WO2021047289A1 - 自动搬运系统 - Google Patents

自动搬运系统 Download PDF

Info

Publication number
WO2021047289A1
WO2021047289A1 PCT/CN2020/102781 CN2020102781W WO2021047289A1 WO 2021047289 A1 WO2021047289 A1 WO 2021047289A1 CN 2020102781 W CN2020102781 W CN 2020102781W WO 2021047289 A1 WO2021047289 A1 WO 2021047289A1
Authority
WO
WIPO (PCT)
Prior art keywords
goods
cargo
self
guided
equipment
Prior art date
Application number
PCT/CN2020/102781
Other languages
English (en)
French (fr)
Inventor
韩亮
徐国栋
Original Assignee
灵动科技(北京)有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 灵动科技(北京)有限公司 filed Critical 灵动科技(北京)有限公司
Priority to JP2022500637A priority Critical patent/JP7471615B2/ja
Priority to US17/629,907 priority patent/US20220250842A1/en
Priority to EP20864064.9A priority patent/EP3984920A4/en
Publication of WO2021047289A1 publication Critical patent/WO2021047289A1/zh

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65GTRANSPORT OR STORAGE DEVICES, e.g. CONVEYORS FOR LOADING OR TIPPING, SHOP CONVEYOR SYSTEMS OR PNEUMATIC TUBE CONVEYORS
    • B65G1/00Storing articles, individually or in orderly arrangement, in warehouses or magazines
    • B65G1/02Storage devices
    • B65G1/04Storage devices mechanical
    • B65G1/137Storage devices mechanical with arrangements or automatic control means for selecting which articles are to be removed
    • B65G1/1373Storage devices mechanical with arrangements or automatic control means for selecting which articles are to be removed for fulfilling orders in warehouses
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B25HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
    • B25JMANIPULATORS; CHAMBERS PROVIDED WITH MANIPULATION DEVICES
    • B25J15/00Gripping heads and other end effectors
    • B25J15/06Gripping heads and other end effectors with vacuum or magnetic holding means
    • B25J15/0616Gripping heads and other end effectors with vacuum or magnetic holding means with vacuum
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B25HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
    • B25JMANIPULATORS; CHAMBERS PROVIDED WITH MANIPULATION DEVICES
    • B25J19/00Accessories fitted to manipulators, e.g. for monitoring, for viewing; Safety devices combined with or specially adapted for use in connection with manipulators
    • B25J19/02Sensing devices
    • B25J19/021Optical sensing devices
    • B25J19/023Optical sensing devices including video camera means
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B25HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
    • B25JMANIPULATORS; CHAMBERS PROVIDED WITH MANIPULATION DEVICES
    • B25J5/00Manipulators mounted on wheels or on carriages
    • B25J5/007Manipulators mounted on wheels or on carriages mounted on wheels
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B66HOISTING; LIFTING; HAULING
    • B66FHOISTING, LIFTING, HAULING OR PUSHING, NOT OTHERWISE PROVIDED FOR, e.g. DEVICES WHICH APPLY A LIFTING OR PUSHING FORCE DIRECTLY TO THE SURFACE OF A LOAD
    • B66F9/00Devices for lifting or lowering bulky or heavy goods for loading or unloading purposes
    • B66F9/06Devices for lifting or lowering bulky or heavy goods for loading or unloading purposes movable, with their loads, on wheels or the like, e.g. fork-lift trucks
    • B66F9/063Automatically guided
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B66HOISTING; LIFTING; HAULING
    • B66FHOISTING, LIFTING, HAULING OR PUSHING, NOT OTHERWISE PROVIDED FOR, e.g. DEVICES WHICH APPLY A LIFTING OR PUSHING FORCE DIRECTLY TO THE SURFACE OF A LOAD
    • B66F9/00Devices for lifting or lowering bulky or heavy goods for loading or unloading purposes
    • B66F9/06Devices for lifting or lowering bulky or heavy goods for loading or unloading purposes movable, with their loads, on wheels or the like, e.g. fork-lift trucks
    • B66F9/075Constructional features or details
    • B66F9/0755Position control; Position detectors
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B66HOISTING; LIFTING; HAULING
    • B66FHOISTING, LIFTING, HAULING OR PUSHING, NOT OTHERWISE PROVIDED FOR, e.g. DEVICES WHICH APPLY A LIFTING OR PUSHING FORCE DIRECTLY TO THE SURFACE OF A LOAD
    • B66F9/00Devices for lifting or lowering bulky or heavy goods for loading or unloading purposes
    • B66F9/06Devices for lifting or lowering bulky or heavy goods for loading or unloading purposes movable, with their loads, on wheels or the like, e.g. fork-lift trucks
    • B66F9/075Constructional features or details
    • B66F9/12Platforms; Forks; Other load supporting or gripping members
    • B66F9/18Load gripping or retaining means
    • B66F9/181Load gripping or retaining means by suction means
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05DSYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
    • G05D1/00Control of position, course or altitude of land, water, air, or space vehicles, e.g. automatic pilot
    • G05D1/02Control of position or course in two dimensions
    • G05D1/021Control of position or course in two dimensions specially adapted to land vehicles
    • G05D1/0231Control of position or course in two dimensions specially adapted to land vehicles using optical position detecting means
    • G05D1/0246Control of position or course in two dimensions specially adapted to land vehicles using optical position detecting means using a video camera in combination with image processing means
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05DSYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
    • G05D1/00Control of position, course or altitude of land, water, air, or space vehicles, e.g. automatic pilot
    • G05D1/02Control of position or course in two dimensions
    • G05D1/021Control of position or course in two dimensions specially adapted to land vehicles
    • G05D1/0276Control of position or course in two dimensions specially adapted to land vehicles using signals provided by a source external to the vehicle
    • G05D1/028Control of position or course in two dimensions specially adapted to land vehicles using signals provided by a source external to the vehicle using a RF signal
    • G05D1/0282Control of position or course in two dimensions specially adapted to land vehicles using signals provided by a source external to the vehicle using a RF signal generated in a local control room
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65GTRANSPORT OR STORAGE DEVICES, e.g. CONVEYORS FOR LOADING OR TIPPING, SHOP CONVEYOR SYSTEMS OR PNEUMATIC TUBE CONVEYORS
    • B65G2203/00Indexing code relating to control or detection of the articles or the load carriers during conveying
    • B65G2203/02Control or detection
    • B65G2203/0208Control or detection relating to the transported articles
    • B65G2203/0216Codes or marks on the article
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65GTRANSPORT OR STORAGE DEVICES, e.g. CONVEYORS FOR LOADING OR TIPPING, SHOP CONVEYOR SYSTEMS OR PNEUMATIC TUBE CONVEYORS
    • B65G2203/00Indexing code relating to control or detection of the articles or the load carriers during conveying
    • B65G2203/04Detection means
    • B65G2203/041Camera

Definitions

  • the invention relates to a conveying system, in particular to an automatic conveying system.
  • the control center of the storage system can specify self-guided forklifts and the goods to be moved ( Hereinafter referred to as the initial position and destination position of the target cargo), the designated self-guided forklift will automatically go to the initial position without unmanned operation, and transport the target cargo placed in the initial position to the destination position to complete the transportation. task.
  • the aforementioned initial location and destination location can only be specified with precise locations.
  • the user can specify a fixed point on the warehouse map of the control center through the user interface, or manually enter the coordinates of the fixed point.
  • the self-guided forklift could not find the target goods and could not complete the handling task.
  • the destination location can only be a fixed point, it is easy to happen that other goods are already placed at the destination location and cannot be unloaded, or multiple self-guided forklifts need to queue for unloading.
  • the initial position and the target position can only be fixed points, when the target goods are stored in different positions, the user needs to manually specify the self-guided forklift, the initial position and the target position through the user interface multiple times to complete all the target goods. Transportation is very inconvenient in use.
  • an automatic handling system includes a control center and self-guided cargo handling equipment.
  • the control center is used to provide command information, which includes the target area, target goods, and delivery destination.
  • the self-guided cargo equipment is electrically connected to the control center.
  • the automatic handling system is configured to perform the following steps: control the self-guided cargo equipment to enter the target area according to the command information; control the self-guided cargo equipment to capture images in the target area; determine whether the image includes goods; when the image includes goods, determine the goods Whether it is the target cargo; and when the cargo is the target cargo, control the self-guided cargo equipment to pick up the cargo to the destination.
  • the target area of the present invention is an area instead of a fixed point, which can prevent the target goods from deviating from the correct position and cause the failure of the handling task, and is beneficial for the user to apply a single instruction to all the target goods in the target area.
  • the delivery destination of the present invention can also be an area instead of a fixed point, which can avoid the situation that the fixed point has already placed the goods and cannot be unloaded or the situation that multiple self-guided freight equipment needs to queue for unloading. Therefore, the automatic handling system of the present invention is beneficial to improve the success rate of handling tasks, handling efficiency and user convenience.
  • Fig. 1 is a functional block diagram of an automatic handling system according to an embodiment of the present invention.
  • Fig. 2 is a perspective view of a self-guided cargo transportation device according to an embodiment of the present invention.
  • Fig. 3 is a perspective view of a self-guided cargo transportation device according to another embodiment of the present invention.
  • Fig. 4 is a flowchart of the steps for extracting goods according to the automatic handling system configuration of an embodiment of the present invention.
  • Fig. 5 is a schematic diagram of a user interface according to an embodiment of the present invention.
  • Fig. 6 is a schematic diagram of a barcode of goods according to an embodiment of the present invention.
  • Fig. 7 is a schematic diagram of a label of goods according to an embodiment of the present invention.
  • Fig. 8 is a schematic diagram of a user interface according to another embodiment of the present invention.
  • Fig. 9 is a schematic diagram of a user interface according to another embodiment of the present invention.
  • Fig. 10 is a schematic diagram of a user interface according to another embodiment of the present invention.
  • FIG. 11 is a flowchart of partial steps of picking up goods by an automatic handling system according to another embodiment of the present invention.
  • FIG. 12 is a flowchart of another part of the steps in the embodiment of FIG. 11.
  • Fig. 13 is a schematic diagram of a user interface according to another embodiment of the present invention.
  • Fig. 14 is a schematic diagram of a cargo pile according to an embodiment of the present invention.
  • Fig. 15 is a schematic diagram of an image of the cargo pile in Fig. 14.
  • Fig. 16 is a flow chart of the steps of picking up goods by the automatic handling system according to another embodiment of the present invention.
  • Fig. 17 is a schematic diagram of a user interface according to another embodiment of the present invention.
  • FIG. 18 is a schematic diagram of a user interface according to another embodiment of the present invention.
  • FIG. 19 is a schematic diagram of a user interface according to another embodiment of the present invention.
  • electrical connection means that electrical energy or data such as electrical signals, magnetic signals, and command signals can be directly, indirectly, wired or wirelessly transmitted between components.
  • the automatic handling system includes a control center 40 and a self-guided cargo transportation device 10.
  • the control center 40 is used to provide command information, and the command information includes a target area, a target cargo, and a delivery destination.
  • the control center 40 may be a remote control center.
  • the remote control center means that the control center 40 is not installed on the self-guided cargo equipment 10.
  • the control center 40 can be installed in an office and the self-guided cargo equipment 10 Can be placed in the warehouse, the office and the warehouse are located in different spaces.
  • the control center 40 may include a management unit 41, a user interface 42, and may preferably include a first communication module 43 and a first storage module 44, wherein the management unit 41 and the user interface 42, the first communication module 43 and the first storage module 44 Electrical connection.
  • the control center 40 can be a server (Server) or a computer, the management unit 41 can be a warehouse management system (WMS), and the user interface 42 is used for the user to input information and transmit it to the management unit 41, whereby the user can use
  • the control center 40 controls the self-guided cargo transportation equipment 10.
  • the control center 40 may include a display (not shown) for displaying the user interface 42, the display may include a touch screen, and the control center 40 may further include input devices (not shown) such as a mouse and a keyboard, whereby the user Information can be input directly on the user interface 42 by touching the screen and/or the input device.
  • the first communication module 43 may be, but is not limited to, a Wi-Fi wireless transmission module.
  • the first storage module 44 may be used to store data, such as map information, cargo storage information, cargo information, etc. of the workplace (such as a warehouse) of the self-guided cargo transportation equipment 10.
  • the first storage module 44 may be, but is not limited to, a read-only memory, a random access memory, or a combination thereof.
  • the self-guided cargo equipment 10 is electrically connected to the control center 40 to receive command information provided by the control center 40.
  • the self-guided cargo transportation equipment 10 may include a processing unit 11, a camera module 12, a driving module 14 and a holding module 15, and the processing unit 11 is electrically connected to the camera module 12, the driving module 14 and the holding module 15.
  • the processing unit 11 has computing capabilities, and the processing unit 11 may be, but is not limited to, a central processing unit (CPU) or a graphics processing unit (GPU).
  • the camera module 12 is used to capture images, for example, to capture images from the surrounding environment of the guided cargo equipment 10 to obtain environmental information of the workplace where the self-guided cargo equipment 10 is located.
  • the camera module 12 may be a two-dimensional camera module or a three-dimensional camera module.
  • the two-dimensional camera module may be a camera, and the three-dimensional camera module may be, but not limited to, a combination of two cameras or a combination of one camera and one projector.
  • the self-guided cargo shipping equipment 10 may preferably include a first distance sensor 13, which is electrically connected to the processing unit 11, and the first distance sensor 13 is used to sense the self The distance between the guiding cargo equipment 10 and the surrounding objects.
  • the first distance sensor 13 may be, but is not limited to, LiDAR.
  • the image obtained by the three-dimensional camera module can directly calculate the distance between the self-guided shipping equipment 10 and the surrounding objects.
  • the driving module 14 is used to drive the self-guided cargo transportation equipment 10 to move.
  • the holding module 15 is used to extract the goods, and the holding module 15 suitable for extracting the goods can be selected according to the shape and characteristics of the goods.
  • the self-guided cargo transportation equipment 10 may preferably include a second communication module 18, the processing unit 11 is electrically connected to the control center 40 through the second communication module 18, and the second communication module 18 may be, but not limited to, a Wi-Fi wireless transmission module.
  • the self-guided cargo transportation device 10 may preferably include a second storage module 16, which is electrically connected to the processing unit 11.
  • the second storage module 16 can be used to store data, for example, the workplace of the self-guided cargo transportation device 10 ( For example, map information, cargo storage information, cargo information, positioning information of the self-guided cargo equipment 10, navigation information of the self-guided cargo equipment 10, and so on.
  • the second storage module 16 may be, but is not limited to, a read-only memory, a random access memory, or a combination thereof.
  • the self-guided cargo transportation equipment 10 may include a power supply module 17, and the power supply module 17 is used to provide power required by the self-guided cargo transportation equipment 10.
  • the power supply module 17 may be connected to the processing unit 11, the camera module 12, and the first distance sensor 13,
  • the driving module 14, the holding module 15, the second storage module 16, and the second communication module 18 are electrically connected to provide power required by the aforementioned components.
  • the power supply module 17 may be a plug or a battery.
  • the self-guided cargo transportation device 10 may preferably include a second distance sensor (not shown in the figure), and the second distance sensor can be electrically connected to the processing unit 11, thereby further providing the self-guided cargo transportation device 10 with an obstacle avoidance function.
  • the second distance sensor may be, but is not limited to, a photoelectric sensor (Photoelectric Sensor).
  • control center 40 is used as the remote control center for description.
  • the control center 40 can also be set on the self-guided cargo transportation equipment 10 and electrically connected to the processing unit 11.
  • the first communication module 43 and the second communication module 18 in FIG. 1 can be omitted, and only one of the first storage module 44 and the second storage module 16 can be reserved.
  • the self-guided cargo equipment 20 is a self-guided forklift
  • the self-guided cargo equipment 20 includes a forklift 100, a processing unit (not shown), a camera module 215, a first distance sensor 220, and
  • the carrying structure 280 includes a carrier 281 and a mounting member 282.
  • the mounting member 282 is connected to the carrier 281 and is detachably mounted on the forklift 100.
  • the processing unit is arranged inside the carrier 281, and the camera module 215 is arranged below the carrier 281 ,
  • the first distance sensor 220 is disposed above the carrier 281.
  • the forklift 100 includes a drive module (not shown), a holding module 120, and a power supply module (not shown).
  • the drive module may include a motor (not shown) and a plurality of wheels 131, 132, 133.
  • the motor is set in the forklift 100 and is connected to One or more wheels 131, 132, 133 are electrically connected to drive the wheels, the holding module 120 is two prongs 120 a, and the power supply module is arranged in the forklift 100.
  • the forklift 100 may be a commercially available product, so other details about the forklift 100 will not be repeated here.
  • the self-guided cargo transport equipment 30 is a self-guided manipulator, and the self-guided cargo transport equipment 30 includes a carrier 31, a processing unit (not shown), a camera module 32, a first distance sensor 33,
  • the driving module (not marked), the holding module 34 and the power supply module (not shown), the processing unit is arranged in the carrier 31, the camera module 32 and the first distance sensor 33 are arranged above the carrier 31,
  • the driving module may include a motor ( (Not shown in the figure) and a plurality of wheels 35.
  • the motor is arranged in the carrier 31 and is electrically connected to one or more wheels 35 to drive the wheels 35.
  • the holding module 34 includes a robotic arm 34a and a holding portion 34b.
  • the robotic arm 34a can It is a six-axis robotic arm, and the holding part 34b can be a suction cup, and the goods are extracted by suction.
  • the present invention is not limited to this.
  • the types of the robotic arm 34a and the holding part 34b can be selected according to actual needs, for example, the holding part 34b It can be a gripper, and the goods can be picked up by gripping.
  • the power supply module is arranged in the carrier 31.
  • Step 410 is to control the self-guided cargo equipment 10 to enter the target area according to the command information.
  • Step 420 is to control the self-guided cargo equipment 10 to capture images in the target area.
  • Step 430 is to determine whether the image includes goods. When the image does not include the goods, return to step 420 and continue to search for the target goods in the target area.
  • step 440 is performed. Control the self-guided cargo transportation equipment 10 to pick up the goods to the delivery destination. Steps 410 to 450 will be described in detail below in conjunction with FIG. 5.
  • FIG. 5 is a schematic diagram of a user interface 600 a according to an embodiment of the present invention.
  • the user interface 600 a may be an example of the user interface 42 of the control center 40.
  • the user interface 600a includes a map 610a and an input interface 620a.
  • the map 610a includes a shelf pattern 611a and a cargo pattern 612a.
  • the map 610a can be a map of the workplace of the self-guided cargo equipment 10.
  • the workplace is taken as an example of a warehouse, and the shelf pattern 611a
  • the position on the map 610a corresponds to the position of the shelf in the warehouse, and the position of the goods pattern 612a on the map 610a corresponds in principle to the position of the goods in the warehouse.
  • the goods in the warehouse are preset to be placed on pallets, so the options for the target goods input to the interface 620a include "empty pallets", “loading pallets (unlimited items)", and “loading pallets ( Limited items)", when you select "Cargo Tray (Limited Items)", you can further select the type of goods through the drop-down menu, where the user selects "Cargo Tray (Limited Items)", and select the goods as cargo AAA, where AAA It can be the serial number or product name of the goods.
  • the user selects the target area 630a on the map 610a.
  • the user selects the target area 630a on the map 610a with the mouse.
  • the management unit 41 records the coordinates of the four points of the target area 630a.
  • the formed area the user can further select the delivery destination on the map 610a (not shown).
  • the delivery destination can be an area or a fixed point.
  • the selection method of the delivery destination can be the same as that of the target area 630a.
  • the user can use the mouse to directly click on the desired fixed point on the map 610a as the delivery destination, and the management unit 41 will record the coordinates of the four points of the delivery destination and the area or area formed by it. State the coordinates of the fixed point.
  • the management unit 41 transmits the command information including the target area 630a, the target goods and the relevant information of the delivery destination to the self-guided cargo equipment 10.
  • the processing unit 11 controls the driving module 14 to drive the self-guided shipping device according to the command information.
  • the cargo equipment 10 enters the target area 630a (step 410), and the processing unit 11 controls the movement of the self-guided cargo equipment 10 in the target area 630a while capturing images through the camera module 12 (step 420), and continues to determine whether the images include Goods (step 430), when the image includes goods, the processing unit 11 can calculate the distance between the goods and the self-guided cargo equipment 10 from the image alone or in conjunction with the image and the data collected by the first distance sensor 13, and control the self-guided cargo The device 10 moves to the front of the cargo and determines whether the cargo is the target cargo (step 440).
  • the processing unit 11 controls the holding module 15 of the guided cargo equipment 10 to pick up the cargo, and the processing unit 11 then controls the driving module 14
  • the self-guided cargo transportation equipment 10 is driven to the transportation destination, and the holding module 15 is controlled to place the goods at the transportation destination.
  • the image comparison method can be used to determine whether the image includes goods. Taking this embodiment as an example, since the target goods are "loading pallets (limited items)", the command information may further include pallet image information, or the processing unit 11
  • the tray image information can be retrieved from the first storage module 44 or the second storage module 16 according to the command information, and then the image captured by the camera module 12 can be compared with the tray image information. When there is content in the image that matches the tray image information, that is It is judged that there are goods in the image.
  • the order information may further include goods image information, or the processing unit 11 may read the goods image from the first storage module 44 or the second storage module 16 according to the order information Information, and then compare the image captured by the camera module 12 with the image information of the goods.
  • the image information of the goods can be the image information of the carton, or the image information of the goods can be the image information of all the goods in the warehouse.
  • Image information or feature information of the barcode of the goods With reference to Fig. 6, in this embodiment, the barcode 710 of the goods is a two-dimensional barcode, and the barcode 710 includes feature information 711, 712, 713 arranged in the corners.
  • Image comparison can also be used to determine whether the goods are the target goods.
  • the order information can include the barcode information of the goods AAA, and the goods loaded on the pallets, shelves or cartons of the packaged goods in the warehouse Bar code
  • the processing unit 11 can compare the bar code image captured by the camera module 12 with the bar code information of the goods AAA, or the processing unit 11 can retrieve the relevant information from the first storage module 44 or the second storage module 16 based on the bar code information
  • the characteristic information of the cargo AAA is compared with the image captured by the camera module 12 and the characteristic information of the cargo AAA.
  • FIG. 7 it is a schematic diagram of a label 720 of a cargo AAA according to an embodiment of the present invention.
  • the label 720 is attached to the outside of the carton carrying the cargo AAA, and the characteristic information can be the pattern of the label 720, such as patterns 721, 722, 723, When the image captured by the camera module 12 includes patterns 721, 722, and 723, it can be determined that the goods are goods AAA.
  • step 430 when it is determined that the image includes goods (step 430), it can be further determined whether the goods are in the target area 630a. When the goods are in the target area 630a, step 440 is performed. When the goods are not in the target area 630a, Then go back to step 420. In this way, the accuracy of the automatic handling system for carrying out the handling task can be improved.
  • the processing unit 11 may transmit the processing result information to the control center 40.
  • the processing result information may include the type and quantity of the extracted goods, and the precise location of the goods before and after the extraction. In this way, the data stored in the control center 40 is updated.
  • the user interface 600b includes a map 610b and an input interface 620b.
  • the map 610b includes a shelf pattern 611b and a goods pattern 612b.
  • the user interface 600b is displayed by touching the screen. The user directly selects the target area 630b on the map 610b with the hand 640.
  • the user interface 600c includes a map 610c and an input interface 620c.
  • the map 610c includes a shelf pattern 611c and a goods pattern 612c.
  • the user can directly click on the map 610c by hand (not shown) or a mouse (not shown). , And then pull out the desired radius R, the user can also input the size of the radius R in the field designated by the radius of the input interface 620c.
  • the user interface 600d includes a map 610d and an input interface 620d.
  • the map 610d includes a shelf pattern 611d and a goods pattern 612d.
  • the map 610d is pre-divided into an area 631d, an area 632d, and an area 633d.
  • the user can directly use his hands (not shown) Or click the mouse (not shown) on the map 610d to select one of the areas as the target area, or enter the name of the area in the field specified in the area of the input interface 620d (here, B, area 632d is taken as an example).
  • areas 631d, The size and boundary of the area 632d and the area 633d can be adjusted.
  • FIG. 8 to FIG. 10 may be the same as that of FIG. 5, and will not be repeated here.
  • Fig. 11 is flow chart A
  • Fig. 12 is flow chart B.
  • Figures 11 and 12 are applicable to the order information that also includes the required quantity of target goods, and the image includes a pile of goods formed by stacking multiple goods.
  • step 410 to step 440 please refer to the above.
  • step 441 is performed to calculate the quantity of goods in the pile of goods.
  • step 442 is to determine whether the quantity of goods in the goods pile is greater than or equal to the required quantity of the target goods. When the judgment is yes, proceed to step 450 to control the self-guided cargo equipment 10 to extract the goods from the cargo pile to the delivery destination.
  • the automatic handling system completes the handling task; when the judgment is no, proceed to step 443 to judge the self-guided cargo Whether the equipment 10 has detoured the target area for a full circle, when the judgement is no, control the self-guided cargo transporting equipment 10 not to pick up the goods of the cargo pile, and return to step 420, thereby, preferentially search for the goods pile of another target goods with sufficient quantity ;
  • the judgment is yes it means that the quantity of the cargo piles of all target goods in the target area is less than the required quantity.
  • the required target goods need to be obtained from the goods piles of different target goods.
  • step 444 is performed to control the self-guided
  • the cargo consolidating equipment 10 extracts the goods from the cargo pile to the destination, and then proceeds to step 445 to control the self-guided cargo equipment 10 to move to another cargo pile in the target area, and the other cargo pile is stacked by multiple target goods Form (the way to find another cargo pile can be through steps 420 to 440), go to step 446, control the self-guided cargo equipment 10 to extract the goods of another cargo pile to the destination, go to step 447, count the self-guided cargo equipment
  • the quantity of the extracted goods is obtained to obtain the sum of the extracted quantity, that is, the quantity of goods extracted by the guided cargo equipment 10 after step 444 is added up, and step 448 is performed to determine whether the sum of the extracted quantities is greater than or equal to the required quantity of the target goods When the judgment is no, it means that the required quantity has not been reached, and return to step 445.
  • Step 460 to control the self-guided cargo equipment 10 to execute the end command. Steps 441 to 448 will be described in detail below in conjunction with FIG. 13 and FIG. 15.
  • the user interface 600h includes a map 610h and an input interface 620h.
  • the map 610h includes a shelf pattern 611h and a goods pattern 612h.
  • the user selects a target area 630h on the map 610h.
  • the user can further select or input the quantity (ie, the required quantity) through the pull-down menu.
  • the quantity is equal to 30 as an example.
  • the cargo stack 700 is formed by stacking cargo 730 and placed on a pallet 770.
  • the pallet 770 includes a hole 771.
  • the processing unit 11 calculates the quantity of cargo 730 in the cargo pile 700 (step 441).
  • the quantity of cargo 730 in the cargo pile 700 can be calculated based on the total volume of the cargo pile 700 and the volume of the cargo 730 Obtained, in detail, the order information may include the volume of the goods AAA, or the order information may include the barcode information of the goods AAA, and the processing unit 11 may retrieve the goods from the first storage module 44 or the second storage module 16 according to the barcode information.
  • AAA volume calculates the length L, width W, and height H of the cargo stack 700 from the image alone or in conjunction with the image and the data collected by the first distance sensor 13, and then calculate the volume of the cargo stack 700 (where the volume is equal to L ⁇ W ⁇ H), and then divide the volume of the cargo stack 700 by the volume of cargo AAA to obtain the number of cargo 730 in the cargo stack 700.
  • the quantity of goods 730 in the goods pile 700 can also be calculated based on the gap between the goods 730 in the goods pile 700.
  • the command information may include gap image information. Refer to FIG. 15 for cooperation.
  • the processing unit 11 compares the image 750 with the gap image information, defines a gap image 752 in the image 750, and divides the image 750 into a plurality of blocks 751 according to the gap image 752.
  • Each block 751 can be regarded as a cargo 730, whereby the number of cargo 730 on the surface of the cargo stack 700 can be obtained by calculating the number of the block 751, and the self-guided cargo transport equipment 10 can be moved to the cargo stack 700.
  • an image of another surface is captured, and the quantity of goods 730 on the other surface of the goods pile 700 is obtained, and then the total quantity of goods 730 in the goods pile 700 is further calculated.
  • the quantity of the goods 730 in the goods pile 700 can also be calculated based on the quantity of the identification pattern.
  • the above-mentioned method of calculating the quantity of goods 730 in the pile of goods 700 can be used alone, or two or three of them can be combined and used at the same time to improve the accuracy of the calculation.
  • the target cargo is a "cargo pallet (limited item)".
  • the self-guided cargo equipment 20 ie, self-guided forklift
  • the self-guided cargo equipment 20 can be extended through the fork teeth 120a.
  • the holes 771 of the pallet 770 can transport all the goods 730 on the pallet 770 by one fork action. Compared with extracting the goods 730 (such as the self-guided goods transport device 30) by suction, it is beneficial to improve the handling efficiency.
  • the automatic handling system when the automatic handling system uses the self-guided cargo handling equipment 20 as the handling equipment, and the command information does not limit the target cargo to be placed on the pallet 770, when it is determined that the cargo is the target cargo, the automatic handling system can be further configured To perform the following steps: determine whether the cargo stack 700 is placed on the pallet 770, when the judgment is yes, proceed to the subsequent steps, such as step 450 in FIG. 4 or step 441 in FIG. 11, and when the judgment is no, report the judgment result to In the control center 40, the control center 40 assigns other self-guided cargo equipment (such as the self-guided cargo equipment 30) to perform the subsequent steps.
  • the control center 40 assigns other self-guided cargo equipment (such as the self-guided cargo equipment 30) to perform the subsequent steps.
  • FIG. 16 further includes step 400 and step 405, and step 410 is replaced with step 415.
  • Step 400 is to obtain the initial position information of the self-guided cargo equipment 10.
  • Step 405 is to obtain path information, which is calculated based on the initial position information and the target area.
  • Step 415 is to control the self-guided freight equipment 10 to enter the target area according to the command information and the route information.
  • steps 420 to 450 please refer to the above.
  • step 400 to step 415 will be described in detail with reference to FIG. 17.
  • the user interface 600e includes a map 610e and an input interface 620e, and the map 610e includes a shelf pattern 611e and a goods pattern 612e.
  • the processing unit 11 can be used for positioning to obtain the initial position information of the self-guided shipping equipment 10.
  • a warehouse shelf can be provided with a bar code pattern corresponding to its address information, and the processing unit 11 can obtain information including The image of the barcode pattern on the shelf, and the related data of the barcode pattern in the first storage module 44 or the second storage module 16 are retrieved to obtain the address information of the shelf, and then the distance between the self-guided shipping equipment 10 and the shelf is calculated, and the The initial location information of the self-guided cargo equipment 10 is calculated.
  • the processing unit 11 can transmit the initial location information of the self-guided cargo equipment 10 to the management unit 41 and can display the location of the self-guided cargo equipment 10 on the map 610e.
  • the user The target area 630e, the target goods, and the delivery destination can be set through the user interface 600e, and the management unit 41 can plan different paths for the self-guided cargo equipment 10 according to the initial location information and the target area 630e, such as the first path L1 in FIG. 17 And the second path L2, the management unit 41 then transmits the path information of the first path L1 and the path information of the second path L2 (which can be regarded as navigation information) to the processing unit 11, and the processing unit 11 can select the shortest path ( Here, the first path L1) enters the target area 630e.
  • the path information can also be calculated by the processing unit 11.
  • the processing unit 11 calculates and obtains the initial position information of the self-guided cargo equipment 10, the control center 40 transmits the command information to the processing unit 11, and the processing unit 11 follows The path information is calculated from the target area 630e in the initial position information and the command information.
  • the user interface 600f includes a map 610f and an input interface 620f, and the map 610f includes a shelf pattern 611f and a goods pattern 612f.
  • the user can select the option "Applicable to all target goods in the target area" on the input interface 620f.
  • the processing unit 11 will control the self-guided cargo equipment 10 to balance all pallets loaded with goods AAA in the target area 630f. Transport to the destination. In this way, the user only needs to provide the command information once, which can be applied to all target goods in the target area 630f, which is beneficial to improve the handling efficiency and the user's operation convenience.
  • the processing unit 11 controls the self-guided cargo equipment 10 to move according to the inspection path L3.
  • the inspection path L3 is configured to pass through all the passages in the target area 630f, for example, from left to right and from bottom to top to pass through the target area in sequence. All passages in 630f to ensure that all target goods in the target area 630f are transported to the destination.
  • the user interface 600g includes a map 610g and an input interface 620g, and the map 610g includes a shelf pattern 611g and a goods pattern 612g.
  • the warehouse includes self-guided cargo equipment 10a, 10b, and 10c.
  • the management unit 41 can calculate the information of the self-guided cargo equipment 10a and the target area 630g based on the initial position information of the self-guided cargo equipment 10a, 10b, 10c and the target area 630g.
  • the shortest distance L4, the shortest distance L5 between the self-guided cargo equipment 10b and the target area 630g, the shortest distance L6 between the self-guided cargo equipment 10c and the target area 630g, the user can assign the shortest distance L4, L5, L6 and through the user interface 600g
  • the self-guided cargo equipment 10a, 10b, 10c partially or completely enters the target area 630g to perform the handling task.
  • the self-guided cargo equipment with the shortest distances L4, L5, and L6 within a predetermined distance range can be selected to receive command information to perform the handling task.
  • the user can select the predetermined distance range to be less than or equal to 6m, when The shortest distance L4 is 5m, the shortest distance L5 is 7m, and the shortest distance L6 is 2m.
  • the management unit 41 will designate the self-guided cargo equipment 10a, 10c to perform the handling task.
  • the self-guided cargo equipment closest to the target area 630g can be selected to receive the command information to perform the handling task. Taking Figure 19 as an example, since the shortest distance L6 is less than the shortest distances L4, L5, the management unit 41 will The self-guided cargo equipment 10c is designated to perform the handling task.
  • control center 40 can designate a specific self-guided cargo equipment to receive command information.
  • present invention is not limited to this.
  • the control center 40 can also randomly assign self-guided cargo equipment 10a, 10b, 10c to perform handling tasks.
  • the processing unit 11 when the main body involved in the determination or calculation in the step is the processing unit 11 (such as steps 430 and 440), this is only an example. In practical applications, the processing unit 11 can transmit the image to the control center 40, and The judgment is made by the control center 40.
  • the target area of the present invention is an area instead of a fixed point, which can prevent the target goods from deviating from the correct position and cause the failure of the handling task, and is beneficial for the user to apply a single instruction to all the target goods in the target area.
  • the delivery destination of the present invention can also be an area instead of a fixed point, which can avoid the situation that the fixed point has already placed the goods and cannot be unloaded or the situation that multiple self-guided freight equipment needs to queue for unloading. Therefore, the automatic handling system of the present invention is beneficial to improve the success rate of handling tasks, handling efficiency and user convenience.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Transportation (AREA)
  • Structural Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Civil Engineering (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Geology (AREA)
  • Multimedia (AREA)
  • Aviation & Aerospace Engineering (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • General Physics & Mathematics (AREA)
  • Automation & Control Theory (AREA)
  • Robotics (AREA)
  • Computer Vision & Pattern Recognition (AREA)
  • Electromagnetism (AREA)
  • Warehouses Or Storage Devices (AREA)
  • Forklifts And Lifting Vehicles (AREA)

Abstract

一种自动搬运系统。自动搬运系统包括控制中心(40)以及自导向运货设备(10)。自动搬运系统用以提供命令信息,命令信息包括目标区域、目标货物以及运送目的地。自导向运货设备与控制中心电性连接。自动搬运系统配置以执行以下步骤:控制自导向运货设备依据命令信息进入目标区域内;控制自导向运货设备于目标区域内撷取影像;判断影像是否包括货物;当影像包括货物,判断货物是否为目标货物;以及当货物为目标货物,控制自导向运货设备提取货物至运送目的地。

Description

自动搬运系统 技术领域
本发明涉及一种搬运系统,特别是有关一种自动搬运系统。
背景技术
为了节省人力成本及提高管理效率,现今仓储系统已朝自动化发展,连带带动了自动搬运系统的兴起,以自导向叉车为例,仓储系统的控制中心可指定自导向叉车以及所欲搬运的货物(以下称为目标货物)的初始位置及目的位置,使受指定的自导向叉车在无人操作的情况下,自动前往初始位置,并将放置于初始位置的目标货物搬运至目的位置,而完成搬运任务。
碍于现今自动搬运系统的配置,前述初始位置以及目的位置均只能指定精确位置,例如用户可通过用户界面于控制中心的仓库地图中指定一个固定点,或者手动输入固定点的坐标,然而,倘若仓储人员在归位时不小心把目标货物放歪,或者不小心碰撞到目标货物,而使目标货物偏离正确的位置,将导致自导向叉车找不到目标货物而无法完成搬运任务。当目的位置只能是固定点,则容易发生目的位置已放置其他货物而无法卸货,或者多辆自导向叉车需排队等待卸货。此外,由于初始位置以及目的位置均只能为固定点,当目标货物存放在不同位置时,用户需通过用户界面多次手动指定自导向叉车、初始位置及目的位置,方能完成所有目标货物的搬运,在使用上非常不便利。
发明内容
依据本发明的一实施方式是提供一种自动搬运系统,自动搬运系统包括控制中心以及自导向运货设备。控制中心用以提供命令信息,命令信息包括目标区域、目标货物以及运送目的地。自导向运货设备与控制中心电性连接。自动搬运系统配置以执行以下步骤:控制自导向运货设备依据命令信息进入目标区域内;控制自导向运货设备于目标区域内撷取影像;判断影像是否包 括货物;当影像包括货物,判断货物是否为目标货物;以及当货物为目标货物,控制自导向运货设备提取货物至运送目的地。
相较于现有技术,本发明的目标区域为区域而非固定点,可避免目标货物偏离正确位置而导致搬运任务失败,并有利于用户将单一次的指令套用于目标区域内所有的目标货物,而不需针对目标区域内不同放置点的目标货物一一下达指令。本发明的运送目的地也可为区域而非固定点,可避免固定点已放置货物而无法卸货或者多辆自导向运货设备需排队等待卸货的情形。因此,本发明的自动搬运系统有利于提升搬运任务的成功率、搬运效率及用户的使用便利性。
附图说明
图1是依据本发明一实施方式的自动搬运系统的功能方块示意图。
图2是依据本发明一实施方式的自导向运货设备的立体图。
图3是依据本发明另一实施方式的自导向运货设备的立体图。
图4是依据本发明一实施方式的自动搬运系统配置提取货物的步骤流程图。
图5是依据本发明一实施方式的用户界面示意图。
图6是依据本发明一实施方式的货物的条形码示意图。
图7是依据本发明一实施方式的货物的标签示意图。
图8是依据本发明另一实施方式的用户界面示意图。
图9是依据本发明又一实施方式的用户界面示意图。
图10是依据本发明又一实施方式的用户界面示意图。
图11是依据本发明另一实施方式的自动搬运系统提取货物的部分步骤流程图。
图12是图11的实施方式的另一部分步骤流程图。
图13是依据本发明又一实施方式的用户界面示意图。
图14是依据本发明一实施方式的货物堆的示意图。
图15是图14中货物堆的影像示意图。
图16是依据本发明又一实施方式的自动搬运系统提取货物的步骤流程图。
图17是依据本发明又一实施方式的用户界面示意图。
图18是依据本发明又一实施方式的用户界面示意图。
图19是依据本发明又一实施方式的用户界面示意图。
其中,附图标记说明如下:
10、10a、10b、10c、20、30:自导向运货设备
11:处理单元
12、32、215:摄像模块
13、33、220:第一距离传感器
14:驱动模块
15、34、120:持物模块
16:第二存储模块
17:供电模块
18:第二通讯模块
31、281:载体
34a:机械手臂
34b:持物部
35、131、132、133:轮子
40:控制中心
41:管理单元
42:用户界面
43:第一通讯模块
44:第一存储模块
100:叉车
120a:叉齿
280:承载结构
282:安装件
400、405、410、415、420、430、440、450:步骤
441、442、443、444、445、446、447、448:步骤
600a、600b、600c、600d、600e、600f、600g、600h:用户界面
610a、610b、610c、610d、610e、610f、610g、610h:地图
611a、611b、611c、611d、611e、611f、611g、611h:货架图案
612a、612b、612c、612d、612e、612f、612g、612h:货物图案
620a、620b、620c、620d、620e、620f、620g、620h:输入界面
630a、630b、630c、630e、630f、630g、630h:目标区域
631d、632d、633d:区域
640:手
700:货物堆
710:条形码
711、712、713:特征信息
720:标签
721、722、723:图案
730:货物
750:影像
751:区块
752:缝隙影像
770:托盘
771:孔洞
O:点
R:半径
H:高
L:长
W:宽
L1:第一路径
L2:第二路径
L3:检查路径
L4、L5、L6:最短距离
具体实施方式
有关本发明的前述及其它技术内容、特点与功效,在以下配合例图的较佳实施方式的详细说明中,将可清楚地呈现。值得一提的是,以下实施方式所提到的方向用语,例如:上、下、左、右、前或后等,仅是参考例图的方向。因此,使用的方向用语是用于说明,而非对本发明加以限制。此外,在下列各实施方式中,相同或相似的元件将采用相同或相似的标号。
本发明中电性连接是指元件间可以直接、间接、有线或无线方式传递电信号、磁信号以及命令信号等电性能量或数据。
请参照图1,自动搬运系统包括控制中心40及自导向运货设备10。控制中心40用以提供命令信息,命令信息包括目标区域、目标货物以及运送目的地。详细来说,控制中心40可为远端控制中心,远端控制中心是指控制中心40并非设置在自导向运货设备10上,例如,控制中心40可设置于办公室,自导向运货设备10可放置于仓库,办公室及仓库位于不同的空间。控制中心40可包括管理单元41、用户界面42,且可优选地包括第一通讯模块43及第一存储模块44,其中管理单元41与用户界面42、第一通讯模块43及第一存储模块44电性连接。
控制中心40可为服务器(Server)或计算机,管理单元41可为仓库管理系统(Warehouse Management System,WMS),用户界面42用于供用户输入信息并传送至管理单元41,借此,用户可通过控制中心40控制自导向运货设备10。优选地,控制中心40可包括显示器(图未示)用于显示用户界面42,显示器可包括触碰屏幕,控制中心40可进一步包括输入设备(图未示)如鼠标跟键 盘,借此,用户可直接通过触碰屏幕及/或输入设备于用户界面42输入信息。第一通讯模块43可为但不限于Wi-Fi无线传输模块。第一存储模块44可用于存储数据,例如自导向运货设备10的工作场所(例如仓库)的地图信息、货物存放信息、货物信息等。第一存储模块44可为但不限于只读存储器、随机存储器或其组合。关于用户界面42可参见图5、图8至图10、图13及图17至图19的相关说明。
自导向运货设备10与控制中心40电性连接,借以接收控制中心40提供的命令信息。详细来说,自导向运货设备10可包括处理单元11、摄像模块12、驱动模块14及持物模块15,处理单元11与摄像模块12、驱动模块14及持物模块15电性连接。处理单元11具有计算能力,处理单元11可为但不限于中央处理单元(Central Processing Unit,CPU)或图形处理单元(Graphics Processing Unit,GPU)。摄像模块12用于撷取影像,例如用于撷取自导向运货设备10周围环境的影像,借以获得自导向运货设备10所处工作场所的环境信息。摄像模块12可为二维摄像模块或三维摄像模块。二维摄像模块可为相机,三维摄像模块可为但不限于两个相机的组合或一个相机与一个投影机的组合。当摄像模块12为二维摄像模块时,自导向运货设备10可优选地包括第一距离传感器13,第一距离传感器13与处理单元11电性连接,第一距离传感器13用于感测自导向运货设备10与周围物体的距离。第一距离传感器13可为但不限于激光雷达(LiDAR)。当摄像模块12为三维摄像模块时,可由三维摄像模块获得的影像直接计算出自导向运货设备10与周围物体的距离。
驱动模块14用于驱动自导向运货设备10移动。持物模块15用于提取货物,可依据货物的形状及特性选择适于提取货物的持物模块15。自导向运货设备10可优选地包括第二通讯模块18,处理单元11通过第二通讯模块18与控制中心40电性连接,第二通讯模块18可为但不限于Wi-Fi无线传输模块。自导向运货设备10可优选地包括第二存储模块16,第二存储模块16与处理单元11电性连接,第二存储模块16可用于存储数据,例如自导向运货设备10的工作场所(例如仓库)的地图信息、货物存放信息、货物信息、自导向运货设备10的定位信息、自导向运货设备10的导航信息等。第二存储模块16可为但不限于只读存储器、随机存储器或其组合。自导向运货设备10可包括供电模块17,供电模块17用于提供自导向运货设备10所需的电力, 例如,供电模块17可与处理单元11、摄像模块12、第一距离传感器13、驱动模块14、持物模块15、第二存储模块16及第二通讯模块18电性连接以提供前述元件所需的电力,供电模块17可为插头或电池。自导向运货设备10可优选地包括第二距离传感器(图未示),第二距离传感器可与处理单元11电性连接,借此,可进一步提供自导向运货设备10避障功能。第二距离传感器可为但不限于光电传感器(Photoelectric Sensor)。
下文中,以控制中心40为远端控制中心进行说明,然而,本发明不以此为限,控制中心40也可设置于自导向运货设备10上并与处理单元11电性连接,在此情况下,图1中的第一通讯模块43及第二通讯模块18可省略,且第一存储模块44及第二存储模块16可仅保留其中一个。
配合参照图2,在本实施方式中,自导向运货设备20为自导向叉车,自导向运货设备20包括叉车100、处理单元(图未示)、摄像模块215、第一距离传感器220及承载结构280,承载结构280包括载体281及安装件282,安装件282与载体281连接并以可拆卸的方式安装于叉车100,处理单元设置于载体281内部,摄像模块215设置于载体281的下方,第一距离传感器220设置于载体281的上方。叉车100包括驱动模块(未另标号)、持物模块120及供电模块(图未示),驱动模块可包括电机(图未示)及多个轮子131、132、133,电机设置叉车100内且与一个或多个轮子131、132、133电性连接以驱动所述轮子,持物模块120为二个叉齿120a,供电模块设置于叉车100内。叉车100可为市售产品,因此关于叉车100的其他细节在此不予赘述,关于自导向运货设备20的元件细节,可参考前述自导向运货设备10中具有相同名称的元件。
配合参照图3,在本实施方式中,自导向运货设备30为自导向机械手,自导向运货设备30包括载体31、处理单元(图未示)、摄像模块32、第一距离传感器33、驱动模块(未另标号)、持物模块34以及供电模块(图未示),处理单元设置于载体31内,摄像模块32及第一距离传感器33设置于载体31的上方,驱动模块可包括电机(图未示)及多个轮子35,电机设置于载体31内且与一个或多个轮子35电性连接以驱动所述轮子35,持物模块34包括机械手臂34a及持物部34b,机械手臂34a可为六轴机械手臂,持物部34b可为吸盘,并通过吸取的方式提取货物,然而,本发明不以此为限,可依实际需求选择 机械手臂34a及持物部34b的种类,例如持物部34b可为夹爪,并通过夹的方式提取货物。供电模块设置于载体31内。关于自导向运货设备30的元件细节,可参考前述自导向运货设备10中具有相同名称的元件。
配合参照图4,自动搬运系统配置以执行配置以执行以下步骤。步骤410是控制自导向运货设备10依据命令信息进入目标区域内。步骤420是控制自导向运货设备10于目标区域内撷取影像。步骤430是判断影像是否包括货物。当影像不包括货物,回到步骤420,继续于目标区域内寻找目标货物。当影像包括货物,进行步骤440,判断货物是否为目标货物,当货物不为目标货物,回到步骤420,继续于目标区域内寻找目标货物。当货物为目标货物,进行步骤450。控制自导向运货设备10提取货物至运送目的地。以下配合图5,详细说明步骤410至步骤450。
图5是依据本发明一实施方式的用户界面600a示意图,用户界面600a可为控制中心40的用户界面42的例示。用户界面600a包括地图610a及输入界面620a,地图610a包括货架图案611a及货物图案612a,地图610a可为自导向运货设备10工作场所的地图,在此以工作场所为仓库作为例子,货架图案611a于地图610a中的位置对应货架于仓库中的位置,货物图案612a于地图610a中的位置原则上对应货物于仓库中的位置,然而,由于仓储人员误放或者因碰撞导致货物偏离应有位置,可能导致货物图案612a于地图610a中的位置与货物于仓库中的实际位置有所不符。另外,本实施方式中,仓库中的货物预设是放置在托盘上,因此输入界面620a的目标货物的选项包括“空托盘”、“载货托盘(不限定物品)”及“载货托盘(限定物品)”,当选择“载货托盘(限定物品)”,可进一步通过下拉选单选择货物的种类,在此用户选择“载货托盘(限定物品)”,并选择货物为货物AAA,其中AAA可为货物的编号或品名。
图5中,用户于地图610a选取目标区域630a,在此,用户是通过鼠标于地图610a选取目标区域630a,当用户选取完目标区域630a,管理单元41会纪录目标区域630a四个点顶的坐标及形成的区域,用户可进一步于地图610a选择运送目的地(图未示),运送目的地可为区域或定点,当运送目的地为区域,运送目的地的选取方式可与目标区域630a相同,当运送目的地为定点,用户可使用鼠标直接在地图610a上点选所欲的定点作为运送目的地,管理单元41 会纪录运送目的地的四个点顶的坐标及其所形成的区域或者所述定点的坐标。
接着,管理单元41将包括目标区域630a、目标货物及运送目的地相关信息的命令信息传送至自导向运货设备10,处理单元11接收命令信息后,依据命令信息控制驱动模块14驱动自导向运货设备10进入目标区域630a内(步骤410),处理单元11于目标区域630a内控制自导向运货设备10移动同时通过摄像模块12撷取影像(步骤420),并持续实时判断影像中是否包括货物(步骤430),当影像中包括货物,处理单元11可单独由影像或者配合影像与第一距离传感器13所收集数据计算出货物与自导向运货设备10的距离,而控制自导向运货设备10移动到货物前方,并判断货物是否为目标货物(步骤440),当货物为目标货物,处理单元11控制自导向运货设备10的持物模块15提取货物,处理单元11再控制驱动模块14驱动自导向运货设备10前往运送目的地,并控制持物模块15将货物放置于运送目的地。
判断影像中是否包括货物可采取影像比对的方式,以本实施方式为例,由于目标货物为“载货托盘(限定物品)”,命令信息中可进一步包括托盘影像信息,或者,处理单元11可依据命令信息从第一存储模块44或第二存储模块16调阅托盘影像信息,再将摄像模块12撷取的影像与托盘影像信息进行比对,当影像中有内容符合托盘影像信息,即判断影像中有货物。在其他实施方式中,当货物不限定放置在托盘上,命令信息中可进一步包括货物影像信息,或者,处理单元11可依据命令信息从第一存储模块44或第二存储模块16调阅货物影像信息,再将摄像模块12撷取的影像与货物影像信息进行比对,例如,当货物均放置于纸箱中,货物影像信息可为纸箱影像信息,或者,货物影像信息可为仓库中所有货物的影像信息或货物的条形码的特征信息。配合参照图6,在本实施方式中,货物的条形码710为二维条形码,条形码710包括配置于角落的特征信息711、712、713,当影像中包括特征信息711、712、713的图案且满足其配置关系,则可判定影像中包括货物。
判断货物是否为目标货物也可采取影像比对的方式,例如,命令信息中可包括货物AAA的条形码信息,仓库内的托盘上、货架上或包装货物的纸箱上设置有其所装载的货物的条形码,处理单元11可将摄像模块12撷取到的条形码影像与货物AAA的条形码信息进行比对,或者,处理单元11可依据 条形码信息从第一存储模块44或第二存储模块16调阅有关货物AAA的特征信息,再将摄像模块12所撷取的影像与货物AAA的特征信息进行比对。配合参照图7,其是依据本发明一实施方式的货物AAA的标签720示意图,标签720黏贴于装载货物AAA的纸箱外,特征信息可为标签720的图案,例如图案721、722、723,当摄像模块12撷取的影像包括图案721、722、723,则可判定货物为货物AAA。
在其他实施方式中,当判断影像包括货物时(步骤430),可进一步判断货物是否处于目标区域630a内,当货物处于目标区域630a内,再进行步骤440,当货物不是处于目标区域630a内,则回到步骤420。借此,可提升自动搬运系统执行搬运任务的准确性。
在其他实施方式中,完成步骤450后,处理单元11可将处理结果信息传送至控制中心40,处理结果信息可包括所提取的货物种类、数量,货物于提取前及提取后放置的精确位置,借以更新控制中心40中所存储的数据。
图8中,用户界面600b包括地图610b及输入界面620b,地图610b包括货架图案611b及货物图案612b,用户界面600b是通过触碰屏幕显示,用户直接用手640于地图610b选取目标区域630b。
图9中,用户界面600c包括地图610c及输入界面620c,地图610c包括货架图案611c及货物图案612c,用户可直接用手(图未示)或鼠标(图未示)于地图610c点选点O,再拉出所欲的半径R,用户也可于输入界面620c半径指定的字段输入半径R的大小,在此以半径R=10m为例示,而获得半径R为10m的圆形目标区域630c。
图10中,用户界面600d包括地图610d及输入界面620d,地图610d包括货架图案611d及货物图案612d,地图610d预先划分为区域631d、区域632d及区域633d,用户可直接用手(图未示)或鼠标(图未示)于地图610d中点选其中一个区域作为目标区域,或者于输入界面620d区域指定的字段输入区域名称(在此以B,即区域632d为例示),此外,区域631d、区域632d及区域633d的大小和边界均可调整。图8至图10的其他细节可与图5相同,在此不予赘述。
配合参照图11及图12,图11为流程图A、图12为流程图B。图11及 图12适用于命令信息还包括目标货物的所需数量,且影像包括由多个货物所堆叠形成的货物堆。步骤410至步骤440可参照上文。
当判断货物为目标货物时,进行步骤441,计算货物堆中货物的数量。步骤442是判断货物堆中货物的数量是否大于或等于目标货物的所需数量。当判断为是,进行步骤450,控制自导向运货设备10提取货物堆的货物至运送目的地,此时,自动搬运系统完成搬运任务;当判断为否,进行步骤443,判断自导向运货设备10是否已绕行目标区域一周,当判断为否,控制自导向运货设备10不提取货物堆的货物,并回到步骤420,借此,优先寻找数量足够的另一目标货物的货物堆;当判断为是,表示目标区域内所有目标货物的货物堆的数量均小于所需数量,此时,需从不同目标货物的货物堆取得所需的目标货物,因此进行步骤444,控制自导向运货并设备10提取货物堆的货物至运送目的地,再进行步骤445,控制自导向运货设备10于目标区域内移动到另一货物堆,另一货物堆是由多个目标货物所堆叠形成(寻找另一货物堆的方式可通过步骤420至440),进行步骤446,控制自导向运货设备10提取另一货物堆的货物至运送目的地,进行步骤447,统计自导向运货设备所提取的货物的数量以获得提取数量总和,即将自导向运货设备10自步骤444后所提取的货物数量进行加总,进行步骤448,判断提取数量总和是否大于或等于目标货物的所需数量,当判断为否,表示尚未达到所需数量,回到步骤445,当判断为是,表示自动搬运系统已完成搬运任务,进行步骤460,控制自导向运货设备10执行结束命令。以下配合图13及图15,详细说明步骤441至步骤448。
图13中,用户界面600h包括地图610h及输入界面620h,地图610h包括货架图案611h及货物图案612h,用户于地图610h选取目标区域630h。与图5相较,用户可进一步通过下拉选单选择或输入数量(即所需数量),在此以数量等于30为例示。配合参照图14,货物堆700由货物730堆迭形成且放置于托盘770上,托盘770包括孔洞771,当自导向运货设备10于目标区域发现货物堆700,且判断货物730为目标货物,即货物AAA(步骤440),此时,处理单元11计算货物堆700中货物730的数量(步骤441),货物堆700中货物730的数量可依据货物堆700的总体积以及货物730的体积计算获得,详细来说,命令信息可包括货物AAA的体积,或者,命令信息中可包括货物 AAA的条形码信息,处理单元11可依据条形码信息从第一存储模块44或第二存储模块16调出货物AAA的体积,并单独由影像或者配合影像与第一距离传感器13所收集数据计算出货物堆700的长L、宽W、高H,进而计算货物堆700的体积(在此体积等于L×W×H),再将货物堆700的体积除以货物AAA的体积而可获得货物堆700中货物730的数量。
在其他实施方式中,货物堆700中货物730的数量也可依据货物堆700中的货物730间的缝隙计算获得,详细来说,命令信息可包括缝隙影像信息,配合参照图15,图15为货物堆700其中一表面的影像750,处理单元11将影像750与缝隙影像信息进行比对,而于影像750定义出缝隙影像752,并依据缝隙影像752将影像750划分为多个区块751,每个区块751可视为一个货物730,借此,可通过计算区块751的数量获得货物堆700于此表面的货物730的数量,自导向运货设备10可再移动至货物堆700的另一侧以撷取另外一表面的影像,并获得货物堆700于所述另一表面的货物730的数量,再进一步推算出货物堆700中货物730的总数量。
在其他实施方式中,当货物730包括识别图案,如标签720,货物堆700中货物730的数量也可依据识别图案的数量计算获得。
上述计算货物堆700中货物730的数量的方法可单独使用,也可结合其中二种或者三种同时使用,以提高计算的准确度。
于上述实施方式中,目标货物为“载货托盘(限定物品)”,倘若配合自导向运货设备20(即自导向叉车)作为搬运设备,自导向运货设备20可通过叉齿120a伸进托盘770的孔洞771,而可通过一次叉取动作搬运托盘770上的所有货物730,相较于通过吸取的方式提取货物730(如自导向运货设备30),有利于提升搬运效率。在其他实施方式中,当自动搬运系统是以自导向运货设备20作为搬运设备,且命令信息并未限定目标货物放置在托盘770上时,当判断货物为目标货物,自动搬运系统可进一步配置以执行以下步骤:判断货物堆700是否放置于托盘770上,当判断为是,则进行后续步骤,如图4的步骤450或图11的步骤441,当判断为否,则将判断结果回报至控制中心40,由控制中心40指派其他自导向运货设备(如自导向运货设备30)来执行后续步骤。
请参照图16,相较于图4,图16还包括步骤400及步骤405,并将步骤 410更换为步骤415。
步骤400是获得自导向运货设备10的初始位置信息。步骤405是获得路径信息,路径信息是依据初始位置信息及目标区域计算获得。步骤415是控制自导向运货设备10依据命令信息及路径信息进入目标区域内。步骤420至步骤450可参照上文。以下配合图17,详细说明步骤400至步骤415。
图17中,用户界面600e包括地图610e及输入界面620e,地图610e包括货架图案611e及货物图案612e。首先,可通过处理单元11进行定位,以获得自导向运货设备10的初始位置信息,举例来说,仓库的货架可设置有对应其地址信息的条形码图案,处理单元11通过摄像模块12取得包括货架条形码图案的影像,并由第一存储模块44或第二存储模块16中调阅条形码图案的相关数据而获得货架的地址信息,再计算自导向运货设备10与货架间的距离,而可计算获得自导向运货设备10的初始位置信息,处理单元11可将自导向运货设备10的初始位置信息传送至管理单元41并可于地图610e中显示自导向运货设备10的位置,用户可通过用户界面600e设定目标区域630e、目标货物以及运送目的地,管理单元41可依据初始位置信息及目标区域630e为自导向运货设备10规划不同路径,例如图17中的第一路径L1及第二路径L2,管理单元41再将第一路径L1的路径信息及第二路径L2的路径信息(可视为导航信息)传送至处理单元11,处理单元11可依据路径信息选择最短路径(在此为第一路径L1)进入目标区域630e中。在其他实施方式中,路径信息也可由处理单元11计算获得,首先,处理单元11计算获得自导向运货设备10的初始位置信息,控制中心40将命令信息传送给处理单元11,处理单元11依据初始位置信息及命令信息中的目标区域630e计算出路径信息。
配合参照图18,用户界面600f包括地图610f及输入界面620f,地图610f包括货架图案611f及货物图案612f。用户可于输入界面620f选取“适用到所述目标区域内的所有目标货物”的选项,此时,处理单元11会控制自导向运货设备10将目标区域630f内所有装载有货物AAA的托盘均搬运至运送目的地。借此,用户仅需提供一次命令信息,即可适用于目标区域630f内的所有目标货物,有利于提升搬运效率以及用户的操作便利性。详细来说,处理单元11控制自导向运货设备10依据检查路径L3移动,检查路径L3被配置为经过目标区域630f内所有的通道,例如可由左而右、由下而上依序经过目标 区域630f内所有的通道,以确保目标区域630f内的所有目标货物均被搬运至运送目的地。
配合参照图19,用户界面600g包括地图610g及输入界面620g,地图610g包括货架图案611g及货物图案612g。仓库中包括自导向运货设备10a、10b、10c,管理单元41可分别依据自导向运货设备10a、10b、10c的初始位置信息及目标区域630g计算出自导向运货设备10a与目标区域630g的最短距离L4、自导向运货设备10b与目标区域630g的最短距离L5、自导向运货设备10c与目标区域630g的最短距离L6,用户可依据最短距离L4、L5、L6并通过用户界面600g指派自导向运货设备10a、10b、10c部分或全部进入目标区域630g执行搬运任务。依据本发明一实施方式,可选择最短距离L4、L5、L6在预定距离范围内的自导向运货设备接收命令信息以执行搬运任务,例如,用户可选择预定距离范围为小于或等于6m,当最短距离L4为5m、最短距离L5为7m、最短距离L6为2m,管理单元41将指定自导向运货设备10a、10c执行搬运任务。依据本发明另一实施方式,可选择最接近目标区域630g的自导向运货设备接收命令信息以执行搬运任务,以图19为例,由于最短距离L6小于最短距离L4、L5,管理单元41将指定自导向运货设备10c执行搬运任务。换句话说,当工作场所同时包括多辆自导向运货设备10a、10b、10c,可通过控制中心40指定特定的自导向运货设备接收命令信息,然而本发明不以此为限,控制中心40也可随机指派自导向运货设备10a、10b、10c执行搬运任务。
上述实施方式中,当步骤中涉及判断或计算的主体为处理单元11时(如步骤430、440),其仅为例示,在实际应用中,处理单元11可将影像传送至控制中心40,而由控制中心40进行判断。
相较于现有技术,本发明的目标区域为区域而非固定点,可避免目标货物偏离正确位置而导致搬运任务失败,并有利于用户将单一次的指令套用于目标区域内所有的目标货物,而不需针对目标区域内不同放置点的目标货物一一下达指令。本发明的运送目的地也可为区域而非固定点,可避免固定点已放置货物而无法卸货或者多辆自导向运货设备需排队等待卸货的情形。因此,本发明的自动搬运系统有利于提升搬运任务的成功率、搬运效率及用户的使用便利性。
以上所述仅为本发明的优选实施例而已,并不用于限制本发明,对于本领域的技术人员来说,本发明可以有各种更改和变化。凡在本发明的精神和原则之内,所作的任何修改、等同替换、改进等,均应包含在本发明的保护范围之内。

Claims (16)

  1. 一种自动搬运系统,其特征在于,包括:
    控制中心,用以提供命令信息,所述命令信息包括目标区域、目标货物以及运送目的地;以及
    自导向运货设备,与所述控制中心电性连接;
    其中所述自动搬运系统配置以执行以下步骤:
    控制所述自导向运货设备依据所述命令信息进入所述目标区域内;
    控制所述自导向运货设备于所述目标区域内撷取影像;
    判断所述影像是否包括货物;
    当所述影像包括所述货物,判断所述货物是否为所述目标货物;以及
    当所述货物为所述目标货物,控制所述自导向运货设备提取所述货物至所述运送目的地。
  2. 如权利要求1所述的自动搬运系统,其特征在于,所述自导向运货设备包括:
    驱动模块,用于驱动所述自导向运货设备移动;
    持物模块,用于提取所述货物;
    摄像模块,用于撷取所述影像;以及
    处理单元,与所述控制中心、所述驱动模块、所述持物模块及所述摄像模块电性连接。
  3. 如权利要求1所述的自动搬运系统,其特征在于,当所述影像包括所述货物,所述自动搬运系统还包括配置以执行以下步骤:
    判断所述货物是否处于所述目标区域内。
  4. 如权利要求1所述的自动搬运系统,其特征在于,所述命令信息还包括所述目标货物的所需数量,当所述影像包括由多个所述货物堆叠形成的货物堆,且所述货物为所述目标货物,所述自动搬运系统还包括配置以执行以下步骤:
    计算所述货物堆中所述货物的数量;以及
    判断所述货物堆中所述货物的所述数量是否大于或等于所述目标货物的 所述所需数量;
    当所述货物堆中所述货物的所述数量大于或等于所述目标货物的所述所需数量,控制所述自导向运货设备提取所述货物堆的所述货物至所述运送目的地。
  5. 如权利要求4所述的自动搬运系统,其特征在于,当所述货物堆中所述货物的所述数量小于所述目标货物的所述所需数量,所述自动搬运系统还包括配置以执行以下步骤:
    判断所述自导向运货设备是否已绕行所述目标区域一周;
    当所述自导向运货设备已绕行所述目标区域一周,控制所述自导向运货设备提取所述货物堆的所述货物至所述运送目的地。
  6. 如权利要求5所述的自动搬运系统,其特征在于,当所述自导向运货设备尚未绕行所述目标区域一周,控制所述自导向运货设备不提取所述货物堆的所述货物。
  7. 如权利要求5所述的自动搬运系统,其特征在于,所述自动搬运系统还包括配置以执行以下步骤:
    控制所述自导向运货设备于所述目标区域内移动到另一货物堆,其中所述另一货物堆由多个所述货物堆叠形成,且所述货物为所述目标货物;
    控制所述自导向运货设备提取所述另一货物堆的所述货物至所述运送目的地;
    统计所述自导向运货设备所提取的所述货物的所述数量以获得提取数量总和;
    判断所述提取数量总和是否大于或等于所述目标货物的所述所需数量;
    当所述提取数量总和大于或等于所述目标货物的所述所需数量,控制所述自导向运货设备执行结束命令。
  8. 如权利要求4所述的自动搬运系统,其特征在于,计算所述货物堆中所述货物的所述数量是依据所述货物堆的总体积以及所述货物的体积计算获得。
  9. 如权利要求4所述的自动搬运系统,其特征在于,计算所述货物堆中所述货物的所述数量是依据所述货物堆中的所述货物间的缝隙计算获得。
  10. 如权利要求4所述的自动搬运系统,其特征在于,所述货物包括识别图案,计算所述货物堆中所述货物的所述数量是依据所述识别图案的数量计算获得。
  11. 如权利要求4所述的自动搬运系统,其特征在于,所述自导向运货设备为自导向叉车,所述自动搬运系统还包括配置以执行以下步骤:
    判断所述货物堆是否放置于托盘上。
  12. 如权利要求1所述的自动搬运系统,其特征在于,所述自动搬运系统还包括配置以执行以下步骤:
    获得所述自导向运货设备的初始位置信息;以及
    获得路径信息,所述路径信息是依据所述初始位置信息及所述目标区域计算获得;
    其中控制所述自导向运货设备依据所述命令信息进入所述目标区域内,还包括控制所述自导向运货设备依据所述路径信息进入所述目标区域内。
  13. 如权利要求1所述的自动搬运系统,其特征在于,所述控制中心包括用户界面,所述用户界面包括地图,用户于所述地图选取所述目标区域。
  14. 如权利要求1所述的自动搬运系统,其特征在于,所述自动搬运系统还包括配置以执行以下步骤:
    通过所述控制中心指定所述自导向运货设备接收所述命令信息。
  15. 如权利要求14所述的自动搬运系统,其特征在于,依据所述自导向运货设备与所述目标区域之间的最短距离指定所述自导向运货设备接收所述命令信息。
  16. 如权利要求1所述的自动搬运系统,其特征在于,所述命令信息适用于所述目标区域内所有的所述目标货物。
PCT/CN2020/102781 2019-09-10 2020-07-17 自动搬运系统 WO2021047289A1 (zh)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2022500637A JP7471615B2 (ja) 2019-09-10 2020-07-17 自動搬送システム
US17/629,907 US20220250842A1 (en) 2019-09-10 2020-07-17 Automated carrying system
EP20864064.9A EP3984920A4 (en) 2019-09-10 2020-07-17 AUTOMATIC TRANSPORT SYSTEM

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201910855116.6 2019-09-10
CN201910855116.6A CN110615227B (zh) 2019-09-10 2019-09-10 自动搬运系统

Publications (1)

Publication Number Publication Date
WO2021047289A1 true WO2021047289A1 (zh) 2021-03-18

Family

ID=68922772

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/102781 WO2021047289A1 (zh) 2019-09-10 2020-07-17 自动搬运系统

Country Status (5)

Country Link
US (1) US20220250842A1 (zh)
EP (1) EP3984920A4 (zh)
JP (1) JP7471615B2 (zh)
CN (1) CN110615227B (zh)
WO (1) WO2021047289A1 (zh)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110615227B (zh) * 2019-09-10 2021-08-06 灵动科技(北京)有限公司 自动搬运系统
USD1004245S1 (en) * 2020-08-07 2023-11-07 Hangzhou Hikrobot Co., Ltd. Forklift
WO2023001125A1 (zh) * 2021-07-23 2023-01-26 深圳市库宝软件有限公司 货物处理方法、装置、机器人、分拣装置及仓储系统
CN113341905B (zh) * 2021-08-09 2021-10-26 山东华力机电有限公司 基于人工智能的多agv小车协同规划方法及系统
USD1021316S1 (en) * 2021-10-18 2024-04-02 Robopac S.P.A. Lift truck
CN114524209A (zh) * 2021-12-21 2022-05-24 杭叉集团股份有限公司 一种基于双tof相机的agv高位堆叠方法及检测装置
USD1021317S1 (en) * 2022-05-03 2024-04-02 Robopac S.P.A. Lift truck

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9102055B1 (en) * 2013-03-15 2015-08-11 Industrial Perception, Inc. Detection and reconstruction of an environment to facilitate robotic interaction with the environment
WO2016181480A1 (ja) * 2015-05-12 2016-11-17 株式会社日立製作所 格納棚及びピッキングシステム
WO2017149616A1 (ja) * 2016-02-29 2017-09-08 株式会社日立製作所 箱詰めロボットおよび箱詰め計画方法
CN110615227A (zh) * 2019-09-10 2019-12-27 灵动科技(北京)有限公司 自动搬运系统

Family Cites Families (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06142881A (ja) * 1992-11-12 1994-05-24 Honda Motor Co Ltd 製品自動箱詰装置
JP3754504B2 (ja) * 1996-07-12 2006-03-15 トーヨーカネツソリューションズ株式会社 搬送手段制御方法及び装置
JPH1166321A (ja) * 1997-08-13 1999-03-09 Ntn Corp ワーク位置検出方法
JP2003099126A (ja) * 2001-09-21 2003-04-04 Sharp Corp 搬送システムおよび搬送方法
US7010404B2 (en) * 2002-01-23 2006-03-07 Kabushiki Kaisha Toyota Jidoshokki Position control apparatus and position control method for cargo carrying apparatus in industrial vehicle
JP2004280296A (ja) * 2003-03-13 2004-10-07 Sumitomo Metal Ind Ltd 無人搬送車制御装置
US7693757B2 (en) * 2006-09-21 2010-04-06 International Business Machines Corporation System and method for performing inventory using a mobile inventory robot
JP4321631B2 (ja) * 2007-07-05 2009-08-26 村田機械株式会社 搬送システム、搬送方法および搬送車
JP5333344B2 (ja) * 2009-06-19 2013-11-06 株式会社安川電機 形状検出装置及びロボットシステム
JP5257335B2 (ja) * 2009-11-24 2013-08-07 オムロン株式会社 3次元視覚センサにおける計測有効領域の表示方法および3次元視覚センサ
JP6536110B2 (ja) * 2015-03-20 2019-07-03 セイコーエプソン株式会社 ロボット制御装置、及び制御方法
US9120622B1 (en) * 2015-04-16 2015-09-01 inVia Robotics, LLC Autonomous order fulfillment and inventory control robots
US9880561B2 (en) * 2016-06-09 2018-01-30 X Development Llc Sensor trajectory planning for a vehicle
US10353395B2 (en) * 2016-09-26 2019-07-16 X Development Llc Identification information for warehouse navigation
JP6546952B2 (ja) * 2017-03-24 2019-07-17 ソフトバンク株式会社 搬送装置、プログラム及び搬送システム
CN109414731B (zh) * 2018-06-19 2021-02-26 深圳蓝胖子机器人有限公司 自动分拣系统及分拣机器人
CN110428209B (zh) * 2019-08-16 2020-10-27 灵动科技(北京)有限公司 一种盘点设备、盘点管理系统及盘点方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9102055B1 (en) * 2013-03-15 2015-08-11 Industrial Perception, Inc. Detection and reconstruction of an environment to facilitate robotic interaction with the environment
WO2016181480A1 (ja) * 2015-05-12 2016-11-17 株式会社日立製作所 格納棚及びピッキングシステム
WO2017149616A1 (ja) * 2016-02-29 2017-09-08 株式会社日立製作所 箱詰めロボットおよび箱詰め計画方法
CN110615227A (zh) * 2019-09-10 2019-12-27 灵动科技(北京)有限公司 自动搬运系统

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3984920A4 *

Also Published As

Publication number Publication date
JP2022540104A (ja) 2022-09-14
EP3984920A4 (en) 2023-07-19
EP3984920A1 (en) 2022-04-20
JP7471615B2 (ja) 2024-04-22
US20220250842A1 (en) 2022-08-11
CN110615227B (zh) 2021-08-06
CN110615227A (zh) 2019-12-27

Similar Documents

Publication Publication Date Title
WO2021047289A1 (zh) 自动搬运系统
KR102130457B1 (ko) 재고 관리
JP6738112B2 (ja) ロボットシステムの制御装置及び制御方法
US11851290B2 (en) Robotic multi-item type palletizing and depalletizing
US10265871B2 (en) Collaborative inventory monitoring
CN109074080B (zh) 订单履行操作中的机器人排队
WO2021047288A1 (zh) 自动导向叉车
EP3331668B1 (en) Communication of information regarding a robot using an optical identifier
US10122995B2 (en) Systems and methods for generating and displaying a 3D model of items in a warehouse
JP2020196623A (ja) ロボットシステムの制御装置及び制御方法
JP2019534829A (ja) 倉庫ナビゲーション用の識別情報
US11124401B1 (en) Automated loading of delivery vehicles
JP2017530917A (ja) モジュール式保管及び管理のためのシステム及び方法
WO2020052238A1 (zh) 仓储存取系统及方法
CN110428209B (zh) 一种盘点设备、盘点管理系统及盘点方法
CN110998620A (zh) 排队完成订单操作的机器人
US20220288787A1 (en) Multi-pallet mixed-case robotic palletizer
KR102580082B1 (ko) 근접 로봇 물체 검출 및 회피

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20864064

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2022500637

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2020864064

Country of ref document: EP

Effective date: 20220113

NENP Non-entry into the national phase

Ref country code: DE