WO2021048583A1 - Action deciding method of traveling support device, and traveling support device - Google Patents

Action deciding method of traveling support device, and traveling support device Download PDF

Info

Publication number
WO2021048583A1
WO2021048583A1 PCT/IB2019/001099 IB2019001099W WO2021048583A1 WO 2021048583 A1 WO2021048583 A1 WO 2021048583A1 IB 2019001099 W IB2019001099 W IB 2019001099W WO 2021048583 A1 WO2021048583 A1 WO 2021048583A1
Authority
WO
WIPO (PCT)
Prior art keywords
vehicle
region
moving object
pedestrian
support device
Prior art date
Application number
PCT/IB2019/001099
Other languages
French (fr)
Japanese (ja)
Inventor
辻正文
黒川貴都
後藤健文
Original Assignee
日産自動車株式会社
ルノー エス. ア. エス.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日産自動車株式会社, ルノー エス. ア. エス. filed Critical 日産自動車株式会社
Priority to PCT/IB2019/001099 priority Critical patent/WO2021048583A1/en
Publication of WO2021048583A1 publication Critical patent/WO2021048583A1/en

Links

Images

Classifications

    • GPHYSICS
    • G08SIGNALLING
    • G08GTRAFFIC CONTROL SYSTEMS
    • G08G1/00Traffic control systems for road vehicles
    • G08G1/16Anti-collision systems

Definitions

  • the present invention relates to a method for determining the behavior of a driving support device and a driving support device.
  • Patent Document 1 There is known a method of detecting an obstacle by changing the detection area at a place where it is presumed that there is a high possibility of collision with an obstacle while the vehicle is traveling (Patent Document 1).
  • a detection area is set on a pedestrian crossing in front of the vehicle, and when an obstacle (pedestrian) is detected in the set detection area, braking control or the like is performed.
  • Patent Document 1 does not describe that the side of the pedestrian crossing is included in the detection area. Therefore, when there are pedestrians beside the pedestrian crossing, it is unclear what the proper driving behavior is.
  • the present invention has been made in view of the above problems, and an object of the present invention is a method for determining an action of a driving support device and a driving support device capable of performing an appropriate driving action according to a situation around the vehicle. Is to provide.
  • a first region is set at a place where the moving object is allowed to move due to the road structure, which intersects the route on which the own vehicle travels, and the moving object.
  • a second region close to the first region in the traveling direction of the vehicle is set, and when a moving object exists in the first region, it is determined to execute the stopping operation of the own vehicle, and the moving object exists in the second region. If so, it is decided to perform the deceleration operation of the own vehicle.
  • FIG. 1 is a block diagram of an autonomous driving architecture according to an embodiment of the present invention.
  • FIG. 2 is a block diagram of a traveling support device according to an embodiment of the present invention.
  • FIG. 3 is a diagram illustrating a method of setting a first region according to an embodiment of the present invention.
  • FIG. 4 is a diagram illustrating a method of setting a second region according to an embodiment of the present invention.
  • FIG. 5 is a diagram illustrating an example of the shape of a pedestrian crossing according to an embodiment of the present invention.
  • FIG. 6 is a diagram illustrating another example of the shape of the pedestrian crossing according to the embodiment of the present invention.
  • FIG. 7 is a diagram illustrating an example of a method for determining a driving behavior according to an embodiment of the present invention.
  • FIG. 1 is a block diagram of an autonomous driving architecture according to an embodiment of the present invention.
  • FIG. 2 is a block diagram of a traveling support device according to an embodiment of the present invention.
  • FIG. 3 is a
  • FIG. 8 is a diagram illustrating another example of a method for determining a driving behavior according to an embodiment of the present invention.
  • FIG. 9 is a diagram illustrating another example of a method for determining a driving behavior according to an embodiment of the present invention.
  • FIG. 10 is a flowchart illustrating an operation example of the traveling support device according to the embodiment of the present invention.
  • FIG. 11 is a diagram illustrating a modified example of the present invention.
  • FIG. 12 is a diagram illustrating the shape of the second region according to the embodiment of the present invention.
  • FIG. 13 is a diagram illustrating another example of a method for determining a driving behavior according to an embodiment of the present invention.
  • FIG. 14 is a diagram illustrating another example of a method for determining a driving behavior according to an embodiment of the present invention.
  • the traveling support device is used for a vehicle having an automatic driving function.
  • the architecture of automatic driving in this embodiment will be described with reference to FIG.
  • the architecture for grasping the self-position and the architecture for grasping the information around the vehicle are indicated by reference numerals 100 to 105 in FIG.
  • the sensor group (Sensors) represented by reference numeral 100 in FIG. 1 detects various information.
  • the sensor group 100 includes a laser range finder that measures a distance using a light wave, a camera, a radar, a lidar, a sonar that measures a distance using ultrasonic waves, and the like. Further, the sensor group also includes a speed sensor for detecting the speed of the vehicle, an acceleration sensor for detecting the acceleration of the vehicle, a steering angle sensor for detecting the steering angle of the vehicle, and the like.
  • the camera has an image sensor such as a CCD (charge-coupled device) or a CMOS (complementary metallic accessory semiconductor).
  • the camera detects objects around the vehicle (pedestrians, bicycles, two-wheeled vehicles, other vehicles, etc.) and information around the vehicle (road boundaries, traffic lights, signs, pedestrian crossings, facility entrances, etc.). To do.
  • the radar emits radio waves to an object in front of its own vehicle and measures the reflected wave to measure the distance and direction to the object.
  • a lidar (LIDAR: Laser Imaging Detection and Ranger) scans with a laser beam in the horizontal and vertical directions to measure the position and shape of an object existing around the vehicle.
  • the sensor group 100 includes a GPS receiver.
  • the GPS receiver detects the position information (including latitude and longitude information) of the vehicle on the ground by receiving the radio waves from the artificial satellite.
  • the method of detecting the position information of the vehicle is not limited to the GPS receiver.
  • the position may be estimated using a method called odometry.
  • the odometry is a method of estimating the position of a vehicle by obtaining the amount of movement and the direction of movement of the vehicle according to the rotation angle and the rotation angular velocity of the vehicle.
  • the sensor group 100 includes a steering angle sensor, a wheel speed sensor, and a gyro sensor.
  • the information detected by the sensor group 100 is transmitted to a controller (not shown) mounted on the vehicle and processed.
  • the information detected by the sensor group 100 is localized to fit the detected area (reference numeral 103 in FIG. 1).
  • the information detected by the sensor group 100 and the map information are integrated, and the environment recognition unit 104 in the controller generates a world model.
  • the world model here is the surrounding environment on a digital map that combines static map information or a high-precision map with lane information with dynamic position information such as self-position information, other vehicle information, and pedestrian information. Means information.
  • a high-precision map is a map that includes information such as the number of lanes on a road, road width information, road information such as road undulation information, road signs indicating speed limits, one-way streets, pedestrian crossings, and road signs indicating lane markings. To say. Further, the high-precision map may include equipment information such as road structures (for example, traffic lights, telegraph columns), buildings, and the like. These high-precision map information is provided in the HD map 102 shown in FIG.
  • the environment recognition unit 104 reads a high-precision map around the self-position from the HD map 102, sets dynamic position information such as self-position information, other vehicle information, and pedestrian information on the read map, and sets the world model. Generate.
  • various data such as road information and equipment information are not limited to those acquired from the HD map 102, and may be acquired using vehicle-to-vehicle communication and road-to-vehicle communication.
  • the controller may acquire these data from the cloud at any time by communication.
  • the controller may periodically obtain the latest map information from a server installed outside and update the map information it holds.
  • the object recognition unit 105 in the controller generates recognition information of objects around the vehicle generated based on the information detected by the sensor group 100, and generates a local model.
  • the local model includes other vehicle information, pedestrian information, and the like as object recognition information.
  • the other vehicle information includes the speed, the direction of travel, the traveling lane, and the like of the other vehicle.
  • Pedestrian information includes pedestrian attributes (adult or child), face orientation, direction of travel, and the like.
  • the local model generated by the object recognition unit 105 is used to generate the world model.
  • the user sets the destination using the navigation device 101 (Navigation) (reference code 106 in FIG. 1, Destination setting).
  • the navigation device 101 reads out the HD map 102 and plans a route to reach the destination. If there is an intersection on the route to reach the destination, the timing of changing lanes to the lane entering the intersection is also planned (reference code 107 in FIG. 1, Route planning).
  • the action determination unit 108 in the controller determines the action when automatically traveling along the route set by using the information generated by the environment recognition unit 104 and the object recognition unit 105. Further, the action decision unit 108 makes a decision to advance or stop the own vehicle. For example, if the color of the traffic light is red, the vehicle is stopped, and if the color of the traffic light is blue, the vehicle is driven. Further, the action determining unit 108 determines the timing of turning on the direction indicator when changing lanes, the timing of operating the steering wheel, and the like.
  • the controller reads the local model and the HD map 102 generated by the object recognition unit 105 to plan the drive zone (reference code 109 in FIG. 1, Drive Zone planning).
  • the drive zone is defined as the area in which the vehicle can travel. While traveling, various obstacles (other vehicles, motorcycles, falling objects on the road, etc.) are detected by the sensor group 100. The controller plans the drive zone with these obstacles in mind.
  • the controller generates a trajectory along the drive zone (reference numeral 110 in FIG. 1).
  • the trajectory is composed of a plurality of points indicating the traveling locus of the vehicle, and each point is composed of the position information of the vehicle and the posture information of the vehicle at that position.
  • the controller also generates a vehicle speed profile when traveling along the trajectory in accordance with the generation of the trajectory.
  • the larger the radius of curvature of the trajectory the higher the vehicle speed can be set from the viewpoint of discomfort given to the occupants and the limit behavior of the vehicle.
  • the controller may set the vehicle speed profile based on the radius of curvature of the trajectory, or conversely may generate the trajectory based on the vehicle speed profile.
  • the controller controls various actuators (brake actuator, accelerator actuator, steering actuator, etc.) so that the vehicle automatically travels along the set trajectory (reference numeral 111 in FIG. 1, Vehicle motion control). .. As a result, automatic operation is realized.
  • the traveling support device 1 includes an environment recognition unit 104, an object recognition unit 105, and a controller 20.
  • the environment recognition unit 104 and the object recognition unit 105 have been described with reference to FIG.
  • the controller 20 shown in FIG. 2 corresponds to the controller described in FIG.
  • the functions of the controller 20 include a route planning function, an action determination function (action determination unit 108), a trajectory generation function, and the like. Among such a plurality of functions, FIG. 2 describes the action determination unit 108.
  • the action determination unit 108 determines the driving behavior of the own vehicle based on the information acquired from the environment recognition unit 104 and the object recognition unit 105.
  • the controller 20 is a general-purpose microcomputer including a CPU (central processing unit), a memory, and an input / output unit.
  • a computer program for functioning as the driving support device 1 is installed in the microcomputer.
  • the microcomputer functions as a plurality of information processing circuits included in the travel support device 1.
  • an example of realizing a plurality of information processing circuits included in the travel support device 1 by software is shown, but of course, dedicated hardware for executing each of the following information processing is prepared for information processing. It is also possible to configure a circuit. Further, a plurality of information processing circuits may be configured by individual hardware.
  • the controller 20 includes a first area setting unit 21, a second area setting unit 22, a determination unit 23, and a speed determination unit 24 as a plurality of information processing circuits.
  • Each function of the first area setting unit 21, the second area setting unit 22, the determination unit 23, and the speed determination unit 24 is a classification of the functions of the action determination unit 108.
  • the first area setting unit 21 sets the first area in a place where the movement of moving objects (pedestrians, bicycles, etc.) is permitted due to the road structure.
  • the details of the first region will be described later, but the first region is a region used for determining the driving behavior of the own vehicle. For example, when a moving object is detected in the first region, the own vehicle is controlled to stop before the first region. That is, the action determination unit 108 determines to execute the stop operation of the own vehicle when the moving object is detected in the first region.
  • the first region may be rephrased as a region where the own vehicle and a moving object may come into contact with each other.
  • the second area setting unit 22 sets each of the second areas close to the first area.
  • the second region is also an region used for determining the driving behavior of the own vehicle. For example, when a moving object is detected in the second region, the target speed of the own vehicle is lowered.
  • the action determination unit 108 determines to execute the deceleration operation of the own vehicle when a moving object is detected in the second region.
  • the stop operation means the control to make the vehicle speed zero.
  • the deceleration operation is a control for decelerating the own vehicle, it does not include setting the vehicle speed to zero. That is, the stop operation and the deceleration operation mean different controls.
  • the determination unit 23 determines whether or not a moving object exists in the first region and the second region set by the first region setting unit 21 and the second region setting unit 22. For this determination, the detection result by the sensor group 100 (for example, camera, radar, rider) is used.
  • the sensor group 100 for example, camera, radar, rider
  • the speed determination unit 24 determines the speed of the own vehicle 40 based on the result of the determination unit 23. When it is determined that a moving object exists in the first region, the speed determination unit 24 determines the speed of the own vehicle 40 so that the own vehicle 40 stops before the first region. When it is determined that a moving object exists in the second region, the speed determination unit 24 lowers the target speed of the own vehicle 40. The speed determination unit 24 outputs the determined speed to the controller 20 (travel control function of the controller 20).
  • the own vehicle 40 is traveling on a road with one lane on each side.
  • a pedestrian crossing 50 exists in front of the own vehicle 40.
  • a stop line 51 is provided in front of the pedestrian crossing 50 (on the side of the own vehicle 40).
  • a stop line 52 is provided at the back of the pedestrian crossing 50 (on the opposite lane side).
  • the route on which the own vehicle 40 travels is set in advance using a navigation device.
  • the pedestrian crossing 50 is provided on the road so that moving objects such as pedestrians and bicycles can safely cross the road. That is, the pedestrian crossing 50 is a place where pedestrians, bicycles, and the like are allowed to move due to the road structure.
  • a moving object passing through the pedestrian crossing 50 will be described as a pedestrian, but the moving object also includes a bicycle and the like.
  • the first area setting unit 21 sets the first area 60 on the pedestrian crossing 50 where the movement of pedestrians is permitted due to the road structure.
  • the first area setting unit 21 sets the first area 60 so as to be larger than the pedestrian crossing 50 in consideration of the margin.
  • the margin is not particularly limited, but is, for example, 50 cm to 1 m.
  • the first area 60 may be set to have the same size as the pedestrian crossing 50.
  • the second area setting unit 22 sets the second areas 61 and 62 close to the first area 60, respectively.
  • the proximity to the first region 60 includes the contact with the first region 60 without a gap, the overlap with the first region 60, or the contact with the first region 60 with a gap.
  • the second area setting unit 22 may set the second areas 61 and 62 before and after the first area 60, respectively.
  • the front and back of the first area 60 means the traveling direction of a pedestrian passing through the pedestrian crossing 50. In the example shown in FIG. 4, the front-rear direction of the first region 60 and the traveling direction of the own vehicle 40 intersect at right angles, but the present invention is not limited to this.
  • the crossing angle is not limited as long as the front-rear direction of the first region 60 and the traveling direction of the own vehicle 40 intersect. Further, at least a part of the second areas 61 and 62 may be set on a sidewalk different from the roadway. In the present embodiment, two (61, 62) second regions are set, but the present invention is not limited to this. Only one second region may be set.
  • second regions 61 and 62 may be expressed as being set at both ends of the first region 60, respectively. Further, the second regions 61 and 62 may be expressed as being set adjacent to the first region 60.
  • the second areas 61 and 62 are set on the sidewalk adjacent to the pedestrian crossing 50 (beside the pedestrian crossing 50). Pedestrians in the second areas 61 and 62 may enter the first area 60 (pedestrian crossing 50) within a predetermined time.
  • the predetermined time is set to 2 seconds
  • the speed of a normal pedestrian is 4 km / h
  • the length d shown in FIG. 4 is set to 2.2 m.
  • the size of the second region 61 and the size of the second region 62 may be the same or different. In the present embodiment, the size of the second region 61 and the size of the second region 62 will be described as being the same.
  • the first area 60 and the second areas 61 and 62 are areas used for determining the driving behavior of the own vehicle 40. For example, when a pedestrian 70 is detected in the first area 60, the own vehicle 40 is controlled to stop before the first area 60. This is to ensure the safety of the pedestrian 70.
  • the second regions 61 and 62 are regions for wait-and-see. When pedestrians are detected in the second regions 61 and 62, it is unknown whether or not the pedestrians pass the pedestrian crossing 50. While pedestrians may pass through pedestrian crossing 50, pedestrians may travel in a different direction than pedestrian crossing 50. Therefore, when a pedestrian is detected in the second regions 61 and 62, the speed determination unit 24 lowers the target speed of the own vehicle 40 in preparation for the case where the pedestrian passes the pedestrian crossing 50.
  • the line of the pedestrian crossing 50 (mainly the white line) shown in FIGS. 3 to 4 is inclined with respect to the traveling direction of the own vehicle 40, but is not limited to this.
  • the white line of the pedestrian crossing 50 may be formed along the same direction as the traveling direction of the own vehicle 40 as shown in FIGS. 5 to 6.
  • the speed determination unit 24 determines the own vehicle so that the own vehicle 40 stops before the first region 60. Determine the speed of 40.
  • the controller 20 stops the own vehicle 40 in front of the first region 60 using the speed determined by the speed determination unit 24.
  • the front of the first region 60 is the position of the stop line 51. The reason for stopping the own vehicle 40 at the stop line 51 is to allow the pedestrian 70 to pass safely.
  • the speed determination unit 24 lowers the target speed of the own vehicle 40.
  • the controller 20 runs the own vehicle 40 using the speed lowered by the speed determination unit 24.
  • the speed determination unit 24 may reduce the target speed to a speed at which the own vehicle 40 can be immediately stopped in front of the first region 60 (stop line 51).
  • the speed determination unit 24 may reduce the target speed to the slow speed.
  • Slow speed is defined as traveling at a speed at which the vehicle can stop immediately, and the slow speed is, for example, 10 or less km / h.
  • the slow-moving motion is a deceleration motion in which the target speed of the own vehicle 40 is set to zero or more and the vehicle travels.
  • the slow-moving operation may be an operation in which the target speed of the own vehicle 40 is made larger than zero to travel.
  • the speed determination unit 24 may reduce the target speed to 10 km / h or less. That is, when the pedestrian 70 is detected in the second region 61, the speed determination unit 24 may determine the speed of the own vehicle 40 so as to be equal to or lower than the predetermined vehicle speed. Further, the speed determination unit 24 may lower the target speed of the own vehicle 40 from the current vehicle speed of the own vehicle 40.
  • the target speed here means the legal speed.
  • the own vehicle 40 travels at a reduced target speed. Therefore, even if the pedestrian 70 tries to pass the pedestrian crossing 50 and enters the pedestrian crossing 50, the own vehicle 40 Can stop immediately at the stop line 51. As a result, the pedestrian 70 can safely pass through the pedestrian crossing 50.
  • the own vehicle 40 travels at a reduced target speed, it is possible to acquire more information than when traveling at the legal speed.
  • information such as the orientation of the face and the orientation of the body of the pedestrian 70 can be obtained, and the direction of travel of the pedestrian 70 can be estimated accurately. That is, regarding the behavior of the pedestrian 70, which is difficult to estimate from a distance, the closer to the pedestrian crossing 50, the more information can be obtained, so that the behavior of the pedestrian 70 can be estimated accurately. As a result, the estimation accuracy of whether or not the pedestrian 70 passes the pedestrian crossing 50 can be improved.
  • the speed determination unit 24 may restore the lowered target speed. That is, the speed determination unit 24 may return the lowered target speed to the legal speed. If the pedestrian 70 does not pass the pedestrian crossing 50, it is not necessary to decelerate the own vehicle 40. Therefore, it is possible to reduce the unnecessary deceleration by returning the lowered target speed to the original speed.
  • the controller 20 may drive the own vehicle 40 in a state where the target speed is lowered (see FIG. 9).
  • the speed determination unit 24 may restore the lowered target speed.
  • step S101 the environment recognition unit 104 acquires information about the structure around the own vehicle based on the detection result by the sensor group 100 (for example, a camera, radar, rider, etc.).
  • the structure is, for example, a pedestrian crossing 50 as shown in FIG.
  • the environment recognition unit 104 acquires the position, size, and the like of the pedestrian crossing 50.
  • step S103 the environment recognition unit 104 acquires the position information of the own vehicle based on the detection result by the GPS receiver.
  • step S105 When the pedestrian crossing 50 is detected in front of the own vehicle 40 (YES in step S105), the process proceeds to step S107, and the first area setting unit 21 sets the first area 60 on the pedestrian crossing 50 (FIG. 3). reference). After that, the process proceeds to step S109, and the second area setting unit 22 sets the second areas 61 and 62 close to the first area 60, respectively (see FIG. 4). On the other hand, if the pedestrian crossing 50 is not detected in front of the own vehicle 40 (NO in step S105), the process returns to step S101.
  • step S111 When a pedestrian 70 is detected in the first region 60 in front of the own vehicle 40 (YES in step S111), the process proceeds to step S113, and the speed determination unit 24 moves the own vehicle 40 in front of the first region 60.
  • the speed of the own vehicle 40 is determined so as to stop (see FIG. 7).
  • the controller 20 stops the own vehicle 40 in front of the first region 60 using the speed determined by the speed determination unit 24 (first speed control).
  • the own vehicle 40 waits until the passage of the pedestrian 70 is completed (NO in step S115).
  • the speed determination unit 24 determines the starting speed for starting the own vehicle 40.
  • the starting speed is not particularly limited, but is, for example, a speed of reaching 20 km / h in 5 seconds after starting.
  • the controller 20 starts the own vehicle 40 using the speed determined by the speed determination unit 24 (second speed control).
  • the process is a step. Proceeding to S121, the speed determination unit 24 lowers the target speed of the own vehicle 40. Then, the controller 20 runs the own vehicle 40 using the speed lowered by the speed determination unit 24 (third speed control). As a result, when the own vehicle 40 travels toward the pedestrian crossing 50, it travels at a speed lower than the legal speed, so that more information can be acquired. As a result, information such as the orientation of the face and the orientation of the body of the pedestrian 70 can be obtained, and the direction of travel of the pedestrian 70 can be estimated accurately.
  • step S123 When it is detected that the pedestrian 70 moves in a direction different from the pedestrian crossing 50 and leaves the second area 61 (NO in step S123), the speed determination unit 24 restores the lowered target speed. Then, the controller 20 runs the own vehicle 40 using the speed restored by the speed determination unit 24 (fourth speed control). If it is estimated in step S123 that the pedestrian 70 does not pass through the pedestrian crossing 50 based on the information of the pedestrian 70 (face orientation, body orientation), the process may proceed to step S125.
  • step S123 when it is detected that the pedestrian 70 has entered the pedestrian crossing 50 (YES in step S123), the process proceeds to step S113.
  • the first area setting unit 21 sets the first area 60 at a place where the movement of the pedestrian 70 (moving object) is permitted due to the road structure, which intersects the route on which the own vehicle 40 travels.
  • the second area setting unit 22 sets the second areas 61 and 62 close to the first area 60 in the traveling direction of the pedestrian 70, respectively.
  • the determination unit 23 determines whether or not a pedestrian 70 exists in the first region 60 or the second regions 61 and 62 using the detection result of the sensor group 100.
  • the speed determination unit 24 determines the speed (driving behavior) of the own vehicle 40 based on the determination result. As a result, it becomes possible to perform an appropriate driving action corresponding to the surrounding situation of the own vehicle 40.
  • the second area setting unit 22 sets the second areas 61 and 62 close to the first area 60 in the traveling direction of the pedestrian 70.
  • the determination unit 23 determines whether or not the pedestrian 70 exists in the second regions 61 and 62.
  • the speed determination unit 24 determines to execute the deceleration operation of the own vehicle 40.
  • the deceleration operation may be a slow-moving operation in which the target speed of the own vehicle 40 is set to zero or more and the vehicle travels. Further, the deceleration operation may be an operation of traveling at a predetermined vehicle speed or lower. Further, the deceleration operation may be an operation in which the target speed of the own vehicle 40 is lowered from the current vehicle speed of the own vehicle 40 to travel.
  • the speed determination unit 24 may determine the speed at which the own vehicle 40 is stopped before the first area 60 (see FIG. 7). This enables automatic driving in consideration of the safety of the pedestrian 70.
  • the speed determination unit 24 may lower the target speed (see FIG. 8).
  • the target speed see FIG. 8
  • the own vehicle 40 travels at a reduced target speed, it is possible to acquire more information than when traveling at the legal speed. As a result, information such as the orientation of the face and the orientation of the body of the pedestrian 70 can be obtained, and the direction of travel of the pedestrian 70 can be estimated accurately. That is, regarding the behavior of the pedestrian 70, which is difficult to estimate from a distance, the closer to the pedestrian crossing 50, the more information can be obtained, so that the behavior of the pedestrian 70 can be estimated accurately. As a result, the estimation accuracy of whether or not the pedestrian 70 passes the pedestrian crossing 50 can be improved. As a result, highly accurate automatic driving corresponding to the surrounding conditions of the own vehicle 40 can be realized.
  • the processing load of the computer is reduced.
  • the second regions 61 and 62 are not set, it is necessary to recognize the behavior of the moving object (pedestrian 70) in detail, and the processing load increases.
  • the action of the own vehicle 40 can be determined only by the position of the moving object, and the processing load for determining the action of the own vehicle 40 is reduced.
  • the speed determination unit 24 lowers the target speed to a speed at which the own vehicle 40 can be immediately stopped in front of the first region 60 (FIG. 8). reference).
  • the target speed it is unknown whether or not the pedestrian 70 passes the pedestrian crossing 50. Therefore, by lowering the target speed, even if the pedestrian 70 enters the pedestrian crossing 50 in an attempt to pass the pedestrian crossing 50, the own vehicle 40 can immediately stop at the stop line 51. As a result, the pedestrian 70 can safely pass through the pedestrian crossing 50.
  • the speed determination unit 24 restores the lowered target speed. This makes it possible to reduce unnecessary deceleration.
  • a pedestrian crossing has been described as an example of a place where pedestrians are allowed to move due to the road structure, but such a place is not limited to the pedestrian crossing.
  • a sidewalk that crosses the entrance / exit of a facility can be mentioned as a place where pedestrians are allowed to move due to the road structure.
  • the scene shown in FIG. 11 is a scene in which the own vehicle 40 moves to the roadway through a sidewalk that crosses the entrance / exit of the store.
  • a store is shown as an example of a facility in FIG. 11, the facility is not limited as long as the entrance / exit is provided on the sidewalk such as a library, a school, or a hotel.
  • the processing of the controller 20 is the same as the above example.
  • the first area setting unit 21 sets the first area 60 on the sidewalk that crosses the entrance / exit of the store.
  • the second area setting unit 22 sets the second areas 61 and 62, which are close to the first area 60, respectively.
  • the direction close to the first area 60 means the traveling direction of the pedestrian 70 passing through the sidewalk crossing the entrance / exit of the store.
  • the speed determination and speed control are the same as in the above example.
  • the controller 20 stops the own vehicle 40 in front of the first area 60.
  • the controller 20 drives the own vehicle 40 using the speed lowered by the speed determining unit 24. As a result, it becomes possible to perform an appropriate driving action corresponding to the surrounding situation of the own vehicle 40.
  • the processing circuit includes a programmed processing device such as a processing device including an electric circuit.
  • Processing circuits also include devices such as application specific integrated circuits (ASICs) and circuit components arranged to perform the described functions.
  • ASICs application specific integrated circuits
  • the shapes of the second regions 61 and 62 have been described as being square, but the shape is not limited to the square.
  • the shapes of the second regions 61 and 62 may be semicircular.
  • the speed determination unit 24 owns the vehicle in front of the first region 60. Determine the speed at which 40 is stopped. Then, the controller 20 stops the own vehicle 40 before the first region 60. This enables automatic driving in consideration of the safety of the pedestrian 70.
  • a part of the first region 60 and a part of the second regions 61 and 62 may overlap.
  • the speed determination unit 24 determines the speed at which the own vehicle 40 is stopped before the first region 60. decide. Then, the controller 20 stops the own vehicle 40 before the first region 60. This enables automatic driving in consideration of the safety of the pedestrian 70.

Abstract

A traveling support device (1) comprises a controller (20). The controller (20) sets a first region for places intersecting with a route on which an own vehicle (40) travels, where movement of a moving object is permitted from the perspective of road structure, sets a second region in the proximity of the first region in the direction in which the moving object is advancing, decision is made to execute a stopping action of the own vehicle when a moving object is present in the first region, and decision is made to execute a decelerating action of the own vehicle when a moving object is present in the second region.

Description

走行支援装置の行動決定方法及び走行支援装置Behavior decision method of driving support device and driving support device
 本発明は、走行支援装置の行動決定方法及び走行支援装置に関する。 The present invention relates to a method for determining the behavior of a driving support device and a driving support device.
 車両が走行しているときに、障害物との衝突の可能性が高いと推定される場所で検知領域を変更して障害物を検知する方法が知られている(特許文献1)。特許文献1に記載された方法は、車両の前方の横断歩道に検知領域を設定し、設定した検知領域で障害物(歩行者)が検知された場合、制動制御などを行う。 There is known a method of detecting an obstacle by changing the detection area at a place where it is presumed that there is a high possibility of collision with an obstacle while the vehicle is traveling (Patent Document 1). In the method described in Patent Document 1, a detection area is set on a pedestrian crossing in front of the vehicle, and when an obstacle (pedestrian) is detected in the set detection area, braking control or the like is performed.
特開2009−271766号公報Japanese Unexamined Patent Publication No. 2009-271766
 しかしながら、特許文献1には、横断歩道の脇を検知領域に含めることに関する記載がない。このため横断歩道の脇に歩行者が居る場合、適切な運転行動がどのようなものか不明である。 However, Patent Document 1 does not describe that the side of the pedestrian crossing is included in the detection area. Therefore, when there are pedestrians beside the pedestrian crossing, it is unclear what the proper driving behavior is.
 本発明は、上記問題に鑑みて成されたものであり、その目的は、車両の周囲の状況に対応した適切な運転行動を行うことが可能となる走行支援装置の行動決定方法及び走行支援装置を提供することである。 The present invention has been made in view of the above problems, and an object of the present invention is a method for determining an action of a driving support device and a driving support device capable of performing an appropriate driving action according to a situation around the vehicle. Is to provide.
 本発明の一態様に係る走行支援装置の行動決定方法は、自車両が走行する経路と交差する、道路構造上、移動物体の移動が認められている場所に第1領域を設定し、移動物体の進行方向における第1領域に近接する第2領域を設定し、第1領域に移動物体が存在する場合、自車両の停止動作を実行することを決定し、第2領域に移動物体が存在する場合、自車両の減速動作を実行することを決定する。 In the method of determining the behavior of the traveling support device according to one aspect of the present invention, a first region is set at a place where the moving object is allowed to move due to the road structure, which intersects the route on which the own vehicle travels, and the moving object. A second region close to the first region in the traveling direction of the vehicle is set, and when a moving object exists in the first region, it is determined to execute the stopping operation of the own vehicle, and the moving object exists in the second region. If so, it is decided to perform the deceleration operation of the own vehicle.
 本発明によれば、車両の周囲の状況に対応した適切な運転行動を行うことが可能となる。 According to the present invention, it is possible to perform appropriate driving behavior according to the situation around the vehicle.
図1は、本発明の実施形態に係る自動運転のアーキテクチャのブロック図である。FIG. 1 is a block diagram of an autonomous driving architecture according to an embodiment of the present invention. 図2は、本発明の実施形態に係る走行支援装置のブロック図である。FIG. 2 is a block diagram of a traveling support device according to an embodiment of the present invention. 図3は、本発明の実施形態に係る第1領域の設定方法を説明する図である。FIG. 3 is a diagram illustrating a method of setting a first region according to an embodiment of the present invention. 図4は、本発明の実施形態に係る第2領域の設定方法を説明する図である。FIG. 4 is a diagram illustrating a method of setting a second region according to an embodiment of the present invention. 図5は、本発明の実施形態に係る横断歩道の形状の一例を説明する図である。FIG. 5 is a diagram illustrating an example of the shape of a pedestrian crossing according to an embodiment of the present invention. 図6は、本発明の実施形態に係る横断歩道の形状の他の例を説明する図である。FIG. 6 is a diagram illustrating another example of the shape of the pedestrian crossing according to the embodiment of the present invention. 図7は、本発明の実施形態に係る運転行動の決定方法の一例を説明する図である。FIG. 7 is a diagram illustrating an example of a method for determining a driving behavior according to an embodiment of the present invention. 図8は、本発明の実施形態に係る運転行動の決定方法の他の例を説明する図である。FIG. 8 is a diagram illustrating another example of a method for determining a driving behavior according to an embodiment of the present invention. 図9は、本発明の実施形態に係る運転行動の決定方法の他の例を説明する図である。FIG. 9 is a diagram illustrating another example of a method for determining a driving behavior according to an embodiment of the present invention. 図10は、本発明の実施形態に係る走行支援装置の一動作例を説明するフローチャートである。FIG. 10 is a flowchart illustrating an operation example of the traveling support device according to the embodiment of the present invention. 図11は、本発明の変形例を説明する図である。FIG. 11 is a diagram illustrating a modified example of the present invention. 図12は、本発明の実施形態に係る第2領域の形状を説明する図である。FIG. 12 is a diagram illustrating the shape of the second region according to the embodiment of the present invention. 図13は、本発明の実施形態に係る運転行動の決定方法の他の例を説明する図である。FIG. 13 is a diagram illustrating another example of a method for determining a driving behavior according to an embodiment of the present invention. 図14は、本発明の実施形態に係る運転行動の決定方法の他の例を説明する図である。FIG. 14 is a diagram illustrating another example of a method for determining a driving behavior according to an embodiment of the present invention.
 以下、本発明の実施形態について、図面を参照して説明する。図面の記載において同一部分には同一符号を付して説明を省略する。 Hereinafter, embodiments of the present invention will be described with reference to the drawings. In the description of the drawings, the same parts are designated by the same reference numerals and the description thereof will be omitted.
(自動運転のアーキテクチャ)
 本実施形態に係る走行支援装置は、自動運転機能を有する車両に用いられる。図1を参照して、本実施形態における自動運転のアーキテクチャを説明する。
(Self-driving architecture)
The traveling support device according to the present embodiment is used for a vehicle having an automatic driving function. The architecture of automatic driving in this embodiment will be described with reference to FIG.
 自動運転において、自己位置を把握すること、車両周囲の情報を把握することが求められる。これらの把握によって、車両は車線変更を実施したり、交差点で適切な方向に進むことが可能となり、目的地に到達することが可能となる。自己位置を把握するためのアーキテクチャ、及び車両周囲の情報を把握するためのアーキテクチャは、図1の参照符号100~105によって示される。 In automatic driving, it is required to grasp the self-position and the information around the vehicle. With these grasps, the vehicle can change lanes, move in an appropriate direction at an intersection, and reach the destination. The architecture for grasping the self-position and the architecture for grasping the information around the vehicle are indicated by reference numerals 100 to 105 in FIG.
 図1の参照符号100で示されるセンサ群(Sensors)は、様々な情報を検出する。センサ群100には、光波を用いて距離を測定するレーザレンジファインダ、カメラ、レーダ、ライダ、超音波を用いて距離を測定するソナーなどが含まれる。さらに、センサ群には、車両の速度を検出する速度センサ、車両の加速度を検出する加速度センサ、車両の舵角を検出する舵角センサなども含まれる。 The sensor group (Sensors) represented by reference numeral 100 in FIG. 1 detects various information. The sensor group 100 includes a laser range finder that measures a distance using a light wave, a camera, a radar, a lidar, a sonar that measures a distance using ultrasonic waves, and the like. Further, the sensor group also includes a speed sensor for detecting the speed of the vehicle, an acceleration sensor for detecting the acceleration of the vehicle, a steering angle sensor for detecting the steering angle of the vehicle, and the like.
 カメラは、自車両の前方、側方、後方、サイドミラーなどに複数設けられる。カメラは、CCD(charge−coupled device)、CMOS(complementary metal oxide semiconductor)などの撮像素子を有する。カメラは、自車両の周囲に存在する物体(歩行者、自転車、二輪車、他車両など)、及び自車両の周囲の情報(道路境界線、信号機、標識、横断歩道、施設の出入り口など)を検出する。 Multiple cameras are installed in front, side, rear, side mirrors, etc. of the own vehicle. The camera has an image sensor such as a CCD (charge-coupled device) or a CMOS (complementary metallic accessory semiconductor). The camera detects objects around the vehicle (pedestrians, bicycles, two-wheeled vehicles, other vehicles, etc.) and information around the vehicle (road boundaries, traffic lights, signs, pedestrian crossings, facility entrances, etc.). To do.
 レーダは、自車両の前方の物体に電波を発射し、その反射波を測定することにより、物体までの距離及び方向を測定する。 The radar emits radio waves to an object in front of its own vehicle and measures the reflected wave to measure the distance and direction to the object.
 ライダ(LIDAR:Laser Imaging Detection and Ranging)は、レーザー光によるスキャンを水平方向及び垂直方向に行い、自車両の周囲に存在する物体の位置及び形状を測定する。 A lidar (LIDAR: Laser Imaging Detection and Ranger) scans with a laser beam in the horizontal and vertical directions to measure the position and shape of an object existing around the vehicle.
 また、センサ群100には、GPS受信機が含まれる。GPS受信機は、人工衛星からの電波を受信することにより、地上における車両の位置情報(緯度及び経度情報を含む)を検出する。ただし、車両の位置情報を検出する方法は、GPS受信機に限定されない。例えば、オドメトリと呼ばれる方法を用いて位置を推定してもよい。オドメトリとは、車両の回転角、回転角速度に応じて車両の移動量及びと移動方向を求めることにより、車両の位置を推定する方法である。この場合、センサ群100には、舵角センサ、車輪速センサ、ジャイロセンサが含まれる。 Further, the sensor group 100 includes a GPS receiver. The GPS receiver detects the position information (including latitude and longitude information) of the vehicle on the ground by receiving the radio waves from the artificial satellite. However, the method of detecting the position information of the vehicle is not limited to the GPS receiver. For example, the position may be estimated using a method called odometry. The odometry is a method of estimating the position of a vehicle by obtaining the amount of movement and the direction of movement of the vehicle according to the rotation angle and the rotation angular velocity of the vehicle. In this case, the sensor group 100 includes a steering angle sensor, a wheel speed sensor, and a gyro sensor.
 センサ群100によって検出された情報は、車両に搭載されたコントローラ(不図示)に送信され、処理される。センサ群100によって検出された情報は、検出された地域に適合するようにローカライズされる(図1の参照符号103)。 The information detected by the sensor group 100 is transmitted to a controller (not shown) mounted on the vehicle and processed. The information detected by the sensor group 100 is localized to fit the detected area (reference numeral 103 in FIG. 1).
 センサ群100によって検出された情報と地図情報とが統合され、コントローラ中の環境認識部104はワールドモデルを生成する。ここでいうワールドモデルは、静的な地図情報、あるいは車線情報を有する高精度地図に、自己位置情報、他車両情報、歩行者情報などの動的な位置情報を組み合わせたデジタル地図上の周囲環境情報を意味する。 The information detected by the sensor group 100 and the map information are integrated, and the environment recognition unit 104 in the controller generates a world model. The world model here is the surrounding environment on a digital map that combines static map information or a high-precision map with lane information with dynamic position information such as self-position information, other vehicle information, and pedestrian information. Means information.
 ここで高精度地図について説明する。高精度地図とは、道路の車線数、道幅情報、道路の起伏情報などの道路情報、速度制限、一方通行などを示す道路標識、横断歩道、区画線などを示す道路標示などの情報を含む地図をいう。さらに、高精度地図には道路構造物(例えば信号機、電信柱)、建物などの設備情報が含まれてもよい。これらの高精度地図情報は、図1に示すHDマップ102が備えている。環境認識部104は、自己位置周囲の高精度地図をHDマップ102から読み出し、読み出した地図上に自己位置情報、他車両情報、歩行者情報などの動的な位置情報を設定してワールドモデルを生成する。 The high-precision map will be explained here. A high-precision map is a map that includes information such as the number of lanes on a road, road width information, road information such as road undulation information, road signs indicating speed limits, one-way streets, pedestrian crossings, and road signs indicating lane markings. To say. Further, the high-precision map may include equipment information such as road structures (for example, traffic lights, telegraph columns), buildings, and the like. These high-precision map information is provided in the HD map 102 shown in FIG. The environment recognition unit 104 reads a high-precision map around the self-position from the HD map 102, sets dynamic position information such as self-position information, other vehicle information, and pedestrian information on the read map, and sets the world model. Generate.
 なお、道路情報、設備情報などの各種データはHDマップ102から取得されるものに限定されず、車車間通信、路車間通信を用いて取得されてもよい。道路情報、設備情報などの各種データが外部に設置されたサーバに記憶されている場合、コントローラは、通信により随時これらのデータをクラウドから取得してもよい。また、コントローラは、外部に設置されたサーバから定期的に最新の地図情報を入手して、保有する地図情報を更新してもよい。 Note that various data such as road information and equipment information are not limited to those acquired from the HD map 102, and may be acquired using vehicle-to-vehicle communication and road-to-vehicle communication. When various data such as road information and equipment information are stored in a server installed outside, the controller may acquire these data from the cloud at any time by communication. In addition, the controller may periodically obtain the latest map information from a server installed outside and update the map information it holds.
 コントローラ中の物体認識部105は、センサ群100によって検出された情報に基づいて生成された車両周囲の物体の認識情報を生成し、ローカルモデルを生成する。ローカルモデルには、物体の認識情報として、他車両情報、歩行者情報などが含まれる。他車両情報には、他車両の速度、進行方向、走行車線などが含まれる。歩行者情報には、歩行者の属性(大人か子どもか)、顔の向き、進行方向などが含まれる。物体認識部105によって生成されたローカルモデルは、ワールドモデルの生成に用いられる。 The object recognition unit 105 in the controller generates recognition information of objects around the vehicle generated based on the information detected by the sensor group 100, and generates a local model. The local model includes other vehicle information, pedestrian information, and the like as object recognition information. The other vehicle information includes the speed, the direction of travel, the traveling lane, and the like of the other vehicle. Pedestrian information includes pedestrian attributes (adult or child), face orientation, direction of travel, and the like. The local model generated by the object recognition unit 105 is used to generate the world model.
 次に、自動運転の走行制御のアーキテクチャについて、図1の参照符号106~111を参照して説明する。 Next, the driving control architecture for automatic driving will be described with reference to reference numerals 106 to 111 in FIG.
 ユーザは、ナビゲーション装置101(Navigation)を用いて目的地を設定する(図1の参照符号106、Destination setting)。ナビゲーション装置101は、HDマップ102を読み出して目的地に到達する経路を計画する。目的地に到達する経路に交差点が存在する場合は、交差点に進入する車線に車線変更するタイミングなども計画される(図1の参照符号107、Route planning)。 The user sets the destination using the navigation device 101 (Navigation) (reference code 106 in FIG. 1, Destination setting). The navigation device 101 reads out the HD map 102 and plans a route to reach the destination. If there is an intersection on the route to reach the destination, the timing of changing lanes to the lane entering the intersection is also planned (reference code 107 in FIG. 1, Route planning).
 コントローラ中の行動決定部108は、環境認識部104、物体認識部105によって生成された情報を用いて設定された経路に沿って自動走行する際の行動を決定する。さらに行動決定部108は、自車両を進行もしくは停止させるための決定を下す。例えば、信号機の色が赤であれば車両を停止させ、信号機の色が青であれば車両を走行させる。また行動決定部108は、車線変更を行う場合における方向指示器を点灯させるタイミング、ステアリングホイールを操作するタイミングなどを決定する。 The action determination unit 108 in the controller determines the action when automatically traveling along the route set by using the information generated by the environment recognition unit 104 and the object recognition unit 105. Further, the action decision unit 108 makes a decision to advance or stop the own vehicle. For example, if the color of the traffic light is red, the vehicle is stopped, and if the color of the traffic light is blue, the vehicle is driven. Further, the action determining unit 108 determines the timing of turning on the direction indicator when changing lanes, the timing of operating the steering wheel, and the like.
 次に、コントローラは、物体認識部105によって生成されたローカルモデル及びHDマップ102を読み込んで、ドライブゾーンを計画する(図1の参照符号109、Drive Zone planning)。ドライブゾーンとは、車両が走行可能な領域と定義される。走行中において、様々な障害物(他車両、バイク、道路上の落下物など)がセンサ群100によって検出される。コントローラはこれらの障害物を考慮してドライブゾーンを計画する。 Next, the controller reads the local model and the HD map 102 generated by the object recognition unit 105 to plan the drive zone (reference code 109 in FIG. 1, Drive Zone planning). The drive zone is defined as the area in which the vehicle can travel. While traveling, various obstacles (other vehicles, motorcycles, falling objects on the road, etc.) are detected by the sensor group 100. The controller plans the drive zone with these obstacles in mind.
 次に、コントローラは、ドライブゾーンに沿ったトラジェクトリを生成する(図1の参照符号110)。トラジェクトリとは、車両の走行軌跡を示す複数の点を結んで構成され、各点は車両の位置情報と、その位置における車両の姿勢情報から成る。コントローラは、トラジェクトリの生成に合わせて、トラジェクトリに沿って走行する時の車速プロファイルも合わせて生成する。一般的に、乗員に与える違和感、車両の限界挙動の観点で、トラジェクトリの曲率半径が大きいほど車速を高く設定することができる。コントローラは、トラジェクトリの曲率半径に基づいて車速プロファイルを設定してもよく、逆に車速プロファイルに基づいてトラジェクトリを生成してもよい。 Next, the controller generates a trajectory along the drive zone (reference numeral 110 in FIG. 1). The trajectory is composed of a plurality of points indicating the traveling locus of the vehicle, and each point is composed of the position information of the vehicle and the posture information of the vehicle at that position. The controller also generates a vehicle speed profile when traveling along the trajectory in accordance with the generation of the trajectory. In general, the larger the radius of curvature of the trajectory, the higher the vehicle speed can be set from the viewpoint of discomfort given to the occupants and the limit behavior of the vehicle. The controller may set the vehicle speed profile based on the radius of curvature of the trajectory, or conversely may generate the trajectory based on the vehicle speed profile.
 最後に、コントローラは、設定したトラジェクトリに沿って車両が自動的に走行するように各種のアクチュエータ(ブレーキアクチュエータ、アクセルアクチュエータ、ステアリングアクチュエータなど)を制御する(図1の参照符号111、Vehicle motion control)。これにより、自動運転が実現する。 Finally, the controller controls various actuators (brake actuator, accelerator actuator, steering actuator, etc.) so that the vehicle automatically travels along the set trajectory (reference numeral 111 in FIG. 1, Vehicle motion control). .. As a result, automatic operation is realized.
(走行支援装置の構成例)
 次に図2を参照して、走行支援装置1の構成例を説明する。図2に示すように、走行支援装置1は、環境認識部104、物体認識部105、コントローラ20を備える。環境認識部104、物体認識部105については図1で説明した。図2に示すコントローラ20は、図1で説明したコントローラに相当する。コントローラ20の機能には、上述したように、ルート計画機能、行動決定機能(行動決定部108)、トラジェクトリ生成機能などが含まれる。このような複数の機能の内、図2では行動決定部108について説明する。
(Configuration example of driving support device)
Next, a configuration example of the traveling support device 1 will be described with reference to FIG. As shown in FIG. 2, the traveling support device 1 includes an environment recognition unit 104, an object recognition unit 105, and a controller 20. The environment recognition unit 104 and the object recognition unit 105 have been described with reference to FIG. The controller 20 shown in FIG. 2 corresponds to the controller described in FIG. As described above, the functions of the controller 20 include a route planning function, an action determination function (action determination unit 108), a trajectory generation function, and the like. Among such a plurality of functions, FIG. 2 describes the action determination unit 108.
 行動決定部108は、環境認識部104及び物体認識部105から取得した情報に基づいて、自車両の運転行動を決定する。 The action determination unit 108 determines the driving behavior of the own vehicle based on the information acquired from the environment recognition unit 104 and the object recognition unit 105.
 コントローラ20は、CPU(中央処理装置)、メモリ、及び入出力部を備える汎用のマイクロコンピュータである。マイクロコンピュータには、走行支援装置1として機能させるためのコンピュータプログラムがインストールされている。コンピュータプログラムを実行することにより、マイクロコンピュータは、走行支援装置1が備える複数の情報処理回路として機能する。なお、ここでは、ソフトウェアによって走行支援装置1が備える複数の情報処理回路を実現する例を示すが、もちろん、以下に示す各情報処理を実行するための専用のハードウェアを用意して、情報処理回路を構成することも可能である。また、複数の情報処理回路を個別のハードウェアにより構成してもよい。コントローラ20は、複数の情報処理回路として、第1領域設定部21と、第2領域設定部22と、判定部23と、速度決定部24とを備える。第1領域設定部21、第2領域設定部22、判定部23、及び速度決定部24の各機能は、行動決定部108の機能を分類したものである。 The controller 20 is a general-purpose microcomputer including a CPU (central processing unit), a memory, and an input / output unit. A computer program for functioning as the driving support device 1 is installed in the microcomputer. By executing the computer program, the microcomputer functions as a plurality of information processing circuits included in the travel support device 1. Here, an example of realizing a plurality of information processing circuits included in the travel support device 1 by software is shown, but of course, dedicated hardware for executing each of the following information processing is prepared for information processing. It is also possible to configure a circuit. Further, a plurality of information processing circuits may be configured by individual hardware. The controller 20 includes a first area setting unit 21, a second area setting unit 22, a determination unit 23, and a speed determination unit 24 as a plurality of information processing circuits. Each function of the first area setting unit 21, the second area setting unit 22, the determination unit 23, and the speed determination unit 24 is a classification of the functions of the action determination unit 108.
 第1領域設定部21は、道路構造上、移動物体(歩行者、自転車など)の移動が認められている場所に第1領域を設定する。第1領域の詳細は後述するが、第1領域は自車両の運転行動の決定に用いられる領域である。例えば、第1領域において、移動物体が検出された場合、自車両は第1領域の手前で停止するように制御される。つまり、行動決定部108は、第1領域で移動物体が検出された場合、自車両の停止動作を実行することを決定する。第1領域は、自車両と移動物体とが接触する可能性がある領域と言い換えられてもよい。 The first area setting unit 21 sets the first area in a place where the movement of moving objects (pedestrians, bicycles, etc.) is permitted due to the road structure. The details of the first region will be described later, but the first region is a region used for determining the driving behavior of the own vehicle. For example, when a moving object is detected in the first region, the own vehicle is controlled to stop before the first region. That is, the action determination unit 108 determines to execute the stop operation of the own vehicle when the moving object is detected in the first region. The first region may be rephrased as a region where the own vehicle and a moving object may come into contact with each other.
 第2領域設定部22は、第1領域に近接する第2領域をそれぞれ設定する。第2領域も第1領域と同様に、自車両の運転行動の決定に用いられる領域である。例えば、第2領域において、移動物体が検出された場合、自車両の目標速度が下げられる。あるいは、行動決定部108は、第2領域で移動物体が検出された場合、自車両の減速動作を実行することを決定する。 The second area setting unit 22 sets each of the second areas close to the first area. Like the first region, the second region is also an region used for determining the driving behavior of the own vehicle. For example, when a moving object is detected in the second region, the target speed of the own vehicle is lowered. Alternatively, the action determination unit 108 determines to execute the deceleration operation of the own vehicle when a moving object is detected in the second region.
 本実施形態において、停止動作は車速をゼロにする制御を意味する。一方で、減速動作は、自車両を減速させる制御ではあるものの、車速をゼロにすることは含まない。つまり、停止動作と減速動作は、異なる制御を意味する。 In the present embodiment, the stop operation means the control to make the vehicle speed zero. On the other hand, although the deceleration operation is a control for decelerating the own vehicle, it does not include setting the vehicle speed to zero. That is, the stop operation and the deceleration operation mean different controls.
 判定部23は、第1領域設定部21及び第2領域設定部22によって設定された第1領域及び第2領域に移動物体が存在するか否かを判定する。この判定には、センサ群100(例えばカメラ、レーダ、ライダ)による検出結果が用いられる。 The determination unit 23 determines whether or not a moving object exists in the first region and the second region set by the first region setting unit 21 and the second region setting unit 22. For this determination, the detection result by the sensor group 100 (for example, camera, radar, rider) is used.
 速度決定部24は、判定部23による結果に基づいて、自車両40の速度を決定する。第1領域に移動物体が存在すると判定された場合、速度決定部24は、第1領域の手前で自車両40が停止するように自車両40の速度を決定する。第2領域に移動物体が存在すると判定された場合、速度決定部24は、自車両40の目標速度を下げる。速度決定部24は、決定した速度をコントローラ20(コントローラ20の走行制御機能)に出力する。 The speed determination unit 24 determines the speed of the own vehicle 40 based on the result of the determination unit 23. When it is determined that a moving object exists in the first region, the speed determination unit 24 determines the speed of the own vehicle 40 so that the own vehicle 40 stops before the first region. When it is determined that a moving object exists in the second region, the speed determination unit 24 lowers the target speed of the own vehicle 40. The speed determination unit 24 outputs the determined speed to the controller 20 (travel control function of the controller 20).
 次に、図3を参照して第1領域設定部21によって設定される第1領域について説明する。 Next, the first area set by the first area setting unit 21 will be described with reference to FIG.
 図3に示すシーンでは、自車両40は片側1車線の道路を走行している。自車両40の前方には、横断歩道50が存在する。横断歩道50の手前(自車両40側)には停止線51が設けられる。なお、横断歩道50の奥(対向車線側)には停止線52が設けられる。自車両40が走行する経路は、予めナビゲーション装置を用いて設定されている。 In the scene shown in FIG. 3, the own vehicle 40 is traveling on a road with one lane on each side. A pedestrian crossing 50 exists in front of the own vehicle 40. A stop line 51 is provided in front of the pedestrian crossing 50 (on the side of the own vehicle 40). A stop line 52 is provided at the back of the pedestrian crossing 50 (on the opposite lane side). The route on which the own vehicle 40 travels is set in advance using a navigation device.
 横断歩道50は、歩行者、自転車などの移動物体が道路を安全に横断するために道路上に設けられる。つまり、横断歩道50とは、道路構造上、歩行者、自転車などの移動が認められている場所である。以下では説明を簡略化するため、横断歩道50を通過する移動物体を歩行者として説明するが、移動物体には自転車なども含まれる。 The pedestrian crossing 50 is provided on the road so that moving objects such as pedestrians and bicycles can safely cross the road. That is, the pedestrian crossing 50 is a place where pedestrians, bicycles, and the like are allowed to move due to the road structure. Hereinafter, for the sake of simplicity, a moving object passing through the pedestrian crossing 50 will be described as a pedestrian, but the moving object also includes a bicycle and the like.
 図3に示すように第1領域設定部21は、道路構造上、歩行者の移動が認められている横断歩道50上に第1領域60を設定する。第1領域設定部21は、マージンを考慮して横断歩道50よりも大きくなるように第1領域60を設定する。マージンは特に限定されないが、例えば50cm~1mである。なお、第1領域60は、横断歩道50の大きさと同じ大きさとなるように設定されてもよい。 As shown in FIG. 3, the first area setting unit 21 sets the first area 60 on the pedestrian crossing 50 where the movement of pedestrians is permitted due to the road structure. The first area setting unit 21 sets the first area 60 so as to be larger than the pedestrian crossing 50 in consideration of the margin. The margin is not particularly limited, but is, for example, 50 cm to 1 m. The first area 60 may be set to have the same size as the pedestrian crossing 50.
 次に、図4を参照して第2領域設定部22によって設定される第2領域について説明する。 Next, the second area set by the second area setting unit 22 will be described with reference to FIG.
 図4に示すように第2領域設定部22は、第1領域60に近接する第2領域61、62をそれぞれ設定する。本実施形態において第1領域60に近接するとは、第1領域60に隙間なく接すること、または第1領域60に重複すること、または第1領域60と隙間を空けて接すること、が含まれる。また、第2領域設定部22は、第1領域60の前後に第2領域61、62をそれぞれ設定してもよい。第1領域60の前後とは、横断歩道50を通過する歩行者の進行方向を意味する。なお、図4に示す例では、第1領域60の前後方向と自車両40の進行方向とは直角に交差するが、これに限定されない。第1領域60の前後方向と自車両40の進行方向とは交差する関係であれば、交差角度は限定されない。また、第2領域61、62の少なくとも一部は、車道とは異なる歩道に設定されてもよい。なお、本実施形態では、第2領域は2つ(61、62)設定されるが、これに限定されない。第2領域は一つだけ設定されてもよい。 As shown in FIG. 4, the second area setting unit 22 sets the second areas 61 and 62 close to the first area 60, respectively. In the present embodiment, the proximity to the first region 60 includes the contact with the first region 60 without a gap, the overlap with the first region 60, or the contact with the first region 60 with a gap. Further, the second area setting unit 22 may set the second areas 61 and 62 before and after the first area 60, respectively. The front and back of the first area 60 means the traveling direction of a pedestrian passing through the pedestrian crossing 50. In the example shown in FIG. 4, the front-rear direction of the first region 60 and the traveling direction of the own vehicle 40 intersect at right angles, but the present invention is not limited to this. The crossing angle is not limited as long as the front-rear direction of the first region 60 and the traveling direction of the own vehicle 40 intersect. Further, at least a part of the second areas 61 and 62 may be set on a sidewalk different from the roadway. In the present embodiment, two (61, 62) second regions are set, but the present invention is not limited to this. Only one second region may be set.
 なお、第2領域61、62は、第1領域60の両端にそれぞれ設定されると表現されてもよい。また、第2領域61、62は、第1領域60に隣接して設定されると表現されてもよい。 Note that the second regions 61 and 62 may be expressed as being set at both ends of the first region 60, respectively. Further, the second regions 61 and 62 may be expressed as being set adjacent to the first region 60.
 本実施形態において、第2領域61、62は横断歩道50に隣接する歩道上(横断歩道50の脇)に設定される。第2領域61、62に居る歩行者は所定時間内に第1領域60(横断歩道50)に進入する可能性がある。ここで一例として所定時間を2秒に設定すれば、通常の歩行者の速度は4km/hであるため、図4に示す長さdは2.2mに設定される。なお、第2領域61の大きさと第2領域62の大きさは、同じでもよく異なっていてもよい。本実施形態では、第2領域61の大きさと第2領域62の大きさは、同じものとして説明する。 In the present embodiment, the second areas 61 and 62 are set on the sidewalk adjacent to the pedestrian crossing 50 (beside the pedestrian crossing 50). Pedestrians in the second areas 61 and 62 may enter the first area 60 (pedestrian crossing 50) within a predetermined time. Here, as an example, if the predetermined time is set to 2 seconds, the speed of a normal pedestrian is 4 km / h, so the length d shown in FIG. 4 is set to 2.2 m. The size of the second region 61 and the size of the second region 62 may be the same or different. In the present embodiment, the size of the second region 61 and the size of the second region 62 will be described as being the same.
 第1領域60及び第2領域61、62は自車両40の運転行動の決定に用いられる領域である。例えば、第1領域60において、歩行者70が検出された場合、自車両40は第1領域60の手前で停止するように制御される。歩行者70の安全を担保するためである。一方、第2領域61、62は、様子見のための領域である。第2領域61、62において歩行者が検出された場合、歩行者が横断歩道50を通過するか否かは不明である。歩行者が横断歩道50を通過する可能性がある一方、歩行者が横断歩道50とは別の方向に進む可能性もある。そこで、第2領域61、62において歩行者が検出された場合、歩行者が横断歩道50を通過する場合に備えて、速度決定部24は自車両40の目標速度を下げる。 The first area 60 and the second areas 61 and 62 are areas used for determining the driving behavior of the own vehicle 40. For example, when a pedestrian 70 is detected in the first area 60, the own vehicle 40 is controlled to stop before the first area 60. This is to ensure the safety of the pedestrian 70. On the other hand, the second regions 61 and 62 are regions for wait-and-see. When pedestrians are detected in the second regions 61 and 62, it is unknown whether or not the pedestrians pass the pedestrian crossing 50. While pedestrians may pass through pedestrian crossing 50, pedestrians may travel in a different direction than pedestrian crossing 50. Therefore, when a pedestrian is detected in the second regions 61 and 62, the speed determination unit 24 lowers the target speed of the own vehicle 40 in preparation for the case where the pedestrian passes the pedestrian crossing 50.
 図3~図4に示す横断歩道50の線(主に白線)は、自車両40の進行方向に対して傾斜しているが、これに限定されない。横断歩道50の白線は、図5~図6に示すように自車両40の進行方向と同じ方向に沿って形成されてもよい。 The line of the pedestrian crossing 50 (mainly the white line) shown in FIGS. 3 to 4 is inclined with respect to the traveling direction of the own vehicle 40, but is not limited to this. The white line of the pedestrian crossing 50 may be formed along the same direction as the traveling direction of the own vehicle 40 as shown in FIGS. 5 to 6.
 次に、図7~9を参照して走行支援装置1が決定する運転行動の一例について説明する。 Next, an example of the driving behavior determined by the driving support device 1 will be described with reference to FIGS. 7 to 9.
 図7に示すように、自車両40の前方の第1領域60で歩行者70が検出された場合、速度決定部24は、第1領域60の手前で自車両40が停止するように自車両40の速度を決定する。コントローラ20は速度決定部24によって決定された速度を用いて第1領域60の手前で自車両40を停止させる。第1領域60の手前とは停止線51の位置である。停止線51で自車両40を停止させる理由は、歩行者70を安全に通過させるためである。 As shown in FIG. 7, when a pedestrian 70 is detected in the first region 60 in front of the own vehicle 40, the speed determination unit 24 determines the own vehicle so that the own vehicle 40 stops before the first region 60. Determine the speed of 40. The controller 20 stops the own vehicle 40 in front of the first region 60 using the speed determined by the speed determination unit 24. The front of the first region 60 is the position of the stop line 51. The reason for stopping the own vehicle 40 at the stop line 51 is to allow the pedestrian 70 to pass safely.
 図8に示すように、自車両40の前方の第2領域61で歩行者70が検出された場合、速度決定部24は、自車両40の目標速度を下げる。コントローラ20は速度決定部24によって下げられた速度を用いて自車両40を走行させる。目標速度の下げ方の一例として速度決定部24は第1領域60の手前(停止線51)で自車両40を直ちに停止させることが可能となる速度まで目標速度を下げてもよい。あるいは、速度決定部24は徐行速度まで目標速度を下げてもよい。徐行とは、車両が直ちに停止することができるような速度で進行する、と定義されており、徐行速度は一例として10以下km/hである。つまり、本実施形態において、徐行動作とは、減速動作のうち、自車両40の目標速度をゼロ以上にして走行する動作である。徐行動作は、自車両40の目標速度をゼロより大きくして走行する動作であってもよい。なお、徐行が定義されていない地域(国)においては、速度決定部24は10km/h以下まで目標速度を下げてもよい。つまり、第2領域61で歩行者70が検出された場合、速度決定部24は、予め決められた車速以下となるように自車両40の速度を決定してもよい。また、速度決定部24は、自車両40の目標速度を自車両40の現在の車速より下げてもよい。 As shown in FIG. 8, when the pedestrian 70 is detected in the second region 61 in front of the own vehicle 40, the speed determination unit 24 lowers the target speed of the own vehicle 40. The controller 20 runs the own vehicle 40 using the speed lowered by the speed determination unit 24. As an example of how to reduce the target speed, the speed determination unit 24 may reduce the target speed to a speed at which the own vehicle 40 can be immediately stopped in front of the first region 60 (stop line 51). Alternatively, the speed determination unit 24 may reduce the target speed to the slow speed. Slow speed is defined as traveling at a speed at which the vehicle can stop immediately, and the slow speed is, for example, 10 or less km / h. That is, in the present embodiment, the slow-moving motion is a deceleration motion in which the target speed of the own vehicle 40 is set to zero or more and the vehicle travels. The slow-moving operation may be an operation in which the target speed of the own vehicle 40 is made larger than zero to travel. In areas (countries) where slow speed is not defined, the speed determination unit 24 may reduce the target speed to 10 km / h or less. That is, when the pedestrian 70 is detected in the second region 61, the speed determination unit 24 may determine the speed of the own vehicle 40 so as to be equal to or lower than the predetermined vehicle speed. Further, the speed determination unit 24 may lower the target speed of the own vehicle 40 from the current vehicle speed of the own vehicle 40.
 ここで目標速度を下げて走行するメリットを説明する。なお、ここでいう目標速度は法定速度を意味する。上述したように第2領域61で歩行者70が検出された場合、歩行者70が横断歩道50を通過するか否かは不明である。歩行者70が横断歩道50に進入して横断歩道50を通過するならば、自車両40は停止線51で停止する必要がある。一方、歩行者70が横断歩道50とは別の方向に進むならば、自車両40の減速は不要である。 Here, I will explain the merits of running at a lower target speed. The target speed here means the legal speed. When the pedestrian 70 is detected in the second region 61 as described above, it is unknown whether or not the pedestrian 70 passes the pedestrian crossing 50. If the pedestrian 70 enters the pedestrian crossing 50 and passes through the pedestrian crossing 50, the own vehicle 40 needs to stop at the stop line 51. On the other hand, if the pedestrian 70 travels in a direction different from that of the pedestrian crossing 50, the deceleration of the own vehicle 40 is unnecessary.
 第2領域61で歩行者70が検出された場合、自車両40は目標速度を下げて走行するため、歩行者70が横断歩道50を通過しようとして横断歩道50に進入したとしても、自車両40は停止線51で直ちに停止することができる。これにより、歩行者70は安全に横断歩道50を通過できる。 When the pedestrian 70 is detected in the second region 61, the own vehicle 40 travels at a reduced target speed. Therefore, even if the pedestrian 70 tries to pass the pedestrian crossing 50 and enters the pedestrian crossing 50, the own vehicle 40 Can stop immediately at the stop line 51. As a result, the pedestrian 70 can safely pass through the pedestrian crossing 50.
 また、自車両40は目標速度を下げて走行するため、法定速度で走行する場合と比較してより多くの情報を取得することが可能になる。これにより、歩行者70の顔の向き、体の向きなどの情報を得ることができ、歩行者70の進む方向を精度よく推定することが可能となる。すなわち、遠くからでは推定が困難な歩行者70の挙動について、横断歩道50に接近するほど得られる情報が多くなるため、精度よく歩行者70の挙動を推定することが可能となる。これにより、歩行者70が横断歩道50を通過するのか否かの推定精度が向上しうる。 In addition, since the own vehicle 40 travels at a reduced target speed, it is possible to acquire more information than when traveling at the legal speed. As a result, information such as the orientation of the face and the orientation of the body of the pedestrian 70 can be obtained, and the direction of travel of the pedestrian 70 can be estimated accurately. That is, regarding the behavior of the pedestrian 70, which is difficult to estimate from a distance, the closer to the pedestrian crossing 50, the more information can be obtained, so that the behavior of the pedestrian 70 can be estimated accurately. As a result, the estimation accuracy of whether or not the pedestrian 70 passes the pedestrian crossing 50 can be improved.
 目標速度を下げて走行しているときに得られた情報に基づいて、歩行者70の顔が横断歩道50に向いていない、歩行者70の体の向きが横断歩道50に向いていない、などの歩行者70の特徴が検出できたと仮定する。この場合、歩行者70は横断歩道50を通過しないと推定されるため、速度決定部24は下げた目標速度を元に戻してもよい。すなわち、速度決定部24は下げた目標速度を法定速度に戻してもよい。歩行者70が横断歩道50を通過しなければ、自車両40の減速は不要であるため、下げた目標速度を元に戻すことにより不要な減速を低減することが可能となる。 Based on the information obtained while traveling at a reduced target speed, the face of the pedestrian 70 is not facing the pedestrian crossing 50, the body of the pedestrian 70 is not facing the pedestrian crossing 50, etc. It is assumed that the characteristics of the pedestrian 70 can be detected. In this case, since it is estimated that the pedestrian 70 does not pass through the pedestrian crossing 50, the speed determination unit 24 may restore the lowered target speed. That is, the speed determination unit 24 may return the lowered target speed to the legal speed. If the pedestrian 70 does not pass the pedestrian crossing 50, it is not necessary to decelerate the own vehicle 40. Therefore, it is possible to reduce the unnecessary deceleration by returning the lowered target speed to the original speed.
 ただし、歩行者70の安全を担保するため、歩行者70が横断歩道50を通過しないと推定される場合であっても、歩行者70が横断歩道50とは別の方向に進み、第2領域61から離れるまでは、コントローラ20は目標速度を下げた状態で自車両40を走行させてもよい(図9参照)。歩行者70が横断歩道50とは別の方向に進み、第2領域61から離れたことが検出された場合、速度決定部24は下げた目標速度を元に戻してもよい。 However, in order to ensure the safety of the pedestrian 70, even if it is estimated that the pedestrian 70 does not pass through the pedestrian crossing 50, the pedestrian 70 advances in a direction different from that of the pedestrian crossing 50, and the second area Until the distance from 61 is reached, the controller 20 may drive the own vehicle 40 in a state where the target speed is lowered (see FIG. 9). When it is detected that the pedestrian 70 moves in a direction different from that of the pedestrian crossing 50 and leaves the second region 61, the speed determination unit 24 may restore the lowered target speed.
 次に、図10のフローチャートを参照して走行支援装置1の一動作例について説明する。 Next, an operation example of the traveling support device 1 will be described with reference to the flowchart of FIG.
 ステップS101において、環境認識部104は、センサ群100(例えばカメラ、レーダ、ライダなど)による検出結果に基づいて、自車両の周囲における構造物に関する情報を取得する。構造物とは、例えば図3に示すような横断歩道50である。環境認識部104は、横断歩道50の位置、大きさなどを取得する。 In step S101, the environment recognition unit 104 acquires information about the structure around the own vehicle based on the detection result by the sensor group 100 (for example, a camera, radar, rider, etc.). The structure is, for example, a pedestrian crossing 50 as shown in FIG. The environment recognition unit 104 acquires the position, size, and the like of the pedestrian crossing 50.
 処理はステップS103に進み、環境認識部104は、GPS受信機による検出結果に基づいて自車両の位置情報を取得する。 The process proceeds to step S103, and the environment recognition unit 104 acquires the position information of the own vehicle based on the detection result by the GPS receiver.
 自車両40の前方において横断歩道50が検出された場合(ステップS105でYES)、処理はステップS107に進み、第1領域設定部21は横断歩道50上に第1領域60を設定する(図3参照)。その後処理はステップS109に進み、第2領域設定部22は、第1領域60に近接する第2領域61、62をそれぞれ設定する(図4参照)。一方、自車両40の前方において横断歩道50が検出されない場合(ステップS105でNO)、処理はステップS101に戻る。 When the pedestrian crossing 50 is detected in front of the own vehicle 40 (YES in step S105), the process proceeds to step S107, and the first area setting unit 21 sets the first area 60 on the pedestrian crossing 50 (FIG. 3). reference). After that, the process proceeds to step S109, and the second area setting unit 22 sets the second areas 61 and 62 close to the first area 60, respectively (see FIG. 4). On the other hand, if the pedestrian crossing 50 is not detected in front of the own vehicle 40 (NO in step S105), the process returns to step S101.
 自車両40の前方の第1領域60で歩行者70が検出された場合(ステップS111でYES)、処理はステップS113に進み、速度決定部24は、第1領域60の手前で自車両40が停止するように自車両40の速度を決定する(図7参照)。そして、コントローラ20は速度決定部24によって決定された速度を用いて第1領域60の手前で自車両40を停止させる(第1速度制御)。停止後、自車両40は歩行者70の通過が完了するまで待機する(ステップS115でNO)。歩行者70の通過が完了した後(ステップS115でYES)、速度決定部24は自車両40を発進させるための発進速度を決定する。発進速度は特に限定されないが、例えば発進後、5秒で20km/hに達する速度である。コントローラ20は速度決定部24によって決定された速度を用いて自車両40を発進させる(第2速度制御)。 When a pedestrian 70 is detected in the first region 60 in front of the own vehicle 40 (YES in step S111), the process proceeds to step S113, and the speed determination unit 24 moves the own vehicle 40 in front of the first region 60. The speed of the own vehicle 40 is determined so as to stop (see FIG. 7). Then, the controller 20 stops the own vehicle 40 in front of the first region 60 using the speed determined by the speed determination unit 24 (first speed control). After stopping, the own vehicle 40 waits until the passage of the pedestrian 70 is completed (NO in step S115). After the passage of the pedestrian 70 is completed (YES in step S115), the speed determination unit 24 determines the starting speed for starting the own vehicle 40. The starting speed is not particularly limited, but is, for example, a speed of reaching 20 km / h in 5 seconds after starting. The controller 20 starts the own vehicle 40 using the speed determined by the speed determination unit 24 (second speed control).
 一方、自車両40の前方の第1領域60で歩行者70が検出されず、第2領域61で歩行者70が検出された場合(ステップS111でNO、かつステップS119でYES)、処理はステップS121に進み、速度決定部24は、自車両40の目標速度を下げる。そしてコントローラ20は速度決定部24によって下げられた速度を用いて自車両40を走行させる(第3速度制御)。これにより自車両40は、横断歩道50に向かって走行する際、法定速度より低い速度で走行するため、より多くの情報を取得することが可能になる。これにより、歩行者70の顔の向き、体の向きなどの情報を得ることができ、歩行者70の進む方向を精度よく推定することが可能となる。 On the other hand, when the pedestrian 70 is not detected in the first region 60 in front of the own vehicle 40 and the pedestrian 70 is detected in the second region 61 (NO in step S111 and YES in step S119), the process is a step. Proceeding to S121, the speed determination unit 24 lowers the target speed of the own vehicle 40. Then, the controller 20 runs the own vehicle 40 using the speed lowered by the speed determination unit 24 (third speed control). As a result, when the own vehicle 40 travels toward the pedestrian crossing 50, it travels at a speed lower than the legal speed, so that more information can be acquired. As a result, information such as the orientation of the face and the orientation of the body of the pedestrian 70 can be obtained, and the direction of travel of the pedestrian 70 can be estimated accurately.
 歩行者70が横断歩道50とは別の方向に進み、第2領域61から離れたことが検出された場合(ステップS123でNO)、速度決定部24は下げた目標速度を元に戻す。そしてコントローラ20は速度決定部24によって元に戻された速度を用いて自車両40を走行させる(第4速度制御)。なお、ステップS123において、歩行者70の情報(顔の向き、体の向き)に基づいて歩行者70は横断歩道50を通過しないと推定された場合、ステップS125に処理が進んでもよい。 When it is detected that the pedestrian 70 moves in a direction different from the pedestrian crossing 50 and leaves the second area 61 (NO in step S123), the speed determination unit 24 restores the lowered target speed. Then, the controller 20 runs the own vehicle 40 using the speed restored by the speed determination unit 24 (fourth speed control). If it is estimated in step S123 that the pedestrian 70 does not pass through the pedestrian crossing 50 based on the information of the pedestrian 70 (face orientation, body orientation), the process may proceed to step S125.
 一方、歩行者70が横断歩道50に進入したことが検出された場合(ステップS123でYES)、処理はステップS113に進む。 On the other hand, when it is detected that the pedestrian 70 has entered the pedestrian crossing 50 (YES in step S123), the process proceeds to step S113.
(作用効果)
 以上説明したように、実施形態に係る走行支援装置1によれば、以下の作用効果が得られる。
(Action effect)
As described above, according to the traveling support device 1 according to the embodiment, the following effects can be obtained.
 第1領域設定部21は、自車両40が走行する経路と交差する、道路構造上、歩行者70(移動物体)の移動が認められている場所に第1領域60を設定する。第2領域設定部22は、歩行者70の進行方向における第1領域60に近接する第2領域61、62をそれぞれ設定する。判定部23は、センサ群100による検出結果を用いて第1領域60または第2領域61、62に歩行者70が存在するか否かを判定する。速度決定部24は判定結果に基づいて自車両40の速度(運転行動)を決定する。これにより、自車両40の周囲の状況に対応した適切な運転行動を行うことが可能となる。 The first area setting unit 21 sets the first area 60 at a place where the movement of the pedestrian 70 (moving object) is permitted due to the road structure, which intersects the route on which the own vehicle 40 travels. The second area setting unit 22 sets the second areas 61 and 62 close to the first area 60 in the traveling direction of the pedestrian 70, respectively. The determination unit 23 determines whether or not a pedestrian 70 exists in the first region 60 or the second regions 61 and 62 using the detection result of the sensor group 100. The speed determination unit 24 determines the speed (driving behavior) of the own vehicle 40 based on the determination result. As a result, it becomes possible to perform an appropriate driving action corresponding to the surrounding situation of the own vehicle 40.
 第2領域設定部22は、歩行者70の進行方向における第1領域60に近接する第2領域61、62を設定する。判定部23は、第2領域61、62に歩行者70が存在するか否かを判定する。第2領域61、62に歩行者70が存在する場合、速度決定部24(行動決定部108)は自車両40の減速動作を実行することを決定する。これにより、自車両40の周囲の状況に対応した適切な運転行動を行うことが可能となる。減速動作は、自車両40の目標速度をゼロ以上にして走行する徐行動作であってもよい。また、減速動作は、予め決められた車速以下で走行する動作であってもよい。また、減速動作は、自車両40の目標速度を自車両40の現在の車速より下げて走行する動作であってもよい。 The second area setting unit 22 sets the second areas 61 and 62 close to the first area 60 in the traveling direction of the pedestrian 70. The determination unit 23 determines whether or not the pedestrian 70 exists in the second regions 61 and 62. When the pedestrian 70 is present in the second regions 61 and 62, the speed determination unit 24 (action determination unit 108) determines to execute the deceleration operation of the own vehicle 40. As a result, it becomes possible to perform an appropriate driving action corresponding to the surrounding situation of the own vehicle 40. The deceleration operation may be a slow-moving operation in which the target speed of the own vehicle 40 is set to zero or more and the vehicle travels. Further, the deceleration operation may be an operation of traveling at a predetermined vehicle speed or lower. Further, the deceleration operation may be an operation in which the target speed of the own vehicle 40 is lowered from the current vehicle speed of the own vehicle 40 to travel.
 なお、予め自車両40が徐行速度で走行していれば、第2領域61、62で歩行者70が検出されたとしても、これ以上の減速は不要である。 If the own vehicle 40 is traveling at a slow speed in advance, even if the pedestrian 70 is detected in the second regions 61 and 62, further deceleration is unnecessary.
 また、第1領域60に歩行者70が存在すると判定された場合、速度決定部24は第1領域60の手前で自車両40を停止させる速度を決定してもよい(図7参照)。これにより、歩行者70の安全を考慮した自動運転が可能となる。 Further, when it is determined that the pedestrian 70 exists in the first area 60, the speed determination unit 24 may determine the speed at which the own vehicle 40 is stopped before the first area 60 (see FIG. 7). This enables automatic driving in consideration of the safety of the pedestrian 70.
 第2領域61に歩行者70が存在すると判定された場合、速度決定部24は目標速度を下げてもよい(図8参照)。第2領域61に歩行者70が存在すると判定された場合、歩行者70が横断歩道50を通過するか否かは不明である。そこで目標速度を下げることにより、歩行者70が横断歩道50を通過しようとして横断歩道50に進入したとしても、自車両40は停止線51で直ちに停止することができる。これにより、歩行者70は安全に横断歩道50を通過できる。 When it is determined that the pedestrian 70 exists in the second region 61, the speed determination unit 24 may lower the target speed (see FIG. 8). When it is determined that the pedestrian 70 exists in the second region 61, it is unknown whether or not the pedestrian 70 passes the pedestrian crossing 50. Therefore, by lowering the target speed, even if the pedestrian 70 enters the pedestrian crossing 50 in an attempt to pass the pedestrian crossing 50, the own vehicle 40 can immediately stop at the stop line 51. As a result, the pedestrian 70 can safely pass through the pedestrian crossing 50.
 また、自車両40は目標速度を下げて走行するため、法定速度で走行する場合と比較してより多くの情報を取得することが可能になる。これにより、歩行者70の顔の向き、体の向きなどの情報を得ることができ、歩行者70の進む方向を精度よく推定することが可能となる。すなわち、遠くからでは推定が困難な歩行者70の挙動について、横断歩道50に接近するほど得られる情報が多くなるため、精度よく歩行者70の挙動を推定することが可能となる。これにより、歩行者70が横断歩道50を通過するのか否かの推定精度が向上しうる。これにより、自車両40の周囲の状況に対応した精度の高い自動運転が実現しうる。 In addition, since the own vehicle 40 travels at a reduced target speed, it is possible to acquire more information than when traveling at the legal speed. As a result, information such as the orientation of the face and the orientation of the body of the pedestrian 70 can be obtained, and the direction of travel of the pedestrian 70 can be estimated accurately. That is, regarding the behavior of the pedestrian 70, which is difficult to estimate from a distance, the closer to the pedestrian crossing 50, the more information can be obtained, so that the behavior of the pedestrian 70 can be estimated accurately. As a result, the estimation accuracy of whether or not the pedestrian 70 passes the pedestrian crossing 50 can be improved. As a result, highly accurate automatic driving corresponding to the surrounding conditions of the own vehicle 40 can be realized.
 さらに、本実施形態によれば、コンピュータの処理負荷が低減する。第2領域61、62が設定されない場合、移動物体(歩行者70)の挙動を詳細に認識することが必要となり、処理負荷が増大する。しかしながら、本実施形態によれば、第2領域61、62が設定されることにより、移動物体の挙動を詳細に認識する必要がなくなる。これにより、移動物体の位置のみで自車両40の行動決定を下すことが可能となり、自車両40の行動決定のための処理負荷が低減する。 Further, according to this embodiment, the processing load of the computer is reduced. When the second regions 61 and 62 are not set, it is necessary to recognize the behavior of the moving object (pedestrian 70) in detail, and the processing load increases. However, according to the present embodiment, by setting the second regions 61 and 62, it is not necessary to recognize the behavior of the moving object in detail. As a result, the action of the own vehicle 40 can be determined only by the position of the moving object, and the processing load for determining the action of the own vehicle 40 is reduced.
 第2領域61に歩行者70が存在すると判定された場合、速度決定部24は目標速度を、第1領域60の手前で自車両40を直ちに停止させることが可能となる速度に下げる(図8参照)。第2領域61に歩行者70が存在すると判定された場合、歩行者70が横断歩道50を通過するか否かは不明である。そこで目標速度を下げることにより、歩行者70が横断歩道50を通過しようとして横断歩道50に進入したとしても、自車両40は停止線51で直ちに停止することができる。これにより、歩行者70は安全に横断歩道50を通過できる。 When it is determined that the pedestrian 70 is present in the second region 61, the speed determination unit 24 lowers the target speed to a speed at which the own vehicle 40 can be immediately stopped in front of the first region 60 (FIG. 8). reference). When it is determined that the pedestrian 70 exists in the second region 61, it is unknown whether or not the pedestrian 70 passes the pedestrian crossing 50. Therefore, by lowering the target speed, even if the pedestrian 70 enters the pedestrian crossing 50 in an attempt to pass the pedestrian crossing 50, the own vehicle 40 can immediately stop at the stop line 51. As a result, the pedestrian 70 can safely pass through the pedestrian crossing 50.
 歩行者70が横断歩道50を通過しないと推定される場合、速度決定部24は下げた目標速度を元に戻す。これにより、不要な減速を低減することが可能となる。 If it is estimated that the pedestrian 70 does not pass the pedestrian crossing 50, the speed determination unit 24 restores the lowered target speed. This makes it possible to reduce unnecessary deceleration.
(変形例)
 上述の例では、道路構造上、歩行者の移動が認められている場所として横断歩道を例に挙げて説明したが、このような場所は横断歩道に限定されない。例えば、道路構造上、歩行者の移動が認められている場所として、図11に示すように施設の出入り口を横切る歩道が挙げられる。図11に示すシーンは、自車両40が店舗の出入り口を横切る歩道を通って車道に移動するシーンである。なお、図11では施設の一例として店舗を示したが、施設は図書館、学校、ホテルなど歩道に出入り口が設けられていれば限定されない。
(Modification example)
In the above example, a pedestrian crossing has been described as an example of a place where pedestrians are allowed to move due to the road structure, but such a place is not limited to the pedestrian crossing. For example, as shown in FIG. 11, a sidewalk that crosses the entrance / exit of a facility can be mentioned as a place where pedestrians are allowed to move due to the road structure. The scene shown in FIG. 11 is a scene in which the own vehicle 40 moves to the roadway through a sidewalk that crosses the entrance / exit of the store. Although a store is shown as an example of a facility in FIG. 11, the facility is not limited as long as the entrance / exit is provided on the sidewalk such as a library, a school, or a hotel.
 店舗の出入り口を横切る歩道において、コントローラ20の処理は上述の例と同様である。自車両40の前方において店舗の出入り口を横切る歩道が検出されたとき、第1領域設定部21は店舗の出入り口を横切る歩道上に第1領域60を設定する。 On the sidewalk that crosses the doorway of the store, the processing of the controller 20 is the same as the above example. When a sidewalk that crosses the entrance / exit of the store is detected in front of the own vehicle 40, the first area setting unit 21 sets the first area 60 on the sidewalk that crosses the entrance / exit of the store.
 第2領域設定部22は、第1領域60に近接する第2領域61、62をそれぞれ設定する。図11に示す例において第1領域60に近接する方向は、店舗の出入り口を横切る歩道を通過する歩行者70の進行方向を意味する。 The second area setting unit 22 sets the second areas 61 and 62, which are close to the first area 60, respectively. In the example shown in FIG. 11, the direction close to the first area 60 means the traveling direction of the pedestrian 70 passing through the sidewalk crossing the entrance / exit of the store.
 速度決定及び速度制御についても上述の例と同様である。第1領域60で歩行者が検出された場合、コントローラ20は第1領域60の手前で自車両40を停止させる。第2領域62で歩行者70が検出された場合、コントローラ20は速度決定部24によって下げられた速度を用いて自車両40を走行させる。これにより、自車両40の周囲の状況に対応した適切な運転行動を行うことが可能となる。 The speed determination and speed control are the same as in the above example. When a pedestrian is detected in the first area 60, the controller 20 stops the own vehicle 40 in front of the first area 60. When the pedestrian 70 is detected in the second region 62, the controller 20 drives the own vehicle 40 using the speed lowered by the speed determining unit 24. As a result, it becomes possible to perform an appropriate driving action corresponding to the surrounding situation of the own vehicle 40.
 上述の実施形態に記載される各機能は、1または複数の処理回路により実装され得る。処理回路は、電気回路を含む処理装置等のプログラムされた処理装置を含む。処理回路は、また、記載された機能を実行するようにアレンジされた特定用途向け集積回路(ASIC)や回路部品等の装置を含む。 Each function described in the above-described embodiment can be implemented by one or more processing circuits. The processing circuit includes a programmed processing device such as a processing device including an electric circuit. Processing circuits also include devices such as application specific integrated circuits (ASICs) and circuit components arranged to perform the described functions.
 上記のように、本発明の実施形態を記載したが、この開示の一部をなす論述及び図面はこの発明を限定するものであると理解すべきではない。この開示から当業者には様々な代替実施の形態、実施例及び運用技術が明らかとなろう。 As described above, embodiments of the present invention have been described, but the statements and drawings that form part of this disclosure should not be understood to limit the invention. Various alternative embodiments, examples and operational techniques will be apparent to those skilled in the art from this disclosure.
 図4、図11に示す例では、第2領域61、62の形状は四角状として説明したが、四角状に限定されない。例えば、図12に示すように、第2領域61、62の形状は半円状でもよい。 In the examples shown in FIGS. 4 and 11, the shapes of the second regions 61 and 62 have been described as being square, but the shape is not limited to the square. For example, as shown in FIG. 12, the shapes of the second regions 61 and 62 may be semicircular.
 また、図13に示すように、第1領域60及び第2領域61の両方に歩行者(歩行者70、71)が検出された場合、速度決定部24は第1領域60の手前で自車両40を停止させる速度を決定する。そしてコントローラ20は第1領域60の手前で自車両40を停止させる。これにより、歩行者70の安全を考慮した自動運転が可能となる。 Further, as shown in FIG. 13, when pedestrians (pedestrians 70 and 71) are detected in both the first region 60 and the second region 61, the speed determination unit 24 owns the vehicle in front of the first region 60. Determine the speed at which 40 is stopped. Then, the controller 20 stops the own vehicle 40 before the first region 60. This enables automatic driving in consideration of the safety of the pedestrian 70.
 図14に示すように、第1領域60の一部、及び第2領域61、62の一部は重なっていてもよい。第1領域60の一部と第2領域61の一部とが重なった部分に歩行者70が検出された場合、速度決定部24は第1領域60の手前で自車両40を停止させる速度を決定する。そしてコントローラ20は第1領域60の手前で自車両40を停止させる。これにより、歩行者70の安全を考慮した自動運転が可能となる。 As shown in FIG. 14, a part of the first region 60 and a part of the second regions 61 and 62 may overlap. When a pedestrian 70 is detected in a portion where a part of the first region 60 and a part of the second region 61 overlap, the speed determination unit 24 determines the speed at which the own vehicle 40 is stopped before the first region 60. decide. Then, the controller 20 stops the own vehicle 40 before the first region 60. This enables automatic driving in consideration of the safety of the pedestrian 70.
1 走行支援装置
20 コントローラ
21 第1領域設定部
22 第2領域設定部
23 判定部
24 速度決定部
40 自車両
1 Travel support device 20 Controller 21 1st area setting unit 22 2nd area setting unit 23 Judgment unit 24 Speed determination unit 40 Own vehicle

Claims (11)

  1.  自車両が走行する経路と交差する、道路構造上、移動物体の移動が認められている場所に第1領域を設定し、前記第1領域に前記移動物体が存在するか否かを判定し、前記第1領域に前記移動物体が存在する場合、前記自車両の停止動作を実行することを決定するコントローラを備えた走行支援装置の行動決定方法において、
     前記移動物体の進行方向における前記第1領域に近接する第2領域を設定し、
     前記第2領域に前記移動物体が存在するか否かを判定し、
     前記第2領域に前記移動物体が存在する場合、前記自車両の減速動作を実行することを決定する
    ことを特徴とする走行支援装置の行動決定方法。
    A first region is set at a place where the movement of a moving object is permitted due to the road structure that intersects the route on which the own vehicle travels, and it is determined whether or not the moving object exists in the first region. In the action determination method of the travel support device including the controller that determines to execute the stop operation of the own vehicle when the moving object is present in the first region.
    A second region close to the first region in the traveling direction of the moving object is set.
    It is determined whether or not the moving object exists in the second region, and
    A method of determining an action of a traveling support device, which determines that the deceleration operation of the own vehicle is executed when the moving object is present in the second region.
  2.  前記減速動作は、前記自車両の目標速度をゼロ以上にして走行する徐行動作である
    ことを特徴とする請求項1に記載の走行支援装置の行動決定方法。
    The method for determining an action of a traveling support device according to claim 1, wherein the deceleration operation is a slow-moving operation in which the vehicle travels with the target speed of the own vehicle set to zero or more.
  3.  前記減速動作は、予め決められた車速以下で走行する動作である
    ことを特徴とする請求項1または2に記載の走行支援装置の行動決定方法。
    The method for determining an action of a traveling support device according to claim 1 or 2, wherein the deceleration operation is an operation of traveling at a predetermined vehicle speed or lower.
  4.  前記減速動作は、前記自車両の目標速度を前記自車両の現在の車速より下げて走行する動作である
    ことを特徴とする請求項1から3のいずれか一項に記載の走行支援装置の行動決定方法。
    The action of the traveling support device according to any one of claims 1 to 3, wherein the deceleration operation is an operation of traveling by lowering the target speed of the own vehicle from the current vehicle speed of the own vehicle. How to decide.
  5.  前記第2領域に前記移動物体が存在する場合、前記目標速度を、前記第1領域の手前で前記自車両を直ちに停止させることが可能となる速度に下げて前記自車両を走行させることを決定する
    ことを特徴とする請求項4に記載の走行支援装置の行動決定方法。
    When the moving object is present in the second region, it is determined to reduce the target speed to a speed at which the own vehicle can be immediately stopped in front of the first region to run the own vehicle. The method for determining the behavior of the traveling support device according to claim 4, wherein the vehicle is driven by the vehicle.
  6.  前記移動物体が、前記移動が認められている場所を通過しないと推定される場合、下げた目標速度を元に戻す
    ことを特徴とする請求項1から4のいずれか一項に記載の走行支援装置の行動決定方法。
    The traveling support according to any one of claims 1 to 4, wherein when it is estimated that the moving object does not pass through the place where the movement is permitted, the lowered target speed is restored. How to determine the behavior of the device.
  7.  前記第1領域、及び前記第2領域の両方に前記移動物体が存在する場合、前記第1領域の手前で前記自車両の停止動作を実行することを決定する
    ことを特徴とする請求項1~6のいずれか1項に記載の走行支援装置の行動決定方法。
    A first aspect of the present invention, wherein when the moving object is present in both the first region and the second region, it is determined to execute the stop operation of the own vehicle in front of the first region. The method for determining the behavior of the traveling support device according to any one of 6.
  8.  前記第2領域の一部が、前記第1領域の一部と重なるように設定された場合において、前記第2領域の一部と前記第1領域の一部とが重なった領域に前記移動物体が存在する場合、前記第1領域の手前で前記自車両の停止動作を実行することを決定する
    ことを特徴とする請求項1~7のいずれか1項に記載の走行支援装置の行動決定方法。
    When a part of the second region is set to overlap a part of the first region, the moving object is in a region where a part of the second region and a part of the first region overlap. The method for determining the action of the traveling support device according to any one of claims 1 to 7, wherein when is present, it is determined to execute the stop operation of the own vehicle in front of the first region. ..
  9.  前記移動物体の移動が認められている場所は、横断歩道、または施設の出入り口である
    ことを特徴とする請求項1~8のいずれか1項に記載の走行支援装置の行動決定方法。
    The method for determining the behavior of a traveling support device according to any one of claims 1 to 8, wherein the place where the moving object is allowed to move is a pedestrian crossing or an entrance / exit of a facility.
  10.  前記第2領域の少なくとも一部を、車道とは異なる歩道に設定する
    ことを特徴とする請求項1~9のいずれか1項に記載の走行支援装置の行動決定方法。
    The method for determining an action of a traveling support device according to any one of claims 1 to 9, wherein at least a part of the second region is set on a sidewalk different from the roadway.
  11.  自車両が走行する経路と交差する、道路構造上、移動物体の移動が認められている場所に第1領域を設定し、前記第1領域に前記移動物体が存在するか否かを判定し、前記第1領域に前記移動物体が存在する場合、前記自車両の停止動作を実行することを決定するコントローラを備えた走行支援装置において、
     前記コントローラは、
     前記移動物体の進行方向における前記第1領域に近接する第2領域を設定し、
     前記第2領域に前記移動物体が存在するか否かを判定し、
     前記第2領域に前記移動物体が存在する場合、前記自車両の減速動作を実行することを決定する
    ことを特徴とする走行支援装置。
    A first region is set at a place where the movement of a moving object is permitted due to the road structure that intersects the route on which the own vehicle travels, and it is determined whether or not the moving object exists in the first region. In a traveling support device including a controller that determines to execute the stop operation of the own vehicle when the moving object is present in the first region.
    The controller
    A second region close to the first region in the traveling direction of the moving object is set.
    It is determined whether or not the moving object exists in the second region, and
    A traveling support device characterized in that when the moving object is present in the second region, it is determined to execute the deceleration operation of the own vehicle.
PCT/IB2019/001099 2019-09-09 2019-09-09 Action deciding method of traveling support device, and traveling support device WO2021048583A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/IB2019/001099 WO2021048583A1 (en) 2019-09-09 2019-09-09 Action deciding method of traveling support device, and traveling support device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/IB2019/001099 WO2021048583A1 (en) 2019-09-09 2019-09-09 Action deciding method of traveling support device, and traveling support device

Publications (1)

Publication Number Publication Date
WO2021048583A1 true WO2021048583A1 (en) 2021-03-18

Family

ID=74865710

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/IB2019/001099 WO2021048583A1 (en) 2019-09-09 2019-09-09 Action deciding method of traveling support device, and traveling support device

Country Status (1)

Country Link
WO (1) WO2021048583A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114155715A (en) * 2022-02-07 2022-03-08 北京图盟科技有限公司 Conflict point detection method, device, equipment and readable storage medium

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017021696A (en) * 2015-07-14 2017-01-26 株式会社キクテック Traverser detection device
JP2019089516A (en) * 2017-11-16 2019-06-13 本田技研工業株式会社 Vehicle control device, vehicle control method, and program

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017021696A (en) * 2015-07-14 2017-01-26 株式会社キクテック Traverser detection device
JP2019089516A (en) * 2017-11-16 2019-06-13 本田技研工業株式会社 Vehicle control device, vehicle control method, and program

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114155715A (en) * 2022-02-07 2022-03-08 北京图盟科技有限公司 Conflict point detection method, device, equipment and readable storage medium

Similar Documents

Publication Publication Date Title
JP6916953B2 (en) Vehicle control devices, vehicle control methods, and programs
JP6704890B2 (en) Vehicle control device, vehicle control method, and program
JP6768974B2 (en) Vehicle control devices, vehicle control methods, and programs
US11631330B2 (en) Vehicle control device
JP7347523B2 (en) Vehicle control device and vehicle control method
JP6788751B2 (en) Vehicle control devices, vehicle control methods, and programs
JP7243524B2 (en) Autonomous driving system
JP6974484B2 (en) Vehicle control devices, vehicle control methods, and programs
US11661085B2 (en) Locked pedestrian detection and prediction for autonomous vehicles
EP3842315A1 (en) Autonomous driving vehicle three-point turn
JP7334795B2 (en) Vehicle control method and vehicle control device
JP7182718B2 (en) Vehicle behavior determination method and vehicle behavior determination device
JP6669267B2 (en) Vehicle traveling control method and traveling control device
JP2021041754A (en) Operation control method and operation control apparatus
WO2021048583A1 (en) Action deciding method of traveling support device, and traveling support device
CN112985435A (en) Method and system for operating an autonomously driven vehicle
JP7129495B2 (en) Driving support method and driving support device
JP6921692B2 (en) Vehicle control devices, vehicle control methods, and programs
JP2021075119A (en) Travel support method for travel support device and travel support device
JP7287440B2 (en) vehicle controller
WO2021166425A1 (en) Travel assistance device, travel assistance method, and travel assistance program
JP7334107B2 (en) Vehicle control method and vehicle control device
JP2021109576A (en) Travel assistance method and travel assistance device for vehicle
JP7162464B2 (en) Driving support method and driving support device
JP2022060075A (en) Drive support device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19945253

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19945253

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP