WO2021046727A1 - 供电控制方法及设备 - Google Patents

供电控制方法及设备 Download PDF

Info

Publication number
WO2021046727A1
WO2021046727A1 PCT/CN2019/105229 CN2019105229W WO2021046727A1 WO 2021046727 A1 WO2021046727 A1 WO 2021046727A1 CN 2019105229 W CN2019105229 W CN 2019105229W WO 2021046727 A1 WO2021046727 A1 WO 2021046727A1
Authority
WO
WIPO (PCT)
Prior art keywords
power
bandwidth
terminal
threshold
mode
Prior art date
Application number
PCT/CN2019/105229
Other languages
English (en)
French (fr)
Inventor
邢金强
Original Assignee
Oppo广东移动通信有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Oppo广东移动通信有限公司 filed Critical Oppo广东移动通信有限公司
Priority to PCT/CN2019/105229 priority Critical patent/WO2021046727A1/zh
Priority to CN201980054751.2A priority patent/CN112789900B/zh
Publication of WO2021046727A1 publication Critical patent/WO2021046727A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/02Power saving arrangements
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02DCLIMATE CHANGE MITIGATION TECHNOLOGIES IN INFORMATION AND COMMUNICATION TECHNOLOGIES [ICT], I.E. INFORMATION AND COMMUNICATION TECHNOLOGIES AIMING AT THE REDUCTION OF THEIR OWN ENERGY USE
    • Y02D30/00Reducing energy consumption in communication networks
    • Y02D30/70Reducing energy consumption in communication networks in wireless communication networks

Definitions

  • This application relates to the field of communication technology, and in particular to a power supply control method and device.
  • Terminals such as mobile phones, are equipped with power amplifiers (PA) to support the terminal to transmit signals through the PA, and to achieve communication with other devices.
  • PA power amplifiers
  • the embodiments of the present application provide a power supply control method and device, which help reduce the power consumption of the PA, so as to reduce the power consumption of the terminal.
  • an embodiment of the present application provides a power supply control method, including:
  • the characteristic information includes the working bandwidth of the terminal and/or the target output power of the power amplifier of the terminal;
  • an embodiment of the present application provides a terminal that has some or all of the functions of the terminal behavior in the foregoing method.
  • the function of the terminal may have some or all of the functions in the embodiments of the present application, or It has the function of independently implementing any of the embodiments in this application.
  • the function can be realized by hardware, or by hardware executing corresponding software.
  • the hardware or software includes one or more units or modules corresponding to the above-mentioned functions.
  • the terminal includes a processing unit configured to support the terminal to perform corresponding functions in the foregoing method.
  • the terminal may further include a communication unit configured to support communication between the terminal and other units or devices.
  • the terminal may further include a storage unit, which is used for coupling with the processing unit and stores program instructions and data necessary for the terminal.
  • the processing unit may be a processor
  • the communication unit may be a transceiver
  • the storage unit may be a memory.
  • an embodiment of the present application provides a terminal, including a processor, a memory, and one or more programs.
  • the terminal may further include a transceiver, wherein the one or more programs are stored in the memory and are configured to be executed by the processor, and the programs include those used to execute the embodiments of the present application. Instructions for the steps in any method of the first aspect.
  • an embodiment of the present application provides a computer-readable storage medium, the computer-readable storage medium stores a computer program, and the computer program causes a computer to execute the method described in the first aspect of the embodiments of the present application Some or all of the steps.
  • the embodiments of the present application provide a computer program product, wherein the computer program product includes a non-transitory computer-readable storage medium storing a computer program, and the computer program is operable to cause a computer to execute Part or all of the steps described in the method of the first aspect of the application embodiment.
  • the computer program product may be a software installation package.
  • the terminal can obtain characteristic information such as the terminal’s working bandwidth and/or the configured target output power of the PA, and supply power to the PA based on the characteristic information, that is, it can dynamically adjust the PA power supply mode To reduce the power consumption of the PA, thereby reducing the power consumption of the terminal, and the power supply flexibility is stronger.
  • FIG. 1 is a schematic diagram of a working position of a power amplifier provided by an embodiment of the present application
  • Figure 2a is a working schematic diagram of an envelope tracking mode provided by an embodiment of the present application.
  • 2b is a schematic diagram of the operation of a power tracking mode provided by an embodiment of the present application.
  • FIG. 3 is a schematic diagram of bandwidth comparison provided by an embodiment of the present application.
  • FIG. 4 is a schematic flowchart of a power supply control method provided by an embodiment of the present application.
  • FIG. 5 is a schematic diagram of the working position of another power amplifier provided by an embodiment of the present application.
  • FIG. 6 is a schematic flowchart of another power supply control method provided by an embodiment of the present application.
  • FIG. 7 is a schematic flowchart of yet another power supply control method provided by an embodiment of the present application.
  • FIG. 8 is a schematic structural diagram of a terminal provided by an embodiment of the present application.
  • FIG. 9 is a schematic structural diagram of another terminal provided by an embodiment of the present application.
  • the technical solution of the present application can be applied to a device equipped with a power amplifier (PA), such as a terminal.
  • the PA can be used for energy conversion to achieve power control, such as increasing the terminal's transmit power to support the terminal's signal transmission, to achieve communication with other devices, and so on.
  • the terminal may be a device with communication function, for example, it may be a vehicle-mounted device, a wearable device, a handheld device (such as a smart phone), and so on. It can be understood that the terminal may also be called other names, such as user equipment (User Equipment, UE), user unit, mobile station (mobile station), mobile unit (mobile unit), terminal equipment, etc., which are not limited in this application.
  • UE User Equipment
  • UE user unit
  • mobile station mobile station
  • mobile unit mobile unit
  • terminal equipment etc.
  • FIG. 1 is a schematic diagram of a working position of a power amplifier provided in the present application.
  • the terminal may include baseband processing chips, radio frequency chips, power management chips, PAs, filters, switches, antennas, etc.
  • a baseband processing chip such as a baseband chip (Base Band IC, BBIC) can be used to process the signals sent or received;
  • a power management chip can be used to provide power supply voltage for components in the terminal such as PA;
  • radio frequency chips such as radio frequency integrated circuits (Radio Frequency Integrated Circuits, RFIC) can be used to determine the input signal of the PA, which is a low-power drive signal;
  • the PA can be used for energy conversion to achieve power amplification, and the output signal of the PA is a high-power radio frequency signal.
  • the large DC signal provided by the power management chip is actually converted into AC signal output;
  • the filter can be used to filter the signal output by the PA;
  • the switch can be used to control the frequency band of the terminal, etc.;
  • the antenna can be used for transmission Or receive the signal.
  • the PA can be based on the output power of the power management chip P 1 (that is, the PA input power P 1 ) and the output power of RFIC P 0 (That is, the PA input power P 0 ) performs energy conversion to obtain the output power of the PA, that is, the target output power (also called transmission power, target transmission power, etc.), assuming it is denoted as P 2 , and P 2 contains the input signal P 0 energy.
  • the location structure of the PA shown in FIG. 1 is only used as an example, and does not constitute a limitation to the present application.
  • the power added efficiency can be used to measure the energy conversion efficiency of PA (may be referred to as PA efficiency).
  • PAE the higher the energy conversion efficiency of the PA, the lower the PA power consumption, and the lower the terminal power consumption (except for the PA, the power consumption of the terminal is in the same situation), and the terminal saves more power.
  • the PAE is directly related to the power supply mode (power supply technology) of the PA. Different PA power supply modes (may be referred to as power supply modes) correspond to different PAEs, that is, different power supply modes are used to supply power to the PA.
  • PAE of the PA is different, and the power consumption of the PA is different. different.
  • PA commonly used power supply modes include envelope tracking (ET), power tracking (Power Tracking, PT) such as Average Power Tracking (APT) and Enhance Power Tracking (EPT).
  • ET envelope tracking
  • PT power tracking
  • APT Average Power Tracking
  • EPT Enhance Power Tracking
  • PA has the highest energy conversion efficiency when using ET power supply mode, followed by EPT power supply mode, and PA has the lowest energy conversion efficiency when using APT power supply mode.
  • FIG. 2a is a working schematic diagram of the ET mode, which is an envelope tracking mode provided by an embodiment of the present application.
  • the (thin line) waveform can indicate the PA's transmit signal.
  • ET means that P1 in Figure 1 is set according to the real-time power demand of the signal to be transmitted, corresponding to the thick line waveform in Figure 2a , which can be used to indicate changes in PA voltage.
  • the gray area above the thick line waveform is the saved power (saving part).
  • FIG. 2b is a working schematic diagram of a power tracking mode provided by an embodiment of the present application.
  • the waveform can indicate the PA transmitted signal.
  • the power tracking mode means that P1 in Figure 1 is set according to the power of the transmitted signal in a period of time, corresponding to the box value in Figure 2b.
  • the dark gray area outside the waveform is the wasted power (wasted part).
  • P1 in Figure 1 is set according to the average power of the transmitted signal over a period of time, and the power corresponding to the box value is the average power; if it is in EPT mode, it means that P1 in Figure 1 is It is set according to the gain power of the transmitted signal in a period of time, and the power corresponding to the box value is the gain power.
  • the ET power supply mode is more power-saving than the power tracking mode such as APT power supply mode and EPT power supply mode.
  • the ET power supply mode needs to know the waveform characteristics of the signal to be amplified in real time, calculate the signal envelope in real time, and adjust the size of the power supply voltage in real time, resulting in a relatively large amount of calculation in this mode and higher requirements for real-time processing capabilities; for example, general In other words, the larger the bandwidth of the signal to be amplified, the faster the signal envelope fluctuates, and the higher the requirements for real-time calculation.
  • Excessive bandwidth may cause the calculation of the signal envelope to fail to keep up with the speed of signal changes, which will lead to PA's
  • the linearity deteriorates and the quality of the output signal deteriorates, making the ET technology unable to apply to a larger bandwidth.
  • the applicable bandwidth of the ET power supply mode is smaller than the applicable bandwidth of the power tracking mode.
  • the current general ET technology can only support a working bandwidth of 60MHz, while power tracking modes such as APT power supply mode and EPT power supply mode can work in a larger bandwidth.
  • PA has the highest energy conversion efficiency when using ET power supply mode, and it is more power-saving.
  • PA uses tracking power mode with low energy conversion efficiency and high power consumption.
  • APT power consumption is higher than EPT power consumption; however, In the ET power supply mode, the terminal can support a narrow bandwidth, and the terminal supports a larger bandwidth in the EPT and APT modes; for example, generally speaking, the bandwidth supported by ET is only 60MHz at most, while EPT and APT can support a larger bandwidth , Such as 100MHz or 200MHz, etc.
  • the ET power supply mode due to the relatively large amount of calculation in the ET power supply mode, it consumes more power, and the power consumption of the mode itself is relatively high; while the EPT power supply mode itself has a small amount of calculation, and the APT power supply mode itself has the smallest amount of calculation.
  • EPT EPT
  • APT APT
  • the current PA adopts static power supply technology, that is, it is fixedly set to use a certain power supply mode for power supply.
  • the low-efficiency APT power supply mode is generally used, which consumes a lot of power, resulting in high power consumption.
  • the maximum bandwidth (system bandwidth) of a single carrier allocated to a terminal is 100 MHz, and if carrier aggregation is used, the bandwidth will be larger. Under this large bandwidth, the terminal adopts the APT power supply mode to support the 100MHz bandwidth, resulting in relatively low PA efficiency and serious power consumption.
  • the working bandwidth of the terminal at a certain moment or a certain period of time that is, the actual occupied bandwidth
  • the present application can dynamically select among various power supply modes by obtaining the real-time occupied working bandwidth, so as to improve the PA efficiency and save power consumption.
  • the working bandwidth may be the bandwidth part (Bandwidth Part, BWP), specifically the BWP activated by the terminal; the network side may configure one or more BWPs for the terminal (for example, a maximum of 4 BWPs), and the BWP is more than Single carrier 100MHz should be small, only one BWP is activated and used at the same time, and the terminal only needs to use this BWP bandwidth in the network instead of using the entire 100MHz system bandwidth.
  • the working bandwidth may also be a resource block (Resource Block, RB) occupied by the terminal, and the RB resource is a smaller resource division than the BWP.
  • FIG. 3 is a schematic diagram of bandwidth comparison provided by an embodiment of the present application.
  • the BWP configured by the network side for the terminal is a part of the entire system bandwidth (such as 100MHz), such as 20MHz.
  • the subsequent scheduling of the network will be in the configured BWP (if there are multiple BWPs, the scheduling will be activated However, the actual RB occupied by the terminal at a certain moment is smaller than the BWP.
  • the working bandwidth may also be a transport block (Transport Block, TB) or other granular bandwidth resources, etc., and the TB is composed of multiple RBs.
  • Transport Block TB
  • this application uses BWP or RB as an example for description.
  • the present application can also dynamically select among various power supply modes by obtaining the target output power of the PA to reduce power consumption.
  • the present application can dynamically adjust the PA power supply mode according to terminal characteristic information, such as the actual bandwidth used by the terminal, the output power of the PA, etc., so that the PA efficiency can be improved by dynamically adjusting the PA power supply mode, and the PA power consumption can be reduced, thereby reducing
  • the power consumption of the terminal improves the endurance time of the terminal, and the power supply flexibility is stronger.
  • FIG. 4 is a schematic flowchart of a power supply control method provided by an embodiment of the present application.
  • the method in this embodiment can be applied to the above-mentioned terminal. As shown in Figure 4, the method may include the following steps:
  • the characteristic information may be the working bandwidth of the terminal, that is, the actual working bandwidth, such as the bandwidth of the BWP activated by the terminal, and the bandwidth corresponding to the RB occupied by the terminal, rather than the entire bandwidth allocated to the terminal (or called system bandwidth, Such as single carrier bandwidth in a 5G scenario); or, the characteristic information may be the target output power of the PA configured in the terminal; or, the characteristic information may be the working bandwidth of the terminal and the target output power of the PA.
  • the target output power may correspond to the aforementioned P 2 , and may be specifically calculated according to the received power parameters sent by the network side, for example, calculated by a baseband processing chip such as BBIC; or, the target output power It may be the power output by the PA last time; or, the target output power may also be determined in other ways, which is not limited in this application.
  • the terminal may obtain characteristic information according to preset information obtaining rules.
  • the information acquisition rule may be a rule for obtaining information based on a preset time interval (period), or it may be a rule for obtaining information based on a preset timer set, or it may be a rule for obtaining information based on other trigger conditions.
  • the rules of this application are not limited.
  • the time interval for obtaining information can be preset. If the set time interval is 10 minutes, the terminal may periodically obtain the characteristic information every 10 minutes, so as to determine the PA power supply mode based on the obtained characteristic information.
  • a timer set can be preset, the timer set includes multiple timers, the duration of the multiple timers is different, and the execution of the multiple timers can be preset
  • the order for example, according to the size of the characteristic information of the terminal in the history record in different time periods to set the execution order (for example, the greater the change of the characteristic information in a time period, or the higher the frequency of change, the higher the time period when compared to other time periods.
  • the execution sequence of the multiple timers can be obtained by setting, and the number of executions of each timer is not limited to once); or, the execution sequence is set according to the power supply mode switching event occurred in the terminal in the history record ( For example, the more power supply mode switching events that occur in a time period, or the greater the frequency of occurrence, the shorter the duration of the timer used in this time period relative to other time periods, and the execution sequence of the multiple timers can be obtained by setting.
  • the number of executions of the device is not limited to one).
  • the terminal can trigger the acquisition of the characteristic information when each timer expires, so as to switch to an appropriate PA power supply mode in time for PA power supply.
  • a timer set may be preset, and the timer set may include multiple timers, and the durations of the multiple timers are all different.
  • the terminal can select a timer from the multiple timers, and trigger the acquisition of the characteristic information when the selected timer expires.
  • the terminal selects the timer it may be selected based on a preset selection rule. For example, the timer is selected based on the absolute value of the difference between the characteristic information obtained last time and the corresponding characteristic threshold. Smaller, the shorter the duration of the selected timer, in order to obtain new feature information in time, and re-determine the PA power supply mode according to the new feature information, thereby improving the reliability of PA power supply mode selection.
  • the terminal may determine the PA power supply mode based on the acquired characteristic information, and supply power to the PA based on the PA power supply mode corresponding to the characteristic information.
  • the terminal may use the first power supply mode to supply power to the PA.
  • a bandwidth threshold that is, the first bandwidth threshold
  • a power threshold that is, the first power threshold
  • the terminal can compare the characteristic information with the corresponding threshold, and determine the PA power supply mode based on the comparison result. For example, if the characteristic information is the working bandwidth of the terminal, the working bandwidth can be compared with the first bandwidth threshold, and when the working bandwidth is less than the first bandwidth threshold, the first power supply mode can be used to supply power to the PA; and For example, if the characteristic information is the target output power of the PA, the target output power can be compared with the first power threshold. When the target output power is greater than the first power threshold, the first power supply mode can be used to power the PA.
  • the working bandwidth can be compared with the first bandwidth threshold, and the target output power can be compared with the first power threshold, when When the working bandwidth is less than the first bandwidth threshold, and the target output power is greater than the first power threshold, the first power supply mode can be used to supply power to the PA.
  • the terminal may use the second power supply mode to supply power to the PA.
  • the second bandwidth threshold is the same as the first bandwidth threshold, and the second power threshold is the same as the first power threshold.
  • the second bandwidth threshold may be different from the first bandwidth threshold, for example, the second bandwidth threshold may be greater than the first bandwidth threshold; and/or, the second power threshold may be the same as the first power threshold. Different, for example, the second power threshold is smaller than the first power threshold.
  • the first power supply mode may be a power supply mode that supports a smaller working bandwidth (for example, less than a certain bandwidth threshold, the threshold may be the above-mentioned first bandwidth threshold, or may be greater than the first bandwidth threshold), and the second power supply The mode can be a power supply mode that supports a larger working bandwidth (for example, greater than a certain bandwidth threshold, the threshold can be the second bandwidth threshold mentioned above, or can be less than the second bandwidth threshold), that is, the working bandwidth supported by the first power supply mode Less than the working bandwidth supported by the second power supply mode; and/or, the first power supply mode may be a power supply mode with higher energy conversion efficiency (for example, higher than a certain efficiency threshold), and the second power supply mode may be a lower energy conversion efficiency (Such as lower than a certain efficiency threshold) power supply mode, that is, the energy conversion efficiency of the first power supply mode is higher than the energy conversion efficiency of the second power supply mode.
  • the first power supply mode may be the ET mode
  • the second power supply mode may be the APT
  • a bandwidth threshold that is, a second bandwidth threshold
  • a power threshold that is, a second power threshold
  • the terminal can compare the characteristic information with the corresponding threshold, and determine the PA power supply mode based on the comparison result. For example, if the characteristic information is the working bandwidth of the terminal, the working bandwidth can be compared with the second bandwidth threshold, and when the working bandwidth is not less than the second bandwidth threshold, the second power supply mode can be adopted to supply power to the PA; For another example, if the characteristic information is the target output power of the PA, the target output power can be compared with the second power threshold. When the target output power is not greater than the second power threshold, the second power supply mode can be adopted.
  • the second power supply mode can be used to supply power to the PA.
  • the original power supply mode can be maintained to supply power to the PA without switching the power supply mode; if the characteristic information is the target output power, and the target output power is greater than the second power threshold and less than the first power threshold, you can Keep the original power supply mode without switching the power supply mode; if the characteristic information is the terminal working bandwidth and target output power, and the working bandwidth is not less than the first bandwidth threshold and the second bandwidth threshold, the target output power is greater than the second power threshold When it is less than the first power threshold, the original power supply mode can be maintained without power supply mode switching, thereby helping to reduce switching overhead, further saving terminal power consumption, and improving terminal battery life.
  • the second power supply mode may be a PT mode, and the PT mode may be an APT mode or an EPT mode. That is to say, if the second power supply mode includes multiple types, the terminal may also determine which second power supply mode is specifically used to supply power to the PA according to the characteristic information.
  • the second power supply mode is the EPT mode, that is, the EPT mode can be used to supply power to the PA;
  • the working bandwidth is greater than or equal to the third broadband threshold, and/or, the target output power is less than or equal to the third power threshold, and the second power supply mode is the APT mode, and the APT mode can be used to supply power to the PA.
  • the third bandwidth threshold is greater than the second bandwidth threshold, and the third power threshold is less than the second power threshold.
  • the first bandwidth threshold may be smaller than the second bandwidth threshold, and the second bandwidth threshold is smaller than the third bandwidth threshold; if the second power threshold is different from the first bandwidth threshold, If the power threshold is different, it may be that the first power threshold is greater than the second power threshold, and the second power threshold is greater than the third power threshold.
  • the third bandwidth threshold may also be preset, and/or the third power threshold may be set.
  • the terminal can compare the characteristic information with the corresponding threshold, and determine which PT mode to use for PA power supply based on the comparison result. For example, if the characteristic information is the working bandwidth of the terminal and the working bandwidth is not less than the second bandwidth threshold, the working bandwidth can be compared with the third bandwidth threshold, and when the working bandwidth is less than the third bandwidth threshold, it can be determined The EPT mode is used to supply power to the PA; otherwise, when the working bandwidth is not less than the third bandwidth threshold, it can be determined that the APT mode is used to supply power to the PA.
  • the target output power may be compared with the third power threshold, and when the target output power is greater than the third power threshold Then, it can be determined to use the EPT mode to supply power to the PA; otherwise, when the target output power is not greater than the third power threshold, it can be determined to use the APT mode to supply power to the PA.
  • the operating bandwidth can be compared with the third bandwidth threshold , And/or, compare the target output power with the three-power threshold, and when the working bandwidth is less than the third bandwidth threshold, and/or, when the target output power is greater than the third power threshold, it can be determined to adopt EPT Mode to supply power to the PA; otherwise, when the working bandwidth is not less than the third bandwidth threshold, and/or the target output power is not greater than the third power threshold, it can be determined to use the APT mode to supply power to the PA; that is, In the scenario where the characteristic information is the terminal working bandwidth and the target output power, if the working bandwidth is greater than or equal to the second bandwidth threshold and/or the target output power is less than or equal to the second power threshold, it is determined to adopt the PT mode to After the PA supplies power, it is possible to determine which PT mode to use for PA power supply according
  • FIG. 5 is a schematic diagram of another PA position provided by an embodiment of the present application.
  • a power supply mode switching module can be added to the terminal.
  • the power supply mode switching module can be used to determine the power supply mode of the PA based on characteristic information.
  • the input information of the power supply mode switching module includes characteristics such as target output power and actual working bandwidth.
  • Information, the output information can be the supply voltage of the PA.
  • the feature information can be obtained from the baseband processing chip, or obtained by other means.
  • the working bandwidth can be divided into two levels, namely BWP and RB.
  • BWP the BWP activated by the terminal
  • the finer granularity can be based on the real-time occupation of the terminal.
  • the amount of RB resources determines the PA power supply mode.
  • the terminal when determining the power supply mode to be adopted according to the working bandwidth of the terminal, the terminal can obtain the size of the activated BWP of the terminal to determine the PA power supply mode, that is, the working bandwidth is the bandwidth of the activated BWP of the terminal; or the terminal can obtain the terminal fixedly
  • the size of the occupied RB determines the PA power supply mode, that is, the working bandwidth is the bandwidth corresponding to the RB occupied by the terminal; or the terminal can dynamically determine the working bandwidth according to a preset bandwidth determination rule, that is, when to use BWP and when to use RB .
  • the bandwidth determination rule may be a rule based on the switching frequency of the power supply mode.
  • the terminal may also obtain the switching frequency of the power supply mode of the PA within a preset time period; when the switching frequency is greater than the preset frequency threshold , The BWP activated by the terminal is used as the working bandwidth of the terminal.
  • the preset time period and frequency threshold can be preset.
  • the terminal can use the bandwidth corresponding to the occupied RB as the working bandwidth to determine the PA power supply mode, and count the number of switching times of the power supply mode within the preset time period to determine the switching frequency of the power supply mode, if the switching frequency is greater than the preset frequency threshold , The terminal can obtain the bandwidth of the activated BWP as the working bandwidth to determine the PA power supply mode.
  • the switching frequency may refer to the number of switching times within a unit time, such as 1 minute, or may refer to the number of switching times within the preset time period. In this mode, when RB is used as the switching granularity, the switching frequency may be higher.
  • RB fluctuates above and below the bandwidth threshold such as 60MHz, resulting in a higher frequency of power supply mode switching.
  • the bandwidth determination rule may be a rule based on whether a power supply mode switching event occurs within a timer.
  • the terminal can detect whether a power supply mode switching event for the power amplifier occurs before the power supply mode switching timer expires; The power supply mode switching event is not detected before the timer times out, and the RB occupied by the terminal is used as the working bandwidth of the terminal.
  • the terminal can use the activated BWP as the working bandwidth to determine the PA power supply mode, and start a timer such as the power supply mode switching timer. For example, it can switch from using the occupied RB bandwidth as the working bandwidth to using the BWP bandwidth as the working bandwidth.
  • the timer When the working bandwidth is the bandwidth of the BWP activated by the terminal, and no power supply mode switching event occurs within the preset time period, the timer is started; and when the working bandwidth is the terminal The timer is started when the bandwidth of the activated BWP is received and an adjustment instruction from the network side such as the base station is received. If the PA power supply mode switching event does not occur within the timer duration, the terminal can obtain the occupied RB corresponding to the working bandwidth to determine the PA power supply mode. In this mode, when BWP is used as the switching granularity, the switching frequency may be low. For example, the BWP is slightly higher than the bandwidth threshold such as 60MHz, which causes the APT or EPT power supply mode to remain for a long time and increases the power consumption of the terminal.
  • the bandwidth threshold such as 60MHz
  • Determining the power supply mode helps to reduce power consumption, and helps to avoid that the size of the BWP activated by the terminal does not change for a long time or the change is small, but the actual occupied RB size has a large change, so that the determined PA power supply The occurrence of inaccurate modes improves the reliability of PA power supply mode determination.
  • the thresholds involved in this application can be preset; or, can be obtained from the network. Obtained as indicated by the base station.
  • these thresholds can be fixedly set; or they can also be dynamically adjusted, such as adjustment according to the remaining power of the terminal, adjustment according to the terminal battery performance, adjustment according to the switching frequency of the power supply mode, etc., which are not limited in this application.
  • the terminal can obtain characteristic information such as the working bandwidth of the terminal and/or the configured target output power of the PA, and determine the corresponding power supply mode to supply power to the PA based on the characteristic information, that is, it can dynamically adjust the power supply of the PA Mode to improve the efficiency of the PA, to reduce the power consumption of the PA, thereby reducing the power consumption of the terminal, increasing the endurance time of the terminal, and the flexibility of power supply.
  • characteristic information such as the working bandwidth of the terminal and/or the configured target output power of the PA
  • FIG. 6 is a schematic flowchart of another power supply control method provided by an embodiment of the present application. As shown in FIG. 6, the method may include the following steps:
  • the working bandwidth can be an activated BWP or an RB.
  • the target output power may correspond to P 2 , such as the aforementioned P 2 .
  • the information obtaining rule for obtaining the working bandwidth and the information obtaining rule for obtaining the target output power may be different.
  • the working bandwidth and the target output power may be obtained at different time intervals (or timers).
  • the information acquisition rules for obtaining the BWP when the working bandwidth is BWP and the information obtaining rules for obtaining the RB when the working bandwidth is RB may also be different.
  • the BWP can be The timer duration corresponding to the information acquisition rule is set to be greater than the timer duration corresponding to the information acquisition rule of the RB, so that the reliability of the acquired characteristic information can be ensured to improve the reliability of the power supply mode selection, and the information acquisition overhead can be reduced. Help to further reduce terminal power consumption.
  • step 601 for the rest of the description of step 601, reference may be made to the related description of the embodiment shown in FIG. 4, which is not repeated here.
  • the second bandwidth threshold is the same as the first bandwidth threshold, and the second power threshold is the same as the first power threshold.
  • the working bandwidth can be compared with a corresponding bandwidth threshold, such as a first bandwidth threshold, and the target output power can be compared with the first power threshold. If the comparison result is that the working bandwidth is less than the first bandwidth threshold, and the target output power is greater than the first power threshold, the ET mode can be used as the power supply mode of the PA to power the PA; if the working bandwidth is greater than or equal to the first power threshold A bandwidth threshold, or if the target output power is less than or equal to the first power threshold, the PT mode can be used as the power supply mode of the PA to supply power to the PA.
  • the second bandwidth threshold is greater than the first bandwidth threshold, and the second power threshold is less than the first power threshold.
  • the ET mode can be used as the power supply mode of the PA to power the PA; if the working bandwidth is greater than or equal to the first power threshold Second, the bandwidth threshold, or if the target output power is less than or equal to the second power threshold, the PT mode can be used as the power supply mode of the PA to supply power to the PA. Further, if the working bandwidth is greater than or equal to the first bandwidth threshold and less than the second bandwidth threshold, and the target output power is greater than or equal to the second power threshold and less than or equal to the first power threshold, the original power supply mode can be maintained The PA is supplied with power, and the power supply mode is not adjusted/switched. This reduces the switching overhead of the PA power supply mode, and further saves terminal power consumption.
  • the PT mode can be APT mode or EPT mode, which can be set in advance.
  • the PT mode is preset to be APT mode, then when the PT mode is used to supply power to the PA, the APT mode can be used for PA Power supply; correspondingly, if the PT mode is preset to EPT mode, the EPT mode can be used for PA power supply; if the preset rule is preset to dynamically select whether to use the APT mode or the EPT mode, the preset rule can be combined To determine the specific PT mode, I won’t go into details here.
  • the terminal can obtain the working bandwidth of the terminal and the configured target output power of the PA, and select the power supply mode to supply power to the PA according to whether the working bandwidth and the target output power reach the corresponding threshold.
  • Target output power and real-time working bandwidth tracking judge the use of ET power supply or PT power supply, and realize dynamic adjustment of PA power supply mode, which helps to improve PA efficiency and reduce PA power consumption, thereby reducing terminal power consumption and reducing power consumption .
  • FIG. 7 is a schematic flowchart of another power supply control method provided by an embodiment of the present application.
  • the first bandwidth threshold and the second bandwidth threshold are the same, and the first power threshold and the second power threshold are the same.
  • the method may include the following steps:
  • the working bandwidth is not less than the preset first bandwidth threshold, it can be further detected whether it is greater than the preset third bandwidth threshold. If it is greater than the third bandwidth threshold, the APT mode can be used for PA power supply; if it is greater than or equal to If the first bandwidth threshold is less than the third bandwidth threshold, the EPT mode can be used to supply power to the PA.
  • the working bandwidth is less than the first bandwidth threshold, but the target output power is not greater than the preset first power threshold, the original PA power supply mode can be maintained, or the APT or EPT mode can be switched to.
  • the terminal can select the ET mode, the EPT mode or the APT mode to perform the PA by obtaining the working bandwidth of the terminal and the configured target output power of the PA, and according to whether the working bandwidth and the target output power reach the corresponding threshold.
  • Power supply which can dynamically adjust the PA power supply mode by tracking the target output power and real-time working bandwidth of the PA, which helps to improve the efficiency of the PA, reduce the power consumption of the PA, thereby reducing the power consumption of the terminal, reducing the power consumption, and improving the terminal Life time.
  • the terminal may include: a power amplifier 840, a processor 810, a memory 820, a communication interface 830, and one or more programs 821, where the one or more programs 821 are stored in the memory 820 And is configured to be executed by the processor 810, and the program includes instructions for executing the following steps:
  • the characteristic information includes the working bandwidth of the terminal and/or the target output power of the power amplifier of the terminal;
  • the program when power is supplied to the power amplifier based on the characteristic information, the program includes instructions for executing the following steps:
  • the first power supply mode is adopted to supply power to the power amplifier;
  • the working bandwidth of the terminal is greater than or equal to the second bandwidth threshold, and/or the target output power is less than or equal to the second power threshold, adopting the second power supply mode to supply power to the power amplifier;
  • the first bandwidth threshold is less than or equal to the second bandwidth threshold, and the first power threshold is greater than or equal to the second power threshold.
  • the first power supply mode is an envelope tracking ET mode; and/or, the second power supply mode is a power tracking PT mode.
  • the PT mode includes an average power tracking mode or a gain power tracking mode.
  • the program when the power amplifier is powered by the second power supply mode, the program includes instructions for executing the following steps:
  • the working bandwidth of the terminal is less than the third broadband threshold, and/or the target output power is greater than the third power threshold, adopting the EPT mode to supply power to the power amplifier;
  • the average power tracking mode is used to perform the power amplifier powered by
  • the third bandwidth threshold is greater than the second bandwidth threshold, and the third power threshold is less than the second power threshold.
  • the working bandwidth is the bandwidth of the BWP of the bandwidth part activated by the terminal, or the working bandwidth is the bandwidth corresponding to the resource block RB occupied by the terminal.
  • the program further includes instructions for performing the following steps:
  • the working bandwidth is the bandwidth corresponding to the RB occupied by the terminal, acquiring the switching frequency of the power supply mode of the power amplifier within a preset time period;
  • the bandwidth of the BWP activated by the terminal is used as the working bandwidth of the terminal.
  • the program further includes instructions for performing the following steps:
  • the working bandwidth is the bandwidth of the BWP activated by the terminal, detecting whether a power supply mode switching event for the power amplifier occurs before the power supply mode switching timer expires;
  • the bandwidth corresponding to the RB occupied by the terminal is used as the working bandwidth of the terminal.
  • the terminal may also include the aforementioned antenna, filter, power management chip, or other components or structures, which are not listed here.
  • the terminal includes hardware structures and/or software modules corresponding to each function.
  • the present application can be implemented in the form of hardware or a combination of hardware and computer software. Whether a certain function is executed by hardware or computer software-driven hardware depends on the specific application and design constraint conditions of the technical solution. Professionals and technicians can use different methods for each specific application to implement the described functions, but such implementation should not be considered beyond the scope of this application.
  • the embodiments of the present application may divide the terminal into functional units according to the foregoing method examples.
  • each functional unit may be divided corresponding to each function, or two or more functions may be integrated into one processing unit.
  • the above-mentioned integrated unit can be realized in the form of hardware or software program module. It should be noted that the division of units in the embodiments of the present application is illustrative, and is only a logical function division, and there may be other division methods in actual implementation.
  • the terminal 900 may include: a processing unit 901 and an acquiring unit 902. Among them, these units can perform the corresponding functions of the terminal in the foregoing method example.
  • the processing unit 901 is used to control and manage the actions of the terminal.
  • the processing unit 901 is used to support the terminal to execute steps 402 to 403 in FIG. 4, 602 to 603 in FIG. 6, 702 to 704 in FIG. 7, and/ Or other processes used in the techniques described herein.
  • the obtaining unit 902 can be used to obtain information, and can also support communication between the terminal and other units or devices.
  • the terminal may also include a storage unit 903 for storing program codes and data of the terminal.
  • the processing unit 901 may be a processor or a controller, for example, a central processing unit (CPU), a general-purpose processor, a digital signal processor (Digital Signal Processor, DSP), and an application-specific integrated circuit (Application-Specific Integrated Circuit). Integrated Circuit, ASIC), Field Programmable Gate Array (FPGA) or other programmable logic devices, transistor logic devices, hardware components, or any combination thereof. It can implement or execute various exemplary logical blocks, modules, and circuits described in conjunction with the disclosure of this application.
  • the processor may also be a combination for realizing computing functions, for example, including a combination of one or more microprocessors, a combination of a DSP and a microprocessor, and so on.
  • the acquiring unit 902 may be a transceiver, a transceiver circuit, a communication interface, etc., and the storage unit 903 may be a memory.
  • the acquiring unit 902 is configured to acquire characteristic information of the terminal, where the characteristic information includes the working bandwidth of the terminal and/or the target output power of the power amplifier configured by the terminal;
  • the processing unit 901 is configured to supply power to the power amplifier based on the characteristic information.
  • the characteristic information can also be obtained by the processing unit.
  • the processing unit may correspond to the above-mentioned power supply mode switching module, for example, it may have the corresponding function of the power supply mode switching module.
  • the processing unit 901 when the processing unit 901 supplies power to the power amplifier based on the characteristic information, it may be specifically configured to:
  • the first power supply mode is adopted to supply power to the power amplifier;
  • the working bandwidth of the terminal is greater than or equal to the second bandwidth threshold, and/or the target output power is less than or equal to the second power threshold, adopting the second power supply mode to supply power to the power amplifier;
  • the first bandwidth threshold is less than or equal to the second bandwidth threshold, and the first power threshold is greater than or equal to the second power threshold.
  • the first power supply mode is an envelope tracking ET mode; and/or, the second power supply mode is a power tracking PT mode. .
  • the PT mode may include an average power tracking APT mode or a gain power tracking EPT mode, and so on.
  • processing unit 901 when the processing unit 901 adopts the second power supply mode to supply power to the power amplifier, it may be specifically configured to:
  • the working bandwidth of the terminal is less than the third broadband threshold, and/or the target output power is greater than the third power threshold, adopting the EPT mode to supply power to the power amplifier;
  • the average power tracking mode is used to perform the power amplifier powered by
  • the third bandwidth threshold is greater than the second bandwidth threshold, and the third power threshold is less than the second power threshold.
  • the threshold involved in this application can be preset or instructed by the network side, and so on.
  • the working bandwidth is the bandwidth of the BWP of the bandwidth part activated by the terminal, or the working bandwidth is the bandwidth corresponding to the resource block RB occupied by the terminal.
  • the obtaining unit 902 may also be configured to obtain the switching frequency of the power supply mode of the power amplifier within a preset time period when the working bandwidth is the bandwidth corresponding to the RB occupied by the terminal;
  • the processing unit 901 may be further configured to use the bandwidth of the BWP activated by the terminal as the working bandwidth of the terminal when the switching frequency is greater than a preset frequency threshold.
  • the switching frequency may also be obtained by the processing unit.
  • the processing unit 901 may be further configured to detect whether a power supply mode switching event for the power amplifier occurs before the power supply mode switching timer expires when the working bandwidth is the bandwidth of the BWP activated by the terminal; If the occurrence of the power supply mode switching event is not detected before the power supply mode switching timer expires, the bandwidth corresponding to the RB occupied by the terminal is used as the working bandwidth of the terminal.
  • the processing unit 901 is a processor
  • the obtaining unit 902 is a communication interface
  • the storage unit 903 is a memory
  • the terminal involved in the embodiment of the present application may be the terminal shown in FIG. 8.
  • the terminal may implement part or all of the steps performed by the terminal in the method in the embodiments shown in FIG. 4 to FIG. 7 through the foregoing unit.
  • the embodiment of the present application is a device embodiment corresponding to the method embodiment, and the description of the method embodiment is also applicable to the embodiment of the present application, and will not be repeated here.
  • the division of units in the embodiments of the present application is illustrative, and is only a logical function division, and there may be other division methods in actual implementation.
  • the functional units in the embodiments of the present application may be integrated into one processing unit, or each unit may exist alone physically, or two or more units may be integrated into one unit.
  • the above-mentioned integrated unit can be implemented in the form of hardware or software functional unit.
  • the embodiment of the present application also provides a computer-readable storage medium, wherein the computer-readable storage medium stores a computer program for electronic data exchange, wherein the computer program causes the computer to execute the terminal in the above method embodiment Some or all of the steps described.
  • the embodiments of the present application also provide a computer program product, wherein the computer program product includes a non-transitory computer-readable storage medium storing a computer program, and the computer program is operable to cause a computer to execute the method embodiments described above. Part or all of the steps described in the terminal.
  • the computer program product may be a software installation package.
  • the steps of the method or algorithm described in combination with the disclosure of this application can be implemented in a hardware manner, or can be implemented in a manner in which a processor executes software instructions.
  • Software instructions can be composed of corresponding software modules, which can be stored in random access memory (Random Access Memory, RAM), flash memory, read-only memory (Read Only Memory, ROM), and erasable programmable read-only memory ( Erasable Programmable ROM (EPROM), Electrically Erasable Programmable Read-Only Memory (Electrically EPROM, EEPROM), registers, hard disk, mobile hard disk, CD-ROM, or any other form of storage medium known in the art.
  • An exemplary storage medium is coupled to the processor, so that the processor can read information from the storage medium and write information to the storage medium.
  • the storage medium may also be an integral part of the processor.
  • the processor and the storage medium may be located in the ASIC.
  • the ASIC may be located in a communication device such as a terminal.
  • the processor and the storage medium may also exist as discrete components in the communication device.
  • the functions described in the embodiments of the present application may be implemented in whole or in part by software, hardware, firmware, or any combination thereof.
  • software it can be implemented in the form of a computer program product in whole or in part.
  • the computer program product includes one or more computer instructions.
  • the computer may be a general-purpose computer, a special-purpose computer, a computer network, or other programmable devices.
  • the computer instructions may be stored in a computer-readable storage medium, or transmitted from one computer-readable storage medium to another computer-readable storage medium.
  • the computer instructions may be transmitted from a website, computer, server, or data center. Transmission to another website, computer, server or data center via wired (such as coaxial cable, optical fiber, Digital Subscriber Line (DSL)) or wireless (such as infrared, wireless, microwave, etc.).
  • the computer-readable storage medium may be any available medium that can be accessed by a computer or a data storage device such as a server or data center integrated with one or more available media.
  • the usable medium may be a magnetic medium (for example, a floppy disk, a hard disk, a magnetic tape), an optical medium (for example, a digital video disc (Digital Video Disc, DVD)), or a semiconductor medium (for example, a solid state disk (Solid State Disk, SSD)) )Wait.
  • a magnetic medium for example, a floppy disk, a hard disk, a magnetic tape
  • an optical medium for example, a digital video disc (Digital Video Disc, DVD)
  • a semiconductor medium for example, a solid state disk (Solid State Disk, SSD)

Abstract

一种供电控制方法及设备,其中,该方法包括:获取终端的特征信息,所述特征信息包括所述终端的工作带宽和/或所述终端的功率放大器的目标输出功率(401);基于所述特征信息,对所述功率放大器进行供电(402)。上述供电控制方法有助于降低PA功耗,以降低终端功耗。

Description

供电控制方法及设备 技术领域
本申请涉及通信技术领域,尤其涉及一种供电控制方法及设备。
背景技术
终端如手机等都配置有功率放大器(Power Amplifier,PA),以通过PA支持终端发射信号,实现与其他设备之间的通信等。PA作为终端中主要耗电元件之一,如何降低PA功耗,以降低终端功耗成为亟需解决的问题。
发明内容
本申请的实施例提供一种供电控制方法及设备,有助于降低PA功耗,以降低终端功耗。
第一方面,本申请实施例提供一种供电控制方法,包括:
获取终端的特征信息,所述特征信息包括所述终端的工作带宽和/或所述终端的功率放大器的目标输出功率;
基于所述特征信息,对所述功率放大器进行供电。
第二方面,本申请实施例提供一种终端,该终端具有实现上述方法中终端行为的部分或全部功能,比如该终端的功能可具备本申请中的部分或全部实施例中的功能,也可以具备单独实施本申请中的任一个实施例的功能。所述功能可以通过硬件实现,也可以通过硬件执行相应的软件实现。所述硬件或软件包括一个或多个与上述功能相对应的单元或模块。
在可能的设计中,终端包括处理单元,所述处理单元被配置为支持终端执行上述方法中相应的功能。所述终端还可包括通信单元,所述通信单元用于支持终端与其他单元或设备之间的通信。所述终端还可包括存储单元,所述存储单元用于与处理单元耦合,其保存终端必要的程序指令和数据等。可选的,处理单元可以为处理器,通信单元可以为收发器,存储单元可以为存储器。
第三方面,本申请实施例提供一种终端,包括处理器、存储器以及一个或多个程序。可选的,该终端还可包括收发器,其中,所述一个或多个程序被存储在所述存储器中,并且被配置由所述处理器执行,所述程序包括用于执行本申请实施例第一方面任一方法中的步骤的指令。
第四方面,本申请实施例提供了一种计算机可读存储介质,所述计算机可读存储介质存储有计算机程序,所述计算机程序使得计算机执行如本申请实施例第一方面的方法中所描述的部分或全部步骤。
第五方面,本申请实施例提供了一种计算机程序产品,其中,所述计算机程序产品包括存储了计算机程序的非瞬时性计算机可读存储介质,所述计算机程序可操作来使计算机执行如本申请实施例第一方面的方法中所描述的部分或全部步骤。该计算机程序产品可以为一个软件安装包。
在本申请实施例提供的方案中,终端能够通过获取特征信息如终端的工作带宽和/或配置的PA的目标输出功率,并基于该特征信息对PA进行供电,即能够通过动态调整PA供电模式来降低PA功耗,从而降低终端功耗,供电灵活性较强。
附图说明
下面将对实施例或现有技术描述中所需要使用的附图进行介绍。
图1是本申请实施例提供的一种功率放大器的工作位置示意图;
图2a是本申请实施例提供的一种包络跟踪模式的工作示意图;
图2b是本申请实施例提供的一种功率跟踪模式的工作示意图;
图3是本申请实施例提供的一种带宽对比示意图;
图4是本申请实施例提供的一种供电控制方法的流程示意图;
图5是本申请实施例提供的另一种功率放大器的工作位置示意图;
图6是本申请实施例提供的另一种供电控制方法的流程示意图;
图7是本申请实施例提供的又一种供电控制方法的流程示意图;
图8是本申请实施例提供的一种终端的结构示意图;
图9是本申请实施例提供的另一种终端的结构示意图。
具体实施方式
下面将结合附图对本申请实施例中的技术方案进行描述。
本申请的技术方案可应用于配置有功率放大器(PA)的设备如终端中。该PA可用于进行能量转换,以实现功率控制,比如增加终端发射功率,以支持终端发射信号,实现与其他设备之间的通信等等。
在本申请中,终端可以是具有通信功能的设备,例如可以是车载设备、可穿戴设备、手持设备(如智能手机)等。可以理解,该终端还可以叫做其余名称,比如用户设备(User Equipment,UE)、用户单元、移动台(mobile station)、移动单元(mobile unit)、终端设备等等,本申请不做限定。
请参见图1,图1是本申请提供的一种功率放大器的工作位置示意图。如图1所示,终端中可包括基带处理芯片、射频芯片、电源管理芯片、PA、滤波器、开关、天线等。其中,基带处理芯片如基带芯片(Base Band IC,BBIC)可用于实现对所发送或接收的信号的处理;电源管理芯片可用于为终端中的元件如PA提供供电电压;射频芯片如射频集成电路(Radio Frequency Integrated Circuits,RFIC)可用于确定PA的输入信号,该输入信号是一种小功率驱动信号;PA可用于进行能量转换,实现功率放大,PA的输出信号为大功率的射频信号,PA在这个功率放大过程中实际上是将电源管理芯片提供的大的直流信号转换为交流信号输出;滤波器可用于对PA输出的信号进行滤波;开关可用于控制终端使用频段等;天线可用于发送或接收信号。假设射频芯片如RFIC输出功率记为P 0,电源管理芯片输出功率记为P 1,则PA可根据电源管理芯片的输出功率P 1(也即PA输入功率P 1)和RFIC的输出功率P 0(也即PA输入功率P 0)进行能量转换,以得到PA的输出功率,即目标输出功率(还可叫做发射功率、目标发射功率等等),假设记为P 2,P 2含有输入信号P 0的能量。可以理解,图1示出的PA的位置架构只是作为一种示例,并不构成对本申请的限定。
在一些实施例中,可以通过功率增加效率(Power Added Efficiency,PAE)来衡量PA的能量转换效率(可简称PA效率),如PAE可以通过以下方式得到:PAE=(P 2-P 0)/P 1。其中,PAE越大,则表明PA的能量转换效率越高,PA功耗越低,进而终端功耗越低(除PA外终端其他耗电处于同等情况下),终端越节电。而PAE与PA的供电模式(供电技术)直接相关,不同的PA供电模式(可简称供电模式)对应的PAE不同,也即,采用不同供电模式对PA进行供电,PA的PAE不同,PA功耗不同。例如,PA常用的供电模式包括包络跟踪(Envelope Tracking,ET)、功率跟踪(Power Tracking,PT)如平均功率跟踪(Average Power Tracking,APT)和增益功率跟踪(Enhance Power Tracking,EPT)。在这三种供电模式下,PA在使用ET供电模式时的能量转换效率最高,其次为EPT供电模式,PA在使用 APT供电模式时的能量转换效率最低。
例如,请参见图2a,是本申请实施例提供的一种包络跟踪模式即ET模式的工作示意图。如图2a所示,其中的(细线)波形可以指示PA的发射信号,ET就意味着图1中的P1是根据待发射信号的实时功率需求来设定,对应图2a中的粗线波形,其可用于指示PA电压变化。其中,该粗线波形以上的灰色区域为节约的功率(节省部分)。
例如,请参见图2b,是本申请实施例提供的一种功率跟踪模式的工作示意图。如图2b所示,其中的波形可以指示PA的发射信号,功率跟踪模式就意味着图1中的P1是根据在一段时间内发射信号的功率来设定,对应图2b中的方框值,其中波形以外的深灰色区域为浪费掉的无用功率(浪费部分)。如果是APT模式,表明图1中的P1是根据在一段时间内发射信号的平均功率来设定的,方框值对应的功率为平均功率;如果是EPT模式,则表明图1中的P1是根据在一段时间内发射信号的增益功率来设定的,方框值对应的功率为增益功率。
由此可见,ET供电模式比功率跟踪模式如APT供电模式、EPT供电模式更加节电。但由于ET供电模式需要实时知道待放大信号的波形特征,实时计算信号包络,并实时调整供电电压的大小,导致该模式下的计算量比较大,对实时处理的能力要求较高;比如一般来说,待放大信号的带宽越大其信号包络波动越快,对实时计算的要求也越高,带宽过大可能会导致信号包络的计算跟不上信号变化的速度,进而导致PA的线性度变差,输出信号的质量变差,使得ET技术无法适用于较大的带宽,ET供电模式所适用带宽小于功率跟踪模式所适用带宽。例如,目前一般ET技术只能支持到60MHz的工作带宽,而功率跟踪模式如APT供电模式和EPT供电模式则可以工作在更大的带宽。
综上,PA在使用ET供电模式时的能量转换效率最高,更加节电,PA在使用跟踪功率模式时的能量转换效率低,耗电大,其中APT耗电高于EPT耗电;然而,在ET供电模式下,终端可支持的带宽较窄,终端在该EPT和APT模式下支持的带宽较大;比如一般来说ET支持的带宽最多只有60MHz,而EPT和APT则可以支持更大的带宽,如100MHz或200MHz等。此外,由于ET供电模式本身的计算量比较大,消耗的电量较多,模式本身功耗较高;而EPT供电模式本身计算量较小,APT供电模式本身计算量最小,EPT和APT两种模式消耗的电量较少,模式本身功耗较低。
当前PA采用静态供电技术,即固定设置为采用某一种供电模式进行供电,对于大带宽的情况普遍采用效率比较低的APT供电模式,功耗较大,导致耗电高。例如,在5G场景下,分配给终端的单载波最大带宽(系统带宽)为100MHz,如果采用载波聚合则带宽会更大。在该大带宽下,终端是采用APT供电模式来支持该100MHz带宽,导致PA效率比较低,耗电严重。然而,终端在某一时刻或某一段时间的工作带宽,即实际占用带宽,一般不会占满整个分配带宽,因为往往多个用户间存在带宽共享,需要给其它用户预留资源。由此,本申请可以通过获取实时占用的工作带宽来动态在各种供电模式中进行选择,以提升PA效率,节省耗电。
在本申请中,该工作带宽可以是带宽部分(Bandwidth Part,BWP),具体可以是终端激活的BWP;网络侧可能配置给终端的一个或多个BWP(如最多配置4个BWP),BWP比单载波100MHz要小,在同一时刻只有一个BWP激活并使用,终端只需要在网络中使用这个BWP带宽,而无需使用整个100MHz系统带宽。或者,该工作带宽还可以是终端占用的资源块(Resource Block,RB),RB资源是比BWP更小的资源划分。请参见图3,是本申请实施例提供的一种带宽对比示意图。如图3所示,网络侧给终端配置的BWP为整个系统带宽(如100MHz)的一部分,比如为20MHz,网络在后续的调度都会在配置的BWP(如果存在多个BWP,则调度会在激活的BWP)里面,但终端实际在某一时刻占用 的RB要比BWP小。
可以理解,该工作带宽还可以为传输块(Transport Block,TB)或者其余粒度的带宽资源等等,该TB由多个RB组成。为便于描述和理解,本申请以工作带宽为BWP或RB为例进行说明。
此外,如上述所述,由于ET供电模式本身的计算量比较大,模式本身功耗较高;而功率跟踪模式本身计算量相对ET供电模式较小,模式本身功耗较低。由此,本申请还可通过获取PA的目标输出功率来动态在各种供电模式中进行选择,以降低功耗。
由此,本申请能够根据终端特征信息如终端根据实际使用的带宽、PA的输出功率等来动态调整PA供电模式,使得能够通过动态调整PA供电模式来提升PA效率,降低PA功耗,从而降低终端功耗,提升终端续航时间,供电灵活性较强。下面结合附图进行详细描述。
请参见图4,图4是本申请实施例提供的一种供电控制方法的流程示意图。本实施例的方法可应用于上述的终端中。如图4所示,该方法可以包括以下步骤:
401、获取终端的特征信息,该特征信息包括该终端的工作带宽和/或该终端的功率放大器的目标输出功率。
其中,该特征信息可以是终端的工作带宽,即实际工作带宽,如终端激活的BWP的带宽,又如终端占用的RB对应的带宽,而不是分配给终端的全部带宽(或者称为系统带宽,如5G场景中的单载波带宽);或者,该特征信息可以是终端中配置的PA的目标输出功率;或者,该特征信息可以是该终端的工作带宽和该PA的目标输出功率。
在一些实施例中,该目标输出功率可以与上述的P 2相对应,具体可根据接收到的网络侧发送的功率参数计算得到,比如由基带处理芯片如BBIC计算得到;或者,该目标输出功率可以为上一次PA输出的功率;或者,该目标输出功率还可以通过其他方式确定出,本申请不做限定。
在一些实施例中,终端可以按照预设的信息获取规则获取特征信息。可选的,该信息获取规则可以是基于预设时间间隔(周期)获取信息的规则,或者,还可以是基于预设定时器集合获取信息的规则,或者,还可以是基于其他触发条件获取信息的规则,本申请不做限定。
例如,在可能的设计中,可预先设置获取信息的时间间隔。如设置的时间间隔为10min,终端可每隔10min周期性地获取该特征信息,以便于基于获取的特征信息确定PA供电模式。
又如,在可能的设计中,可预先设置一个定时器集合,该定时器集合中包括多个定时器,该多个定时器的时长存在不同,并可预先设置得到该多个定时器的执行顺序,比如根据历史记录中终端的特征信息在不同时间段的大小来设置该执行顺序(如一时间段的特征信息变化幅度越大,或者变化频率越高,该时间段内相对其他时间段使用的定时器时长越短,由此设置得到该多个定时器的执行顺序,每个定时器的执行次数不限于一次);或者,根据历史记录中终端发生的供电模式切换事件来设置该执行顺序(如一时间段发生的供电模式切换事件越多,或者发生频率越大,该时间段内相对其他时间段使用的定时器时长越短,由此设置得到该多个定时器的执行顺序,每个定时器的执行次数不限于一次)。进而终端可在每个定时器超时时触发获取该特征信息,以便于及时切换到合适的PA供电模式上来进行PA供电。
又如,在可能的设计中,可预先设置一个定时器集合,该定时器集合中可包括多个定时器,该多个定时器的时长均不同。进而终端可从该多个定时器中选取定时器,在选取的定时器超时时触发获取该特征信息。可选的,终端在选取定时器时,可以是基于预设的选 取规则选取的,如根据上一次获取的特征信息与对应的特征阈值的差值的绝对值来选取定时器,该绝对值越小,选取的定时器的时长越短,以便于及时地获取新的特征信息,根据新的特征信息重新确定PA供电模式,从而提升PA供电模式选取的可靠性。
402、基于该特征信息,对该功率放大器进行供电。
终端在确定对PA的供电模式时,可以基于获取到的该特征信息来确定PA供电模式,以基于该特征信息对应的PA供电模式对PA进行供电。
在一些实施例中,若该终端的工作带宽小于第一带宽阈值,和/或,该目标输出功率大于第一功率阈值,终端可采用该第一供电模式对PA进行供电。
也就是说,可预先设置得到一个带宽阈值,即第一带宽阈值,和/或,设置得到一个功率阈值,即第一功率阈值。终端在获取到该特征信息之后,可将该特征信息与对应的阈值进行比较,基于比较结果确定PA供电模式。例如,如果该特征信息为终端工作带宽,可以将该工作带宽与该第一带宽阈值进行比较,当该工作带宽小于该第一带宽阈值时,即可采用第一供电模式对PA进行供电;又如,如果该特征信息为PA的目标输出功率,可以将该目标输出功率与该第一功率阈值进行比较,当该目标输出功率大于该第一功率阈值时,即可采用第一供电模式对PA进行供电;又如,如果该特征信息为终端工作带宽和该目标输出功率,可以将该工作带宽与该第一带宽阈值进行比较,以及将该目标输出功率与该第一功率阈值进行比较,当该工作带宽小于该第一带宽阈值,且该目标输出功率大于该第一功率阈值时,即可采用第一供电模式对PA进行供电。
在一些实施例中,若该终端的工作带宽大于或等于该第二带宽阈值,和/或,该目标输出功率小于或等于第二功率阈值,终端可采用第二供电模式对PA进行供电。
在一些实施例中,该第二带宽阈值与该第一带宽阈值相同,该第二功率阈值与该第一功率阈值相同。或者,在一些实施例中,该第二带宽阈值可以与该第一带宽阈值不同,比如第二带宽阈值大于该第一带宽阈值;和/或,该第二功率阈值可以与该第一功率阈值不同,比如第二功率阈值小于该第一功率阈值。
其中,该第一供电模式可以为支持的工作带宽较小(如小于某一带宽阈值,该阈值可以为上述的第一带宽阈值,也可以大于该第一带宽阈值)的供电模式,第二供电模式可以为支持的工作带宽较大(如大于某一带宽阈值,该阈值可以为上述的第二带宽阈值,或者可以小于该第二带宽阈值)的供电模式,即第一供电模式支持的工作带宽小于第二供电模式支持的工作带宽;和/或,该第一供电模式可以为能量转换效率较高(如高于某一效率阈值)的供电模式,第二供电模式可以为能量转换效率较低(如低于某一效率阈值)的供电模式,即第一供电模式的能量转换效率高于第二供电模式的能量转换效率。例如,该第一供电模式可以为ET模式,第二供电模式可以为APT模式;又如,该第一供电模式可以为ET模式,第二供电模式可以为EPT模式,等等。
也就是说,可预先设置得到一个带宽阈值,即第二带宽阈值,和/或,设置得到一个功率阈值,即第二功率阈值。终端在获取到该特征信息之后,可将该特征信息与对应的阈值进行比较,基于比较结果确定PA供电模式。例如,如果该特征信息为终端工作带宽,可以将该工作带宽与该第二带宽阈值进行比较,当该工作带宽不小于该第二带宽阈值时,即可采用第二供电模式对PA进行供电;又如,如果该特征信息为PA的目标输出功率,可以将该目标输出功率与该第二功率阈值进行比较,当该目标输出功率不大于该第二功率阈值时,即可采用第二供电模式对PA进行供电;又如,如果该特征信息为终端工作带宽和该目标输出功率,可以将该工作带宽与该第二带宽阈值进行比较,以及将该目标输出功率与该第二功率阈值进行比较,当该工作带宽不小于该第二带宽阈值,且该目标输出功率不大于该第二功率阈值时,即可采用第二供电模式对PA进行供电。可选的,当第一带宽阈值 和第二带宽阈值不同,第一功率阈值和第二功率阈值不同时,如果该特征信息为终端工作带宽,且该工作带宽不小于第一带宽阈值小于第二带宽阈值时,可保持原有的供电模式对PA进行供电,不进行供电模式的切换;如果该特征信息为目标输出功率,且该目标输出功率大于第二功率阈值小于第一功率阈值时,可保持原有的供电模式不进行供电模式切换;如果该特征信息为终端工作带宽和目标输出功率,且该工作带宽不小于第一带宽阈值小于第二带宽阈值,该目标输出功率大于第二功率阈值小于第一功率阈值时,可保持原有的供电模式不进行供电模式切换,从而有助于降低切换开销,进一步节省终端功耗,提升终端续航时间。
在一些实施例中,该第二供电模式可以为PT模式,该PT模式可以为APT模式或EPT模式。也就是说,如果该第二供电模式包括多种,终端还可根据特征信息确定具体采用何种第二供电模式对PA进行供电。例如,若终端的工作带宽小于第三宽带阈值,和/或,该目标输出功率大于第三功率阈值,该第二供电模式为EPT模式,即可以采用该EPT模式对PA进行供电;若终端的工作带宽大于或等于该第三宽带阈值,和/或,该目标输出功率小于或等于该第三功率阈值,该第二供电模式为APT模式,即可采用该APT模式对PA进行供电。
其中,该第三带宽阈值大于该第二带宽阈值,该第三功率阈值小于该第二功率阈值。可选的,如果该第二带宽阈值与该第一带宽阈值不同,则可以是第一带宽阈值小于第二带宽阈值,第二带宽阈值小于第三带宽阈值;如果该第二功率阈值与该第一功率阈值不同,则可以是该第一功率阈值大于第二功率阈值,第二功率阈值大于第三功率阈值。
也就是说,还可预先设置得到第三带宽阈值,和/或,设置得到第三功率阈值。终端在获取到该特征信息之后,可将该特征信息与对应的阈值进行比较,基于比较结果确定采用何种PT模式进行PA供电。例如,如果该特征信息为终端工作带宽且该工作带宽不小于第二带宽阈值,可以将该工作带宽与该第三带宽阈值进行比较,当该工作带宽小于该第三带宽阈值时,即可确定采用EPT模式对PA进行供电;否则,当该工作带宽不小于该第三带宽阈值时,即可确定采用APT模式对PA进行供电。又如,如果该特征信息为PA的目标输出功率且该输出功率不大于第二功率阈值,可以将该目标输出功率与该第三功率阈值进行比较,当该目标输出功率大于该第三功率阈值时,即可确定采用EPT模式对PA进行供电;否则,当该目标输出功率不大于该第三功率阈值时,即可确定采用APT模式对PA进行供电。又如,如果该特征信息为终端工作带宽和该目标输出功率,且工作带宽不小于第二带宽阈值及该输出功率不大于第二功率阈值,可以将该工作带宽与该第三带宽阈值进行比较,和/或,将该目标输出功率与该三功率阈值进行比较,当该工作带宽小于该第三带宽阈值,和/或,该目标输出功率大于该第三功率阈值时,即可确定采用EPT模式对PA进行供电;否则,当该工作带宽不小于该第三带宽阈值,和/或,该目标输出功率不大于该第三功率阈值时,即可确定采用APT模式对PA进行供电;也即,在该特征信息为终端工作带宽和该目标输出功率的场景下,如果该工作带宽大于或等于第二带宽阈值和/或该目标输出功率小于或等于第二功率阈值,即确定采用PT模式对PA进行供电之后,可根据该工作带宽和目标输出功率中的至少一项来确定采用何种PT模式进行PA供电,具体可预先设置得到,本申请不做限定。
请一并参见图5,是本申请实施例提供的另一种PA位置示意图。如图5所示,可在终端中增加供电模式切换模块,该供电模式切换模块可用于根据特征信息确定PA的供电模式,该供电模式切换模块的输入信息包括目标输出功率及实际工作带宽等特征信息,输出信息可以是PA的供电电压。其中,该特征信息可以从基带处理芯片获取,或者通过其他方式获取得到。
在本申请中,工作带宽可分成两个层级,即BWP和RB,在较粗的颗粒度上可以借助终端激活的BWP来确定PA供电模式,在较细的颗粒度上可以按照终端实时占用的RB资源量来确定PA供电模式。可以理解,在根据终端工作带宽确定采用的供电模式时,终端可以固定获取终端激活的BWP的大小来确定PA供电模式,即该工作带宽为终端激活的BWP的带宽;或者,终端可固定获取终端占用的RB的大小来确定PA供电模式,即该工作带宽为终端占用的RB对应的带宽;或者,终端可根据预设的带宽确定规则动态确定工作带宽,即何时采用BWP,何时采用RB。
例如,该带宽确定规则可以是基于供电模式的切换频率的规则。在一些实施例中,当该工作带宽为该终端占用的RB对应的带宽时,终端还可以通过获取预设时间段内该PA的供电模式的切换频率;当该切换频率大于预设频率阈值时,将该终端激活的BWP作为该终端的工作带宽。其中,该预设时间段和频率阈值可预先设置得到。如终端可采用占用的RB对应的带宽作为工作带宽来确定PA供电模式,并统计该预设时间段内供电模式的切换次数,以确定供电模式的切换频率,如果该切换频率大于预设频率阈值,终端可获取激活的BWP的带宽作为工作带宽来确定PA供电模式。其中,该切换频率可以是指单位时间内如1分钟内的切换次数,也可以是指该预设时间段内的切换次数。该方式下,以RB为切换粒度时,可能切换频率较高,比如RB在带宽阈值如60MHz上下波动,导致供电模式切换频率较高,则可以以BWP为粒度确定供电模式,以减小切换频率,并且有助于避免因终端占用RB大小变化频繁使得PA供电模式切换频繁而导致切换开销大的情况的发生,降低了终端进行供电模式调整的功耗。
又如,该带宽确定规则可以是基于定时器内是否发生供电模式切换事件的规则。在一些实施例中,当该工作带宽为该终端激活的BWP的带宽时,终端可通过检测供电模式切换定时器超时前是否发生针对该功率放大器的供电模式切换事件;如果在该供电模式切换定时器超时前未检测到发生该供电模式切换事件,将该终端占用的RB作为该终端的工作带宽。举例来说,终端可采用激活的BWP作为工作带宽来确定PA供电模式,并启动定时器如该供电模式切换定时器,比如可在以占用的RB带宽作为工作带宽切换为以BWP带宽作为工作带宽时,启动该定时器;又如可在工作带宽为该终端激活的BWP的带宽,且预设时间段内未发生供电模式切换事件时,启动该定时器;又如可在工作带宽为该终端激活的BWP的带宽,并接收到网络侧如基站的调整指令时,启动该定时器。如果该定时器时长内未发生PA供电模式切换事件,终端可获取占用的RB对应的作为工作带宽来确定PA供电模式。该方式下,以BWP为切换粒度时,可能切换频率较低,比如BWP略高于带宽阈值如60MHz,导致APT或EPT供电模式保持较长时间,增加了终端功耗,则可以以RB为粒度确定供电模式,有助于降低功耗,且有助于避免因终端激活的BWP的大小长时间未发生变化或变化幅度小,而实际占用的RB大小存在较大变化,使得确定出的PA供电模式不准确的情况的发生,提升了PA供电模式确定的可靠性。
可以理解,本申请涉及的阈值,如第一带宽阈值、第二带宽阈值、第三带宽阈值、第一功率阈值、第二功率阈值、第三功率阈值等可预先设置得到;或者,可以由网络侧如基站指示得到。可选的,这些阈值可以固定设置得到;或者,还可动态调整得到,比如根据终端的剩余电量调整,根据终端电池性能调整,根据供电模式的切换频率调整等等,本申请不做限定。
本申请实施例中,终端能够通过获取特征信息如终端的工作带宽和/或配置的PA的目标输出功率,并基于该特征信息确定对应的供电模式对PA进行供电,即能够通过动态调整PA供电模式来提升PA效率,以降低PA功耗,从而降低终端功耗,提升终端续航时间,供电灵活性较强。
请参见图6,图6是本申请实施例提供的另一种供电控制方法的流程示意图,如图6所示,该方法可以包括以下步骤:
601、获取终端的工作带宽和PA的目标输出功率。
在本实施例中,该工作带宽可以是激活的BWP,也可以是RB。该目标输出功率可以与P 2对应,如为上述的P 2
可以理解,获取该工作带宽的信息获取规则和获取该目标输出功率的信息获取规则可以不同,比如可按照不同的时间间隔(或定时器)获取该工作带宽和目标输出功率。可选的,工作带宽为BWP时获取该BWP的信息获取规则和工作带宽为RB时获取该RB的信息获取规则也可以不同,比如,因BWP相比RB不容易变化,则可将该BWP的信息获取规则对应的定时器时长设置为大于该RB的信息获取规则对应的定时器时长,从而能够在确保获取的特征信息的可靠性以提升供电模式选择的可靠性的同时,降低信息获取开销,有助于进一步降低终端功耗。
可选的,该步骤601的其余描述具体可参照上述图4所示实施例的相关描述,此处不赘述。
602、当该工作带宽小于预设的第一带宽阈值,且该目标输出功率大于预设的第一功率阈值时,采用包络跟踪模式对PA进行供电。
603、当该工作带宽大于或等于预设的第二带宽阈值,或者,该目标输出功率小于或等于预设的第二功率阈值时,采用功率跟踪模式对PA进行供电。
在可能的设计中,第二带宽阈值与第一带宽阈值相同,且该第二功率阈值与第一功率阈值相同。在获取到该工作带宽和目标输出功率之后,即可将该工作带宽和对应的带宽阈值如第一带宽阈值进行比较,以及将该目标输出功率与该第一功率阈值进行比较。如果比较结果为该工作带宽小于该第一带宽阈值,且该目标输出功率大于该第一功率阈值,即可采用ET模式作为PA的供电模式对PA进行供电;如果该工作带宽大于或等于该第一带宽阈值,或者,该目标输出功率小于或等于该第一功率阈值,即可采用PT模式作为PA的供电模式对PA进行供电。
在可能的设计中,第二带宽阈值大于该第一带宽阈值,该第二功率阈值小于第一功率阈值。在获取到该工作带宽和目标输出功率之后,即可将该工作带宽与第一带宽阈值和第二带宽阈值进行比较,以及将该目标输出功率与该第一功率阈值和第二功率阈值进行比较。如果比较结果为该工作带宽小于该第一带宽阈值,且该目标输出功率大于该第一功率阈值,即可采用ET模式作为PA的供电模式对PA进行供电;如果该工作带宽大于或等于该第二带宽阈值,或者,该目标输出功率小于或等于该第二功率阈值,即可采用PT模式作为PA的供电模式对PA进行供电。进一步的,如果该工作带宽大于或等于第一带宽阈值,且小于第二带宽阈值,以及该目标输出功率大于第二功率阈值,且小于或等于第一功率阈值时,可保持原有的供电模式对PA进行供电,不进行供电模式的调整/切换。这就降低了PA供电模式的切换开销,进一步节省了终端功耗。
可选的,该PT模式可以为APT模式或EPT模式,具体可预先设置到得到,比如预先设置得到该PT模式为APT模式,则在采用PT模式对PA进行供电时,可以采用APT模式进行PA供电;相应的,如果预先设置得到该PT模式为EPT模式,则可以采用EPT模式进行PA供电;如果预先设置得到基于预设规则动态选择是采用APT模式还是EPT模式,则可结合该预设规则来确定具体的PT模式,此处不赘述。
在本实施例中,终端能够通过获取终端的工作带宽和配置的PA的目标输出功率,根据该工作带宽和目标输出功率是否达到对应的阈值来选择供电模式对PA进行供电,即能够通过对PA目标输出功率及实时工作带宽的跟踪,对采用ET供电或PT供电进行判决, 实现动态调整PA供电模式,这就有助于提升PA效率,降低PA功耗,从而降低终端功耗,减少耗电。
请参见图7,图7是本申请实施例提供的又一种供电控制方法的流程示意图。在本实施例中,该第一带宽阈值和第二带宽阈值相同,该第一功率阈值和第二功率阈值相同。如图7所示,该方法可以包括以下步骤:
701、获取终端的工作带宽和PA的目标输出功率。
702、当该工作带宽小于预设的第一带宽阈值,且该目标输出功率大于预设的第一功率阈值时,采用ET模式对PA进行供电。
可选的,该步骤701-702的描述具体可参照上述实施例的相关描述,此处不赘述。
703、当该工作带宽大于或等于该第一带宽阈值且不小于预设的第三带宽阈值时,采用EPT模式对PA进行供电。
704、当该工作带宽大于该第三带宽阈值时,采用APT模式PA进行供电。
在本实施例中,可仅根据终端工作带宽来确定采用何种功率跟踪模式实现对PA进行供电。具体的,如果工作带宽不小于预设的第一带宽阈值,还可进一步检测是否大于预设的第三带宽阈值,如果大于该第三带宽阈值,可采用APT模式进行PA供电;如果大于或等于该第一带宽阈值且小于该第三带宽阈值,可采用EPT模式进行PA供电。可选的,如果该工作带宽小于第一带宽阈值,但该目标输出功率不大于预设的第一功率阈值,可保持原来的PA供电模式,或者可切换到APT或EPT模式。
在本实施例中,终端能够通过获取终端的工作带宽和配置的PA的目标输出功率,根据该工作带宽和目标输出功率是否达到对应的阈值来选择采用ET模式、EPT模式还是APT模式对PA进行供电,即能够通过对PA目标输出功率及实时工作带宽的跟踪,实现动态调整PA供电模式,这就有助于提升PA效率,降低PA功耗,从而降低终端功耗,减少耗电,提升终端续航时间。
可以理解,上述方法实施例都是对本申请的供电控制方法的举例说明,对各个实施例的描述都各有侧重,某个实施例中没有详述的部分,可以参见其他实施例的相关描述。
请参见图8,是本申请实施例提供的一种终端的结构示意图。如图8所示,该终端可包括:功率放大器840、处理器810、存储器820、通信接口830以及一个或多个程序821,其中,所述一个或多个程序821被存储在所述存储器820中,并且被配置由所述处理器810执行,所述程序包括用于执行以下步骤的指令:
获取所述终端的特征信息,所述特征信息包括所述终端的工作带宽和/或所述终端的功率放大器的目标输出功率;
基于所述特征信息,对所述功率放大器进行供电。
在一些实施例中,在所基于所述特征信息,对所述功率放大器进行供电时,所述程序包括用于执行以下步骤的指令:
若所述终端的工作带宽小于第一带宽阈值,和/或,所述目标输出功率大于第一功率阈值,则采用所述第一供电模式对所述功率放大器进行供电;和/或,
若所述终端的工作带宽大于或等于所述第二带宽阈值,和/或,所述目标输出功率小于或等于第二功率阈值,则采用第二供电模式对所述功率放大器进行供电;
其中,所述第一带宽阈值小于或等于所述第二带宽阈值,所述第一功率阈值大于或等于所述第二功率阈值。
在一些实施例中,所述第一供电模式为包络跟踪ET模式;和/或,所述第二供电模式为功率跟踪PT模式。
在一些实施例中,所述PT模式包括平均功率跟踪模式或增益功率跟踪模式。
在一些实施例中,在所述采用第二供电模式对所述功率放大器进行供电时,所述程序包括用于执行以下步骤的指令:
若所述终端的工作带宽小于第三宽带阈值,和/或,所述目标输出功率大于第三功率阈值,则采用所述EPT模式对所述功率放大器进行供电;
若所述终端的工作带宽大于或等于所述第三宽带阈值,和/或,所述目标输出功率小于或等于所述第三功率阈值,则采用所述平均功率跟踪模式对所述功率放大器进行供电;
其中,所述第三带宽阈值大于所述第二带宽阈值,所述第三功率阈值小于所述第二功率阈值。
在一些实施例中,所述工作带宽为所述终端激活的带宽部分BWP的带宽,或者,所述工作带宽为所述终端占用的资源块RB对应的带宽。
在一些实施例中,所述程序还包括用于执行以下步骤的指令:
当所述工作带宽为所述终端占用的RB对应的带宽时,获取预设时间段内所述功率放大器的供电模式的切换频率;
当所述切换频率大于预设频率阈值时,将所述终端激活的BWP的带宽作为所述终端的工作带宽。
在一些实施例中,所述程序还包括用于执行以下步骤的指令:
当所述工作带宽为所述终端激活的BWP的带宽时,检测供电模式切换定时器超时前是否发生针对所述功率放大器的供电模式切换事件;
如果在所述供电模式切换定时器超时前未检测到所述供电模式切换定时器运行时长内发生所述供电模式切换事件,将所述终端占用的RB对应的带宽作为所述终端的工作带宽。
可选的,该终端还可包括上述的天线、滤波器、电源管理芯片或其他元器件或结构,此处不一一列举。
上述主要从各个网元之间交互的角度对本申请实施例的方案进行了介绍。可以理解的是,终端为了实现上述功能,其包含了执行各个功能相应的硬件结构和/或软件模块。本领域技术人员应该很容易意识到,结合本文中所公开的实施例描述的各示例的单元及算法步骤,本申请能够以硬件或硬件和计算机软件的结合形式来实现。某个功能究竟以硬件还是计算机软件驱动硬件的方式来执行,取决于技术方案的特定应用和设计约束条件。专业技术人员可以对每个特定的应用使用不同方法来实现所描述的功能,但是这种实现不应认为超出本申请的范围。
本申请实施例可以根据上述方法示例对终端进行功能单元的划分,例如,可以对应各个功能划分各个功能单元,也可以将两个或两个以上的功能集成在一个处理单元中。上述集成的单元既可以采用硬件的形式实现,也可以采用软件程序模块的形式实现。需要说明的是,本申请实施例中对单元的划分是示意性的,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式。
请参见图9,图9示出了上述实施例中所涉及的终端的另一种可能的结构示意图。参阅图9所示,该终端900可包括:处理单元901和获取单元902。其中,这些单元可以执行上述方法示例中终端的相应功能。处理单元901用于对终端的动作进行控制管理,例如,处理单元901用于支持终端执行图4中的步骤402至403、图6中的602至603、图7中的702至704,和/或用于本文所描述的技术的其它过程。获取单元902可用于获取信息,还可支持终端与其他单元或设备的通信。终端还可以包括存储单元903,用于存储终端的程序代码和数据。
其中,处理单元901可以是处理器或控制器,例如可以是中央处理器(Central Processing  Unit,CPU),通用处理器,数字信号处理器(Digital Signal Processor,DSP),专用集成电路(Application-Specific Integrated Circuit,ASIC),现场可编程门阵列(Field Programmable Gate Array,FPGA)或者其他可编程逻辑器件、晶体管逻辑器件、硬件部件或者其任意组合。其可以实现或执行结合本申请公开内容所描述的各种示例性的逻辑方框,模块和电路。所述处理器也可以是实现计算功能的组合,例如包含一个或多个微处理器组合,DSP和微处理器的组合等等。获取单元902可以是收发器、收发电路、通信接口等,存储单元903可以是存储器。
例如,获取单元902,用于获取终端的特征信息,所述特征信息包括所述终端的工作带宽和/或所述终端配置的功率放大器的目标输出功率;
处理单元901,用于基于所述特征信息,对所述功率放大器进行供电。
其中,该特征信息还可以由处理单元获取得到。可选的,处理单元可以与上述的供电模式切换模块相对应,如可具备该供电模式切换模块的相应功能。
在一些实施例中,处理单元901在基于所述特征信息,对所述功率放大器进行供电时,可具体用于:
若所述终端的工作带宽小于第一带宽阈值,和/或,所述目标输出功率大于第一功率阈值,则采用所述第一供电模式对所述功率放大器进行供电;和/或,
若所述终端的工作带宽大于或等于所述第二带宽阈值,和/或,所述目标输出功率小于或等于第二功率阈值,则采用第二供电模式对所述功率放大器进行供电;
其中,所述第一带宽阈值小于或等于所述第二带宽阈值,所述第一功率阈值大于或等于所述第二功率阈值。
在一些实施例中,所述第一供电模式为包络跟踪ET模式;和/或,所述第二供电模式为功率跟踪PT模式。。
在一些实施例中,所述PT模式可以包括平均功率跟踪APT模式或增益功率跟踪EPT模式等等。
在一些实施例中,处理单元901在采用第二供电模式对所述功率放大器进行供电时,可具体用于:
若所述终端的工作带宽小于第三宽带阈值,和/或,所述目标输出功率大于第三功率阈值,则采用所述EPT模式对所述功率放大器进行供电;
若所述终端的工作带宽大于或等于所述第三宽带阈值,和/或,所述目标输出功率小于或等于所述第三功率阈值,则采用所述平均功率跟踪模式对所述功率放大器进行供电;
其中,所述第三带宽阈值大于所述第二带宽阈值,所述第三功率阈值小于所述第二功率阈值。本申请涉及的阈值可以预先设置得到或者由网络侧指示等等。
在一些实施例中,所述工作带宽为所述终端激活的带宽部分BWP的带宽,或者,所述工作带宽为所述终端占用的资源块RB对应的带宽。
在一些实施例中,获取单元902,还可用于当所述工作带宽为所述终端占用的RB对应的带宽时,获取预设时间段内所述功率放大器的供电模式的切换频率;
处理单元901,还可用于当所述切换频率大于预设频率阈值时,将所述终端激活的BWP的带宽作为所述终端的工作带宽。
可选的,该切换频率还可以由处理单元获取得到。
在一些实施例中,处理单元901,还可用于当所述工作带宽为所述终端激活的BWP的带宽时,检测供电模式切换定时器超时前是否发生针对所述功率放大器的供电模式切换事件;如果在所述供电模式切换定时器超时前未检测到发生所述供电模式切换事件,将所述终端占用的RB对应的带宽作为所述终端的工作带宽。
当处理单元901为处理器,获取单元902为通信接口,存储单元903为存储器时,本申请实施例所涉及的终端可以为图8所示的终端。
可选的,该终端可通过上述单元实现上述图4至图7所示实施例中的方法中终端执行的部分或全部步骤。应理解,本申请实施例是对应方法实施例的装置实施例,对方法实施例的描述,也适用于本申请实施例,此处不赘述。
可以理解,本申请实施例中对单元的划分是示意性的,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式。本申请实施例中的各功能单元可以集成在一个处理单元中,也可以是各个单元单独物理存在,也可以两个或两个以上单元集成在一个单元中。上述集成的单元既可以采用硬件的形式实现,也可以采用软件功能单元的形式实现。
本申请实施例还提供了一种计算机可读存储介质,其中,所述计算机可读存储介质存储用于电子数据交换的计算机程序,其中,所述计算机程序使得计算机执行如上述方法实施例中终端所描述的部分或全部步骤。
本申请实施例还提供了一种计算机程序产品,其中,所述计算机程序产品包括存储了计算机程序的非瞬时性计算机可读存储介质,所述计算机程序可操作来使计算机执行如上述方法实施例中终端所描述的部分或全部步骤。该计算机程序产品可以为一个软件安装包。
结合本申请公开内容所描述的方法或者算法的步骤可以硬件的方式来实现,也可以是由处理器执行软件指令的方式来实现。软件指令可以由相应的软件模块组成,软件模块可以被存放于随机存取存储器(Random Access Memory,RAM)、闪存、只读存储器(Read Only Memory,ROM)、可擦除可编程只读存储器(Erasable Programmable ROM,EPROM)、电可擦可编程只读存储器(Electrically EPROM,EEPROM)、寄存器、硬盘、移动硬盘、只读光盘(CD-ROM)或者本领域熟知的任何其它形式的存储介质中。一种示例性的存储介质耦合至处理器,从而使处理器能够从该存储介质读取信息,且可向该存储介质写入信息。当然,存储介质也可以是处理器的组成部分。处理器和存储介质可以位于ASIC中。另外,该ASIC可以位于通信装置如终端中。当然,处理器和存储介质也可以作为分立组件存在于通信装置中。
可以理解,本文中涉及的第一、第二、第三以及各种数字编号仅为描述方便进行的区分,并不用来限制本申请实施例的范围。
可以理解,本文中术语“和/或”,仅仅是一种描述关联对象的关联关系,表示可以存在三种关系,例如,A和/或B,可以表示:单独存在A,同时存在A和B,单独存在B这三种情况。另外,本文中字符“/”,一般表示前后关联对象是一种“或”的关系。
可以理解,在本申请的各种实施例中,上述各过程的序号的大小并不意味着执行顺序的先后,各过程的执行顺序应以其功能和内在逻辑确定,而不应对本申请实施例的实施过程构成任何限定。
本领域技术人员应该可以意识到,在上述一个或多个示例中,本申请实施例所描述的功能可以全部或部分地通过软件、硬件、固件或者其任意组合来实现。当使用软件实现时,可以全部或部分地以计算机程序产品的形式实现。所述计算机程序产品包括一个或多个计算机指令。在计算机上加载和执行所述计算机程序指令时,全部或部分地产生按照本申请实施例所述的流程或功能。所述计算机可以是通用计算机、专用计算机、计算机网络、或者其他可编程装置。所述计算机指令可以存储在计算机可读存储介质中,或者从一个计算机可读存储介质向另一个计算机可读存储介质传输,例如,所述计算机指令可以从一个网站站点、计算机、服务器或数据中心通过有线(例如同轴电缆、光纤、数字用户线(Digital Subscriber Line,DSL))或无线(例如红外、无线、微波等)方式向另一个网站站点、计算机、服务器或数据中心进行传输。所述计算机可读存储介质可以是计算机能够存取的任 何可用介质或者是包含一个或多个可用介质集成的服务器、数据中心等数据存储设备。所述可用介质可以是磁性介质(例如,软盘、硬盘、磁带)、光介质(例如,数字视频光盘(Digital Video Disc,DVD))、或者半导体介质(例如,固态硬盘(Solid State Disk,SSD))等。

Claims (18)

  1. 一种供电控制方法,应用于终端,其特征在于,包括:
    获取所述终端的特征信息,所述特征信息包括所述终端的工作带宽和/或所述终端的功率放大器的目标输出功率;
    基于所述特征信息,对所述功率放大器进行供电。
  2. 根据权利要求1所述的方法,其特征在于,所述基于所述特征信息,对所述功率放大器进行供电,包括以下方式之一:
    若所述终端的工作带宽小于第一带宽阈值,和/或,所述目标输出功率大于第一功率阈值,则采用所述第一供电模式对所述功率放大器进行供电;
    若所述终端的工作带宽大于或等于所述第二带宽阈值,和/或,所述目标输出功率小于或等于第二功率阈值,则采用第二供电模式对所述功率放大器进行供电;
    其中,所述第一带宽阈值小于或等于所述第二带宽阈值,所述第一功率阈值大于或等于所述第二功率阈值。
  3. 根据权利要求2所述的方法,其特征在于,所述第一供电模式为包络跟踪ET模式;和/或,所述第二供电模式为功率跟踪PT模式。
  4. 根据权利要求3所述的方法,其特征在于,所述PT模式包括平均功率跟踪APT模式或增益功率跟踪EPT模式。
  5. 根据权利要求4所述的方法,其特征在于,所述采用第二供电模式对所述功率放大器进行供电,包括:
    若所述终端的工作带宽小于第三宽带阈值,和/或,所述目标输出功率大于第三功率阈值,则采用所述EPT模式对所述功率放大器进行供电;
    若所述终端的工作带宽大于或等于所述第三宽带阈值,和/或,所述目标输出功率小于或等于所述第三功率阈值,则采用所述APT模式对所述功率放大器进行供电;
    其中,所述第三带宽阈值大于所述第二带宽阈值,所述第三功率阈值小于所述第二功率阈值。
  6. 根据权利要求1-5任一项所述的方法,其特征在于,所述工作带宽为所述终端激活的带宽部分BWP的带宽,或者,所述工作带宽为所述终端占用的资源块RB对应的带宽。
  7. 根据权利要求6所述的方法,其特征在于,所述方法还包括:
    当所述工作带宽为所述终端占用的RB对应的带宽时,获取预设时间段内所述功率放大器的供电模式的切换频率;
    当所述切换频率大于预设频率阈值时,将所述终端激活的BWP的带宽作为所述终端的工作带宽。
  8. 根据权利要求6所述的方法,其特征在于,所述方法还包括:
    当所述工作带宽为所述终端激活的BWP的带宽时,检测供电模式切换定时器超时前是否发生针对所述功率放大器的供电模式切换事件;
    如果在所述供电模式切换定时器超时前未检测到发生所述供电模式切换事件,将所述 终端占用的RB对应的带宽作为所述终端的工作带宽。
  9. 一种终端,其特征在于,包括获取单元和处理单元;
    所述获取单元,用于获取所述终端的特征信息,所述特征信息包括所述终端的工作带宽和/或所述终端的功率放大器的目标输出功率;
    所述处理单元,用于基于所述特征信息,对所述功率放大器进行供电。
  10. 根据权利要求9所述的终端,其特征在于,所述处理单元在基于所述特征信息,对所述功率放大器进行供电时,具体用于执行以下方式之一:
    若所述终端的工作带宽小于第一带宽阈值,和/或,所述目标输出功率大于第一功率阈值,则采用所述第一供电模式对所述功率放大器进行供电;
    若所述终端的工作带宽大于或等于所述第二带宽阈值,和/或,所述目标输出功率小于或等于第二功率阈值,则采用第二供电模式对所述功率放大器进行供电;
    其中,所述第一带宽阈值小于或等于所述第二带宽阈值,所述第一功率阈值大于或等于所述第二功率阈值。
  11. 根据权利要求10所述的终端,其特征在于,所述第一供电模式为包络跟踪ET模式;和/或,所述第二供电模式为功率跟踪PT模式。
  12. 根据权利要求11所述的终端,其特征在于,所述PT模式包括平均功率跟踪APT模式或增益功率跟踪EPT模式。
  13. 根据权利要求12所述的终端,其特征在于,所述处理单元在采用第二供电模式对所述功率放大器进行供电时,具体用于:
    若所述终端的工作带宽小于第三宽带阈值,和/或,所述目标输出功率大于第三功率阈值,则采用所述EPT模式对所述功率放大器进行供电;
    若所述终端的工作带宽大于或等于所述第三宽带阈值,和/或,所述目标输出功率小于或等于所述第三功率阈值,则采用所述APT模式对所述功率放大器进行供电;
    其中,所述第三带宽阈值大于所述第二带宽阈值,所述第三功率阈值小于所述第二功率阈值。
  14. 根据权利要求9-13任一项所述的终端,其特征在于,所述工作带宽为所述终端激活的带宽部分BWP的带宽,或者,所述工作带宽为所述终端占用的资源块RB对应的带宽。
  15. 根据权利要求14所述的终端,其特征在于,
    所述获取单元,还用于当所述工作带宽为所述终端占用的RB对应的带宽时,获取预设时间段内所述功率放大器的供电模式的切换频率;
    所述处理单元,还用于当所述切换频率大于预设频率阈值时,将所述终端激活的BWP的带宽作为所述终端的工作带宽。
  16. 根据权利要求14所述的终端,其特征在于,
    所述处理单元,还用于当所述工作带宽为所述终端激活的BWP的带宽时,检测供电模式切换定时器超时前是否发生针对所述功率放大器的供电模式切换事件;如果在所述供电 模式切换定时器超时前未检测到发生所述供电模式切换事件,将所述终端占用的RB对应的带宽作为所述终端的工作带宽。
  17. 一种终端,其特征在于,包括处理器、存储器以及一个或多个程序,所述一个或多个程序被存储在所述存储器中,并且被配置由所述处理器执行,所述程序包括用于执行如权利要求1-8任一项所述的方法中的步骤的指令。
  18. 一种计算机可读存储介质,其特征在于,所述计算机可读存储介质存储有计算机程序,所述计算机程序使得计算机执行如权利要求1-8任一项所述的方法。
PCT/CN2019/105229 2019-09-10 2019-09-10 供电控制方法及设备 WO2021046727A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
PCT/CN2019/105229 WO2021046727A1 (zh) 2019-09-10 2019-09-10 供电控制方法及设备
CN201980054751.2A CN112789900B (zh) 2019-09-10 2019-09-10 供电控制方法及设备

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2019/105229 WO2021046727A1 (zh) 2019-09-10 2019-09-10 供电控制方法及设备

Publications (1)

Publication Number Publication Date
WO2021046727A1 true WO2021046727A1 (zh) 2021-03-18

Family

ID=74865925

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/105229 WO2021046727A1 (zh) 2019-09-10 2019-09-10 供电控制方法及设备

Country Status (2)

Country Link
CN (1) CN112789900B (zh)
WO (1) WO2021046727A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116744412A (zh) * 2022-03-02 2023-09-12 中国移动通信有限公司研究院 控制方法、装置、设备及存储介质

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103313363A (zh) * 2012-03-08 2013-09-18 宏达国际电子股份有限公司 功率管理装置和方法
CN105515538A (zh) * 2014-10-13 2016-04-20 英特尔公司 可切换双核功率放大器
US20180288697A1 (en) * 2017-03-31 2018-10-04 Intel IP Corporation Adaptive envelope tracking threshold
WO2018213017A1 (en) * 2017-05-18 2018-11-22 Qualcomm Incorporated Resource utilization for reduced user equipment power consumption
CN109644401A (zh) * 2016-08-29 2019-04-16 高通股份有限公司 用于高级lte的智能功率节省方案

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8818305B1 (en) * 2012-11-14 2014-08-26 Motorola Mobility Llc Supply transitions in an envelope tracked power amplifier
US9588574B2 (en) * 2015-01-28 2017-03-07 Qualcomm Incorporated Power saving mode fallback during concurrency scenarios
US10483925B2 (en) * 2017-08-11 2019-11-19 Mediatek Inc. Circuit module having dual-mode wideband power amplifier architecture

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103313363A (zh) * 2012-03-08 2013-09-18 宏达国际电子股份有限公司 功率管理装置和方法
CN105515538A (zh) * 2014-10-13 2016-04-20 英特尔公司 可切换双核功率放大器
CN109644401A (zh) * 2016-08-29 2019-04-16 高通股份有限公司 用于高级lte的智能功率节省方案
US20180288697A1 (en) * 2017-03-31 2018-10-04 Intel IP Corporation Adaptive envelope tracking threshold
WO2018213017A1 (en) * 2017-05-18 2018-11-22 Qualcomm Incorporated Resource utilization for reduced user equipment power consumption

Also Published As

Publication number Publication date
CN112789900B (zh) 2023-04-28
CN112789900A (zh) 2021-05-11

Similar Documents

Publication Publication Date Title
US8112646B2 (en) Buffering techniques for power management
US9872333B2 (en) Method and system for scheduling application-generated data requests in discontinuous reception (DRX) mode
CN104424031B (zh) 一种处理器工作频率的控制方法及装置
US8718719B2 (en) System and method for managing battery slump during wireless communications using signal triggered voltage monitoring
US20170026869A9 (en) Portable Communication Device with Multi-Tiered Power Save Operation
US20060087981A1 (en) Methods and apparatus for operating a wireless electronic device based on usage pattern
US20090089600A1 (en) Power supply efficiency optimization
US20160291665A1 (en) Method for controlling circuit modules within chip and associated system on chip
WO2009024058A1 (fr) Procédé et équipement pour une commande d'amplification de puissance
WO2021148049A1 (zh) 状态确定方法、系统、介质及电子设备
US20140331069A1 (en) Power management for multiple compute units
JP2011129100A (ja) 時間インタリーブされた電圧変調を利用した電力プロフィール形成方法および装置
WO2021046727A1 (zh) 供电控制方法及设备
US9247372B2 (en) Wireless mobile device network application proxy with exchange sequence generator
CN116225200A (zh) 芯片及其功耗管理方法、电子装置
WO2021160042A1 (zh) 节能指示及节能的方法及基站、设备和存储介质
WO2021036748A1 (zh) 控制方法、装置、芯片与设备
WO2023246101A1 (zh) 节能方法、基站及终端设备
CN110690866B (zh) 降低功率放大器功耗的处理方法、装置及终端
JP2014060622A (ja) 送信信号増幅回路、移動体通信端末および送信信号増幅回路の制御方法
US11910312B2 (en) Method for WiFi module and system of the same
WO2024051768A1 (zh) 数据处理方法、装置、设备及存储介质
US11630502B2 (en) Hierarchical state save and restore for device with varying power states
WO2019034077A1 (zh) 功耗控制方法、设备及计算机可读存储介质
US11546854B2 (en) Communication method, network device, and terminal device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19944920

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19944920

Country of ref document: EP

Kind code of ref document: A1