WO2021049151A1 - Distance measurement device and distance measurement mechanism deviation adjustment method for same - Google Patents

Distance measurement device and distance measurement mechanism deviation adjustment method for same Download PDF

Info

Publication number
WO2021049151A1
WO2021049151A1 PCT/JP2020/026909 JP2020026909W WO2021049151A1 WO 2021049151 A1 WO2021049151 A1 WO 2021049151A1 JP 2020026909 W JP2020026909 W JP 2020026909W WO 2021049151 A1 WO2021049151 A1 WO 2021049151A1
Authority
WO
WIPO (PCT)
Prior art keywords
light
light receiving
distance measuring
unit
deviation
Prior art date
Application number
PCT/JP2020/026909
Other languages
French (fr)
Japanese (ja)
Inventor
加治 伸暁
Original Assignee
ソニーセミコンダクタソリューションズ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ソニーセミコンダクタソリューションズ株式会社 filed Critical ソニーセミコンダクタソリューションズ株式会社
Publication of WO2021049151A1 publication Critical patent/WO2021049151A1/en

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01CMEASURING DISTANCES, LEVELS OR BEARINGS; SURVEYING; NAVIGATION; GYROSCOPIC INSTRUMENTS; PHOTOGRAMMETRY OR VIDEOGRAMMETRY
    • G01C3/00Measuring distances in line of sight; Optical rangefinders
    • G01C3/02Details
    • G01C3/06Use of electric means to obtain final indication
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S7/00Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
    • G01S7/48Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S17/00
    • G01S7/497Means for monitoring or calibrating
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B26/00Optical devices or arrangements for the control of light using movable or deformable optical elements
    • G02B26/08Optical devices or arrangements for the control of light using movable or deformable optical elements for controlling the direction of light
    • G02B26/10Scanning systems

Definitions

  • the technique according to the present disclosure relates to a distance measuring device and a method of adjusting a deviation of a distance measuring mechanism in the device.
  • a distance measuring device (sometimes called a distance measuring sensor) that measures the distance to an object (object) based on ToF (Time of Flight) is known.
  • the TOF generally includes a direct TOF (dTOF) and an indirect TOF (iTOF).
  • Directly ToF emits pulsed light from a light emitting element, receives reflected light from an object irradiated with pulsed light by a light receiving element called SPAD (Single Photon Avalanche Diode), detects photons, and detects carriers generated by this.
  • SPAD Single Photon Avalanche Diode
  • This is a technology that measures the arrival time of reflected light by converting it into an electrical signal pulse using Avalanche multiplication and inputting it to a TDC (Time to Digital Converter), and calculates the distance to an object.
  • TDC Time to Digital Converter
  • the indirect ToF detects the charge generated by emitting pulsed light from the light emitting element and receiving the reflected light from the object irradiated with the pulsed light by the light receiving element, and the accumulated amount of the light is set at the arrival timing of the light.
  • the flight time of light is measured by using a semiconductor device structure that changes depending on the device.
  • Patent Document 1 describes a light source that irradiates an object with luminance-modulated scanning light, a pixel array that converts reflected light from the object into an electrical signal, and sensitivity-modulates the object in synchronization with the luminance modulation.
  • a distance image input device having a pixel drive circuit that drives the pixel array and reads out a signal in synchronization with scanning in the scanning light.
  • the present disclosure provides a distance measuring device capable of eliminating a deviation in the distance measuring processing timing due to a change over time of the distance measuring mechanism, and a method for adjusting the deviation of the distance measuring mechanism in the device.
  • This technology for solving the above problems is configured to include the following specific items or technical features.
  • an irradiation unit that irradiates light from a light source while scanning the target area at a predetermined irradiation timing, and a plurality of irradiation units that receive the observation light in the target area and output an electric signal.
  • the light receiving unit including the light receiving element of the above and the irradiation unit included in the observation light received by some light receiving element group among the plurality of light receiving elements.
  • a distance measuring processing unit that performs distance measuring processing for calculating the distance to the object based on the value of the electric signal based on the accumulated electric charge, and the light corresponding to the light emitted by the irradiation unit. It is a distance measuring device including a control unit for controlling a light collecting region of reflected light and a charge storage region formed by a group of some light receiving elements among the plurality of light receiving elements. Then, the control unit calculates the amount of deviation between the condensing region and the charge storage region, and positions the condensing region and the charge storage region so that the calculated deviation amount becomes small. It is provided with a shift adjustment unit that adjusts the relationship.
  • the technique according to the present disclosure is a method of adjusting the deviation of the distance measuring mechanism in the distance measuring device.
  • the distance measuring mechanism may be configured to include an irradiation unit and a light receiving unit.
  • the deviation adjusting method is to irradiate the target area with light from a light source while scanning the target area at a predetermined irradiation timing, and to irradiate the observed light in the target area with a plurality of light receiving elements in the light receiving unit. Light received by some of the light receiving element groups and reflected light from an object irradiated with the light by the irradiation unit included in the observed light from some of the light receiving element groups.
  • the electric signal based on the accumulated electric charge is read out according to the above, distance measurement processing for calculating the distance to the object is performed based on the value of the read electric signal, and the irradiation unit is used. It includes controlling a condensing region of the reflected light corresponding to the irradiated light and a charge storage region by some light receiving element group among the plurality of light receiving elements. Then, the control calculates the amount of deviation between the condensing region and the charge storage region, and the relationship between the condensing region and the charge storage region so that the calculated deviation amount becomes small. Including adjusting.
  • the means does not simply mean a physical means, but also includes a case where the function of the means is realized by software. Further, the function of one means may be realized by two or more physical means, or the function of two or more means may be realized by one physical means.
  • system refers to a logical collection of a plurality of devices (or functional modules that realize a specific function), and whether or not each device or functional module is in a single housing. Is not particularly limited.
  • the distance measuring device and the timing adjusting method of the distance measuring mechanism in the device include a region (condensing region) of the light receiving portion in which the reflected light for the pulsed light emitted from the irradiation unit including the light source is collected.
  • the condensing region is included in the charge accumulation. It is characterized in that the condensing region for the charge accumulation can be adjusted (so that the charge accumulation timing matches the irradiation timing).
  • the adjustment of the condensing region is adjusted by controlling the scanning angle of the pulsed light by the irradiation unit.
  • FIG. 1 is a block diagram showing an example of the configuration of a distance measuring device according to an embodiment of the present technology.
  • the distance measuring device 1 emits pulsed light from a light source and receives reflected light from the object OBJ irradiated with the pulsed light by a light receiving element, and based on an electric signal obtained, the distance measuring device 1 reaches the object OBJ (object or subject).
  • an indirect TOF type distance measuring sensor will be described as an example, but the same can be applied to various sensors using a direct TOF type distance measuring sensor, an optical cutting method, or the like.
  • the distance measuring device 1 includes, for example, components such as a control unit 10, a driver unit 20, an irradiation unit 30, a light receiving unit 40, a storage unit 50, and a distance measuring processing unit 60. Consists of. These components can be integrally configured as, for example, a system-on-chip (SoC) such as a CMOS LSI, but for example, some components such as the irradiation unit 30 and the light receiving unit 40 are configured as separate LSIs. May be done.
  • SoC system-on-chip
  • the distance measuring device 1 also has a communication interface unit (communication IF unit) for outputting data related to the distance calculated by the distance measuring processing unit 60 (distance measuring data) to a host IC (not shown) arranged outside.
  • a communication interface unit communication IF unit
  • the distance measuring device 1 may be provided with a temperature sensor 80 for detecting a change in the operating environment, for example, temperature.
  • the control unit 10 executes, for example, the timing adjustment process of the distance measuring mechanism in the distance measuring device 1 described in the present disclosure based on the temperature detected by the temperature sensor 80.
  • the control unit 10 is a component that comprehensively controls the operation of the distance measuring device 1.
  • the control unit 10 includes, for example, a control signal generation unit 12 and a deviation adjusting unit 14.
  • the control unit 10 may include a clock generation unit that generates a clock that controls the operation of the distance measuring device 1.
  • the clock generation unit outputs the generated clock to, for example, the control signal generation unit 12.
  • the control signal generation unit 12 generates and outputs control signals for each of the driver unit 20 and the light receiving unit 40 according to the given clock. Specifically, the control signal generation unit 12 outputs an irradiation control signal for the irradiation unit 30 to irradiate and scan light at a predetermined irradiation timing to the driver unit 20, and at a read timing corresponding to the irradiation timing. A light receiving control signal for reading an electric signal from a specific light receiving element group of the light receiving unit 40 is output to the light receiving unit 40.
  • the deviation adjusting unit 14 is a region of a light receiving unit (condensing region) in which reflected light corresponding to laser pulsed light (hereinafter referred to as “pulse light”) emitted from an irradiation unit including a light source toward an object OBJ is collected. ) And the region of the light receiving portion (charge storage region) where the charge is accumulated in response to the irradiation of the pulsed light, the positional relationship is adjusted.
  • the shift adjusting unit 14 determines a parameter for adjusting the range of the focusing region in order to eliminate the positional or profile deviation between the focusing region and the charge storage region.
  • the positional relationship between the condensing region and the charge storage region is adjusted by adjusting the scanning angle of the irradiated pulsed light, as will be described later. Therefore, the deviation adjusting unit 14 gives the control signal generation unit 12 a parameter for controlling the drive voltage with respect to the scanning mirror.
  • the positional relationship between the condensing region and the charge storage region is adjusted by controlling the operation timing of the light receiving element group that stores the charge with respect to the irradiation timing of the pulsed light.
  • the driver unit 20 drives the irradiation unit 30 based on the irradiation control signal given from the control signal generation unit 12. For example, the driver unit 20 drives the light source so that the pulsed light is emitted based on the irradiation control signal, and the irradiation optical system of the irradiation unit 30 is used to scan the emitted pulsed light in a predetermined direction (FIG. (Not shown) is driven.
  • the irradiation unit 30 is a component that scans the target area while emitting pulsed light for TOF distance measurement.
  • the pulsed light used for such distance measurement is sometimes referred to as active light.
  • the irradiation unit 30 may include, for example, a light source and an irradiation optical system.
  • the light source can be, for example, a vertical cavity surface emitting laser (VCSEL laser).
  • the irradiation unit 30 is driven at high speed at a frequency of, for example, 10 to 200 MHz, and may have a pulse width of several to several tens of ns, but is not limited thereto.
  • the irradiation optical system includes, for example, a scanning mirror, a cylindrical lens, and the like.
  • the MEMS (Micro Electro Mechanical Systems) mirror is an example of a scanning mirror.
  • the irradiation unit 30 uses, for example, a scanning mirror or the like driven by the driver unit 20 to emit line-shaped light along one direction (for example, the horizontal direction) emitted from the light source under the control of the driver unit 20.
  • stepwise scanning in another direction (for example, the vertical direction) orthogonal to the one direction the target area is spatially irradiated with light.
  • the scanning angle of the scanning mirror is, for example, proportional to the magnitude of the drive voltage applied from the driver unit 20.
  • a light source that emits line-shaped light is used, but the present invention is not limited to this, and a point light source may be used.
  • surface irradiation is realized by two-dimensional scanning.
  • the light source is provided outside the LSI chip, but the light source is not limited to this, and may be configured by the on-chip.
  • the light receiving unit 40 is a sensor that reacts to light incident from the target area, accumulates electric charges under the control of the control unit 10, and outputs an electric signal corresponding to the electric charge.
  • a light receiving optical system such as a condenser lens is provided in front of the light receiving surface of the light receiving unit 40 so that light can be efficiently received.
  • the light receiving unit 40 is typically a CMOS image sensor including a plurality of light receiving elements arranged in a two-dimensional array.
  • the present invention is not limited to this, and for example, a CCD image sensor may be used.
  • the specific light receiving element group of the light receiving unit 40 operates under the control of the control unit 10 at a predetermined light receiving timing synchronized with, for example, a predetermined irradiation timing, and accumulates charges according to the received observation light.
  • a specific light receiving element group of the light receiving unit 40 is applied and driven by a voltage modulated to the same frequency (10 to 200 MHz) as the pulse driving frequency (10 to 200 MHz) described above.
  • the irradiation timing of the pulsed light and the accumulation timing of the light receiving element group are matched.
  • the light receiving unit 40 performs four charge storage and output (reading) for each zone (charge storage region) described later, for example, in response to four pulse light emissions.
  • the electric charge (electrical signal) read from the light receiving unit 40 is transferred to the storage unit 50.
  • the storage unit 50 is a memory that temporarily holds the electric signal read from the light receiving unit 40.
  • the storage unit 50 may be a volatile memory or a non-volatile memory.
  • the storage unit 50 is configured to hold an electric signal pulse for one frame read from the light receiving unit 40, but is not limited to this.
  • the storage unit 50 may hold an electrical signal based on the observed light corresponding to the irradiation of several lines of pulsed light by the irradiation unit 30.
  • the distance measurement processing unit 60 is a component that calculates (measures the distance) to the object OBJ based on the pulsed light emitted by the irradiation unit 30 and the observation light received by the light receiving unit 40.
  • the ranging processing unit 60 is typically configured by a signal processing processor.
  • the distance measuring processing unit 60 corresponds to the pulsed light having different phases (multiphase pulsed light) emitted by the irradiation unit 30, and the electric charge received and accumulated for each phase by the light receiving unit 40. Based on, it is configured to calculate the distance.
  • FIG. 2 is a block diagram showing an example of the configuration of the light receiving unit in the distance measuring device according to the embodiment of the present technology.
  • the light receiving unit 40 includes a light receiving element array 42, a vertical scanning circuit 44, and a horizontal scanning circuit 46.
  • the light receiving element array is a CMOS image sensor in which a plurality of light receiving elements are arranged in a two-dimensional array.
  • the light receiving element is, for example, an embedded photodiode having a lock-in pixel structure.
  • One light receiving element corresponds to, for example, one pixel, but is not limited to this.
  • the two-dimensional array may include a configuration in which the light receiving element groups are arranged along the row and column directions, and may include, for example, a configuration in which the light receiving element groups are arranged in a staggered manner.
  • the vertical scanning circuit 44 is a circuit that generates a row selection signal according to a control signal from the control signal generation unit 12, thereby sequentially enabling a group of light receiving elements arranged in the row direction.
  • the vertical scanning circuit 44 includes, for example, a shift register (not shown).
  • the vertical scanning circuit 44 is a light receiving element having a plurality of rows in a condensing region corresponding to scanning of pulsed light emitted by the irradiation unit 30 and a region circumscribing the condensing region (that is, a charge storage region) by a single row selection signal. Activate the swarm.
  • the horizontal scanning circuit 46 is a circuit that reads out an electric signal based on the electric charge generated by the activated light receiving element group according to the control signal from the control signal generation unit 12.
  • the horizontal scanning circuit 46 includes, for example, a shift register (not shown).
  • the horizontal scanning circuit 46 writes the electric signal read in parallel from the light receiving element group into the storage unit 50 while converting it into a serial electric signal.
  • the distance measuring device 1 selects, for example, a group of light receiving elements in the vertical direction by the vertical scanning circuit 44 in accordance with the irradiation timing of the pulsed light by the irradiation unit 30, and adjusts the charge accumulation and readout timings thereof. It may be configured.
  • FIG. 3 shows an example of a timing chart for explaining the operation of the light receiving unit in the distance measuring device according to the embodiment of the present technology. That is, as shown in the figure, the pulsed light having a pulse width T0 emitted by the irradiation unit 30 is irradiated to the object OBJ, and after the delay time Td, it is observed as reflected light in the light receiving unit 40. The observed reflected light is received by a specific light receiving element group (light receiving element group corresponding to scanning of the irradiated pulsed light) of the light receiving unit 40.
  • a specific light receiving element group light receiving element group corresponding to scanning of the irradiated pulsed light
  • Each light receiving element has a pair of gates, and by alternately applying pulse signals to each of the pair of gates, the gates are opened alternately, and the charges Q1 and Q2 generated by the light receiving elements are stored in each charge storage unit (FIG. Transfer to).
  • the charges Q1 and Q2 accumulated in each charge storage unit of each light receiving element are converted into the amount of change in voltage and read out as an electric signal.
  • the light receiving unit 40 configured as described above receives a plurality of lines of light by the cooperative operation of the vertical scanning circuit 44 and the horizontal scanning circuit 46 according to the control signal from the control signal generation unit 12 under the control of the control unit 10.
  • the element group is sequentially activated, and the accumulated charge is read out as an electric signal from the light receiving element group and output.
  • the distance measuring device 1 is positioned between the light collecting region and the charge storage region based on the absolute value of the difference between the charges Q1 and Q2 read from the light receiving element group.
  • the deviation is not limited to this, and may be configured to calculate the deviation based on either the charges Q1 or Q2, or the charges Q1 and Q2. It may be configured to calculate the deviation based on the absolute value of the sum.
  • the distance measuring device 1 performs four charge accumulation and charge reading in response to four pulsed lights. That is, under the control of the control unit 10, the irradiation unit 30 emits pulsed light (multiphase pulsed light) having different phases such as 0 degree, 90 degree, 180 degree, and 270 degree for each zone. Under the control of the control unit 10, the light receiving unit 40 collects the reflected light for the pulsed light emitted out of phase in this way, and accumulates charges according to the amount of light received for each phase.
  • the calculation of the distance D using the polymorphic pulsed light is performed, for example, as follows.
  • the distance D from the light source of the irradiation unit 20 to the object OBJ is calculated by the following formula.
  • D (1/2) ⁇ c ⁇ ⁇ t... Equation 1
  • c is the speed of light.
  • ⁇ t (1 / f) ⁇ ( ⁇ / 2 ⁇ ).
  • the distance D is calculated by substituting the calculated phase difference ⁇ into Equation 3.
  • FIG. 4 is a diagram for explaining the relationship between the condensing region and the charge storage region in the distance measuring device according to the embodiment of the present technology.
  • the condensing region A is an region where the reflected light corresponding to the pulsed light on the light receiving element array 42 is assumed to be condensed when the irradiation unit 30 irradiates and scans the pulsed light at a certain irradiation timing.
  • the charge storage region B shows a region in which charges are actually accumulated by the light receiving element group of the light receiving element array 42 for the irradiation / scanning and read out as an electric signal.
  • FIG. 3A shows the line direction in the charge storage region B with respect to the virtual center line L1 along the line direction in the condensing region A due to a time-dependent change of the distance measuring mechanism in a general distance measuring device. It shows a state in which the virtual center line L2 extended to is deviated by ⁇ . That is, in FIG. 3A, the light receiving element group that operates (accumulates charge) in response to the pulsed light irradiated at a certain irradiation timing does not match the light receiving element group in the original condensing region A. .. In such a case, the correct electric signal is not read out for the irradiation / scanning of the pulsed light, and a more accurate distance image cannot be obtained.
  • FIG. 3B shows the relationship between the condensing region A and the charge storage region B in the distance measuring device 1 according to the present technology. That is, as shown in the figure, the charge storage region B is set to include a region (circumscribing region) outside the condensing region A.
  • the margin m Since there is a margin corresponding to the above, the correct electric signal can be read out, and further, as will be described later, by adjusting the deviation of the charge accumulation region B with respect to the condensing region A, the activated charge in the condensing region A is activated.
  • the electric signal is correctly read out from the light receiving element group in which the electric charge is accumulated.
  • the width of the margin m is set to be the same at the top and bottom, but the width is not limited to this and may be different at the top and bottom.
  • FIG. 5 is a diagram for explaining a light receiving element array in a distance measuring device according to an embodiment of the present technology. This figure is used to explain the terms related to the deviation adjustment of the distance measuring mechanism in the present disclosure.
  • the light receiving element array 42 of this example is composed of a group of M ⁇ N pixels P (light receiving elements).
  • the light receiving element array 42 shown in the figure a group of N light receiving elements arranged along one direction (horizontal direction in the figure) is referred to as a "line”. Therefore, the light receiving element array 42 is composed of M lines. Further, it is assumed that the position of a certain pixel P is indicated by P (i, j).
  • the "zone” is a group of light receiving elements that accumulates electric charges centered on a certain line (corresponding to the electric charge accumulating region B in FIG. 4).
  • Zone i indicates a charge storage region centered on line i.
  • one zone is composed of 3 to 5 lines. Assuming that the total number of lines is M, the zones are as follows. Zone 1: Lines 1-3 Zone 2: Lines 1-4 Zone 3: Lines 1-5 Zone 4: Lines 2-6 Zone 5: Lines 3-7 (Omitted) Zone i: Lines i-2 to i + 2 (Omitted) Zone M: Lines M-2 to M
  • FIG. 6 is a sequence diagram for explaining the relationship between charge accumulation and charge readout in the distance measuring device according to the embodiment of the present technology.
  • the irradiation unit 30 receives the driver 20 at the timing of the falling edge. It emits multi-phase pulsed light that is driven by and is expected to be focused on Zone 1. Further, the control signal generation unit 12 outputs a scanning synchronization signal Ssync so as to synchronize with this.
  • the driver unit 20 controls the scanning mirror of the irradiation unit 30 to have a scanning angle corresponding to the voltage by sequentially lowering the driving voltage for the scanning mirror from V1 to VM according to the scanning synchronization signal Ssync. To do.
  • the scanning angle of the scanning mirror is proportional to the driving voltage, and when the voltage Vi is applied, the virtual center line L1 (see FIG. 4) of the condensing region A corresponding to the pulsed light is in the zone i. It is adjusted to match the center, that is, the line i.
  • the zone charge storage region B is provided with a margin m of several pixels or a few percent of the number of array pixels in the line direction and approximately three pixels in the scanning direction.
  • the deviation adjusting unit 14 determines an operation parameter for controlling the drive voltage for the scanning mirror according to the calculated deviation amount d, and outputs the operation parameter to the control signal generation unit 12.
  • each light receiving element of the light receiving unit 40 accumulates charges Q1 and Q2 in the charge storage unit in response to the vertical synchronization signal VSsync by the control signal generation unit 12, and the accumulated charges Q1 and Q2 are read out as charges Q.
  • the charge Q is an electric signal indicating the difference between the absolute values of the charge Q1 and the charge Q2. That is, as described above, for example, since the zone 1 is composed of the lines 1 to 3, the irradiation unit 30 is the pulsed light in which the virtual center line L1 in the condensing region A corresponding to the pulsed light coincides with the line 1.
  • the light receiving unit 40 accumulates charges Q1 and Q2 by the light receiving element group of lines 1 to 3, and reads them out.
  • charge accumulation and charge reading corresponding to the emission of pulsed light are performed four times during the time Tz for each zone. Then, after the transition time T2 elapses from the time T1 which is the sum of the time of four charge accumulation and the time of three charge reading, the charge accumulation and charge reading of the next zone are started.
  • the irradiation unit 30 emits pulsed light for focusing on the next zone, that is, zone 2, after a predetermined transition time T2 elapses from the time T1 required for four charge accumulations and three charge readouts.
  • the light receiving unit 40 accumulates charges Q1 and Q2 by the light receiving element group of lines 1 to 4, and the accumulated charges Q1 and Q2 are read out as charges Q.
  • charge accumulation and charge reading are repeated up to zone M, and then the process returns to zone 1 and charge accumulation and charge reading are repeated up to zone M.
  • such charge accumulation and charge reading from zones 1 to M are repeated 1000 times, for example, for error leveling.
  • FIG. 7 is a flowchart for explaining the deviation adjustment process of the distance measuring mechanism in the distance measuring device according to the embodiment of the present technology.
  • Such a deviation adjustment process is executed, for example, when the distance measuring device is started. Alternatively, it may be executed when the operating environment of the distance measuring device 1 suddenly changes or in accordance with an external instruction from a user or the like.
  • control unit 10 of the distance measuring device 1 first initially sets the irradiation position of the pulsed light and the charge storage region B (zone) corresponding thereto (S701).
  • the irradiation unit 30 irradiates and scans the target zone with a line-shaped pulsed light at a predetermined irradiation timing (in this example, four pulsed lights).
  • the light receiving unit 40 accumulates the charges Q1 and Q2 in the charge storage unit by receiving the reflected light by the light receiving element, and reads out the accumulated charges Q1 and Q2 as the charge Q (S702).
  • the read charge Q is temporarily stored in the storage unit 50. That is, in the storage unit 50, the charge from the light receiving element group in the charge storage region B formed by the horizontal line corresponding to the pulsed light and each line in the scanning direction (up to 5 lines in this example). Q is retained.
  • charge accumulation and charge reading are performed four times, but the charge Q referred to here may correspond to one charge accumulation and charge reading. It may be the total amount of electric charges for four times.
  • the deviation adjusting unit 14 identifies the number of the line in which the calculated total charge Q sum (i) is equal to or higher than a predetermined threshold value in the target zone, and counts up the number n. (S704).
  • the predetermined threshold value is provided to eliminate the influence of noise or the like because the charge Q does not become 0 due to noise or the like even in the line that does not receive the reflected light from the object.
  • the deviation adjusting unit 14 calculates the center of gravity position G in the zone based on the counted number of lines n (S705).
  • the center of gravity position G is calculated by the following formula.
  • G ( ⁇ Ln) / n ... Equation 7
  • Ln is the number of the line charge amount Q sum is equal to or greater than a predetermined threshold value
  • n is the number of lines total amount of charges Q sum is equal to or greater than a predetermined threshold value.
  • the center of gravity position G is set to.
  • the deviation adjusting unit 14 calculates the difference value (deviation amount) d between the calculated center of gravity position G and the reference position L Ref in the condensing region, and records this (S706).
  • the deviation adjusting unit 14 determines whether or not the above process has been repeated a predetermined number of times (for example, 1000 times) (S707), and if it determines that the process has not been repeated a predetermined number of times (No in S707), the process in S702 go back. On the other hand, when it is determined that the deviation adjusting unit 14 has been repeated a predetermined number of times (Yes in S707), the deviation adjusting unit 14 calculates the average value d Ave based on the recorded difference value d (S708).
  • the deviation adjusting unit 14 subsequently determines whether or not the calculated difference average value dAve is within a predetermined range (S709). That is, if the calculated difference average value dAve is within a predetermined range, it is determined that the deviation between the condensing region A and the charge storage region B is within an allowable range, and the deviation adjustment is not executed.
  • the deviation adjusting unit 14 determines that the calculated average value dAve is not within a predetermined range (No in S709), the deviation adjusting unit 14 adjusts the positional relationship between the condensing region A and the charge storage region B.
  • the operating parameter is changed so that the drive voltage for the scanning mirror is changed by, for example, one step (S710), and the process returns to S702.
  • the control signal generation unit 12 transmits a control signal based on the changed operation parameter to the driver 20, and the driver 20 drives the scanning mirror with a drive voltage based on the control signal.
  • the deviation adjusting unit 14 repeats the above processing for the target zone until the difference average value dAve falls within a predetermined range. As a result, in the target zone, the positional relationship between the condensing region A and the charge storage region B is gradually adjusted, and the deviation is eliminated.
  • the deviation adjusting unit 14 determines the operating parameters for adjusting the driving voltage for the scanning mirror, but the present invention is not limited to this, and for example, the reading timing from the light receiving element is adjusted. Is also good.
  • the deviation adjusting unit 14 adjusts the positional relationship between the condensing region A and the charge storage region B for the target zone, whether or not such a displacement of the positional relationship is adjusted for all the zones. Is determined (S711). When the deviation adjusting unit 14 determines that such a displacement of the positional relationship is not adjusted for all the zones (No in S711), the deviation adjusting unit 14 shifts the target zone by one (S712), and the above-mentioned Repeat the process. In this way, the misalignment adjustment is repeated until the final zone M.
  • the distance measuring device 1 is configured to adjust the scanning angle of the scanning mirror by controlling the driving voltage with respect to the scanning mirror, but the present invention is not limited to this.
  • the distance measuring device 1 should, for example, accumulate an electric charge and read an electric signal by the vertical scanning circuit 44 with respect to the irradiation timing of the pulsed light by the irradiation unit 30.
  • the deviation may be adjusted by controlling the number of light receiving element groups (number of lines) in the scanning direction.
  • a distance measuring device that eliminates the timing deviation of the distance measuring process due to a change over time of the distance measuring mechanism, and a method of adjusting the deviation of the distance measuring operation in the device. Therefore, the correct electric signal can be read out for the irradiation / scanning of the pulsed light, and a more accurate distance image can be obtained.
  • FIG. 8 is a diagram for explaining the relationship between the condensing region and the charge storage region corresponding to the irradiation light in the distance measuring device according to the embodiment of the present technology.
  • the condensing region A indicates an region where the pulsed light on the light receiving element array 42 is originally supposed to be condensed when the irradiation unit 30 irradiates and scans the pulsed light at a certain irradiation timing.
  • the charge storage region B indicates a region in which an electric signal is actually read out on the light receiving element array 42 for the irradiation / scanning.
  • the charge storage region B is set to include a region (circumscribing region) outside the original condensing region A.
  • the axis of the pulsed light in the line direction rotates by an angle ⁇
  • the axis thereof rotates by an angle ⁇ .
  • the distance measuring device 1 when the condensing region A'is displaced by an angle ⁇ with respect to the charge storage region B due to a change over time of the distance measuring mechanism or the like, the charge is charged according to the deviation amount.
  • the storage area B By expanding the storage area B in the scanning direction, the normal positional relationship between the light collection area A and the charge storage area B is calibrated, and an electric signal is read out from a group of light receiving elements suitable for the emission of pulsed light. I am trying to do it.
  • FIG. 9 is a flowchart for explaining the deviation adjustment process of the distance measuring mechanism in the distance measuring device according to the embodiment of the present technology.
  • control unit 10 of the distance measuring device 1 first initially sets the irradiation position of the pulsed light and the charge storage region B (zone) corresponding thereto (S901).
  • the irradiation unit 30 irradiates and scans a line-shaped pulsed light at a predetermined irradiation timing in order to collect light on the target zone, and accordingly, the light receiving unit 30 receives light.
  • the light receiving unit 40 accumulates charges Q1 and Q2 in the charge storage unit, and reads out the accumulated charges Q1 and Q2 as charge Q (S902).
  • the electric charge Q read from each of the light receiving element groups in the zone is temporarily held in the storage unit 50.
  • the shift adjusting unit 14 compares the charge Q with a predetermined threshold value for the purpose of removing noise and the like, and the charge Q is a predetermined threshold value among the light receiving element (pixel) group in the zone.
  • the above-mentioned pixels are specified, and the number n is counted (S903).
  • the deviation adjusting unit 14 calculates the center of gravity position G according to, for example, the following formula (S904).
  • G (xg, yg) ( ⁇ Pi / n, ⁇ Pj / n) ...
  • Equation 8 Pi is the x-coordinate of a pixel whose charge Q is equal to or higher than a predetermined threshold value (the x direction corresponds to the scanning direction), and Pj is a pixel whose charge Q is equal to or higher than a predetermined threshold value. It is the y coordinate (the y direction corresponds to the line direction). Further, n is the number of pixels whose electric charge Q is equal to or higher than a predetermined threshold value.
  • the deviation adjusting unit 14 determines the vector V2 (Pi ⁇ xg) for a pixel whose charge Q is equal to or higher than a predetermined threshold value and whose pixel coordinate Pi is smaller than the x coordinate xg of the center of gravity position G in the x direction.
  • u2, v2) is calculated.
  • V2 (u2, v2) (- ⁇ Pi / n, - ⁇ Pj / n,) ... Equation 5
  • the shift adjusting unit 14 calculates the inclination ⁇ (see FIG. 8) of the condensing region A with respect to the charge storage region B according to the following equation.
  • sin ⁇
  • is the absolute value of the component u of the vector V.
  • the deviation adjusting unit 14 calculates the number of pixels corresponding to the inclination G_tilt according to the following formula based on the calculated inclination ⁇ , and records this (S906).
  • the number of pixels corresponding to the inclination G_tilt indicates how many pixels the end of the condensing region A is deviated in the scanning direction at the end of the charge storage region B.
  • G_tilt (N / 2) * sin ⁇ ... Equation 12
  • N is the number of pixels that exceeds the threshold value.
  • the deviation adjusting unit 14 determines whether or not the above processing has been repeated a predetermined number of times (for example, 1,000 times) (S907), and if it determines that the above processing has not been repeated a predetermined number of times (No in S907), the processing in S902. Return to. On the other hand, when it is determined that the deviation adjusting unit 14 has been repeated a predetermined number of times (Yes in S907), the deviation adjusting unit 14 calculates the average value G_tilt_ave of the number of pixels corresponding to the inclination based on the recorded number of pixels corresponding to the inclination G_tilt (Yes). S908).
  • a predetermined number of times for example, 1,000 times
  • the deviation adjusting unit 14 subsequently determines whether or not the calculated average value G_tilt_ave of the number of pixels corresponding to the inclination is within a predetermined range (S909). For example, the deviation adjusting unit 14 determines whether or not the average value G_tilt_ave of the number of pixels corresponding to the inclination satisfies the following equation with respect to the margin m. G_tilt_ave ⁇ m / 2 ... Equation 13
  • the deviation adjusting unit 14 determines that the equation 13 is satisfied (true) (Yes in S909), the deviation between the condensing region A and the charge storage region B due to the inclination ⁇ of the virtual center line is determined by the distance measuring device. In the operation of 1, it is judged that it is within the allowable range, and the number of lines constituting the zone is not adjusted (increased or decreased).
  • the deviation adjusting unit 14 determines that the calculated average value G_tilt_ave of the number of pixels corresponding to the inclination is not within the predetermined range (No in S909), it determines that the equation 13 is not satisfied (false). In this case, the parameters for the control signal that controls the light receiving unit 40 are adjusted so that the number of lines included in the zone increases (S910). That is, the shift adjusting unit 14 expands the charge storage region B by increasing the group of light receiving elements activated for charge storage in the light receiving element array 42 in line units with respect to the irradiation timing of the pulsed light. The deviation adjusting unit 14 returns to the process of S902 after adjusting the number of lines in the zone.
  • the deviation adjusting unit 14 repeats the above processing for the target zone until the average G_tilt_ave of the number of pixels corresponding to the inclination falls within a predetermined range.
  • the relationship between the condensing region A and the charge storage region B is gradually adjusted, and even if there is a deviation due to the inclination of the condensing region A with respect to the charge storage region B, the collection is performed.
  • the entire region of the optical region A is adjusted to be included in the charge storage region B, and as a result, the distance measurement data in the charge storage region B can be prevented from being lost, and the distance measurement can be performed accurately.
  • the present embodiment is a distance measuring device that executes the above-described deviation adjusting process in response to a command from the outside by the operator, and a timing adjusting method of the distance measuring mechanism in the device.
  • a reflector having a size sufficient to cover the entire angle of view of the light receiving unit 40 is installed in front of the distance measuring device 1, but the present invention is not limited to this.
  • the reflector for example, a reflector that is entirely white can be adopted.
  • the operator instructs the distance measuring device 1 to execute the timing adjustment process, for example, via an external input.
  • the control unit 10 of the distance measuring device 1 receives the adjustment start signal based on the instruction of the operator, it irradiates the pulse light toward the reflector installed in front and receives the reflected light to adjust the deviation.
  • the unit 14 executes the timing adjustment process as shown in the above embodiment.
  • the deviation adjusting unit 14 may receive the reflected light not in the zone unit described above but in the entire light receiving element array 42, and calculate the deviation based on this. Further, the number of repetitions can be reduced to several to several tens of times as compared with the case without the reflector.
  • steps, actions or functions may be performed in parallel or in a different order, as long as the results are not inconsistent.
  • the steps, actions and functions described are provided merely as examples, and some of the steps, actions and functions can be omitted and combined with each other to the extent that they do not deviate from the gist of the invention. It may be one, or other steps, actions or functions may be added.
  • the present technology can also adopt the following configurations.
  • An irradiation unit that irradiates light from a light source while scanning the target area at a predetermined irradiation timing.
  • a light receiving unit including a plurality of light receiving elements that receive observation light in the target area and output an electric signal. The electricity based on the charge accumulated according to the reflected light from the object irradiated with the light by the irradiation unit included in the observation light received by some light receiving element group among the plurality of light receiving elements.
  • a distance measuring processing unit that performs distance measuring processing for calculating the distance to the object based on the value of the signal, and a distance measuring unit.
  • a control unit for controlling a condensing region of the reflected light corresponding to the light emitted by the irradiation unit and a charge storage region by a group of some light receiving elements among the plurality of light receiving elements is provided.
  • the control unit calculates the amount of deviation between the condensing region and the charge storage region, and the positional relationship between the condensing region and the charge storage region so that the calculated deviation amount becomes small. Equipped with a shift adjustment unit to adjust Distance measuring device.
  • the shift adjusting unit has a center of gravity position based on the value of the first electric signal read from the first light receiving element group among the plurality of light receiving elements in the charge storage region, and a reference position in the light collecting region. Based on this, the amount of deviation is calculated.
  • the distance measuring device according to (1) above.
  • (3) The control unit controls so that the irradiation of the light by the irradiation unit is repeated at the predetermined irradiation timing.
  • the deviation adjusting unit calculates an average value of the position of the center of gravity based on the value of the first electric signal based on the electric charge accumulated by the first light receiving element group according to the repetition of the irradiation, and obtains the average value. Calculate the deviation amount based on The distance measuring device according to (2) above.
  • (4) The deviation adjusting unit calculates the position of the center of gravity when the value of the first electric signal is equal to or higher than a predetermined threshold value.
  • the distance measuring device according to (2) or (3) above.
  • the deviation adjusting unit adjusts the positional relationship between the condensing region and the charge storage region when the deviation amount is equal to or greater than a predetermined allowable value.
  • the distance measuring device according to any one of (1) to (4).
  • the irradiation unit irradiates the line-shaped light along one direction according to the predetermined irradiation timing while sequentially scanning the light in a direction orthogonal to the one direction at a predetermined scanning angle.
  • the control unit controls to read out a first electric signal based on the charge accumulated in the first light receiving element group among the plurality of light receiving elements in the charge storage region from the first light receiving element group.
  • the distance measuring device according to any one of (1) to (5).
  • the deviation adjusting unit controls so that the predetermined scanning angle is adjusted according to the deviation amount.
  • the irradiation unit includes a scanning mirror for sequentially scanning the light at a predetermined scanning angle according to a driving voltage.
  • the deviation adjusting unit controls so that the predetermined scanning angle is adjusted by controlling the driving voltage with respect to the scanning mirror.
  • the distance measuring device according to (7) above. (9) The deviation adjusting unit controls the operation of some light receiving element groups among the plurality of light receiving elements so that the charge storage region is expanded according to the deviation amount.
  • the shift adjusting unit calculates the inclination of the light collecting region with respect to the charge storage region, and based on the calculated inclination, some of the plurality of light receiving elements so that the charge storage region is expanded. Controls the operation of the light receiving element group of The distance measuring device according to (9) above. (11) The deviation adjusting unit controls the irradiation timing so as to adjust the operation timing of the light receiving element group that accumulates the electric charge.
  • a memory for holding the value of the electric signal read from a group of some light receiving elements among the plurality of light receiving elements is further provided. The distance measuring device according to claim 1, wherein any one of (1) to (11) is described.
  • the control unit operates the deviation adjustment unit according to an adjustment start instruction signal given from the outside.
  • the distance measuring device according to any one of (1) to (12).
  • the first light receiving element group includes a light receiving element group among the plurality of light receiving elements in the light collecting region and a light receiving element group in a region circumscribing the region.
  • the distance measuring device according to any one of (2) to (13).
  • It is a method of adjusting the deviation of the distance measuring mechanism in a distance measuring device. The light from the light source is irradiated to the target area at a predetermined irradiation timing while being scanned by the irradiation unit.
  • the observation light in the target area is received by some light receiving element groups among the plurality of light receiving elements in the light receiving unit, and Reading an electric signal based on an electric charge accumulated according to the reflected light from an object irradiated with the light by the irradiation unit included in the observation light from a group of some light receiving elements among the plurality of light receiving elements.
  • the control is This includes calculating the amount of deviation between the condensing region and the charge storage region and adjusting the relationship between the condensing region and the charge storage region so that the calculated deviation amount becomes small. How to adjust the deviation of the distance measuring mechanism. (16)
  • the adjustment is The position of the center of gravity is calculated based on the value of the first electric signal read from the first light receiving element group among the plurality of light receiving elements in the charge storage region.
  • the deviation amount is calculated based on the calculated center of gravity position and the reference position in the charge storage region.
  • the method for adjusting the deviation of the distance measuring mechanism according to (15) above.

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • General Physics & Mathematics (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Optics & Photonics (AREA)
  • Electromagnetism (AREA)
  • Optical Radar Systems And Details Thereof (AREA)
  • Measurement Of Optical Distance (AREA)

Abstract

This invention comprises: an emission unit for emitting light from a light source while scanning a given area with the light; a light reception unit comprising a plurality of light reception elements for receiving observation light from the given area and outputting electrical signals; a distance measurement processing unit for calculating the distance to an object on the basis of the value of an electrical signal based on charge accumulated according to the light that has been emitted by the emission unit and reflected by the object and is included in the observation light received by the plurality of light reception elements; an area where the reflected light corresponding to the light emitted by the emission unit is concentrated; and a charge accumulation area comprising a group of light reception elements from among the plurality of light reception elements. A control unit comprises a deviation adjustment unit for calculating the amount of deviation between the concentration area and the charge accumulation area and adjusting the positional relationship between the concentration area and charge accumulation area such that the calculated amount of deviation becomes smaller.

Description

距離測定装置及び該装置における測距機構のずれ調整方法Distance measuring device and method of adjusting the deviation of the distance measuring mechanism in the device
 本開示に係る技術は、距離測定装置及び該装置における測距機構のずれ調整方法に関する。 The technique according to the present disclosure relates to a distance measuring device and a method of adjusting a deviation of a distance measuring mechanism in the device.
 物体(対象物)までの距離をToF(Time of Flight)に基づいて計測する距離測定装置(測距センサと称されることもある。)が知られている。TOFには、一般に、直接TOF(dTOF)と間接TOF(iTOF)とがある。直接ToFは、発光素子からパルス光を発射し、パルス光が照射された物体からの反射光をSPAD(Single Photon Avalanche Diode)と呼ばれる受光素子で受けてフォトンを検出し、これにより発生したキャリアを、アバランシェ増倍を用いて電気信号パルスに変換し、これをTDC(Time to Digital Converter)に入力することで反射光の到来時刻を計測し、物体までの距離を算出する技術である。一方、間接ToFは、発光素子からパルス光を発射し、パルス光が照射された物体からの反射光を受光素子で受光することにより発生した電荷を検出し、その蓄積量が光の到来タイミングに依存して変化する半導体素子構造を利用して、光の飛行時間を計測する。 A distance measuring device (sometimes called a distance measuring sensor) that measures the distance to an object (object) based on ToF (Time of Flight) is known. The TOF generally includes a direct TOF (dTOF) and an indirect TOF (iTOF). Directly ToF emits pulsed light from a light emitting element, receives reflected light from an object irradiated with pulsed light by a light receiving element called SPAD (Single Photon Avalanche Diode), detects photons, and detects carriers generated by this. This is a technology that measures the arrival time of reflected light by converting it into an electrical signal pulse using Avalanche multiplication and inputting it to a TDC (Time to Digital Converter), and calculates the distance to an object. On the other hand, the indirect ToF detects the charge generated by emitting pulsed light from the light emitting element and receiving the reflected light from the object irradiated with the pulsed light by the light receiving element, and the accumulated amount of the light is set at the arrival timing of the light. The flight time of light is measured by using a semiconductor device structure that changes depending on the device.
 例えば、下記特許文献1は、対象物に輝度変調した走査光を照射する光源と、該対象物からの反射光を電気信号に変換し、該輝度変調に同期して感度変調する画素アレイと、該走査光に走査に同期して、該画素アレイを駆動し及び信号の読み出しを行う画素駆動回路とを有する距離画像入力装置を開示する。 For example, Patent Document 1 below describes a light source that irradiates an object with luminance-modulated scanning light, a pixel array that converts reflected light from the object into an electrical signal, and sensitivity-modulates the object in synchronization with the luminance modulation. Disclosed is a distance image input device having a pixel drive circuit that drives the pixel array and reads out a signal in synchronization with scanning in the scanning light.
特開2002-39716号公報JP-A-2002-39716
 上記のような特許文献1に示される装置では、より精確な距離画像を得るために、光源から照射される光の照射タイミングと画素アレイからの信号の電荷の蓄積及び読出しタイミング(例えば、集光される領域と電荷が蓄積される領域)とを一致させた測距データを取得する必要がある。しかしながら、装置内の測距機構等の経時的変化や、外部環境(例えば温度)の変化、製造ばらつきなどに起因して上記タイミング間にずれが生じ、正しい測距データを取得できないという課題があった。 In the apparatus shown in Patent Document 1 as described above, in order to obtain a more accurate distance image, the irradiation timing of the light emitted from the light source and the accumulation and reading timing of the electric charge of the signal from the pixel array (for example, condensing). It is necessary to acquire the distance measurement data in which the region to be measured and the region where the electric charge is accumulated) are matched. However, there is a problem that correct distance measurement data cannot be acquired due to a deviation between the above timings due to changes over time in the distance measurement mechanism in the device, changes in the external environment (for example, temperature), manufacturing variations, and the like. It was.
 そこで、上記事情に鑑み、本開示では、測距機構の経時変化等に起因する測距処理タイミングのずれを解消し得る距離測定装置及び該装置における測距機構のずれ調整方法が提供される。 Therefore, in view of the above circumstances, the present disclosure provides a distance measuring device capable of eliminating a deviation in the distance measuring processing timing due to a change over time of the distance measuring mechanism, and a method for adjusting the deviation of the distance measuring mechanism in the device.
 上記課題を解決するための本技術は、以下に示す特定事項乃至は技術的特徴を含んで構成される。 This technology for solving the above problems is configured to include the following specific items or technical features.
 すなわち、ある観点に従う本技術は、光源からの光を、所定の照射タイミングで対象エリアに対して走査しながら照射する照射部と、前記対象エリアにおける観測光を受光し、電気信号を出力する複数の受光素子を含む受光部と、前記複数の受光素子のうちの幾つかの受光素子群により受光された前記観測光に含まれる前記照射部により前記光が照射された物体からの反射光に応じて蓄積された電荷に基づく前記電気信号の値に基づいて、前記物体までの距離を算出するための測距処理を行う測距処理部と、前記照射部により照射された前記光に対応する前記反射光の集光領域と前記複数の受光素子のうちの幾つかの受光素子群による電荷蓄積領域とを制御する制御部とを備える距離測定装置である。そして、前記制御部は、前記集光領域と前記電荷蓄積領域との間のずれ量を算出し、算出した前記ずれ量が小さくなるように、前記集光領域と前記電荷蓄積領域との位置的な関係を調整するずれ調整部を備える。 That is, in the present technology according to a certain viewpoint, an irradiation unit that irradiates light from a light source while scanning the target area at a predetermined irradiation timing, and a plurality of irradiation units that receive the observation light in the target area and output an electric signal. In response to the reflected light from the object irradiated with the light by the light receiving unit including the light receiving element of the above and the irradiation unit included in the observation light received by some light receiving element group among the plurality of light receiving elements. A distance measuring processing unit that performs distance measuring processing for calculating the distance to the object based on the value of the electric signal based on the accumulated electric charge, and the light corresponding to the light emitted by the irradiation unit. It is a distance measuring device including a control unit for controlling a light collecting region of reflected light and a charge storage region formed by a group of some light receiving elements among the plurality of light receiving elements. Then, the control unit calculates the amount of deviation between the condensing region and the charge storage region, and positions the condensing region and the charge storage region so that the calculated deviation amount becomes small. It is provided with a shift adjustment unit that adjusts the relationship.
 また、ある観点に従う本開示に係る技術は、距離測定装置における測距機構のずれ調整方法である。測距機構は、照射部及び受光部を含み構成され得る。該ずれ調整方法は、光源からの光を、所定の照射タイミングで対象エリアに対して、照射部により走査しながら照射することと、前記対象エリアにおける観測光を、受光部における複数の受光素子のうちの幾つかの受光素子群により受光することと、前記複数の受光素子のうちの幾つかの受光素子群から前記観測光に含まれる前記照射部により前記光が照射された物体からの反射光に応じて蓄積された電荷に基づく前記電気信号を読み出すことと、読み出した前記電気信号の値に基づいて、前記物体までの距離を算出するための測距処理を行うことと、前記照射部により照射された前記光に対応する前記反射光の集光領域と前記複数の受光素子のうちの幾つかの受光素子群による電荷蓄積領域とを制御すること、を含む。そして、前記制御することは、前記集光領域と前記電荷蓄積領域との間のずれ量を算出し、算出した前記ずれ量が小さくなるように、前記集光領域と前記電荷蓄積領域との関係を調整することを含む。 Further, the technique according to the present disclosure according to a certain viewpoint is a method of adjusting the deviation of the distance measuring mechanism in the distance measuring device. The distance measuring mechanism may be configured to include an irradiation unit and a light receiving unit. The deviation adjusting method is to irradiate the target area with light from a light source while scanning the target area at a predetermined irradiation timing, and to irradiate the observed light in the target area with a plurality of light receiving elements in the light receiving unit. Light received by some of the light receiving element groups and reflected light from an object irradiated with the light by the irradiation unit included in the observed light from some of the light receiving element groups. The electric signal based on the accumulated electric charge is read out according to the above, distance measurement processing for calculating the distance to the object is performed based on the value of the read electric signal, and the irradiation unit is used. It includes controlling a condensing region of the reflected light corresponding to the irradiated light and a charge storage region by some light receiving element group among the plurality of light receiving elements. Then, the control calculates the amount of deviation between the condensing region and the charge storage region, and the relationship between the condensing region and the charge storage region so that the calculated deviation amount becomes small. Including adjusting.
 なお、本明細書等において、手段とは、単に物理的手段を意味するものではなく、その手段が有する機能をソフトウェアによって実現する場合も含む。また、1つの手段が有する機能が2つ以上の物理的手段により実現されても、2つ以上の手段の機能が1つの物理的手段により実現されてもよい。 Note that, in the present specification and the like, the means does not simply mean a physical means, but also includes a case where the function of the means is realized by software. Further, the function of one means may be realized by two or more physical means, or the function of two or more means may be realized by one physical means.
 また、「システム」とは、複数の装置(又は特定の機能を実現する機能モジュール)が論理的に集合した物のことを言い、各装置や機能モジュールが単一の筐体内にあるか否かは特に問わない。 Further, the "system" refers to a logical collection of a plurality of devices (or functional modules that realize a specific function), and whether or not each device or functional module is in a single housing. Is not particularly limited.
 本技術の他の技術的特徴、目的、及び作用効果乃至は利点は、添付した図面を参照して説明される以下の実施形態により明らかにされる。本明細書に記載された効果はあくまで例示であって限定されるものでは無く、また他の効果があってもよい。 Other technical features, objectives, effects or advantages of the present technology will be clarified by the following embodiments described with reference to the attached drawings. The effects described herein are merely exemplary and not limited, and may have other effects.
本技術の一実施形態における距離測定装置の構成の一例を示すブロックダイアグラムである。It is a block diagram which shows an example of the structure of the distance measuring apparatus in one Embodiment of this technique. 本技術の一実施形態における距離測定装置における受光部の構成の一例を示すブロックダイアグラムである。It is a block diagram which shows an example of the structure of the light receiving part in the distance measuring apparatus in one Embodiment of this technique. 本技術の一実施形態に係る距離測定装置における受光部の動作を説明するタイミングチャートの一例を示す。An example of a timing chart for explaining the operation of the light receiving unit in the distance measuring device according to the embodiment of the present technology is shown. 本技術の一実施形態に係る距離測定装置における集光領域と電荷蓄積領域との関係を説明するための図である。It is a figure for demonstrating the relationship between the condensing area and the charge accumulation area in the distance measuring apparatus which concerns on one Embodiment of this technique. 本技術の一実施形態における距離測定装置における電荷蓄積と電荷読出しとの関係を説明するためのシーケンス図である。It is a sequence diagram for demonstrating the relationship between charge accumulation and charge reading in the distance measuring apparatus in one Embodiment of this technique. 本技術の一実施形態における距離測定装置における電荷蓄積と電荷読出しとの関係を説明するためのシーケンス図である。It is a sequence diagram for demonstrating the relationship between charge accumulation and charge reading in the distance measuring apparatus in one Embodiment of this technique. 本技術の一実施形態における距離測定装置における測距機構のずれ調整処理を説明するためのフローチャートである。It is a flowchart for demonstrating the deviation adjustment processing of the distance measuring mechanism in the distance measuring apparatus in one Embodiment of this technique. 本技術の一実施形態に係る距離測定装置における照射光に対応する集光領域と電荷蓄積領域との関係を説明するための図である。It is a figure for demonstrating the relationship between the condensing area corresponding to the irradiation light and the charge accumulation area in the distance measuring apparatus which concerns on one Embodiment of this technique. 本技術の一実施形態における距離測定装置における測距機構のずれ調整処理を説明するためのフローチャートである。It is a flowchart for demonstrating the deviation adjustment processing of the distance measuring mechanism in the distance measuring apparatus in one Embodiment of this technique.
 以下、図面を参照して本開示に係る技術の実施の形態を説明する。ただし、以下に説明する実施形態は、あくまでも例示であり、以下に明示しない種々の変形や技術の適用を排除する意図はない。本技術は、その趣旨を逸脱しない範囲で種々変形(例えば各実施形態を組み合わせる等)して実施することができる。また、以下の図面の記載において、同一又は類似の部分には同一又は類似の符号を付して表している。図面は模式的なものであり、必ずしも実際の寸法や比率等とは一致しない。図面相互間においても互いの寸法の関係や比率が異なる部分が含まれていることがある。 Hereinafter, embodiments of the technology according to the present disclosure will be described with reference to the drawings. However, the embodiments described below are merely examples, and there is no intention of excluding the application of various modifications and techniques not specified below. The present technology can be implemented with various modifications (for example, combining each embodiment) within a range that does not deviate from the purpose. Further, in the description of the following drawings, the same or similar parts are represented by the same or similar reference numerals. The drawings are schematic and do not necessarily match the actual dimensions and ratios. Even between drawings, there may be parts where the relationship and ratio of dimensions are different from each other.
[第1の実施形態]
 本実施形態に係る距離測定装置及び該装置における測距機構のタイミング調整方法は、光源を含む照射部から照射されるパルス光に対する反射光が集光される受光部の領域(集光領域)と、パルス光の照射に応答して電荷が蓄積され読み出される受光部の領域(電荷蓄積)との間に位置的なずれが生じた場合に、該集光領域が該電荷蓄積に含まれるように(照射タイミングに対して電荷蓄積タイミングが合うように)、該電荷蓄積に対する集光領域を調整可能にしたことを特徴とする。一例として、集光領域の調整は、照射部によるパルス光の走査角度を制御することにより、調整される。
[First Embodiment]
The distance measuring device according to the present embodiment and the timing adjusting method of the distance measuring mechanism in the device include a region (condensing region) of the light receiving portion in which the reflected light for the pulsed light emitted from the irradiation unit including the light source is collected. , When a positional deviation occurs from the region (charge accumulation) of the light receiving portion where the charge is accumulated and read out in response to the irradiation of the pulsed light, the condensing region is included in the charge accumulation. It is characterized in that the condensing region for the charge accumulation can be adjusted (so that the charge accumulation timing matches the irradiation timing). As an example, the adjustment of the condensing region is adjusted by controlling the scanning angle of the pulsed light by the irradiation unit.
 図1は、本技術の一実施形態に係る距離測定装置の構成の一例を示すブロックダイアグラムである。距離測定装置1は、光源からパルス光を出射し、パルス光が照射された物体OBJからの反射光を受光素子で受けることにより得られる電気信号に基づいて、物体OBJ(対象物ないしは被写体)までの距離を測定するいわゆる間接TOF型測距センサである。本開示では、間接TOF型測距センサを例にして説明されるが、直接TOF型測距センサや光切断法等を用いた各種のセンサに対しても同様に適用され得る。 FIG. 1 is a block diagram showing an example of the configuration of a distance measuring device according to an embodiment of the present technology. The distance measuring device 1 emits pulsed light from a light source and receives reflected light from the object OBJ irradiated with the pulsed light by a light receiving element, and based on an electric signal obtained, the distance measuring device 1 reaches the object OBJ (object or subject). It is a so-called indirect TOF type distance measuring sensor that measures the distance of. In the present disclosure, an indirect TOF type distance measuring sensor will be described as an example, but the same can be applied to various sensors using a direct TOF type distance measuring sensor, an optical cutting method, or the like.
 すなわち、同図に示すように、距離測定装置1は、例えば、制御部10と、ドライバ部20と、照射部30と、受光部40と、記憶部50と、測距処理部60といったコンポーネントを含み構成される。これらのコンポーネントは、例えば、CMOS LSIのようなシステム・オン・チップ(SoC)として一体的に構成され得るが、例えば、照射部30や受光部40といった幾つかのコンポーネントが別体のLSIとして構成されても良い。距離測定装置1はまた、測距処理部60により算出された距離に係るデータ(測距データ)を外部に配置されたホストIC(図示せず)に出力するための通信インタフェース部(通信IF部)70を含み得る。また、距離測定装置1は、動作環境、例えば温度等の変化を検出するための温度センサ80が設けられても良い。制御部10は、例えば、温度センサ80によって検出された温度に基づいて、本開示で説明される、距離測定装置1における測距機構のタイミング調整処理を実行する。 That is, as shown in the figure, the distance measuring device 1 includes, for example, components such as a control unit 10, a driver unit 20, an irradiation unit 30, a light receiving unit 40, a storage unit 50, and a distance measuring processing unit 60. Consists of. These components can be integrally configured as, for example, a system-on-chip (SoC) such as a CMOS LSI, but for example, some components such as the irradiation unit 30 and the light receiving unit 40 are configured as separate LSIs. May be done. The distance measuring device 1 also has a communication interface unit (communication IF unit) for outputting data related to the distance calculated by the distance measuring processing unit 60 (distance measuring data) to a host IC (not shown) arranged outside. ) 70 may be included. Further, the distance measuring device 1 may be provided with a temperature sensor 80 for detecting a change in the operating environment, for example, temperature. The control unit 10 executes, for example, the timing adjustment process of the distance measuring mechanism in the distance measuring device 1 described in the present disclosure based on the temperature detected by the temperature sensor 80.
 制御部10は、距離測定装置1の動作を統括的に制御するコンポーネントである。制御部10は、例えば、制御信号生成部12と、ずれ調整部14とを含み構成される。図示されていないが、制御部10は、距離測定装置1の動作を司るクロックを生成するクロック生成部を含み得る。クロック生成部は、生成したクロックを例えば制御信号生成部12に出力する。 The control unit 10 is a component that comprehensively controls the operation of the distance measuring device 1. The control unit 10 includes, for example, a control signal generation unit 12 and a deviation adjusting unit 14. Although not shown, the control unit 10 may include a clock generation unit that generates a clock that controls the operation of the distance measuring device 1. The clock generation unit outputs the generated clock to, for example, the control signal generation unit 12.
 制御信号生成部12は、与えられたクロックに従って、ドライバ部20及び受光部40のそれぞれに対する制御信号を生成し、出力する。具体的には、制御信号生成部12は、所定の照射タイミングで照射部30が光を照射し走査するための照射制御信号をドライバ部20に出力するとともに、該照射タイミングに対応した読出しタイミングで受光部40の特定の受光素子群から電気信号を読み出すための受光制御信号を受光部40に出力する。 The control signal generation unit 12 generates and outputs control signals for each of the driver unit 20 and the light receiving unit 40 according to the given clock. Specifically, the control signal generation unit 12 outputs an irradiation control signal for the irradiation unit 30 to irradiate and scan light at a predetermined irradiation timing to the driver unit 20, and at a read timing corresponding to the irradiation timing. A light receiving control signal for reading an electric signal from a specific light receiving element group of the light receiving unit 40 is output to the light receiving unit 40.
 ずれ調整部14は、光源を含む照射部から物体OBJに向けて照射されるレーザパルス光(以下「パルス光」という。)に対応する反射光が集光される受光部の領域(集光領域)と、パルス光の照射に応答して電荷が蓄積される受光部の領域(電荷蓄積領域)との間の位置関係を調整する。例えば、ずれ調整部14は、集光領域と電荷蓄積領域との位置的ないしはプロファイル的なずれをなくすために、集光領域の範囲を調整するためのパラメータを決定する。より具体的には、集光領域と電荷蓄積領域との位置的な関係は、後述するように、照射されるパルス光の走査角度を調整することにより調整される。このため、ずれ調整部14は、走査ミラーに対する駆動電圧を制御するためのパラメータを制御信号生成部12に与える。他の例として、パルス光の照射タイミングに対して、電荷を蓄積する受光素子群の動作タイミングを制御することにより、集光領域と電荷蓄積領域との位置的な関係が調整される。 The deviation adjusting unit 14 is a region of a light receiving unit (condensing region) in which reflected light corresponding to laser pulsed light (hereinafter referred to as “pulse light”) emitted from an irradiation unit including a light source toward an object OBJ is collected. ) And the region of the light receiving portion (charge storage region) where the charge is accumulated in response to the irradiation of the pulsed light, the positional relationship is adjusted. For example, the shift adjusting unit 14 determines a parameter for adjusting the range of the focusing region in order to eliminate the positional or profile deviation between the focusing region and the charge storage region. More specifically, the positional relationship between the condensing region and the charge storage region is adjusted by adjusting the scanning angle of the irradiated pulsed light, as will be described later. Therefore, the deviation adjusting unit 14 gives the control signal generation unit 12 a parameter for controlling the drive voltage with respect to the scanning mirror. As another example, the positional relationship between the condensing region and the charge storage region is adjusted by controlling the operation timing of the light receiving element group that stores the charge with respect to the irradiation timing of the pulsed light.
 ドライバ部20は、制御信号生成部12から与えられる照射制御信号に基づいて、照射部30を駆動する。例えば、ドライバ部20は、照射制御信号に基づいて、パルス光が出射されるように光源を駆動するとともに、出射したパルス光を所定の方向に走査するために照射部30の照射光学系(図示せず)を駆動する。 The driver unit 20 drives the irradiation unit 30 based on the irradiation control signal given from the control signal generation unit 12. For example, the driver unit 20 drives the light source so that the pulsed light is emitted based on the irradiation control signal, and the irradiation optical system of the irradiation unit 30 is used to scan the emitted pulsed light in a predetermined direction (FIG. (Not shown) is driven.
 照射部30は、対象エリアに対して、TOF測距のためのパルス光を出射しながら走査するコンポーネントである。このような測距に用いるためのパルス光は、アクティブ光と称されることもある。照射部30は、例えば、光源と照射光学系とを含み構成され得る。光源は、例えば、垂直共振器面発光レーザ(VCSELレーザ)であり得る。照射部30は、例えば10~200MHzの周波数で高速駆動され、また、数~数十nsのパルス幅を有し得るが、これに限られない。照射光学系は、例えば、走査ミラー及びシリンドリカルレンズ等を含み構成される。MEMS(Micro Electro Mechanical Systems)ミラーは、走査ミラーの一例である。照射部30は、例えば、ドライバ部20の制御の下、光源から出射した一の方向(例えば水平方向)に沿ったライン状の光を、ドライバ部20により駆動される走査ミラー等を用いて、該一の方向に直交する他の方向(例えば垂直方向)に段階的に走査することにより、対象エリアに対して光を空間的に照射する。走査ミラーの走査角度は、例えば、ドライバ部20から印加される駆動電圧の大きさに比例する。本例では、ライン状の光を出射する光源が用いられるが、これに限られず、点光源を用いても良く、この場合は、2次元走査により面照射が実現される。本例では、光源は、LSIチップの外に設けられているものとするが、これに限られるものではなく、onチップにより構成されても良い。 The irradiation unit 30 is a component that scans the target area while emitting pulsed light for TOF distance measurement. The pulsed light used for such distance measurement is sometimes referred to as active light. The irradiation unit 30 may include, for example, a light source and an irradiation optical system. The light source can be, for example, a vertical cavity surface emitting laser (VCSEL laser). The irradiation unit 30 is driven at high speed at a frequency of, for example, 10 to 200 MHz, and may have a pulse width of several to several tens of ns, but is not limited thereto. The irradiation optical system includes, for example, a scanning mirror, a cylindrical lens, and the like. The MEMS (Micro Electro Mechanical Systems) mirror is an example of a scanning mirror. The irradiation unit 30 uses, for example, a scanning mirror or the like driven by the driver unit 20 to emit line-shaped light along one direction (for example, the horizontal direction) emitted from the light source under the control of the driver unit 20. By stepwise scanning in another direction (for example, the vertical direction) orthogonal to the one direction, the target area is spatially irradiated with light. The scanning angle of the scanning mirror is, for example, proportional to the magnitude of the drive voltage applied from the driver unit 20. In this example, a light source that emits line-shaped light is used, but the present invention is not limited to this, and a point light source may be used. In this case, surface irradiation is realized by two-dimensional scanning. In this example, the light source is provided outside the LSI chip, but the light source is not limited to this, and may be configured by the on-chip.
 受光部40は、対象エリアから入射する光に反応して、制御部10の制御の下、電荷を蓄積し、これに応じた電気信号を出力するセンサである。図示されていないが、典型的には、受光部40の受光面の前方には、光を効率よく受光することができるように、集光レンズ等の受光光学系が設けられる。受光部40は、典型的には、2次元アレイ状に配置された複数の受光素子を含み構成されたCMOSイメージセンサであるが。これに限られず、例えば、CCDイメージセンサであっても良い。受光部40の特定の受光素子群は、制御部10の制御の下、例えば所定の照射タイミングに同期した所定の受光タイミングで動作し、受信した観測光に応じた電荷を蓄積する。例えば、受光部40の特定の受光素子群は、上述したパルス駆動の周波数(10~200MHz)と同じ周波数(10~200MHz)に変調された電圧で印加され駆動される。これにより、パルス光の照射タイミングと受光素子群の蓄積タイミングとを整合させる。受光部40は、後述する各ゾーン(電荷蓄積領域)について、例えば4回のパルス光の出射に対応して4回の電荷蓄積及び出力(読出し)を行う。受光部40から読み出された電荷(電気信号)は、記憶部50に転送される。 The light receiving unit 40 is a sensor that reacts to light incident from the target area, accumulates electric charges under the control of the control unit 10, and outputs an electric signal corresponding to the electric charge. Although not shown, typically, a light receiving optical system such as a condenser lens is provided in front of the light receiving surface of the light receiving unit 40 so that light can be efficiently received. The light receiving unit 40 is typically a CMOS image sensor including a plurality of light receiving elements arranged in a two-dimensional array. The present invention is not limited to this, and for example, a CCD image sensor may be used. The specific light receiving element group of the light receiving unit 40 operates under the control of the control unit 10 at a predetermined light receiving timing synchronized with, for example, a predetermined irradiation timing, and accumulates charges according to the received observation light. For example, a specific light receiving element group of the light receiving unit 40 is applied and driven by a voltage modulated to the same frequency (10 to 200 MHz) as the pulse driving frequency (10 to 200 MHz) described above. As a result, the irradiation timing of the pulsed light and the accumulation timing of the light receiving element group are matched. The light receiving unit 40 performs four charge storage and output (reading) for each zone (charge storage region) described later, for example, in response to four pulse light emissions. The electric charge (electrical signal) read from the light receiving unit 40 is transferred to the storage unit 50.
 記憶部50は、受光部40から読み出された電気信号を一時的に保持するメモリである。記憶部50は、揮発性メモリであっても良いし、不揮発性メモリであっても良い。本例では、記憶部50は、受光部40から読み出される1フレーム分の電気信号パルスを保持するように構成されるが、これに限られない。代替例として、記憶部50は、照射部30による数ライン分のパルス光の照射に対応する観測光に基づく電気信号を保持し得る。 The storage unit 50 is a memory that temporarily holds the electric signal read from the light receiving unit 40. The storage unit 50 may be a volatile memory or a non-volatile memory. In this example, the storage unit 50 is configured to hold an electric signal pulse for one frame read from the light receiving unit 40, but is not limited to this. As an alternative example, the storage unit 50 may hold an electrical signal based on the observed light corresponding to the irradiation of several lines of pulsed light by the irradiation unit 30.
 測距処理部60は、照射部30により出射したパルス光と受光部40により受光した観測光とに基づいて、物体OBJまでの距離を算出する(測距する)コンポーネントである。測距処理部60は、典型的には、信号処理プロセッサにより構成される。本開示では、測距処理部60は、照射部30により出射された異なる位相を持つパルス光(多相のパルス光)に対応して、受光部40により各位相について受光され蓄積された電荷に基づいて、距離を算出するように構成される。 The distance measurement processing unit 60 is a component that calculates (measures the distance) to the object OBJ based on the pulsed light emitted by the irradiation unit 30 and the observation light received by the light receiving unit 40. The ranging processing unit 60 is typically configured by a signal processing processor. In the present disclosure, the distance measuring processing unit 60 corresponds to the pulsed light having different phases (multiphase pulsed light) emitted by the irradiation unit 30, and the electric charge received and accumulated for each phase by the light receiving unit 40. Based on, it is configured to calculate the distance.
 図2は、本技術の一実施形態に係る距離測定装置における受光部の構成の一例を示すブロックダイアグラムである。同図に示すように、受光部40は、受光素子アレイ42と、垂直走査回路44と、水平走査回路46とを含み構成される。 FIG. 2 is a block diagram showing an example of the configuration of the light receiving unit in the distance measuring device according to the embodiment of the present technology. As shown in the figure, the light receiving unit 40 includes a light receiving element array 42, a vertical scanning circuit 44, and a horizontal scanning circuit 46.
 受光素子アレイは、複数の受光素子が2次元アレイ状に配置されたCMOSイメージセンサである。受光素子は、例えばロックインピクセル構造を有する埋め込みフォトダイオードである。1つの受光素子は、例えば1画素に対応するが、これに限られない。なお、2次元アレイとは、行及び列方向に沿って受光素子群が配置される構成を含むほか、例えば、受光素子群が千鳥配列された構成を含み得る。 The light receiving element array is a CMOS image sensor in which a plurality of light receiving elements are arranged in a two-dimensional array. The light receiving element is, for example, an embedded photodiode having a lock-in pixel structure. One light receiving element corresponds to, for example, one pixel, but is not limited to this. The two-dimensional array may include a configuration in which the light receiving element groups are arranged along the row and column directions, and may include, for example, a configuration in which the light receiving element groups are arranged in a staggered manner.
 垂直走査回路44は、制御信号生成部12からの制御信号に従って行選択信号を生成し、これにより、行方向に配列された受光素子群を順次に有効化する回路である。垂直走査回路44は、例えばシフトレジスタ(図示せず)を含み構成される。垂直走査回路44は、一の行選択信号により、例えば、照射部30により照射されるパルス光の走査に対応する集光領域及びこれに外接する領域(すなわち電荷蓄積領域)における複数行の受光素子群を有効化する。 The vertical scanning circuit 44 is a circuit that generates a row selection signal according to a control signal from the control signal generation unit 12, thereby sequentially enabling a group of light receiving elements arranged in the row direction. The vertical scanning circuit 44 includes, for example, a shift register (not shown). The vertical scanning circuit 44 is a light receiving element having a plurality of rows in a condensing region corresponding to scanning of pulsed light emitted by the irradiation unit 30 and a region circumscribing the condensing region (that is, a charge storage region) by a single row selection signal. Activate the swarm.
 水平走査回路46は、制御信号生成部12からの制御信号に従って、有効化された受光素子群によって生成された電荷に基づく電気信号を読み出す回路である。水平走査回路46は、例えばシフトレジスタ(図示せず)を含み構成される。水平走査回路46は、受光素子群からパラレルに読み出した電気信号をシリアルの電気信号に変換しながら記憶部50に書き込む。 The horizontal scanning circuit 46 is a circuit that reads out an electric signal based on the electric charge generated by the activated light receiving element group according to the control signal from the control signal generation unit 12. The horizontal scanning circuit 46 includes, for example, a shift register (not shown). The horizontal scanning circuit 46 writes the electric signal read in parallel from the light receiving element group into the storage unit 50 while converting it into a serial electric signal.
 なお、距離測定装置1は、照射部30によるパルス光の照射タイミングに対応して、例えば垂直走査回路44により垂直方向の受光素子群を選択し、その電荷蓄積と読出しのタイミングを調整するように構成されても良い。 The distance measuring device 1 selects, for example, a group of light receiving elements in the vertical direction by the vertical scanning circuit 44 in accordance with the irradiation timing of the pulsed light by the irradiation unit 30, and adjusts the charge accumulation and readout timings thereof. It may be configured.
 図3は、本技術の一実施形態に係る距離測定装置における受光部の動作を説明するタイミングチャートの一例を示す。すなわち、同図に示すように、照射部30により出射されたパルス幅T0を有するパルス光は物体OBJに照射され、遅延時間Td後に、受光部40において反射光として観測される。観測される反射光は、受光部40の特定の受光素子群(該照射されるパルス光の走査に対応する受光素子群)により受光される。 FIG. 3 shows an example of a timing chart for explaining the operation of the light receiving unit in the distance measuring device according to the embodiment of the present technology. That is, as shown in the figure, the pulsed light having a pulse width T0 emitted by the irradiation unit 30 is irradiated to the object OBJ, and after the delay time Td, it is observed as reflected light in the light receiving unit 40. The observed reflected light is received by a specific light receiving element group (light receiving element group corresponding to scanning of the irradiated pulsed light) of the light receiving unit 40.
 各受光素子は、一対のゲートを有し、該一対のゲートのそれぞれに交互にパルス信号を与えることによって交互にゲートを開き、該受光素子で発生した電荷Q1及びQ2を各電荷蓄積部(図示せず)に転送する。各受光素子の各電荷蓄積部に蓄積された電荷Q1及びQ2は、電圧の変化量に変換され、電気信号として外部に読み出される。 Each light receiving element has a pair of gates, and by alternately applying pulse signals to each of the pair of gates, the gates are opened alternately, and the charges Q1 and Q2 generated by the light receiving elements are stored in each charge storage unit (FIG. Transfer to). The charges Q1 and Q2 accumulated in each charge storage unit of each light receiving element are converted into the amount of change in voltage and read out as an electric signal.
 以上のように構成された受光部40は、制御部10の制御の下、制御信号生成部12からの制御信号に従った垂直走査回路44及び水平走査回路46の協調動作により、複数行の受光素子群が順次に有効化され、蓄積した電荷が受光素子群から電気信号として読み出され出力される。 The light receiving unit 40 configured as described above receives a plurality of lines of light by the cooperative operation of the vertical scanning circuit 44 and the horizontal scanning circuit 46 according to the control signal from the control signal generation unit 12 under the control of the control unit 10. The element group is sequentially activated, and the accumulated charge is read out as an electric signal from the light receiving element group and output.
 なお、本開示では、後述するように、距離測定装置1は、受光素子群から読み出される電荷Q1とQ2との差の絶対値に基づいて、集光領域と電荷蓄積領域との間の位置的なずれを算出するように構成されているが、これに限られず、例えば、電荷Q1又はQ2のいずれかに基づいて該ずれを算出するように構成されても良いし、電荷Q1とQ2との和の絶対値に基づいて該ずれを算出するように構成されても良い。 In the present disclosure, as will be described later, the distance measuring device 1 is positioned between the light collecting region and the charge storage region based on the absolute value of the difference between the charges Q1 and Q2 read from the light receiving element group. Although it is configured to calculate the deviation, the deviation is not limited to this, and may be configured to calculate the deviation based on either the charges Q1 or Q2, or the charges Q1 and Q2. It may be configured to calculate the deviation based on the absolute value of the sum.
 上述したように、距離測定装置1は、4回のパルス光に対応して、4回の電荷蓄積及び電荷読出しを行う。すなわち、照射部30は、制御部10の制御の下、各ゾーンについて、0度、90度、180度、及び270度というように位相が異なるパルス光(多相パルス光)を出射する。受光部40は、制御部10の制御の下、このように位相がずれて出射されたパルス光に対する反射光を集光し、各位相についての受光量に応じた電荷を蓄積する。本開示では、多相パルス光を用いた距離Dの算出は、例えば、以下のようにして行われる。 As described above, the distance measuring device 1 performs four charge accumulation and charge reading in response to four pulsed lights. That is, under the control of the control unit 10, the irradiation unit 30 emits pulsed light (multiphase pulsed light) having different phases such as 0 degree, 90 degree, 180 degree, and 270 degree for each zone. Under the control of the control unit 10, the light receiving unit 40 collects the reflected light for the pulsed light emitted out of phase in this way, and accumulates charges according to the amount of light received for each phase. In the present disclosure, the calculation of the distance D using the polymorphic pulsed light is performed, for example, as follows.
 まず、照射部20の光源から物体OBJまでの距離Dは、以下の式で算出される。
  D=(1/2)×c×Δt   …式1
  ただし、cは光速である。
First, the distance D from the light source of the irradiation unit 20 to the object OBJ is calculated by the following formula.
D = (1/2) × c × Δt… Equation 1
However, c is the speed of light.
 また、照射部20が出力するパルス光の位相と受光部40が受光したパルス光に対応する観測光の位相との差を位相差φとすると、Δtは、以下の式によって算出される。
  Δt=(1/f)×(φ/2π)   …式2
Further, assuming that the difference between the phase of the pulsed light output by the irradiation unit 20 and the phase of the observed light corresponding to the pulsed light received by the light receiving unit 40 is the phase difference φ, Δt is calculated by the following formula.
Δt = (1 / f) × (φ / 2π)… Equation 2
 したがって、照射部20から物体OBJまでの距離Dは、
  D=cφ/(4πf)   …式3
となる。
Therefore, the distance D from the irradiation unit 20 to the object OBJ is
D = cφ / (4πf)… Equation 3
Will be.
 光源から物体までの距離Dを算出するために必要な位相差φは、照射部20からのパルス光の位相と受光部40での観測光の位相との差であり、次の式に基づいて算出される。
  φ=Arctan((Q90-Q270)/(Q180-Q))   …式4
  ただし、Q、Q90、Q270、及びQ180は各位相における電荷量である。
The phase difference φ required to calculate the distance D from the light source to the object is the difference between the phase of the pulsed light from the irradiation unit 20 and the phase of the observation light from the light receiving unit 40, and is based on the following equation. Calculated.
φ = Arctan ((Q 90- Q 270 ) / (Q 180- Q 0 )) ... Equation 4
However, Q 0 , Q 90 , Q 270 , and Q 180 are the amounts of charge in each phase.
 以上より、距離Dは、算出された位相差φを式3に代入することにより算出される。 From the above, the distance D is calculated by substituting the calculated phase difference φ into Equation 3.
 図4は、本技術の一実施形態に係る距離測定装置における集光領域と電荷蓄積領域との関係を説明するための図である。図中、集光領域Aは、ある照射タイミングで照射部30がパルス光を照射・走査した場合の、受光素子アレイ42上の該パルス光に対応する反射光が集光すると想定される領域を示しており、電荷蓄積領域Bは、該照射・走査に対して受光素子アレイ42の受光素子群により実際に電荷が蓄積され、電気信号として読み出される領域を示している。 FIG. 4 is a diagram for explaining the relationship between the condensing region and the charge storage region in the distance measuring device according to the embodiment of the present technology. In the figure, the condensing region A is an region where the reflected light corresponding to the pulsed light on the light receiving element array 42 is assumed to be condensed when the irradiation unit 30 irradiates and scans the pulsed light at a certain irradiation timing. The charge storage region B shows a region in which charges are actually accumulated by the light receiving element group of the light receiving element array 42 for the irradiation / scanning and read out as an electric signal.
 同図(a)は、一般的な距離測定装置において、測距機構の経時的変化等により、集光領域Aにおけるライン方向に沿った仮想中心線L1に対して、電荷蓄積領域Bにおけるライン方向に延伸した仮想中心線L2がδだけずれている状態を示している。つまり、同図(a)では、ある照射タイミングで照射されたパルス光に対応して動作する(電荷を蓄積する)受光素子群は、本来の集光領域Aにおける受光素子群と一致していない。このような場合、パルス光の照射・走査に対して、正しい電気信号が読み出されず、より精確な距離画像を得ることができない。 FIG. 3A shows the line direction in the charge storage region B with respect to the virtual center line L1 along the line direction in the condensing region A due to a time-dependent change of the distance measuring mechanism in a general distance measuring device. It shows a state in which the virtual center line L2 extended to is deviated by δ. That is, in FIG. 3A, the light receiving element group that operates (accumulates charge) in response to the pulsed light irradiated at a certain irradiation timing does not match the light receiving element group in the original condensing region A. .. In such a case, the correct electric signal is not read out for the irradiation / scanning of the pulsed light, and a more accurate distance image cannot be obtained.
 同図(b)は、本技術に係る距離測定装置1における集光領域Aと電荷蓄積領域Bとの関係を示している。すなわち、同図に示すように、電荷蓄積領域Bは、集光領域Aの外側の領域(外接する領域)を含むように設定される。したがって、本技術に係る距離測定装置1によれば、測距機構の経時的変化等により、集光領域Aに対して、電荷蓄積領域Bがプロファイル的にずれた場合であっても、マージンmの分だけ余裕があるため、正しい電気信号を読み出すことができ、さらに、後述するように、集光領域Aに対する電荷蓄積領域Bのずれを調整することにより、集光領域Aにおける有効化され電荷を蓄積した受光素子群から電気信号が正しく読み出されることになる。なお、本例では、マージンmの幅は、上下同じに設定されているが、これに限られず、上下異なる幅であっても良い。 FIG. 3B shows the relationship between the condensing region A and the charge storage region B in the distance measuring device 1 according to the present technology. That is, as shown in the figure, the charge storage region B is set to include a region (circumscribing region) outside the condensing region A. Therefore, according to the distance measuring device 1 according to the present technology, even if the charge storage region B is profile-shifted with respect to the condensing region A due to a change over time of the distance measuring mechanism or the like, the margin m Since there is a margin corresponding to the above, the correct electric signal can be read out, and further, as will be described later, by adjusting the deviation of the charge accumulation region B with respect to the condensing region A, the activated charge in the condensing region A is activated. The electric signal is correctly read out from the light receiving element group in which the electric charge is accumulated. In this example, the width of the margin m is set to be the same at the top and bottom, but the width is not limited to this and may be different at the top and bottom.
 図5は、本技術の一実施形態に係る距離測定装置における受光素子アレイを説明するための図である。同図は、本開示における測距機構のずれ調整に関する用語を説明するために用いられる。同図に示すように、本例の受光素子アレイ42は、M×Nの画素P(受光素子)群から構成されるものとする。 FIG. 5 is a diagram for explaining a light receiving element array in a distance measuring device according to an embodiment of the present technology. This figure is used to explain the terms related to the deviation adjustment of the distance measuring mechanism in the present disclosure. As shown in the figure, the light receiving element array 42 of this example is composed of a group of M × N pixels P (light receiving elements).
 同図に示す受光素子アレイ42において、一の方向(図中、水平方向)に沿って配列されたN個の受光素子群を「ライン」(Line)と称するものとする。したがって、受光素子アレイ42は、M個のラインから構成される。また、ある画素Pの位置は、P(i,j)で示されるものとする。 In the light receiving element array 42 shown in the figure, a group of N light receiving elements arranged along one direction (horizontal direction in the figure) is referred to as a "line". Therefore, the light receiving element array 42 is composed of M lines. Further, it is assumed that the position of a certain pixel P is indicated by P (i, j).
 また、本開示において、「ゾーン」(Zone)とは、あるラインを中心にした電荷を蓄積する受光素子群である(図4における電荷蓄積領域Bに対応する。)。ゾーンiは、ラインiを中心にした電荷蓄積領域を示す。本例では、1つのゾーンは、3~5ラインで構成される。ライン総数がMとすると、ゾーンは以下のようになる。
  ゾーン1:ライン1~3
  ゾーン2:ライン1~4
  ゾーン3:ライン1~5
  ゾーン4:ライン2~6
  ゾーン5:ライン3~7
   (中略)
  ゾーンi:ラインi-2~i+2
   (中略)  ゾーンM:ラインM-2~M
Further, in the present disclosure, the "zone" is a group of light receiving elements that accumulates electric charges centered on a certain line (corresponding to the electric charge accumulating region B in FIG. 4). Zone i indicates a charge storage region centered on line i. In this example, one zone is composed of 3 to 5 lines. Assuming that the total number of lines is M, the zones are as follows.
Zone 1: Lines 1-3
Zone 2: Lines 1-4
Zone 3: Lines 1-5
Zone 4: Lines 2-6
Zone 5: Lines 3-7
(Omitted)
Zone i: Lines i-2 to i + 2
(Omitted) Zone M: Lines M-2 to M
 図6は、本技術の一実施形態における距離測定装置における電荷蓄積と電荷読出しとの関係を説明するためのシーケンス図である。 FIG. 6 is a sequence diagram for explaining the relationship between charge accumulation and charge readout in the distance measuring device according to the embodiment of the present technology.
 同図に示すように、ある時刻tにおいて、制御信号生成部12は、制御部10の制御の下、垂直同期信号Vsyncを出力すると、その立ち下がりエッジのタイミングで、照射部30は、ドライバ20によって駆動され、ゾーン1への集光が期待される多相パルス光を出射する。また、これに同期するように、制御信号生成部12は、走査同期信号Ssyncを出力する。これにより、ドライバ部20は、走査同期信号Ssyncに従って、走査ミラーに対する駆動電圧をV1からVMまで順次に降下させることで、照射部30の走査ミラーを該電圧に応じた走査角度になるように制御する。つまり、走査ミラーの走査角度は、該駆動電圧に比例しており、電圧Viを印加した場合に、パルス光に対応する集光領域Aの仮想中心線L1(図4参照)が、ゾーンiの中心、すなわち、ラインiに一致するように調整されている。なお、ゾーン(電荷蓄積領域B)は、ライン方向について数画素ないしは配列画素数の数%分、走査方向については略3画素分だけマージンmが設けられている。 As shown in the figure, at a certain time t, when the control signal generation unit 12 outputs the vertical synchronization signal Vsync under the control of the control unit 10, the irradiation unit 30 receives the driver 20 at the timing of the falling edge. It emits multi-phase pulsed light that is driven by and is expected to be focused on Zone 1. Further, the control signal generation unit 12 outputs a scanning synchronization signal Ssync so as to synchronize with this. As a result, the driver unit 20 controls the scanning mirror of the irradiation unit 30 to have a scanning angle corresponding to the voltage by sequentially lowering the driving voltage for the scanning mirror from V1 to VM according to the scanning synchronization signal Ssync. To do. That is, the scanning angle of the scanning mirror is proportional to the driving voltage, and when the voltage Vi is applied, the virtual center line L1 (see FIG. 4) of the condensing region A corresponding to the pulsed light is in the zone i. It is adjusted to match the center, that is, the line i. The zone (charge storage region B) is provided with a margin m of several pixels or a few percent of the number of array pixels in the line direction and approximately three pixels in the scanning direction.
 例えば、ゾーンiにおいて、パルス光に対応する集光領域Aの仮想中心線L1がラインi+dであったとする(dはずれ量)。また、走査ミラーに対する駆動電圧Vdだけ変化させると、1ライン分だけ仮想中心線L1がシフトするものとする。この場合、走査ミラーに対する駆動電圧Vi’は、
  Vi’=Vi-d×Vd   …式5
となる。
For example, in zone i, it is assumed that the virtual center line L1 of the condensing region A corresponding to the pulsed light is the line i + d (d deviation amount). Further, if the drive voltage Vd with respect to the scanning mirror is changed, the virtual center line L1 is shifted by one line. In this case, the drive voltage Vi'with respect to the scanning mirror is
Vi'= Vi-d x Vd ... Equation 5
Will be.
 ずれ調整部14は、算出されるずれ量dに応じて、走査ミラーに対する駆動電圧を制御するための動作パラメータを決定し、制御信号生成部12に出力する。 The deviation adjusting unit 14 determines an operation parameter for controlling the drive voltage for the scanning mirror according to the calculated deviation amount d, and outputs the operation parameter to the control signal generation unit 12.
 また、制御信号生成部12による垂直同期信号VSyncに対応して、受光部40の各受光素子は電荷蓄積部に電荷Q1及びQ2を蓄積し、蓄積された電荷Q1及びQ2は電荷Qとして読み出される(すなわち、電荷Qは電荷Q1と電荷Q2との絶対値の差を示す電気信号である。)。つまり、上述したように例えばゾーン1は、ライン1~3により構成されていることから、照射部30は、パルス光に対応する集光領域Aにおける仮想中心線L1がライン1に一致するパルス光を出射し、受光部40は、ライン1~3の受光素子群により電荷Q1及びQ2を蓄積し、これらを読み出す。本例では、垂直同期信号Vsyncによってトリガされたタイミングから、各ゾーンについて、パルス光の出射に対応した電荷蓄積及び電荷読出しが、時間Tzの間に4回に行われている。そして、4回の電荷蓄積の時間と3回の電荷読出しの時間を合わせた時間T1から、遷移時間T2の経過後、次のゾーンの電荷蓄積及び電荷読出しが開始される。 Further, each light receiving element of the light receiving unit 40 accumulates charges Q1 and Q2 in the charge storage unit in response to the vertical synchronization signal VSsync by the control signal generation unit 12, and the accumulated charges Q1 and Q2 are read out as charges Q. (That is, the charge Q is an electric signal indicating the difference between the absolute values of the charge Q1 and the charge Q2). That is, as described above, for example, since the zone 1 is composed of the lines 1 to 3, the irradiation unit 30 is the pulsed light in which the virtual center line L1 in the condensing region A corresponding to the pulsed light coincides with the line 1. Is emitted, and the light receiving unit 40 accumulates charges Q1 and Q2 by the light receiving element group of lines 1 to 3, and reads them out. In this example, from the timing triggered by the vertical synchronization signal Vsync, charge accumulation and charge reading corresponding to the emission of pulsed light are performed four times during the time Tz for each zone. Then, after the transition time T2 elapses from the time T1 which is the sum of the time of four charge accumulation and the time of three charge reading, the charge accumulation and charge reading of the next zone are started.
 すなわち、照射部30は、4回の電荷蓄積及び3回の電荷読出しに要する時間T1から所定の遷移時間T2経過後、次のゾーン、すなわちゾーン2に対する集光のためにパルス光を出射し、これに対応するように、受光部40は、ライン1~4の受光素子群により電荷Q1及びQ2を蓄積し、蓄積された電荷Q1及びQ2が電荷Qとして読み出される。以降、同様にして、電荷蓄積及び電荷読出しがゾーンMまで繰り返された後、再び、ゾーン1に戻って、電荷蓄積及び電荷読出しがゾーンMまで繰り返される。ずれ調整処理においては、このようなゾーン1からMまでの電荷の蓄積及び電荷の読出しが、誤差の平準化のため、例えば、1000回繰り返される。 That is, the irradiation unit 30 emits pulsed light for focusing on the next zone, that is, zone 2, after a predetermined transition time T2 elapses from the time T1 required for four charge accumulations and three charge readouts. Corresponding to this, the light receiving unit 40 accumulates charges Q1 and Q2 by the light receiving element group of lines 1 to 4, and the accumulated charges Q1 and Q2 are read out as charges Q. After that, in the same manner, charge accumulation and charge reading are repeated up to zone M, and then the process returns to zone 1 and charge accumulation and charge reading are repeated up to zone M. In the shift adjustment process, such charge accumulation and charge reading from zones 1 to M are repeated 1000 times, for example, for error leveling.
 図7は、本技術の一実施形態における距離測定装置における測距機構のずれ調整処理を説明するためのフローチャートである。このようなずれ調整処理は、例えば、距離測定装置の起動時に実行される。或いは、距離測定装置1の動作環境が急激に変化した場合や、ユーザ等による外部からの指示に従って、実行されても良い。 FIG. 7 is a flowchart for explaining the deviation adjustment process of the distance measuring mechanism in the distance measuring device according to the embodiment of the present technology. Such a deviation adjustment process is executed, for example, when the distance measuring device is started. Alternatively, it may be executed when the operating environment of the distance measuring device 1 suddenly changes or in accordance with an external instruction from a user or the like.
 同図に示すように、距離測定装置1の制御部10は、まず、パルス光の照射位置及びこれに対応する電荷蓄積領域B(ゾーン)の初期設定を行う(S701)。本例では、対象とするゾーンとして、ゾーンi=1に初期設定される。 As shown in the figure, the control unit 10 of the distance measuring device 1 first initially sets the irradiation position of the pulsed light and the charge storage region B (zone) corresponding thereto (S701). In this example, zone i = 1 is initially set as the target zone.
 続いて、照射部30は、制御部10の制御の下、対象としているゾーンに対して、所定の照射タイミングでライン状のパルス光を照射・走査し(本例では4回のパルス光)、受光部40は、その反射光を受光素子により受光することにより、電荷蓄積部に電荷Q1及びQ2を蓄積し、蓄積された電荷Q1及びQ2を電荷Qとして読み出す(S702)。読み出された電荷Qは、記憶部50に一時的に保持される。すなわち、記憶部50には、パルス光に対応する水平方向のラインと走査方向の各ライン(本例では最大5ラインとなる。)とによって形成される電荷蓄積領域Bにおける受光素子群からの電荷Qが保持される。なお、本開示では、上述したように、4回の電荷蓄積及び電荷読出しが行われるが、ここでいう電荷Qは、1回の電荷蓄積及び電荷読出しに対応するものであっても良いし、4回分の電荷量の合計であっても良い。 Subsequently, under the control of the control unit 10, the irradiation unit 30 irradiates and scans the target zone with a line-shaped pulsed light at a predetermined irradiation timing (in this example, four pulsed lights). The light receiving unit 40 accumulates the charges Q1 and Q2 in the charge storage unit by receiving the reflected light by the light receiving element, and reads out the accumulated charges Q1 and Q2 as the charge Q (S702). The read charge Q is temporarily stored in the storage unit 50. That is, in the storage unit 50, the charge from the light receiving element group in the charge storage region B formed by the horizontal line corresponding to the pulsed light and each line in the scanning direction (up to 5 lines in this example). Q is retained. In the present disclosure, as described above, charge accumulation and charge reading are performed four times, but the charge Q referred to here may correspond to one charge accumulation and charge reading. It may be the total amount of electric charges for four times.
 次に、ずれ調整部14は、制御部10の制御の下、記憶部50に保持された電荷Qについて、ラインごとの電荷総量Qsumを算出する(S703)。例えば、画素P(i,j)の電荷Qを「Q(i,j)」と表すとすると、ラインごとの電荷総量Qsum(i)は、
          N
  Qsum(i)=Σ Q(i,j)   …式6
          j=1
となる。
Next, the shift adjusting unit 14 calculates the total charge Q sum for each line for the charge Q held in the storage unit 50 under the control of the control unit 10 (S703). For example, if the charge Q of the pixel P (i, j) is expressed as "Q (i, j)", the total charge Q sum (i) for each line is
N
Q sum (i) = Σ Q (i, j) ... Equation 6
j = 1
Will be.
 ずれ調整部14は、続いて、対象としているゾーンにおいて、算出した電荷総量Qsum(i)が所定のしきい値以上になっているラインの番号を特定するとともに、その数nをカウントアップする(S704)。なお、所定のしきい値は、対象物からの反射光を受光しないラインにおいても、ノイズ等により電荷Qが0にならないことから、ノイズ等の影響を除去するために設けられている。 Subsequently, the deviation adjusting unit 14 identifies the number of the line in which the calculated total charge Q sum (i) is equal to or higher than a predetermined threshold value in the target zone, and counts up the number n. (S704). It should be noted that the predetermined threshold value is provided to eliminate the influence of noise or the like because the charge Q does not become 0 due to noise or the like even in the line that does not receive the reflected light from the object.
 次に、ずれ調整部14は、カウントしたライン数nに基づいて、ゾーンにおける重心位置Gを算出する(S705)。例えば、重心位置Gは、以下の式により算出される。
  G=(ΣLn)/n   …式7
  ただし、Lnは電荷総量Qsumが所定のしきい値以上であるラインの番号であり、nは電荷総量Qsumが所定のしきい値以上であるラインの数である。例えば、ゾーン5において、ライン3~7のうち、ライン4,5,6の電荷総量Qsumがしきい値以上であった場合、重心位置Gは、
  G=(4+5+6)/3=5
となる。
Next, the deviation adjusting unit 14 calculates the center of gravity position G in the zone based on the counted number of lines n (S705). For example, the center of gravity position G is calculated by the following formula.
G = (ΣLn) / n ... Equation 7
However, Ln is the number of the line charge amount Q sum is equal to or greater than a predetermined threshold value, n is the number of lines total amount of charges Q sum is equal to or greater than a predetermined threshold value. For example, in zone 5, when the total charge Q sum of lines 4, 5 and 6 among the lines 3 to 7 is equal to or greater than the threshold value, the center of gravity position G is set to.
G = (4 + 5 + 6) / 3 = 5
Will be.
 ずれ調整部14は、次に、算出した重心位置Gと集光領域における参照位置LRefとの差分値(ずれ量)dを算出し、これを記録する(S706)。ずれ調整部14は、上記の処理を所定回数(例えば1000回等)繰り返したか否かを判断し(S707)、所定回数繰り返していないと判断する場合には(S707のNo)、S702の処理に戻る。一方、ずれ調整部14は、所定回数繰り返したと判断する場合には(S707のYes)、記録しておいた差分値dに基づいて、その平均値dAveを算出する(S708)。 Next, the deviation adjusting unit 14 calculates the difference value (deviation amount) d between the calculated center of gravity position G and the reference position L Ref in the condensing region, and records this (S706). The deviation adjusting unit 14 determines whether or not the above process has been repeated a predetermined number of times (for example, 1000 times) (S707), and if it determines that the process has not been repeated a predetermined number of times (No in S707), the process in S702 go back. On the other hand, when it is determined that the deviation adjusting unit 14 has been repeated a predetermined number of times (Yes in S707), the deviation adjusting unit 14 calculates the average value d Ave based on the recorded difference value d (S708).
 ずれ調整部14は、続いて、算出した差分平均値dAveが所定の範囲内に収まっているか否かを判断する(S709)。つまり、算出した差分平均値dAveが所定の範囲内に収まっていれば、集光領域Aと電荷蓄積領域Bとのずれは許容範囲であると判断され、ずれ調整は実行されない。ずれ調整部14は、算出した平均値dAveが所定の範囲内に収まっていないと判断する場合(S709のNo)、集光領域Aと電荷蓄積領域Bとの位置的な関係を調整するために、走査ミラーに対する駆動電圧が例えば1段階変更されるように動作パラメータを変更し(S710)、S702の処理に戻る。動作パラメータの変更により、制御信号生成部12は、変更された動作パラメータに基づく制御信号をドライバ20に送信し、ドライバ20は、該制御信号に基づく駆動電圧で走査ミラーを駆動するようになる。ずれ調整部14は、対象としているゾーンについて、上記の処理を、差分平均値dAveが所定の範囲内に収まるまで繰り返す。これにより、対象としているゾーンにおいて、集光領域Aと電荷蓄積領域Bとの位置的な関係が徐々に調整され、ずれが解消されていくことになる。 The deviation adjusting unit 14 subsequently determines whether or not the calculated difference average value dAve is within a predetermined range (S709). That is, if the calculated difference average value dAve is within a predetermined range, it is determined that the deviation between the condensing region A and the charge storage region B is within an allowable range, and the deviation adjustment is not executed. When the deviation adjusting unit 14 determines that the calculated average value dAve is not within a predetermined range (No in S709), the deviation adjusting unit 14 adjusts the positional relationship between the condensing region A and the charge storage region B. In addition, the operating parameter is changed so that the drive voltage for the scanning mirror is changed by, for example, one step (S710), and the process returns to S702. By changing the operation parameter, the control signal generation unit 12 transmits a control signal based on the changed operation parameter to the driver 20, and the driver 20 drives the scanning mirror with a drive voltage based on the control signal. The deviation adjusting unit 14 repeats the above processing for the target zone until the difference average value dAve falls within a predetermined range. As a result, in the target zone, the positional relationship between the condensing region A and the charge storage region B is gradually adjusted, and the deviation is eliminated.
 例えば、ゾーンiについて電荷を蓄積しているタイミングで、重心位置Gからのずれが3画素分あったとする。このような状態では、電荷蓄積領域Bの外側の受光素子によってパルス光に対する反射光を観測していることになるため、本来の測距データを取得できず、高精度な測距が不可能となる。したがって、ゾーンiで電荷を蓄積して読み出しているタイミングでは、パルス光に対応する反射光の仮想中心線L1がラインiに位置するように、走査ミラーの走査角度を調整するために、その駆動電圧を制御する動作パラメータが調整される。なお、本開示では、ずれ調整部14は、走査ミラーに対する駆動電圧を調整するための動作パラメータを決定しているが、これに限られず、例えば、受光素子からの読出しタイミングを調整するようにしても良い。 For example, it is assumed that there is a deviation from the center of gravity position G by 3 pixels at the timing when the electric charge is accumulated in the zone i. In such a state, since the reflected light for the pulsed light is observed by the light receiving element outside the charge storage region B, the original ranging data cannot be acquired, and high-precision ranging cannot be obtained. Become. Therefore, at the timing when the electric charge is accumulated and read out in the zone i, the driving is driven in order to adjust the scanning angle of the scanning mirror so that the virtual center line L1 of the reflected light corresponding to the pulsed light is located on the line i. The operating parameters that control the voltage are adjusted. In the present disclosure, the deviation adjusting unit 14 determines the operating parameters for adjusting the driving voltage for the scanning mirror, but the present invention is not limited to this, and for example, the reading timing from the light receiving element is adjusted. Is also good.
 ずれ調整部14は、対象としているゾーンについて、集光領域Aと電荷蓄積領域Bとの位置的な関係を調整すると、全てのゾーンについて、このような位置的な関係のずれを調整したか否かを判断する(S711)。ずれ調整部14は、全てのゾーンについて、このような位置的な関係のずれを調整していないと判断する場合(S711のNo)、対象とするゾーンを1つシフトし(S712)、上記の処理を繰り返す。このようにして、位置ずれ調整は、最終ゾーンMまで繰り返されることになる。 When the deviation adjusting unit 14 adjusts the positional relationship between the condensing region A and the charge storage region B for the target zone, whether or not such a displacement of the positional relationship is adjusted for all the zones. Is determined (S711). When the deviation adjusting unit 14 determines that such a displacement of the positional relationship is not adjusted for all the zones (No in S711), the deviation adjusting unit 14 shifts the target zone by one (S712), and the above-mentioned Repeat the process. In this way, the misalignment adjustment is repeated until the final zone M.
 なお、本開示では、距離測定装置1は、走査ミラーに対する駆動電圧を制御することにより走査ミラーの走査角度を調整するように構成されたが、これに限られない。代替例として、他の実施形態に示されるように、距離測定装置1は、照射部30によるパルス光の照射タイミングに対して、例えば、電荷が蓄積され、垂直走査回路44により電気信号を読み出すべき走査方向の受光素子群の数(ライン数)を制御することによりずれを調整するように構成されても良い。 In the present disclosure, the distance measuring device 1 is configured to adjust the scanning angle of the scanning mirror by controlling the driving voltage with respect to the scanning mirror, but the present invention is not limited to this. As an alternative example, as shown in other embodiments, the distance measuring device 1 should, for example, accumulate an electric charge and read an electric signal by the vertical scanning circuit 44 with respect to the irradiation timing of the pulsed light by the irradiation unit 30. The deviation may be adjusted by controlling the number of light receiving element groups (number of lines) in the scanning direction.
 以上のように、本技術によれば、測距機構の経時変化等に起因する測距処理のタイミングのずれを解消させる距離測定装置及び該装置における測距動作のずれ調整方法が提供される。したがって、パルス光の照射・走査に対して正しい電気信号を読み出すことができ、より精確な距離画像を得ることができるようになる。 As described above, according to the present technology, there is provided a distance measuring device that eliminates the timing deviation of the distance measuring process due to a change over time of the distance measuring mechanism, and a method of adjusting the deviation of the distance measuring operation in the device. Therefore, the correct electric signal can be read out for the irradiation / scanning of the pulsed light, and a more accurate distance image can be obtained.
[第2の実施形態]
 本実施形態は、光源から照射されたライン状のパルス光に対応する反射光の仮想中心線が、受光面において例えば所定の角度θだけ回転した場合の、集光領域Aと電荷蓄積領域Bとの位置的な関係を調整する距離測定装置及び該装置における測距機構のずれ調整方法である。
[Second Embodiment]
In this embodiment, when the virtual center line of the reflected light corresponding to the line-shaped pulsed light emitted from the light source is rotated by, for example, a predetermined angle θ on the light receiving surface, the condensing region A and the charge storage region B It is a distance measuring device for adjusting the positional relationship of light sources and a method for adjusting the deviation of the distance measuring mechanism in the device.
 図8は、本技術の一実施形態に係る距離測定装置における照射光に対応する集光領域と電荷蓄積領域との関係を説明するための図である。図中、集光領域Aは、ある照射タイミングで照射部30がパルス光を照射・走査した場合の、受光素子アレイ42上の該パルス光が本来集光すると想定される領域を示しており、電荷蓄積領域Bは、該照射・走査に対して受光素子アレイ42上の実際に電気信号を読み出す領域を示している。 FIG. 8 is a diagram for explaining the relationship between the condensing region and the charge storage region corresponding to the irradiation light in the distance measuring device according to the embodiment of the present technology. In the figure, the condensing region A indicates an region where the pulsed light on the light receiving element array 42 is originally supposed to be condensed when the irradiation unit 30 irradiates and scans the pulsed light at a certain irradiation timing. The charge storage region B indicates a region in which an electric signal is actually read out on the light receiving element array 42 for the irradiation / scanning.
 同図に示すように、電荷蓄積領域Bは、本来の集光領域Aの外側の領域(外接する領域)を含むように設定される。しかしながら、距離測定装置1内の測距機構等の経時的変化や、外部環境(例えば温度)の変化、製造ばらつきなどに起因して、パルス光のライン方向の軸が角度θだけ回転し、その結果、集光領域A’として、正しく集光されなくなってしまうということが想定される。したがって、本実施形態に係る距離測定装置1では、測距機構の経時的変化等により、電荷蓄積領域Bに対して集光領域A’が角度θだけずれた場合、そのずれ量に応じて電荷蓄積領域Bを走査方向に拡大することによって、集光領域Aと電荷蓄積領域Bとの正常な位置的な関係に較正し、パルス光の出射に対して適切な受光素子群から電気信号を読み出すようにしている。 As shown in the figure, the charge storage region B is set to include a region (circumscribing region) outside the original condensing region A. However, due to changes over time in the distance measuring mechanism in the distance measuring device 1, changes in the external environment (for example, temperature), manufacturing variations, etc., the axis of the pulsed light in the line direction rotates by an angle θ, and the axis thereof rotates by an angle θ. As a result, it is assumed that the light is not collected correctly as the light collection area A'. Therefore, in the distance measuring device 1 according to the present embodiment, when the condensing region A'is displaced by an angle θ with respect to the charge storage region B due to a change over time of the distance measuring mechanism or the like, the charge is charged according to the deviation amount. By expanding the storage area B in the scanning direction, the normal positional relationship between the light collection area A and the charge storage area B is calibrated, and an electric signal is read out from a group of light receiving elements suitable for the emission of pulsed light. I am trying to do it.
 図9は、本技術の一実施形態における距離測定装置における測距機構のずれ調整処理を説明するためのフローチャートである。 FIG. 9 is a flowchart for explaining the deviation adjustment process of the distance measuring mechanism in the distance measuring device according to the embodiment of the present technology.
 同図を参照し、上述したように、距離測定装置1の制御部10は、まず、パルス光の照射位置及びこれに対応する電荷蓄積領域B(ゾーン)の初期設定を行う(S901)。本例では、対象とするゾーンとして、ゾーンi=1に初期設定される。 With reference to the figure, as described above, the control unit 10 of the distance measuring device 1 first initially sets the irradiation position of the pulsed light and the charge storage region B (zone) corresponding thereto (S901). In this example, zone i = 1 is initially set as the target zone.
 続いて、照射部30は、制御部10の制御の下、対象としているゾーンに対する集光のために、所定の照射タイミングでライン状のパルス光を照射・走査し、これに応じて、受光部40は、その反射光を受光素子により受光することにより、電荷蓄積部に電荷Q1及びQ2を蓄積し、蓄積された電荷Q1及びQ2を電荷Qとして読み出す(S902)。これにより、記憶部50には、ゾーンにおける受光素子群のそれぞれから読み出された電荷Qが一時的に保持される。 Subsequently, under the control of the control unit 10, the irradiation unit 30 irradiates and scans a line-shaped pulsed light at a predetermined irradiation timing in order to collect light on the target zone, and accordingly, the light receiving unit 30 receives light. By receiving the reflected light by the light receiving element, 40 accumulates charges Q1 and Q2 in the charge storage unit, and reads out the accumulated charges Q1 and Q2 as charge Q (S902). As a result, the electric charge Q read from each of the light receiving element groups in the zone is temporarily held in the storage unit 50.
 次に、ずれ調整部14は、ノイズ等を除去することを目的として電荷Qと所定のしきい値とを比較し、ゾーンにおける受光素子(画素)群のうち、電荷Qが所定のしきい値以上になっている画素を特定し、その数nをカウントする(S903)。続いて、ずれ調整部14は、例えば以下の式に従って、重心位置Gを算出する(S904)。
  G(xg,yg)=(ΣPi/n,ΣPj/n)   …式8
  ただし、Piは、電荷Qが所定のしきい値以上である画素のx座標(x方向は走査方向に対応する。)であり、Pjは、電荷Qが所定のしきい値以上である画素のy座標(y方向はライン方向に対応する。)である。また、nは、電荷Qが所定のしきい値以上である画素の数である。
Next, the shift adjusting unit 14 compares the charge Q with a predetermined threshold value for the purpose of removing noise and the like, and the charge Q is a predetermined threshold value among the light receiving element (pixel) group in the zone. The above-mentioned pixels are specified, and the number n is counted (S903). Subsequently, the deviation adjusting unit 14 calculates the center of gravity position G according to, for example, the following formula (S904).
G (xg, yg) = (ΣPi / n, ΣPj / n) ... Equation 8
However, Pi is the x-coordinate of a pixel whose charge Q is equal to or higher than a predetermined threshold value (the x direction corresponds to the scanning direction), and Pj is a pixel whose charge Q is equal to or higher than a predetermined threshold value. It is the y coordinate (the y direction corresponds to the line direction). Further, n is the number of pixels whose electric charge Q is equal to or higher than a predetermined threshold value.
 次に、ずれ調整部14は、集光領域Aの仮想中心線L1の傾きθを算出する(S906)。具体的には、ずれ調整部14は、x方向に関して、電荷Qが所定のしきい値以上であり、画素座標Piが重心位置Gのx座標xgよりも大きい(Pi>xg)画素について、ベクトルV1(u1,v1)を算出する。
  V1(u1,v1)=(ΣPi/n,ΣPj/n,)   …式9
Next, the shift adjusting unit 14 calculates the slope θ of the virtual center line L1 of the condensing region A (S906). Specifically, the deviation adjusting unit 14 vectorizes a pixel whose charge Q is equal to or higher than a predetermined threshold value and whose pixel coordinate Pi is larger than the x coordinate xg of the center of gravity position G (Pi> xg) in the x direction. Calculate V1 (u1, v1).
V1 (u1, v1) = (ΣPi / n, ΣPj / n,) ... Equation 9
 同様に、ずれ調整部14は、x方向に関して、電荷Qが所定のしきい値以上であり、画素座標Piが重心位置Gのx座標xgよりも小さい(Pi<xg)画素について、ベクトルV2(u2,v2)を算出する。
  V2(u2,v2)=(-ΣPi/n,-ΣPj/n,)   …式5
Similarly, the deviation adjusting unit 14 determines the vector V2 (Pi <xg) for a pixel whose charge Q is equal to or higher than a predetermined threshold value and whose pixel coordinate Pi is smaller than the x coordinate xg of the center of gravity position G in the x direction. u2, v2) is calculated.
V2 (u2, v2) = (-ΣPi / n, -ΣPj / n,) ... Equation 5
 これより、ずれ調整部14は、ベクトルV(u,v)を算出する。
  V(u,v)=V1(u1,v1)+V2(u2,v2)
        =V(u1+u2,v1+v2)   …式10
From this, the deviation adjusting unit 14 calculates the vector V (u, v).
V (u, v) = V1 (u1, v1) + V2 (u2, v2)
= V (u1 + u2, v1 + v2) ... Equation 10
 そして、ずれ調整部14は、電荷蓄積領域Bに対する集光領域Aの傾きθ(図8参照)を以下の式に従って算出する。
  sinθ=|u|/(√(u^2+v^2))   …式11
  ただし、|u|はベクトルVの成分uの絶対値である。
Then, the shift adjusting unit 14 calculates the inclination θ (see FIG. 8) of the condensing region A with respect to the charge storage region B according to the following equation.
sinθ = | u | / (√ (u ^ 2 + v ^ 2))… Equation 11
However, | u | is the absolute value of the component u of the vector V.
 続いて、ずれ調整部14は、算出した傾きθに基づいて、以下の式に従って傾き相当画素数G_tiltを算出し、これを記録する(S906)。傾き相当画素数G_tiltは、電荷蓄積領域Bの端部において集光領域Aの端部が走査方向に何画素分ずれているかを示す。
  G_tilt=(N/2)*sinθ    …式12
  ただし、Nはしきい値を超えた画素数である。
Subsequently, the deviation adjusting unit 14 calculates the number of pixels corresponding to the inclination G_tilt according to the following formula based on the calculated inclination θ, and records this (S906). The number of pixels corresponding to the inclination G_tilt indicates how many pixels the end of the condensing region A is deviated in the scanning direction at the end of the charge storage region B.
G_tilt = (N / 2) * sinθ ... Equation 12
However, N is the number of pixels that exceeds the threshold value.
 ずれ調整部14は、上記の処理を所定回数(例えば一千回等)繰り返したか否かを判断し(S907)、所定回数繰り返していないと判断する場合には(S907のNo)、S902の処理に戻る。一方、ずれ調整部14は、所定回数繰り返したと判断する場合には(S907のYes)、記録しておいた傾き相当画素数G_tiltに基づいて、その傾き相当画素数の平均値G_tilt_aveを算出する(S908)。 The deviation adjusting unit 14 determines whether or not the above processing has been repeated a predetermined number of times (for example, 1,000 times) (S907), and if it determines that the above processing has not been repeated a predetermined number of times (No in S907), the processing in S902. Return to. On the other hand, when it is determined that the deviation adjusting unit 14 has been repeated a predetermined number of times (Yes in S907), the deviation adjusting unit 14 calculates the average value G_tilt_ave of the number of pixels corresponding to the inclination based on the recorded number of pixels corresponding to the inclination G_tilt (Yes). S908).
 ずれ調整部14は、続いて、算出した傾き相当画素数の平均値G_tilt_aveが所定の範囲内に収まっているか否かを判断する(S909)。例えば、ずれ調整部14は、傾き相当画素数の平均値G_tilt_aveがマージンmに対して、以下の式を満たすか否かを判断する。
  G_tilt_ave<m/2  …式13
The deviation adjusting unit 14 subsequently determines whether or not the calculated average value G_tilt_ave of the number of pixels corresponding to the inclination is within a predetermined range (S909). For example, the deviation adjusting unit 14 determines whether or not the average value G_tilt_ave of the number of pixels corresponding to the inclination satisfies the following equation with respect to the margin m.
G_tilt_ave <m / 2 ... Equation 13
 ずれ調整部14は、式13が満たされる(真である)と判断する場合(S909のYes)、仮想中心線の傾きθによる集光領域Aと電荷蓄積領域Bとのずれは、距離測定装置1の動作上、許容範囲であると判断し、ゾーンを構成するライン数の調整(増減)を行わない。 When the deviation adjusting unit 14 determines that the equation 13 is satisfied (true) (Yes in S909), the deviation between the condensing region A and the charge storage region B due to the inclination θ of the virtual center line is determined by the distance measuring device. In the operation of 1, it is judged that it is within the allowable range, and the number of lines constituting the zone is not adjusted (increased or decreased).
 一方、ずれ調整部14は、算出した傾き相当画素数の平均値G_tilt_aveが所定の範囲内に収まっていないと判断する場合(S909のNo)、式13が満たされない(偽である)と判断する場合、ゾーンに含まれるライン数が増加するように、受光部40を制御する制御信号に対するパラメータを調整する(S910)。すなわち、ずれ調整部14は、パルス光の照射タイミングに対して、受光素子アレイ42において電荷蓄積のために有効化される受光素子群をライン単位で増加させて、電荷蓄積領域Bを拡大する。ずれ調整部14は、ゾーン内のライン数を調整した後、S902の処理に戻る。 On the other hand, when the deviation adjusting unit 14 determines that the calculated average value G_tilt_ave of the number of pixels corresponding to the inclination is not within the predetermined range (No in S909), it determines that the equation 13 is not satisfied (false). In this case, the parameters for the control signal that controls the light receiving unit 40 are adjusted so that the number of lines included in the zone increases (S910). That is, the shift adjusting unit 14 expands the charge storage region B by increasing the group of light receiving elements activated for charge storage in the light receiving element array 42 in line units with respect to the irradiation timing of the pulsed light. The deviation adjusting unit 14 returns to the process of S902 after adjusting the number of lines in the zone.
 ずれ調整部14は、対象としているゾーンについて、上記の処理を、傾き相当画素数の平均G_tilt_aveが所定の範囲内に収まるまで繰り返す。これにより、対象としているゾーンにおいて、集光領域Aと電荷蓄積領域Bとの関係が徐々に調整され、電荷蓄積領域Bに対する集光領域Aの傾きによるずれがあった場合であっても、集光領域Aの全領域が電荷蓄積領域Bに含まれるように調整され、この結果、電荷蓄積領域Bの測距データの欠落を防止し、測距を精確に行うことができるようになる。 The deviation adjusting unit 14 repeats the above processing for the target zone until the average G_tilt_ave of the number of pixels corresponding to the inclination falls within a predetermined range. As a result, in the target zone, the relationship between the condensing region A and the charge storage region B is gradually adjusted, and even if there is a deviation due to the inclination of the condensing region A with respect to the charge storage region B, the collection is performed. The entire region of the optical region A is adjusted to be included in the charge storage region B, and as a result, the distance measurement data in the charge storage region B can be prevented from being lost, and the distance measurement can be performed accurately.
[第3の実施形態]
 本実施形態は、オペレータによる外部からのコマンドに応じて、上述したずれ調整処理を実行する距離測定装置及び該装置における測距機構のタイミング調整方法である。なお、本実施形態では、距離測定装置1の前方には、例えば、受光部40の全画角を覆うほどの大きさの反射板が設置されるものとするが、これに限られない。反射板は、例えば、全面白色のものが採用され得る。
[Third Embodiment]
The present embodiment is a distance measuring device that executes the above-described deviation adjusting process in response to a command from the outside by the operator, and a timing adjusting method of the distance measuring mechanism in the device. In the present embodiment, for example, a reflector having a size sufficient to cover the entire angle of view of the light receiving unit 40 is installed in front of the distance measuring device 1, but the present invention is not limited to this. As the reflector, for example, a reflector that is entirely white can be adopted.
 すなわち、オペレータは、例えば、外部入力を介して、距離測定装置1に対してタイミング調整処理を実行するように指示をする。距離測定装置1の制御部10は、該オペレータの指示に基づく調整開始信号を受け取ると、前方に設置された反射板に向けてパルス光を照射し、その反射光を受光することにより、ずれ調整部14は、上記の実施形態で示したようなタイミング調整処理を実行する。また、反射板を利用している場合、ずれ調整部14は、上述したゾーン単位ではなく、受光素子アレイ42全体で反射光を受光し、これに基づいて、ずれを算出しても良い。また、その繰り返し回数も、反射板がない場合に比べて、数回~数十回と少なくすることもできる。 That is, the operator instructs the distance measuring device 1 to execute the timing adjustment process, for example, via an external input. When the control unit 10 of the distance measuring device 1 receives the adjustment start signal based on the instruction of the operator, it irradiates the pulse light toward the reflector installed in front and receives the reflected light to adjust the deviation. The unit 14 executes the timing adjustment process as shown in the above embodiment. Further, when the reflector is used, the deviation adjusting unit 14 may receive the reflected light not in the zone unit described above but in the entire light receiving element array 42, and calculate the deviation based on this. Further, the number of repetitions can be reduced to several to several tens of times as compared with the case without the reflector.
 上記各実施形態は、本技術を説明するための例示であり、本技術をこれらの実施形態にのみ限定する趣旨ではない。本技術は、その要旨を逸脱しない限り、さまざまな形態で実施することができる。 Each of the above embodiments is an example for explaining the present technology, and is not intended to limit the present technology to these embodiments only. The present technology can be implemented in various forms as long as it does not deviate from its gist.
 例えば、本明細書に開示される方法においては、その結果に矛盾が生じない限り、ステップ、動作又は機能を並行して又は異なる順に実施しても良い。説明されたステップ、動作及び機能は、単なる例として提供されており、ステップ、動作及び機能のうちのいくつかは、発明の要旨を逸脱しない範囲で、省略でき、また、互いに結合させることで一つのものとしてもよく、また、他のステップ、動作又は機能を追加してもよい。 For example, in the methods disclosed herein, steps, actions or functions may be performed in parallel or in a different order, as long as the results are not inconsistent. The steps, actions and functions described are provided merely as examples, and some of the steps, actions and functions can be omitted and combined with each other to the extent that they do not deviate from the gist of the invention. It may be one, or other steps, actions or functions may be added.
 また、本明細書では、さまざまな実施形態が開示されているが、一の実施形態における特定のフィーチャ(技術的事項)を、適宜改良しながら、他の実施形態に追加し、又は該他の実施形態における特定のフィーチャと置換することができ、そのような形態も本発明の要旨に含まれる。 In addition, although various embodiments are disclosed in the present specification, specific features (technical matters) in one embodiment are added to other embodiments or other embodiments while being appropriately improved. It can be replaced with specific features in embodiments, such embodiments are also included in the gist of the invention.
 なお、本技術は、以下のような構成を採用することもできる。
(1)
 光源からの光を、所定の照射タイミングで対象エリアに対して走査しながら照射する照射部と、
 前記対象エリアにおける観測光を受光し、電気信号を出力する複数の受光素子を含む受光部と、
 前記複数の受光素子のうちの幾つかの受光素子群により受光された前記観測光に含まれる前記照射部により前記光が照射された物体からの反射光に応じて蓄積された電荷に基づく前記電気信号の値に基づいて、前記物体までの距離を算出するための測距処理を行う測距処理部と、
 前記照射部により照射された前記光に対応する前記反射光の集光領域と前記複数の受光素子のうちの幾つかの受光素子群による電荷蓄積領域とを制御する制御部と、を備え、
 前記制御部は、前記集光領域と前記電荷蓄積領域との間のずれ量を算出し、算出した前記ずれ量が小さくなるように、前記集光領域と前記電荷蓄積領域との位置的な関係を調整するずれ調整部を備える、
距離測定装置。
(2)
 前記ずれ調整部は、前記電荷蓄積領域における前記複数の受光素子のうちの第1の受光素子群から読み出される第1の電気信号の値に基づく重心位置と、前記集光領域における参照位置とに基づいて、前記ずれ量を算出する、
前記(1)に記載の距離測定装置。
(3)
 前記制御部は、前記所定の照射タイミングで前記照射部による前記光の照射を繰り返すように制御し、
 前記ずれ調整部は、該照射の繰り返しに応じて前記第1の受光素子群により蓄積される電荷に基づく第1の電気信号の値に基づく前記重心位置の平均値を算出し、前記平均値に基づいて前記ずれ量を算出する、
前記(2)に記載の距離測定装置。
(4)
  前記ずれ調整部は、前記第1の電気信号の値が所定のしきい値以上である場合に、前記重心位置を算出する、
前記(2)又は(3)に記載の距離測定装置。
(5)
 前記ずれ調整部は、前記ずれ量が所定の許容値以上である場合に、前記集光領域と前記電荷蓄積領域との位置的な関係を調整する、
前記(1)から(4)のいずれか一つに記載の距離測定装置。
(6)
 前記照射部は、前記所定の照射タイミングに従って一の方向に沿ったライン状の前記光を前記一の方向に直交する方向に所定の走査角度で順次に走査しながら照射し、
 前記制御部は、前記電荷蓄積領域における前記複数の受光素子のうちの第1の受光素子群に蓄積された電荷に基づく第1の電気信号を前記第1の受光素子群から読み出すように制御する、
前記(1)から(5)のいずれか一つに記載の距離測定装置。
(7)
 前記ずれ調整部は、前記ずれ量に応じて前記所定の走査角度が調整されるように制御する、
前記(6)に記載の距離測定装置。
(8)
 前記照射部は、駆動電圧に応じて前記光を所定の走査角度で順次に走査するための走査ミラーを備え、
 前記ずれ調整部は、前記走査ミラーに対する駆動電圧を制御することにより前記所定の走査角度が調整されるように制御する、
前記(7)に記載の距離測定装置。
(9)
 前記ずれ調整部は、前記ずれ量に応じて前記電荷蓄積領域が拡大されるように、前記複数の受光素子のうちの幾つかの受光素子群の動作を制御する、
請求項8に記載の距離測定装置。
(10)
 前記ずれ調整部は、前記電荷蓄積領域に対する前記集光領域の傾きを算出し、該算出した傾きに基づいて、前記電荷蓄積領域が拡大されるように、前記複数の受光素子のうちの幾つかの受光素子群の動作を制御する、
前記(9)に記載の距離測定装置。
(11)
 前記ずれ調整部は、前記照射タイミングに対して、前記電荷を蓄積する受光素子群の動作タイミングを調整するように制御する、
前記(1)から(10)のいずれか一つに請求項1に記載の距離測定装置。
(12)
 前記複数の受光素子のうちの幾つかの受光素子群から読み出される前記電気信号の値を保持するメモリを更に備える、
前記(1)から(11)のいずれか一つに請求項1に記載の距離測定装置。
(13)
 前記制御部は、外部から与えられる調整開始指示信号に従って、前記ずれ調整部を動作させる、
前記(1)から(12)のいずれか一つに記載の距離測定装置。
(14)
 前記第1の受光素子群は、前記集光領域における前記複数の受光素子のうちの受光素子群と該領域に外接する領域の受光素子群とを含む、
前記(2)から(13)のいずれか一つに記載の距離測定装置。
(15)
 距離測定装置における測距機構のずれ調整方法であって、
 光源からの光を、所定の照射タイミングで対象エリアに対して、照射部により走査しながら照射することと、
 前記対象エリアにおける観測光を、受光部における複数の受光素子のうちの幾つかの受光素子群により受光することと、
 前記複数の受光素子のうちの幾つかの受光素子群から前記観測光に含まれる前記照射部により前記光が照射された物体からの反射光に応じて蓄積された電荷に基づく電気信号を読み出すことと、
 読み出した前記電気信号の値に基づいて、前記物体までの距離を算出するための測距処理を行うことと、
 前記照射部により照射された前記光に対応する前記反射光の集光領域と前記複数の受光素子のうちの幾つかの受光素子群による電荷蓄積領域とを制御すること、を含み、
 前記制御することは、
 前記集光領域と前記電荷蓄積領域との間のずれ量を算出し、算出した前記ずれ量が小さくなるように、前記集光領域と前記電荷蓄積領域との関係を調整することを含む、
測距機構のずれ調整方法。
(16)
 前記調整することは、
 前記電荷蓄積領域における前記複数の受光素子のうちの第1の受光素子群から読み出される第1の電気信号の値に基づいて、重心位置を算出することと、
 前記算出した重心位置と前記電荷蓄積領域における参照位置とに基づいて、前記ずれ量を算出することと、を含む、
前記(15)に記載の測距機構のずれ調整方法。
The present technology can also adopt the following configurations.
(1)
An irradiation unit that irradiates light from a light source while scanning the target area at a predetermined irradiation timing.
A light receiving unit including a plurality of light receiving elements that receive observation light in the target area and output an electric signal.
The electricity based on the charge accumulated according to the reflected light from the object irradiated with the light by the irradiation unit included in the observation light received by some light receiving element group among the plurality of light receiving elements. A distance measuring processing unit that performs distance measuring processing for calculating the distance to the object based on the value of the signal, and a distance measuring unit.
A control unit for controlling a condensing region of the reflected light corresponding to the light emitted by the irradiation unit and a charge storage region by a group of some light receiving elements among the plurality of light receiving elements is provided.
The control unit calculates the amount of deviation between the condensing region and the charge storage region, and the positional relationship between the condensing region and the charge storage region so that the calculated deviation amount becomes small. Equipped with a shift adjustment unit to adjust
Distance measuring device.
(2)
The shift adjusting unit has a center of gravity position based on the value of the first electric signal read from the first light receiving element group among the plurality of light receiving elements in the charge storage region, and a reference position in the light collecting region. Based on this, the amount of deviation is calculated.
The distance measuring device according to (1) above.
(3)
The control unit controls so that the irradiation of the light by the irradiation unit is repeated at the predetermined irradiation timing.
The deviation adjusting unit calculates an average value of the position of the center of gravity based on the value of the first electric signal based on the electric charge accumulated by the first light receiving element group according to the repetition of the irradiation, and obtains the average value. Calculate the deviation amount based on
The distance measuring device according to (2) above.
(4)
The deviation adjusting unit calculates the position of the center of gravity when the value of the first electric signal is equal to or higher than a predetermined threshold value.
The distance measuring device according to (2) or (3) above.
(5)
The deviation adjusting unit adjusts the positional relationship between the condensing region and the charge storage region when the deviation amount is equal to or greater than a predetermined allowable value.
The distance measuring device according to any one of (1) to (4).
(6)
The irradiation unit irradiates the line-shaped light along one direction according to the predetermined irradiation timing while sequentially scanning the light in a direction orthogonal to the one direction at a predetermined scanning angle.
The control unit controls to read out a first electric signal based on the charge accumulated in the first light receiving element group among the plurality of light receiving elements in the charge storage region from the first light receiving element group. ,
The distance measuring device according to any one of (1) to (5).
(7)
The deviation adjusting unit controls so that the predetermined scanning angle is adjusted according to the deviation amount.
The distance measuring device according to (6) above.
(8)
The irradiation unit includes a scanning mirror for sequentially scanning the light at a predetermined scanning angle according to a driving voltage.
The deviation adjusting unit controls so that the predetermined scanning angle is adjusted by controlling the driving voltage with respect to the scanning mirror.
The distance measuring device according to (7) above.
(9)
The deviation adjusting unit controls the operation of some light receiving element groups among the plurality of light receiving elements so that the charge storage region is expanded according to the deviation amount.
The distance measuring device according to claim 8.
(10)
The shift adjusting unit calculates the inclination of the light collecting region with respect to the charge storage region, and based on the calculated inclination, some of the plurality of light receiving elements so that the charge storage region is expanded. Controls the operation of the light receiving element group of
The distance measuring device according to (9) above.
(11)
The deviation adjusting unit controls the irradiation timing so as to adjust the operation timing of the light receiving element group that accumulates the electric charge.
The distance measuring device according to claim 1, wherein any one of (1) to (10) is described.
(12)
A memory for holding the value of the electric signal read from a group of some light receiving elements among the plurality of light receiving elements is further provided.
The distance measuring device according to claim 1, wherein any one of (1) to (11) is described.
(13)
The control unit operates the deviation adjustment unit according to an adjustment start instruction signal given from the outside.
The distance measuring device according to any one of (1) to (12).
(14)
The first light receiving element group includes a light receiving element group among the plurality of light receiving elements in the light collecting region and a light receiving element group in a region circumscribing the region.
The distance measuring device according to any one of (2) to (13).
(15)
It is a method of adjusting the deviation of the distance measuring mechanism in a distance measuring device.
The light from the light source is irradiated to the target area at a predetermined irradiation timing while being scanned by the irradiation unit.
The observation light in the target area is received by some light receiving element groups among the plurality of light receiving elements in the light receiving unit, and
Reading an electric signal based on an electric charge accumulated according to the reflected light from an object irradiated with the light by the irradiation unit included in the observation light from a group of some light receiving elements among the plurality of light receiving elements. When,
Performing distance measurement processing to calculate the distance to the object based on the read out value of the electric signal, and
This includes controlling a condensing region of the reflected light corresponding to the light emitted by the irradiating unit and a charge accumulating region of some light receiving element groups among the plurality of light receiving elements.
The control is
This includes calculating the amount of deviation between the condensing region and the charge storage region and adjusting the relationship between the condensing region and the charge storage region so that the calculated deviation amount becomes small.
How to adjust the deviation of the distance measuring mechanism.
(16)
The adjustment is
The position of the center of gravity is calculated based on the value of the first electric signal read from the first light receiving element group among the plurality of light receiving elements in the charge storage region.
The deviation amount is calculated based on the calculated center of gravity position and the reference position in the charge storage region.
The method for adjusting the deviation of the distance measuring mechanism according to (15) above.
1…距離測定装置
10…制御部
 12…制御信号生成部
 14…ずれ調整部
20…ドライバ部
30…照射部
40…受光部
 42…受光素子アレイ
 44…垂直走査回路
 46…水平走査回路
50…記憶部
60…測距処理部
70…通信インタフェース部
80…温度センサ
1 ... Distance measuring device 10 ... Control unit 12 ... Control signal generation unit 14 ... Deviation adjustment unit 20 ... Driver unit 30 ... Irradiation unit 40 ... Light receiving unit 42 ... Light receiving element array 44 ... Vertical scanning circuit 46 ... Horizontal scanning circuit 50 ... Storage Unit 60 ... Distance measurement processing unit 70 ... Communication interface unit 80 ... Temperature sensor

Claims (16)

  1.  光源からの光を、所定の照射タイミングで対象エリアに対して走査しながら照射する照射部と、
     前記対象エリアにおける観測光を受光し、電気信号を出力する複数の受光素子を含む受光部と、
     前記複数の受光素子のうちの幾つかの受光素子群により受光された前記観測光に含まれる前記照射部により前記光が照射された物体からの反射光に応じて蓄積された電荷に基づく前記電気信号の値に基づいて、前記物体までの距離を算出するための測距処理を行う測距処理部と、
     前記照射部により照射された前記光に対応する前記反射光の集光領域と前記複数の受光素子のうちの幾つかの受光素子群による電荷蓄積領域とを制御する制御部と、を備え、
     前記制御部は、前記集光領域と前記電荷蓄積領域との間のずれ量を算出し、算出した前記ずれ量が小さくなるように、前記集光領域と前記電荷蓄積領域との位置的な関係を調整するずれ調整部を備える、
    距離測定装置。
    An irradiation unit that irradiates light from a light source while scanning the target area at a predetermined irradiation timing.
    A light receiving unit including a plurality of light receiving elements that receive observation light in the target area and output an electric signal.
    The electricity based on the charge accumulated according to the reflected light from the object irradiated with the light by the irradiation unit included in the observation light received by some light receiving element group among the plurality of light receiving elements. A distance measuring processing unit that performs distance measuring processing for calculating the distance to the object based on the value of the signal, and a distance measuring unit.
    A control unit for controlling a condensing region of the reflected light corresponding to the light emitted by the irradiation unit and a charge storage region by a group of some light receiving elements among the plurality of light receiving elements is provided.
    The control unit calculates the amount of deviation between the condensing region and the charge storage region, and the positional relationship between the condensing region and the charge storage region so that the calculated deviation amount becomes small. Equipped with a shift adjustment unit to adjust
    Distance measuring device.
  2.  前記ずれ調整部は、前記電荷蓄積領域における前記複数の受光素子のうちの第1の受光素子群から読み出される第1の電気信号の値に基づく重心位置と、前記集光領域における参照位置とに基づいて、前記ずれ量を算出する、
    請求項1に記載の距離測定装置。
    The shift adjusting unit has a center of gravity position based on the value of the first electric signal read from the first light receiving element group among the plurality of light receiving elements in the charge storage region, and a reference position in the light collecting region. Based on this, the amount of deviation is calculated.
    The distance measuring device according to claim 1.
  3.  前記制御部は、前記所定の照射タイミングで前記照射部による前記光の照射を繰り返すように制御し、
     前記ずれ調整部は、該照射の繰り返しに応じて前記第1の受光素子群により蓄積される電荷に基づく第1の電気信号の値に基づく前記重心位置の平均値を算出し、前記平均値に基づいて前記ずれ量を算出する、
    請求項2に記載の距離測定装置。
    The control unit controls so that the irradiation of the light by the irradiation unit is repeated at the predetermined irradiation timing.
    The deviation adjusting unit calculates an average value of the position of the center of gravity based on the value of the first electric signal based on the electric charge accumulated by the first light receiving element group according to the repetition of the irradiation, and obtains the average value. Calculate the deviation amount based on
    The distance measuring device according to claim 2.
  4.  前記ずれ調整部は、前記第1の電気信号の値が所定のしきい値以上である場合に、前記重心位置を算出する、請求項2に記載の距離測定装置。 The distance measuring device according to claim 2, wherein the deviation adjusting unit calculates the position of the center of gravity when the value of the first electric signal is equal to or higher than a predetermined threshold value.
  5.  前記ずれ調整部は、前記ずれ量が所定の許容値以上である場合に、前記集光領域と前記電荷蓄積領域との位置的な関係を調整する、
    請求項1に記載の距離測定装置。
    The deviation adjusting unit adjusts the positional relationship between the condensing region and the charge storage region when the deviation amount is equal to or greater than a predetermined allowable value.
    The distance measuring device according to claim 1.
  6.  前記照射部は、前記所定の照射タイミングに従って一の方向に沿ったライン状の前記光を前記一の方向に直交する方向に所定の走査角度で順次に走査しながら照射し、
     前記制御部は、前記電荷蓄積領域における前記複数の受光素子のうちの第1の受光素子群に蓄積された電荷に基づく第1の電気信号を前記第1の受光素子群から読み出すように制御する、
    請求項1に記載の距離測定装置。
    The irradiation unit irradiates the line-shaped light along one direction according to the predetermined irradiation timing while sequentially scanning the light in a direction orthogonal to the one direction at a predetermined scanning angle.
    The control unit controls to read out a first electric signal based on the charge accumulated in the first light receiving element group among the plurality of light receiving elements in the charge storage region from the first light receiving element group. ,
    The distance measuring device according to claim 1.
  7.  前記ずれ調整部は、前記ずれ量に応じて前記所定の走査角度が調整されるように制御する、
    請求項6に記載の距離測定装置。
    The deviation adjusting unit controls so that the predetermined scanning angle is adjusted according to the deviation amount.
    The distance measuring device according to claim 6.
  8.  前記照射部は、駆動電圧に応じて前記光を所定の走査角度で順次に走査するための走査ミラーを備え、
     前記ずれ調整部は、前記走査ミラーに対する駆動電圧を制御することにより前記所定の走査角度が調整されるように制御する、
    請求項7に記載の距離測定装置。
    The irradiation unit includes a scanning mirror for sequentially scanning the light at a predetermined scanning angle according to a driving voltage.
    The deviation adjusting unit controls so that the predetermined scanning angle is adjusted by controlling the driving voltage with respect to the scanning mirror.
    The distance measuring device according to claim 7.
  9.  前記ずれ調整部は、前記ずれ量に応じて前記電荷蓄積領域が拡大されるように、前記複数の受光素子のうちの幾つかの受光素子群の動作を制御する、
    請求項8に記載の距離測定装置。
    The deviation adjusting unit controls the operation of some light receiving element groups among the plurality of light receiving elements so that the charge storage region is expanded according to the deviation amount.
    The distance measuring device according to claim 8.
  10.  前記ずれ調整部は、前記電荷蓄積領域に対する前記集光領域の傾きを算出し、該算出した傾きに基づいて、前記電荷蓄積領域が拡大されるように、前記複数の受光素子のうちの幾つかの受光素子群の動作を制御する、
    請求項1に記載の距離測定装置。
    The shift adjusting unit calculates the inclination of the light collecting region with respect to the charge storage region, and based on the calculated inclination, some of the plurality of light receiving elements so that the charge storage region is expanded. Controls the operation of the light receiving element group of
    The distance measuring device according to claim 1.
  11.  前記ずれ調整部は、前記照射タイミングに対して、前記電荷を蓄積する受光素子群の動作タイミングを調整するように制御する、
    請求項1に記載の距離測定装置。
    The deviation adjusting unit controls the irradiation timing so as to adjust the operation timing of the light receiving element group that accumulates the electric charge.
    The distance measuring device according to claim 1.
  12.  前記複数の受光素子のうちの幾つかの受光素子群から読み出される前記電気信号の値を保持するメモリを更に備える、
    請求項1に記載の距離測定装置。
    A memory for holding the value of the electric signal read from a group of some light receiving elements among the plurality of light receiving elements is further provided.
    The distance measuring device according to claim 1.
  13.  前記制御部は、外部から与えられる調整開始指示信号に従って、前記ずれ調整部を動作させる、
    請求項1に記載の距離測定装置。
    The control unit operates the deviation adjustment unit according to an adjustment start instruction signal given from the outside.
    The distance measuring device according to claim 1.
  14.  前記第1の受光素子群は、前記集光領域における前記複数の受光素子のうちの受光素子群と該集光領域に外接する領域の受光素子群とを含む、
    請求項2に記載の距離測定装置。
    The first light receiving element group includes a light receiving element group among the plurality of light receiving elements in the light collecting region and a light receiving element group in a region circumscribing the light collecting region.
    The distance measuring device according to claim 2.
  15.  距離測定装置における測距機構のずれ調整方法であって、
     光源からの光を、所定の照射タイミングで対象エリアに対して、照射部により走査しながら照射することと、
     前記対象エリアにおける観測光を、受光部における複数の受光素子のうちの幾つかの受光素子群により受光することと、
     前記複数の受光素子のうちの幾つかの受光素子群から前記観測光に含まれる前記照射部により前記光が照射された物体からの反射光に応じて蓄積された電荷に基づく電気信号を読み出すことと、
     読み出した前記電気信号の値に基づいて、前記物体までの距離を算出するための測距処理を行うことと、
     前記照射部により照射された前記光に対応する前記反射光の集光領域と前記複数の受光素子のうちの幾つかの受光素子群による電荷蓄積領域とを制御すること、を含み、
     前記制御することは、
     前記集光領域と前記電荷蓄積領域との間のずれ量を算出し、算出した前記ずれ量が小さくなるように、前記集光領域と前記電荷蓄積領域との関係を調整することを含む、
    測距機構のずれ調整方法。
    It is a method of adjusting the deviation of the distance measuring mechanism in a distance measuring device.
    The light from the light source is irradiated to the target area at a predetermined irradiation timing while being scanned by the irradiation unit.
    The observation light in the target area is received by some light receiving element groups among the plurality of light receiving elements in the light receiving unit, and
    Reading an electric signal based on an electric charge accumulated according to the reflected light from an object irradiated with the light by the irradiation unit included in the observation light from a group of some light receiving elements among the plurality of light receiving elements. When,
    Performing distance measurement processing to calculate the distance to the object based on the read out value of the electric signal, and
    This includes controlling a condensing region of the reflected light corresponding to the light emitted by the irradiating unit and a charge accumulating region of some light receiving element groups among the plurality of light receiving elements.
    The control is
    This includes calculating the amount of deviation between the condensing region and the charge storage region and adjusting the relationship between the condensing region and the charge storage region so that the calculated deviation amount becomes small.
    How to adjust the deviation of the distance measuring mechanism.
  16.  前記調整することは、
     前記電荷蓄積領域における前記複数の受光素子のうちの第1の受光素子群から読み出される第1の電気信号の値に基づいて、重心位置を算出することと、
     前記算出した重心位置と前記電荷蓄積領域における参照位置とに基づいて、前記ずれ量を算出することと、を含む、請求項15に記載の測距機構のずれ調整方法。
    The adjustment is
    The position of the center of gravity is calculated based on the value of the first electric signal read from the first light receiving element group among the plurality of light receiving elements in the charge storage region.
    The deviation adjusting method for a distance measuring mechanism according to claim 15, further comprising calculating the deviation amount based on the calculated center of gravity position and the reference position in the charge storage region.
PCT/JP2020/026909 2019-09-13 2020-07-09 Distance measurement device and distance measurement mechanism deviation adjustment method for same WO2021049151A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2019-166879 2019-09-13
JP2019166879A JP2021043131A (en) 2019-09-13 2019-09-13 Distance measuring device and method for adjusting deviation of distance measuring mechanism in said device

Publications (1)

Publication Number Publication Date
WO2021049151A1 true WO2021049151A1 (en) 2021-03-18

Family

ID=74863881

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/026909 WO2021049151A1 (en) 2019-09-13 2020-07-09 Distance measurement device and distance measurement mechanism deviation adjustment method for same

Country Status (2)

Country Link
JP (1) JP2021043131A (en)
WO (1) WO2021049151A1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102020206006A1 (en) * 2020-05-13 2021-11-18 Robert Bosch Gesellschaft mit beschränkter Haftung Method for calibrating and / or adjusting and control unit for a LiDAR system, LiDAR system and working device

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002039716A (en) * 2000-07-25 2002-02-06 Olympus Optical Co Ltd Depth map input device
JP2003004850A (en) * 2001-06-20 2003-01-08 Denso Corp Range finder
JP2004157044A (en) * 2002-11-07 2004-06-03 Nippon Signal Co Ltd:The Scanning type laser radar
JP2012058158A (en) * 2010-09-10 2012-03-22 Toshiba Corp Target tracking apparatus and target tracking method
JP2017003391A (en) * 2015-06-09 2017-01-05 株式会社デンソー Laser radar system
JP2018537680A (en) * 2015-12-20 2018-12-20 アップル インコーポレイテッドApple Inc. Light detection distance sensor
WO2019021887A1 (en) * 2017-07-27 2019-01-31 シャープ株式会社 Optical radar device
JP2020118569A (en) * 2019-01-24 2020-08-06 ソニーセミコンダクタソリューションズ株式会社 Light receiver and distance measuring device

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002039716A (en) * 2000-07-25 2002-02-06 Olympus Optical Co Ltd Depth map input device
JP2003004850A (en) * 2001-06-20 2003-01-08 Denso Corp Range finder
JP2004157044A (en) * 2002-11-07 2004-06-03 Nippon Signal Co Ltd:The Scanning type laser radar
JP2012058158A (en) * 2010-09-10 2012-03-22 Toshiba Corp Target tracking apparatus and target tracking method
JP2017003391A (en) * 2015-06-09 2017-01-05 株式会社デンソー Laser radar system
JP2018537680A (en) * 2015-12-20 2018-12-20 アップル インコーポレイテッドApple Inc. Light detection distance sensor
WO2019021887A1 (en) * 2017-07-27 2019-01-31 シャープ株式会社 Optical radar device
JP2020118569A (en) * 2019-01-24 2020-08-06 ソニーセミコンダクタソリューションズ株式会社 Light receiver and distance measuring device

Also Published As

Publication number Publication date
JP2021043131A (en) 2021-03-18

Similar Documents

Publication Publication Date Title
JP7483819B2 (en) LIDAR-based three-dimensional imaging with variable pulse repetition rate
CN110554401B (en) Hybrid LIDAR receiver and LIDAR method
CN111352091B (en) Real-time gating and signal routing in laser and detector arrays for LIDAR applications
JP6633197B2 (en) Photodetector and electronic equipment
US11796648B2 (en) Multi-channel lidar illumination driver
CN107820572B (en) Time of flight (TOF) system calibration
CN108139483A (en) For determining the system and method for the distance of object
US8311286B2 (en) Ranging apparatus and ranging method
KR20160032014A (en) A method for driving a time-of-flight system
CN109791207A (en) For determining the system and method to the distance of object
US20190086539A1 (en) Hybrid sensor and compact lidar sensor
JP6805504B2 (en) Distance measuring device, mobile device and distance measuring method
CN111751842B (en) Oversampling and transmitter photographing modes for light detection and ranging (LIDAR) systems
EP3602110B1 (en) Time of flight distance measurement system and method
CN109791204A (en) For determining the system to the distance of object
CN111198362B (en) Multiple detectors with interleaved photodetector arrays and analog readout circuits for LIDAR receivers
US7869007B2 (en) Ranging apparatus and ranging method
JP6727539B2 (en) Distance sensor, running body, robot and three-dimensional measuring device
WO2016133053A1 (en) Range image measuring apparatus
KR20130029229A (en) Unit pixel of a three-dimensional image sensor
US11698447B2 (en) Beam steering aware pixel clustering of segmented sensor area and implementing averaging algorithms for pixel processing
WO2021049151A1 (en) Distance measurement device and distance measurement mechanism deviation adjustment method for same
JP6186863B2 (en) Ranging device and program
JP5180502B2 (en) Ranging device and ranging method
JP2021124332A (en) Distance measuring device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20862247

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20862247

Country of ref document: EP

Kind code of ref document: A1