WO2021047577A1 - 自旋随机存储器及方法 - Google Patents

自旋随机存储器及方法 Download PDF

Info

Publication number
WO2021047577A1
WO2021047577A1 PCT/CN2020/114414 CN2020114414W WO2021047577A1 WO 2021047577 A1 WO2021047577 A1 WO 2021047577A1 CN 2020114414 W CN2020114414 W CN 2020114414W WO 2021047577 A1 WO2021047577 A1 WO 2021047577A1
Authority
WO
WIPO (PCT)
Prior art keywords
magnetic tunnel
current
frequency
temperature value
tunnel junction
Prior art date
Application number
PCT/CN2020/114414
Other languages
English (en)
French (fr)
Inventor
赵巍胜
邓尔雅
蔡文龙
曹凯华
闫韶华
Original Assignee
北京航空航天大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 北京航空航天大学 filed Critical 北京航空航天大学
Publication of WO2021047577A1 publication Critical patent/WO2021047577A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C11/00Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor
    • G11C11/02Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using magnetic elements
    • G11C11/16Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using magnetic elements using elements in which the storage effect is based on magnetic spin effect
    • G11C11/161Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using magnetic elements using elements in which the storage effect is based on magnetic spin effect details concerning the memory cell structure, e.g. the layers of the ferromagnetic memory cell
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C11/00Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor
    • G11C11/02Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using magnetic elements
    • G11C11/16Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using magnetic elements using elements in which the storage effect is based on magnetic spin effect
    • G11C11/165Auxiliary circuits
    • G11C11/1675Writing or programming circuits or methods

Definitions

  • This application relates to the field of memory technology, and more specifically, to a spin random access memory and method.
  • the current spin random access memory has problems such as short service life, high write operation error rate, and susceptibility to operating temperature, and has many disadvantages.
  • this application provides a spin random access memory, including:
  • each storage partition includes: a plurality of first magnetic tunnel junctions and at least one second magnetic tunnel junction;
  • a writing circuit electrically connected to the first magnetic tunnel junction
  • a temperature control circuit to introduce a set current to the second magnetic tunnel junction, so as to keep the second magnetic tunnel junction in an anti-parallel state
  • control circuit the control circuit generates a current temperature value according to the electrical signal output by the second magnetic tunnel junction, and outputs a write frequency control signal according to the current temperature value to control the write circuit to input to the first magnetic
  • the frequency of the current of the tunnel junction adjusts the current temperature of the corresponding storage partition.
  • control circuit outputting a write frequency control signal according to the current temperature value includes:
  • the control circuit compares the current temperature value with a set temperature value, and if the temperature value is higher than the set temperature value, output a first write frequency control signal to control the write circuit Output a current with a frequency higher than the current frequency. On the contrary, if the temperature value is lower than the set temperature value, output a second writing frequency control signal to control the writing circuit to output a frequency lower than the current frequency Current.
  • control circuit outputting a write frequency control signal according to the current temperature value includes:
  • the control circuit outputs the writing frequency control signal according to the preset corresponding relationship between the temperature value and the output writing frequency, so as to control the writing circuit to output the frequency corresponding to the current temperature value.
  • the write circuit includes a write circuit unit corresponding to each first magnetic tunnel junction one-to-one; each of the write circuit units includes:
  • One P-type transistor and one of the N-type transistors are connected in series at one end of the corresponding first magnetic tunnel junction, the other P-type transistor and the other N-type transistor are connected in series at one end of the switching element, and the other end of the switching element It is electrically connected to the other end of the corresponding first magnetic tunnel junction.
  • This application also provides a temperature control method using the above-mentioned spin random access memory, which includes:
  • a frequency control signal is output according to the current temperature value to control the frequency of the current input by the writing circuit to the first magnetic tunnel junction, and thereby adjust the current temperature of the corresponding storage partition.
  • the outputting a write frequency control signal according to the current temperature value includes:
  • the current temperature value is compared with the set temperature value, and if the temperature value is higher than the set temperature value, a first write frequency control signal is output to control the write circuit to output a high frequency For the current at the current frequency, if the temperature value is lower than the set temperature value, a second write frequency control signal is output to control the write circuit to output a current with a frequency lower than the current frequency.
  • the outputting a write frequency control signal according to the current temperature value includes:
  • This application further provides a method for manufacturing a spin random access memory, including:
  • each storage partition includes: a plurality of first magnetic tunnel junctions and at least one second magnetic tunnel junction;
  • a control circuit is provided to generate a current temperature value according to the electrical signal output by the second magnetic tunnel junction, and output a writing frequency control signal according to the current temperature value to control the writing circuit to input to the first magnetic tunnel junction The frequency of the current, and then adjust the current temperature of the corresponding storage partition.
  • the writing circuit includes a writing circuit unit corresponding to each first magnetic tunnel junction one-to-one; the setting of the writing circuit includes: setting each writing circuit unit; wherein One said writing circuit unit includes:
  • the second magnetic tunnel junction is maintained in an anti-parallel state through current control, so that the temperature of each memory partition can be detected and then transmitted To the control circuit, so that the control circuit outputs a write control signal based on the received temperature, and controls the write frequency, so that when the temperature is too low, the write frequency can be controlled to reduce, and vice versa, thereby solving the problem of spin random access memory.
  • the write operation in the low temperature area fails, which increases the reliability working range of the spin random access memory and increases the service life of the spin random access memory.
  • Fig. 1 shows a schematic diagram of the principle of writing and reading of the STT-MRAM in the prior art.
  • Fig. 2 shows a schematic diagram of the influence of temperature on the write characteristics of STT-MRAM.
  • FIG. 3 shows the STT-MRAM core device resistance state changes with absolute temperature.
  • FIG. 4 shows a schematic diagram of the structure of an STT-MRAM in the prior art.
  • FIG. 5 shows a schematic structural diagram of STT-MRAM based on the inventive concept of the present application.
  • FIG. 6 shows a schematic diagram of the circuit structure of the writing circuit of the present application.
  • MTJ Magnetic tunnel junction
  • STT-MRAM Spin transfer torque-magnetic random access memory, spin transfer torque-magnetic random access memory
  • its write operations are two
  • the current passing through the MTJ in the opposite direction, the read operation is generally a smaller current passing through the MTJ.
  • the chip is in the low temperature range, the writing operation becomes difficult, and the problem of erasing and writing failure is prone to occur; while in the high temperature range, the writing operation becomes much simpler, but the reading error becomes worse due to the smaller reading tolerance. . Therefore, the current spin random access memory has problems such as short service life, high write operation error rate, and susceptibility to operating temperature.
  • a spin random access memory including: a plurality of storage partitions; wherein, each storage partition includes: a plurality of first magnetic tunnels Junction (not shown in FIG.
  • a writing circuit electrically connected to the first magnetic tunnel junction; a temperature control circuit, introducing a set current to the second magnetic tunnel junction , And then keep the second magnetic tunnel junction in an anti-parallel state; a control circuit, the control circuit generates a current temperature value according to the electrical signal output by the second magnetic tunnel junction, and outputs a write frequency control signal according to the current temperature value , To control the frequency of the current input by the writing circuit to the first magnetic tunnel junction, and then adjust the current temperature of the corresponding storage partition.
  • the spin random access memory provided by this application, by providing a second magnetic tunnel junction in each memory partition, the second magnetic tunnel junction is maintained in an anti-parallel state through current control, so that the temperature of each memory partition can be detected, and then transmitted to the control
  • the control circuit outputs a write control signal based on the received temperature to control the frequency of the write, so that when the temperature is too low, the write frequency can be controlled to reduce, and vice versa, thereby solving the problem of spin random access memory in the low temperature area.
  • the problem of write operation failures increase the reliability working range of the spin random access memory, and increase the service life of the spin random access memory.
  • each memory partition in the spin random access memory is independent, and the control circuit independently controls the writing of each memory partition. Therefore, the temperature of each memory partition can be kept within a better temperature range. Separate control of each storage partition.
  • the spin random access memory in the embodiment of this aspect may be STT-MRAM, SOT-MRAM, STT+SOT-MRAM, VCMA-MRAM, etc., which is not limited in this application.
  • the storage partition in the spin random access memory includes at least one magnetic tunnel junction. And the storage partition in this application is defined as the smallest block on the memory.
  • FIG. 4 shows a schematic structural diagram of an STT-MRAM spin random access memory in the prior art.
  • STT-MRAM storage array, address encoder and input and output control circuit, etc. data read operation includes input address data and read instructions, row address and column address decoder selects the designated MTJ device in the array, the read control circuit is in MTJ The reading voltage is applied to both ends of the device, and the detection current is converted into read data through the detection circuit; the data writing operation includes input address data, data to be written and write operation instructions.
  • the row address and column address decoder selects the designated MTJ in the array
  • the write control circuit applies a write voltage at both ends of the MTJ device according to the data to be written, and writes the data to be written into the designated MTJ device.
  • the current temperature value can be compared with the set temperature value, and the temperature can be controlled according to the comparison result. For example, when the temperature is too high, the frequency is controlled to increase, and when the temperature is too low, the frequency is controlled to decrease.
  • the circuit outputs a write frequency control signal according to the current temperature value, including:
  • the control circuit compares the current temperature value with a set temperature value, and if the temperature value is higher than the set temperature value, output a first write frequency control signal to control the write circuit Output a current with a frequency higher than the current frequency. On the contrary, if the temperature value is lower than the set temperature value, output a second writing frequency control signal to control the writing circuit to output a frequency lower than the current frequency Current.
  • the advantage of this embodiment is that real-time adjustment can be made according to the current temperature value, thereby ensuring the correct writing of data and reducing the energy consumption of data writing.
  • control circuit outputting the writing frequency control signal according to the current temperature value includes: the control circuit outputting the writing frequency according to the corresponding relationship between the preset temperature value and the output writing frequency The frequency control signal is used to control the writing circuit to output the frequency corresponding to the current temperature value.
  • the current input frequency can be controlled based on a preset response mode, so that the purpose of adjusting the current temperature value can be achieved through the setting of the corresponding relationship.
  • the corresponding relationship may be, for example, the relationship between the writing frequency and the temperature (absolute temperature):
  • f write f 0 + k 3 T, where k 3 is a positive parameter.
  • the corresponding relationship does not include the corresponding relationship between the reading frequency and the temperature.
  • the write circuit includes a write circuit unit corresponding to each first magnetic tunnel junction one-to-one; each of the write circuit units includes: two P Type transistors (the transistor inputting V P0 and the transistor inputting V P1 in the figure), two N-type transistors (the transistor inputting V n1 and the transistor inputting V n0 in the figure) and the switching element (WL in the figure); one of the P Type transistor and one of the N-type transistors are connected in series at one end of the corresponding first magnetic tunnel junction, the other P-type transistor and the other N-type transistor are connected in series at one end of the switching element, and the other end of the switching element is connected to the corresponding The other end of the first magnetic tunnel junction is electrically connected.
  • Another aspect of the present application provides a temperature control method using the above-mentioned spin random access memory, which specifically includes:
  • S13 Output a frequency control signal according to the current temperature value to control the frequency of the current input to the first magnetic tunnel junction by the writing circuit, and thereby adjust the current temperature of the corresponding storage partition.
  • the temperature control method for spin random access memory is to provide a second magnetic tunnel junction in each memory partition, and the second magnetic tunnel junction maintains an anti-parallel state through current control, and thus can detect each The temperature of each storage partition is then transmitted to the control circuit, so that the control circuit outputs a writing control signal based on the received temperature to control the writing frequency, so that when the temperature is too low, the writing frequency can be controlled to reduce, and vice versa, and then It solves the problem of the write operation failure of the spin random access memory in the low temperature area, increases the reliability work range of the spin random access memory, and improves the service life of the spin random access memory.
  • step S13 specifically includes:
  • the current temperature value is compared with the set temperature value, and if the temperature value is higher than the set temperature value, a first write frequency control signal is output to control the write circuit to output a high frequency For the current at the current frequency, if the temperature value is lower than the set temperature value, a second write frequency control signal is output to control the write circuit to output a current with a frequency lower than the current frequency.
  • step S13 specifically includes:
  • Another aspect of the present application provides a method for manufacturing a spin random access memory, including:
  • each storage partition includes: a plurality of first magnetic tunnel junctions and at least one second magnetic tunnel junction;
  • S24 Set a control circuit to generate a current temperature value according to the electrical signal output by the second magnetic tunnel junction, and output a write frequency control signal according to the current temperature value to control the write circuit to input to the first magnetic
  • the frequency of the current of the tunnel junction adjusts the current temperature of the corresponding storage partition.
  • the writing circuit includes a writing circuit unit corresponding to each first magnetic tunnel junction one-to-one; step S22 includes: setting each writing circuit unit; wherein, one writing circuit unit is provided, include:
  • the spin random access memory manufacturing method provided by the present application can be formed by arranging a second magnetic tunnel junction in each storage partition, and the second magnetic tunnel junction is controlled by the current to maintain the reverse In parallel state, the temperature of each storage area can be detected, and then transmitted to the control circuit, so that the control circuit outputs a write control signal based on the received temperature to control the frequency of the write, so that when the temperature is too low, the write can be controlled to reduce Frequency, and vice versa, thus solves the problem of the write operation failure of the spin random access memory in the low temperature region, increases the reliability work range of the spin random access memory, and improves the service life of the spin random access memory.
  • the displayed or discussed mutual coupling or direct coupling or communication connection may be indirect coupling or communication connection through some interfaces, devices or units, and may be in electrical, mechanical or other forms.
  • the various embodiments in this specification are described in a progressive manner, and the same or similar parts between the various embodiments can be referred to each other, and each embodiment focuses on the differences from other embodiments.
  • the description is relatively simple, and for related parts, please refer to the part of the description of the method embodiment.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Hardware Design (AREA)
  • Mram Or Spin Memory Techniques (AREA)
  • Hall/Mr Elements (AREA)

Abstract

本申请提供的自旋随机存储器及方法,通过在每个存储分区中设置第二磁性隧道结,第二磁性隧道结通过电流控制保持反平行态,进而可以检测每个存储分区的温度,然后传输给控制电路,从而控制电路基于接收的温度输出写入控制信号,控制写入的频率,从而当温度过低时,可以控制降低写入频率,反之亦然,进而解决了自旋随机存储器的在低温区的写操作失败问题,加大自旋随机存储器的可靠性工作范围,提高自旋随机存储器的使用寿命。

Description

自旋随机存储器及方法 技术领域
本申请涉及存储器技术领域,更具体的,涉及一种自旋随机存储器及方法。
背景技术
目前的自旋随机存储器存在使用寿命短、写入操作错误率较高以及易受工作温度影响等问题,具有诸多不足。
发明内容
为了解决上述诸多不足中的至少一个,本申请提供一种自旋随机存储器,包括:
多个存储分区;其中,每个存储分区包括:多个第一磁性隧道结和至少一个第二磁性隧道结;
写入电路,与所述第一磁性隧道结电连接;
温度控制电路,向所述第二磁性隧道结导入一设定电流,进而使所述第二磁性隧道结保持反平行态;
控制电路,所述控制电路根据第二磁性隧道结输出的电信号生成当前温度值,并根据所述当前温度值输出写入频率控制信号,以控制所述写入电路输入至所述第一磁性隧道结的电流的频率,进而调节对应存储分区的当前温度。
在某些实施例中,所述第二磁性隧道结的数量为多个,多个所述第二磁性隧道结串联设置。
在某些实施例中,所述控制电路根据所述当前温度值输出写入频率控制信号,包括:
所述控制电路将所述当前温度值与设定温度值进行比对,若所述温度值高于所述设定温度值,则输出第一写入频率控制信号,以控制所述写入电路输出一频率高于当前频率的电流,反之若所述温度值低于所述设定温度值,则输出第二写入频率控制信号,以控制所述写入电路输出一频率低于当前频率的电流。
在某些实施例中,所述控制电路根据所述当前温度值输出写入频率控制信号,包括:
所述控制电路根据预设的温度值与输出写入频率的对应关系,输出所述写入频率控制信号,以控制所述写入电路输出对应所述当前温度值的频率。
在某些实施例中,所述写入电路包括与每个第一磁性隧道结一一对应的写入电路单元;每个所述写入电路单元包括:
两个P型晶体管、两个N型晶体管以及开关元件;
其中一个P型晶体管与其中一个N型晶体管串联连接在对应的第一磁性隧道结的一端,另外一个P型晶体管与另一个N型晶体管串联连接在开关元件的一端,所述开关元件的另一端与对应的第一磁性隧道结的另一端电连接。
本申请还提供一种利用上述自旋随机存储器进行温度控制方法,包括:
向所述第二磁性隧道结导入一设定电流,进而使所述第二磁性隧道结保持反平行态;
根据第二磁性隧道结输出的电信号生成当前温度值;
根据所述当前温度值输出频率控制信号,以控制所述写入电路输入至所述第一磁性隧道结的电流的频率,进而调节对应存储分区的当前温度。
在某些实施例中,所述根据所述当前温度值输出写入频率控制信号,包括:
将所述当前温度值与设定温度值进行比对,若所述温度值高于所述设定温度值,则输出第一写入频率控制信号,以控制所述写入电路输出一频率高于当前频率的电流,反之若所述温度值低于所述设定温度值,则输出第二写入频率控制信号,以控制所述写入电路输出一频率低于当前频率的电流。
在某些实施例中,所述根据所述当前温度值输出写入频率控制信号,包括:
根据预设的温度值与输出写入频率的对应关系,输出所述写入频率控制信号,以控制所述写入电路输出对应所述当前温度值的频率。
本申请进一步提供一种自旋随机存储器的制作方法,包括:
形成多个存储分区;其中,每个存储分区包括:多个第一磁性隧道结和至少一个第二磁性隧道结;
设置写入电路,与所述第一磁性隧道结电连接;
设置温度控制电路,向所述第二磁性隧道结导入一设定电流,进而使所述第二磁性隧道结保持反平行态;
设置控制电路,以根据第二磁性隧道结输出的电信号生成当前温度值,并根据所述当前温度值输出写入频率控制信号,以控制所述写入电路输入至所述第一磁性隧道结的电流的频率,进而调节对应存储分区的当前温度。
在某些实施例中,所述写入电路包括与每个第一磁性隧道结一一对应的写入电路单元;所述设置写入电路,包括:设置每个写入电路单元;其中,设置一个所述写入电路单元,包括:
设置一个P型晶体管与一个N型晶体管串联连接在对应的第一磁性隧道结的一端;
设置另一个P型晶体管与另一个N型晶体管并联,并在串联处耦接一开关元件;
连接所述开关元件和所述第一磁性隧道结的另一端。
本申请的有益效果如下:
本申请提供的自旋随机存储器及方法,通过在每个存储分区中设置第二磁性隧道结,第二磁性隧道结通过电流控制保持反平行态,进而可以检测每个存储分区的温度,然后传输给控制电路,从而控制电路基于接收的温度输出写入控制信号,控制写入的频率,从而当温度过低时,可以控制降低写入频率,反之亦然,进而解决了自旋随机存储器的在低温区的写操作失败,加大自旋随机存储器的可靠性工作范围,提高自旋随机存储器的使用寿命。
附图说明
为了更清楚地说明本发明实施例或现有技术中的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本发明的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1示出了现有技术STT-MRAM的写入和读取的原理示意图。
图2示出了STT-MRAM写入特性受温度影响的示意图。
图3示出了STT-MRAM核心器件电阻状态随绝对温度变化。
图4示出了现有技术中的一种STT-MRAM结构示意图。
图5示出了基于本申请发明构思的STT-MRAM的结构示意图。
图6示出了本申请写入电路的电路结构示意图。
具体实施方式
下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。
MTJ(Magnetic tunnel junction,磁隧道结)是STT-MRAM(Spin transfer torque-magnetic random access memory,自旋转移矩-磁随机存储器)的核心存储器件,如图1所示,其写操作为两个相反方向穿过MTJ的电流,读操作一般为一个较小的穿过MTJ的电流。如图2至图3所示,芯片在低温区间,写操作变困难,容易出现擦写失败的问题;而在高温区间,写操作变得简单很多,但是由于读容差变小,读错误加剧。因此,目前的自旋随机存储器存在使用寿命短、写入操作错误率较高以及易受工作温度影响等问题。
有鉴于此,如图5所示的一个STT-MRAM结构示意图,本申请一个方面提供一种自旋随机存储器,包括:多个存储分区;其中,每个存储分区包括:多个第一磁性隧道结(图5中未示出)和至少一个第二磁性隧道结;写入电路,与所述第一磁性隧道结电连接;温度控制电路,向所述第二磁性隧道结导入一设定电流,进而使所述第二磁性隧道结保持反平行态;控制电路,所述控制电路根据第二磁性隧道结输出的电信号生成当前温度值,并根据所述当前温度值输出写入频率控制信号,以控制所述写入电路输入至所述第一磁性隧道结的电流的频率,进而调节对应存储分区的当前温度。
本申请提供的自旋随机存储器,通过在每个存储分区中设置第二磁性隧道结,第二磁性隧道结通过电流控制保持反平行态,进而可以检测每个存储分区的温度,然后传输给控制电路,从而控制电路基于接收的温度输出写入控制信号,控制写入的频率,从而当温度过低时,可以控制降低写入频率,反之亦然,进而解决了自旋随机存储器的在低温区的写操作失败问题,加大自旋随机存储器的可靠性工作范围,提高自旋随机存储器的使用寿命。
本方面实施例中的自旋随机存储器中每个存储分区各自独立,控制电路分别独立地控制每一个存储分区的写入,因此可以使得每个存储分区的温度均处于较佳温度区间内,实现了对每个存储分区的分别控制。
可以理解,本方面实施例中的自旋随机存储器可以是STT-MRAM、SOT-MRAM、STT+SOT-MRAM、VCMA-MRAM等,本申请对此不做限制。显然,自旋随机存储器中的存储分区包括至少一个磁性隧道结。并且本申请中的存储分区定义为存储器上最小区块。
如图4示出了现有技术中的一种STT-MRAM自旋随机存储器的结构示意图。包括STT-MRAM存储阵列,地址加码器以及输入输出控制电路等;数据的读操作包括输入地址数据及读取指令,行地址及列地址解码器选中阵列中的指定MTJ器件,读控制电路在MTJ器件两端加读取电压,通过检测电路将检测电流转化成读取数据;数据的写操作包括输入地址数据、待写数据及写操作指令,行地址及列地址解码器选中阵列中的指定MTJ器件,写控制电路根据待写数据在MTJ器件两端施加写入电压,将待写数据写入到制定MTJ器件中。
下面以STT-MRAM为示例,对本申请的发明构思进行说明。
所述第二磁性隧道结的数量为多个,多个所述第二磁性隧道结串联设置。这样可以提高温度检测的分辨率。
一实施例中,可以将当前温度值与设定温度值进行比对,根据比对结果进行温度控制,例如温度过高时,控制升高频率,温度过低时控制降低频率,即所述控制电路根据所述当前温度值输出写入频率控制信号,包括:
所述控制电路将所述当前温度值与设定温度值进行比对,若所述温度值高于所述设定温度值,则输出第一写入频率控制信号,以控制所述写入电路输出一频率高于当前频率的电流,反之若所述温度值低于所述设定温度值,则输出第二写入频率控制信号,以控制所述写入电路输出一频率低于当前频率的电流。
该实施例的优点在于,可以根据当前温度值进行实时调整,进而保证数据的正确写入,同时减小数据写入能耗。
在另一个实施例中,所述控制电路根据所述当前温度值输出写入频率控制信号,包括:所述控制电路根据预设的温度值与输出写入频率的对应关系,输出所述写入频率控制信号,以控制所述写入电路输出对应所述当前温度值的频率。
该实施例中,可以基于预设的应对方式控制当前的输入频率,这样可以通过对应关系的设置,达到对当前温度值进行调整的目的。
在具体实施时,对应关系可以是例如写入频率与温度(绝对温度)的关系:
f write=f 0+k 3T,其中k 3为正参数。
可以看出,由于STT-MRAM的写电流特性,在存储分区温度较低时,提供低频的写电流可以避免擦写失败的问题,在存储分区温度较高时,由于其本身不需要更快的写电流,因此升高写入频率可以减小写入能耗。
在具体实施时,由于读取频率与温度没有太大关系,因此对应关系不包含读取频率与温度的对应关系。
此外,在一些实施例中,如图6所示,所述写入电路包括与每个第一磁性隧道结一一对应的写入电路单元;每个所述写入电路单元包括:两个P型晶体管(图中输入V P0的晶体管和输入V P1的晶体管)、两个N型晶体管(图中输入V n1的晶体管和输入V n0的晶体管)以及开关元件(图中WL);其中一个P型晶体管与其中一个N型晶体管串联连接在对应的第一磁性隧道结的一端,另外一个P型晶体管与另一个N型晶体管串联连接在开关元件的一端,所述开关元件的另一端与对应的第一磁性隧道结的另一端电连接。
可以知晓,本方面实施例中的自旋随机存储器具有如下优点:
(1)片上集成、对不同存储区块独立监控;
(2)通过对写入电路电源/频率的控制,自适应调节存储器芯片不同存储区块的温度;
(3)提高存储器可靠性;
(4)获得更宽的工作温度区间;
(5)提升存储器芯片使用寿命。
进一步的,本申请另一方面提供一种利用上述自旋随机存储器的温度控制方法,具体包括:
S11:向所述第二磁性隧道结导入一设定电流,进而使所述第二磁性隧道结保持反平行态;
S12:根据第二磁性隧道结输出的电信号生成当前温度值;
S13:根据所述当前温度值输出频率控制信号,以控制所述写入电路输入至所述第一磁性隧道结的电流的频率,进而调节对应存储分区的当前温度。
基于相同的发明构思,本申请提供的自旋随机存储器的温度控制方法,通过在每个存储分区中设置第二磁性隧道结,第二磁性隧道结通过电流控制保持反平行态,进而可以检测每个存储分区的温度,然后传输给控制电路,从而控制电路基于接收的温度输出写入控制信号,控制写入的频率,从而当温度过低时,可以控制降低写入频率,反之亦 然,进而解决了自旋随机存储器的在低温区的写操作失败问题,加大自旋随机存储器的可靠性工作范围,提高自旋随机存储器的使用寿命。
基于相同的发明构思,一实施例中,步骤S13具体包括:
将所述当前温度值与设定温度值进行比对,若所述温度值高于所述设定温度值,则输出第一写入频率控制信号,以控制所述写入电路输出一频率高于当前频率的电流,反之若所述温度值低于所述设定温度值,则输出第二写入频率控制信号,以控制所述写入电路输出一频率低于当前频率的电流。
基于相同的发明构思,步骤S13具体包括:
根据预设的温度值与输出写入频率的对应关系,输出所述写入频率控制信号,以控制所述写入电路输出对应所述当前温度值的频率。
本申请又一方面提供自旋随机存储器的制作方法,包括:
S21:形成多个存储分区;其中,每个存储分区包括:多个第一磁性隧道结和至少一个第二磁性隧道结;
S22:设置写入电路,与所述第一磁性隧道结电连接;
S23:设置温度控制电路,向所述第二磁性隧道结导入一设定电流,进而使所述第二磁性隧道结保持反平行态;
S24:设置控制电路,以根据第二磁性隧道结输出的电信号生成当前温度值,并根据所述当前温度值输出写入频率控制信号,以控制所述写入电路输入至所述第一磁性隧道结的电流的频率,进而调节对应存储分区的当前温度。
更具体的,所述写入电路包括与每个第一磁性隧道结一一对应的写入电路单元;步骤S22包括:设置每个写入电路单元;其中,设置一个所述写入电路单元,包括:
设置一个P型晶体管与一个N型晶体管串联连接在对应的第一磁性隧道结的一端;
设置另一个P型晶体管与另一个N型晶体管串联,并在串联处耦接一开关元件;
连接所述开关元件和所述第一磁性隧道结的另一端。
基于相同的发明构思,本申请提供的自旋随机存储器的制作方法,制作形成的自旋随机存储器可以通过在每个存储分区中设置第二磁性隧道结,第二磁性隧道结通过电流控制保持反平行态,进而可以检测每个存储分区的温度,然后传输给控制电路,从而控制电路基于接收的温度输出写入控制信号,控制写入的频率,从而当温度过低时,可以控制降低写入频率,反之亦然,进而解决了自旋随机存储器的在低温区的写操作失败问题,加大自旋随机存储器的可靠性工作范围,提高自旋随机存储器的使用寿命。
本说明书中的各个实施例均采用递进的方式描述,各个实施例之间相同相似的部分互相参见即可,每个实施例重点说明的都是与其他实施例的不同之处。术语“包括”、“包含”或者其任何其他变体意在涵盖非排他性的包含,从而使得包括一系列要素的过程、方法、产品或者设备不仅包括那些要素,而且还包括没有明确列出的其他要素,或者是还包括为这种过程、方法、产品或者设备所固有的要素。在没有更多限制的情况下,并不排除在包括所述要素的过程、方法、产品或者设备中还存在另外的相同或等同要素。另一点,所显示或讨论的相互之间的耦合或直接耦合或通信连接可以是通过一些接口,装置或单元的间接耦合或通信连接,可以是电性,机械或其它的形式。本说明书中的各个实施例均采用递进的方式描述,各个实施例之间相同相似的部分互相参见即可,每个实施例重点说明的都是与其他实施例的不同之处。尤其,对于系统实施例而言,由于其基本相似于方法实施例,所以描述的比较简单,相关之处参见方法实施例的部分说明即可。在本说明书的描述中,参考术语“一个实施例”、“一些实施例”、“示例”、“具体示例”、或“一些示例”等的描述意指结合该实施例或示例描述的具体特征、结构、材料或者特点包含于本说明书实施例的至少一个实施例或示例中。在本说明书中,对上述术语的示意性表述不必须针对的是相同的实施例或示例。此外,在不相互矛盾的情况下,本领域的技术人员可以将本说明书中描述的不同实施例或示例以及不同实施例或示例的特征进行结合和组合。以上所述仅为本说明书实施例的实施例而已,并不用于限制本说明书实施例。对于本领域技术人员来说,本说明书实施例可以有各种更改和变化。凡在本说明书实施例的精神和原理之内所作的任何修改、等同替换、改进等,均应包含在本说明书实施例的权利要求范围之内。

Claims (10)

  1. 一种自旋随机存储器,其特征在于,包括:
    多个存储分区;其中,每个存储分区包括:多个第一磁性隧道结和至少一个第二磁性隧道结;
    写入电路,与所述第一磁性隧道结电连接;
    温度控制电路,向所述第二磁性隧道结导入一设定电流,进而使所述第二磁性隧道结保持反平行态;
    控制电路,所述控制电路根据第二磁性隧道结输出的电信号生成当前温度值,并根据所述当前温度值输出写入频率控制信号,以控制所述写入电路输入至所述第一磁性隧道结的电流的频率。
  2. 根据权利要求1所述的自旋随机存储器,其特征在于,所述第二磁性隧道结的数量为多个,多个所述第二磁性隧道结串联设置。
  3. 根据权利要求1所述的自旋随机存储器,其特征在于,所述控制电路具体用于将所述当前温度值与设定温度值进行比对,若所述温度值高于所述设定温度值,则输出所述写入频率控制信号,以控制所述写入电路输出一频率高于当前频率的电流,反之若所述温度值低于所述设定温度值,则输出所述写入频率控制信号,以控制所述写入电路输出一频率低于当前频率的电流。
  4. 根据权利要求1所述的自旋随机存储器,其特征在于,所述控制电路具体用于根据输出写入频率与预设的温度值的对应关系,输出所述写入频率控制信号,以控制所述写入电路输出对应所述当前温度值的频率。
  5. 根据权利要求1所述的自旋随机存储器,其特征在于,所述写入电路包括与每个第一磁性隧道结一一对应的写入电路单元;每个所述写入电路单元包括:
    两个P型晶体管、两个N型晶体管以及开关元件;
    其中一个P型晶体管与其中一个N型晶体管串联连接在对应的第一磁性隧道结的一端,另外一个P型晶体管与另一个N型晶体管串联连接在开关元件的一端,所述开关元件的另一端与对应的第一磁性隧道结的另一端电连接。
  6. 一种利用如权利要求1所述的自旋随机存储器进行温度控制方法,其特征在于,包括:
    向所述第二磁性隧道结导入一设定电流,使所述第二磁性隧道结保持反平行态;
    根据第二磁性隧道结输出的电信号生成当前温度值;
    根据所述当前温度值输出频率控制信号,以控制所述写入电路输入至所述第一磁性隧道结的电流的频率,进而调节对应存储分区的当前温度。
  7. 根据权利要求6所述的温度控制方法,其特征在于,所述根据所述当前温度值输出写入频率控制信号,包括:
    将所述当前温度值与设定温度值进行比对,若所述温度值高于所述设定温度值,则输出第一写入频率控制信号,以控制所述写入电路输出一频率高于当前频率的电流,反之若所述温度值低于所述设定温度值,则输出第二写入频率控制信号,以控制所述写入电路输出一频率低于当前频率的电流。
  8. 根据权利要求6所述的温度控制方法,其特征在于,所述根据所述当前温度值输出写入频率控制信号,包括:
    根据预设的温度值与输出写入频率的对应关系,输出所述写入频率控制信号,以控制所述写入电路输出对应所述当前温度值的频率。
  9. 一种自旋随机存储器的制作方法,其特征在于,包括:
    形成多个存储分区;其中,每个存储分区包括:多个第一磁性隧道结和至少一个第二磁性隧道结;
    设置写入电路,与所述第一磁性隧道结电连接;
    设置温度控制电路,向所述第二磁性隧道结导入一设定电流,进而使所述第二磁性隧道结保持反平行态;
    设置控制电路,以根据第二磁性隧道结输出的电信号生成当前温度值,并根据所述当前温度值输出写入频率控制信号,以控制所述写入电路输入至所述第一磁性隧道结的电流的频率,进而调节对应存储分区的当前温度。
  10. 根据权利要求9所述的制作方法,其特征在于,所述写入电路包括与每个第一磁性隧道结一一对应的写入电路单元;所述设置写入电路,包括:设置每个写入电路单元;其中,设置一个所述写入电路单元,包括:
    设置一个P型晶体管与一个N型晶体管串联连接在对应的第一磁性隧道结的一端;
    设置另一个P型晶体管与另一个N型晶体管串联,并在并联处耦接一开关元件;
    连接所述开关元件和所述第一磁性隧道结的另一端。
PCT/CN2020/114414 2019-09-10 2020-09-10 自旋随机存储器及方法 WO2021047577A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201910850870.0 2019-09-10
CN201910850870.0A CN110660424B (zh) 2019-09-10 2019-09-10 自旋随机存储器及方法

Publications (1)

Publication Number Publication Date
WO2021047577A1 true WO2021047577A1 (zh) 2021-03-18

Family

ID=69037953

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/114414 WO2021047577A1 (zh) 2019-09-10 2020-09-10 自旋随机存储器及方法

Country Status (2)

Country Link
CN (1) CN110660424B (zh)
WO (1) WO2021047577A1 (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110660424B (zh) * 2019-09-10 2021-05-28 北京航空航天大学 自旋随机存储器及方法
CN110675901B (zh) * 2019-09-10 2021-10-01 北京航空航天大学 自旋随机存储器及方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1793434A1 (en) * 2004-08-27 2007-06-06 Japan Science and Technology Agency Magnetoresistacne element and production method therefor
CN103065647A (zh) * 2011-10-19 2013-04-24 中芯国际集成电路制造(上海)有限公司 立体结构的磁隧道结的形成方法及形成设备
CN107134292A (zh) * 2017-04-01 2017-09-05 中国科学院物理研究所 可编程多功能自旋逻辑电路
CN110660424A (zh) * 2019-09-10 2020-01-07 北京航空航天大学 自旋随机存储器及方法
CN110660425A (zh) * 2019-09-10 2020-01-07 北京航空航天大学 自旋随机存储器及使用方法
CN110675901A (zh) * 2019-09-10 2020-01-10 北京航空航天大学 自旋随机存储器及方法

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7286421B2 (en) * 2003-10-28 2007-10-23 International Business Machines Corporation Active compensation for operating point drift in MRAM write operation
US6958929B2 (en) * 2003-10-28 2005-10-25 International Business Machines Corporation Sensor compensation for environmental variations for magnetic random access memory
US7511990B2 (en) * 2005-09-30 2009-03-31 Everspin Technologies, Inc. Magnetic tunnel junction temperature sensors
CN101578614A (zh) * 2007-01-30 2009-11-11 松下电器产业株式会社 非易失性存储装置、非易失性存储系统及存取装置
KR101367659B1 (ko) * 2007-07-12 2014-02-25 삼성전자주식회사 읽기 에러를 줄일 수 있는 멀티 레벨 상 변화 메모리 장치및 그것의 읽기 방법
CN101587745B (zh) * 2009-06-23 2012-11-07 成都市华为赛门铁克科技有限公司 数据读写方法和非易失性存储介质
EP3045928B1 (en) * 2015-01-16 2017-07-12 Crocus Technology Magnetic logic unit (MLU) cell for sensing magnetic fields with improved programmability and low reading consumption
US10431278B2 (en) * 2017-08-14 2019-10-01 Qualcomm Incorporated Dynamically controlling voltage for access operations to magneto-resistive random access memory (MRAM) bit cells to account for ambient temperature
CN109873076A (zh) * 2019-01-28 2019-06-11 北京航空航天大学 一种提高sot-mram集成度的方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1793434A1 (en) * 2004-08-27 2007-06-06 Japan Science and Technology Agency Magnetoresistacne element and production method therefor
CN103065647A (zh) * 2011-10-19 2013-04-24 中芯国际集成电路制造(上海)有限公司 立体结构的磁隧道结的形成方法及形成设备
CN107134292A (zh) * 2017-04-01 2017-09-05 中国科学院物理研究所 可编程多功能自旋逻辑电路
CN110660424A (zh) * 2019-09-10 2020-01-07 北京航空航天大学 自旋随机存储器及方法
CN110660425A (zh) * 2019-09-10 2020-01-07 北京航空航天大学 自旋随机存储器及使用方法
CN110675901A (zh) * 2019-09-10 2020-01-10 北京航空航天大学 自旋随机存储器及方法

Also Published As

Publication number Publication date
CN110660424A (zh) 2020-01-07
CN110660424B (zh) 2021-05-28

Similar Documents

Publication Publication Date Title
WO2021047591A1 (zh) 自旋随机存储器及方法
JP5317524B2 (ja) スピントルクmramセルアレイ、スピントルクmram装置およびスピントルクmramセルアレイのプログラミング方法
WO2021047577A1 (zh) 自旋随机存储器及方法
KR101865260B1 (ko) 하이브리드 메모리 모듈들을 위한 메모리의 i/o들을 구성하기 위한 장치들 및 방법들
US8274819B2 (en) Read disturb free SMT MRAM reference cell circuit
US9378815B2 (en) Resistive memory device capable of increasing sensing margin by controlling interface states of cell transistors
KR101986335B1 (ko) 보상 저항성 소자를 포함하는 저항성 메모리 장치
WO2019036257A1 (en) ELECTRIC POWER WIRING IN A SEMICONDUCTOR MEMORY DEVICE
US10020040B2 (en) Semiconductor memory device
US9754666B2 (en) Resistive ratio-based memory cell
US20190348088A1 (en) Memory device with an input signal management mechanism
US9934834B2 (en) Magnetoresistive memory device
US10748595B2 (en) Magnetic memory including meomory units and circuits for reading and writing data and memory system
CN102982845B (zh) 一种电子可编程熔丝电路
US9761293B2 (en) Semiconductor storage device
US11475938B2 (en) Column select swizzle
KR20180065228A (ko) 적층형 메모리 장치
US8942021B2 (en) Semiconductor device
WO2023089959A1 (ja) 半導体回路
CN202976857U (zh) 一种电子可编程熔丝电路
US11417391B2 (en) Systems and methods for level down shifting drivers
CN110890116B (zh) 一种磁存储器及其写状态检测方法
KR20230027476A (ko) 반도체 장치 및 이를 포함하는 메모리 장치
CN105609133A (zh) 存储器及其编程控制方法和编程上拉电路
US9230653B2 (en) Semiconductor memory device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20863969

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20863969

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 20863969

Country of ref document: EP

Kind code of ref document: A1

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 21.11.2022)

122 Ep: pct application non-entry in european phase

Ref document number: 20863969

Country of ref document: EP

Kind code of ref document: A1