WO2021046847A1 - 一种基于三维模型-模拟实验数据耦合的建筑抗震支吊架设计方法 - Google Patents
一种基于三维模型-模拟实验数据耦合的建筑抗震支吊架设计方法 Download PDFInfo
- Publication number
- WO2021046847A1 WO2021046847A1 PCT/CN2019/105839 CN2019105839W WO2021046847A1 WO 2021046847 A1 WO2021046847 A1 WO 2021046847A1 CN 2019105839 W CN2019105839 W CN 2019105839W WO 2021046847 A1 WO2021046847 A1 WO 2021046847A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- seismic
- hanger
- hangers
- supports
- support
- Prior art date
Links
Classifications
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01M—TESTING STATIC OR DYNAMIC BALANCE OF MACHINES OR STRUCTURES; TESTING OF STRUCTURES OR APPARATUS, NOT OTHERWISE PROVIDED FOR
- G01M7/00—Vibration-testing of structures; Shock-testing of structures
- G01M7/02—Vibration-testing by means of a shake table
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F17/00—Digital computing or data processing equipment or methods, specially adapted for specific functions
- G06F17/40—Data acquisition and logging
Definitions
- the invention relates to the field of building seismic resistance, in particular to a building seismic support and hanger design method based on three-dimensional model-simulation experiment data coupling.
- the present invention provides a method for designing seismic supports and hangers of buildings based on the coupling of three-dimensional model-simulation experimental data.
- the invention provides a method for designing seismic supports and hangers of buildings based on the coupling of three-dimensional model-simulation experiment data, which includes the following steps:
- Seismic support and hanger selection design computer anti-seismic support and hanger selection design: arrange and combine the main accessories in the seismic support and hanger according to different models to obtain all the combination types of the main accessories of the seismic support and hanger; According to the layout of the seismic supports and hangers, select the combination type that meets the layout of the seismic supports and hangers from all the combination types of the main accessories of the seismic supports and hangers, and calculate the design bearing capacity of the seismic supports and hangers corresponding to each selected combination type The calculation and analysis parameters of seismic supports and hangers are determined, and the design bearing capacity of seismic supports and hangers corresponding to each different combination type is converted into the maximum mass that can withstand electromechanical pipelines; according to the type and quality of electromechanical pipelines, each The seismic supports and hangers corresponding to different combination types can withstand the maximum mass of the electromechanical pipeline and the cost of the seismic supports and hangers corresponding to each different combination type. Choose the best combination type from the different combination types;
- Seismic support and hanger simulation installation and state detection According to the selection and design results, simulate the installation of seismic support and hanger, and install sensors; detect the state of seismic support and hanger: measure the initial value of the axial strain of the seismic support and hanger diagonal brace Calculate the axial strain difference of the diagonal brace of the seismic support and hanger caused by the additional horizontal force; calculate the initial axial stiffness parameter of the diagonal brace of the seismic support and hanger; calculate the axial strain difference of the diagonal brace of the seismic support and hanger during the use stage; calculate the seismic support The actual axial stiffness parameters of the hanger brace; calculate the reduction amplitude of the actual axial stiffness parameters of the seismic support and hanger brace;
- Seismic support and hanger structure optimization Input the selection design results and the simulated installation state detection results into the computer, couple the computer analysis results and the actual state detection results, modify the selection design, and output the computer analysis results;
- Step (1) is specifically as follows: According to the layout of the seismic support and hanger, select the combination type that meets the layout of the seismic support and hanger from all the combination types of the main accessories of the seismic support and hanger; according to the bottom elevation of the electromechanical pipeline and the seismic support hanger The unit price of the main parts of the frame is calculated as the cost of the several combination types selected in step 2.1, and recorded as Q; according to the strength, stiffness, stability and maximum design bearing capacity of the main parts, the several combination types selected in step 2.1 correspond to The design bearing capacity of the seismic support and hanger is denoted as W.
- Step (1) is specifically as follows: calculate the total mass M of the electromechanical pipeline in an earthquake-resistant support and hanger layout span according to the unit length mass of the electromechanical pipeline and the arrangement length of the seismic support and hanger; the total mass M is corresponding to several combination types Comparison of the maximum total mass m of electromechanical pipelines that the seismic supports and hangers can withstand, select all the combination types that meet the condition of M ⁇ m; compare the cost of each combination type selected, and select the combination type with the lowest cost as the seismic support crane The most optimal type for the main parts of the rack.
- step (2) when installing the seismic support and hanger, install the optical fiber strain sensor on the seismic brace of the seismic support and hanger. After the seismic support and hanger are installed, record the initial value of the axial strain of the seismic support and hanger ⁇ 0 .
- the specific calculation method As: the axial strain difference of the diagonal brace is the initial axial stiffness parameter.
- the method for designing seismic supports and hangers of buildings based on the coupling of three-dimensional model-simulation experiment data provided by the present invention includes multiple repeated steps such as computer simulation model selection, actual result correction, and computer simulation result verification.
- the hanger design method is reasonable, and the results are accurate and suitable. For engineering applications.
- the design method of building seismic supports and hangers based on the coupling of 3D model-simulation experimental data includes the following steps:
- Seismic support and hanger selection design computer anti-seismic support and hanger selection design: arrange and combine the main accessories in the seismic support and hanger according to different models to obtain all the combination types of the main accessories of the seismic support and hanger; According to the layout of the seismic supports and hangers, select the combination type that meets the layout of the seismic supports and hangers from all the combination types of the main accessories of the seismic supports and hangers, and calculate the design bearing capacity of the seismic supports and hangers corresponding to each selected combination type The calculation and analysis parameters of seismic supports and hangers are determined, and the design bearing capacity of seismic supports and hangers corresponding to each different combination type is converted into the maximum mass that can withstand electromechanical pipelines; according to the type and quality of electromechanical pipelines, each The seismic supports and hangers corresponding to different combination types can withstand the maximum mass of the electromechanical pipeline and the cost of the seismic supports and hangers corresponding to each different combination type. Choose the best combination type from the different combination types;
- the layout of the seismic support and hanger select the combination type that meets the layout of the seismic support and hanger from all the combination types of the main accessories of the seismic support and hanger; calculate according to the bottom elevation of the electromechanical pipeline and the unit price of the main accessories of the seismic support and hanger.
- the cost of the several combination types selected in step 2.1 is marked as Q; according to the requirements of the strength, stiffness, stability and maximum design bearing capacity of the main accessories, the design of the seismic supports and hangers corresponding to the several combination types selected in step 2.1 is calculated Bearing capacity, denoted as W.
- seismic fortification intensity is the parameter for calculation and analysis of seismic supports and hangers
- the design bearing capacity of the seismic supports and hangers corresponding to several combinations is converted into their respective bearing capacity standards
- the value, denoted as F, where: F W/ ⁇
- the total mass M of the electromechanical pipelines within the arrangement span of the seismic supports and hangers is calculated; the total mass M and several combinations of corresponding seismic supports and hangers can be calculated.
- Seismic support and hanger simulation installation and state detection According to the selection and design results, simulate the installation of seismic support and hanger, and install sensors; detect the state of seismic support and hanger: measure the initial value of the axial strain of the seismic support and hanger diagonal brace Calculate the axial strain difference of the diagonal brace of the seismic support and hanger caused by the additional horizontal force; calculate the initial axial stiffness parameter of the diagonal brace of the seismic support and hanger; calculate the axial strain difference of the diagonal brace of the seismic support and hanger during the use stage; calculate the seismic support The actual axial stiffness parameters of the hanger brace; calculate the reduction amplitude of the actual axial stiffness parameters of the seismic support and hanger brace;
- the specific calculation method is: the axial force of the seismic brace
- the axial strain difference is the initial axial stiffness parameter.
- Seismic support and hanger structure optimization Input the selection design results and the simulated installation state detection results into the computer, couple the computer analysis results and the actual state detection results, modify the selection design, and output the computer analysis results;
Landscapes
- Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- General Engineering & Computer Science (AREA)
- General Physics & Mathematics (AREA)
- Theoretical Computer Science (AREA)
- Computer Hardware Design (AREA)
- Data Mining & Analysis (AREA)
- Databases & Information Systems (AREA)
- Mathematical Physics (AREA)
- Software Systems (AREA)
- Management, Administration, Business Operations System, And Electronic Commerce (AREA)
Abstract
本发明提供的一种基于三维模型-模拟实验数据耦合的建筑抗震支吊架设计方法,包括以下步骤:抗震支吊架选型设计:利用计算机对抗震支吊架选型设计;抗震支吊架模拟安装、状态检测;抗震支吊架抗震支吊架结构优化:将选型设计结果和模拟安装状态检测结果输入计算机,耦合计算机分析结果和实际状态检测结果,修改选型设计,并输出计算机分析结果;重复一次以上,优化结果。本发明提供的基于三维模型-模拟实验数据耦合的建筑抗震支吊架设计方法包括计算机模拟选型、实际结果修正、计算机模拟结果验证等多次重复步骤,吊架设计方法合理,结果准确,适于工程应用。
Description
本发明涉及建筑抗震领域,具体涉及一种基于三维模型-模拟实验数据耦合的建筑抗震支吊架设计方法。
随着我国建筑行业的发展以及用地的紧缩,为了缩短项目工期,多建筑密集高效施工已成为土木行业的常态。塔吊作为施工领域的重要角色,其作业环境日益复杂,然而传统吊装作业采用操作员与吊装员相互配合的方式指挥塔吊交叉重叠作业。虽然这些专业人员需要考取相关驾驶证和具备一定文化水平方能上岗,但这种方法总体上智能化较低,信息对接不准确或及时,难以应对某些复杂情况。近年来塔吊机碰撞事故高发也逐渐印证了这一点。传统的依靠人工值守的监测技术逐渐无法满足现代化施工工地上塔吊机群的防碰撞预警需求,急需一类能够实时监控塔吊机吊装运行且能发出预警信号的基于三维模型-模拟实验数据耦合的建筑抗震支吊架设计方法。
发明概述
为了解决现有技术的缺陷,本发明提供了一种基于三维模型-模拟实验数据耦合的建筑抗震支吊架设计方法。
问题的解决方案
本发明提供的一种基于三维模型-模拟实验数据耦合的建筑抗震支吊架设计方法,包括以下步骤:
(1)抗震支吊架选型设计:利用计算机对抗震支吊架选型设计:将抗震支吊架内的主要配件按照不同型号进行排列组合,得到抗震支吊架主要配件所有的 组合类型;根据抗震支吊架布置形式,在抗震支吊架主要配件的所有的组合类型中选取符合抗震支吊架布置形式的组合类型,并计算出选取的各个组合类型对应的抗震支吊架的设计承载力和造价;确定抗震支吊架计算分析的参数,将每种不同组合类型对应的抗震支吊架的设计承载力转换成所能承受机电管线的最大质量;根据机电管线的种类和质量、每种不同组合类型对应的抗震支吊架所能承受机电管线的最大质量以及每种不同组合类型对应的抗震支吊架的造价,在不同组合类型中选取最优的组合类型;
(2)抗震支吊架模拟安装、状态检测:根据选型设计结果,模拟安装抗震支吊架,并安装传感器;检测抗震支吊架状态:测量抗震支吊架斜撑的轴向应变初始值;计算附加水平力引起的抗震支吊架斜撑轴向应变差;计算抗震支吊架斜撑的初始轴向刚度参数;计算抗震支吊架斜撑使用阶段的轴向应变差;计算抗震支吊架斜撑的实际轴向刚度参数;计算抗震支吊架斜撑实际轴向刚度参数的降幅;
(3)抗震支吊架抗震支吊架结构优化:将选型设计结果和模拟安装状态检测结果输入计算机,耦合计算机分析结果和实际状态检测结果,修改选型设计,并输出计算机分析结果;
(4)重复步骤(2)-(3)一次以上,优化结果。
步骤(1)具体为:根据抗震支吊架布置形式,在抗震支吊架主要配件的所有的组合类型中选取符合抗震支吊架布置形式的组合类型;根据机电管线的底面标高和抗震支吊架主要配件的单价,计算步骤2.1选取的几种组合类型的造价,记为Q;根据主要配件的强度、刚度、稳定性以及最大设计承载力的要求,计算步骤2.1选取的几种组合类型对应的抗震支吊架的设计承载力,记为W。
步骤(1)具体为:根据建筑类型、抗震设防烈度、机电管线种类和安装位置,参照《建筑机电工程抗震设计规范》确定非结构构件功能系数γ和类别系数η、状态系数ζ、位置系数ζ、地震影响系数最大值α以及水平地震作用分项系数γ,即抗震支吊架计算分析的参数;根据《建筑机电工程抗震设计规范》将几种组合类型对应的抗震支吊架的设计承载力转换成各自的承载力标准值,记为F,其中:F=W/γ;根据《建筑机电工程抗震设计规范》将几种组合类型对应的抗 震支吊架的承载力标准值转换成所能承受机电管线的最大总重力,记为G,其中:G=F/α,α=γ*η*ζ*ζ*α;将几种组合类型对应的抗震支吊架所能承受机电管线的最大总重力转换成各自所能承受机电管线最大总质量,记为m,其中m=G/g=W/(γ*α*g)。
步骤(1)具体为:根据机电管线的单位长度质量和抗震支吊架的布置长度,计算出一个抗震支吊架布置跨度内机电管线的总质量M;将总质量M与几种组合类型对应的抗震支吊架所能承受机电管线最大总质量m比较,选出其中所有满足M<m条件的组合类型;比较选出的各个组合类型的造价,选取其中造价最低的组合类型作为抗震支吊架主要配件的最优选型。
步骤(2)中,安装抗震支吊架时,在抗震支吊架的抗震斜撑上安装光纤应变传感器,抗震支吊架安装完成后,记录抗震支吊架斜撑的轴向应变初始值ε0。
步骤(2)中,在设备或者管道上附加水平力F,测量抗震支吊架斜撑的轴向应变ε1,计算附加水平力F引起的轴向应变差Δε=ε1-ε0。
步骤(2)中,根据附加水平力F、抗震斜撑的安装角度θ、轴向应变差和抗震斜撑的长度L,计算出抗震斜撑的初始轴向刚度参数k0=EA,具体计算方法为:斜撑轴力轴向应变差则初始轴向刚度参数。
步骤(2)中,使用阶段撤去附加水平力F,对抗震斜撑在线监测轴向应变ε,计算出轴向应变差Δε′=ε-ε0。
发明的有益效果
本发明提供的基于三维模型-模拟实验数据耦合的建筑抗震支吊架设计方法包括计算机模拟选型、实际结果修正、计算机模拟结果验证等多次重复步骤,吊架设计方法合理,结果准确,适于工程应用。
发明实施例
下面结合实施例,对本发明的具体实施方式作进一步详细描述。以下实施例用于说明本发明,但不用来限制本发明的范围。
基于三维模型-模拟实验数据耦合的建筑抗震支吊架设计方法,包括以下步骤 :
(1)抗震支吊架选型设计:利用计算机对抗震支吊架选型设计:将抗震支吊架内的主要配件按照不同型号进行排列组合,得到抗震支吊架主要配件所有的组合类型;根据抗震支吊架布置形式,在抗震支吊架主要配件的所有的组合类型中选取符合抗震支吊架布置形式的组合类型,并计算出选取的各个组合类型对应的抗震支吊架的设计承载力和造价;确定抗震支吊架计算分析的参数,将每种不同组合类型对应的抗震支吊架的设计承载力转换成所能承受机电管线的最大质量;根据机电管线的种类和质量、每种不同组合类型对应的抗震支吊架所能承受机电管线的最大质量以及每种不同组合类型对应的抗震支吊架的造价,在不同组合类型中选取最优的组合类型;
具体为:
根据抗震支吊架布置形式,在抗震支吊架主要配件的所有的组合类型中选取符合抗震支吊架布置形式的组合类型;根据机电管线的底面标高和抗震支吊架主要配件的单价,计算步骤2.1选取的几种组合类型的造价,记为Q;根据主要配件的强度、刚度、稳定性以及最大设计承载力的要求,计算步骤2.1选取的几种组合类型对应的抗震支吊架的设计承载力,记为W。
根据建筑类型、抗震设防烈度、机电管线种类和安装位置,参照《建筑机电工程抗震设计规范》确定非结构构件功能系数γ和类别系数η、状态系数ζ、位置系数ζ、地震影响系数最大值α以及水平地震作用分项系数γ,即抗震支吊架计算分析的参数;根据《建筑机电工程抗震设计规范》将几种组合类型对应的抗震支吊架的设计承载力转换成各自的承载力标准值,记为F,其中:F=W/γ;根据《建筑机电工程抗震设计规范》将几种组合类型对应的抗震支吊架的承载力标准值转换成所能承受机电管线的最大总重力,记为G,其中:G=F/α,α=γ*η*ζ*ζ*α;将几种组合类型对应的抗震支吊架所能承受机电管线的最大总重力转换成各自所能承受机电管线最大总质量,记为m,其中m=G/g=W/(γ*α*g)。
根据机电管线的单位长度质量和抗震支吊架的布置长度,计算出一个抗震支吊架布置跨度内机电管线的总质量M;将总质量M与几种组合类型对应的抗震支吊架所能承受机电管线最大总质量m比较,选出其中所有满足M<m条件的组合类 型;比较选出的各个组合类型的造价,选取其中造价最低的组合类型作为抗震支吊架主要配件的最优选型。
(2)抗震支吊架模拟安装、状态检测:根据选型设计结果,模拟安装抗震支吊架,并安装传感器;检测抗震支吊架状态:测量抗震支吊架斜撑的轴向应变初始值;计算附加水平力引起的抗震支吊架斜撑轴向应变差;计算抗震支吊架斜撑的初始轴向刚度参数;计算抗震支吊架斜撑使用阶段的轴向应变差;计算抗震支吊架斜撑的实际轴向刚度参数;计算抗震支吊架斜撑实际轴向刚度参数的降幅;
安装抗震支吊架时,在抗震支吊架的抗震斜撑上安装光纤应变传感器,抗震支吊架安装完成后,记录抗震支吊架斜撑的轴向应变初始值ε0。
在设备或者管道上附加水平力F,测量抗震支吊架斜撑的轴向应变ε1,计算附加水平力F引起的轴向应变差Δε=ε1-ε0。
根据附加水平力F、抗震斜撑的安装角度θ、轴向应变差和抗震斜撑的长度L,计算出抗震斜撑的初始轴向刚度参数k0=EA,具体计算方法为:斜撑轴力轴向应变差则初始轴向刚度参数。
使用阶段撤去附加水平力F,对抗震斜撑在线监测轴向应变ε,计算出轴向应变差Δε′=ε-ε0。
(3)抗震支吊架抗震支吊架结构优化:将选型设计结果和模拟安装状态检测结果输入计算机,耦合计算机分析结果和实际状态检测结果,修改选型设计,并输出计算机分析结果;
(4)重复步骤(2)-(3)一次以上,优化结果。
以上所述实施例仅表达了本发明的若干实施方式,其描述较为具体和详细,但并不能因此而理解为对发明专利范围的限制。应当指出的是,对于本领域的普通技术人员来说,在不脱离本发明构思的前提下,还可以做出若干变形和改进,这些都属于本发明的保护范围。因此,本发明专利的保护范围应以所附权利要求为准。
Claims (8)
- 一种基于三维模型-模拟实验数据耦合的建筑抗震支吊架设计方法,其特征在于:包括以下步骤:(1)抗震支吊架选型设计:利用计算机对抗震支吊架选型设计:将抗震支吊架内的主要配件按照不同型号进行排列组合,得到抗震支吊架主要配件所有的组合类型;根据抗震支吊架布置形式,在抗震支吊架主要配件的所有的组合类型中选取符合抗震支吊架布置形式的组合类型,并计算出选取的各个组合类型对应的抗震支吊架的设计承载力和造价;确定抗震支吊架计算分析的参数,将每种不同组合类型对应的抗震支吊架的设计承载力转换成所能承受机电管线的最大质量;根据机电管线的种类和质量、每种不同组合类型对应的抗震支吊架所能承受机电管线的最大质量以及每种不同组合类型对应的抗震支吊架的造价,在不同组合类型中选取最优的组合类型;(2)抗震支吊架模拟安装、状态检测:根据选型设计结果,模拟安装抗震支吊架,并安装传感器;检测抗震支吊架状态:测量抗震支吊架斜撑的轴向应变初始值;计算附加水平力引起的抗震支吊架斜撑轴向应变差;计算抗震支吊架斜撑的初始轴向刚度参数;计算抗震支吊架斜撑使用阶段的轴向应变差;计算抗震支吊架斜撑的实际轴向刚度参数;计算抗震支吊架斜撑实际轴向刚度参数的降幅;(3)抗震支吊架抗震支吊架结构优化:将选型设计结果和模拟安装状态检测结果输入计算机,耦合计算机分析结果和实际状态检测结果,修改选型设计,并输出计算机分析结果;(4)重复步骤(2)-(3)一次以上,优化结果。
- 根据权利要求1所述的一种基于三维模型-模拟实验数据耦合的建筑抗震支吊架设计方法,其特征在于:步骤(1)具体为:根据抗震支吊架布置形式,在抗震支吊架主要配件的所有的组合类型中 选取符合抗震支吊架布置形式的组合类型;根据机电管线的底面标高和抗震支吊架主要配件的单价,计算步骤2.1选取的几种组合类型的造价,记为Q;根据主要配件的强度、刚度、稳定性以及最大设计承载力的要求,计算步骤2.1选取的几种组合类型对应的抗震支吊架的设计承载力,记为W。
- 根据权利要求1所述的一种基于三维模型-模拟实验数据耦合的建筑抗震支吊架设计方法,其特征在于:步骤(1)具体为:根据建筑类型、抗震设防烈度、机电管线种类和安装位置,参照《建筑机电工程抗震设计规范》确定非结构构件功能系数γ和类别系数η、状态系数ζ、位置系数ζ、地震影响系数最大值α以及水平地震作用分项系数γ,即抗震支吊架计算分析的参数;根据《建筑机电工程抗震设计规范》将几种组合类型对应的抗震支吊架的设计承载力转换成各自的承载力标准值,记为F,其中:F=W/γ;根据《建筑机电工程抗震设计规范》将几种组合类型对应的抗震支吊架的承载力标准值转换成所能承受机电管线的最大总重力,记为G,其中:G=F/α,α=γ*η*ζ*ζ*α;将几种组合类型对应的抗震支吊架所能承受机电管线的最大总重力转换成各自所能承受机电管线最大总质量,记为m,其中m=G/g=W/(γ*α*g)。
- 根据权利要求1所述的一种基于三维模型-模拟实验数据耦合的建筑抗震支吊架设计方法,其特征在于:步骤(1)具体为:根据机电管线的单位长度质量和抗震支吊架的布置长度,计算出一个抗震支吊架布置跨度内机电管线的总质量M;将总质量M与几种组合类型对应的抗震支吊架所能承受机电管线最大总质量m比较,选出其中所有满足M<m条件的组合类型;比较选出的各个组合类型的造价,选取其中造价最低的组合类型作为抗震支吊架主要配件的最优选型。
- 根据权利要求1所述的一种基于三维模型-模拟实验数据耦合的建筑抗震支吊架设计方法,其特征在于:步骤(2)中,安装抗震支 吊架时,在抗震支吊架的抗震斜撑上安装光纤应变传感器,抗震支吊架安装完成后,记录抗震支吊架斜撑的轴向应变初始值ε0。
- 根据权利要求1所述的一种基于三维模型-模拟实验数据耦合的建筑抗震支吊架设计方法,其特征在于:步骤(2)中,在设备或者管道上附加水平力F,测量抗震支吊架斜撑的轴向应变ε1,计算附加水平力F引起的轴向应变差Δε=ε1-ε0。
- 根据权利要求1所述的一种基于三维模型-模拟实验数据耦合的建筑抗震支吊架设计方法,其特征在于:步骤(2)中,根据附加水平力F、抗震斜撑的安装角度θ、轴向应变差和抗震斜撑的长度L,计算出抗震斜撑的初始轴向刚度参数k0=EA,具体计算方法为:斜撑轴力轴向应变差则初始轴向刚度参数。
- 根据权利要求1所述的一种基于三维模型-模拟实验数据耦合的建筑抗震支吊架设计方法,其特征在于:步骤(2)中,使用阶段撤去附加水平力F,对抗震斜撑在线监测轴向应变ε,计算出轴向应变差Δε′=ε-ε0。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PCT/CN2019/105839 WO2021046847A1 (zh) | 2019-09-14 | 2019-09-14 | 一种基于三维模型-模拟实验数据耦合的建筑抗震支吊架设计方法 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PCT/CN2019/105839 WO2021046847A1 (zh) | 2019-09-14 | 2019-09-14 | 一种基于三维模型-模拟实验数据耦合的建筑抗震支吊架设计方法 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2021046847A1 true WO2021046847A1 (zh) | 2021-03-18 |
Family
ID=74867046
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/CN2019/105839 WO2021046847A1 (zh) | 2019-09-14 | 2019-09-14 | 一种基于三维模型-模拟实验数据耦合的建筑抗震支吊架设计方法 |
Country Status (1)
Country | Link |
---|---|
WO (1) | WO2021046847A1 (zh) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN117351045A (zh) * | 2023-12-06 | 2024-01-05 | 深圳市宏源建设科技有限公司 | 一种支吊架装配位置调控方法及系统 |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20100107518A1 (en) * | 2008-10-31 | 2010-05-06 | Nibco, Inc. | Seismic attachment member |
CN107609314A (zh) * | 2017-10-23 | 2018-01-19 | 江苏壹鼎崮机电科技有限公司 | 建筑结构‑抗震支吊架耦合计算模型建立方法及抗震支吊架的抗震设计方法 |
CN107798206A (zh) * | 2017-12-11 | 2018-03-13 | 江苏壹鼎崮机电科技有限公司 | 建筑抗震支吊架的抗震优化设计方法 |
CN108267283A (zh) * | 2018-01-23 | 2018-07-10 | 江苏壹鼎崮机电科技有限公司 | 建筑抗震支吊架抗震性能的在线监测方法 |
CN109190307A (zh) * | 2018-10-19 | 2019-01-11 | 南京东南建筑机电抗震研究院有限公司 | 一种建筑抗震支吊架选型优化设计方法 |
CN110160724A (zh) * | 2019-06-11 | 2019-08-23 | 南京睿永智运维工程科技有限公司 | 一种建筑抗震支吊架性能状态监测方法 |
-
2019
- 2019-09-14 WO PCT/CN2019/105839 patent/WO2021046847A1/zh active Application Filing
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20100107518A1 (en) * | 2008-10-31 | 2010-05-06 | Nibco, Inc. | Seismic attachment member |
CN107609314A (zh) * | 2017-10-23 | 2018-01-19 | 江苏壹鼎崮机电科技有限公司 | 建筑结构‑抗震支吊架耦合计算模型建立方法及抗震支吊架的抗震设计方法 |
CN107798206A (zh) * | 2017-12-11 | 2018-03-13 | 江苏壹鼎崮机电科技有限公司 | 建筑抗震支吊架的抗震优化设计方法 |
CN108267283A (zh) * | 2018-01-23 | 2018-07-10 | 江苏壹鼎崮机电科技有限公司 | 建筑抗震支吊架抗震性能的在线监测方法 |
CN109190307A (zh) * | 2018-10-19 | 2019-01-11 | 南京东南建筑机电抗震研究院有限公司 | 一种建筑抗震支吊架选型优化设计方法 |
CN110160724A (zh) * | 2019-06-11 | 2019-08-23 | 南京睿永智运维工程科技有限公司 | 一种建筑抗震支吊架性能状态监测方法 |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN117351045A (zh) * | 2023-12-06 | 2024-01-05 | 深圳市宏源建设科技有限公司 | 一种支吊架装配位置调控方法及系统 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Xing et al. | A substructure approach to local damage detection of shear structure | |
CN110263460A (zh) | 一种基于bim的装配式4d模拟施工安全监测系统 | |
CN101408951B (zh) | 基于神经网络的桥式起重机当量载荷谱获取及疲劳剩余寿命估算方法 | |
Mei et al. | An improved substructural damage detection approach of shear structure based on ARMAX model residual | |
CN102288401B (zh) | 一种石油井架承载能力的测试方法 | |
Rolfes et al. | Integral SHM-system for offshore wind turbines using smart wireless sensors | |
CN103940903B (zh) | 一种桁架结构节点损伤检测系统及其方法 | |
CN109255145B (zh) | 一种基于bim的三维场景的钢桁架桥模拟施工方法 | |
CN108267283A (zh) | 建筑抗震支吊架抗震性能的在线监测方法 | |
CN112598220A (zh) | 一种输电杆塔结构健康状态监测评估方法及系统 | |
Gottvald | The calculation and measurement of the natural frequencies of the bucket wheel excavator SchRs 1320/4x30 | |
CN107729594A (zh) | 一种岸桥结构抗震能力分析方法和装置 | |
WO2021046847A1 (zh) | 一种基于三维模型-模拟实验数据耦合的建筑抗震支吊架设计方法 | |
Huang et al. | Simultaneous identification of stiffness, mass, and damping using an on‐line model updating approach | |
CN206470979U (zh) | 可变式桥梁模型状态监测教学系统 | |
CN106052999B (zh) | 特高压直流复合穿墙套管外表面抗震试验装置及试验方法 | |
CN203455162U (zh) | 井架承载能力测试加载装置 | |
Gastaldi et al. | Testing, simulating and understanding underplatform damper dynamics | |
CN208903300U (zh) | 一种基于bim技术的施工风险自动监测系统 | |
CN103528775B (zh) | 一种基于响应灵敏度的结构健康检测方法 | |
CN105547561B (zh) | 立管管夹压向测试装置及立管管夹的压向测试方法 | |
Sitton et al. | Damage scenario analysis of bridges using crowdsourced smartphone data from passing vehicles | |
Gislason et al. | Rapid and automated damage detection in buildings through ARMAX analysis of wind induced vibrations | |
CN106052996A (zh) | 特高压直流复合穿墙套管抗震试验装置及试验方法 | |
WO2021046849A1 (zh) | 一种建筑支吊架抗震优化方法 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 19945206 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 19945206 Country of ref document: EP Kind code of ref document: A1 |