer 23.
  • the impedance matching film 10a and the dielectric layer 20 are protected by the second layer 22, and the radio wave absorber 1a has high durability.
  • the impedance matching film 10a may be in contact with the first layer 21.
  • the material of the second layer 22 is, for example, polyethylene terephthalate (PET), polyethylene naphthalate (PEN), acrylic resin (PMMA), polycarbonate (PC), polyimide (PI), or cycloolefin polymer (COP).
  • PET polyethylene terephthalate
  • PEN polyethylene naphthalate
  • PMMA acrylic resin
  • PC polycarbonate
  • PI polyimide
  • COP cycloolefin polymer
  • the material of the second layer 22 is preferably PET from the viewpoint of the balance between good heat resistance, dimensional stability, and manufacturing cost.
  • the third layer 23 supports, for example, the reflector 30.
  • the reflector 30 may be produced by forming a film on the third layer 23 by using a method such as sputtering, ion plating, or coating (for example, bar coating). Further, a plurality of openings 11 may be formed by laser processing, etching or the like.
  • the third layer 23 is arranged at a position closer to the impedance matching film 10a than the reflector 30 in the radio wave absorber 1a, and constitutes a part of the dielectric layer 20. ..
  • the third layer 23 may be arranged at a position farther from the impedance matching film 10a than the reflector 30. In this case, for example, the reflector 30 is in contact with the first layer 21.
  • the material of the third layer 23 for example, the material exemplified as the material of the second layer 22 can be used.
  • the material of the third layer 23 may be the same as or different from the material of the second layer 22. From the viewpoint of good heat resistance, dimensional stability, and a balance between manufacturing cost, the material of the third layer 23 is preferably PET.
  • the third layer 23 has a thickness of, for example, 10 to 150 ⁇ m, preferably 15 to 100 ⁇ m. As a result, the bending rigidity of the third layer 23 is low, and when the reflector 30 is formed, the occurrence or deformation of wrinkles in the third layer 23 can be suppressed.
  • the third layer 23 may be omitted in some cases.
  • the first layer 21 may be composed of a plurality of layers.
  • the first layer 21 when the first layer 21 is in contact with at least one of the impedance matching film 10a and the reflector 30, the first layer 21 may be composed of a plurality of layers.
  • the first layer 21 may or may not have adhesiveness.
  • the adhesive layer may be arranged in contact with at least one of both main surfaces of the first layer 21, or the adhesive layer is arranged so as to be in contact with both main surfaces. It does not have to be.
  • the adhesive layer is preferably arranged in contact with both main surfaces of the first layer 21.
  • the adhesive layer may not be arranged so as to be in contact with both main surfaces of the second layer 22, even if the second layer 22 does not have adhesiveness. .. In this case, the adhesive layer may be arranged in contact with one main surface of the second layer 22.
  • the third layer 23 may not have adhesiveness, or the adhesive layer may not be arranged in contact with both main surfaces of the third layer 23. In this case, the adhesive layer may be arranged in contact with at least one main surface of the third layer 23.
  • the pressure-sensitive adhesive layer contains, for example, a rubber-based pressure-sensitive adhesive, an acrylic-based pressure-sensitive adhesive, a silicone-based pressure-sensitive adhesive, or a urethane-based pressure-sensitive adhesive.
  • the radio wave absorber 1a may contain at least one of a dielectric loss material and a magnetic loss material.
  • the radio wave absorber 1a may be a dielectric loss type radio wave absorber or a magnetic loss type radio wave absorber.
  • the ⁇ / t required for the impedance matching film 10a tends to be high.
  • the dielectric layer 20 may contain at least one of a dielectric loss material and a magnetic loss material.
  • the material forming the impedance matching film 10a may be a magnetic material.
  • the radio wave absorber 1a can be changed from various viewpoints.
  • the radio wave absorber 1a may be changed as in the radio wave absorber 1b shown in FIG.
  • the radio wave absorber 1b is configured in the same manner as the radio wave absorber 1a except for a portion to be described in particular.
  • the components of the radio wave absorber 1b that are the same as or corresponding to the components of the radio wave absorber 1a are designated by the same reference numerals, and detailed description thereof will be omitted.
  • the description of the radio wave absorber 1a also applies to the radio wave absorber 1b unless there is a technical contradiction.
  • the radio wave absorber 1b further includes an adhesive layer 40a.
  • the reflector 30 is arranged between the dielectric layer 20 and the adhesive layer 40a.
  • the radio wave absorber 1b can be attached to the article by bringing the adhesive layer 40a into contact with the predetermined article and pressing the radio wave absorber 1b against the article. As a result, an article with a radio wave absorber can be obtained.
  • the adhesive layer 40a contains, for example, a rubber-based adhesive, an acrylic-based adhesive, a silicone-based adhesive, or a urethane-based adhesive.
  • the radio wave absorber 1b may further include a separator (not shown). In this case, the separator covers the adhesive layer 40a.
  • the separator is typically a film that can maintain the adhesive strength of the adhesive layer 40a when covering the adhesive layer 40a and can be easily peeled off from the adhesive layer 40a.
  • the separator is, for example, a film made of a polyester resin such as PET. By peeling off the separator, the adhesive layer 40a is exposed, and the radio wave absorber 1b can be attached to the article.
  • the sheet resistance of the non-porous film according to each Example and Comparative Example is determined by the eddy current measuring method in accordance with JIS Z 2316. It was measured.
  • the product of the thickness of the non-porous film measured as described above and the sheet resistance of the non-porous film measured as described above was obtained, and the specific resistance of the material forming the non-porous film was determined. Decided.
  • the specific resistance of the material forming the non-porous film was regarded as the specific resistance of the material forming the alloy film in the film with the alloy film according to each Example and each Comparative Example. The results are shown in Table 1.
  • Radio wave absorption performance Radio waves with frequencies of 1 to 90 GHz were incident on the samples according to each example and comparative example at an incident angle of 0 °, and the absolute value of the amount of reflection at each frequency was specified in accordance with JIS R 1679: 2007. .. For each sample, the maximum value of the absolute value of the reflection amount, the frequency indicating the maximum value (absorption peak frequency), and the frequency range in which the absolute value of the reflection amount indicates 20 dB or more were determined.
  • Example 1 DC magnetron sputtering was performed using an Al (aluminum) target material and a Si (silicon) target material and an argon gas as a process gas to form an Al—Si alloy film on the PET film.
  • DC magnetron sputtering a discharge involving an Al (aluminum) target material and a discharge involving a Si (silicon) target material were simultaneously performed. In this way, the non-porous film according to Example 1 was formed on the PET film.
  • the specific resistance of the material forming the non-porous film according to Example 1 was 1.0 ⁇ 10 -4 ⁇ ⁇ cm.
  • a plurality of square openings were formed in the non-porous film according to Example 1 to obtain a film with an alloy film according to Example 1.
  • the maximum size of the openings was 127 ⁇ m, and the minimum distance between adjacent openings was 10 ⁇ m.
  • the plurality of openings were formed so that their centers formed a square grid.
  • an ITO target material containing 10% by weight of SnO 2 DC magnetron sputtering was performed using argon and oxygen as process gases to form an ITO film on a PET film. Then, the ITO film was annealed at a temperature of 150 ° C. for 1 hour to polycrystallize ITO to obtain a film with a reflector. The sheet resistance of the reflector of the film with the reflector was 20 ⁇ / ⁇ . Next, an acrylic resin having a relative permittivity of 2.6 was molded to a thickness of 615 ⁇ m to obtain an acrylic resin layer A.
  • the film with an alloy film according to Example 1 was laminated on the acrylic resin layer A so that the alloy film of the film with an alloy film according to Example 1 was in contact with the acrylic resin layer A.
  • the reflector film was laminated on the acrylic resin layer A so that the Cu film in the reflector film was in contact with the acrylic resin layer A. In this way, a sample according to Example 1 was obtained.
  • Example 2 A non-porous film according to Example 2 was formed on the PET film in the same manner as in Example 1 except for the following points, and a film with an alloy film according to Example 2 was obtained.
  • DC magnetron sputtering with respect to the discharge power of the discharge involving the Al (aluminum) target material so that the specific resistance of the material forming the non-porous film according to Example 2 is 1.4 ⁇ 10 -3 ⁇ ⁇ cm. , The ratio of the discharge power of the discharge involving the Si (silicon) target material was adjusted.
  • the conditions of DC magnetron sputtering were adjusted so that the thickness of the alloy film in the film with the alloy film according to Example 2 was 350 nm.
  • a metal laser pattern processing machine Using a metal laser pattern processing machine, a plurality of square openings were formed in the non-porous film according to Example 2, and a film with an alloy film according to Example 2 was obtained.
  • the maximum size of the openings was 127 ⁇ m, and the minimum distance between adjacent openings was 10 ⁇ m.
  • the plurality of openings were formed so that their centers formed a square grid.
  • Example 2 A sample according to Example 2 was obtained in the same manner as in Example 1 except that the film with an alloy film according to Example 2 was used instead of the film with an alloy film according to Example 1.
  • Example 3 A non-porous film according to Example 3 was formed on the PET film in the same manner as in Example 1 except for the following points, and a film with an alloy film according to Example 3 was obtained.
  • DC magnetron sputtering with respect to the discharge power of the discharge involving the Al (aluminum) target material so that the specific resistance of the material forming the non-porous film according to Example 3 is 1.0 ⁇ 10 -5 ⁇ ⁇ cm. , The ratio of the discharge power of the discharge involving the Si (silicon) target material was adjusted.
  • the conditions of DC magnetron sputtering were adjusted so that the thickness of the alloy film in the film with the alloy film according to Example 3 was 5 nm.
  • a metal laser pattern processing machine Using a metal laser pattern processing machine, a plurality of square openings were formed in the non-porous film according to Example 3, and a film with an alloy film according to Example 3 was obtained.
  • the maximum size of the openings was 269 ⁇ m, and the minimum distance between adjacent openings was 10 ⁇ m.
  • the plurality of openings were formed so that their centers formed a square grid.
  • Example 3 instead of the film with an alloy film according to Example 1, the film with an alloy film according to Example 3 was used, and instead of the acrylic resin layer A, an acrylic resin having a relative permittivity of 2.6 was molded to a thickness of 630 ⁇ m.
  • a sample according to Example 3 was obtained in the same manner as in Example 1 except that the acrylic resin layer B thus obtained was used.
  • Example 4 A non-porous film according to Example 4 was formed on the PET film in the same manner as in Example 1 except for the following points, and a film with an alloy film according to Example 4 was obtained.
  • DC magnetron sputtering with respect to the discharge power of the discharge involving the Al (aluminum) target material so that the specific resistance of the material forming the non-porous film according to Example 4 is 5.0 ⁇ 10 -4 ⁇ ⁇ cm. , The ratio of the discharge power of the discharge involving the Si (silicon) target material was adjusted.
  • the conditions of DC magnetron sputtering were adjusted so that the thickness of the alloy film in the film with the alloy film according to Example 4 was 25 nm.
  • a metal laser pattern processing machine Using a metal laser pattern processing machine, a plurality of square openings were formed in the non-porous film according to Example 4, and a film with an alloy film according to Example 4 was obtained.
  • the maximum size of the openings was 35 ⁇ m, and the minimum distance between adjacent openings was 10 ⁇ m.
  • the plurality of openings were formed so that their centers formed a square grid.
  • Example 4 instead of the film with an alloy film according to Example 1, the film with an alloy film according to Example 4 was used, and instead of the acrylic resin layer A, an acrylic resin having a relative permittivity of 2.6 was molded to a thickness of 605 ⁇ m.
  • a sample according to Example 4 was obtained in the same manner as in Example 1 except that the acrylic resin layer C thus obtained was used.
  • Example 5 In the same manner as in Example 1, a non-porous film according to Example 5 was formed on the PET film. Using a metal laser pattern processing machine, a plurality of square openings were formed in the non-porous film according to Example 5, and a film with an alloy film according to Example 5 was obtained. In plan view, the maximum size of the openings was 14 ⁇ m, and the minimum distance between adjacent openings was 1 ⁇ m. In plan view, the plurality of openings were formed so that their centers formed a square grid.
  • Example 5 The same as in Example 1 except that the alloy film-attached film according to Example 5 was used instead of the alloy film-attached film according to Example 1 and the acrylic resin layer C was used instead of the acrylic resin layer A. , A sample according to Example 5 was obtained.
  • Example 6 A non-porous film according to Example 6 was formed on the PET film in the same manner as in Example 1 except for the following points, and a film with an alloy film according to Example 6 was obtained.
  • DC magnetron sputtering with respect to the discharge power of the discharge involving the Al (aluminum) target material so that the specific resistance of the material forming the non-porous film according to Example 6 is 7.8 ⁇ 10 -5 ⁇ ⁇ cm. , The ratio of the discharge power of the discharge involving the Si (silicon) target material was adjusted.
  • the conditions of DC magnetron sputtering were adjusted so that the thickness of the alloy film in the film with the alloy film according to Example 4 was 25 nm.
  • a metal laser pattern processing machine Using a metal laser pattern processing machine, a plurality of square openings were formed in the non-porous film according to Example 6, and a film with an alloy film according to Example 6 was obtained.
  • the maximum size of the openings was 707 ⁇ m, and the minimum distance between adjacent openings was 50 ⁇ m.
  • the plurality of openings were formed so that their centers formed a square grid.
  • Example 6 instead of the film with an alloy film according to Example 1, the film with an alloy film according to Example 6 was used, and instead of the acrylic resin layer A, an acrylic resin having a relative permittivity of 2.6 was molded to a thickness of 650 ⁇ m. A sample according to Example 6 was obtained in the same manner as in Example 1 except that the acrylic resin layer D thus obtained was used.
  • Example 7 In the same manner as in Example 1, a non-porous film according to Example 7 was formed on the PET film. Using a metal laser pattern processing machine, a plurality of square openings were formed in the non-porous film according to Example 7, and a film with an alloy film according to Example 7 was obtained. In plan view, the maximum size of the openings was 3536 ⁇ m, and the minimum distance between adjacent openings was 250 ⁇ m. In plan view, the plurality of openings were formed so that their centers formed a square grid.
  • An acrylic resin having a relative permittivity of 2.6 was molded to a thickness of 18500 ⁇ m to obtain an acrylic resin layer E.
  • a sample according to Example 7 was obtained.
  • Example 8> A non-porous film according to Example 10 was formed on the PET film in the same manner as in Example 1 except for the following points, and a film with an alloy film according to Example 10 was obtained.
  • DC magnetron sputtering with respect to the discharge power of the discharge involving the Al (aluminum) target material so that the specific resistance of the material forming the non-porous film according to Example 10 is 1.0 ⁇ 10 -5 ⁇ ⁇ cm. , The ratio of the discharge power of the discharge involving the Si (silicon) target material was adjusted.
  • the conditions of DC magnetron sputtering were adjusted so that the thickness of the alloy film in the film with the alloy film according to Example 10 was 25 nm.
  • a plurality of square openings were formed in the non-porous film according to Example 10 to obtain a film with an alloy film according to Example 10.
  • the maximum size of the openings was 47192 ⁇ m, and the minimum distance between adjacent openings was 640 ⁇ m.
  • the plurality of openings were formed so that their centers formed a square grid.
  • An acrylic resin having a relative permittivity of 2.6 was molded to a thickness of 51300 ⁇ m to obtain an acrylic resin layer F.
  • a sample according to Example 8 was obtained.
  • ⁇ Comparative example 1> A non-porous film according to Comparative Example 1 was formed on the PET film in the same manner as in Example 1 except for the following points, and a film with an alloy film according to Comparative Example 1 was obtained.
  • DC magnetron sputtering with respect to the discharge power of the discharge involving the Al (aluminum) target material so that the specific resistance of the material forming the non-porous film according to Comparative Example 1 is 1.0 ⁇ 10 -3 ⁇ ⁇ cm. , The ratio of the discharge power of the discharge involving the Si (silicon) target material was adjusted.
  • the conditions of DC magnetron sputtering were adjusted so that the thickness of the alloy film in the film with the alloy film according to Comparative Example 1 was 25 nm.
  • a metal laser pattern processing machine Using a metal laser pattern processing machine, a plurality of square openings were formed in the non-porous film according to Comparative Example 1 to obtain a film with an alloy film according to Comparative Example 1.
  • the maximum size of the openings was 1.4 ⁇ m, and the minimum distance between adjacent openings was 10 ⁇ m.
  • the plurality of openings were formed so that their centers formed a square grid.
  • a sample according to Comparative Example 1 was obtained in the same manner as in Example 1 except that the film with an alloy film according to Comparative Example 1 was used instead of the film with an alloy film according to Example 1.
  • ⁇ Comparative example 2> A non-porous film according to Comparative Example 1 was formed on the PET film in the same manner as in Example 1 except for the following points, and a film with an alloy film according to Comparative Example 1 was obtained.
  • DC magnetron sputtering with respect to the discharge power of the discharge involving the Al (aluminum) target material so that the specific resistance of the material forming the non-porous film according to Comparative Example 1 is 1.0 ⁇ 10 -6 ⁇ ⁇ cm. , The ratio of the discharge power of the discharge involving the Si (silicon) target material was adjusted.
  • the conditions of DC magnetron sputtering were adjusted so that the thickness of the alloy film in the film with the alloy film according to Comparative Example 1 was 25 nm.
  • a metal laser pattern processing machine Using a metal laser pattern processing machine, a plurality of square openings were formed in the non-porous film according to Comparative Example 1 to obtain a film with an alloy film according to Comparative Example 1.
  • the maximum size of the openings was 707 ⁇ m, and the minimum distance between adjacent openings was 10 ⁇ m.
  • the plurality of openings were formed so that their centers formed a square grid.
  • a sample according to Comparative Example 2 was obtained in the same manner as in Example 1 except that the film with an alloy film according to Comparative Example 2 was used instead of the film with an alloy film according to Example 1.
  • the samples according to Examples 1 to 8 show good absorption performance for radio waves of a predetermined frequency, and desired impedance matching is achieved by the alloy film of the alloy film-attached film according to each example. It turned out that. On the other hand, it is difficult to say that the samples according to Comparative Examples 1 and 2 show good absorption performance for radio waves of a predetermined frequency, and it is difficult to perform impedance matching with the alloy film of the alloy film-attached film according to each Comparative Example. It has been suggested. Therefore, it was suggested that it is advantageous from the viewpoint of impedance matching that the value of ⁇ / t in the alloy film is at a predetermined value.
  • the alloy film of the film with an alloy film according to each example had a high aperture ratio and had transparency.

Landscapes

  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Shielding Devices Or Components To Electric Or Magnetic Fields (AREA)
  • Laminated Bodies (AREA)

Abstract

インピーダンス整合膜10aは、インピーダンス整合膜10aの主面10fに沿って規則的に形成された複数の開口11を有する。インピーダンス整合膜10aにおいて、インピーダンス整合膜10aをなす材料の比抵抗ρをインピーダンス整合膜10aの厚みtで割った値ρ/tが1~300Ω/□である。

Description

インピーダンス整合膜及び電波吸収体
 本発明は、インピーダンス整合膜及び電波吸収体に関する。
 従来、所定の膜を用いて、電波吸収体の表面のインピーダンスを空気の特性インピーダンスに合わせるインピーダンス整合を図る技術が知られている。一方、従来、透明な電波吸収体を提供することが試みられている。
 例えば、特許文献1には、構成要素の全ての層が透明又は半透明である電波吸収体が記載されている。この電波吸収体では、全面導体層と、第1誘電体層と、線状パターン抵抗層と、第2誘電体層と、パターン層とがこの順序で積層されている。この電波吸収体によれば、最表層のパターン層で良好に電磁波を受信できる。パターン層と第2誘電体層とが接しているので、パターン層が受信した電磁波の第2誘電体層への漏れが大きい。第2誘電体層と線状パターン層とが接しているので、第2誘電体層に漏れた電磁波を線状パターン層が効率良く熱に変換できる。なお、1.0×10-4Ωcm以上1.0×10-1Ωcm以下の体積抵抗率を有する高抵抗導体が線状パターン抵抗層をなしている。
特開2006-179671号公報
 特許文献1に記載の電波吸収体において線状パターン層は、第2誘電体層に漏れた電磁波を効率良く熱に変換するものであり、特許文献1には、線状パターン層を用いてインピーダンス整合を図ることは記載されていない。
 一方、ヘッドライト及びフロントガラスの周辺に配置されるセンサを用いたセンシングにおいて透明性を有するインピーダンス整合膜が必要になることが想定される。加えて、第5世代移動通信システム(5G)及びInternet of Things(IoT)等の多岐にわたる技術分野において、透明性を有し、かつ、ノイズ低減に有利なインピーダンス整合膜が必要になることが想定される。このような事情に鑑み、本発明は、透明性を有する新規なインピーダンス整合膜を提供する。
 本発明は、
 インピーダンス整合膜であって、
 当該インピーダンス整合膜の主面に沿って規則的に形成された複数の開口を有し、
 当該インピーダンス整合膜をなす材料の比抵抗を当該インピーダンス整合膜の厚みで割った値が1~300Ω/□である、
 インピーダンス整合膜を提供する。
 また、本発明は、
 上記のインピーダンス整合膜と、
 電波を反射する反射体と、
 前記インピーダンス整合膜の厚み方向において前記インピーダンス整合膜と前記反射体との間に配置された誘電体層と、を備えた、
 電波吸収体を提供する。
 上記のインピーダンス整合膜は、透明性を有する新規なインピーダンス整合膜である。
図1Aは、本発明に係るインピーダンス整合膜の一例を示す平面図である。 図1Bは、図1AのIB-IB線を切断線とするインピーダンス整合膜の断面図である。 図2Aは、本発明に係るインピーダンス整合膜の別の一例を示す平面図である。 図2Bは、本発明に係るインピーダンス整合膜のさらに別の一例を示す平面図である。 図2Cは、本発明に係るインピーダンス整合膜のさらに別の一例を示す平面図である。 図3Aは、本発明に係る電波吸収体の一例を示す断面図である。 図3Bは、本発明に係る電波吸収体の変形例を示す断面図である。 図3Cは、本発明に係る電波吸収体の別の変形例を示す断面図である。 図4は、本発明に係る電波吸収体の別の一例を示す断面図である。
 インピーダンス整合膜が複数の開口を有することは、インピーダンス整合膜に透明性をもたらす観点から有利である。加えて、インピーダンス整合膜の透明性の空間的なばらつきを抑制するために、インピーダンス整合膜の主面に沿って複数の開口が規則的に形成されていることが有利である。一方、本発明者らの検討によれば、特許文献1の記載は、このようなインピーダンス整合膜を作製するうえで十分ではないことが分かった。そこで、本発明者らは、鋭意検討を重ねた結果、インピーダンス整合膜をなす材料の比抵抗をインピーダンス整合膜の厚みで割った値を所定の範囲に調整することが所望のインピーダンス整合及び高い透明性を両立するうえで有利であることを新たに見出した。本発明者らは、この新たな知見に基づき、本発明に係るインピーダンス整合膜を案出した。本明細書において「透明性」とは、特に説明する場合を除き、可視光に対する透明性を意味する。
 本発明の実施形態について、図面を参照しつつ説明する。なお、本発明は、以下の実施形態には限定されない。
 図1A及び図1Bに示す通り、インピーダンス整合膜10aは、複数の開口11を有する。これにより、インピーダンス整合膜10aが透明性を有する。複数の開口11は、インピーダンス整合膜10aの主面10fに沿って規則的に形成されている。本明細書において、主面10fは、インピーダンス整合膜10aの厚み方向に互いに離れて位置する表面及び裏面を意味する。複数の開口11のそれぞれは、典型的には、インピーダンス整合膜10aにおいて貫通孔として形成されている。インピーダンス整合膜10aにおいて、インピーダンス整合膜10aをなす材料の比抵抗ρ[Ω・m]をインピーダンス整合膜10aの厚みt[m]で割った値ρ/tが1~300Ω/□である。なお、値ρ/tの次元はΩであるが、電気抵抗との混同を避けるために値ρ/tの単位をΩ/□と表記する。インピーダンス整合膜10aにおいて、値ρ/tが1~300Ω/□であることは、インピーダンス整合膜10aが所望の透明性を有するように複数の開口11を形成しつつ所望のインピーダンス整合を図るうえで有利である。
 インピーダンス整合膜10aをなす材料の比抵抗ρは、例えば、インピーダンス整合膜10aから所定の寸法の断片を採取し、その断片の電気抵抗及び寸法を測定することによって決定できる。また、インピーダンス整合膜10aの厚みtは、例えば、透過型電子顕微鏡(TEM)を用いて、インピーダンス整合膜10aの断面を観察することによって決定できる。
 インピーダンス整合膜10aにおいて、ρ/tは、250Ω/□以下であってもよく、200Ω/□以下であってもよく、200Ω/□未満であってもよい。これにより、インピーダンス整合膜10aの透明性が高くなるように複数の開口11を形成しつつ所望のインピーダンス整合を図りやすい。
 インピーダンス整合膜10aにおいて、ρ/tは、2Ω/□以上であってもよく、3Ω/□以上であってもよく、4Ω/□以上であってもよい。これにより、インピーダンス整合膜10aによって所望のインピーダンス整合を図りやすい。
 主面10fにおける開口11の最大寸法D1は、特定の値に限定されない。最大寸法D1は、例えば、7.5×104μm以下である。これにより、インピーダンス整合膜10aによって所望のインピーダンス整合を図ることができ、例えば、インピーダンス整合膜10aを用いて作製される電波吸収体が所望の周波数の電波に対し良好な電波吸収性能を発揮しやすい。図1Aに示す通り、例えば、開口11が平面視で四角形状である場合、最大寸法D1は四角形の対角線の長さに相当しうる。
 最大寸法D1は、5.0×104μm以下であってもよく、0.5×104μm以下であってもよく、0.1×104μm以下であってもよく、0.03×104μm以下であってもよい。
 最大寸法D1の下限値は、特定の値に限定されない。最大寸法D1は、例えば、1μm以上であり、5μm以上であってもよく、10μm以上であってもよい。これにより、インピーダンス整合膜10の作製が容易になりやすい。
 インピーダンス整合膜10aにおいて、開口11同士の距離の最小値D2は、特定の値に限定されない。最小値D2は、例えば、0.1~650μmである。これにより、インピーダンス整合膜10aがより確実に透明性を有するとともに、インピーダンス整合膜10aによって所望のインピーダンス整合を図ることができる。例えば、インピーダンス整合膜10aを用いて作製される電波吸収体が所望の周波数の電波に対し良好な電波吸収性能を発揮しやすい。
 最小値D2は、0.3μm以上であってもよく、0.5μm以上であってもよい。最小値D2は、640μm以下であってもよく、600μm以下であってもよく、500μm以下であってもよく、400μm以下であってもよく、300μm以下であってもよい。
 インピーダンス整合膜10aの厚みtの値は、ρ/tが1~300Ω/□である限り、特定の値に限定されない。インピーダンス整合膜10aの厚みtは、例えば、5~500nmである。この場合、インピーダンス整合膜10aの反りを抑制しやすく、インピーダンス整合膜10aにおいてクラックが発生しにくい。加えて、インピーダンス整合膜10aが所定の環境に置かれたときにインピーダンス整合膜10aの特性が変化することを抑制しやすい。
 インピーダンス整合膜10aの厚みtは、10nm以上であってもよく、15nm以上であってもよい。これにより、インピーダンス整合膜10aが所定の環境に置かれたときにインピーダンス整合膜10aの特性が変化することをより抑制しやすい。インピーダンス整合膜10aの厚みtは、450nm以下であってもよく、400nm以下であってもよい。これにより、インピーダンス整合膜10aの反りをより確実に抑制できる。
 インピーダンス整合膜10aをなす材料の比抵抗ρは、ρ/tが1~300Ω/□である限り、特定の値に限定されない。ρは、例えば、5×10-6~2×10-3Ω・cmである。この場合、ρ/tを所望の範囲に調整するときに、インピーダンス整合膜10の厚みtが所望の厚みになりやすい。その結果、インピーダンス整合膜10aが所定の環境に置かれたときにインピーダンス整合膜10aの特性が変化することを抑制しやすい。加えて、インピーダンス整合膜10aの反りを抑制しやすく、インピーダンス整合膜10aにおいてクラックが発生しにくい。
 インピーダンス整合膜10aをなす材料の比抵抗ρは、例えば、1×10-5Ω・cm以上であってもよく、5×10-5Ω・cm以上であってもよい。これにより、インピーダンス整合膜10の厚みtを小さくしやすく、インピーダンス整合膜10aの反りを抑制しやすい。このため、インピーダンス整合膜10aにおいてクラックが発生しにくい。インピーダンス整合膜10aをなす材料の比抵抗ρは、例えば、1.8×10-3Ω・cm以下であってもよく、1.6×10-3Ω・cm以下であってもよい。これにより、インピーダンス整合膜10の厚みtを大きくしやすく、インピーダンス整合膜10aが所定の環境に置かれたときにインピーダンス整合膜10aの特性が変化することを抑制しやすい。
 複数の開口11は規則的に形成されている限り、その配置は特定の配置に限定されない。例えば、インピーダンス整合膜10aにおいて、複数の開口11は、その中心が主面10fにおいて正方格子をなすように配置されている。
 複数の開口11は規則的に形成されている限り、その形状は特定の形状に限定されない。例えば、インピーダンス整合膜10aによれば、複数の開口11は平面視で正方形状である。
 インピーダンス整合膜10aにおける複数の開口11の開口率は、特定の値に限定されない。インピーダンス整合膜10aにおける複数の開口11の開口率は、例えば、50%以上であり、60%以上であってもよく、70%以上であってもよい。インピーダンス整合膜10aにおける複数の開口11の開口率は、例えば99%以下であり、97%以下であってもよく、95%以下であってもよい。複数の開口11の開口率は、インピーダンス整合膜10aを平面視したときの複数の開口11の開口面積Saとインピーダンス整合膜10aの非開口部の面積Sbとの和Sa+Sbに対する、複数の開口11の開口面積Saの比Sa/(Sa+Sb)である。
 インピーダンス整合膜10aをなす材料は、ρ/tを1~300Ω/□に調整できる限り、特定の材料に限定されない。インピーダンス整合膜10aをなす材料は、金属、合金、及び金属酸化物等の無機材料であってもよいし、導電性高分子及びカーボンナノチューブ等の有機材料であってもよい。
 インピーダンス整合膜10aは、複数の貫通孔が形成された均一な厚みを有する膜であってもよいし、織物であってもよい。織物をなす繊維は、導電性高分子及びカーボンナノチューブ等の有機材料であってもよいし、金属及び合金等の無機材料であってもよい。
 図1に示す通り、インピーダンス整合膜10aは、例えば、基材22の一方の主面上に形成されていてもよい。この場合、インピーダンス整合膜付フィルム15によってインピーダンス整合膜10aが提供されうる。なお、基材22が使用されることなく、インピーダンス整合膜10aが単独で提供されてもよい。
 基材22は、例えば、インピーダンス整合膜10aを支持する支持体としての役割を果たす。インピーダンス整合膜付フィルム15におけるインピーダンス整合膜10aは、例えば、スパッタリング等の成膜法によって基材22の一方の主面上に形成された無孔の膜にレーザー加工又はエッチング等によって複数の開口11を形成することによって作製できる。場合によっては、イオンプレーティング又はコーティング(例えば、バーコーティング)等の成膜法によってインピーダンス整合膜10aのための無孔の膜が形成されてもよい。
 基材22は、例えば10~150μmの厚みを有し、望ましくは15~100μmの厚みを有する。これにより、基材22の曲げ剛性が低く、かつ、インピーダンス整合膜10aを形成する場合に基材22において皺の発生又は変形を抑制できる。
 複数の開口11の配置及び形状に関し、インピーダンス整合膜10aは、図2Aに示すインピーダンス整合膜10b、図2Bに示すインピーダンス整合膜10c、又は図2Cに示すインピーダンス整合膜10dのように変更されてもよい。インピーダンス整合膜10b、インピーダンス整合膜10c、及びインピーダンス整合膜10dのそれぞれは特に説明をする部分を除きインピーダンス整合膜10aと同様に構成されている。インピーダンス整合膜10aの構成要素と同一又は対応する、インピーダンス整合膜10b、インピーダンス整合膜10c、及びインピーダンス整合膜10dのそれぞれの構成要素には同一の符号を付し、詳細な説明を省略する。インピーダンス整合膜10aに関する説明は、技術的に矛盾しない限り、インピーダンス整合膜10b、インピーダンス整合膜10c、及びインピーダンス整合膜10dにも当てはまる。
 図2Aに示す通り、インピーダンス整合膜10bにおいて、複数の開口11は平面視で円状である。加えて、複数の開口11は、その中心が主面10fにおいて平方四辺形格子をなすように配置されている。
 図2Bに示す通り、インピーダンス整合膜10cにおいて、複数の開口11は平面視で正六角形状である。加えて、複数の開口11は、その中心が主面10fにおいて平方四辺形格子をなすように配置されている。
 図2Cに示す通り、インピーダンス整合膜10cにおいて、複数の開口11は平面視で正三角形状である。加えて、同じ向きの正三角形状の複数の開口11は、その中心が主面10fにおいて平行四辺形格子をなすように配置されている。なお、本明細書では、平面図形の重心を平面図形状の開口の中心とみなす。
 複数の開口11は、平面視で、長方形等の他の多角形状又は楕円状であってもよい。複数の開口11は、その中心が主面10fにおいて長方形格子等の他の平面格子をなすように配置されてもよい。なお、本明細書において平面格子とは、2つの独立な方向へのそれぞれ一定距離の平行移動で不変な平面上の点の配列を意味する。
 図3Aに示す通り、例えば、インピーダンス整合膜10aを用いて電波吸収体1aを提供できる。電波吸収体1aは、インピーダンス整合膜10aと、電波を反射する反射体30と、誘電体層20とを備えている。誘電体層20は、インピーダンス整合膜10aの厚み方向においてインピーダンス整合膜10aと反射体30との間に配置されている。
 電波吸収体1aは、例えば、λ/4型の電波吸収体である。電波吸収体1aに吸収対象とする波長λOの電波が入射すると、インピーダンス整合膜10aの表面での反射(表面反射)による電波と、反射体30における反射(裏面反射)による電波とが干渉するように、電波吸収体1aが設計されている。λ/4型の電波吸収体においては、下記の式(1)に示す通り、誘電体層の厚みt及び誘電体層の比誘電率εrによって吸収対象の電波の波長λOが決定される。すなわち、誘電体層の比誘電率及び厚みを適宜調節することにより、吸収対象の波長の電波を設定できる。式(1)においてsqrt(εr)は、比誘電率εrの平方根を意味する。
 λO=4t×sqrt(εr)   式(1)
 電波吸収体1aにおいて、開口11の最大寸法D1は、例えば、吸収ピーク波長λpの1/4以下である。吸収ピーク波長λpは、電波吸収体1aに対し、日本工業規格(JIS)R 1679:2007に基づいて測定される反射量の絶対値が最大となる電波の波長である。換言すると、吸収ピーク波長λpは、電波吸収体1aにおいて電波吸収量が最大となる電波の波長である。電波吸収量は、JIS R 1679:2007に基づいて測定される反射量の絶対値である。このような構成によれば、電波吸収体1aにおいて吸収ピーク波長λpの電波の表面反射が適切に生じ、電波吸収体1aが吸収ピーク波長λpの電波を良好に吸収できる。
 電波吸収体1aは、例えば、1GHz以上の周波数を有する電波に対してインピーダンス整合をなす。これにより、電波吸収体1aは、1GHz以上の周波数を有する電波を効果的に吸収できる。
 電波吸収体1aがインピーダンス整合をなす電波の周波数は、1GHz以上であってもよく、4GHz以上であってもよく、20GHz以上であってもよい。電波吸収体1aがインピーダンス整合をなす電波の周波数は、例えば3000GHz以下であり、300GHz以下であってもよく、100GHz以下であってもよい。
 反射体30は、吸収対象の電波を反射できる限り特定の形態に限定されない。反射体30は、例えば透明導電膜である。この場合、反射体30が透明性を有し、電波吸収体1aの全体を透明にしやすい。透明導電膜をなす材料は、金属、合金、及び金属酸化物等の無機材料であってもよいし、導電性高分子及びカーボンナノチューブ等の有機材料であってもよい。
 透明導電膜は、例えば、透明導電膜の主面に沿って規則的に形成された複数の開口31を有する。このような構成によれば、反射体30は、吸収対象の電波を適切に反射でき、かつ、所望の透明性を有しやすい。透明導電膜は無孔の膜であってもよい。
 反射体30が複数の開口31を有する場合、インピーダンス整合膜10aは、複数の貫通孔が形成された均一な厚みを有する膜であってもよいし、織物であってもよい。織物をなす繊維は、導電性高分子及びカーボンナノチューブ等の有機材料であってもよいし、金属及び合金等の無機材料であってもよい。
 反射体30における複数の開口31の形状は、特定の形状に限定されない。複数の開口31の形状は、例えば、平面視で、三角形状、正方形及び長方形等の四角形状、六角形状、その他の多角形状、円状、又は楕円状であってもよい。
 反射体30における複数の開口31の配置は、特定の配置に限定されない。複数の開口31は、例えば、複数の開口31の中心が正方形格子及び平行四辺形格子等の平面格子をなすように配置されていてもよい。
 誘電体層20は、例えば、2.0~20.0の比誘電率を有する。この場合、誘電体層20の厚みを調整しやすく、電波吸収体1aの電波吸収性能の調整が容易である。誘電体層20の比誘電率は、例えば、空洞共振法に従って測定される10GHzにおける比誘電率である。
 誘電体層20は、例えば、所定の高分子によって形成されている。誘電体層20は、例えば、エチレン酢酸ビニル共重合体、塩化ビニル樹脂、ウレタン樹脂、アクリル樹脂、アクリルウレタン樹脂、ポリエチレン、ポリプロピレン、シリコーン、ポリエチレンテレフタレート、ポリエチレンナフタレート、ポリカーボネート、ポリイミド、及びシクロオレフィンポリマーからなる群より選ばれる少なくとも1つの高分子を含む。この場合、誘電体層20の厚みを調整しやすく、かつ、電波吸収体1aの製造コストを低く保つことができる。誘電体層20は、例えば、所定の樹脂組成物を熱プレスすることによって作製できる。
 誘電体層20は、単一の層として形成されていてもよいし、同一又は異なる材料でできた複数の層によって形成されていてもよい。誘電体層20がn個の層(nは2以上の整数)を有する場合、誘電体層20の比誘電率は、例えば、以下の様にして決定される。各層の比誘電率εiを測定する(iは、1~nの整数)。次に、測定された各層の比誘電率εiにその層の厚みtiの誘電体層20の全体Tに対する厚みの割合を乗じて、εi×(ti/T)を求める。すべての層に対するεi×(ti/T)を加算することによって、誘電体層20の比誘電率を決定できる。
 図3Aに示す通り、誘電体層20は、例えば、第一層21、第二層22、及び第三層23を備えている。第一層21は、第二層22と第三層23との間に配置されている。第一層21は、例えば、エチレン酢酸ビニル共重合体、塩化ビニル樹脂、ウレタン樹脂、アクリル樹脂、アクリルウレタン樹脂、ポリエチレン、ポリプロピレン、シリコーン、ポリエチレンテレフタレート、ポリエチレンナフタレート、ポリカーボネート、ポリイミド、及びシクロオレフィンポリマーからなる群より選ばれる少なくとも1つの高分子を含む。
 電波吸収体1aにおいて、第二層22は、インピーダンス整合膜10aにとっての基材を兼ねている。第二層22は、例えば、インピーダンス整合膜10aよりも反射体30に近い位置に配置されている。図3Bに示す通り、第二層22は、インピーダンス整合膜10aよりも反射体30から遠い位置に配置されていてもよい。この場合、第一層21及び第三層23によって誘電体層20が構成される。この場合、第二層22によって、インピーダンス整合膜10a及び誘電体層20が保護され、電波吸収体1aが高い耐久性を有する。この場合、例えば、インピーダンス整合膜10aが第一層21に接触していてもよい。第二層22の材料は、例えば、ポリエチレンテレフタレート(PET)、ポリエチレンナフタレート(PEN)、アクリル樹脂(PMMA)、ポリカーボネート(PC)、ポリイミド(PI)、又はシクロオレフィンポリマー(COP)である。なかでも、良好な耐熱性と、寸法安定性と、製造コストとのバランスの観点から、第二層22の材料は、望ましくはPETである。
 電波吸収体1aにおいて、第三層23は、例えば、反射体30を支持している。この場合、反射体30は、例えば、スパッタリング、イオンプレーティング、又はコーティング(例えば、バーコーティング)等の方法を用いて第三層23上に成膜することによって作製されてもよい。さらに、レーザー加工及びエッチング等によって複数の開口11が形成されてもよい。図3Aに示す通り、第三層23は、例えば、電波吸収体1aにおいて、反射体30よりもインピーダンス整合膜10aに近い位置に配置されており、誘電体層20の一部を構成している。なお、図3Cに示す通り、第三層23は、反射体30よりもインピーダンス整合膜10aから遠い位置に配置されていてもよい。この場合、例えば、反射体30が第一層21に接触している。
 第三層23の材料として、例えば、第二層22の材料として例示された材料を使用できる。第三層23の材料は、第二層22の材料と同一であってもよいし、異なっていてもよい。良好な耐熱性と、寸法安定性と、製造コストとのバランスの観点から、第三層23の材料は、望ましくはPETである。
 第三層23は、例えば10~150μmの厚みを有し、望ましくは15~100μmの厚みを有する。これにより、第三層23の曲げ剛性が低く、かつ、反射体30を形成する場合に第三層23において皺の発生又は変形を抑制できる。なお、第三層23は、場合によっては省略可能である。
 第一層21は、複数の層によって構成されていてもよい。特に、図3B又は図3Cに示す通り、インピーダンス整合膜10a及び反射体30の少なくとも1つに第一層21が接触している場合に、第一層21は複数の層によって構成されうる。
 第一層21は、粘着性を有していてもよいし、粘着性を有していなくてもよい。第一層21が粘着性を有する場合、第一層21の両主面の少なくとも一方に粘着層が接して配置されていてもよいし、その両主面に接するように粘着層が配置されていなくてもよい。第一層21が粘着性を有しない場合、望ましくは、第一層21の両主面に接して粘着層が配置される。なお、誘電体層20が第二層22を含む場合、第二層22が粘着性を有しなくても、第二層22の両主面に接するように粘着層が配置されなくてもよい。この場合、第二層22の一方の主面に接して粘着層が配置されうる。誘電体層20が第三層23を含む場合、第三層23が粘着性を有しなくても、第三層23の両主面に接して粘着層が配置されなくてもよい。この場合、第三層23の少なくとも一方の主面に接して粘着層が配置されうる。粘着層は、例えば、ゴム系粘着剤、アクリル系粘着剤、シリコーン系粘着剤、又はウレタン系粘着剤を含んでいる。
 電波吸収体1aは、誘電損失材料及び磁性損失材料の少なくとも1つを含んでいてもよい。換言すると、電波吸収体1aは、誘電損失型の電波吸収体であってもよいし、磁性損失型の電波吸収体であってもよい。この場合、インピーダンス整合膜10aに求められるρ/tは高くなりやすい。誘電体層20が、誘電損失材料及び磁性損失材料の少なくとも1つを含んでいてもよい。インピーダンス整合膜10aをなす材料は磁性体であってもよい。
 電波吸収体1aは、様々な観点から変更可能である。例えば、電波吸収体1aは、図4に示す電波吸収体1bのように変更されてもよい。電波吸収体1bは、特に説明する部分を除き、電波吸収体1aと同様に構成されている。電波吸収体1aの構成要素と同一又は対応する電波吸収体1bの構成要素には同一の符号を付し、詳細な説明を省略する。電波吸収体1aに関する説明は、技術的に矛盾しない限り電波吸収体1bにも当てはまる。
 図4に示す通り、電波吸収体1bは、粘着層40aをさらに備えている。電波吸収体1bにおいて、反射体30は、誘電体層20と粘着層40aとの間に配置されている。
 例えば、所定の物品に粘着層40aを接触させて電波吸収体1bを押し当てることによって、電波吸収体1bを物品に貼り付けることができる。これにより、電波吸収体付物品を得ることができる。
 粘着層40aは、例えば、ゴム系粘着剤、アクリル系粘着剤、シリコーン系粘着剤、又はウレタン系粘着剤を含んでいる。電波吸収体1bは、セパレータ(図示省略)をさらに備えていてもよい。この場合、セパレータは、粘着層40aを覆っている。セパレータは、典型的には、粘着層40aを覆っているときに粘着層40aの粘着力を保つことができ、かつ、粘着層40aから容易に剥離できるフィルムである。セパレータは、例えば、PET等のポリエステル樹脂製のフィルムである。セパレータを剥離することによって粘着層40aが露出し、電波吸収体1bを物品に貼り付けることができる。
 以下、実施例により本発明をより詳細に説明する。ただし、本発明は、以下の実施例に限定されない。まず、実施例及び比較例に関する評価方法について説明する。
 [TEM観察]
 集束イオンビーム加工観察装置(日立ハイテクノロジーズ社製、製品名:FB-2000A)を用いて、各実施例及び各比較例に係る無孔膜及び各実施例及び各比較例に係る合金膜付フィルムにおける合金膜の断面観察用サンプルを作製した。その後、電界放射型透過電子顕微鏡(日立ハイテクノロジーズ社製、製品名:HF-2000)を用いて、断面観察用サンプルを観察し、各実施例及び各比較例に係る無孔膜の厚みを測定した。また、各実施例及び各比較例に係る合金膜付フィルムにおける合金膜の厚みを同様にして測定した。結果を表1に示す。
 [比抵抗]
 非接触式抵抗測定装置(ナプソン社製、製品名:NC-80MAP)を用いて、JIS Z 2316に準拠して、渦電流測定法によって各実施例及び比較例に係る無孔膜のシート抵抗を測定した。各実施例及び各比較例において、上記のように測定した無孔膜の厚みと、上記のように測定した無孔膜のシート抵抗との積を求め、無孔膜をなす材料の比抵抗を決定した。無孔膜をなす材料の比抵抗を各実施例及び各比較例に係る合金膜付フィルムにおける合金膜をなす材料の比抵抗とみなした。結果を表1に示す。
 [電波吸収性能]
 各実施例及び比較例に係るサンプルに対し、1~90GHzの周波数の電波を0°の入射角度で入射させ、JIS R 1679:2007に準拠して、各周波数における反射量の絶対値を特定した。各サンプルに対し、反射量の絶対値の最大値、その最大値を示す周波数(吸収ピーク周波数)、及び反射量の絶対値が20dB以上を示す周波数のレンジを決定した。
 <実施例1>
 Al(アルミニウム)のターゲット材及びSi(ケイ素)のターゲット材を用い、かつ、プロセスガスとしてアルゴンガスを用いて、DCマグネトロンスパッタリングを行い、PETフィルムの上にAl-Si合金膜を形成した。DCマグネトロンスパッタリングにおいて、Al(アルミニウム)のターゲット材が関与する放電と、Si(ケイ素)のターゲット材が関与する放電とを同時に行った。このようにして、PETフィルムの上に実施例1に係る無孔膜を形成した。実施例1に係る無孔膜をなす材料の比抵抗は、1.0×10-4Ω・cmであった。次に、メタルレーザーパターン加工機を用いて、実施例1に係る無孔膜に正方形状の複数の開口を形成し、実施例1に係る合金膜付フィルムを得た。平面視において、開口の最大寸法は、127μmであり、隣り合う開口同士の距離の最小値は10μmであった。平面視において、複数の開口は、それらの中心が正方形格子をなすように形成されていた。
 10重量%のSnO2を含有するITOのターゲット材を用い、プロセスガスとしてアルゴン及び酸素を用いて、DCマグネトロンスパッタリングを行い、PETフィルムの上にITO膜を形成した。その後、温度150℃の条件でITO膜のアニール処理を1時間行って、ITOを多結晶化させ、反射体付フィルムを得た。反射体付フィルムの反射体のシート抵抗は20Ω/□であった。次に、2.6の比誘電率を有するアクリル樹脂を615μmの厚みに成形して、アクリル樹脂層Aを得た。実施例1に係る合金膜付フィルムの合金膜がアクリル樹脂層Aに接触するように実施例1に係る合金膜付フィルムをアクリル樹脂層Aに重ねた。次に、反射体付フィルムにおけるCu膜がアクリル樹脂層Aに接触するように反射体付フィルムをアクリル樹脂層Aに重ねた。このようにして、実施例1に係るサンプルを得た。
 <実施例2>
 下記の点以外は、実施例1と同様にして、PETフィルムの上に実施例2に係る無孔膜を形成するとともに、実施例2に係る合金膜付フィルムを得た。実施例2に係る無孔膜をなす材料の比抵抗が1.4×10-3Ω・cmとなるように、DCマグネトロンスパッタリングにおいて、Al(アルミニウム)のターゲット材が関与する放電の放電電力に対する、Si(ケイ素)のターゲット材が関与する放電の放電電力の比を調整した。加えて、実施例2に係る合金膜付フィルムにおける合金膜の厚みが350nmになるようにDCマグネトロンスパッタリングの条件を調整した。メタルレーザーパターン加工機を用いて、実施例2に係る無孔膜に正方形状の複数の開口を形成し、実施例2に係る合金膜付フィルムを得た。平面視において、開口の最大寸法は、127μmであり、隣り合う開口同士の距離の最小値は10μmであった。平面視において、複数の開口は、それらの中心が正方形格子をなすように形成されていた。
 実施例1に係る合金膜付フィルムの代わりに、実施例2に係る合金膜付フィルムを用いた以外は、実施例1と同様にして、実施例2に係るサンプルを得た。
 <実施例3>
 下記の点以外は、実施例1と同様にして、PETフィルムの上に実施例3に係る無孔膜を形成するとともに、実施例3に係る合金膜付フィルムを得た。実施例3に係る無孔膜をなす材料の比抵抗が1.0×10-5Ω・cmとなるように、DCマグネトロンスパッタリングにおいて、Al(アルミニウム)のターゲット材が関与する放電の放電電力に対する、Si(ケイ素)のターゲット材が関与する放電の放電電力の比を調整した。加えて、実施例3に係る合金膜付フィルムにおける合金膜の厚みが5nmになるようにDCマグネトロンスパッタリングの条件を調整した。メタルレーザーパターン加工機を用いて、実施例3に係る無孔膜に正方形状の複数の開口を形成し、実施例3に係る合金膜付フィルムを得た。平面視において、開口の最大寸法は、269μmであり、隣り合う開口同士の距離の最小値は10μmであった。平面視において、複数の開口は、それらの中心が正方形格子をなすように形成されていた。
 実施例1に係る合金膜付フィルムの代わりに、実施例3に係る合金膜付フィルムを用い、アクリル樹脂層Aの代わりに、2.6の比誘電率を有するアクリル樹脂を630μmの厚みに成形して得られたアクリル樹脂層Bを用いた以外は、実施例1と同様にして、実施例3に係るサンプルを得た。
 <実施例4>
 下記の点以外は、実施例1と同様にして、PETフィルムの上に実施例4に係る無孔膜を形成するとともに、実施例4に係る合金膜付フィルムを得た。実施例4に係る無孔膜をなす材料の比抵抗が5.0×10-4Ω・cmとなるように、DCマグネトロンスパッタリングにおいて、Al(アルミニウム)のターゲット材が関与する放電の放電電力に対する、Si(ケイ素)のターゲット材が関与する放電の放電電力の比を調整した。加えて、実施例4に係る合金膜付フィルムにおける合金膜の厚みが25nmになるようにDCマグネトロンスパッタリングの条件を調整した。メタルレーザーパターン加工機を用いて、実施例4に係る無孔膜に正方形状の複数の開口を形成し、実施例4に係る合金膜付フィルムを得た。平面視において、開口の最大寸法は、35μmであり、隣り合う開口同士の距離の最小値は10μmであった。平面視において、複数の開口は、それらの中心が正方形格子をなすように形成されていた。
 実施例1に係る合金膜付フィルムの代わりに、実施例4に係る合金膜付フィルムを用い、アクリル樹脂層Aの代わりに、2.6の比誘電率を有するアクリル樹脂を605μmの厚みに成形して得られたアクリル樹脂層Cを用いた以外は、実施例1と同様にして、実施例4に係るサンプルを得た。
 <実施例5>
 実施例1と同様にして、PETフィルムの上に実施例5に係る無孔膜を形成した。メタルレーザーパターン加工機を用いて、実施例5に係る無孔膜に正方形状の複数の開口を形成し、実施例5に係る合金膜付フィルムを得た。平面視において、開口の最大寸法は、14μmであり、隣り合う開口同士の距離の最小値は1μmであった。平面視において、複数の開口は、それらの中心が正方形格子をなすように形成されていた。
 実施例1に係る合金膜付フィルムの代わりに、実施例5に係る合金膜付フィルムを用い、アクリル樹脂層Aの代わりに、アクリル樹脂層Cを用いた以外は、実施例1と同様にして、実施例5に係るサンプルを得た。
 <実施例6>
 下記の点以外は、実施例1と同様にして、PETフィルムの上に実施例6に係る無孔膜を形成するとともに、実施例6に係る合金膜付フィルムを得た。実施例6に係る無孔膜をなす材料の比抵抗が7.8×10-5Ω・cmとなるように、DCマグネトロンスパッタリングにおいて、Al(アルミニウム)のターゲット材が関与する放電の放電電力に対する、Si(ケイ素)のターゲット材が関与する放電の放電電力の比を調整した。加えて、実施例4に係る合金膜付フィルムにおける合金膜の厚みが25nmになるようにDCマグネトロンスパッタリングの条件を調整した。メタルレーザーパターン加工機を用いて、実施例6に係る無孔膜に正方形状の複数の開口を形成し、実施例6に係る合金膜付フィルムを得た。平面視において、開口の最大寸法は、707μmであり、隣り合う開口同士の距離の最小値は50μmであった。平面視において、複数の開口は、それらの中心が正方形格子をなすように形成されていた。
 実施例1に係る合金膜付フィルムの代わりに、実施例6に係る合金膜付フィルムを用い、アクリル樹脂層Aの代わりに、2.6の比誘電率を有するアクリル樹脂を650μmの厚みに成形して得られたアクリル樹脂層Dを用いた以外は、実施例1と同様にして、実施例6に係るサンプルを得た。
 <実施例7>
 実施例1と同様にして、PETフィルムの上に実施例7に係る無孔膜を形成した。メタルレーザーパターン加工機を用いて、実施例7に係る無孔膜に正方形状の複数の開口を形成し、実施例7に係る合金膜付フィルムを得た。平面視において、開口の最大寸法は、3536μmであり、隣り合う開口同士の距離の最小値は250μmであった。平面視において、複数の開口は、それらの中心が正方形格子をなすように形成されていた。
 2.6の比誘電率を有するアクリル樹脂を18500μmの厚みに成形して、アクリル樹脂層Eを得た。実施例1に係る合金膜付フィルムの代わりに、実施例7に係る合金膜付フィルムを用い、アクリル樹脂層Aの代わりにアクリル樹脂層Eを用いた以外は、実施例1と同様にして、実施例7に係るサンプルを得た。
 <実施例8>
 下記の点以外は、実施例1と同様にして、PETフィルムの上に実施例10に係る無孔膜を形成するとともに、実施例10に係る合金膜付フィルムを得た。実施例10に係る無孔膜をなす材料の比抵抗が1.0×10-5Ω・cmとなるように、DCマグネトロンスパッタリングにおいて、Al(アルミニウム)のターゲット材が関与する放電の放電電力に対する、Si(ケイ素)のターゲット材が関与する放電の放電電力の比を調整した。加えて、実施例10に係る合金膜付フィルムにおける合金膜の厚みが25nmになるようにDCマグネトロンスパッタリングの条件を調整した。メタルレーザーパターン加工機を用いて、実施例10に係る無孔膜に正方形状の複数の開口を形成し、実施例10に係る合金膜付フィルムを得た。平面視において、開口の最大寸法は、47192μmであり、隣り合う開口同士の距離の最小値は640μmであった。平面視において、複数の開口は、それらの中心が正方形格子をなすように形成されていた。
 2.6の比誘電率を有するアクリル樹脂を51300μmの厚みに成形して、アクリル樹脂層Fを得た。実施例1に係る合金膜付フィルムの代わりに、実施例8に係る合金膜付フィルムを用い、アクリル樹脂層Aの代わりにアクリル樹脂層Fを用いた以外は、実施例1と同様にして、実施例8に係るサンプルを得た。
 <比較例1>
 下記の点以外は、実施例1と同様にして、PETフィルムの上に比較例1に係る無孔膜を形成するとともに、比較例1に係る合金膜付フィルムを得た。比較例1に係る無孔膜をなす材料の比抵抗が1.0×10-3Ω・cmとなるように、DCマグネトロンスパッタリングにおいて、Al(アルミニウム)のターゲット材が関与する放電の放電電力に対する、Si(ケイ素)のターゲット材が関与する放電の放電電力の比を調整した。加えて、比較例1に係る合金膜付フィルムにおける合金膜の厚みが25nmになるようにDCマグネトロンスパッタリングの条件を調整した。メタルレーザーパターン加工機を用いて、比較例1に係る無孔膜に正方形状の複数の開口を形成し、比較例1に係る合金膜付フィルムを得た。平面視において、開口の最大寸法は、1.4μmであり、隣り合う開口同士の距離の最小値は10μmであった。平面視において、複数の開口は、それらの中心が正方形格子をなすように形成されていた。
 実施例1に係る合金膜付フィルムの代わりに、比較例1に係る合金膜付フィルムを用いた以外は、実施例1と同様にして、比較例1に係るサンプルを得た。
 <比較例2>
 下記の点以外は、実施例1と同様にして、PETフィルムの上に比較例1に係る無孔膜を形成するとともに、比較例1に係る合金膜付フィルムを得た。比較例1に係る無孔膜をなす材料の比抵抗が1.0×10-6Ω・cmとなるように、DCマグネトロンスパッタリングにおいて、Al(アルミニウム)のターゲット材が関与する放電の放電電力に対する、Si(ケイ素)のターゲット材が関与する放電の放電電力の比を調整した。加えて、比較例1に係る合金膜付フィルムにおける合金膜の厚みが25nmになるようにDCマグネトロンスパッタリングの条件を調整した。メタルレーザーパターン加工機を用いて、比較例1に係る無孔膜に正方形状の複数の開口を形成し、比較例1に係る合金膜付フィルムを得た。平面視において、開口の最大寸法は、707μmであり、隣り合う開口同士の距離の最小値は10μmであった。平面視において、複数の開口は、それらの中心が正方形格子をなすように形成されていた。
 実施例1に係る合金膜付フィルムの代わりに、比較例2に係る合金膜付フィルムを用いた以外は、実施例1と同様にして、比較例2に係るサンプルを得た。
 表1に示す通り、実施例1~8に係るサンプルは所定の周波数の電波に対し良好な吸収性能を示しており、各実施例に係る合金膜付フィルムの合金膜により所望のインピーダンス整合がなされることが分かった。一方、比較例1及び2に係るサンプルは、所定の周波数の電波に対し良好な吸収性能を示すとは言い難く、各比較例に係る合金膜付フィルムの合金膜によりインピーダンス整合をなすことが難しいことが示唆された。このため、合金膜におけるρ/tの値が所定の値にあることがインピーダンス整合の観点から有利であることが示唆された。各実施例に係る合金膜付フィルムの合金膜は、高い開口率を有し、透明性を有していた。
Figure JPOXMLDOC01-appb-T000001
 

Claims (10)

  1.  インピーダンス整合膜であって、
     当該インピーダンス整合膜の主面に沿って規則的に形成された複数の開口を有し、
     当該インピーダンス整合膜をなす材料の比抵抗を当該インピーダンス整合膜の厚みで割った値が1~300Ω/□である、
     インピーダンス整合膜。
  2.  前記主面における前記開口の最大寸法は、7.5×104μm以下である、請求項1に記載のインピーダンス整合膜。
  3.  隣り合う前記開口同士の距離の最小値は、0.1~650μmである、請求項1又は2に記載のインピーダンス整合膜。
  4.  前記厚みは、5~500nmである、請求項1~3のいずれか1項に記載のインピーダンス整合膜。
  5.  前記比抵抗は、5×10-6~2×10-3Ω・cmである、請求項1~4のいずれか1項に記載のインピーダンス整合膜。
  6.  請求項1~5のいずれか1項に記載のインピーダンス整合膜と、
     電波を反射する反射体と、
     前記インピーダンス整合膜の厚み方向において前記インピーダンス整合膜と前記反射体との間に配置された誘電体層と、を備えた、
     電波吸収体。
  7.  前記開口の前記最大寸法は、吸収ピーク波長の1/4以下であり、
     前記吸収ピーク波長は、当該電波吸収体に対し日本工業規格(JIS)R 1679:2007に基づいて測定される反射量の絶対値が最大となる電波の波長である、
     請求項6に記載の電波吸収体。
  8.  1GHz以上の周波数を有する電波に対してインピーダンス整合をなす、請求項6又は7に記載の電波吸収体。
  9.  前記反射体は、透明導電膜である、請求項7又は8に記載の電波吸収体。
  10.  前記透明導電膜は、前記透明導電膜の主面に沿って規則的に形成された複数の開口を有する、請求項9に記載の電波吸収体。
PCT/JP2020/031879 2019-09-13 2020-08-24 インピーダンス整合膜及び電波吸収体 WO2021049284A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
US17/639,964 US20220330464A1 (en) 2019-09-13 2020-08-24 Impedance matching film and radio wave absorber
CN202080062220.0A CN114342183A (zh) 2019-09-13 2020-08-24 阻抗匹配膜和电波吸收体
EP20862795.0A EP4030880A1 (en) 2019-09-13 2020-08-24 Impedance matching film and radio wave absorber

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2019167057A JP2021044483A (ja) 2019-09-13 2019-09-13 インピーダンス整合膜及び電波吸収体
JP2019-167057 2019-09-13

Publications (1)

Publication Number Publication Date
WO2021049284A1 true WO2021049284A1 (ja) 2021-03-18

Family

ID=74862507

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/031879 WO2021049284A1 (ja) 2019-09-13 2020-08-24 インピーダンス整合膜及び電波吸収体

Country Status (5)

Country Link
US (1) US20220330464A1 (ja)
EP (1) EP4030880A1 (ja)
JP (1) JP2021044483A (ja)
CN (1) CN114342183A (ja)
WO (1) WO2021049284A1 (ja)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2021163794A (ja) * 2020-03-30 2021-10-11 日東電工株式会社 電波吸収体

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2004091049A1 (en) * 2003-04-11 2004-10-21 Chang Sung Corporation Microwave absorber with improved microwave absorption rate
JP2006179671A (ja) 2004-12-22 2006-07-06 Mitsubishi Gas Chem Co Inc 電波吸収体および電波吸収体の製造方法
JP2011066094A (ja) * 2009-09-15 2011-03-31 Nitta Corp 電磁波吸収体、パーティション、電波暗箱、建材、無線通信システムおよび無線通信方法
JP2019004006A (ja) * 2017-06-13 2019-01-10 日東電工株式会社 電磁波吸収体及び電磁波吸収体付成形品
WO2019132027A1 (ja) * 2017-12-28 2019-07-04 日東電工株式会社 電磁波吸収体、電磁波吸収体付物品、及び電磁波吸収体の製造方法

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2021163793A (ja) * 2020-03-30 2021-10-11 日東電工株式会社 インピーダンス整合膜及び電波吸収体

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2004091049A1 (en) * 2003-04-11 2004-10-21 Chang Sung Corporation Microwave absorber with improved microwave absorption rate
JP2006179671A (ja) 2004-12-22 2006-07-06 Mitsubishi Gas Chem Co Inc 電波吸収体および電波吸収体の製造方法
JP2011066094A (ja) * 2009-09-15 2011-03-31 Nitta Corp 電磁波吸収体、パーティション、電波暗箱、建材、無線通信システムおよび無線通信方法
JP2019004006A (ja) * 2017-06-13 2019-01-10 日東電工株式会社 電磁波吸収体及び電磁波吸収体付成形品
WO2019132027A1 (ja) * 2017-12-28 2019-07-04 日東電工株式会社 電磁波吸収体、電磁波吸収体付物品、及び電磁波吸収体の製造方法

Also Published As

Publication number Publication date
CN114342183A (zh) 2022-04-12
US20220330464A1 (en) 2022-10-13
JP2021044483A (ja) 2021-03-18
EP4030880A1 (en) 2022-07-20

Similar Documents

Publication Publication Date Title
WO2021199920A1 (ja) インピーダンス整合膜及び電波吸収体
JP6916965B2 (ja) 制御可能な波吸収メタマテリアル
Hong et al. Transparent microstrip patch antennas with multilayer and metal-mesh films
JP7271802B2 (ja) 構造体、及び建築材料
JP4197846B2 (ja) アンテナ装置
KR102644502B1 (ko) 신규 중공 경량 렌즈 구조
WO2021049284A1 (ja) インピーダンス整合膜及び電波吸収体
Lee et al. Electrical characterization of highly efficient, optically transparent nanometers-thick unit cells for antenna-on-display applications
US20230062683A1 (en) Wiring board and method for manufacturing wiring board
JP2019016491A (ja) 透明面状発熱体、透明面状発熱体製造方法
WO2021199928A1 (ja) インピーダンス整合膜及び電波吸収体
WO2021199921A1 (ja) 電波吸収体
CN111600134B (zh) 一种用于加密电脑显示器的吸波超材料
WO2020203942A1 (ja) 電波吸収体用インピーダンス整合膜、電波吸収体用インピーダンス整合膜付フィルム、電波吸収体、及び電波吸収体用積層体
WO2022209095A1 (ja) アンテナフィルム
JP2020009821A (ja) 電磁波吸収複合シート
US8974893B2 (en) Artificial microstructure and artificial electromagnetic material using the same
JP2020515039A (ja) グラフェン半導体の設計方法
WO2022118719A1 (ja) 電波吸収体及び電波吸収体用積層体
JP2022161299A (ja) 配線基板及び画像表示装置
WO2022210210A1 (ja) 高周波拡散シート
JP2022064501A (ja) 金属層、導電性フィルム、および、金属層の製造方法
Chaitanya et al. 3D-printed polarization-independent low-cost flexible frequency selective surface based dual-band microwave absorber
Shi et al. Infrared anti-reflection film device for electromagnetic interference shielding
CN115810919A (zh) 一种覆盖3.7-43.5GHz的超宽带透明电磁吸波器

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20862795

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2020862795

Country of ref document: EP

Effective date: 20220413