CN106052999B - 特高压直流复合穿墙套管外表面抗震试验装置及试验方法 - Google Patents
特高压直流复合穿墙套管外表面抗震试验装置及试验方法 Download PDFInfo
- Publication number
- CN106052999B CN106052999B CN201610557578.6A CN201610557578A CN106052999B CN 106052999 B CN106052999 B CN 106052999B CN 201610557578 A CN201610557578 A CN 201610557578A CN 106052999 B CN106052999 B CN 106052999B
- Authority
- CN
- China
- Prior art keywords
- wall bushing
- accelerometer
- transition tank
- extra
- high voltage
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 238000012360 testing method Methods 0.000 title claims abstract description 49
- 238000010998 test method Methods 0.000 title claims abstract description 10
- 239000002131 composite material Substances 0.000 title abstract 2
- 230000001133 acceleration Effects 0.000 claims abstract description 45
- 238000006073 displacement reaction Methods 0.000 claims description 55
- 230000007704 transition Effects 0.000 claims description 50
- 238000005259 measurement Methods 0.000 claims description 27
- 230000035939 shock Effects 0.000 claims description 25
- 150000001875 compounds Chemical class 0.000 claims description 17
- 230000005484 gravity Effects 0.000 claims description 11
- 238000004458 analytical method Methods 0.000 claims description 5
- 238000009434 installation Methods 0.000 claims description 4
- 239000004744 fabric Substances 0.000 claims 1
- 230000000694 effects Effects 0.000 abstract description 7
- 230000003321 amplification Effects 0.000 abstract description 3
- 238000003199 nucleic acid amplification method Methods 0.000 abstract description 3
- 238000010586 diagram Methods 0.000 description 10
- 230000000638 stimulation Effects 0.000 description 8
- 238000004088 simulation Methods 0.000 description 5
- 239000011888 foil Substances 0.000 description 4
- 230000003416 augmentation Effects 0.000 description 3
- 238000013461 design Methods 0.000 description 3
- 238000000034 method Methods 0.000 description 3
- 230000008569 process Effects 0.000 description 3
- 230000015556 catabolic process Effects 0.000 description 2
- 230000007812 deficiency Effects 0.000 description 2
- 230000005284 excitation Effects 0.000 description 2
- 239000000203 mixture Substances 0.000 description 2
- 230000007547 defect Effects 0.000 description 1
- 230000005611 electricity Effects 0.000 description 1
- 230000006698 induction Effects 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 239000000725 suspension Substances 0.000 description 1
Classifications
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01M—TESTING STATIC OR DYNAMIC BALANCE OF MACHINES OR STRUCTURES; TESTING OF STRUCTURES OR APPARATUS, NOT OTHERWISE PROVIDED FOR
- G01M7/00—Vibration-testing of structures; Shock-testing of structures
- G01M7/02—Vibration-testing by means of a shake table
Landscapes
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Testing Of Devices, Machine Parts, Or Other Structures Thereof (AREA)
- Vibration Prevention Devices (AREA)
Abstract
本发明公开了一种特高压直流复合穿墙套管外表面抗震试验装置及试验方法,该试验装置包括加速度测量装置、支架、设于支架上的安装板和设于支架底下的振动台,支架设有支撑安装板的支撑梁,安装板开设有供穿墙套管穿过的安装孔,加速度测量装置包括设于振动台上的第一加速度计、设于支撑梁上的第二加速度计和设于该穿墙套管外表面的第三加速度计。所述支架可设计为与实际阀厅墙体等质量、等强度,用以模拟真实阀厅墙体,同时支架下方设有振动台,当启动振动台时,支架对振动动力进行放大并传递至穿墙套管,因而本发明从整体上去对实际工况下的穿墙套管进行模拟,其可通过加速度测量装置来测试穿墙套管在阀厅墙体的动力放大作用下的抗震性能。
Description
技术领域
本发明涉及穿墙套管抗震试验技术领域,尤其是涉及一种特高压直流复合穿墙套管外表面抗震试验装置及试验方法。
背景技术
随着我国输变电工程向高压、超高压和特高压方向发展,直流换流站中装备了大量的关键设备,如特高压直流穿墙套管。穿墙套管由外套管和设于外套管内的内导杆组成,其中外套管包括阀厅外侧的户外套管和阀厅内侧的户内套管组成,内导杆包括阀厅外侧的户外导杆和阀厅内侧的户内导杆组成,中间通过过渡罐连成一个整体,该过渡罐通过安装板悬挂安装在阀厅墙体上。在多维地震作用下,阀厅墙体对特高压直流穿墙套管有相当的动力放大作用,因此特高压直流穿墙套管实际会受到更严苛的地震作用,需要对其进行严格的地震考核,确保其在地震中安全。目前,还没有一个专门的抗震试验装置来模拟测试工况中的穿墙套管的抗震性能。
发明内容
基于此,本发明在于克服现有技术的缺陷,提供一种特高压直流复合穿墙套管外表面抗震试验装置及试验方法,其能够模拟测试实际工况下的穿墙套管,用以确定实际工况下穿墙套管的抗震性能。
其技术方案如下:
一种特高压直流复合穿墙套管外表面抗震试验装置,包括加速度测量装置、支架、设于所述支架上的安装板和设于所述支架底下的振动台,所述支架设有支撑所述安装板的支撑梁,所述安装板开设有供穿墙套管穿过的安装孔,所述加速度测量装置包括设于所述振动台上的第一加速度计、设于所述支撑梁上的第二加速度计和设于该穿墙套管外表面的第三加速度计。
在其中一个实施例中,所述加速度测量装置还包括设于所述安装板上的第四加速度计。
在其中一个实施例中,该穿墙套管包括过渡罐和设于过渡罐两端的第一套管和第二套管,所述第三加速度计为多个,所述第一套管靠近所述过渡罐的一端、所述第一套管远离所述过渡罐的一端、所述第一套管的重心处、所述第二套管靠近所述过渡罐的一端、所述第二套管远离所述过渡罐的一端和所述第二套管的重心处均设有所述第三加速度计。
在其中一个实施例中,还包括位移测量装置,所述位移测量装置包括设于所述振动台上的第一位移计、设于所述支撑梁上的第二位移计和设于穿墙套管外表面的第三位移计。
在其中一个实施例中,所述第三位移计为多个,所述第一套管靠近所述过渡罐的一端、所述第一套管远离过所述过渡罐的一端、所述第二套管靠近所述过渡罐的一端和所述第二套管远离过所述过渡罐的一端均设有所述第三位移计。
在其中一个实施例中,还包括应变测量装置,所述应变测量装置包括设于穿墙套管外表面的应变计。
在其中一个实施例中,所述应变计为至少两个,所述第一套管靠近所述过渡罐的一端和所述第二套管靠近所述过渡罐的一端均设有所述应变计。
在其中一个实施例中,每个所述应变计均包括四个三向应变花,四个所述三向应变花沿穿墙套管的外周均匀布置。
在其中一个实施例中,还包括控制器,所述振动台和所述加速度测量装置均与所述控制器电性连接。
本技术方案还提供了一种特高压直流复合穿墙套管外表面抗震试验方法,包括以下步骤:
将穿墙套管样品安装在安装板上,该安装板设于支架的支撑梁上;
在振动台的台面布置第一加速度计,在支撑梁上布置第二加速度计,在穿墙套管外表面布置第三加速度计;
启动振动台;
第一加速度计、第二加速度计和第三加速度计分别采集振动台、支撑梁和穿墙套管的加速度值;
对所测加速度值进行分析处理,用以确定该穿墙套管的抗震性能。
下面对前述技术方案的优点或原理进行说明:
本发明提供了一种穿墙套管外表面的抗震试验装置,其包括加速度测量装置、安装板、支架和振动台,测试的穿墙套管通过安装板固定于支架上。本发明所述的支架可设计为与实际阀厅墙体等质量、等强度,用以模拟真实的阀厅墙体,同时支架下方设有振动台,振动台用以输出地震波,当启动振动台时,支架对振动动力进行放大并传递至穿墙套管,因而本发明从整体上去对实际工况下的穿墙套管进行模拟,其可通过加速度测量装置来测试穿墙套管在阀厅墙体的动力放大作用下的抗震性能。具体地,第一加速度计用于测定振动台台面实际输出的地震激励;第二加速度计用于测定支架对测试样品的加速度放大作用,也即是穿墙套管试验样品实际受到的地震激励,由于穿墙套管是通过安装板安装于支撑梁上,通过测量支撑梁上的加速度感应值,可以直接获得达到穿墙套管的地震激励;第三加速度计即用于测定穿墙套管在试验中的加速度响应。通过对振动台、支撑梁上和穿墙套管外表面的加速度值进行分析计算,从而确定实际工况下穿墙套管的抗震性能。综上可知,本发明提出了一种穿墙套管外表面的抗震试验装置及试验方法,其能够模拟测试实际工况下的穿墙套管,用以确定实际工况下穿墙套管的抗震性能,具有较大的实用性和适用性。
所述加速度测量装置还包括设于所述安装板上的第四加速度计,第四加速度计用于测量安装板的板外扭矩。
所述第三加速度计分别设于第一套管靠近过渡罐的一端、第一套管远离过渡罐的一端、第一套管的重心处、第二套管靠近过渡罐的一端、第二套管远离过渡罐的一端和第二套管的重心处。因为穿墙套管的上述位置都是地震灾害下的薄弱环节,在充分考虑测试成本的基础上,将测点设于上述位置,即可达到从整体上评估套管的抗震性能的效果。
本发明还包括位移测量装置,所述位移测量装置用于对振动台、支撑梁和穿墙套管外表面进行位移测量。通过在本试验装置上安装加速度测量装置和位移测量装置,可以对地震激励下的穿墙套管加速度和位移进行测量,利用加速度与位移关系,可以相互校核试验结果,确保传感器测量结果的可靠性。
本发明还包括应变测量装置,该应变测量装置包括设于穿墙套管外表面的应变计,用以评估穿墙套管的应变和变形情况,从而确定测试样品的抗震强度。
由于穿墙套管上与过渡罐连接的地方为抗震最薄弱的环节,在第一套管靠近过渡罐的一端和第二套管靠近过渡罐的一端布置应变计,既可以达到测试应变的效果,又可以节省测试成本。
每个应变计均包括四个三向应变花,并且该四个三向应变花沿穿墙套管的外周均匀布置,用于沿着穿墙套管的外周测试每个测点的三维应变,全面地测定穿墙套管的受力和变形情况。
本发明还包括控制器,通过控制器控制振动台启动和加速度测量装置测量,同时对所测数据进行分析计算,进而可实现对整个测试装置的自动控制与计算。
附图说明
图1为本发明实施例所述的穿墙套管的结构示意图;
图2为本发明实施例所述的穿墙套管外表面的抗震试验装置的结构示意图;
图3为本发明实施例所述的支架与安装板的侧向装配示意图;
图4为本发明实施例所述的加速度测量装置的布置示意图;
图5为本发明实施例所述的位移测量装置的布置示意图;
图6为本发明实施例所述的应变测量装置的布置示意图;
图7(a)为本发明实施例所述的单个应变花的布置示意图;图7(b)为本发明实施例所述的外套管上4个应变花的布置示意图;
图8(a)为本发明实施例所述的单个应变片的布置示意图;图8(b)为本发明实施例所述的内导杆上4个应变片的布置示意图。
附图标记说明:
100、穿墙套管,110、外套管,111、第一套管,112、第二套管,120、内导杆,121、第一导杆,122、第二导杆,130、过渡罐,200、振动台,210、台面,300、支架,310、支撑梁,400、安装板,410、安装孔。
具体实施方式
为使本发明的目的、技术方案及优点更加清楚明白,以下结合附图及具体实施方式,对本发明进行进一步的详细说明。应当理解的是,此处所描述的具体实施方式仅用以解释本发明,并不限定本发明的保护范围。
如图1所示,穿墙套管100由外套管110和内导杆120组成,其中,外套管110包括第一套管111和第二套管112,内导杆120包括第一导杆121和第二导杆122,第一套管111和第二套管112中间以及第一导杆121和第二导杆122中间通过过渡罐130连成一个整体。如图2和图3所示,本发明所述的特高压直流复合穿墙套管外表面抗震试验装置,其包括加速度测量装置、支架300、设于支架300上的安装板400和设于所述支架300底下的振动台200。所述支架300上设有用于支撑所述安装板400的支撑梁310,所述安装板400开设有供穿墙套管100穿过的安装孔410,本发明所述的安装板400倾斜设置,其与竖直方向的夹角约为10度,使得测试样品可倾斜安装于支架300上,用于模拟实际工况下倾斜放置的穿墙套管100。本发明所述的支架300可设计为与实际阀厅墙体等质量、等强度,用以模拟实际的阀厅墙体,同时支架300下方的振动台200用以输出地震波,当启动振动台200时,支架300对振动动力进行放大并传递至穿墙套管100,因而本发明从整体上去对实际工况下的穿墙套管100进行模拟,其可通过加速度测量装置来测试穿墙套管100在阀厅墙体的动力放大作用下的抗震性能。具体地,如图4所示,所述加速度测量装置包括分别设于所述振动台200的台面210的第一加速度计A1、所述支撑梁310上(支撑梁310与安装板400的连接处)的第二加速度计A2和穿墙套管100外表面的第三加速度计A3。第一加速度计A1用于测定振动台200台面210实际输出的地震激励,第二加速度计A2用于测定支架300对测试样品的加速度放大作用,也即是穿墙套管100试验样品实际受到的地震激励,第三加速度计A3即用于测定套管在试验中的加速度响应。通过对振动台200、支撑梁310和穿墙套管100外表面的加速度值进行分析计算,从而确定实际工况下穿墙套管100的抗震性能。综上可知,本发明提出了一种穿墙套管外表面的抗震试验装置及试验方法,其能够模拟测试实际工况下的穿墙套管100,用以确定实际工况下穿墙套管100的抗震性能,具有较大的实用性和适用性。
在本实施例中,第三加速度计A3为多个,分别设于所述第一套管111靠近所述过渡罐130的一端、所述第一套管111远离所述过渡罐130的一端、所述第一套管111的重心处、所述第二套管112靠近所述过渡罐130的一端、所述第二套管112远离所述过渡罐130的一端和所述第二套管112的重心处。因为穿墙套管100的上述位置都是地震灾害下的薄弱环节,在充分考虑测试成本的基础上,将测点设于上述位置,即可达到从整体上评估套管的抗震性能的效果。
进一步地,所述加速度测量装置还包括设于所述安装板400上的第四加速度计A4,第四加速度计A4用以测量安装板400的面外扭转。
本发明所述的加速度测量装置也可根据实际需要设计第五加速度计A5,第五加速度计A5数量为至少两个,两个第五加速度计A5分别布置在第一导杆121和第二导杆122的重心处。在穿墙套管100的外套管110(包括第一套管111和第二套管112)和内导杆(包括第一导杆121和第二导杆122)上分别安装第三加速度计A3和第五加速度计A5,用于检测在地震激励下外套管110和内导杆在地震作用下的振动情况,进而检测内导杆与外套管110在地震中有无碰撞、空气间隙不足造成击穿等等问题,评估特高压直流穿墙套管100的抗震性能。
优选地,所述的第一加速度计A1、第二加速度计A2、第三加速度计A3、第四加速度计A4和第五加速度计A5均为三向加速度传感器。其中,第一加速度计A1、第二加速度计A2和第四加速度计A4采用全局坐标布置方式,即其测量的三向分别为平行于地面方向的X向、Y向和垂直于地面的Z向,其中X向为穿墙套管100在水平面内从一端指向另一端的方向,Y向在水平面内垂直于X向。而由于一般情况下,穿墙套管100是倾斜设置,为了测试穿墙套管100本身的抗震响应,设于穿墙套管100上的三向加速度传感器的布置方向应以穿墙套管100本身为基准,具体地,第三加速度计A3和第五加速度计A5的测量三向为该穿墙套管100的轴向Xs、径向Zs和垂直于Xs、Zs的Ys,Zs位于竖直面内,Ys与Y方向相同。
在本实施例中,还包括位移测量装置,如图5所示,所述位移测量装置包括分别设于所述振动台200的台面210的第一位移计D1、设于所述支撑梁310上的第二位移计D2和设于穿墙套管100外表面的第三位移计D3。第一位移计D1、第二位移计D2和第三位移计D3分别用于测定在地震激励下的台面210的绝对位移、支架300的绝对位移和套管样品上的位移。通过在本试验装置上安装加速度测量装置和位移测量装置,可以对地震激励下的穿墙套管100加速度和位移进行测量,利用加速度与位移关系,可以相互校核试验结果,确保传感器测量结果的可靠性。
具体地,设于穿墙套管100外表面的第三位移计D3为多个,分别设于所述第一套管111靠近所述过渡罐130的一端、所述第一套管111远离过所述过渡罐130的一端、所述第二套管112靠近所述过渡罐130的一端和所述第二套管112远离过所述过渡罐130的一端。本发明也可根据实际需要,在第一套管111和第二套管112的重心处也布置第三位移计D3。
所述的位移测量装置也可根据实际需要设置至少两个第四位移计D4,两个第四位移计D4分别用于布置在第一导杆121和第二导杆122的重心处。通过第三位移计D3和第四位移计D4测量外套管110与内导杆120在重心处的相对位移,从而判断检测外套管110与内导杆120在地震中有无碰撞、空气间隙不足造成击穿等问题。
在本实施例中,所述的第一位移计D1、第二位移计D2、所述第三位移计D3和所述第四位移计D4均为三向位移传感器,用于测量穿墙套管100在所述的X向、所述的Y向和所述的Z向的位置值。
进一步地,本发明还包括应变测量装置,所述应变测量装置包括设于穿墙套管100外表面的应变计S1,用以评估穿墙套管100的应变和变形情况,从而确定测试样品的抗震强度。具体地,如图6所示,设于穿墙套管100外表面的应变计S1为至少两个,两个所述应变计S1分别设于第一套管111与过渡罐130连接的一端和第二套管112与过渡罐130连接的一端。由于穿墙套管100上与过渡罐130连接的地方为抗震最薄弱的环节,在该处布置应变计S1,既可以达到测试应变的效果,又可以节省测试成本。
如图7(a)和如图7(b)所示,每个所述应变计S1均包括四个三向应变花S11(由呈三向布置的三个应变片组成),四个所述三向应变花S11沿穿墙套管100的外周均匀布置。该三向应变花S11用于测量该穿墙套管100在所述X向、所述Y向和所述Z向的应变值。
本发明所述的应变测量装置也可根据实际需要设计布置在第一导杆121和第二导杆122靠近所述过渡罐130的一端的应变计S2,该应变计S2包括四个纵向(Z向)的单向应变片S21,四个应变片S21环向布置。通过内导杆120和外套管110上的应变计来全面评估穿墙套管100的安全性。
优选地,本发明还包括控制器,所述振动台200、所述加速度测量装置、所述位移测量装置和所述应变测量装置均与所述控制器电性连接。通过控制器控制振动台200启动、加速度计测量加速度响应、位移计测量位移和应变计测量应变,同时对所测数据进行分析计算,进而可实现对整个测试装置的自动控制与计算。在本实施例中,每个测点的加速度计、位移计和应变计均与控制器连接,以便清楚地确定穿墙套管100相应部位的抗震性能。
本发明还提供了一种特高压直流复合穿墙套管外表面抗震试验方法,包括以下步骤:
将穿墙套管100样品安装在安装板400上;
在振动台200的台面210布置第一加速度计A1,支撑梁310上布置第二加速度计A2,穿墙套管100外表面布置第三加速度计A3,安装板400上布置第四加速度计A4;在振动台200的台面210布置第一位移计D1,支撑梁310上布置第二位移计D2,穿墙套管100外表面布置第三位移计D3;在穿墙套管100外表面布置应变计S1;
启动振动台200;
第一加速度计A1、第二加速度计A2、第三加速度计A3和第四加速度计A4分别采集振动台200、支撑梁310、穿墙套管100外表面和安装板400的加速度值;第一位移计D1、第二位移计D2和第三位移计D3分别采集振动台200、支撑梁310和穿墙套管100外表面的位移值;应变计S1采集穿墙套管100外表面的应变值;
控制器对所测的加速度值、位移值和应变值进行分析处理,用以确定实际工况下穿墙套管100的抗震性能。
以上所述实施例的各技术特征可以进行任意的组合,为使描述简洁,未对上述实施例中的各个技术特征所有可能的组合都进行描述,然而,只要这些技术特征的组合不存在矛盾,都应当认为是本说明书记载的范围。
以上所述实施例仅表达了本发明的几种实施方式,其描述较为具体和详细,但并不能因此而理解为对发明专利范围的限制。应当指出的是,对于本领域的普通技术人员来说,在不脱离本发明构思的前提下,还可以做出若干变形和改进,这些都属于本发明的保护范围。
Claims (9)
1.一种特高压直流复合穿墙套管外表面抗震试验装置,其特征在于,包括加速度测量装置、支架、设于所述支架上的安装板和设于所述支架底下的振动台,所述支架设有支撑所述安装板的支撑梁,所述安装板开设有供穿墙套管穿过的安装孔,所述加速度测量装置包括设于所述振动台上的第一加速度计、设于所述支撑梁上的第二加速度计和设于该穿墙套管外表面的第三加速度计;该穿墙套管包括过渡罐和设于过渡罐两端的第一套管和第二套管,所述第三加速度计为多个,所述第一套管靠近所述过渡罐的一端、所述第一套管远离所述过渡罐的一端、所述第一套管的重心处、所述第二套管靠近所述过渡罐的一端、所述第二套管远离所述过渡罐的一端和所述第二套管的重心处均设有所述第三加速度计;所述第一加速度计、所述第二加速度计以及所述第三加速度计均为三向加速度传感器。
2.根据权利要求1所述的特高压直流复合穿墙套管外表面抗震试验装置,其特征在于,所述加速度测量装置还包括设于所述安装板上的第四加速度计。
3.根据权利要求1所述的特高压直流复合穿墙套管外表面抗震试验装置,其特征在于,还包括位移测量装置,所述位移测量装置包括设于所述振动台上的第一位移计、设于所述支撑梁上的第二位移计和设于穿墙套管外表面的第三位移计。
4.根据权利要求3所述的特高压直流复合穿墙套管外表面抗震试验装置,该穿墙套管包括过渡罐和设于过渡罐两端的第一套管和第二套管,其特征在于,所述第三位移计为多个,所述第一套管靠近所述过渡罐的一端、所述第一套管远离过所述过渡罐的一端、所述第二套管靠近所述过渡罐的一端和所述第二套管远离过所述过渡罐的一端均设有所述第三位移计。
5.根据权利要求1或3所述的特高压直流复合穿墙套管外表面抗震试验装置,其特征在于,还包括应变测量装置,所述应变测量装置包括设于穿墙套管外表面的应变计。
6.根据权利要求5所述的特高压直流复合穿墙套管外表面抗震试验装置,该穿墙套管包括过渡罐和设于过渡罐两端的第一套管和第二套管,其特征在于,所述应变计为至少两个,所述第一套管靠近所述过渡罐的一端和所述第二套管靠近所述过渡罐的一端均设有所述应变计。
7.根据权利要求6所述的特高压直流复合穿墙套管外表面抗震试验装置,其特征在于,每个所述应变计均包括四个三向应变花,四个所述三向应变花沿穿墙套管的外周均匀布置。
8.根据权利要求1至4中任一项所述的特高压直流复合穿墙套管外表面抗震试验装置,其特征在于,还包括控制器,所述振动台和所述加速度测量装置均与所述控制器电性连接。
9.一种特高压直流复合穿墙套管外表面抗震试验方法,其特征在于,采用权利要求1至8中任一项所述的特高压直流复合穿墙套管外表面抗震试验装置,包括以下步骤:
将穿墙套管样品安装在安装板上,该安装板设于支架的支撑梁上;
在振动台的台面布置第一加速度计,在支撑梁上布置第二加速度计,在穿墙套管外表面布置第三加速度计;
启动振动台;
第一加速度计、第二加速度计和第三加速度计分别采集振动台、支撑梁和穿墙套管的加速度值;
对所测加速度值进行分析处理,用以确定该穿墙套管的抗震性能。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201610557578.6A CN106052999B (zh) | 2016-07-12 | 2016-07-12 | 特高压直流复合穿墙套管外表面抗震试验装置及试验方法 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201610557578.6A CN106052999B (zh) | 2016-07-12 | 2016-07-12 | 特高压直流复合穿墙套管外表面抗震试验装置及试验方法 |
Publications (2)
Publication Number | Publication Date |
---|---|
CN106052999A CN106052999A (zh) | 2016-10-26 |
CN106052999B true CN106052999B (zh) | 2018-06-12 |
Family
ID=57188253
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201610557578.6A Active CN106052999B (zh) | 2016-07-12 | 2016-07-12 | 特高压直流复合穿墙套管外表面抗震试验装置及试验方法 |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN106052999B (zh) |
Families Citing this family (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN107525643B (zh) * | 2017-09-25 | 2024-02-13 | 南方电网科学研究院有限责任公司 | 特高压直流穿墙套管抗震试验装置及试验方法 |
CN107543674B (zh) * | 2017-09-25 | 2024-02-13 | 南方电网科学研究院有限责任公司 | 特高压直流旁路开关抗震试验装置及试验方法 |
CN108731895B (zh) * | 2018-07-02 | 2022-05-06 | 长江大学 | 高落差管道振动试验台 |
CN111537767A (zh) * | 2020-04-23 | 2020-08-14 | 中国南方电网有限责任公司超高压输电公司检修试验中心 | 一种特高压直流穿墙套管高电压试验支撑平台及使用方法 |
Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5128620A (en) * | 1990-08-07 | 1992-07-07 | James G. Biddle Co. | High voltage insulator testing system |
CN203299231U (zh) * | 2013-05-28 | 2013-11-20 | 国家电网公司 | 穿墙套管耐压试验支架 |
CN203798840U (zh) * | 2014-04-25 | 2014-08-27 | 国家电网公司 | 一种±1100kV直流穿墙套管绝缘试验装置 |
CN204086324U (zh) * | 2014-09-22 | 2015-01-07 | 国家电网公司 | 一种穿墙套管用高压试验装置 |
CN104949812A (zh) * | 2015-07-16 | 2015-09-30 | 中国电力科学研究院 | 一种高压出线套管的测试台 |
CN105547617A (zh) * | 2015-11-13 | 2016-05-04 | 中国电力科学研究院 | 一种特高压变电站主设备瓷套管抗震性检测方法及组件 |
CN205941237U (zh) * | 2016-07-12 | 2017-02-08 | 南方电网科学研究院有限责任公司 | 特高压直流复合穿墙套管外表面抗震试验装置 |
-
2016
- 2016-07-12 CN CN201610557578.6A patent/CN106052999B/zh active Active
Patent Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5128620A (en) * | 1990-08-07 | 1992-07-07 | James G. Biddle Co. | High voltage insulator testing system |
CN203299231U (zh) * | 2013-05-28 | 2013-11-20 | 国家电网公司 | 穿墙套管耐压试验支架 |
CN203798840U (zh) * | 2014-04-25 | 2014-08-27 | 国家电网公司 | 一种±1100kV直流穿墙套管绝缘试验装置 |
CN204086324U (zh) * | 2014-09-22 | 2015-01-07 | 国家电网公司 | 一种穿墙套管用高压试验装置 |
CN104949812A (zh) * | 2015-07-16 | 2015-09-30 | 中国电力科学研究院 | 一种高压出线套管的测试台 |
CN105547617A (zh) * | 2015-11-13 | 2016-05-04 | 中国电力科学研究院 | 一种特高压变电站主设备瓷套管抗震性检测方法及组件 |
CN205941237U (zh) * | 2016-07-12 | 2017-02-08 | 南方电网科学研究院有限责任公司 | 特高压直流复合穿墙套管外表面抗震试验装置 |
Non-Patent Citations (1)
Title |
---|
川藏联网工程复合材料电气设备地震模拟振动台试验研究;程永锋等;《电力建设》;20150331;第36卷(第3期);第53-55页 * |
Also Published As
Publication number | Publication date |
---|---|
CN106052999A (zh) | 2016-10-26 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN106052999B (zh) | 特高压直流复合穿墙套管外表面抗震试验装置及试验方法 | |
CN103245474B (zh) | 弹性支承器刚度测量装置及测量方法 | |
CN103217287B (zh) | 滚动支撑直线进给系统静、动态特性测试装置及测试方法 | |
CN105004458B (zh) | 装载机铲斗受力测试装置及测试方法 | |
CN106124151B (zh) | 特高压直流单柱复合支柱绝缘子抗震试验装置及其试验方法 | |
CN104044752A (zh) | 一种试验差动约束方法 | |
CN105527092A (zh) | 航空发动机主要承力部件整体静强度考核试验系统及方法 | |
CN106052996B (zh) | 特高压直流复合穿墙套管抗震试验装置及试验方法 | |
CN105115690A (zh) | 一种隔振器多向阻抗矩阵及刚度测试试验装置和试验方法 | |
CN105627896A (zh) | 桥梁挠度检测装置及检测方法 | |
CN106226177B (zh) | 特高压直流复合穿墙套管内外抗震试验装置及试验方法 | |
CN105509683B (zh) | 一种用于自平衡试桩法的位移测量装置 | |
CN207850594U (zh) | 钢弦式锚杆测力计检定装置 | |
CN114279837A (zh) | 立式真空隧道用管片检测机、翻转机及检测机的安装方法 | |
CN205656020U (zh) | 一种管桥模型实验系统 | |
CN112729734B (zh) | 一种测量串联式隔振器传递特性的方法 | |
CN105841949A (zh) | 自动控制法兰节点双向荷载共同作用性能测试装置及方法 | |
CN205941237U (zh) | 特高压直流复合穿墙套管外表面抗震试验装置 | |
CN205808851U (zh) | 特高压直流复合穿墙套管内外抗震试验装置 | |
CN205642774U (zh) | 钻机井架及底座系统的振动试验模拟装置 | |
CN205808852U (zh) | 特高压直流复合穿墙套管抗震试验装置 | |
CN107525643B (zh) | 特高压直流穿墙套管抗震试验装置及试验方法 | |
CN109342204A (zh) | 一种棒状非金属材料试块综合检测装置 | |
CN207248474U (zh) | 特高压直流穿墙套管抗震试验装置 | |
CN107063611B (zh) | 支柱类复合材料电气设备抗震评估方法 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C06 | Publication | ||
PB01 | Publication | ||
C10 | Entry into substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant |