WO2021047063A1 - 自动工作系统及其转向方法、自移动设备 - Google Patents

自动工作系统及其转向方法、自移动设备 Download PDF

Info

Publication number
WO2021047063A1
WO2021047063A1 PCT/CN2019/120977 CN2019120977W WO2021047063A1 WO 2021047063 A1 WO2021047063 A1 WO 2021047063A1 CN 2019120977 W CN2019120977 W CN 2019120977W WO 2021047063 A1 WO2021047063 A1 WO 2021047063A1
Authority
WO
WIPO (PCT)
Prior art keywords
walking
self
coverage value
mobile device
partition
Prior art date
Application number
PCT/CN2019/120977
Other languages
English (en)
French (fr)
Inventor
安德罗·保罗
泰斯托林·费德里科
多尔夫·达维德
康蒂·伊曼纽尔
Original Assignee
苏州宝时得电动工具有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 苏州宝时得电动工具有限公司 filed Critical 苏州宝时得电动工具有限公司
Priority to EP19944951.3A priority Critical patent/EP4030255A4/en
Publication of WO2021047063A1 publication Critical patent/WO2021047063A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05DSYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
    • G05D1/00Control of position, course, altitude or attitude of land, water, air or space vehicles, e.g. using automatic pilots
    • G05D1/60Intended control result
    • G05D1/648Performing a task within a working area or space, e.g. cleaning
    • G05D1/6482Performing a task within a working area or space, e.g. cleaning by dividing the whole area or space in sectors to be processed separately
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05DSYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
    • G05D1/00Control of position, course, altitude or attitude of land, water, air or space vehicles, e.g. using automatic pilots
    • G05D1/02Control of position or course in two dimensions
    • G05D1/021Control of position or course in two dimensions specially adapted to land vehicles
    • G05D1/0212Control of position or course in two dimensions specially adapted to land vehicles with means for defining a desired trajectory
    • G05D1/0219Control of position or course in two dimensions specially adapted to land vehicles with means for defining a desired trajectory ensuring the processing of the whole working surface
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05DSYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
    • G05D1/00Control of position, course, altitude or attitude of land, water, air or space vehicles, e.g. using automatic pilots
    • G05D1/02Control of position or course in two dimensions
    • G05D1/021Control of position or course in two dimensions specially adapted to land vehicles
    • G05D1/0255Control of position or course in two dimensions specially adapted to land vehicles using acoustic signals, e.g. ultra-sonic singals
    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01DHARVESTING; MOWING
    • A01D34/00Mowers; Mowing apparatus of harvesters
    • A01D34/006Control or measuring arrangements
    • A01D34/008Control or measuring arrangements for automated or remotely controlled operation
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05DSYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
    • G05D1/00Control of position, course, altitude or attitude of land, water, air or space vehicles, e.g. using automatic pilots
    • G05D1/02Control of position or course in two dimensions
    • G05D1/021Control of position or course in two dimensions specially adapted to land vehicles
    • G05D1/0231Control of position or course in two dimensions specially adapted to land vehicles using optical position detecting means
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05DSYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
    • G05D1/00Control of position, course, altitude or attitude of land, water, air or space vehicles, e.g. using automatic pilots
    • G05D1/02Control of position or course in two dimensions
    • G05D1/021Control of position or course in two dimensions specially adapted to land vehicles
    • G05D1/0257Control of position or course in two dimensions specially adapted to land vehicles using a radar
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05DSYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
    • G05D1/00Control of position, course, altitude or attitude of land, water, air or space vehicles, e.g. using automatic pilots
    • G05D1/02Control of position or course in two dimensions
    • G05D1/021Control of position or course in two dimensions specially adapted to land vehicles
    • G05D1/0268Control of position or course in two dimensions specially adapted to land vehicles using internal positioning means
    • G05D1/027Control of position or course in two dimensions specially adapted to land vehicles using internal positioning means comprising intertial navigation means, e.g. azimuth detector
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05DSYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
    • G05D1/00Control of position, course, altitude or attitude of land, water, air or space vehicles, e.g. using automatic pilots
    • G05D1/02Control of position or course in two dimensions
    • G05D1/021Control of position or course in two dimensions specially adapted to land vehicles
    • G05D1/0268Control of position or course in two dimensions specially adapted to land vehicles using internal positioning means
    • G05D1/0274Control of position or course in two dimensions specially adapted to land vehicles using internal positioning means using mapping information stored in a memory device
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05DSYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
    • G05D1/00Control of position, course, altitude or attitude of land, water, air or space vehicles, e.g. using automatic pilots
    • G05D1/02Control of position or course in two dimensions
    • G05D1/021Control of position or course in two dimensions specially adapted to land vehicles
    • G05D1/0276Control of position or course in two dimensions specially adapted to land vehicles using signals provided by a source external to the vehicle
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05DSYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
    • G05D1/00Control of position, course, altitude or attitude of land, water, air or space vehicles, e.g. using automatic pilots
    • G05D1/02Control of position or course in two dimensions
    • G05D1/021Control of position or course in two dimensions specially adapted to land vehicles
    • G05D1/0276Control of position or course in two dimensions specially adapted to land vehicles using signals provided by a source external to the vehicle
    • G05D1/0278Control of position or course in two dimensions specially adapted to land vehicles using signals provided by a source external to the vehicle using satellite positioning signals, e.g. GPS
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05DSYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
    • G05D1/00Control of position, course, altitude or attitude of land, water, air or space vehicles, e.g. using automatic pilots
    • G05D1/20Control system inputs
    • G05D1/22Command input arrangements
    • G05D1/221Remote-control arrangements
    • G05D1/222Remote-control arrangements operated by humans
    • G05D1/224Output arrangements on the remote controller, e.g. displays, haptics or speakers
    • G05D1/2244Optic
    • G05D1/2245Optic providing the operator with a purely computer-generated representation of the environment of the vehicle, e.g. virtual reality
    • G05D1/2246Optic providing the operator with a purely computer-generated representation of the environment of the vehicle, e.g. virtual reality displaying a map of the environment
    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01DHARVESTING; MOWING
    • A01D2101/00Lawn-mowers

Definitions

  • the invention relates to an automatic working system, and also relates to a steering method and a self-moving device of the automatic working system.
  • Self-moving devices that work automatically in an automatic working system, such as smart lawn mowers and smart products such as sweeping robots, generally can automatically work on the user’s lawn or indoors after initial settings, thereby removing the user from cleaning the room. , Maintain lawn and other tedious and time-consuming housework.
  • smart products can work in the work area by walking on a random path.
  • a work method may cause uneven work in the work area.
  • the self-moving device may not be able to reach other parts of the working area through the narrow passage, or it may take a lot of time
  • the repeated cutting of the self-moving device in the narrow passage may cause uneven cutting; or for the normal working area of the non-narrow passage, some areas work repeatedly, but some areas cannot be cut.
  • the problem to be solved by the present invention is to provide a self-moving device that can work uniformly in a working area and a steering method thereof.
  • an automatic working system includes: a self-moving device, the self-moving device walks and works in a working area defined by a boundary, the working The area includes at least one partition
  • the self-moving device includes: a housing; a walking module installed on the housing to drive the self-moving device to walk and/or turn; a control module to control the walking module , To drive the walking and/or steering of the self-mobile device
  • the automatic working system further includes: a navigation mechanism, the navigation mechanism is used to record the walking position of the self-mobile device when walking in the work area , And determine the coverage value of the self-mobile device in each partition in the work area based on the walking position;
  • the control module controls the walking module to turn to drive away from the limit. Based on the coverage value corresponding to each walking range when the self-mobile device reaches the limit, the The control module controls the walking module to perform steering to a walking range whose coverage value meets a preset requirement.
  • control module controls the walking module to perform steering in any walking direction in the walking range.
  • the navigation mechanism is also used to determine the angular relationship between the walking direction of the self-mobile device and the limit, and the control module controls the walking module to perform steering based on the angular relationship.
  • the control module controls the walking module to perform steering based on the angular relationship.
  • the walking range includes: a tapered area with a preset angle centered on the current walking position of the self-moving device.
  • control module determines the coverage value corresponding to the walking range based on the coverage value of the partition that satisfies a preset distance from the self-mobile device.
  • control module determines the coverage value corresponding to the walking range based on the coverage value of the adjacent partition of the self-mobile device.
  • based on the coverage value corresponding to each walking range when the self-mobile device reaches the limit includes: based on the sum or average of the coverage values of the partitions in each walking range.
  • the at least one partition is defined by a partition boundary
  • the walking range of the walking module is determined based on the partition boundary of the partition turned by the walking module and the current walking position.
  • the walking range includes a user-defined walking range, or a preset walking range.
  • the coverage value of the partition is determined based on at least one of the following parameters: the walking time of the self-mobile device in each partition, the number of walking passes through each partition when walking, and the Describe the walking path length of each partition.
  • the preset requirement includes: the coverage value is less than or equal to the coverage value corresponding to other walking ranges.
  • the preset requirement includes: the coverage value is less than or equal to the maximum value of the coverage value corresponding to other walking ranges.
  • the preset requirement includes: the coverage value is less than or equal to the preset coverage value.
  • the preset coverage value includes: a user-defined coverage value, or a preset coverage value.
  • the navigation mechanism includes at least one of the following: an ultrasonic sensor, a radar sensor, an optical sensor, a UWB sensor, an inertial navigation system, a satellite navigation mechanism, and a vision sensor.
  • the navigation mechanism is fixedly or detachably installed on the self-moving device.
  • the embodiment of the present invention also provides a steering method of an automatic working system.
  • the self-moving device walks and works in a working area defined by a boundary.
  • the method may include: monitoring the positional relationship between the self-moving device and the boundary; When it is monitored that the self-mobile device reaches the limit, based on the coverage value corresponding to each walking range, the self-mobile device is controlled to turn to a walking range whose coverage value meets a preset requirement.
  • the method before controlling the steering from the mobile device to a walking range whose coverage value meets a preset requirement, the method further includes: dividing the map of the working area into multiple partitions; The walking position passed by the walking module when walking in the working area; and the coverage value in each partition of the working area is determined based on the walking position.
  • controlling the steering from the mobile device to a walking range whose coverage value meets a preset requirement may include: controlling the steering from the mobile device to any walking direction in the walking range.
  • the method may further include: determining the angular relationship between the walking direction of the self-mobile device and the limit; when the self-mobile device reaches the limit, if the angular relationship is an obtuse angle, control the direction from the mobile device to the obtuse angle Steering.
  • the walking range may include: a tapered area with a preset angle centered on the current walking position of the mobile device.
  • the coverage value corresponding to the walking range is determined based on the coverage value of the partition that satisfies a preset distance from the self-mobile device.
  • the coverage value corresponding to the walking range is determined based on the coverage value of the adjacent partition with the self-mobile device.
  • controlling the steering from the mobile device to the walking range whose coverage value meets the preset requirements may include: may be based on the sum of the coverage values of the partitions in each walking range/ Or the average value, control the walking module to steer to the walking range where the coverage value meets the preset requirements.
  • At least one partition may be defined by a partition boundary. Accordingly, the walking range of the walking module can be determined based on the partition boundary of the partition turned by the walking module and the current walking position.
  • the walking range may include a user-defined walking range, or a preset walking range.
  • the coverage value of the partition may be determined based on at least one of the following parameters: the walking time of the self-mobile device in each partition, the number of walking passes, and the length of the walking path.
  • the preset requirement may include: the coverage value is less than or equal to the coverage value corresponding to other walking ranges.
  • the preset requirements may include: the coverage value is less than or equal to the maximum value of the coverage value corresponding to other walking ranges.
  • the preset requirement may include: the coverage value is less than or equal to the preset coverage value.
  • the preset coverage value may include: a user-defined coverage value, or a preset coverage value.
  • the navigation mechanism may include but is not limited to at least one of the following: ultrasonic sensors, radar sensors, optical sensors, UWB sensors, inertial navigation systems, satellite navigation mechanisms, and vision sensors.
  • the navigation mechanism can be fixedly or detachably installed on the self-moving device.
  • the embodiment of the present invention also provides a self-moving device that walks and works in a working area defined by a boundary, the working area includes at least one partition, and the self-moving device includes: a housing; a walking module , Installed on the housing, used to drive the walking and/or turning of the self-moving device; a control module, controlling the walking module to drive the walking and/or turning of the self-moving device; a navigation mechanism, The navigation mechanism is used to record the walking position passed by the self-mobile device when walking in the work area, and determine the coverage value of the self-mobile device in each partition in the work area based on the walking position;
  • control module controls the walking module to turn to drive away from the limit
  • the control module controls the walking module to perform steering to a walking range whose coverage value meets a preset requirement.
  • control module controls the walking module to perform steering in any walking direction in the walking range.
  • the navigation mechanism is also used to determine the angular relationship between the walking direction of the self-mobile device and the limit, and the control module controls the walking module to perform steering based on the angular relationship.
  • the control module controls the walking module to perform steering based on the angular relationship.
  • the walking range includes: a tapered area with a preset angle centered on the current walking position of the self-moving device.
  • control module determines the coverage value corresponding to the walking range based on the coverage value of the partition that satisfies a preset distance from the self-mobile device.
  • control module determines the coverage value corresponding to the walking range based on the coverage value of the adjacent partition of the self-mobile device.
  • based on the coverage value corresponding to each walking range when the self-mobile device reaches the limit includes: based on the sum or average of the coverage values of the partitions in each walking range.
  • the at least one partition is defined by a partition boundary, and accordingly, the walking range of the walking module is determined based on the partition boundary of the partition turned by the walking module and the current walking position.
  • the walking range includes a user-defined walking range, or a preset walking range.
  • the embodiment of the present invention also provides a steering method of a self-moving device, which walks and works in a working area defined by a boundary, and the method includes: monitoring the positional relationship between the self-moving device and the boundary; When it is monitored that the self-mobile device reaches the limit, based on the coverage value corresponding to each walking range, the self-mobile device is controlled to turn to a walking range whose coverage value meets a preset requirement.
  • the method before controlling the steering from the mobile device to a walking range whose coverage value meets a preset requirement, the method further includes: dividing the map of the working area into multiple partitions; The walking position passed by the walking module when walking in the working area; and the coverage value in each partition of the working area is determined based on the walking position.
  • the present invention has the beneficial effects of using a navigation mechanism to record the walking position passed by the mobile device when walking in the work area, and determine the coverage value of each partition of the mobile device in the work area based on the walking position .
  • the control module controls the walking module to turn to drive away from the limit.
  • the control module can control the walking module to the walking range whose coverage value meets the preset requirements based on the coverage value corresponding to each walking range when the self-mobile device reaches the limit. Perform steering.
  • the path planning of the self-mobile device during the walking process is realized, which is beneficial to the uniform work of the self-mobile device in the working area and improves the work efficiency of the self-mobile device.
  • Fig. 1 is a schematic diagram of an automatic working system according to an embodiment of the present invention
  • Figure 2 is a schematic diagram of functional modules of a lawn mower in an embodiment of the present invention.
  • FIG. 3 is a schematic diagram of the structure of the lawn mower in an embodiment of the present invention.
  • FIG. 4 is a schematic diagram of working area division according to an embodiment of the present invention.
  • Figures 5-6 are schematic diagrams of a turning method of a lawn mower according to an embodiment of the present invention.
  • Fig. 7 is a schematic diagram of a turning method of a lawn mower according to an embodiment of the present invention.
  • FIGS. 8-9 are schematic diagrams of the turning method of the lawn mower according to another embodiment of the present invention.
  • FIGS. 10-11 are schematic diagrams of a turning method of a lawn mower according to another embodiment of the present invention.
  • Fig. 12 is a schematic diagram of a method for quickly leaving a narrow area according to an embodiment of the present invention.
  • Fig. 13 is a schematic diagram of a method for quickly leaving a narrow area according to another embodiment of the present invention.
  • Figure 14 is a flow chart of a method for turning a lawn mower according to an embodiment of the present invention.
  • Fig. 15 is a schematic diagram of a scene of the present invention.
  • the automatic working system of this specific embodiment may include: a mobile device 1, a boundary 7, and a base station 3.
  • the self-mobile device 1 walks and works within the working area 4 defined by the boundary 7, and the base station 3 can be used to supply the self-mobile device with insufficient energy to return and supplement energy.
  • the boundary 7 may be the periphery of the entire working area, which may be called the outer boundary, which is usually connected end to end to enclose the working area 4, and may be electronic or physical.
  • the physical boundary can only be the natural physical boundary formed by the boundary between the working area 4 and the non-working area, for example: the natural boundary between grass and non-grass, or the boundary formed by walls, fences, railings, etc.; electronic boundaries It is possible to lay wires around the working area 4 and use the virtual limit signals from the limit signal generating device connected to the wires, such as electromagnetic signals, acoustic signals or optical signals. As shown in Figure 1, there may also be an area 5 that is not suitable for working with the mobile device 1 in the work area, and the area 5 forms a boundary, such as flower beds, pools, obstacles, etc., which can be called inner boundaries. The part is the work area.
  • the automatic working system may also include a navigation mechanism 26 for positioning.
  • the navigation mechanism 26 may be a separate device or integrated with the self-moving device 1.
  • the navigation mechanism 26 is detachable or It is fixedly installed on the self-moving device 1.
  • the self-moving device 1 may be an automatic lawn mower, a sweeping robot, an automatic snowplow, and other equipment suitable for unattended operation. They automatically walk on the surface of the work area to perform grass cutting, dust collection or snow sweeping work.
  • the self-moving equipment is not limited to automatic lawn mowers, sweeping robots, and automatic snow sweepers, and may also be other equipment suitable for unattended operation, which is not limited in this application.
  • the automatic working system is an automatic lawn mower system, that is, the self-moving device 1 is an automatic lawn mower 20 as an example for detailed description.
  • the boundary 7 defines the working area of the automatic lawn mower 20, and the boundary 7 may be a physical boundary or an electronic boundary.
  • the automatic lawn mower 20 includes a housing 27, and may also include a walking module 21, a working module 22, a control module 24, and an energy module 25.
  • the control module 24 is connected to and controls the walking module 21 and the working module 22 to realize the automatic walking and working of the automatic lawn mower 20.
  • the walking module 21 may include a wheel set and a walking motor driving a wheel set.
  • the wheel set includes a driving wheel 211 driven by the walking motor and an auxiliary wheel 212 that assists in the support housing. It is understood that the walking module 21 may also It is a crawler structure.
  • the walking motor can be directly connected to the driving wheels, and the right driving wheel and the left driving wheel are each equipped with a walking motor to achieve differential output to control the steering; in another embodiment, the walking motor can also be set to drive Device, that is, the same motor drives the right drive wheel and the left drive wheel through different transmission devices to achieve differential output to control the steering.
  • the working module 22 is a mowing module, including a cutting blade 221, which can be driven by a cutting motor 222 to work.
  • the center of the working module 22 is located on the central axis X of the lawn mower 20, is located below the housing, between the auxiliary wheel and the driving wheel, and can also be offset to the left or right side of the housing.
  • the energy module 25 is fixedly or detachably installed in the housing, and may be a battery pack or the like. During operation, the battery pack releases electric energy to keep the lawn mower 20 working and walking. When it is not working, the battery can be connected to an external power source to supplement power; the automatic lawn mower 20 can also automatically search for the base station 3 to supplement power when it detects that the power is insufficient.
  • the control module 24 can be a controller, which can control the automatic lawn mower 20 to walk, turn, and work automatically according to a preset program or received instructions.
  • the lawn mower 20 may further include a communication module 23, which may be used for communication between the lawn mower 20 and the client or server.
  • the automatic lawn mower system may also include: a navigation mechanism 26, which may include but is not limited to at least one of the following: ultrasonic sensors, radar sensors, optical sensors (for example: laser sensors, infrared sensors), UWB sensors , Satellite navigation agencies (RTK, GPS, Beidou and other navigation agencies), visual sensors, etc.
  • the navigation mechanism 26 may also include an inertial navigation system.
  • the inertial navigation system may include a gyroscope, an accelerometer, etc., and the inertial navigation system can cooperate with the satellite navigation mechanism to assist in navigation when the satellite signal is poor.
  • the navigation mechanism 26 can be installed above the housing of the lawn mower 20 at a position that is conducive to receiving external positioning signals, or can also be mounted at the front of the housing to ensure that the lawn mower 20 can be turned to the inside of the working area in time. Prevent it from exceeding the work area. Of course, it can also be installed at other positions of the housing, which is not limited in this application.
  • the navigation mechanism 26 can be used to record the walking position of the lawn mower 20 when it is walking in the work area, and it can be detachably or fixedly installed on the lawn mower 20, or belongs to the lawn mower 20. a part of.
  • the navigation mechanism 26 When the navigation mechanism 26 is detached from the automatic lawn mower 1, it can work independently and record the position coordinates it passes through when it moves; when the navigation mechanism 26 is installed on the housing 27 of the automatic lawn mower 1, it can work with
  • the control module of the automatic lawn mower 1 is electrically connected to output the current position coordinates of the automatic lawn mower 1.
  • the user can hold the navigation mechanism 26 or control the automatic lawn mower 20 installed with the navigation mechanism to walk along the boundary of the working area (including the inner boundary and the outer boundary) to record the boundary position coordinates of the working area. Or you can draw the boundaries of the work area on the electronic map to generate a map of the work area.
  • the map boundary 2 generated by the above three methods can be offset from the boundary 7 in FIG. 1 to the working area by a certain distance, so that the lawn mower 20 does not work based on the map boundary 2. It will exceed the real limit of the working area to ensure safety.
  • the distance can preferably be 30cm.
  • the automatic lawn mower system with navigation function is used to establish a map of the working area, and the grass cutting work is carried out on the basis of the map, eliminating the need for the user to lay out the boundary line and reducing the workload. It should be noted that the boundaries encountered during the operation of the lawn mower described later in this application can all refer to the above-mentioned map boundary 2.
  • the work area map can be divided into multiple partitions according to user-defined partition requirements, preset partition requirements in the lawn mower system, or lawn mower system accuracy, such as positioning accuracy. , After the division, the cutting requirements of each partition are roughly the same.
  • Figure 4 is a schematic diagram of the working area division displayed in the client. According to the positioning accuracy of the navigation mechanism, the working area is divided into multiple grids of equal area as shown in Figure 4. In this schematic diagram, the color of the grid is from light to dark. Represents the coverage value in the work area corresponding to the grid from low to high. It is worth noting that in actual applications, there may be deviations in the data, so the equal area here can be roughly equal in area, and it does not need to be 100% equal. Fig.
  • the work area can also be divided according to other standards, which is not limited in this application.
  • the above-mentioned map division process can be performed in the navigation organization 26, the server, and the lawn mower 20, which is not limited in this application.
  • the map can be created not only along the outer boundary but also along the inner boundary during the mapping process. Therefore, when the work area is divided later, the map obtained after the area 5 is removed can be divided.
  • the navigation mechanism 26 can record the walking position it passes in the work area, and determine the coverage value of the lawn mower 20 in each partition according to the recorded walking position.
  • the coverage value of each partition can be determined based on but not limited to at least one of the following walking position parameters, including: the walking path of the lawn mower in each partition, the walking time, and the number of walking passes.
  • the coverage value may be the corresponding parameter or the proportion of the corresponding parameter determined based on the above-mentioned walking position parameter of the lawn mower 20, such as the proportion of the walking time of each partition in the total walking time.
  • the lawn mower determines the coverage value during the walking time of each zone.
  • the coverage values in are: 9.1%, 18.2%, 27.2%, 36.4%.
  • it can also be a corresponding parameter or a corresponding ratio determined by other walking position parameters such as a walking path, which is not limited in this application.
  • the control module can control the walking module to turn to drive away from the limit 2, and based on the coverage value corresponding to each walking range when the lawn mower 20 reaches the limit 2, control the walking module to meet the coverage value Preset the required walking range to perform steering.
  • the coverage value is used to limit the walking range that the lawnmower turns when it reaches the limit, instead of random turning, that is, by controlling the walking range of the lawnmower 20 to turn
  • the coverage value is used to plan the walking path of the lawn mower 20 to realize the even work of the lawn mower in the working area.
  • the coverage value limitation method proposed in this application can realize the uniform cutting of the lawn mower 20 in the narrow area and the rapid departure of the lawn mower 20 Narrow area.
  • Fig. 5 is a schematic diagram of the turning method of the lawn mower in an embodiment.
  • the walking range can be cone or fan shape. Specifically, it can be centered on the current walking position of the lawn mower.
  • the control module can control the steering and coverage value of the walking module to meet the preset requirements based on the coverage value of each cone when the mower reaches the limit. Tapered.
  • the lawn mower when the lawn mower reaches the walking position corresponding to the limit, it can take the current walking position as the center and start from one side of the limit to the other side in the form of a cone.
  • the steering range is scanned sequentially (in Figure 5, the dashed cone and the solid cone are taken as examples) to obtain the coverage value corresponding to each cone when turning.
  • the scanning described in the embodiment of the present application may be implemented by a related program in the lawn mower system, rather than a real sensor scanning.
  • the scanning direction can be either clockwise or counterclockwise, as long as all the swivelable walking ranges corresponding to the lawnmower reach the limit are scanned completely. How to scan and the starting position of the scan are not covered by this application. limited.
  • the coverage value corresponding to the cone can be the coverage value of all the partitions in the cone, all the partitions in the cone can be the complete partitions contained in the cone, and the partitions that the cone passes through are not completely contained in the cone, correspondingly Yes, the coverage value of all partitions in the cone can be the sum, product or average of the coverage values of these partitions, or the maximum coverage value, minimum coverage value, median, etc. of these partitions.
  • the coverage value that meets the preset requirements can be selected from each coverage value, and the lawn mower can be controlled to turn to the cone area corresponding to the coverage value.
  • the taper radius and the preset angle can be determined according to a user-defined method or a pre-set method by the system, which is not limited in this application.
  • the cone is only a schematic description of the walking range.
  • the walking range can also be fan-shaped or quadrilateral, which is not limited in this application.
  • the lawnmower can be controlled to turn to any walking direction in the tapered area, where the walking direction of the lawnmower 20 is along its longitudinal center axis. As shown in Figure 6, when the solid cone is the walking range that meets the requirements, the lawnmower can be controlled to select any walking direction in the cone to perform steering, and it can be performed in the steering direction shown by the dashed line in Figure 6 Steering.
  • the two rear driving wheels when the lawn mower reaches the limit, can be controlled to turn at different speeds or in different directions, or one rear driving wheel can be controlled to stop, and the other rear driving wheel can perform The turning method realizes the turning of the lawn mower.
  • the boundary 2 in the working area may be curved or straight.
  • the boundary is described as a straight line.
  • the embodiments of the present application are also applicable to scenarios where the boundary is not linear.
  • the walking path of the mower may exceed the limit when turning.
  • the intersection of the mower's walking direction and the limit before turning and the intersection of the walking direction and the limit after turning may not coincide, that is, There are two intersection points (points M, N).
  • the walking direction of the lawn mower when turning can be regarded as having only one intersection with the boundary (as shown in Figure 5 and Figure 6).
  • the intersection point P) does not affect the control of the walking direction of the lawn mower after turning.
  • Figs. 8-9 are schematic diagrams of the turning method of the lawn mower in another embodiment.
  • the walking range may be a line segment with a preset length centered on the current walking position.
  • the working area corresponding to the turning of the lawnmower can be scanned in the form of line segments (the dashed and solid line segments are taken as examples in Figure 8), that is, the current
  • the walking position is the center, scanning from one side of the boundary to the other side in the form of a line segment to obtain the coverage value corresponding to each line segment when turning.
  • the coverage value corresponding to each line segment After the coverage value corresponding to each line segment is obtained, the coverage value that meets the preset requirements can be selected from it, and the mower can be controlled to turn to the line segment direction corresponding to the coverage value (also called the walking direction).
  • the coverage value corresponding to the line segment can be the coverage value of all the partitions that the line segment passes through in a certain walking direction, it can be the sum, product, or average of the coverage values of these partitions, and it can also be the largest coverage value and the smallest coverage value in these partitions. Coverage value, median, etc.
  • the partition passed by the line segment may refer to the situation where the line segment has at least one intersection with the partition.
  • the preset length of the line segment may be determined according to a user-defined method or a method preset by the system, which is not limited in this application.
  • the lawnmower can be controlled to turn to the direction corresponding to the line segment.
  • the walking direction of the lawnmower 20 can be along its longitudinal center axis.
  • the lawnmower can be controlled to select a line segment that meets the preset requirements to perform steering, as shown in Figure 9 with the dotted line marking the steering direction.
  • FIGs 10-11 are schematic diagrams of a lawn mower steering method according to another embodiment of the application.
  • the work area map is divided into multiple grids (for example: grid 13).
  • the grids can also be called partitions.
  • the work area map is divided into at least A zone can be defined by zone boundaries.
  • the walking range of the lawn mower can be determined by the current walking position of the lawn mower 20 and the partition boundary, so that the turning angle of the lawn mower can be between the current walking position and the turning angle. Between the connecting lines of certain two end points in the partition boundary, it is ensured that the lawn mower can walk to the corresponding partition after turning. As shown in Fig.
  • the walking direction of the lawn mower when turning can be between PA and PB.
  • the adjacent partitions can also be taken as a whole, and the lawn mower's current position can be determined according to the current walking position of the lawn mower and the boundaries of the whole.
  • the walking range is calculated by calculating the average or maximum value or middle position of the overall coverage value, and the calculated value is taken as the overall coverage value.
  • the control module can select any direction in the walking range as the walking direction when performing the steering, and control the walking module to perform the steering in the walking direction.
  • grids 12 and 13 are two adjacent grids with similar coverage values, then grid 12 and grid 13 can be taken as a whole, and the overall coverage value can be determined.
  • 12 and 13 are the partitions for selecting steering, the lawn mower can select the walking direction between PA and PC to perform steering.
  • the control module may determine the coverage value corresponding to the walking range based on the coverage value of the adjacent partition of the lawn mower, and control the turning coverage of the lawn mower to meet the preset requirement of the walking range.
  • the walking range for controlling the turning and covering value of the lawnmower to meet the preset requirement may be a zone where the turning and covering value of the controlling the lawnmower meets the preset requirement. That is, the walking range of the lawnmower can be determined by the current walking position of the lawnmower and the boundary of the partition adjacent to the walking position when the lawnmower reaches the limit.
  • the lawnmower When the lawnmower reaches the current walking position and turns to drive away from the limit, it can scan the corresponding partitions when turning in the form of partitions to obtain the coverage value of the neighboring partition with the lawnmower, or it can also be from the coverage value of the partition Directly read the coverage value of the partition adjacent to the lawn mower, select the coverage value that meets the preset requirements, and control the lawn mower to turn to the partition corresponding to the coverage value.
  • the partial partition when there are partial coverage values similar to or the same in the adjacent partition with the lawn mower, the partial partition can be taken as a whole, and then the whole can be covered with other adjacent partitions. The values are compared, and the coverage value that meets the preset requirements is selected.
  • the partition adjacent to the lawn mower may include the partition where the lawn mower is located when the limit is reached, and may also include the partition adjacent to the partition where the lawn mower is located.
  • FIG. 11 is a schematic diagram of a method for turning a lawn mower according to another embodiment of the present invention.
  • the partition adjacent to the lawn mower may include: grids 11, 16 and 12, or also It can be grids 12, 13, 14, 15, and 16, that is, these grids can all be partitioned adjacent to the lawn mower.
  • the walking range can also be determined according to the partition adjacent to the adjacent partition, that is, when the area adjacent to the lawn mower is When the coverage value is the same, the coverage value of the neighboring partition with the neighboring partition can be compared, and the partition whose coverage value meets the preset requirements can be selected to make the walking module turn to the partition. Therefore, in a scenario where the coverage values of the adjacent partitions of the lawn mower are approximately the same, the steering of the walking module can be controlled by comparing the coverage values of the adjacent partitions with the adjacent partitions. If the coverage value is still approximately the same at this time, the coverage value of the adjacent partition with the partition can be compared again, which is not limited in this application.
  • the control module may determine the coverage value corresponding to the walking range based on the partition coverage value of the lawn mower that meets the preset distance, and control the steering coverage value of the walking range that meets the preset requirements.
  • the preset distance may include: a preset distance range.
  • the walking range for controlling the turning and covering value of the lawnmower to meet the preset requirement may be a zone where the turning and covering value of the controlling the lawnmower meets the preset distance. That is, the walking range of the lawnmower can be determined by the current walking position of the lawnmower and the partition boundary that meets the preset distance from the walking position when the lawnmower reaches the limit.
  • the walking range may include: a fan shape or a cone with a preset angle. Specifically, when the lawnmower uses the cone as shown in FIG. 5 to scan, it may be based on the cone.
  • the coverage value of the conical or fan-shaped area that is, the fan shape including the outer arc and the inner arc
  • the cone-shaped coverage value or the sector-shaped coverage value is similar to the previous determination method, and will not be repeated in this application.
  • the cone shape in addition to the cone shape, it can also be a quadrilateral shape that meets a predetermined distance from the lawn mower and other forms of graphics, which are not limited in this application.
  • the lawnmower in the process of scanning the work area through the line segment, based on the partition coverage value of the same distance from the point P in the work area, the lawnmower can be controlled to turn to the walking range where the coverage value meets the preset requirements.
  • the preset distance may be a user-defined distance or a distance preset by the system, which is not limited in this application.
  • the walking range can be a user-defined walking range, or a walking range preset by the lawn mower system, that is, the user can define the walking range of the lawn mower by himself. Or the system can also pre-set the walking range of the mower to control the turning of the mower.
  • the coverage values of each partition in the map obtained after the area 5 is removed and divided can be determined. Therefore, when the lawn mower turns, the coverage value of each partition obtained after removing area 5 can be based on the coverage value corresponding to each walking range when the lawn mower reaches the limit, and the control module controls the walking module to the coverage value
  • the walking range steering that meets the preset requirements. The specific method for determining the walking range and the steering rules are similar to the scenario where the area 5 does not exist, and will not be repeated in this application.
  • the lawn mower 20 after the lawn mower 20 has selected the zone to be turned and turned to the walking direction corresponding to the zone to work, if it turns to the walking direction, an abnormal situation that is not marked on the map is detected (for example: If you are trapped, dropped, bumped, lifted and other abnormalities), you can deal with these abnormal situations first.
  • the lawn mower can bypass the anomaly, and continue to work along the previously selected walking direction according to the original map after bypassing the anomaly; or, after bypassing the anomaly, repair the map with a new path. And based on the repaired map to re-zone and re-determine the coverage value of each zone, so as to control the turning of the lawnmower based on the re-determined zone coverage value.
  • an alarm can be issued so that the user can deal with the abnormal situation in time and control the lawnmower to continue working based on the original map; or the user can mark the abnormality in the map , And control the lawn mower to re-zone based on the map of the abnormal situation, and then re-determine the coverage value of each zone, so as to control the walking module to turn to the walking range where the coverage value meets the preset requirements based on the new map; or when the limit is reached Previously, the lawn mower first detected whether there is an abnormality in each walking range. If there is no abnormality, the steering is controlled based on the coverage value of each zone.
  • the abnormality is drawn out and a new map is formed, and then the coverage of each zone is re-determined Value to control the steering of the walking module.
  • the lawnmower detects an obstacle, collision, or other abnormal conditions, it can choose one of the above-mentioned methods to control the turning of the lawnmower, which will not be repeated here in this application.
  • the two driving wheels in the process of controlling the steering of the walking module by the control module, can be controlled to realize the steering of the lawn mower 20 at different speeds or different rotation directions, so that the lawn mower turns to the slower rotating speed.
  • the steering is performed on the side of the driving wheel or the direction of rotation corresponding to the side of the driving wheel that is moving backward.
  • the lawn mower may not be able to reach other parts of the working area through the narrow passage; or it takes a lot of time to successfully pass through the narrow passage, resulting in some areas in the working area that cannot be cut. To the defects of uneven cutting.
  • a path planning method is provided.
  • the lawn mower 20 can record when it is walking in the work area during the walking process. Based on the walking position, the coverage value of the lawn mower in each zone is determined based on the walking position.
  • the control module may control the lawn mower 20 to steer to a walking range with a coverage value that meets the preset requirements based on the coverage value corresponding to each walking range when the limit is reached, so as to drive away from the limit.
  • the path planning of the lawn mower 20 during the walking process is realized, which is beneficial to realize the uniform operation of the lawn mower 20 in the working area.
  • the control module when the lawn mower reaches the limit, can control the walking module to turn to drive away from the limit. Based on the coverage value corresponding to each walking range when the lawn mower reaches the limit, control the walking module to cover If the value is less than or equal to the corresponding coverage value of other walking ranges, the steering will be executed. That is, when the control module obtains the coverage value of each walking range, it can select the walking range with the smallest coverage value, so that the control module controls the walking module to turn to the walking range with the smallest coverage value. After determining the steering walking range, the walking module can be controlled to turn to any walking direction in the walking range.
  • the control module can control the walking module to turn to drive away from the limit. Based on the coverage value corresponding to each walking range when the lawnmower reaches the limit, select which is less than or equal to the other The walking range corresponds to the maximum coverage value, and the walking module is controlled to perform steering to the walking range corresponding to the coverage value. That is, when the control module obtains the coverage value of each walking range, it can select at least one walking range corresponding to when the coverage value is not maximum, and randomly select a walking range from the walking ranges that meet the requirements. After determining the steering walking range, the walking module can be controlled to turn to any walking direction in the walking range.
  • the control module when the lawn mower reaches the limit, can control the walking module to turn to drive away from the limit. Based on the coverage value corresponding to each walking range when the lawn mower reaches the limit, control the walking module to cover The value meets the travel range that is less than or equal to the preset coverage value to perform steering.
  • the preset coverage value may include: a user-defined coverage value and/or a preset coverage value, that is, it may be a user-defined and/or preset coverage value that each partition needs to reach. Among them, the user-defined coverage value can be determined according to the user’s needs for lawn mowing or the user’s personal habits, etc.
  • the pre-set coverage value can be reached by each pre-set area in the lawn mower.
  • the coverage value is determined. For example, as shown in Figure 11, when the lawn mower 20 turns to drive away from the limit after reaching the limit, each walking range includes grids 12 to 16, and the coverage values of grids 12-16 are: 9.1% and 9.1%, respectively , 18.2%, 27.2%, 36.4%, the density of the filled line segments in the grid is used to identify the coverage value. The denser the filled line segment, the higher the coverage value. If the preset coverage value of the system is 20%, the grass will be cut When turning, the machine 20 can be turned from any one of the grids 12 to 14 corresponding to 9.1%, 9.1%, and 18.2%. As shown in FIG. 11, it can turn to grid 13. In the embodiment of the present application, there may also be other ways of determining the preset requirement of the coverage value when turning, which is not limited in the present application.
  • the reaching limit of the lawn mower may be the reaching limit of the navigation mechanism 26 and/or the arrival of the navigation mechanism 26 at a position meeting the preset distance threshold from the limit.
  • the preset distance threshold between the navigation mechanism 26 and the limit may be between 20 cm and 80 cm.
  • This application also provides another path planning method.
  • the navigation mechanism can also be used to determine the angular relationship between the walking direction of the lawn mower 20 and the limit.
  • the control module can also control the walking module to perform steering based on the angle relationship.
  • the direction with an obtuse angle can be selected to control the lawn mower to perform steering in the obtuse angle direction.
  • the angle relationship between the walking direction of the lawn mower 20 in the working area and one side of the limit is an obtuse angle.
  • Fig. 13 is another schematic diagram of using this path planning method to quickly leave a narrow area.
  • the lawn mower 20 When the lawn mower 20 reaches the limit and turns to leave the limit, it adopts the combination of the steering method based on the coverage value proposed in the embodiment of the present application.
  • the steering method based on the angle relationship realizes the control of the turning of the lawn mower.
  • the lawn mower 20 can be turned into the working area under the control of the control module, so that it can work uniformly in the working area and quickly leave the narrow area.
  • This application also provides another path planning method.
  • the lawn mower can walk a certain distance along the limit after encountering the limit, and then use the above-mentioned method based on the coverage value or based on the coverage value and The angle relationship is combined to perform steering to achieve uniform mowing or quickly leave a narrow area.
  • Figure 12 a schematic diagram of using this path planning method to quickly leave a narrow area.
  • the lawn mower 20 When the lawn mower 20 reaches the limit and turns to leave the limit, it first makes a small rotation to make the walking direction consistent with the limit 2 direction, and then Walk for a distance along the boundary 2, and then control the lawn mower to turn to the walking range where the coverage value meets the preset requirements according to the method of controlling the steering based on the coverage value proposed in the embodiment of the present application. At this time, the lawn mower 20 can Under the control of the control module, it turns into the working area, so that it can quickly leave the narrow area. That is, in this embodiment, in the process of turning the lawn mower, in addition to the method of using the cover value to control the turning proposed in the embodiment of this application, the lawn mower can also be controlled after turning starts and before completing the turning.
  • the boundary travels a distance.
  • the distance can be set to 20 cm to 100 cm.
  • the boundary 2 in the working area may be curved as a whole, but at a specific intersection point, such as the intersection point M between the mower walking direction and the boundary in Figure 7, the boundary near the intersection point M can be It can be regarded as a straight line; or it can be said that although the limit may be curved, when it reaches the position where the limit turns, as shown in the intersection point N in Figure 7, the extension direction of the limit 2 can be a straight line, and the extension direction is the limit 2 Tangent.
  • the navigation mechanism is used to record the walking position passed by the mobile device while walking in the work area, and the coverage value of each partition of the mobile device in the work area is determined based on the walking position.
  • the control module controls the walking module to turn to drive away from the limit.
  • the control module can control the walking module to the walking range whose coverage value meets the preset requirements based on the coverage value corresponding to each walking range when the self-mobile device reaches the limit. Perform steering.
  • the path planning of the self-mobile device during the walking process is realized, which is beneficial to realize the uniform work of the self-mobile device in the working area, and improves the work efficiency of the self-mobile device.
  • the embodiment of the present invention also provides a steering method of an automatic working system, as shown in FIG. 14, which may include:
  • the self-moving device can walk and work in the working area defined by the boundary.
  • the limit can be an electronic limit or a virtual limit based on a map.
  • the execution body of the steering method of the above-mentioned automatic working system may be a controller or a server, where the controller may be a controller in a mobile device or a controller provided in a navigation mechanism.
  • the application is not limited.
  • the method before controlling the steering from the mobile device to the walking range whose coverage value meets the preset requirements, may further include: dividing the map of the working area into multiple partitions; and recording the walking module in the working area The walking position passed while walking; based on the walking position, the coverage value of the walking module in each partition in the work area is determined.
  • controlling the steering from the mobile device to a walking range whose coverage value meets a preset requirement may include: controlling the steering from the mobile device to any walking direction in the walking range.
  • the method may further include: determining the angular relationship between the walking direction of the self-mobile device and the limit; when the self-mobile device reaches the limit, if the angular relationship is an obtuse angle, control the direction from the mobile device to the obtuse angle Steering.
  • the walking range may include: a tapered area with a preset angle centered on the current walking position of the mobile device.
  • the coverage value corresponding to the walking range is determined based on the coverage value of the partition that satisfies a preset distance from the self-mobile device.
  • the coverage value corresponding to the walking range is determined based on the coverage value of the adjacent partition with the self-mobile device.
  • controlling the steering from the mobile device to the walking range whose coverage value meets the preset requirements may include: may be based on the sum of the coverage values of the partitions in each walking range/ Or the average value, control the walking module to steer to the walking range where the coverage value meets the preset requirements.
  • At least one partition may be defined by a partition boundary. Accordingly, the walking range of the walking module can be determined based on the partition boundary of the partition turned by the walking module and the current walking position.
  • the walking range may include a user-defined walking range, or a preset walking range.
  • the coverage value of the partition may be determined based on at least one of the following parameters: the walking time of the self-mobile device in each partition, the number of walking passes, and the length of the walking path.
  • the preset requirement may include: the coverage value is less than or equal to the coverage value corresponding to other walking ranges.
  • the preset requirements may include: the coverage value is less than or equal to the maximum value of the coverage value corresponding to other walking ranges.
  • the preset requirement may include: the coverage value is less than or equal to the preset coverage value.
  • the preset coverage value may include: a user-defined coverage value, or a preset coverage value.
  • the navigation mechanism may include but is not limited to at least one of the following: ultrasonic sensors, radar sensors, optical sensors, UWB sensors, inertial navigation systems, satellite navigation mechanisms, and vision sensors.
  • the navigation mechanism can be fixedly or detachably installed on the self-moving device.
  • the navigation mechanism is used to record the walking position passed by the mobile device while walking in the work area, and the coverage value of each partition of the mobile device in the work area is determined based on the walking position.
  • the control module controls the walking module to turn to drive away from the limit.
  • the control module can control the walking module to the walking range whose coverage value meets the preset requirements based on the coverage value corresponding to each walking range when the self-mobile device reaches the limit. Perform steering.
  • the path planning of the self-mobile device during the walking process is realized, which is beneficial to realize the uniform work of the self-mobile device in the working area or quickly leave the narrow area, and improve the work of the self-mobile device effectiveness.
  • Figure 15 shows the user interface of a lawn mower app, in which a map of the work area is displayed.
  • the working area is an irregular area
  • the color from light to dark in the map displayed on the user interface indicates the coverage value in the working area from low to high.
  • the lawn mower 20 equipped with a GPS navigation mechanism is working in the working area
  • its working time in each zone can be recorded, and its coverage value in each zone can be determined based on the working time.
  • the coverage value in each partition can be updated in real time according to the current work situation, and the coverage value updated in real time can be displayed in the user interface through the shade of the color.
  • the lawn mower 20 can select a walking range whose coverage value meets a preset requirement to perform the steering based on the coverage value of each walking range in the working area when turning. Specifically, a walking range whose coverage value is less than a preset coverage value can be selected to perform steering. Further, any walking direction is selected from the walking range that meets the preset requirements to perform the steering.

Landscapes

  • Engineering & Computer Science (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Physics & Mathematics (AREA)
  • Aviation & Aerospace Engineering (AREA)
  • General Physics & Mathematics (AREA)
  • Automation & Control Theory (AREA)
  • Environmental Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Acoustics & Sound (AREA)
  • Electromagnetism (AREA)
  • Harvester Elements (AREA)
  • Control Of Position, Course, Altitude, Or Attitude Of Moving Bodies (AREA)
  • Guiding Agricultural Machines (AREA)

Abstract

一种自动工作系统及其转向方法、自移动设备(1),在自移动设备(1)到达界限(7)时,控制模块(24)控制行走模块(21)转向以驶离界限(7),同时,基于自移动设备(1)到达界限(7)时各个行走范围对应的覆盖值,控制模块(24)可以控制行走模块(21)向覆盖值满足预设要求的行走范围执行转向,可实现自移动设备(1)在行走过程中的路径规划,有利于自移动设备(1)在工作区域(4)中的均匀工作或快速离开狭窄区域,提高自移动设备(1)的工作效率。

Description

自动工作系统及其转向方法、自移动设备
本申请要求了申请日为2019年9月12日,申请号为201910863810.2的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本发明涉及一种自动工作系统,还涉及一种自动工作系统的转向方法、自移动设备。
背景技术
随着计算机技术和人工智能技术的不断进步,越来越多的人在日常生活中选择使用自动工作系统。在自动工作系统中自动工作的自移动设备,例如:智能割草机以及扫地机器人等智能产品,一般在进行初始设置之后,即可实现自动在用户的草坪或室内工作,从而将用户从清洁房间、维护草坪等繁琐枯燥费时的家务劳动中解放出来。
一般情况下,智能产品可以采用随机路径行走的方式在工作区域中工作,然而,这样的工作方式可能会导致工作区域中工作的不均匀。例如:对于割草机而言,当工作区域中存在狭窄通道时,由于狭窄通道的占地面积较小,自移动设备可能无法通过狭窄通道达到工作区域中的其他部分,或者可能需要耗费大量时间才能成功通过狭窄通道,从而自移动设备在狭窄通道内多次折返时重复切割可能导致切割不均匀;或者对于非狭窄通道的正常工作区域而言,某些区域重复工作,而某些区域切割不到,不利于草坪维护,也加快了能量损耗。
发明内容
为克服现有技术的缺陷,本发明所要解决的问题是提供一种能在工作区域中均匀工作的自移动设备及其转向方法。
本发明解决现有技术问题所采用的技术方案是:一种自动工作系统,所述自动工作系统包括:自移动设备,所述自移动设备在界限限定的工作区域中行走并工作,所述工作区域包括至少一个分区,所述自移动设备包括:壳体;行走模块,安装于所述壳体上,用于带动所述自移动设备的行走和/或转向;控制模块,控制所述行走模块,以带动所述自移动设备的行走和/或转向; 所述自动工作系统还包括:导航机构,所述导航机构用于记录所述自移动设备在所述工作区域中行走时经过的行走位置,并基于所述行走位置确定所述自移动设备在所述工作区域中各个分区的覆盖值;
在所述自移动设备到达所述界限时,所述控制模块控制所述行走模块转向以驶离所述界限,基于所述自移动设备到达所述界限时各个行走范围对应的覆盖值,所述控制模块控制所述行走模块向覆盖值满足预设要求的行走范围执行转向。
在本申请的一个实施例中,所述控制模块控制所述行走模块向所述行走范围中的任一行走方向执行转向。
在本申请的一个实施例中,所述导航机构还用于确定所述自移动设备的行走方向与界限的角度关系,所述控制模块基于所述角度关系控制所述行走模块执行转向,在所述自移动设备到达所述界限时,若所述角度关系为钝角,则控制所述自移动设备向所述钝角方向转向。
在本申请的一个实施例中,所述行走范围包括:以所述自移动设备的当前行走位置为中心、具有预设角度的锥形区域。
在本申请的一个实施例中,所述控制模块基于与所述自移动设备满足预设距离的分区覆盖值确定所述行走范围对应的覆盖值。
在本申请的一个实施例中,所述控制模块基于与所述自移动设备相邻分区的覆盖值确定所述行走范围对应的覆盖值。
在本申请的一个实施例中,基于所述自移动设备到达所述界限时各个行走范围对应的覆盖值,包括:基于各个行走范围中分区的覆盖值之和或平均值。
在本申请的一个实施例中,所述至少一个分区由分区界限限定,
相应的,基于行走模块所转向分区的分区界限以及当前行走位置,确定所述行走模块的行走范围。
在本申请的一个实施例中,所述行走范围包括:用户自定义的行走范围,或,预先设定的行走范围。
在本申请的一个实施例中,基于以下至少之一的参数确定所述分区的覆盖值:所述自移动设备在各个分区的行走时间、行走时经过所述各个分区的行走经过次数、在所述各个分区的行走路径长度。
在本申请的一个实施例中,所述预设要求包括:所述覆盖值小于等于其 他行走范围对应的覆盖值。
在本申请的一个实施例中,所述预设要求包括:所述覆盖值小于等于其他行走范围对应覆盖值的最大值。
在本申请的一个实施例中,所述预设要求包括:所述覆盖值小于等于预设覆盖值。
在本申请的一个实施例中,所述预设覆盖值包括:用户自定义的覆盖值,或,预先设定的覆盖值。
在本申请的一个实施例中,所述导航机构包括以下至少之一:超声波传感器、雷达传感器、光学传感器、UWB传感器、惯性导航系统、卫星导航机构、视觉传感器。
在本申请的一个实施例中,所述导航机构固定或可拆卸的安装于所述自移动设备。
本发明实施例还提供了一种自动工作系统的转向方法,所述自移动设备在界限限定的工作区域中行走并工作,所述方法可以包括:监测所述自移动设备与界限的位置关系;当监测到所述自移动设备到达所述界限时,基于各个行走范围对应的覆盖值,控制所述自移动设备转向至覆盖值满足预设要求的行走范围。
在本申请的一个实施例中,在控制所述自移动设备转向至覆盖值满足预设要求的行走范围之前,所述方法还包括:将所述工作区域的地图划分为多个分区;记录所述行走模块在所述工作区域中行走时经过的行走位置;基于所述行走位置确定所述工作区域各个分区中的覆盖值。
在本申请的一个实施例中,控制自移动设备转向至覆盖值满足预设要求的行走范围,可以包括:控制自移动设备向行走范围中的任一行走方向执行转向。
在本申请的一个实施例中,该方法还可以包括:确定自移动设备的行走方向与界限的角度关系;在自移动设备到达界限时,若角度关系为钝角,则控制自移动设备向钝角方向转向。
在本申请的一个实施例中,行走范围可以包括:以自移动设备的当前行走位置为中心、具有预设角度的锥形区域。
在本申请的一个实施例中,基于与所述自移动设备满足预设距离的分区覆盖值确定所述行走范围对应的覆盖值。
在本申请的一个实施例中,基于与所述自移动设备相邻分区的覆盖值确定所述行走范围对应的覆盖值。
在本申请的一个实施例中,基于各个行走范围对应的覆盖值,控制自移动设备转向至覆盖值满足预设要求的行走范围,可以包括:可以基于各个行走范围中分区的覆盖值之和/或平均值,控制行走模块转向至覆盖值满足预设要求的行走范围。
在本申请的一个实施例中,至少一个分区可以由分区界限限定,相应的,可以基于行走模块所转向分区的分区界限以及当前行走位置,确定行走模块转向时的行走范围。
在本申请的一个实施例中,行走范围可以包括:用户自定义的行走范围,或,预先设定的行走范围。
在本申请的一个实施例中,可以基于以下至少之一的参数确定分区的覆盖值:自移动设备在各个分区的行走时间、行走经过次数、行走路径长度。
在本申请的一个实施例中,预设要求可以包括:覆盖值小于等于其他行走范围对应的覆盖值。
在本申请的一个实施例中,预设要求可以包括:覆盖值小于等于其他行走范围对应覆盖值的最大值。
在本申请的一个实施例中,预设要求可以包括:覆盖值小于等于预设覆盖值。
在本申请的一个实施例中,预设覆盖值可以包括:用户自定义的覆盖值,或,预先设定的覆盖值。
在本申请的一个实施例中,导航机构可以包括但不限于以下至少之一:超声波传感器、雷达传感器、光学传感器、UWB传感器、惯性导航系统、卫星导航机构、视觉传感器。
在本申请的一个实施例中,导航机构可以固定或可拆卸的安装于所述自移动设备。
本发明实施例还提供了一种自移动设备,所述自移动设备在界限限定的工作区域中行走并工作,所述工作区域包括至少一个分区,所述自移动设备包括:壳体;行走模块,安装于所述壳体上,用于带动所述自移动设备的行走和/或转向;控制模块,控制所述行走模块,以带动所述自移动设备的行走和/或转向;导航机构,所述导航机构用于记录所述自移动设备在所述工作区 域中行走时经过的行走位置,并基于所述行走位置确定所述自移动设备在所述工作区域中各个分区的覆盖值;
在所述自移动设备到达所述界限时,所述控制模块控制所述行走模块转向以驶离所述界限,
基于所述自移动设备到达所述界限时各个行走范围对应的覆盖值,所述控制模块控制所述行走模块向覆盖值满足预设要求的行走范围执行转向。
在本申请的一个实施例中,所述控制模块控制所述行走模块向所述行走范围中的任一行走方向执行转向。
在本申请的一个实施例中,所述导航机构还用于确定所述自移动设备的行走方向与界限的角度关系,所述控制模块基于所述角度关系控制所述行走模块执行转向,在所述自移动设备到达所述界限时,若所述角度关系为钝角,则控制所述自移动设备向所述钝角方向转向。
在本申请的一个实施例中,所述行走范围包括:以所述自移动设备的当前行走位置为中心、具有预设角度的锥形区域。
在本申请的一个实施例中,所述控制模块基于与所述自移动设备满足预设距离的分区覆盖值确定所述行走范围对应的覆盖值。
在本申请的一个实施例中,所述控制模块基于与所述自移动设备相邻分区的覆盖值确定所述行走范围对应的覆盖值。
在本申请的一个实施例中,基于所述自移动设备到达所述界限时各个行走范围对应的覆盖值,包括:基于各个行走范围中分区的覆盖值之和或平均值。
在本申请的一个实施例中,所述至少一个分区由分区界限限定,相应的,基于行走模块所转向分区的分区界限以及当前行走位置,确定所述行走模块的行走范围。
在本申请的一个实施例中,所述行走范围包括:用户自定义的行走范围,或,预先设定的行走范围。
本发明实施例还提供了一种自移动设备的转向方法,所述自移动设备在界限限定的工作区域中行走并工作,所述方法包括:监测所述自移动设备与界限的位置关系;当监测到所述自移动设备到达所述界限时,基于各个行走范围对应的覆盖值,控制所述自移动设备转向至覆盖值满足预设要求的行走范围。
在本申请的一个实施例中,在控制所述自移动设备转向至覆盖值满足预设要求的行走范围之前,所述方法还包括:将所述工作区域的地图划分为多个分区;记录所述行走模块在所述工作区域中行走时经过的行走位置;基于所述行走位置确定所述工作区域各个分区中的覆盖值。
与现有技术相比,本发明的有益效果是:利用导航机构记录自移动设备在工作区域中行走时经过的行走位置,并基于该行走位置确定自移动设备在工作区域中各个分区的覆盖值。在自移动设备到达界限时,控制模块控制行走模块转向以驶离界限,控制模块可以基于自移动设备到达界限时各个行走范围对应的覆盖值,控制行走模块向覆盖值满足预设要求的行走范围执行转向。通过判断自移动设备转向时行走范围的覆盖值,实现自移动设备在行走过程中的路径规划,有利于自移动设备在工作区域中的均匀工作,提高自移动设备的工作效率。
附图说明
以上所述的本发明的目的、技术方案以及有益效果可以通过下面附图实现:
图1是本发明一实施例的自动工作系统示意图;
图2是本发明一实施例中割草机的功能模块示意图;
图3是本发明一实施例中割草机的结构示意图;
图4是本发明一实施例的工作区域划分示意图;
图5-6是本发明一实施例的割草机转向方法示意图;
图7是本发明一实施例的割草机转向方法示意图;
图8-9是本发明另一实施例的割草机转向方法示意图;
图10-11是本发明另一实施例的割草机转向方法示意图;
图12是本发明一实施例的快速离开狭窄区域的方法示意图;
图13是本发明另一实施例的快速离开狭窄区域的方法示意图;
图14是本发明一实施例的割草机转向方法流程图;
图15是本发明的场景示意图。
具体实施方式
下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有做 出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。
本文中在本发明的说明书中所使用的术语只是为了描述具体的实施例的目的,不是旨在于限制本发明。并且,本文所使用的术语“和/或”包括一个或多个相关的所列项目的任意的和所有的组合。
如图1所示为本具体实施方式的自动工作系统,可以包括:自移动设备1、界限7、基站3。其中,自移动设备1在界限7所限定的工作区域4内行走并工作,基站3可以用于供自移动设备能源不足时返回补充能量。界限7可以是整个工作区域的外围,可以称为外界限,通常首尾相连,将工作区域4封闭,可以是电子的或者物理的。物理的界限可以仅仅是工作区域4与非工作区域之间的交界等形成的天然物理界限,例如:草与非草之间的天然界限,或者墙壁、篱笆、栏杆等形成的界限;电子的界限可以通过在工作区域4四周铺设导线,并利用与导线相连的界限信号发生装置所发出的虚拟界限信号,例如:电磁信号、声信号或光信号等。如图1所示,工作区域中也可以存在不适合自移动设备1工作的区域5,并以该区域5形成界限,如:花坛、水池、障碍等,可以称为内界限,该内界限以外的部分为工作区域。在本申请实施例中,自动工作系统中还可以包括用于定位的导航机构26,该导航机构26可以是单独存在的设备,也可以与自移动设备1一体,该导航机构26可拆卸的或固定的安装在自移动设备1上。
自移动设备1可以是自动割草机、扫地机器人、自动扫雪机等适合无人值守的设备,它们自动行走于工作区域的表面,进行割草、吸尘或者扫雪工作。当然,自移动设备不限于自动割草机、扫地机器人、自动扫雪机,也可以为其它适合无人值守的设备,本申请对此不作限定。
在下面的具体实施例中,以自动工作系统为自动割草机系统,即,自移动设备1为自动割草机20为例进行详细说明。如图1所示,界限7限定自动割草机20的工作区域,界限7可以是物理界限也可以是电子界限。
如图2至图3所示,自动割草机20包括壳体27,还可以包括行走模块21、工作模块22、控制模块24、能量模块25。控制模块24连接并控制行走模块21、工作模块22,以实现自动割草机20的自动行走及工作。
具体的,行走模块21可以包括轮组和驱动轮组的行走马达,通常轮组包括由行走马达驱动的驱动轮211和辅助支撑壳体的辅助轮212,可以理解的是,行走模块21也可以为履带结构。在一个实施例中,行走马达可以直 接连接驱动轮,右驱动轮和左驱动轮各自配接一个行走马达,以实现差速输出控制转向;在另一个实施例中,行走马达也可以通过设置传动装置,即同一个马达通过不同的传动装置驱动右驱动轮和左驱动轮,以实现差速输出控制转向。工作模块22即为割草模块,包括:切割刀片221,可以由切割马达222驱动工作。工作模块22的中心位于割草机20的中轴线X上,设置于壳体下方,位于辅助轮和驱动轮之间,也可以偏置于壳体的左侧或右侧。能量模块25固定或可拆卸的安装于壳体,可以为电池包等。在工作时,电池包释放电能以维持割草机20工作和行走。在非工作时,电池可以连接到外部电源以补充电能;自动割草机20也可以在探测到电量不足时,自动地寻找基站3补充电能。控制模块24可以为控制器,可以根据预设程序或接受到的指令控制自动割草机20行走、转向以及自动工作。割草机20还可以包括:通讯模块23,可以用于割草机20与客户端或服务器之间的通信。
如图1所示,自动割草机系统中还可以包括:导航机构26,可以包括但不限于以下至少之一:超声波传感器、雷达传感器、光学传感器(例如:激光传感器、红外传感器)、UWB传感器、卫星导航机构(RTK、GPS、北斗等导航机构)、视觉传感器等。导航机构26还可以包括惯性导航系统,惯性导航系统可以包括陀螺仪、加速计等,惯性导航系统能够与卫星导航机构配合,在卫星信号较差的情况下进行辅助导航。优选的,导航机构26可以安装于割草机20壳体上方等利于接收外界定位信号的位置处,或者也可以安装于壳体前部,以保证割草机20能及时转向至工作区域内部,防止其超出工作区域。当然,也可以安装在壳体的其他位置处,本申请不作限定。
在本申请的实施例中,导航机构26可以用于记录割草机20在工作区域中行走时经过的行走位置,其可拆卸或固定的安装于割草机20上,或者属于割草机20的一部分。当导航机构26从自动割草机1上拆下时,可以独立工作,记录其移动时所经过的位置坐标;当将导航机构26安装在自动割草机1的壳体27上时,可以与自动割草机1的控制模块电连接,输出自动割草机1的当前位置坐标。在本实施例中,可以通过用户手持导航机构26或者控制安装有导航机构的自动割草机20沿着工作区域的界限(包括:内界限以及外界限)行走来记录工作区域的界限位置坐标,或者也可以在电子地图上划出工作区域的界限,从而生成工作区域地图。值得说明的是,上述三种方式所生成的地图界限2可以为相对于图1中的界限7向工作区域内偏移 一定的距离,从而割草机20在基于地图界限2工作的过程中不会超出工作区域的真实界限,保证安全性,该距离优选的可以为30cm。利用携带有导航功能的自动割草机系统建立工作区域地图,并以该地图为依据进行割草工作,无需用户布置边界线,减少工作量。需要说明的是,本申请中之后所描述的割草机工作过程中所遇界限均可以指上述地图界限2。
在本申请的一个实施例中,可以根据用户自定义的划分要求、割草机系统中预先设定的划分要求或割草机系统精度,例如:定位精度,将工作区域地图划分为多个分区,划分后各个分区的切割需求大致相同。如图4为客户端中显示的工作区域划分示意图,根据导航机构的定位精度将工作区域划分为如图4所示多个等面积栅格,在该示意图中通过栅格颜色的由浅到深来表示该栅格所对应工作区域中覆盖值的由低到高。值得说明的是,在实际应用中,数据可能存在偏差,因而此处等面积可以是面积大致相等,无需百分之百完全相等。图4仅为一种示例性的描述,也可以按照其他标准对工作区域进行划分,本申请不作限定。具体的,上述地图划分过程可以在导航机构26、服务器、割草机20中进行,本申请对此不作限定。
进一步的,当工作区域内部存在如花坛、水池、或障碍物等不适合割草机20工作的区域5时,可以在建图的过程中,不仅沿外界限建图也沿内界限建图,从而之后划分工作区域时,可以对去除区域5后所得到的地图进行划分。
在割草机20行走的过程中,导航机构26可以记录其在工作区域中经过的行走位置,并根据所记录的行走位置确定割草机20在各个分区的覆盖值。具体的,可以基于但不限于以下至少之一的行走位置参数确定各个分区的覆盖值,包括:割草机在各个分区中的行走路径、行走时间、行走经过次数。在一个实施例中,覆盖值可以是基于割草机20的上述行走位置参数确定的相应参数或相应参数所占比例,如:各个分区行走时间在总行走时间中所占比例值。例如:将工作区域共划分为5个分区,分区1行走时间为5s,分区2行走时间为5s,分区3行走时间为10s,分区4行走时间为15s,分区5行走时间为20s,则可以根据割草机在各个分区行走时间确定覆盖值,在分区1中的覆盖值为:5s/(5s+5s+10s+15s+20s)=9.1%,在分区2、分区3、分区4以及分区5中的覆盖值分别为:9.1%、18.2%、27.2%、36.4%。当然,也可以为行走路径等其他行走位置参数确定的相应参数或相应比例,本申请不 作限定。
当检测到割草机20到达界限2时,控制模块可以控制行走模块转向以驶离界限2,并基于割草机20到达界限2时各个行走范围对应的覆盖值,控制行走模块向覆盖值满足预设要求的行走范围执行转向。在本实施例中,当割草机到达界限时,利用覆盖值对割草机到达界限时所转向的行走范围进行限定,而非随机转向,即,通过控制割草机20所转向行走范围的覆盖值以对割草机20行走路径进行规划,实现割草机在工作区域中的均匀工作。进一步的,当割草机20在狭窄区域,例如:狭窄通道中工作时,通过本申请所提出的覆盖值限定方式,可以实现割草机20在狭窄区域的均匀切割以及割草机20快速离开狭窄区域。
如图5所示为一实施例中割草机转向方法示意图,在本实施例中,所述行走范围可以为锥形或扇形,具体的,可以是以割草机当前行走位置为中心,具有预设角度的锥形,则当割草机到达界限并转向驶离界限时,控制模块可以基于割草机到达界限时各个锥形对应的覆盖值,控制行走模块转向覆盖值满足预设要求的锥形。
具体而言,当割草机到达界限所对应行走位置时,可以以该当前行走位置为中心,以锥形的形式从界限的一侧边开始至另一侧边为止,对工作区域内所有可转向范围依次扫描(图5中以虚线锥形以及实线锥形作为示例),来获取转向时各个锥形对应的覆盖值。其中,本申请实施例中所描述的扫描可以是由割草机系统中的相关程序实现,而并非真实的传感器扫描。扫描时的方向可以为顺时针方向也可以是逆时针方向,只要满足在割草机到达界限时对应的所有可转向行走范围全部扫描完即可,具体如何扫描以及扫描起始位置,本申请不作限定。锥形对应的覆盖值可以是锥形中所有分区的覆盖值,锥形中所有分区可以是锥形中所包含的完整分区,以及锥形所经过的不完全包含在锥形中的分区,相应的,锥形中所有分区的覆盖值可以是这些分区的覆盖值之和、之积或平均值等,也可以是这些分区中的最大覆盖值、最小覆盖值、中位数等。在得到各个锥形对应的覆盖值之后,可以从各个覆盖值中选取满足预设要求的覆盖值,并控制割草机转向该覆盖值所对应的锥形区域。锥形半径以及预设角度可以根据用户自定义或系统预先设定的方式确定,本申请不作限定。在本申请的实施例中,锥形只是行走范围的一种示意性描述,行走范围除了可以是锥形,也可以是扇形或四边形等其他形式,本申请不作 限定。
当确定出满足预设要求的锥形区域之后,可以控制割草机转向该锥形区域中的任一行走方向,其中,割草机20的行走方向为沿着其纵向中轴线方向。如图6所示,当实线锥形为满足要求的行走范围时,可以控制割草机选择该锥形中的任一行走方向执行转向,可以以如图6中虚线所示的转向方向执行转向。
在本申请实施例中,在割草机到达界限时,可以控制两个后驱动轮分别以不同的转速或不同的方向进行转向,或者控制一侧后驱动轮停止,另一侧后驱动轮执行转向的方式,实现割草机的转向。
值得说明的是,从整体上看工作区域中的界限2可能是弯曲的,也可能是直的。在本申请中为了图示方便,以界限为直线进行说明,然而,本申请实施例也适用于界限非直线的场景。同时,由于惯性,割草机转向时的行走路径可能会超出界限,如图7所示,割草机转向前行走方向与界限的交点与转向后行走方向与界限的交点可能并不重合,即存在两个交点(点M、N)。然而,由于割草机行走速度较慢,且割草机转向时的转向半径较小,因此,转向时割草机的行走方向可以视为与界限只存在一个交点(如图5以及图6中的交点P),并不影响割草机转向后行走方向的控制。
在本申请的另一个实施例中,如图8-9所示为另一实施例中割草机转向方法示意图,所述行走范围可以是以当前行走位置为中心,具有预设长度的线段。当割草机到达界限所对应的当前行走位置时,可以以线段的形式对割草机转向时所对应工作区域进行扫描(图8中以虚线段以及实线段作为示例),即,可以以当前行走位置为中心,以线段的形式从界限的一侧边开始扫描至另一侧边为止,来获取转向时各个线段对应的覆盖值。在得到各个线段对应覆盖值之后,可以从中选取满足预设要求的覆盖值,并控制割草机转向该覆盖值所对应的线段方向(也可以称为行走方向)。线段对应的覆盖值可以是线段在某行走方向时经过的所有分区的覆盖值,可以是这些分区的覆盖值之和、之积或平均值等,也可以是这些分区中的最大覆盖值、最小覆盖值、中位数等。其中,线段所经过的分区可以指线段与分区有至少一个交点的情况,线段的预设长度可以根据用户自定义或系统预先设定的方式确定,本申请不作限定。
当确定出满足预设要求的线段之后,可以控制割草机转向该线段所对应 方向,其中,割草机20的行走方向可以为沿着其纵向中轴线方向。如图9所示,可以控制割草机选择满足预设要求的线段执行转向,见图9中标注转向方向的虚线。
如图10-11所示为本申请另一实施例的割草机转向方法示意图。如图10所示,在得到工作区域地图后,将其划分为多个栅格(例如:栅格13),该栅格也可以称为分区,其中,对工作区域的地图划分后得到的至少一个分区可以由分区界限限定。相应的,在本申请的一个实施例中,可以由割草机20当前行走位置以及分区界限确定割草机的行走范围,从而,割草机转向时的角度可以介于当前行走位置与所转向分区界限中某两个端点的连线之间,保证割草机转向后能行走至相应分区。如图10所示,若所转向分区为栅格13,栅格13对角线两个端点为点A以及点B,则割草机转向时的行走方向可以位于PA以及PB之间。在本申请的另一个实施例中,当相邻分区的覆盖值相近或相同时,也可以将该相邻分区作为一个整体,根据割草机当前行走位置以及该整体的界限确定割草机的行走范围,通过计算该整体的覆盖值平均值或最大值或中位置,将计算得到的值作为该整体的覆盖值。控制模块可以选择位于行走范围中的任一方向作为执行转向时的行走方向,并控制行走模块以该行走方向执行转向。如图10所示,若栅格12以及13为覆盖值相近且相邻的两个栅格,则可以将栅格12以及栅格13作为一个整体,并确定该整体的覆盖值,当栅格12以及13为选择转向的分区时,则割草机可以选择PA以及PC之间的行走方向执行转向。
在本申请的一个实施例中,控制模块可以基于与割草机相邻分区的覆盖值确定行走范围对应的覆盖值,控制割草机转向覆盖值满足预设要求的行走范围。在一个实施例中,控制割草机转向覆盖值满足预设要求的行走范围可以是控制割草机转向覆盖值满足预设要求的分区。即,可以由割草机当前行走位置以及割草机到达界限时与所在行走位置相邻的分区界限确定割草机的行走范围。当割草机到达当前行走位置转向以驶离界限时,可以以分区的形式对转向时所对应各分区进行扫描以得到与割草机相邻分区的覆盖值,或者也可以从分区覆盖值中直接读取与割草机相邻分区的覆盖值,从中选取满足预设要求的覆盖值,并控制割草机向该覆盖值所对应分区进行转向。在本申请的另一个实施例中,当与割草机相邻分区中存在部分覆盖值相近或相同的情况时,可以将该部分分区作为一个整体,再将该整体与其他各个相邻分区 覆盖值进行对比,从中选取满足预设要求的覆盖值。其中,与割草机相邻分区可以包括到达界限时割草机所在分区,也可以包括与割草机所在分区相邻的分区。例如:图11所示为本发明另一实施例的割草机转向方法示意图,在该割草机工作系统中,与割草机相邻分区可以包括:栅格11、16以及12,或者也可以是栅格12、13、14、15以及16,即,这些栅格均可以为与割草机相邻分区。在上述第二种情况下,割草机转向时的行走方向与界限存在交点P,若栅格13为满足预设要求的行走范围,可以控制割草机转向栅格13,如图11所示,可以从经过P点以及栅格13的多个行走方向中任意选取一个行走方向执行转向。
进一步的,当与割草机相邻分区的覆盖值均大致相同时,也可以根据与该相邻分区所相邻的分区来确定所述行走范围,即,当与割草机相邻分区的覆盖值相同时,可以比较与该相邻分区所相邻分区的覆盖值,并选取覆盖值满足预设要求的分区,令行走模块向该分区转向。从而,在与割草机相邻分区的覆盖值大致相同的场景下,可以通过比较与相邻分区所相邻的分区覆盖值控制行走模块的转向。若此时覆盖值仍大致相同,则可以再次比较与该分区相邻分区的覆盖值,本申请对此不作限定。
在本申请的一个实施例中,控制模块可以基于与割草机满足预设距离的分区覆盖值确定行走范围对应的覆盖值,并控制其转向覆盖值满足预设要求的行走范围。在该实施例中,预设距离可以包括:预设距离范围。控制割草机转向覆盖值满足预设要求的行走范围可以是控制割草机转向覆盖值满足预设距离的分区。即,可以由割草机当前行走位置以及割草机到达界限时与所在行走位置满足预设距离的分区界限确定割草机的行走范围。同样的,也可以将其中具有大致相同覆盖值的相邻分区作为一个整体进行对比。在本申请的另一个实施例中,所述行走范围可以包括:具有预设角度的扇形或锥形,具体的,在割草机利用如图5所示的锥形进行扫描时,可以基于锥形中与割草机满足预设距离范围的锥形或扇形区域(即,包括外弧和内弧两条弧的扇形)的覆盖值,控制割草机转向覆盖值满足预设要求的行走范围。其中,锥形覆盖值或扇形覆盖值与前面的确定方法类似,本申请在此不再赘述。当然,除了锥形,也可以是与割草机满足预设距离的四边形等其他形式的图形,本申请对此不作限定。如图9所示,在通过线段扫描工作区域的过程中,可以基于工作区域中与点P距离相同的分区覆盖值,控制割草机向覆盖值满足预 设要求的行走范围执行转向。其中,预设距离可以是用户自定义的距离,也可以是系统预先设定的距离,本申请不作限定。
在本申请的另一个实施例中,所述行走范围可以是用户自定义的行走范围,也可以是割草机系统预先设定的行走范围,即,用户可以自行定义割草机的行走范围,或者系统也可以预先设定割草机行走范围,以控制割草机的转向。
进一步的,对于工作区域内部存在如花坛或水池、障碍物等不适合割草机20工作的区域5而言,可以确定去除区域5并进行划分后所得到的地图中各个分区的覆盖值。从而,当割草机进行转向时,可以以去除区域5之后所得到的各个分区的覆盖值为依据,基于割草机到达界限时各个行走范围对应的覆盖值,控制模块控制行走模块向覆盖值满足预设要求的行走范围转向。具体的行走范围确定方式以及转向规则等与不存在区域5的场景类似,本申请不再赘述。
在本申请的一个实施例中,在割草机20选择完所转向的分区并转向该分区所对应行走方向工作时,若转向该行走方向时检测到未在地图中标注的异常情况(例如:受困、跌落、碰撞、抬起等异常),可以先对这些异常情况进行处理。具体的,割草机可以绕过该异常,在绕过该异常后继续按照原始地图沿之前选定的行走方向继续工作;或者,也可以在绕过异常之后,以新路径对地图进行修复,并基于修复后的地图重新分区并重新确定各分区覆盖值,从而基于重新确定的分区覆盖值,控制割草机转向。若用户在割草机旁,则当割草机检测到异常时,可以发出警报从而用户可以及时处理该异常情况,并控制割草机基于原始地图继续工作;或者用户可以在地图中标注该异常,并控制割草机基于划出该异常情况的地图以重新分区,进而重新确定各分区覆盖值,以控制行走模块基于新地图向覆盖值满足预设要求的行走范围执行转向;或者在到达界限之前,割草机先检测各个行走范围中是否存在异常,若不存在异常,则基于各分区覆盖值控制转向,若存在异常,则划出该异常并形成新的地图,再重新确定各分区覆盖值,以控制行走模块转向。当割草机检测到障碍物、碰撞等异常情况时,均可以选择上述之一的方式控制割草机转向,本申请在此不再赘述。
在上述实施例中,在控制模块控制行走模块转向的过程中,可以控制两个驱动轮以不同的速度或者不同的转动方向来实现割草机20的转向,从而 割草机会向转速较慢的驱动轮一侧或者转动方向对应为后退的驱动轮一侧执行转向。
割草机20在工作区域内行走并工作时,正常状况下,割草机20沿直线行走,直到割草机20检测到界限2。若自动割草机20遇到界限2时,自动割草机20将改变原先的行走方向以离开界限2回到工作区域内继续直线行走,直到再次遇到界限2。通过上述在界限2内不断折返的方式,覆盖全部工作区域进行工作。然而,在上述工作的过程中,割草机在遇到界限2转向时,存在转向至之前多次工作过的工作区域的缺陷,因而会导致某些区域重复工作而某些区域从未工作,即,割草机在工作区域中的不均匀工作。同时,当工作区域中存在狭窄通道时,割草机也会存在无法通过狭窄通道达到工作区域中的其他部分;或需要耗费大量时间才能成功通过狭窄通道,从而导致工作区域中某些区域切割不到以及切割不均的缺陷。
因而,在本实施例中提供了一种路径规划方式,在该路径规划方式中,在将地图划分为至少一个分区之后,割草机20可以在行走的过程中记录其在工作区域中行走时经过的行走位置,并基于行走位置确定割草机在各个分区的覆盖值。在割草机20到达界限时,控制模块可以基于到达界限时各个行走范围对应的覆盖值,控制割草机20转向至覆盖值满足预设要求的行走范围,以驶离界限。通过判断割草机转向时行走范围的覆盖值,实现割草机20在行走过程中的路径规划,有利于实现割草机20在工作区域中的均匀工作。
在本申请的一个实施例中,在割草机到达界限时,控制模块可以控制行走模块转向以驶离界限,可以基于割草机到达界限时各个行走范围对应的覆盖值,控制行走模块向覆盖值满足小于等于其他行走范围对应覆盖值的行走范围执行转向。即,控制模块在得到各个行走范围的覆盖值情况下,可以选取覆盖值最小的行走范围,从而控制模块控制行走模块向覆盖值最小的行走范围转向。在确定出转向的行走范围之后,可以控制行走模块转向行走范围中的任一行走方向。通过控制割草机向覆盖值最小的行走范围执行转向,即,割草机在行走过程中更容易行走至覆盖值较低的区域,可以增加割草机的行走覆盖率,实现其在工作区域中的均匀工作。
在本申请的一个实施例中,在割草机到达界限时,控制模块可以控制行走模块转向以驶离界限,可以基于割草机到达界限时各个行走范围对应的覆 盖值,选取其中小于等于其他行走范围对应覆盖值最大值的情况,并控制行走模块向该覆盖值对应行走范围执行转向。即,控制模块在得到各个行走范围的覆盖值情况下,可以选取覆盖值非最大时所对应的至少一个行走范围,并从满足要求的行走范围中随机选取一个行走范围。在确定出转向的行走范围之后,可以控制行走模块转向行走范围中的任一行走方向。
在本申请的一个实施例中,在割草机到达界限时,控制模块可以控制行走模块转向以驶离界限,可以基于割草机到达界限时各个行走范围对应的覆盖值,控制行走模块向覆盖值满足小于等于预设覆盖值的行走范围执行转向。预设覆盖值可以包括:用户自定义的覆盖值和/或预先设定的覆盖值,即,可以是用户自定义的和/或预先设定的各个分区最终需要达到的覆盖值。其中,用户自定义的覆盖值可以是根据用户对草坪割草情况的需求或用户个人习惯等方式确定的,预先设定的覆盖值可以是由割草机中预先设定的各个分区最终需要达到的覆盖值确定的。例如图11所示,当割草机20在到达界限后转向以驶离界限时,各个行走范围分别包括:栅格12至16,栅格12-16的覆盖值分别为:9.1%、9.1%、18.2%、27.2%、36.4%,以栅格中填充线段的疏密标识覆盖值的高低,填充线段越密则覆盖值越高,若系统预先设定的覆盖值为20%,则割草机20在转向时可以从9.1%、9.1%、18.2%所对应的栅格12至14中任选一个方向进行转向,如图11可以转向至栅格13。在本申请实施例中,也可以存在其他确定转向时覆盖值预设要求的方式,本申请不作限定。
在本申请的一个实施例中,割草机到达界限可以是导航机构26到达界限和/或导航机构26到达与界限满足预设距离阈值的位置处。较优的,上述导航机构26与界限的预设距离阈值可以在20厘米至80厘米之间。
在本申请中还提供了另外一种路径规划方式,在这种路径规划方式中,导航机构还可以用于确定割草机20的行走方向与界限的角度关系。在得到该角度关系之后,控制模块还可以基于该角度关系控制行走模块执行转向。在割草机到达界限时,可以选取角度关系为钝角的方向,控制割草机向该钝角方向执行转向。如图8所示,当割草机20到达界限时,割草机20在工作区域内的行走方向与界限一侧的角度关系为钝角,则除了选取向满足要求的覆盖值方向转向,进一步的,还可以选取钝角方向并控制行走模块向该钝角方向执行转向;或者也可以先根据角度关系选取转向范围,再根据满足预设 要求的覆盖值选取转向方向。从而,割草机在转向的过程中,除了基于到达界限时各个行走范围对应的覆盖值,控制行走模块向覆盖值满足预设要求的行走范围执行转向,进一步的,还根据割草机的行走方向与界限的角度关系,控制割草机向钝角方向执行转向。如图13所示为采用本路径规划方式快速离开狭窄区域的另一个示意图,割草机20在到达界限转向以驶离界限时,采用本申请实施例中所提出的基于覆盖值的转向方式结合基于角度关系的转向方式,来实现对割草机转向的控制。此时,割草机20可以在控制模块的控制下向工作区域内转向,从而能够实现其在工作区域中的均匀工作以及快速离开狭窄区域。
在本申请中还提供了另外一种路径规划方式,在这种路径规划方式中,割草机遇到界限后可以先沿着界限行走一段距离,再通过上述基于覆盖值的方式或者基于覆盖值与角度关系结合的方式执行转向,来实现均匀割草或者快速离开狭窄区域。如图12所示,为采用本路径规划方式快速离开狭窄区域的一个示意图,割草机20在到达界限转向以驶离界限时,首先进行小幅度转动,使行走方向与界限2方向一致,然后沿界限2行走一段距离,然后再按照本申请实施例中所提出的基于覆盖值控制转向的方式,控制割草机转向至覆盖值满足预设要求的行走范围,此时,割草机20可以在控制模块的控制下向工作区域内转向,从而能够实现快速离开狭窄区域。即,在本实施例中,在割草机转向的过程中,除了采用本申请实施例中所提出的利用覆盖值控制转向的方法,还可以控制割草机在转向开始之后,完成之前,沿界限行走一段距离。优选的,该一段距离可以设置为20cm至100cm。
需要说明的是,从整体上看工作区域中的界限2可能是弯曲的,然而在具体的一个交点,如图7中的割草机行走方向与界限的交点M,该交点M附近的界限可以视作直线;或者也可以说,虽然界限可能是弯曲的,但在到达界限转向的位置处时,如图7中的交点N,界限2的延伸方向可以为直线,该延伸方向为界限2的切线。
在本发明实施例中,利用导航机构记录自移动设备在工作区域中行走时经过的行走位置,并基于该行走位置确定自移动设备在工作区域中各个分区的覆盖值。在自移动设备到达界限时,控制模块控制行走模块转向以驶离界限,控制模块可以基于自移动设备到达界限时各个行走范围对应的覆盖值,控制行走模块向覆盖值满足预设要求的行走范围执行转向。通过控制自移动 设备转向时行走范围的覆盖值,实现自移动设备在行走过程中的路径规划,有利于实现自移动设备在工作区域中的均匀工作,提高了自移动设备的工作效率。
在本发明实施例中还提供了一种自动工作系统的转向方法,如图14所示,可以包括:
S1401:监测自移动设备与界限的位置关系;
S1402:当监测到自移动设备到达界限时,基于各个行走范围对应的覆盖值,控制自移动设备转向至覆盖值满足预设要求的行走范围。
其中,自移动设备可以在界限限定的工作区域中行走并工作。该界限可以是电子界限也可以是基于地图的虚拟界限。
在一个实施例中,上述自动工作系统的转向方法的执行主体可以是控制器,服务器,其中,控制器可以是自移动设备中的控制器,也可以是设置在导航机构中的控制器,本申请对此不做限定。
在本申请的一个实施例中,在控制自移动设备转向至覆盖值满足预设要求的行走范围之前,该方法还可以包括:将工作区域的地图划分为多个分区;记录行走模块在工作区域中行走时经过的行走位置;基于行走位置确定行走模块在工作区域中各个分区中的覆盖值。
在本申请的一个实施例中,控制自移动设备转向至覆盖值满足预设要求的行走范围,可以包括:控制自移动设备向行走范围中的任一行走方向执行转向。
在本申请的一个实施例中,该方法还可以包括:确定自移动设备的行走方向与界限的角度关系;在自移动设备到达界限时,若角度关系为钝角,则控制自移动设备向钝角方向转向。
在本申请的一个实施例中,行走范围可以包括:以自移动设备的当前行走位置为中心、具有预设角度的锥形区域。
在本申请的一个实施例中,基于与所述自移动设备满足预设距离的分区覆盖值确定所述行走范围对应的覆盖值。
在本申请的一个实施例中,基于与所述自移动设备相邻分区的覆盖值确定所述行走范围对应的覆盖值。
在本申请的一个实施例中,基于各个行走范围对应的覆盖值,控制自移动设备转向至覆盖值满足预设要求的行走范围,可以包括:可以基于各个行 走范围中分区的覆盖值之和/或平均值,控制行走模块转向至覆盖值满足预设要求的行走范围。
在本申请的一个实施例中,至少一个分区可以由分区界限限定,相应的,可以基于行走模块所转向分区的分区界限以及当前行走位置,确定行走模块转向时的行走范围。
在本申请的一个实施例中,行走范围可以包括:用户自定义的行走范围,或,预先设定的行走范围。
在本申请的一个实施例中,可以基于以下至少之一的参数确定分区的覆盖值:自移动设备在各个分区的行走时间、行走经过次数、行走路径长度。
在本申请的一个实施例中,预设要求可以包括:覆盖值小于等于其他行走范围对应的覆盖值。
在本申请的一个实施例中,预设要求可以包括:覆盖值小于等于其他行走范围对应覆盖值的最大值。
在本申请的一个实施例中,预设要求可以包括:覆盖值小于等于预设覆盖值。
在本申请的一个实施例中,预设覆盖值可以包括:用户自定义的覆盖值,或,预先设定的覆盖值。
在本申请的一个实施例中,导航机构可以包括但不限于以下至少之一:超声波传感器、雷达传感器、光学传感器、UWB传感器、惯性导航系统、卫星导航机构、视觉传感器。
在本申请的一个实施例中,导航机构可以固定或可拆卸的安装于所述自移动设备。
在本发明实施例中,利用导航机构记录自移动设备在工作区域中行走时经过的行走位置,并基于该行走位置确定自移动设备在工作区域中各个分区的覆盖值。在自移动设备到达界限时,控制模块控制行走模块转向以驶离界限,控制模块可以基于自移动设备到达界限时各个行走范围对应的覆盖值,控制行走模块向覆盖值满足预设要求的行走范围执行转向。通过控制自移动设备转向时行走范围的覆盖值,实现自移动设备在行走过程中的路径规划,有利于实现自移动设备在工作区域中的均匀工作或快速离开狭窄区域,提高自移动设备的工作效率。
下面通过一个具体的应用场景来说明本申请的实施例方法。
如图15所示为某割草机app的用户界面,在该用户界面中显示工作区域的地图。在本例中,示例性的,工作区域为一不规则区域,在用户界面所显示的地图中通过颜色的由浅到深表示工作区域中覆盖值的由低至高。设置有GPS导航机构的割草机20在工作区域中工作时,可以记录其在各个分区中的工作时间,基于该工作时间确定其在各个分区的覆盖值。可以根据当前工作情况实时更新各个分区中的覆盖值,并将该实时更新的覆盖值通过颜色的深浅显示在用户界面中。如图15所示,割草机到达界限时,可以采用以割草机当前行走位置为中心、具有预设角度的锥形区域作为行走范围,利用该行走范围对转向时的工作区域进行扫描。从而,割草机20可以基于转向时工作区域中各个行走范围的覆盖值,选取覆盖值满足预设要求的行走范围执行转向。具体的,可以选择覆盖值小于预设覆盖值的行走范围执行转向。进一步的,从满足预设要求的行走范围中选择任一行走方向执行转向。
以上所述实施例仅表达了本发明的几种实施方式,其描述较为具体和详细,但并不能因此而理解为对本发明专利范围的限制。应当指出的是,对于本领域的普通技术人员来说,在不脱离本发明构思的前提下,还可以做出若干变形和改进,这些都属于本发明的保护范围。因此,本发明专利的保护范围应以所附权利要求为准。

Claims (21)

  1. 一种自动工作系统,其特征在于,所述自动工作系统包括:自移动设备,所述自移动设备在界限限定的工作区域中行走并工作,所述工作区域包括至少一个分区,所述自移动设备包括:
    壳体;
    行走模块,安装于所述壳体上,用于带动所述自移动设备的行走和/或转向;
    控制模块,控制所述行走模块,以带动所述自移动设备的行走和/或转向;
    所述自动工作系统还包括:导航机构,所述导航机构用于记录所述自移动设备在所述工作区域中行走时经过的行走位置,并基于所述行走位置确定所述自移动设备在所述工作区域中各个分区的覆盖值;
    在所述自移动设备到达所述界限时,所述控制模块控制所述行走模块转向以驶离所述界限,
    基于所述自移动设备到达所述界限时各个行走范围对应的覆盖值,所述控制模块控制所述行走模块向覆盖值满足预设要求的行走范围执行转向。
  2. 如权利要求1所述的自动工作系统,其特征在于,所述控制模块控制所述行走模块向所述行走范围中的任一行走方向执行转向。
  3. 如权利要求1所述的自动工作系统,其特征在于,所述导航机构还用于确定所述自移动设备的行走方向与界限的角度关系,所述控制模块基于所述角度关系控制所述行走模块执行转向,在所述自移动设备到达所述界限时,若所述角度关系为钝角,则控制所述自移动设备向所述钝角方向转向。
  4. 如权利要求1所述的自动工作系统,其特征在于,所述行走范围包括:以所述自移动设备的当前行走位置为中心、具有预设角度的锥形区域。
  5. 如权利要求1所述的自动工作系统,其特征在于,所述控制模块基于与所述自移动设备满足预设距离的分区覆盖值确定所述行走范围对应的覆盖值。
  6. 如权利要求1所述的自动工作系统,其特征在于,所述控制模块基于与所述自移动设备相邻分区的覆盖值确定所述行走范围对应的覆盖值。
  7. 如权利要求1所述的自动工作系统,其特征在于,基于所述自移动设备到达所述界限时各个行走范围对应的覆盖值,包括:
    基于各个行走范围中分区的覆盖值之和或平均值。
  8. 如权利要求1所述的自动工作系统,其特征在于,所述至少一个分区由 分区界限限定,
    相应的,
    基于行走模块所转向分区的分区界限以及当前行走位置,确定所述行走模块的行走范围。
  9. 如权利要求1所述的自动工作系统,其特征在于,所述行走范围包括:用户自定义的行走范围,或,预先设定的行走范围。
  10. 如权利要求1所述的自动工作系统,其特征在于,基于以下至少之一的参数确定所述分区的覆盖值:所述自移动设备在各个分区的行走时间、行走时经过所述各个分区的行走经过次数、在所述各个分区的行走路径长度。
  11. 如权利要求1所述的自动工作系统,其特征在于,所述预设要求包括:所述覆盖值小于等于其他行走范围对应的覆盖值。
  12. 如权利要求1所述的自动工作系统,其特征在于,所述预设要求包括:所述覆盖值小于等于其他行走范围对应覆盖值的最大值。
  13. 如权利要求1所述的自动工作系统,其特征在于,所述预设要求包括:所述覆盖值小于等于预设覆盖值。
  14. 如权利要求13所述的自动工作系统,其特征在于,所述预设覆盖值包括:用户自定义的覆盖值,或,预先设定的覆盖值。
  15. 如权利要求1所述的自动工作系统,其特征在于,所述导航机构包括以下至少之一:超声波传感器、雷达传感器、光学传感器、UWB传感器、惯性导航系统、卫星导航机构、视觉传感器。
  16. 如权利要求1所述的自动工作系统,其特征在于,所述导航机构固定或可拆卸的安装于所述自移动设备。
  17. 一种自动工作系统的转向方法,其特征在于,所述自移动设备在界限限定的工作区域中行走并工作,所述方法包括:
    监测所述自移动设备与界限的位置关系;
    当监测到所述自移动设备到达所述界限时,基于各个行走范围对应的覆盖值,控制所述自移动设备转向至覆盖值满足预设要求的行走范围。
  18. 如权利要求17所述的方法,其特征在于,在控制所述自移动设备转向至覆盖值满足预设要求的行走范围之前,所述方法还包括:
    将所述工作区域的地图划分为多个分区;
    记录所述行走模块在所述工作区域中行走时经过的行走位置;
    基于所述行走位置确定所述工作区域各个分区中的覆盖值。
  19. 一种自移动设备,其特征在于,所述自移动设备在界限限定的工作区域中行走并工作,所述工作区域包括至少一个分区,所述自移动设备包括:
    壳体;
    行走模块,安装于所述壳体上,用于带动所述自移动设备的行走和/或转向;
    控制模块,控制所述行走模块,以带动所述自移动设备的行走和/或转向;
    导航机构,所述导航机构用于记录所述自移动设备在所述工作区域中行走时经过的行走位置,并基于所述行走位置确定所述自移动设备在所述工作区域中各个分区的覆盖值;
    在所述自移动设备到达所述界限时,所述控制模块控制所述行走模块转向以驶离所述界限,
    基于所述自移动设备到达所述界限时各个行走范围对应的覆盖值,所述控制模块控制所述行走模块向覆盖值满足预设要求的行走范围执行转向。
  20. 一种自移动设备的转向方法,其特征在于,所述自移动设备在界限限定的工作区域中行走并工作,所述方法包括:
    监测所述自移动设备与界限的位置关系;
    当监测到所述自移动设备到达所述界限时,基于各个行走范围对应的覆盖值,控制所述自移动设备转向至覆盖值满足预设要求的行走范围。
  21. 如权利要求20所述的方法,其特征在于,在控制所述自移动设备转向至覆盖值满足预设要求的行走范围之前,所述方法还包括:
    将所述工作区域的地图划分为多个分区;
    记录所述行走模块在所述工作区域中行走时经过的行走位置;
    基于所述行走位置确定所述工作区域各个分区中的覆盖值。
PCT/CN2019/120977 2019-09-12 2019-11-26 自动工作系统及其转向方法、自移动设备 WO2021047063A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
EP19944951.3A EP4030255A4 (en) 2019-09-12 2019-11-26 AUTOMATIC WORKING SYSTEM AND TURNING METHOD THEREOF, AND SELF-PROPELLED DEVICE

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201910863810.2A CN112486157B (zh) 2019-09-12 2019-09-12 自动工作系统及其转向方法、自移动设备
CN201910863810.2 2019-09-12

Publications (1)

Publication Number Publication Date
WO2021047063A1 true WO2021047063A1 (zh) 2021-03-18

Family

ID=74866905

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/120977 WO2021047063A1 (zh) 2019-09-12 2019-11-26 自动工作系统及其转向方法、自移动设备

Country Status (3)

Country Link
EP (1) EP4030255A4 (zh)
CN (1) CN112486157B (zh)
WO (1) WO2021047063A1 (zh)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106983460A (zh) * 2017-04-07 2017-07-28 小狗电器互联网科技(北京)股份有限公司 一种扫地机器人区域清扫图像控制方法
CN107063257A (zh) * 2017-02-05 2017-08-18 安凯 一种分离式扫地机器人及其路径规划方法
CN206491007U (zh) * 2017-01-14 2017-09-15 郑州大学 新型智能割草机器人
CN107831773A (zh) * 2017-11-30 2018-03-23 深圳市沃特沃德股份有限公司 扫地机器人全覆盖清扫的方法及扫地机器人
CN107943058A (zh) * 2017-12-26 2018-04-20 北京面面俱到软件有限公司 扫地机器人及其清扫路径规划方法
US20180354132A1 (en) * 2017-06-09 2018-12-13 Lg Electronics Inc. Moving robot and control method thereof

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7805220B2 (en) * 2003-03-14 2010-09-28 Sharper Image Acquisition Llc Robot vacuum with internal mapping system
US8744626B2 (en) * 2010-05-27 2014-06-03 Deere & Company Managing autonomous machines across multiple areas
EP3876068A1 (en) * 2011-04-28 2021-09-08 Positec Power Tools (Suzhou) Co., Ltd Automatic working system, automatic walking device and steering method thereof
JP5973610B1 (ja) * 2015-03-27 2016-08-23 本田技研工業株式会社 無人作業車の制御装置
CN107291071A (zh) * 2016-03-30 2017-10-24 苏州宝时得电动工具有限公司 自动工作系统、自动行走设备及其转向方法
CN108594828B (zh) * 2018-06-05 2021-05-07 北京智行者科技有限公司 一种清扫作业路径的生成方法
CN109947114B (zh) * 2019-04-12 2022-03-15 南京华捷艾米软件科技有限公司 基于栅格地图的机器人全覆盖路径规划方法、装置及设备

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN206491007U (zh) * 2017-01-14 2017-09-15 郑州大学 新型智能割草机器人
CN107063257A (zh) * 2017-02-05 2017-08-18 安凯 一种分离式扫地机器人及其路径规划方法
CN106983460A (zh) * 2017-04-07 2017-07-28 小狗电器互联网科技(北京)股份有限公司 一种扫地机器人区域清扫图像控制方法
US20180354132A1 (en) * 2017-06-09 2018-12-13 Lg Electronics Inc. Moving robot and control method thereof
CN107831773A (zh) * 2017-11-30 2018-03-23 深圳市沃特沃德股份有限公司 扫地机器人全覆盖清扫的方法及扫地机器人
CN107943058A (zh) * 2017-12-26 2018-04-20 北京面面俱到软件有限公司 扫地机器人及其清扫路径规划方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP4030255A4 *

Also Published As

Publication number Publication date
CN112486157A (zh) 2021-03-12
CN112486157B (zh) 2024-02-23
EP4030255A4 (en) 2023-01-18
EP4030255A1 (en) 2022-07-20

Similar Documents

Publication Publication Date Title
US11832553B2 (en) Autonomous grounds maintenance machines with path planning for trap and obstacle avoidance
US11716926B2 (en) System and method for operating an autonomous robotic working machine within a travelling containment zone
KR101513050B1 (ko) 잔디 깎기 로봇 및 그 제어 방법
CN107291071A (zh) 自动工作系统、自动行走设备及其转向方法
US20230270044A1 (en) Robotic mower having multiple operating modes
CN105911981A (zh) 自动工作系统、自动行走设备及其转向方法
CN113126613A (zh) 智能割草系统及其自主建图方法
CN114353801B (zh) 自移动设备及其导航方法
WO2021139397A1 (zh) 自移动设备的控制方法
WO2019223725A1 (zh) 自动割草机及其转向方法
CN114600622A (zh) 行进路径规划方法、控制装置、割草机、自移动系统
US20240085919A1 (en) Traversal Method and System, Robot, and Readable Storage Medium
WO2021175331A1 (zh) 自移动园艺机器人及其工作方法
WO2021047063A1 (zh) 自动工作系统及其转向方法、自移动设备
CN114937258B (zh) 割草机器人的控制方法、割草机器人以及计算机存储介质
WO2021139683A1 (zh) 自移动设备
US20240134394A1 (en) Automatic work system and turning method therefor, and self-moving device
CN112204488B (zh) 自移动设备的工作方法及装置、自移动设备
CN113848872B (zh) 自动行走设备及其控制方法及可读存储介质
WO2024072699A1 (en) Lawn mower with grass directing system
CN115248588A (zh) 自移动设备及其运动控制方法
CN112204488A (zh) 自移动设备的工作方法及装置、自移动设备

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19944951

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2019944951

Country of ref document: EP

Effective date: 20220412