WO2021046967A1 - 移动空调 - Google Patents

移动空调 Download PDF

Info

Publication number
WO2021046967A1
WO2021046967A1 PCT/CN2019/111856 CN2019111856W WO2021046967A1 WO 2021046967 A1 WO2021046967 A1 WO 2021046967A1 CN 2019111856 W CN2019111856 W CN 2019111856W WO 2021046967 A1 WO2021046967 A1 WO 2021046967A1
Authority
WO
WIPO (PCT)
Prior art keywords
heat exchange
cold
tubes
heat
pipe
Prior art date
Application number
PCT/CN2019/111856
Other languages
English (en)
French (fr)
Inventor
邓树耀
邓海钊
伍智勤
Original Assignee
广东美的制冷设备有限公司
美的集团股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from CN201921515089.XU external-priority patent/CN210601996U/zh
Priority claimed from CN201921508995.7U external-priority patent/CN210601993U/zh
Application filed by 广东美的制冷设备有限公司, 美的集团股份有限公司 filed Critical 广东美的制冷设备有限公司
Publication of WO2021046967A1 publication Critical patent/WO2021046967A1/zh

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F1/00Room units for air-conditioning, e.g. separate or self-contained units or units receiving primary air from a central station
    • F24F1/02Self-contained room units for air-conditioning, i.e. with all apparatus for treatment installed in a common casing

Definitions

  • This application relates to the technical field of air conditioners, in particular to a mobile air conditioner.
  • the prior art proposes a mobile air conditioner that includes a cold storage system and a refrigeration system (responsible for taking and sending cold), and the cold storage system and the refrigeration system can be independent of each other. Operation, when the refrigeration system is running, there is no need to start the compressor. Therefore, in the process of cooling the environment, the mobile air conditioner does not generate additional heat, so there is no need to install an exhaust duct.
  • the prior art still has the following technical problems: the heat exchange tubes of the evaporator of the cold storage system are centrally arranged in a local area of the cold storage box, which causes the water near the evaporator to freeze quickly, while the heat exchange tube of the evaporator is far away from the evaporator. Water freezes very slowly, leading to long cold storage time, or insufficient energy storage due to insufficient cold storage icing; in addition, the close heat exchange area of the evaporator of the ice storage module and the heat exchanger of the cold extraction system is also It is very small, resulting in little chance of direct heat exchange between the two, and the efficiency of heat exchange and cooling is not high.
  • the main purpose of this application is to propose a mobile air conditioner, which aims to solve at least one of the above technical problems.
  • this application proposes a mobile air conditioner, the mobile air conditioner including:
  • a cold storage evaporator the cold storage evaporator is arranged in the cold storage box, and a refrigerant flows through a heat exchange tube of the cold storage evaporator;
  • a cold heat exchanger the cold heat exchanger is arranged in the cold storage box, and a loaded refrigerant flows through the heat exchange tube of the cold heat exchanger;
  • the heat exchange tubes of the cold storage evaporator and the heat exchange tubes of the cold heat exchanger are alternately arranged at intervals.
  • the cold storage evaporator includes a multilayer first heat exchange tube
  • the cold heat exchanger includes at least one layer of second heat exchange tubes, and any two adjacent layers of the first heat exchange tubes There is at least one layer of the second heat exchange tube between them.
  • the cold heat exchanger includes multiple layers of second heat exchange tubes, any two adjacent layers of the first heat exchange tubes communicate with each other, and any two adjacent layers of the second heat exchange tubes are connected to each other.
  • the heat exchange tubes communicate with each other.
  • first heat exchange tubes of any layer and the second heat exchange tubes of an adjacent layer are arranged in parallel.
  • the first heat exchange tubes of any layer include a plurality of first straight tubes and a plurality of first bent tubes, and any two adjacent first straight tubes of the same layer pass through a first straight tube.
  • An elbow is connected;
  • the second heat exchange tube of any layer includes a plurality of second straight tubes and a plurality of second elbow tubes, and any two adjacent second straight tubes on the same layer pass through a second straight tube. The elbow is connected.
  • any one of the second straight tubes in any layer of the second heat exchange tube is arranged in a staggered arrangement relative to the first straight tubes in the adjacent layer of the first heat exchange tube.
  • the cold storage evaporator includes a plurality of third heat exchange tubes
  • the cold heat exchanger includes a plurality of fourth heat exchange tubes, at least one of the third heat exchange tubes and at least one of the third heat exchange tubes.
  • the fourth heat exchange tube is located in the same layer of heat exchange tubes.
  • At least one fourth heat exchange tube is spaced between any two adjacent third heat exchange tubes in the same layer of heat exchange tubes.
  • the cold storage evaporator includes multiple layers of the third heat exchange tubes
  • the cold heat exchanger includes multiple layers of the fourth heat exchange tubes
  • any layer of the third heat exchange tubes The fourth heat exchange tubes are arranged in parallel with the adjacent layer of the fourth heat exchange tube.
  • the third heat exchange tubes of any layer include a plurality of third straight tubes and a plurality of third elbow tubes, and any two adjacent third straight tubes in the same layer pass through a first
  • the three elbow tubes are connected
  • the fourth heat exchange tube of any layer includes a plurality of fourth straight tubes and a plurality of fourth elbow tubes, and any two adjacent fourth straight tubes in the same layer pass through a fourth straight tube.
  • the elbow is connected.
  • the cold storage evaporator has a refrigerant inlet and a refrigerant outlet
  • the cold heat exchanger has a refrigerant outlet, and between the refrigerant inlet and the refrigerant outlet, the refrigerant outlet and the refrigerant outlet There are heat insulation gaps between the refrigerant outlets.
  • the mobile air conditioner further includes a cold storage condenser, a compressor, and a throttling device.
  • the refrigerant outlet of the compressor, the cold storage condenser, the throttling device, the cold storage evaporator, and the throttling device The refrigerant inlets of the compressor are connected in sequence to form a cold storage loop;
  • the mobile air conditioner also includes a liquid pump and a cold-sending heat exchanger, the output port of the liquid pump, the cold-sending heat exchanger, and the cold-sending heat exchanger
  • the heat exchanger and the input port of the liquid pump are sequentially connected to form a cooling loop.
  • the cold sending heat exchanger and the cold taking heat exchanger are connected by a pipe, and the pipe includes a refrigerant inlet connecting the cold sending heat exchanger and the cold taking heat exchanger.
  • the thermal conductivity of the first thermal insulation pipe of the refrigerant outlet of the first thermal insulation pipe is lower than the thermal conductivity of the metal pipe.
  • the first heat-insulating pipe includes an inner pipe and a heat-insulating layer
  • the inner pipe is used for circulating refrigerant
  • the heat-insulating layer is a heat-insulating pipe sleeved on the outer circumference of the inner pipe.
  • the material of the thermal insulation layer includes any one of polyethylene thermal insulation material, polyurethane thermal insulation material, rock wool and glass wool.
  • a vacuum cavity is formed between the inner pipe and the thermal insulation layer at intervals.
  • the first heat-insulating pipe includes an inner pipe and a heat-insulating layer
  • the inner pipe is used to circulate a refrigerant
  • the heat-insulating layer is a heat-insulating coating coated on the outer circumference of the inner pipe.
  • the material of the thermal insulation coating includes any one of nano hollow ceramic beads, inorganic polymers, rubber powder polystyrene particles, and inorganic vitrified beads.
  • the first heat-insulating pipe is a non-metal pipe
  • the first heat-insulating pipe includes any one of a plastic pipe, a rubber pipe, and a plexiglass pipe.
  • the thermal conductivity of the first thermal insulation pipe is less than or equal to 1.00 W/m ⁇ K.
  • connection between the heat exchange tube of the cold heat exchanger and the first heat preservation pipe, and the connection between the heat exchange tube of the cold heat exchanger and the first heat preservation pipe All are coated with sealant.
  • the pipeline further includes a second heat preservation pipe connecting the refrigerant outlet of the cold sending heat exchanger and the refrigerant inlet of the cold taking heat exchanger, and the second heat preservation pipe
  • the thermal conductivity is lower than that of metal pipes.
  • This application discloses a mobile air conditioner, including a cold storage evaporator, a cold heat exchanger and a cold storage box containing a phase change cold storage material (water is taken as an example below), wherein the cold storage evaporator and the cold heat exchanger are provided In the cold storage box, the heat exchange tubes of the cold storage evaporator and the heat exchange tubes of the cold heat exchanger are arranged at intervals.
  • a phase change cold storage material water is taken as an example below
  • the heat exchange tubes of the cold storage evaporator and the heat exchange tubes of the cold heat exchanger are prevented from being concentrated in a local area of the cold storage box, but are evenly distributed in the entire cold storage box , So that the water and the heat exchange tube of the evaporator are in close contact, which effectively increases the cold storage speed and reduces the time required for cold storage; and the icing is even and sufficient, and the cold storage capacity increases, thereby increasing the available cold storage capacity. Furthermore, the use time of taking cold and sending cold is prolonged. In addition, the heat exchange area of the heat exchange tube of the cold storage evaporator and the heat exchange tube of the cold heat exchanger can be increased.
  • the cold heat exchanger can improve the efficiency of heat exchange and cold extraction; and the heat exchange tubes of the cold heat exchanger are evenly distributed in the water tank, and the ice and the heat exchanger are in close contact, which effectively improves the cooling speed and takes the cold. The effect is stable.
  • Figure 1 is a schematic structural diagram of an embodiment of a mobile air conditioner according to this application.
  • Fig. 2 is another schematic diagram of the structure of the mobile air conditioner shown in Fig. 1;
  • FIG. 3 is a schematic diagram of the arrangement structure of the heat exchange tubes of the cold storage evaporator and the heat exchange tubes of the cold heat exchanger in an embodiment of the application;
  • FIG. 4 is a schematic diagram of the arrangement of the heat exchange tubes of the cold storage evaporator and the heat exchange tubes of the cold heat exchanger in another embodiment of the application;
  • Fig. 5 is a schematic structural diagram of another embodiment of a mobile air conditioner according to this application.
  • FIG. 6 is a schematic diagram of the structure of the first insulation pipe in the mobile air conditioner shown in FIG. 5;
  • Fig. 7 is another schematic diagram of the structure of the first insulation pipe in the mobile air conditioner shown in Fig. 5;
  • Fig. 8 is a schematic structural diagram of another embodiment of a mobile air conditioner according to this application.
  • Attached icon number description Label name Label name 1 Mobile Air Conditioning 10 Cold storage box 20 Cold storage evaporator twenty one The first heat exchange tube 211 First pipe 212 First bend twenty two The third heat exchange tube 221 Third straight pipe 222 Third bend 30 Take cold heat exchanger 31 The second heat exchange tube 311 Second straight pipe 312 Second bend 32 Fourth heat exchange tube 321 Fourth straight pipe 322 Fourth elbow 40 Cold storage condenser 50 compressor 60 Send cold heat exchanger 70 Liquid pump 80 Throttling device 90 Heat exhaust fan 100 Blower 201 Refrigerant inlet 202 Refrigerant export 301 Refrigerant inlet 302 Refrigerant outlet 25 The first insulated pipe 251 Inner pipe 252 Insulation 253 Vacuum chamber 26 Second insulation pipe
  • the present application proposes a mobile air conditioner 1.
  • the mobile air conditioner 1 according to an embodiment of the present application will be described in detail below with reference to Figs. 1 to 4.
  • the mobile air conditioner 1 includes a cold storage tank 10, a cold storage evaporator 20, and a cold heat exchanger 30.
  • the cold storage box 10 contains a phase change cold storage material
  • the cold storage evaporator 20 is arranged in the cold storage box 10
  • the cold storage evaporator 20 is at least partially immersed in the phase change cold storage material.
  • a refrigerant flows through the heat pipe;
  • the cold heat exchanger 30 is arranged in the cold storage box 10, the cold heat exchanger 30 is at least partially immersed in the phase change cold storage material, and the cold heat exchanger 30 is at least partially immersed in the phase change cold storage material.
  • the heat exchange tube of the heat exchange tube flows through the loaded refrigerant; wherein, the heat exchange tubes of the cold storage evaporator 20 and the heat exchange tubes of the cold heat exchanger 30 are alternately arranged at intervals.
  • phase change cold storage material includes but is not limited to water, and the following takes the phase change cold storage material as water as an example.
  • the cold storage evaporator 20 When the cold storage evaporator 20 is working, its public cold will be transferred to the surrounding water. When the temperature reaches the freezing point of water, the water starts to freeze until the entire cold storage tank 10 is filled with ice or a mixture of ice and water, ice or ice water. A large amount of cold energy can be stored in the mixture, and then the cold energy is transferred from the storage refrigerator through the cold heat exchanger 30 through the refrigerant.
  • the mobile air conditioner 1 includes a cold storage system and a refrigeration system.
  • the cold storage system includes a cold storage condenser 40, a cold storage evaporator 20, a cold storage tank 10, a compressor 50, a throttling device 80, and a heat exhaust fan 90, the refrigerant outlet of the compressor 50, the cold storage condenser 40, and the The flow device 80, the cold storage evaporator 20, and the refrigerant inlet of the compressor 50 communicate in sequence to form a cold storage loop.
  • the cold storage loop is filled with refrigerant. After the compressor 50 works, it compresses the refrigerant.
  • the high-temperature and high-pressure refrigerant enters the cold storage condenser 40, exchanges heat with the outside air through the operation of the heat exhaust fan 90, enters the throttling device 80, and is throttled into a low-temperature and low-pressure refrigerant. It then enters the cold storage evaporator 20, exchanges heat with the water in the cold storage tank 10, and cools the water to ice cubes or ice-water mixture below 0°C.
  • the refrigeration system includes a cold heat exchanger 30, a cold heat exchanger 60, a liquid pump 70, and a cold air blower 100, the outlet of the liquid pump 70, the cold heat exchanger 60, the cold heat exchanger 30, and the The inlets of the liquid pump 70 are connected in sequence and form a cooling loop.
  • the refrigerant-carrying agent is filled in the cooling loop.
  • the liquid pump 70 operates, so that the refrigerant in the cold heat exchanger 30 starts to flow.
  • the refrigerant first exchanges heat with the ice or ice-water mixture in the cold storage tank 10 to become a low-temperature state, and then flows into the cold delivery heat exchanger 60, and exchanges heat with the indoor air through the operation of the cold delivery fan 100. And send out the cold air to cool the indoor environment.
  • the heat exchange tubes of the cold storage evaporator 20 and the heat exchange tubes of the cold heat exchanger 30 are arranged at intervals, including but not limited to the following two arrangements: heat exchange of the cold storage evaporator 20
  • the heat exchange tubes of the cold storage heat exchanger 30 and the heat exchange tubes belong to different layers of heat exchange tubes.
  • the heat exchange tubes of the cold storage evaporator 20 and the heat exchange tubes of the cold heat exchanger 30 are arranged at intervals;
  • the heat pipes and the heat exchange tubes of the cold heat exchanger 30 are located in the same layer of heat exchange tubes, and the heat exchange tubes of the cold storage evaporator 20 and the heat exchange tubes of the cold heat exchanger 30 in the same layer of heat exchange tubes are cross-spaced Arrangement, the arrangement of the above two heat exchange tubes will be explained in detail later.
  • the heat exchange tubes of the ice storage evaporator in the existing mobile air conditioner are concentratedly arranged in a local area of the cold storage box, and the cold transfer is uneven, which causes the water near the evaporator to freeze quickly, but is far away from the evaporator. However, the water freezes slowly, leading to long cold storage time, or insufficient cold storage due to insufficient cold storage.
  • the short-distance heat exchange area of the heat exchange tube of the ice storage evaporator and the heat exchange tube of the cold heat exchanger is also small, resulting in a small chance of direct heat exchange between the two, and low heat exchange and cold extraction efficiency. high.
  • the heat exchange tubes of the cold storage evaporator and the heat exchange tubes of the cold heat exchanger are arranged at intervals to prevent the heat exchange tubes of the cold storage evaporator from being concentrated in a local area of the cold storage box, but are evenly distributed throughout the entire cold storage evaporator.
  • the water and the heat exchange tube of the evaporator are in close contact, which effectively increases the cold storage speed and reduces the time required for cold storage; and the icing is even and sufficient, and the cold storage capacity is increased, thereby increasing the available cold delivery Cooling capacity, thereby extending the use time of taking cold and sending cold.
  • the heat exchange area of the heat exchange tube of the cold storage evaporator and the heat exchange tube of the cold heat exchanger can be increased.
  • the cold heat exchanger can improve the efficiency of heat exchange and cold extraction; and the heat exchange tubes of the cold heat exchanger are evenly distributed in the water tank, and the ice and the heat exchanger are in close contact, which effectively improves the cooling speed and takes the cold. The effect is stable.
  • the cold storage evaporator 20 includes a multilayer first heat exchange tube 21, and the cold heat exchanger 30 includes at least one layer of second heat exchange tubes 31, and any two adjacent first heat exchange tubes There is at least one layer of second heat exchange tubes 31 between one heat exchange tube 21.
  • the first heat exchange tube 21 and the second heat exchange tube 31 belong to different layers of heat exchange tubes, and the first heat exchange tube 21 layer and the second heat exchange tube 31 are arranged at intervals.
  • the first heat exchange tube 21 is located at a layer-to-layer spacing to avoid concentration in a local area of the cold storage tank 10 (while the second heat exchange tube 31 occupies another local area), so that the first heat exchange tube 21 Distributed in the entire cold storage box 10, so that the cold storage phase change material and the first heat exchange tube 21 are in close contact, which effectively increases the speed of refrigeration and ice storage, reduces the time required for cold storage, and the icing is uniform and sufficient, and the cold storage capacity The increase, thereby increasing the cooling capacity of the cold extraction, thereby prolonging the use time of the cold extraction and refrigeration.
  • second heat exchange tubes 31 there is a layer of second heat exchange tubes 31 or multiple layers of second heat exchange tubes 31 between two adjacent first heat exchange tubes 21, which can increase the heat exchange tubes of the cold storage evaporator 20 and take cold and heat exchange.
  • the short-distance heat exchange area of the heat exchange tube of the heat storage device 30, when the cold storage evaporator 20 is working, enables a large part of the cold energy to be directly transferred to the cold heat exchanger 30 through the fins, and then to the phase change cold storage material, and the temperature is reduced. Ice is formed and then cold is stored, thereby improving the efficiency of heat exchange and cold extraction.
  • the cold heat exchanger 30 includes multiple layers of second heat exchange tubes 31, any two adjacent layers of first heat exchange tubes 21 communicate with each other, and any two adjacent layers of second heat exchange tubes 21 are connected to each other.
  • the heat exchange tubes 31 communicate with each other. It can be understood that the first heat exchange tubes 21 of different layers are connected so that the refrigerant can flow freely in the first heat exchange tubes 21 of different layers, and the second heat exchange tubes 31 of different layers are connected to make the cooling medium The agent flows freely in the second heat exchange tubes 31 of different layers.
  • first heat exchange tubes 21 of any layer and the second heat exchange tubes 31 of the adjacent layer are arranged in parallel.
  • both the cold storage evaporator 20 and the cold heat exchanger 30 are equipped with fins to enhance heat transfer.
  • each layer of heat exchange tubes corresponds to a row of fins, the fins are provided with through holes, and the heat exchange tubes are inserted into the fins through the through holes.
  • the first heat exchange tube 21 of any layer includes a plurality of first straight tubes 211 and a plurality of first bent tubes 212, and any two adjacent first straight tubes 211 on the same layer
  • the second heat exchange tube 31 of any layer includes a plurality of second straight tubes 311 and a plurality of second curved tubes 312, and any two adjacent second straight tubes 312 on the same layer are connected.
  • the pipe 311 is connected through a second elbow 312. In this way, the refrigerant can flow freely in the first heat exchange tube 21 of the same layer, and the refrigerant can flow freely in the second heat exchange tube 31 of the same layer.
  • any one of the second straight tubes 311 in the second heat exchange tubes 31 of any layer is misaligned with respect to the first straight tubes 211 in the adjacent layer of the first heat exchange tubes 21 Arrangement.
  • the fins of the adjacent first heat exchange tube 21 and the fins of the second heat exchange tube 31 are also staggered, shortening the distance between the two, which is beneficial to improve the heat exchange efficiency between the two. .
  • the cold storage evaporator 20 includes a plurality of third heat exchange tubes 22, and the cold heat exchanger 30 includes a plurality of fourth heat exchange tubes 32, and at least one of the third heat exchange tubes
  • the tube 22 and at least one of the fourth heat exchange tubes 32 are located in the same layer of heat exchange tubes. It can be understood that when the third heat exchange tube 22 and the fourth heat exchange tube 32 are located in the same layer, the distance between the third heat exchange tube 22 and the fourth heat exchange tube 32 can be further shortened, thereby increasing the third heat exchange tube.
  • the short-distance heat exchange area of the heat pipe 22 and the fourth heat exchange pipe 32 further improves the efficiency of heat exchange and cold extraction.
  • the third heat exchange tubes 22 and the fourth heat exchange tubes 32 are arranged alternately, and both share the same row of fins, which can enlarge the third heat exchange tubes 22 and the fourth heat exchange tubes 32 The direct contact heat exchange area, thereby improving the efficiency of heat exchange and cooling.
  • the cold storage evaporator 20 includes a multilayer third heat exchange tube 22
  • the cold heat exchanger 30 includes a multilayer fourth heat exchange tube 32, any layer of the third heat exchange tube 22 and its The fourth heat exchange tubes 32 of an adjacent layer are arranged in parallel, any two adjacent first heat exchange tubes 21 are connected to each other, and any two adjacent second heat exchange tubes 31 are connected to each other.
  • the layer where the third heat exchange tube 22 is located and the layer where the fourth heat exchange tube 32 is located in parallel the fins on the layer where the third heat exchange tubes 22 are located are in contact with the fins on the layer where the fourth heat exchange tubes 32 are located.
  • the cold energy of the layer where the third heat exchange tube 22 is located can be directly transferred to the layer where the fourth heat exchange tube 32 is located through the fins, thereby improving the efficiency of heat exchange and cooling.
  • the third heat exchange tube 22 of any layer includes a plurality of third straight tubes 221 and a plurality of third elbow tubes 222, and any two adjacent third straight tubes 221 in the same layer
  • the fourth heat exchange tube 32 of any layer includes a plurality of fourth straight tubes 321 and a plurality of fourth straight tubes 322, and any two adjacent fourth straight tubes 322 in the same layer are connected
  • the pipe 321 communicates with the fourth elbow 322.
  • each of the third heat exchange tubes 22 and each of the fourth heat exchange tubes 32 is a U-shaped tube, and each U-shaped tube includes two straight tubes and one elbow tube. Two adjacent third heat exchange tubes 22 are connected through another elbow.
  • any two adjacent fourth heat exchange tubes 32 in the same layer are also connected through another elbow. In this way, the refrigerant can flow freely in the third heat exchange tube 22 of the same layer, and the refrigerant can flow freely in the fourth heat exchange tube 32 of the same layer.
  • the cold storage evaporator 20 has a refrigerant inlet 201 and a refrigerant outlet 202, and the refrigerant inlet 201 is in communication with the refrigerant outlet 202;
  • the refrigerant inlet 301 and the refrigerant outlet 302 are in communication with the refrigerant outlet 302.
  • the refrigerant is converted from liquid to gas and absorbs a large amount of heat from the phase change cold storage material in contact with the heat exchange tube of the cold storage evaporator 20. 201.
  • the temperature of the refrigerant outlet 202 will be higher. Therefore, in this embodiment, the refrigerant inlet 201 and the refrigerant outlet 302 are arranged far away from the refrigerant outlet 202 to prevent the temperature of the refrigerant inlet 201 and the refrigerant outlet 302 from being affected by the refrigerant outlet. 202.
  • the heat insulation gap refers to the distance between the refrigerant inlet 201 and the refrigerant outlet 202 and the distance between the refrigerant outlet 302 and the refrigerant outlet 202 are far enough to not directly transfer heat, and to avoid the refrigerant inlet 201
  • the temperature of the refrigerant outlet 302 may be affected by the high temperature of the refrigerant outlet 202.
  • the refrigerant inlet 301 and the refrigerant outlet 202 are arranged near one side of the cold storage tank 10
  • the refrigerant outlet 302 and the refrigerant inlet 201 are arranged near the other side of the cold storage tank 10.
  • the refrigerant inlet 201, the refrigerant outlet 302, and the refrigerant outlet 202 can be arranged near the cold storage tank 10. Same side.
  • the cold sending heat exchanger 60 and the cold taking heat exchanger 30 are connected by a pipe, and the pipe includes a cold carrier connected to the cold sending heat exchanger 60.
  • the thermal conductivity of the first thermal insulation pipe 25 between the agent inlet and the refrigerant outlet of the cooling heat exchanger 30 is lower than the thermal conductivity of the metal pipe.
  • the existing mobile air conditioners have the following technical problems: the pipe connecting the cold and cold heat exchanger and the cold delivery heat exchanger is made of copper pipes and is completely exposed to the air, resulting in the conveying section of the refrigerant pipeline Insufficient thermal insulation results in serious loss of cooling energy, and insufficient cooling capacity when supplying air to users or indoor environments.
  • the first heat preservation pipe 25 is provided to connect the refrigerant inlet of the cold sending heat exchanger 60 and the refrigerant outlet of the cold taking heat exchanger 30, which effectively improves the refrigerant pipeline
  • the heat preservation effect of the conveying section significantly reduces the loss of cold energy in the cold delivery loop, thereby improving the utilization efficiency of cold energy.
  • metal pipes have good mechanical strength and compressive performance
  • the thermal conductivity of metal materials is very high.
  • the thermal conductivity of copper pipes is close to 400W/m ⁇ K, which leads to the use of copper pipes for cooling The cold energy loss of the loop is more serious.
  • the refrigerant delivery section of the cold delivery loop adopts thermal insulation pipes, which are at least partially composed of thermal insulation materials.
  • the thermal insulation materials are usually light, loose, and porous non-metallic materials, and their thermal conductivity is much lower than that of metal. The thermal insulation coefficient of the material, therefore, the technical solution of this embodiment can greatly reduce the loss of cold energy in the cooling loop.
  • the first thermal insulation pipe 25 includes an inner pipe 251 and a thermal insulation layer 252.
  • the internal pipe 251 is used for the circulation of the refrigerant.
  • the thermal insulation layer 252 is sleeved on the Insulation pipe on the outer circumference of the inner pipe 251.
  • the inner pipe 251 may be a metal pipe or a non-metal pipe, and the inner pipe 251 is in communication with the heat exchange pipe of the cold heat exchanger 30 and the heat exchange pipe of the cold heat exchanger 60 to transport the refrigerant.
  • the thermal insulation layer 252 is sleeved on the outer periphery of the inner pipe 251.
  • the thermal insulation layer 252 is made of thermal insulation material.
  • the thermal insulation layer 252 can heat the inner pipe 251 to avoid the direct exposure of the inner pipe 251 and the direct loss of the cold energy carried by the refrigerant. Into the outside air.
  • the material of the thermal insulation layer 252 includes any one of polyethylene thermal insulation material, polyurethane thermal insulation material, rock wool and glass wool.
  • the thermal conductivity of polyethylene thermal insulation material ranges from 0.2 to 0.5W/m ⁇ K
  • the thermal conductivity of polyurethane thermal insulation materials ranges from 0.01 to 0.03W/m ⁇ K
  • the thermal conductivity of rock wool and glass wool ranges from 0.03 to 0.04W. /m ⁇ K
  • the thermal conductivity of the metal material is usually above 200W/m ⁇ K. It can be seen that the thermal conductivity of the thermal insulation material used in this embodiment is much lower than that of the metallic material. Therefore, the thermal insulation layer 252 can significantly Reduce the cold energy loss in the conveying section of the refrigerant.
  • the thermal insulation layer 252 can also be made of thermal insulation materials with low conductivity such as rubber, plastic, and light cork.
  • the present invention does not limit the specific material of the thermal insulation layer 252, as long as it can reach a certain level. The heat preservation effect is enough.
  • a vacuum cavity 253 is formed between the inner pipe 251 and the heat insulation layer 252 at intervals.
  • the vacuum chamber 253 can effectively prevent heat transfer and heat convection, so as to prevent direct heat exchange between the inner pipe 251 and the heat preservation layer 252, thereby playing a certain heat preservation effect.
  • the thermal insulation layer 252 is a thermal insulation coating coated on the outer circumference of the inner pipe 251.
  • the thermal insulation coating is made of paint with low thermal conductivity and high thermal resistance.
  • the material of the thermal insulation coating includes any one of nano hollow ceramic microbeads, inorganic polymers, rubber powder polystyrene particles, and inorganic vitrified microbeads.
  • the thermal insulation coating also has the functions of flame retardant, anti-corrosion and insulation.
  • the first thermal insulation pipe 25 is a non-metallic pipe, and the first thermal insulation pipe 25 includes any one of a plastic pipe, a rubber pipe, a plexiglass pipe, and the like. It can be understood that since the compressor 14 is not needed in the refrigeration process, the pressure on the pipes of the cold delivery loop is relatively small. Therefore, the first heat preservation pipe 25 can be made of non-metallic materials with low thermal conductivity to reduce The cold energy loss of the pipes in the cold loop. It can be understood that plastic pipes, rubber pipes and plexiglass pipes not only have low thermal conductivity, but also have strong mechanical strength. Therefore, they are very suitable for use as heat preservation pipes in the cold delivery loop.
  • the thermal conductivity of the first thermal insulation pipe 25 is less than or equal to 1.00 W/m ⁇ K.
  • connection between the heat exchange tube of the cold heat exchanger 30 and the first heat preservation pipe 25 and the connection between the heat exchange pipe of the cold heat exchanger 60 and the first heat preservation pipe 25 are coated with sealant. Threaded fit is adopted between the first heat preservation pipe 25 and the heat exchange pipe of the cold heat exchanger 30, and between the first heat preservation pipe 25 and the cold heat exchanger 60.
  • Both are coated with sealant to prevent the leakage of the refrigerant due to poor sealing of the joints.
  • the pipeline further includes a second heat preservation pipe 26 connecting the refrigerant outlet of the cold sending heat exchanger 60 and the refrigerant inlet of the cold taking heat exchanger 30.
  • the thermal conductivity of the second thermal insulation pipe 26 is lower than that of the metal pipe. It can be understood that the provision of the first heat preservation pipe 25 can reduce the cold energy loss of the refrigerant in the conveying stage from the cold heat exchanger 30 to the cold heat exchanger 60 and prevent insufficient cooling capacity during cooling and air supply.
  • the second heat preservation pipe 26 By providing the second heat preservation pipe 26, the cold energy loss during the return stage of the refrigerant flowing from the cold sending heat exchanger 60 to the cold taking heat exchanger 30 can be reduced, so as to prevent the refrigerant from returning to the cold taking heat exchanger 30. Because the temperature is too high, more cold energy in the cold storage tank 13 needs to be consumed. Therefore, this embodiment can further reduce the cold energy loss of the cold delivery loop and improve the cold energy utilization rate of the mobile air conditioner. It should be noted that the structure of the second thermal insulation pipe 26 is basically the same as that of the first thermal insulation pipe 25. For the specific structure of the second thermal insulation pipe 26, please refer to the structure of the first thermal insulation pipe 25 in the above embodiment. Go into details.

Abstract

一种移动空调,包括蓄冷箱(10)、蓄冷蒸发器(20)和取冷换热器(30)。蓄冷箱(10)内容置有相变蓄冷材料,蓄冷蒸发器(20)设于所述蓄冷箱(10)内,蓄冷蒸发器(20)的换热管内流经有冷媒;取冷换热器(30)设于所述蓄冷箱(10)内,取冷换热器(30)的换热管内流经有载冷剂;蓄冷蒸发器(20)的换热管与取冷换热器(30)的换热管相互间隔排布。

Description

移动空调
相关申请
本申请要求2019年9月10日申请的,申请号为201921508995.7,名称为“移动空调”中国专利申请,以及2019年9月10日申请的,申请号为201921515089.X,名称为“移动空调”中国专利申请的优先权。
技术领域
本申请涉及空调技术领域,特别涉及一种移动空调。
背景技术
常规的移动空调具有体积小、免安装、可移动和局部范围内降温效果比普通空调快等优点,但常规的移动空调往往连接有较粗的排风管以供其向外散热,排风管的设置在一定程度上限制了移动空调使用的灵活性和便利性。
针对上述移动空调移动的灵活性和便利性受限的问题,现有技术提出了一种移动空调中包括蓄冷系统和制冷系统(负责取冷和送冷),且蓄冷系统和制冷系统可分别独立运行,在制冷系统运行时,无需启动压缩机,因此,在对环境进行降温的过程中,移动空调不产生额外的热量,故无需安装排风管。但该现有技术还存在以下技术问题:蓄冷系统的蒸发器的换热管集中设置在蓄冷箱中的一局部区域,导致接近蒸发器附近的水很快结冰,而离蒸发器较远的水结冰很慢,导致蓄冷时间长,或因蓄冷结冰不充分,而导致蓄能不足;另外,蓄冰模块的蒸发器与取冷系统的换热器两者的近距离换热面积也很小,导致两者之间直接换热的几率很少,换热和取冷效率不高。
申请内容
本申请的主要目的是提出一种移动空调,旨在解决上述技术问题至少之一。
为实现上述目的,本申请提出一种移动空调,所述移动空调包括:
蓄冷箱,所述蓄冷箱容置有相变蓄冷材料;
蓄冷蒸发器,所述蓄冷蒸发器设于所述蓄冷箱内,所述蓄冷蒸发器的换热管内流经有冷媒;
取冷换热器,所述取冷换热器设于所述蓄冷箱内,所述取冷换热器的换热管内流经有载冷剂;其中,
所述蓄冷蒸发器的换热管与所述取冷换热器的换热管交替间隔排布。
在一实施例中,所述蓄冷蒸发器包括多层第一换热管,所述取冷换热器包括至少一层第二换热管,任意两层相邻的所述第一换热管之间至少间隔有一层所述第二换热管。
在一实施例中,所述取冷换热器包括多层第二换热管,任意两层相邻的所述第一换热管之间相互连通,任意两层相邻的所述第二换热管之间相互连通。
在一实施例中,任意一层所述第一换热管和与其邻近的一层所述第二换热管并行排布。
在一实施例中,任意一层所述第一换热管包括多个第一直管和多个第一弯管,同一层的任意相邻的两所述第一直管通过一所述第一弯管连通;任意一层所述第二换热管包括多个第二直管和多个第二弯管,同一层的任意相邻的两所述第二直管通过一所述第二弯管连通。
在一实施例中,任意一层所述第二换热管中任意一所述第二直管相对与其邻近的一层所述第一换热管中的所述第一直管错位排布。
在一实施例中,所述蓄冷蒸发器包括多个第三换热管,所述取冷换热器包括多个第四换热管,至少一所述第三换热管与至少一所述第四换热管位于同一层换热管中。
在一实施例中,同一层换热管中任意相邻的两所述第三换热管之间间隔有至少一所述第四换热管。
在一实施例中,所述蓄冷蒸发器包括多层所述第三换热管,所述取冷换热器包括多层所述第四换热管,任意一层所述第三换热管和与其邻近的一层所述第四换热管并行排布。
在一实施例中,任意一层所述第三换热管包括多个第三直管和多个第三弯管,同一层中任意相邻的两所述第三直管通过一所述第三弯管连通;任意一层所述第四换热管包括多个第四直管和多个第四弯管,同一层中任意相邻的两所述第四直管通过一所述第四弯管连通。
在一实施例中,所述蓄冷蒸发器具有冷媒入口和冷媒出口,所述取冷换热器具有载冷剂出口,所述冷媒入口与所述冷媒出口之间、所述载冷剂出口与所述冷媒出口之间均具有隔热间隙。
在一实施例中,所述移动空调还包括蓄冷冷凝器、压缩机和节流装置,所述压缩机的冷媒出口、所述蓄冷冷凝器、所述节流装置、所述蓄冷蒸发器和所述压缩机的冷媒入口依次连通并形成蓄冷环路;所述移动空调还包括液体泵和送冷换热器,所述液体泵的输出口、所述送冷换热器、所述取冷换热器和所述液体泵的输入口依次连通并形成送冷环路。
在一实施例中,所述送冷换热器和所述取冷换热器通过管道连接,所述管道包括连接所述送冷换热器的载冷剂入口与所述取冷换热器的载冷剂出口的第一保温管道,所述第一保温管道的导热系数低于金属管的导热系数。
在一实施例中,所述第一保温管道包括内管道和保温层,所述内管道用以供载冷剂流通,所述保温层为套设于所述内管道的外周的保温管。
在一实施例中,所述保温层的材料包括聚乙烯保温材料、聚氨酯保温材料、岩棉和玻璃棉中的任意一种。
在一实施例中,所述内管道和所述保温层之间间隔设置而形成有真空腔。
在一实施例中,所述第一保温管道包括内管道和保温层,所述内管道用以供载冷剂流通,所述保温层为涂覆于所述内管道的外周的保温涂层。
在一实施例中,所述保温涂层的材料包括纳米空心陶瓷微珠、无机聚合物、胶粉聚苯颗粒和无机玻化微珠中的任意一种。
在一实施例中,所述第一保温管道为非金属管道,所述第一保温管道包括塑料管道、橡胶管道和有机玻璃管道中的任意一种。
在一实施例中,所述第一保温管道的导热系数小于或等于1.00W/m·K。
在一实施例中,所述取冷换热器的换热管与所述第一保温管道的连接处,以及所述送冷换热器的换热管与所述第一保温管道的连接处均涂覆有密封胶。
在一实施例中,所述管道还包括连接所述送冷换热器的载冷剂出口与所述取冷换热器的载冷剂入口的第二保温管道,所述第二保温管道的导热系数低于金属管的导热系数。
本申请公开一种移动空调,包括蓄冷蒸发器、取冷换热器和容置有相变蓄冷材料(下面以水为例)的蓄冷箱中,其中,蓄冷蒸发器和取冷换热器设于所述蓄冷箱内,且蓄冷蒸发器的换热管与取冷换热器的换热管相互间隔排布。通过将蓄冷蒸发器的换热管和取冷换热器的换热管间隔排布,避免蓄冷蒸发器的换热管集中于蓄冷箱中的一局部区域,而是均匀分布于整个蓄冷箱内,使得水与蒸发器的换热管均为近距离接触,有效提升了蓄冷速度,降低了蓄冷所需时长;并且结冰均匀而充分,蓄冷冷量提升,从而提升了可取冷送冷量,进而延长了取冷送冷的使用时长。另外,还能增大蓄冷蒸发器的换热管和取冷换热器的换热管的近距离换热面积,蓄冷蒸发器工作时,使得很大部分冷量能够通过翅片直接传递给取冷换热器,从而提高换热和取冷的效率;并且取冷换热器的换热管均匀分布在水箱里,冰与换热器均为近距离接触,有效提升取冷速度,取冷效果稳定。
附图说明
为了更清楚地说明本申请实施例或现有技术中的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本申请的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图示出的结构获得其他的附图。
图1为本申请移动空调一实施例的结构示意图;
图2为图1所示移动空调的另一结构示意图;
图3为本申请一实施例中蓄冷蒸发器的换热管和取冷换热器的换热管的排布结构示意图;
图4为本申请另一实施例中蓄冷蒸发器的换热管和取冷换热器的换热管的排布结构示意图;
图5为本申请移动空调另一实施例的结构示意图;
图6为图5所示移动空调中第一保温管道的结构示意图;
图7为图5所示移动空调中第一保温管道的另一结构示意图;
图8为本申请移动空调另一实施例的结构示意图。
附图标号说明:
标号 名称 标号 名称
1 移动空调 10 蓄冷箱
20 蓄冷蒸发器 21 第一换热管
211 第一直管 212 第一弯管
22 第三换热管 221 第三直管
222 第三弯管 30 取冷换热器
31 第二换热管 311 第二直管
312 第二弯管 32 第四换热管
321 第四直管 322 第四弯管
40 蓄冷冷凝器 50 压缩机
60 送冷换热器 70 液体泵
80 节流装置 90 排热风机
100 送冷风机 201 冷媒入口
202 冷媒出口 301 载冷剂入口
302 载冷剂出口 25 第一保温管道
251 内管道 252 保温层
253 真空腔 26 第二保温管道
本申请目的的实现、功能特点及优点将结合实施例,参照附图做进一步说明。
具体实施方式
下面将结合本申请实施例中的附图,对本申请实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本申请的一部分实施例,而不是全部的实施例。基于本申请中的实施例,本领域普通技术人员在没有作出创造性劳动前提下所获得的所有其他实施例,都属于本申请保护的范围。
需要说明,若本申请实施例中有涉及方向性指示(诸如上、下、左、右、前、后……),则该方向性指示仅用于解释在某一特定姿态(如附图所示)下各部件之间的相对位置关系、运动情况等,如果该特定姿态发生改变时,则该方向性指示也相应地随之改变。
另外,若本申请实施例中有涉及“第一”、“第二”等的描述,则该“第一”、“第二”等的描述仅用于描述目的,而不能理解为指示或暗示其相对重要性或者隐含指明所指示的技术特征的数量。由此,限定有“第一”、“第二”的特征可以明示或者隐含地包括至少一个该特征。另外,全文中出现的“和/或”的含义为,包括三个并列的方案,以“A和/或B”为例,包括A方案,或B方案,或A和B同时满足的方案。另外,各个实施例之间的技术方案可以相互结合,但是必须是以本领域普通技术人员能够实现为基础,当技术方案的结合出现相互矛盾或无法实现时应当认为这种技术方案的结合不存在,也不在本申请要求的保护范围之内。
本申请提出一种移动空调1,下面结合图1至图4对本申请实施例的移动空调1进行具体说明。
在本申请一实施例中,如图1-4所示,所述移动空调1包括蓄冷箱10、蓄冷蒸发器20和取冷换热器30。所述蓄冷箱10内容置有相变蓄冷材料,所述蓄冷蒸发器20设于所述蓄冷箱10内,所述蓄冷蒸发器20至少部分浸于相变蓄冷材料中,蓄冷蒸发器20的换热管内流经有冷媒;所述取冷换热器30设于所述蓄冷箱10内,所述取冷换热器30至少部分浸于相变蓄冷材料中,所述取冷换热器30的换热管内流经有载冷剂;其中,所述蓄冷蒸发器20的换热管与所述取冷换热器30的换热管交替间隔排布。
需要说明的是,所述相变蓄冷材料包括但不限于水,下面以相变蓄冷材料为水为例。蓄冷蒸发器20工作时,其公开的冷量会传递至其周围的水中,当温度达到水的凝固点时,水开始结冰,直至整个蓄冷箱10中充满冰或冰水混合物,冰或冰水混合物中能够储存大量的冷量,再经过取冷换热器30通过载冷剂将冷量从蓄冰箱中传送出去。
具体的,如图1和图2所示,所述移动空调1包括蓄冷系统和制冷系统。其中,所述蓄冷系统包括蓄冷冷凝器40、蓄冷蒸发器20、蓄冷箱10、压缩机50、节流装置80和排热风机90,所述压缩机50的冷媒出口、蓄冷冷凝器40、节流装置80、蓄冷蒸发器20以及压缩机50的冷媒入口依次连通并形成蓄冷环路。所述蓄冷环路中充注有冷媒。压缩机50工作后,压缩冷媒,高温高压的冷媒进入蓄冷冷凝器40后,通过排热风机90的运行,与外界空气进行换热之后,进入节流装置80后被节流成低温低压冷媒,再进入蓄冷蒸发器20,与蓄冷箱10中的水进行换热,将水降温为0℃以下的冰块或冰水混合物。
所述制冷系统包括取冷换热器30、送冷换热器60、液体泵70和送冷风机100,所述液体泵70的出口、送冷换热器60、取冷换热器30和液体泵70的入口依次连通,并形成送冷环路。所述送冷环路内充注有载冷剂。液体泵70运行,使取冷换热器30中的载冷剂开始流动。载冷剂首先与蓄冷箱10中的冰块或冰水混合物换热,变成低温状态,之后流进送冷换热器60中,通过送冷风机100的运行,与室内空气进行换热,并将冷风送出,对室内环境降温。
具体而言,所述蓄冷蒸发器20的换热管与所述取冷换热器30的换热管相互间隔排布,包括但不限于以下两种排布方式:蓄冷蒸发器20的换热管与取冷换热器30的换热管分属于不同层的换热管,蓄冷蒸发器20的换热管与取冷换热器30的换热管间隔排布;蓄冷蒸发器20的换热管与取冷换热器30的换热管位于同一层的换热管中,同一层的换热管中蓄冷蒸发器20的换热管与取冷换热器30的换热管交叉间隔排列,后文中还将详细阐述以上两种换热管的排布方式。
现有的移动空调中的蓄冰蒸发器的换热管集中设置在蓄冷箱中的一局部区域,冷量传递不均匀,导致接近蒸发器附近的水很快结冰,而离蒸发器较远的水结冰却较慢,导致蓄冷时间长,或因蓄冷结冰不充分,而导致蓄冷不足。另外,蓄冰蒸发器的换热管与取冷换热器的换热管的近距离换热面积也较小,导致两者之间直接换热的几率很少,换热和取冷效率不高。
而本申请通过将蓄冷蒸发器的换热管和取冷换热器的换热管间隔排布,避免蓄冷蒸发器的换热管集中于蓄冷箱中的一局部区域,而是均匀分布于整个蓄冷箱内,使得水与蒸发器的换热管均为近距离接触,有效提升了蓄冷速度,降低了蓄冷所需时长;并且结冰均匀而充分,蓄冷冷量提升,从而提升了可取冷送冷量,进而延长了取冷送冷的使用时长。另外,还能增大蓄冷蒸发器的换热管和取冷换热器的换热管的近距离换热面积,蓄冷蒸发器工作时,使得很大部分冷量能够通过翅片直接传递给取冷换热器,从而提高换热和取冷的效率;并且取冷换热器的换热管均匀分布在水箱里,冰与换热器均为近距离接触,有效提升取冷速度,取冷效果稳定。
在一实施例中,如图3所示,蓄冷蒸发器20包括多层第一换热管21,取冷换热器30包括至少一层第二换热管31,任意两层相邻的第一换热管21之间至少间隔有一层第二换热管31。本实施例中,第一换热管21与第二换热管31分属于不同层换热管,第一换热管21层与第二换热管31层间隔排布,如此,相当于拉开第一换热管21的所在层与层之间的间距,避免集中于蓄冷箱10中一局部区域(而第二换热管31占据另一局部区域),以使第一换热管21分布于整个蓄冷箱10,使得蓄冷相变材料与第一换热管21均为近距离接触,有效提升了制冷蓄冰速度,降低了蓄冷所需时长,并且结冰均匀而充分,蓄冷冷量提升,进而提升了取冷制冷量,从而延长了取冷制冷的使用时长。另外,两层相邻的第一换热管21之间间隔有一层第二换热管31或多层第二换热管31,能增大蓄冷蒸发器20的换热管和取冷换热器30的换热管的近距离换热面积,蓄冷蒸发器20工作时,使得很大部分冷量能够通过翅片直接传递给取冷换热器30,再传递给相变蓄冷材料,降温结成冰进而蓄冷,由此提高了换热和取冷的效率。
进一步地,如图3所示,取冷换热器30包括多层第二换热管31,任意两层相邻的第一换热管21之间相互连通,任意两层相邻的第二换热管31之间相互连通。可以理解,将不同层的第一换热管21连通,以使冷媒可以在不同层的第一换热管21内自由流动,而将不同层的第二换热管31连通,以使载冷剂在不同层的第二换热管31内自由流动。
进一步地,任意一层第一换热管21和与其邻近的一层第二换热管31并行排布。本实施例中,蓄冷蒸发器20和取冷换热器30都通过加装翅片来强化传热。具体的,每一层换热管都对应有一排翅片,翅片开设有通孔,换热管再通过通孔插装到翅片中。通过将第一换热管21所在层与第二换热管31所在层并行排布,使得第一换热管21所在层的翅片与第二换热管31所在层的翅片接触或相近,以使得第一换热管21的冷量能够通过翅片直接传递给第二换热管31,由此提高了换热和取冷的效率。
进一步地,如图3所示,任意一层第一换热管21包括多个第一直管211和多个第一弯管212,同一层的任意相邻的两所述第一直管211通过一所述第一弯管212连通;任意一层第二换热管31包括多个第二直管311和多个第二弯管312,同一层的任意相邻的两所述第二直管311通过一所述第二弯管312连通。如此,使得冷媒可以在同层的第一换热管21内自由流动,使得载冷剂在同层的第二换热管31内自由流动。
进一步地,如图3所示,任意一层第二换热管31中任意一所述第二直管311相对与其邻近的一层第一换热管21中的所述第一直管211错位排布。如此,使得相邻的第一换热管21的翅片与第二换热管31的翅片也相互错开,拉近了两者之间的间距,有利于提高两者之间的换热效率。
在一实施例中,如图4所示,蓄冷蒸发器20包括多个第三换热管22,取冷换热器30包括多个第四换热管32,至少一所述第三换热管22与至少一所述第四换热管32位于同一层换热管中。可以理解,当第三换热管22与第四换热管32位于同一层中,能够进一步缩短第三换热管22与第四换热管32之间的间距,由此增大第三换热管22和第四换热管32的近距离换热面积,进而提高了换热和取冷的效率。
进一步地,如图4所示,同一层换热管中任意相邻的两所述第三换热管22之间间隔有至少一所述第四换热管32。在同一层换热管中,第三换热管22与第四换热管32间隔交叉排列,并且两者共用同一排翅片,能够增大第三换热管22和第四换热管32的直接接触的换热面积,从而提高了换热和取冷的效率。
进一步地,如图4所示,蓄冷蒸发器20包括多层第三换热管22,取冷换热器30包括多层第四换热管32,任意一层第三换热管22和与其邻近的一层第四换热管32并行排布,任意两层相邻的第一换热管21之间相互连通,任意两层相邻的第二换热管31之间相互连通。其中,通过将第三换热管22所在层与第四换热管32所在层并行排布,使得第三换热管22所在层的翅片与第四换热管32所在层的翅片接触或相近,以使得第三换热管22所在层的冷量能够通过翅片直接传递给第四换热管32所在层,由此提高了换热和取冷的效率。
进一步地,如图4所示,任意一层第三换热管22包括多个第三直管221和多个第三弯管222,同一层中任意相邻的两所述第三直管221通过一所述第三弯管222连通;任意一层第四换热管32包括多个第四直管321和多个第四弯管322,同一层中任意相邻的两所述第四直管321通过一所述第四弯管322连通。具体的,本实施例中,每一个第三换热管22和每一个第四换热管32均为U型管,每一U型管包括两个直管和一个弯管,同层中任意相邻的两个第三换热管22再通过另一弯管连通,同样地,同层中任意相邻的两个第四换热管32也通过又一弯管连通。如此,使得冷媒可以在同层的第三换热管22内自由流动,使得载冷剂在同层的第四换热管32内自由流动。
在一实施例中,如图3和图4所示,蓄冷蒸发器20具有冷媒入口201和冷媒出口202,所述冷媒入口201与所述冷媒出口202连通;取冷换热器30具有载冷剂入口301和载冷剂出口302,所述载冷剂入口301与所述载冷剂出口302连通。所述冷媒入口201与所述冷媒出口202之间、所述载冷剂出口302与所述冷媒出口202之间均具有隔热间隙。可以理解,冷媒在蓄冷蒸发器20的换热管内流动并蒸发,冷媒由液态转化为气态并吸收与蓄冷蒸发器20的换热管接触的相变蓄冷材料的大量热量,那么相较于冷媒入口201,冷媒出口202的温度会较高,因此,本实施例中冷媒入口201和载冷剂出口302会远离冷媒出口202设置,以避免冷媒入口201和载冷剂出口302的温度由于受到冷媒出口202高温的影响,特别是对于载冷剂出口302来说,由于载冷剂携带冷量从载冷剂出口302出来送至移动空调1的送冷部,如果载冷剂出口302的温度受到冷媒出口202温度的影响而过高,就相当于削减载冷剂所携带的冷量。需要说明的是,所述隔热间隙是指冷媒入口201与冷媒出口202之间的间距和载冷剂出口302与冷媒出口202之间的间距足够远,不能直接传热,能够避免冷媒入口201和载冷剂出口302的温度受到冷媒出口202的高温影响即可。具体的,本实施例中,载冷剂入口301和冷媒出口202靠近蓄冷箱10的一侧设置,载冷剂出口302和冷媒入口201靠近所述蓄冷箱10的另一侧设置。当然,在其它实施例中,如果不考虑冷媒出口202的温度对冷媒入口201和载冷剂入口301的影响,冷媒入口201、载冷剂出口302和冷媒出口202可以设置在靠近蓄冷箱10的同一侧。
在另一实施例中,如图5所示,所述送冷换热器60和所述取冷换热器30通过管道连接,所述管道包括连接所述送冷换热器60的载冷剂入口与所述取冷换热器30的载冷剂出口的第一保温管道25,所述第一保温管道25的导热系数低于金属管的导热系数。
值得注意的是,现有的移动空调存在以下技术问题:连接取冷换热器和送冷换热器之间的管道采用铜管且完全裸露于空气中,导致载冷剂管路的输送段保温效果不佳,进而导致冷能损耗较为严重,向用户或室内环境进行送风时冷量不足。
而本实施例技术方案,通过设置第一保温管道25,以连接送冷换热器60的载冷剂入口与取冷换热器30的载冷剂出口,有效提升了载冷剂管路的输送段保温效果,显著降低了送冷环路冷能的损耗,从而提升冷能的利用效率。可以理解,金属管虽然具有较好的机械强度和抗压性能,但由于金属材料的导热系数非常高,比如铜管的导热系数接近400W/m·K,这就导致了采用铜管的送冷环路的冷能损耗较为严重。而本实施例中送冷环路的载冷剂输送段采用保温管道,保温管道至少部分由保温材料构成,保温材料通常为轻质、疏松、多孔的非金属材料,其导热系数远低于金属材料的保温系数,因此,本实施例技术方案能够极大地降低送冷环路冷能的损耗。
在一实施例中,如图6所示,第一保温管道25包括内管道251和保温层252,所述内管道251用以供载冷剂流通,所述保温层252为套设于所述内管道251的外周的保温管。具体而言,所述内管道251可以为金属管或非金属管,内管道251与取冷换热器30的换热管、送冷换热器60的换热管连通,以输送载冷剂。而保温层252套设于内管道251的外周,保温层252由保温材料构成,保温层252能够对内管道251进行保温,以避免内管道251直接裸露而使得载冷剂携带的冷能直接流失到外界空气中。
进一步地,所述保温层252的材料包括聚乙烯保温材料、聚氨酯保温材料、岩棉和玻璃棉中的任意一种。聚乙烯保温材料的导热系数范围为0.2~0.5W/m·K,聚氨酯保温材料的的导热系数范围为0.01~0.03W/m·K,岩棉和玻璃棉的导热系数范围为0.03~0.04W/m·K,而金属材料的导热系数通常在200W/m·K以上,由此可见,本实施例中所采用的保温材料的导热系数远低于金属材料,因此,保温层252能够显著地降低载冷剂的输送段的冷能损耗。当然,在其它实施例中,所述保温层252还可以采用橡胶、塑料和轻质软木等传导系数较低的保温材料,本实用新型不对保温层252的具体材料做限定,只要能够达到一定的保温效果即可。
进一步地,如图7所示,所述内管道251和所述保温层252之间间隔设置而形成有真空腔253。真空腔253可以有效杜绝掉热力传递和热对流,以防止内管道251与保温层252之间直接进行热交换,从而起到一定的保温作用。
在另一实施例中,所述保温层252为涂覆于所述内管道251的外周的保温涂层。具体的,保温涂层由低导热系数和高热阻的涂料制成。所述保温涂层的材料包括纳米空心陶瓷微珠、无机聚合物、胶粉聚苯颗粒和无机玻化微珠等中的任意一种。保温涂层除了起到保温作用,还兼具阻燃、防腐和绝缘等功能。
进一步地,所述第一保温管道25为非金属管道,所述第一保温管道25包括塑料管道、橡胶管道和有机玻璃管道等中的任意一种。可以理解,由于制冷过程中无需用到压缩机14,送冷环路的管道所受到的压力作用较小,因此,第一保温管道25可以全部采用导热系数较小的非金属材料,以减小送冷环路的管道的冷能损耗。可以理解,塑料管道、橡胶管道和有机玻璃管道除了具有较低的导热系数,还兼具较强的机械强度,因此,十分适合用作送冷环路中的保温管道。
进一步地,为了确保第一保温管道25的保温效果,第一保温管道25的导热系数小于或等于1.00W/m·K。
进一步地,取冷换热器30的换热管与第一保温管道25的连接处,以及送冷换热器60的换热管与第一保温管道25的连接处均涂覆有密封胶。第一保温管道25与取冷换热器30的换热管之间、第一保温管道25与送冷换热器60之间均采用螺纹配合。为了保证第一保温管道25与取冷换热器30的换热管的连接处,以及送冷换热器60的换热管与第一保温管道25的连接处的密封性,在上述密封处均涂覆密封胶,以防止连接处因密封不佳而导致载冷剂泄漏。
在另一实施例中,如图8所示,所述管道还包括连接送冷换热器60的载冷剂出口与取冷换热器30的载冷剂入口的第二保温管道26,第二保温管道26的导热系数低于金属管的导热系数。可以理解,通过设置第一保温管道25,可以降低载冷剂从取冷换热器30流向送冷换热器60的输送阶段的冷能损耗,防止制冷送风时冷量不足。而通过设置第二保温管道26,则可以降低载冷剂从送冷换热器60流向取冷换热器30的返回阶段的冷能损耗,避免载冷剂回到取冷换热器30时由于温度过高而需要消耗蓄冷箱13中更多的冷量。因此,本实施例能够进一步降低送冷环路的冷能损耗,提升移动空调的冷能利用率。需要说明的是,第二保温管道26与第一保温管道25的结构基本相同,第二保温管道26的具体结构请参照上述实施例中的第一保温管道25的结构,在此不再一一赘述。
以上所述仅为本申请的优选实施例,并非因此限制本申请的专利范围,凡是在本申请的申请构思下,利用本申请说明书及附图内容所作的等效结构变换,或直接/间接运用在其他相关的技术领域均包括在本申请的专利保护范围内。

Claims (22)

  1. 一种移动空调,其中,包括:
    蓄冷箱,所述蓄冷箱容置有相变蓄冷材料;
    蓄冷蒸发器,所述蓄冷蒸发器设于所述蓄冷箱内,所述蓄冷蒸发器的换热管内流经有冷媒;
    取冷换热器,所述取冷换热器设于所述蓄冷箱内,所述取冷换热器的换热管内流经有载冷剂;其中,
    所述蓄冷蒸发器的换热管与所述取冷换热器的换热管交替间隔排布。
  2. 如权利要求1所述的移动空调,其中,所述蓄冷蒸发器包括多层第一换热管,所述取冷换热器包括至少一层第二换热管,任意两层相邻的所述第一换热管之间至少间隔有一层所述第二换热管。
  3. 如权利要求2所述的移动空调,其中,所述取冷换热器包括多层第二换热管,任意两层相邻的所述第一换热管之间相互连通,任意两层相邻的所述第二换热管之间相互连通。
  4. 如权利要求2所述的移动空调,其中,任意一层所述第一换热管和与其邻近的一层所述第二换热管并行排布。
  5. 如权利要求2所述的移动空调,其中,任意一层所述第一换热管包括多个第一直管和多个第一弯管,同一层的任意相邻的两所述第一直管通过一所述第一弯管连通;任意一层所述第二换热管包括多个第二直管和多个第二弯管,同一层的任意相邻的两所述第二直管通过一所述第二弯管连通。
  6. 如权利要求5所述的移动空调,其中,任意一层所述第二换热管中任意一所述第二直管相对与其邻近的一层所述第一换热管中的所述第一直管错位排布。
  7. 如权利要求1所述的移动空调,其中,所述蓄冷蒸发器包括多个第三换热管,所述取冷换热器包括多个第四换热管,至少一所述第三换热管与至少一所述第四换热管位于同一层换热管中。
  8. 如权利要求7所述的移动空调,其中,同一层换热管中任意相邻的两所述第三换热管之间间隔有至少一所述第四换热管。
  9. 如权利要求7所述的移动空调,其中,所述蓄冷蒸发器包括多层所述第三换热管,所述取冷换热器包括多层所述第四换热管,任意一层所述第三换热管和与其邻近的一层所述第四换热管并行排布。
  10. 如权利要求9所述的移动空调,其中,任意一层所述第三换热管包括多个第三直管和多个第三弯管,同一层中任意相邻的两所述第三直管通过一所述第三弯管连通;任意一层所述第四换热管包括多个第四直管和多个第四弯管,同一层中任意相邻的两所述第四直管通过一所述第四弯管连通。
  11. 如权利要求1至10中任意一项所述的移动空调,其中,所述蓄冷蒸发器具有冷媒入口和冷媒出口,所述取冷换热器具有载冷剂出口,所述冷媒入口与所述冷媒出口之间、所述载冷剂出口与所述冷媒出口之间均具有隔热间隙。
  12. 如权利要求1至10中任意一项所述的移动空调,其中,所述移动空调还包括蓄冷冷凝器、压缩机和节流装置,所述压缩机的冷媒出口、所述蓄冷冷凝器、所述节流装置、所述蓄冷蒸发器和所述压缩机的冷媒入口依次连通并形成蓄冷环路;所述移动空调还包括液体泵和送冷换热器,所述液体泵的输出口、所述送冷换热器、所述取冷换热器和所述液体泵的输入口依次连通并形成送冷环路。
  13. 如权利要求1所述的移动空调,其中,所述送冷换热器和所述取冷换热器通过管道连接,所述管道包括连接所述送冷换热器的载冷剂入口与所述取冷换热器的载冷剂出口的第一保温管道,所述第一保温管道的导热系数低于金属管的导热系数。
  14. 如权利要求13所述的移动空调,其中,所述第一保温管道包括内管道和保温层,所述内管道用以供载冷剂流通,所述保温层为套设于所述内管道的外周的保温管。
  15. 如权利要求14所述的移动空调,其中,所述保温层的材料包括聚乙烯保温材料、聚氨酯保温材料、岩棉和玻璃棉中的任意一种。
  16. 如权利要求14所述的移动空调,其中,所述内管道和所述保温层之间间隔设置而形成有真空腔。
  17. 如权利要求14所述的移动空调,其中,所述第一保温管道包括内管道和保温层,所述内管道用以供载冷剂流通,所述保温层为涂覆于所述内管道的外周的保温涂层。
  18. 如权利要求17所述的移动空调,其中,所述保温涂层的材料包括纳米空心陶瓷微珠、无机聚合物、胶粉聚苯颗粒和无机玻化微珠中的任意一种。
  19. 如权利要求13所述的移动空调,其中,所述第一保温管道为非金属管道,所述第一保温管道包括塑料管道、橡胶管道和有机玻璃管道中的任意一种。
  20. 如权利要求13所述的移动空调,其中,所述第一保温管道的导热系数小于或等于1.00W/m·K。
  21. 如权利要求13所述的移动空调,其中,所述取冷换热器的换热管与所述第一保温管道的连接处,以及所述送冷换热器的换热管与所述第一保温管道的连接处均涂覆有密封胶。
  22. 如权利要求13至21中任意一项所述的移动空调,其中,所述管道还包括连接所述送冷换热器的载冷剂出口与所述取冷换热器的载冷剂入口的第二保温管道,所述第二保温管道的导热系数低于金属管的导热系数。
PCT/CN2019/111856 2019-09-10 2019-10-18 移动空调 WO2021046967A1 (zh)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
CN201921515089.X 2019-09-10
CN201921508995.7 2019-09-10
CN201921515089.XU CN210601996U (zh) 2019-09-10 2019-09-10 移动空调
CN201921508995.7U CN210601993U (zh) 2019-09-10 2019-09-10 移动空调

Publications (1)

Publication Number Publication Date
WO2021046967A1 true WO2021046967A1 (zh) 2021-03-18

Family

ID=74867195

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/111856 WO2021046967A1 (zh) 2019-09-10 2019-10-18 移动空调

Country Status (1)

Country Link
WO (1) WO2021046967A1 (zh)

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3938875A1 (de) * 1989-11-24 1991-05-29 Behr Gmbh & Co Mobiles und transportables klimageraet zur kuehlung und klimatisierung innenliegender raeume
KR20020029042A (ko) * 2002-03-21 2002-04-17 정공식 빙축열 냉방 시스템 및 이동식 냉방기
CN103629964A (zh) * 2012-08-22 2014-03-12 北大工学院绍兴技术研究院 一种中低温蓄热单元
CN105043149A (zh) * 2015-08-09 2015-11-11 大连理工大学 相变蓄放热一体式换热器
CN105864907A (zh) * 2016-04-14 2016-08-17 青岛海尔空调电子有限公司 移动辐射换热装置
CN105890082A (zh) * 2016-04-06 2016-08-24 广东美的制冷设备有限公司 蓄冷型空调器及其控制方法
CN205593099U (zh) * 2016-04-28 2016-09-21 林书茂 一种多功能环保节能冰蓄冷移动空调
CN106568138A (zh) * 2015-10-08 2017-04-19 林书茂 环保节能移动空调及其应用的制冷方法
CN109579197A (zh) * 2019-01-14 2019-04-05 张晓庆 移动空调及其制冷方法

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3938875A1 (de) * 1989-11-24 1991-05-29 Behr Gmbh & Co Mobiles und transportables klimageraet zur kuehlung und klimatisierung innenliegender raeume
KR20020029042A (ko) * 2002-03-21 2002-04-17 정공식 빙축열 냉방 시스템 및 이동식 냉방기
CN103629964A (zh) * 2012-08-22 2014-03-12 北大工学院绍兴技术研究院 一种中低温蓄热单元
CN105043149A (zh) * 2015-08-09 2015-11-11 大连理工大学 相变蓄放热一体式换热器
CN106568138A (zh) * 2015-10-08 2017-04-19 林书茂 环保节能移动空调及其应用的制冷方法
CN105890082A (zh) * 2016-04-06 2016-08-24 广东美的制冷设备有限公司 蓄冷型空调器及其控制方法
CN105864907A (zh) * 2016-04-14 2016-08-17 青岛海尔空调电子有限公司 移动辐射换热装置
CN205593099U (zh) * 2016-04-28 2016-09-21 林书茂 一种多功能环保节能冰蓄冷移动空调
CN109579197A (zh) * 2019-01-14 2019-04-05 张晓庆 移动空调及其制冷方法

Similar Documents

Publication Publication Date Title
CN102573420B (zh) 一种嵌入式机柜空调制冷系统
CN104638879A (zh) 变频器及空调器
CN101922778B (zh) 一种半导体制冷空调装置
WO2018145366A1 (zh) 一种机柜服务器用液冷热管散热系统及其控制方法
CN210601996U (zh) 移动空调
WO2023082616A1 (zh) 用于储能装置的热管理系统和储能装置
WO2015030309A1 (en) Cold storage module having mesh metal structure of unequal gap, refrigerator container having cold storage modules mounted therein, and refrigerator vehicle
CN201844486U (zh) 一种半导体制冷空调装置
CN102103399A (zh) 超高热密度冷却系统
WO2021046967A1 (zh) 移动空调
CN105806100A (zh) 同轴翅片换热器
WO2023092936A1 (zh) 空调器
CN108668508B (zh) 机柜的冷却装置及机柜
CN208458124U (zh) 一种全空气数据中心空调系统
WO2022110745A1 (zh) 散热系统、热管理设备及其工作方法
CN108344071A (zh) 一种全空气数据中心空调系统
CN210740718U (zh) 超导蓄热锅炉
CN208624030U (zh) 机柜的冷却装置及机柜
CN212841979U (zh) 用于建筑的节能暖通系统和具有该节能暖通系统的建筑
CN209960681U (zh) 对流辐射空调末端以及空调系统
TW202113296A (zh) 用於熱交換系統之連接器及其製造方法
CN108668507B (zh) 蓄冷机柜
CN111895687A (zh) 套管式水冷冷凝器
CN218710797U (zh) 一种真空镀膜机的冷却结构
CN210601990U (zh) 换热组件和移动空调

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19944804

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19944804

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 19944804

Country of ref document: EP

Kind code of ref document: A1

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 23/09/2022)

122 Ep: pct application non-entry in european phase

Ref document number: 19944804

Country of ref document: EP

Kind code of ref document: A1