WO2021045496A1 - 레이저 가열과 플라즈마를 이용한 산화환원 처리방법 - Google Patents

레이저 가열과 플라즈마를 이용한 산화환원 처리방법 Download PDF

Info

Publication number
WO2021045496A1
WO2021045496A1 PCT/KR2020/011748 KR2020011748W WO2021045496A1 WO 2021045496 A1 WO2021045496 A1 WO 2021045496A1 KR 2020011748 W KR2020011748 W KR 2020011748W WO 2021045496 A1 WO2021045496 A1 WO 2021045496A1
Authority
WO
WIPO (PCT)
Prior art keywords
plasma
sample
laser
laser heating
redox treatment
Prior art date
Application number
PCT/KR2020/011748
Other languages
English (en)
French (fr)
Inventor
윤건수
유재민
이지모
정석용
Original Assignee
포항공과대학교 산학협력단
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 포항공과대학교 산학협력단 filed Critical 포항공과대학교 산학협력단
Publication of WO2021045496A1 publication Critical patent/WO2021045496A1/ko

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/36Removing material
    • B23K26/362Laser etching
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K10/00Welding or cutting by means of a plasma
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K10/00Welding or cutting by means of a plasma
    • B23K10/003Scarfing, desurfacing or deburring

Definitions

  • the present invention relates to a method for redox treatment on the surface of a sample, and more particularly, by heating the surface of a sample with a laser to change the thermodynamic state of the sample surface to a state in which oxidation and reduction reactions are easy, and then plasma is applied to increase the chemical activity.
  • the present invention relates to a method for redox treatment using laser heating and plasma, which allows high plasma active species to react with the surface of a sample so that redox treatment can be performed at a high speed.
  • FIG. 1 is a view for explaining a redox treatment method using plasma according to the prior art.
  • the surface of the specimen 130 placed on the specimen plate 120 is subjected to redox treatment using a microwave plasma generator 110.
  • the microwave plasma generator 110 includes a coaxial cable 111, an inner conductor 112 provided inside the coaxial cable 111, and a discharge gas supply pipe 113 surrounding the inner conductor.
  • the microwave plasma generator 110 supplies a discharge gas through the discharge gas supply pipe 113, applies a microwave of 900 MHz or 2.45 GHz to the inner conductor 112, and uses the resonance of the microwave signal to provide a high density with relatively low power. It is a device that generates the plasma 110a.
  • a plasma dry reduction technique in which the surface of the sample 130 placed on the sample plate 120 is oxidized or reduced using the microwave plasma generator 110 has been used.
  • heat energy generated from plasma is transferred to the surface of the sample by convection, so that the temperature of the sample surface rises, the chemical reactivity of the sample increases, and when the temperature of the sample surface rises sufficiently, the sample and the plasma active species are oxidized/ The principle of a reduction reaction is applied.
  • the problem to be solved by the present invention is to change the thermodynamic state of the sample surface to a state that facilitates oxidation and reduction reactions by heating the surface of the sample with a laser, and then apply plasma so that the plasma active species with high chemical activity react with the sample surface. It is to provide a redox treatment method using laser heating and plasma that enables the redox treatment to be performed at a high speed.
  • the surface of a sample is heated with a continuous output laser to increase chemical reactivity, and then plasma is applied to increase energy efficiency and rapid redox treatment of the sample is possible.
  • the redox treatment method using laser heating and plasma comprises: a plasma generating step of generating plasma using a microwave plasma generator; A laser heating step of heating the surface of the sample using a laser; And an oxidation-reduction reaction step of causing an oxidation-reduction reaction by bringing the plasma generated in the plasma generating step close to the surface of the sample.
  • thermodynamic state of the sample surface is changed to a state in which oxidation and reduction reactions are easy by heating the surface of a sample with a laser, and then plasma is applied to have high chemical activity.
  • plasma active species By allowing the plasma active species to react with the sample surface, there is an advantage in that the redox treatment can be performed at a high speed.
  • FIG. 1 is a view for explaining a redox treatment method using plasma according to the prior art.
  • FIG. 2 is a view for explaining a redox treatment method using laser heating and plasma according to the present invention.
  • FIG. 3 is a flowchart of a method of redox treatment using laser heating and plasma according to the present invention.
  • the present invention relates to an oxidation-reduction treatment method in which an atmospheric pressure plasma and a laser are combined as an improvement over the conventional method of oxidizing or reducing the surface of a sample with plasma alone or pulsed laser alone.
  • thermodynamic state of the sample changes to a state in which oxidation and reduction reactions are easy.
  • the source contributing to the temperature increase of the sample is not transferred from plasma, but the above-described laser radiation heating method is used.
  • the heat of the plasma heats the surface of the sample by convection. In terms of temperature rise of the sample surface, this method is relatively slow and heats the sample together as a whole, so it is also inefficient in terms of energy efficiency.
  • the surface of the sample is heated by using a laser, the temperature of the surface of the sample can be increased immediately, and only the key area to cause the reaction can be selectively heated, thereby improving the speed of the redox reaction and energy efficiency. Can also increase.
  • FIG. 2 is a view for explaining a redox treatment method using laser heating and plasma according to the present invention
  • FIG. 3 is a flowchart of a redox treatment method using laser heating and plasma according to the present invention.
  • the microwave plasma generator 210 includes a coaxial cable 211, an inner conductor 212 provided inside the coaxial cable 211, and a discharge gas supply pipe 213 surrounding the inner conductor 212.
  • the microwave plasma generator 210 supplies a discharge gas through the discharge gas supply pipe 213, applies a microwave of 900 MHz or 2.45 GHz to the inner conductor 212, and uses the resonance of the microwave signal to provide a high density with relatively low power. It is a device that generates the plasma 210a.
  • the laser output device 220 heats the surface of the sample 240 by outputting a laser 220a having a wavelength of 790 nm to 810 nm.
  • the method of redox treatment using laser heating and plasma includes a plasma generating step (S100), a laser heating step (S200), and an oxidation-reduction reaction step (S300).
  • the plasma 210a is generated using the microwave plasma generator 210.
  • the discharge gas is supplied through the discharge gas supply pipe 213 to generate the plasma 210a.
  • the discharge gas supplied at this time is not particularly limited in terms of type and flow rate, but it is preferable to use a mixed gas of argon and hydrogen.
  • the argon gas may be injected at a flow rate of 0.5 to 2 SLM (Standard Litter per Minute), and the hydrogen gas may be injected at a flow rate of 15 to 25 sccm (standard cubic centimeter per minute).
  • the surface of the specimen 240 placed on the specimen plate 230 is heated using the laser 220a output from the laser output device 220.
  • the essence of the present invention is that the surface heating of the sample 240 uses radiant heating by the laser 220a output from the laser output device 220 rather than heating by convection of thermal energy generated by the plasma 210a. .
  • the surface of the sample 240 absorbs the energy of the laser 220a to generate heat.
  • the method according to the present invention can selectively heat a desired area, and energy efficiency can be further improved because energy is transferred in the form of radiation rather than in the form of convection.
  • the skin depth of a laser having a frequency higher than 10 14 Hz for metal oxides varies from several ⁇ m to tens of m depending on the type of oxide, and the absorption coefficient for the sample is the wavelength of the laser. It tends to increase as it gets shorter.
  • the energy of the laser delivered to the sample depends on the penetration depth and absorption coefficient. Therefore, selecting an appropriate laser according to the sample becomes one of the important factors in the present invention.
  • the laser heating method in the redox treatment method using laser heating and plasma according to the present invention is distinguished from the conventional laser cleaning method.
  • Conventional laser cleaning uses a principle of sublimating or emitting a target surface by using a shock wave and thermal pressure generated by a fine plasma generated when a high-power pulsed laser is irradiated onto the surface.
  • the laser heating step (S200) of the present invention a laser having a relatively lower output than the pulse laser used for laser cleaning may be used.
  • the laser used in the laser heating step (S200) is not limited to a specific operation method and wavelength such as continuous wave or pulse, but it is preferable to use a continuous output laser having a wavelength of 790 nm to 810 nm.
  • an oxidation/reduction reaction between the surface of the sample 240 and the plasma active species is performed by bringing the plasma 210a generated in the plasma generating step (S100) close to the surface of the sample 240. Induce them to get up.
  • the microwave input power of the microwave plasma generator 210 shown in FIG. 2 is about 30 W, and the gas injected into the discharge gas supply pipe 213 is a mixed gas of argon and hydrogen, and the flow rate of the argon gas is 1 SLM (standard litter per minute), and the flow rate of hydrogen gas was set to 20 SCCM (standard cubic centimeters per minute).
  • a continuous wave laser having a wavelength of 808 nm was used, and hematite powder (Fe 2 O 3 powder) was used as a sample.
  • the plasma 210a is generated by applying a microwave to the microwave plasma generator 210 and injecting a discharge gas.
  • the plasma 210a generated by the mixed gas of argon and hydrogen maintains its shape in a circular shape and has a bright blue light.
  • heat is generated around the surface, thereby improving the chemical reactivity of the sample 240.
  • the color of the surface of the sample 240 rapidly changes at a specific location, which means that the chemical state of the sample is changed.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Plasma & Fusion (AREA)
  • Mechanical Engineering (AREA)
  • Physical Or Chemical Processes And Apparatus (AREA)

Abstract

본 발명은 레이저로 시료의 표면을 가열하여 시료 표면의 열역학적 상태를 산화 및 환원 반응이 용이한 상태로 변경한 후 플라즈마를 가하여 화학적 활성도가 높은 플라즈마 활성종이 시료 표면과 반응하도록 함으로써 빠른 속도로 산화 환원 처리가 이루어질 수 있도록 한 레이저 가열과 플라즈마를 이용한 산화환원 처리방법에 관한 것이다.

Description

레이저 가열과 플라즈마를 이용한 산화환원 처리방법
본 발명은 시료 표면의 산화환원 처리방법에 관한 것으로, 보다 상세하게는 레이저로 시료의 표면을 가열하여 시료 표면의 열역학적 상태를 산화 및 환원 반응이 용이한 상태로 변경한 후 플라즈마를 가하여 화학적 활성도가 높은 플라즈마 활성종이 시료 표면과 반응하도록 함으로써 빠른 속도로 산화 환원 처리가 이루어질 수 있도록 한 레이저 가열과 플라즈마를 이용한 산화환원 처리방법에 관한 것이다.
다양한 산업에서 사용되는 금속 재료의 표면은 생산 공정 또는 사용 과정에서 원치 않는 산화 피막이 형성될 수 있다. 강산성 용액을 이용한 처리는 금속 산화 피막을 제거하기 위해 사용되는 가장 보편적인 방법이지만 산 폐액 발생에 따른 폐수 처리 비용이 증가하고 환경 규제가 강화되고 있어서 대체 기술 개발의 필요성이 대두되고 있다.
폐액 문제가 없는 대체 기술로서 플라즈마 건식 환원, 고출력 펄스 레이저를 이용한 산화막 제거, 고체 전해질을 이용한 전기분해 등의 기술이 일부분 사용되고 있으나 설비비용 및 처리속도 측면에서의 상대적인 단점으로 인하여 산성 용액 처리 방법을 충분히 대체하지 못하고 있다.
도 1은 종래기술에 따른 플라즈마를 이용한 산화환원 처리방법을 설명하기 위한 도면이다.
도 1에 도시된 바와 같이 종래기술에 따른 플라즈마를 이용한 산화환원 처리방법은, 마이크로파 플라즈마 발생기(110)를 이용하여 시료판(120) 위에 놓여진 시료(130)의 표면을 산화환원 처리한다.
마이크로파 플라즈마 발생기(110)는 동축케이블(111)과, 동축케이블(111)의 내부에 구비된 내부도체(112) 및 내부도체를 둘러싸는 방전용 기체 공급관(113)을 구비한다. 마이크로파 플라즈마 발생기(110)는 방전용 기체 공급관(113)을 통해 방전기체를 공급하고 내부도체(112)에 900MHz 또는 2.45GHz의 마이크로파를 인가하고 마이크로파 신호의 공진을 이용하여 상대적으로 낮은 전력으로 고밀도의 플라즈마(110a)를 생성하는 장치이다.
종래에는 이러한 마이크로파 플라즈마 발생기(110)를 이용하여 시료판(120) 위에 놓여진 시료(130)의 표면을 산화 또는 환원 처리하는 플라즈마 건식 환원 기술이 사용되었다. 이러한 종래 기술에는 플라즈마에서 발생하는 열에너지가 대류에 의해 시료의 표면으로 전달되어 시료 표면의 온도가 상승하고 시료의 화학적 반응성이 증가하며, 시료 표면의 온도가 충분히 상승했을 때 시료와 플라즈마 활성종이 산화/환원 반응을 하는 원리가 적용된다.
그러나 플라즈마에서 나오는 열은 대류에 의해 시료의 표면으로 전달되는데 시료 표면의 온도상승 측면에서 이 방식은 상대적으로 느리며 시료가 전체적으로 가열되므로 에너지 효율 측면에서도 비효율적이라 할 수 있다. 이러한 단점을 해결하기 위해서 시료 표면의 즉각적인 가열 및 효율적인 에너지 전달에 대한 기술 개발이 요구되어 왔다.
본 발명이 해결하고자 하는 과제는 레이저로 시료의 표면을 가열하여 시료 표면의 열역학적 상태를 산화 및 환원 반응이 용이한 상태로 변경한 후 플라즈마를 가하여 화학적 활성도가 높은 플라즈마 활성종이 시료 표면과 반응하도록 함으로써 빠른 속도로 산화 환원 처리가 이루어질 수 있도록 한 레이저 가열과 플라즈마를 이용한 산화환원 처리방법을 제공하는데 있다.
즉, 본 발명은 연속 출력 레이저로 시료의 표면을 가열하여 화학적 반응성을 증진시킨 후 플라즈마를 인가함으로써 에너지 효율을 증대시키고 시료의 빠른 산화 환원 처리를 가능하게 한다.
상기 과제를 이루기 위하여 본 발명에 따른 레이저 가열과 플라즈마를 이용한 산화환원 처리방법은, 산화환원 처리방법에 있어서, 마이크로파 플라즈마 발생기를 이용하여 플라즈마를 생성하는 플라즈마 생성단계; 레이저를 이용하여 상기 시료의 표면을 가열하는 레이저 가열단계; 및 상기 플라즈마 생성단계에서 생성된 상기 플라즈마를 상기 시료의 표면에 근접시켜 산화환원반응을 일으키는 산화환원 반응단계;를 포함하는 것을 특징으로 한다.
본 발명에 따른 레이저 가열과 플라즈마를 이용한 산화환원 처리방법에 의하면, 레이저로 시료의 표면을 가열하여 시료 표면의 열역학적 상태를 산화 및 환원 반응이 용이한 상태로 변경한 후 플라즈마를 가하여 화학적 활성도가 높은 플라즈마 활성종이 시료 표면과 반응하도록 함으로써 빠른 속도로 산화 환원 처리가 이루어질 수 있는 장점이 있다.
도 1은 종래기술에 따른 플라즈마를 이용한 산화환원 처리방법을 설명하기 위한 도면이다.
도 2는 본 발명에 따른 레이저 가열과 플라즈마를 이용한 산화환원 처리방법을 설명하기 위한 도면이다.
도 3은 본 발명에 따른 레이저 가열과 플라즈마를 이용한 산화환원 처리방법의 공정 흐름도이다.
본 발명은 다양한 변경을 가할 수 있고 여러 가지 형태를 가질 수 있는 바, 특정 실시예들을 도면에 예시하고 본문에 상세하게 설명하고자 한다. 그러나, 이는 본 발명을 특정한 개시 형태에 대해 한정하려는 것이 아니며, 본 발명의 사상 및 기술 범위에 포함되는 모든 변경, 균등물 내지 대체물을 포함하는 것으로 이해되어야 한다.
다르게 정의되지 않는 한, 기술적이거나 과학적인 용어를 포함해서 본문에 사용되는 모든 용어들은 본 발명이 속하는 기술 분야에서 통상의 지식을 가진 자에 의해 일반적으로 이해되는 것과 동일한 의미를 가지고 있다. 일반적으로 사용되는 사전에 정의되어 있는 것과 같은 용어들은 관련 기술의 문맥상 가지는 의미와 일치하는 의미를 가지는 것으로 해석되어야 하며, 본 출원에서 명백하게 정의하지 않는 한, 이상적이거나 과도하게 형식적인 의미로 해석되지 않는다.
본 발명은 플라즈마 단독 또는 펄스 레이저 단독으로 시료의 표면을 산화 또는 환원 처리하는 기존의 방법을 개선한 것으로 대기압 플라즈마와 레이저를 결합한 산화환원 처리방법에 관한 것이다.
시료 표면의 온도가 상승하면 시료의 열역학적 상태가 산화 및 환원 반응이 용이한 상태로 변경되는데 이때 시료의 온도상승에 기여하는 원천을 플라즈마로부터의 열전달이 아닌 상기한 레이저 복사 가열 방법을 이용하는 것이다.
플라즈마의 열은 대류(convection)에 의해 시료의 표면을 가열시키는데, 시료 표면의 온도상승 측면에서 볼 때, 이 방식은 상대적으로 느리며 시료를 전체적으로 함께 가열시키므로 에너지 효율 측면에서도 비효율적이다. 이에 반하여 레이저를 사용하여 시료 표면을 가열하는 경우 시료의 표면의 온도가 즉각적으로 상승될 수 있고 반응을 일으키고자 하는 핵심 영역만을 선택적으로 가열할 수 있으므로 산화 환원 반응의 속도를 향상시킬 수 있고 에너지 효율을 증대시킬 수도 있다.
이하, 첨부한 도면들을 참조하여, 본 발명의 바람직한 실시 예를 보다 상세하게 설명하고자 한다.
도 2는 본 발명에 따른 레이저 가열과 플라즈마를 이용한 산화환원 처리방법을 설명하기 위한 도면이고, 도 3은 본 발명에 따른 레이저 가열과 플라즈마를 이용한 산화환원 처리방법의 공정 흐름도이다.
도 2를 참고하면, 본 발명에 따른 레이저 가열과 플라즈마를 이용한 산화환원 처리방법은, 마이크로파 플라즈마 발생기(210)와 레이저 출력장치(220)를 이용하여 시료판(230) 위에 놓여진 시료(240)의 표면을 산화환원 처리한다.
마이크로파 플라즈마 발생기(210)는 동축케이블(211)과, 동축케이블(211)의 내부에 구비된 내부도체(212) 및 내부도체(212)를 둘러싸는 방전용 기체 공급관(213)을 구비한다. 마이크로파 플라즈마 발생기(210)는 방전용 기체 공급관(213)을 통해 방전기체를 공급하고 내부도체(212)에 900MHz 또는 2.45GHz의 마이크로파를 인가하고 마이크로파 신호의 공진을 이용하여 상대적으로 낮은 전력으로 고밀도의 플라즈마(210a)를 생성하는 장치이다.
레이저 출력장치(220)는 790nm 내지 810nm의 파장을 갖는 레이저(220a)를 출력하여 시료(240)의 표면을 가열시킨다.
도 3을 참고하면 본 발명에 따른 레이저 가열과 플라즈마를 이용한 산화환원 처리방법은, 플라즈마 생성단계(S100), 레이저 가열단계(S200) 및 산화환원 반응단계(S300)를 포함한다.
플라즈마 생성단계(S100)에서는 마이크로파 플라즈마 발생기(210)를 이용하여 플라즈마(210a)를 생성한다.
상기 플라즈마 생성단계(S100)에서는 상기 마이크로파 플라즈마 발생기(210)의 내부도체(212)에 마이크로파 입력전력을 20 내지 400W로 유지하면서, 방전용 기체 공급관(213)을 통해 방전기체를 공급하여 플라즈마(210a)를 생성한다. 이때 공급되는 방전기체는 종류 및 유량에서 특별히 한정되지 않으나, 아르곤과 수소의 혼합기체를 사용하는 것이 바람직하다.
이때, 상기 아르곤 기체는 0.5 내지 2SLM(Standard Litter per Minute)의 유량으로 주입되고, 상기 수소 기체는 15 내지 25sccm(standard cubic centimeter per minute)의 유량으로 주입될 수 있다.
레이저 가열단계(S200)에서는 레이저 출력장치(220)로부터 출력된 레이저(220a)를 이용하여 시료판(230) 위에 놓여진 상기 시료(240)의 표면을 가열한다.
본 발명의 핵심은 시료(240)의 표면 가열이 플라즈마(210a)에서 발생하는 열에너지의 대류에 의한 가열이 아닌 레이저 출력장치(220)에서 출력된 레이저(220a)에 의한 복사 가열을 이용한다는 점이다. 레이저(220a)의 에너지가 시료(240)의 표면에 도달하게 되면 시료(240)의 표면은 레이저(220a)의 에너지를 흡수해 열을 발생시킨다. 본 발명에 따른 방식은 원하는 영역에 대한 선택적인 가열이 가능하며, 대류 형태로 에너지가 전달되는 것이 아니라 복사의 형태로 전달되기 때문에 에너지 효율을 더욱 향상시킬 수 있다.
일반적으로 1014Hz보다 높은 진동수를 갖는 레이저의 금속 산화물에 대한 침투 깊이(skin depth)는 산화물 종류에 따라 수 μm에서 수십 m까지 다양하며, 시료에 대한 흡수계수(absorption coefficient)는 레이저의 파장이 짧아질수록 증가하는 경향을 보인다. 시료에 전달되는 레이저의 에너지는 상기 침투 깊이와 흡수계수에 따라 달라진다. 그러므로 시료에 따라 적절한 레이저를 선택하는 것이 본 발명에서 중요한 요소 중 하나가 된다.
본 발명에 따른 레이저 가열과 플라즈마를 이용한 산화환원 처리방법에서의 레이저 가열방식은 종래의 레이저 세정(cleaning)방식과 구별된다. 종래의 레이저 세정은 고출력의 펄스 레이저를 표면에 조사할 때 생성되는 미세 플라즈마에 의한 충격파 및 열 압력을 이용해 목표가 되는 표면을 승화시키거나 방출하는 원리를 이용한다.
그러나 본 발명의 레이저 가열단계(S200)에서는 상기 레이저 세정에 쓰이는 펄스 레이저보다 상대적으로 낮은 출력의 레이저를 사용할 수 있다. 또한 레이저 가열단계(S200)에서 사용되는 레이저는 연속파나 펄스 등의 특정 동작 방식 및 파장에 한정되지는 않으나, 790nm 내지 810nm의 파장을 갖는 연속 출력 레이저를 사용하는 것이 바람직하다.
산화환원 반응단계(S300)에서는 상기 플라즈마 생성단계(S100)에서 생성된 상기 플라즈마(210a)를 상기 시료(240)의 표면에 근접시켜 시료(240)의 표면과 플라즈마 활성종 간에 산화/환원 반응이 일어나도록 유도한다.
< 실시예 >
이하에서는 본 발명의 구체적인 일 실시예에 대해 설명하기로 한다.
도 2에 도시된 마이크로파 플라즈마 발생기(210)의 마이크로파 입력 전력은 약 30W, 상기 방전용 기체 공급관(213)으로 주입되는 기체는 아르곤과 수소의 혼합 기체이며, 이때, 아르곤 기체의 유량은 1 SLM(standard litter per minute), 수소 기체의 유량은 20 SCCM (standard cubic centimeters per minute)으로 설정하였다. 실시예에서는 808 nm의 파장을 가지는 연속파 레이저를 사용하였고, 적철석 분말(Fe2O3 powder)을 시료로 사용하였다.
상기 마이크로파 플라즈마 발생기(210)에 마이크로파를 인가하고 방전기체를 주입하여 플라즈마(210a)를 생성한다. 아르곤과 수소의 혼합 기체에 의해 생성되는 플라즈마(210a)는 원형 모양으로 형태를 유지하고 밝은 푸른빛을 띤다. 레이저(220a)를 시료(240)의 표면에 조사하게 되면 표면 주위에서 열이 발생하여 시료(240)의 화학적 반응성이 향상된다. 이 상태에서 상기 마이크로파 플라즈마 발생기(210)의 플라즈마(210a)를 시료(240)의 표면에 근접시키면 특정 위치에서 시료(240) 표면의 색이 빠르게 변하게 되는데 이는 시료의 화학적 상태가 변함을 의미한다.
종래와 같이 플라즈마 단독으로 시료 표면을 산화 환원 처리하는 경우에는 플라즈마의 열에 의해 시료가 가열되는 시간 때문에 표면이 반응할 때까지 많은 시간이 소요되는 반면, 본 발명에 따른 레이저 가열 방식은 순간적으로 시료가 가열되기 때문에 플라즈마와 시료 간의 산화 한원 반응이 상대적으로 빠르게 일어나는 장점이 있다.
본 발명의 기술적 효과들은 이상에서 언급한 것들로 제한되지 않으며, 언급되지 않은 또 다른 기술적 효과들은 상술한 기재로부터 당업자에게 명확하게 이해될 수 있을 것이다.

Claims (5)

  1. 시료 표면의 산화환원 처리방법에 있어서,
    마이크로파 플라즈마 발생기를 이용하여 플라즈마를 생성하는 플라즈마 생성단계;
    레이저를 이용하여 상기 시료의 표면을 가열하는 레이저 가열단계; 및
    상기 플라즈마 생성단계에서 생성된 상기 플라즈마를 상기 시료의 표면에 근접시켜 상기 시료의 표면에서 산화환원반응을 일으키는 산화환원 반응단계;를 포함하는 것을 특징으로 하는 레이저 가열과 플라즈마를 이용한 산화환원 처리방법.
  2. 제 1항에 있어서, 상기 플라즈마 생성단계는
    상기 마이크로파 플라즈마 발생기의 마이크로파 입력전력을 20 내지 400W로 유지하고, 상기 마이크로파 플라즈마 발생기의 외주로 아르곤과 수소의 혼합기체를 주입하여 플라즈마를 생성하는 것을 특징으로 하는 레이저 가열과 플라즈마를 이용한 산화환원 처리방법.
  3. 제 2항에 있어서,
    상기 아르곤 기체는 0.5 내지 2SLM(Standard Litter per Minute)의 유량으로 주입되고, 상기 수소 기체는 15 내지 25sccm(standard cubic centimeter per minute)의 유량으로 주입되는 것을 특징으로 하는 레이저 가열과 플라즈마를 이용한 산화환원 처리방법.
  4. 제 1항에 있어서, 상기 레이저 가열단계는
    연속 출력 레이저를 사용하여 상기 시료의 표면을 가열하는 것을 특징으로 하는 레이저 가열과 플라즈마를 이용한 산화환원 처리방법.
  5. 제 1항에 있어서, 상기 연속 출력 레이저는
    790nm 내지 810nm의 파장을 갖는 것을 특징으로 하는 레이저 가열과 플라즈마를 이용한 산화환원 처리방법.
PCT/KR2020/011748 2019-09-02 2020-09-02 레이저 가열과 플라즈마를 이용한 산화환원 처리방법 WO2021045496A1 (ko)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR1020190108205A KR102251801B1 (ko) 2019-09-02 2019-09-02 레이저 가열과 플라즈마를 이용한 산화환원 처리방법
KR10-2019-0108205 2019-09-02

Publications (1)

Publication Number Publication Date
WO2021045496A1 true WO2021045496A1 (ko) 2021-03-11

Family

ID=74852828

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2020/011748 WO2021045496A1 (ko) 2019-09-02 2020-09-02 레이저 가열과 플라즈마를 이용한 산화환원 처리방법

Country Status (2)

Country Link
KR (1) KR102251801B1 (ko)
WO (1) WO2021045496A1 (ko)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2024105167A1 (de) * 2022-11-18 2024-05-23 Plasmatreat Gmbh Ortsselektive plasmareduktion

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20020074743A (ko) * 2001-03-21 2002-10-04 한국원자력연구소 플라즈마를 이용한 사용후핵연료 산화환원 장치 및 그 방법
KR20090096884A (ko) * 2008-03-10 2009-09-15 한국생산기술연구원 아연도금강판에 대한 레이저-플라즈마 하이브리드 용접장치
KR20140083207A (ko) * 2012-12-26 2014-07-04 한국기계연구원 레이저를 이용한 초고온 열충격 및 산화시험장치
WO2017029961A1 (ja) * 2015-08-17 2017-02-23 株式会社 アルバック 基板処理方法、および、基板処理装置
KR101736520B1 (ko) * 2009-10-26 2017-05-29 코히런트 게엠바하 레이저 빔으로 비결정질 반도체 층의 결정화하기 위한 방법 및 장치

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20020074743A (ko) * 2001-03-21 2002-10-04 한국원자력연구소 플라즈마를 이용한 사용후핵연료 산화환원 장치 및 그 방법
KR20090096884A (ko) * 2008-03-10 2009-09-15 한국생산기술연구원 아연도금강판에 대한 레이저-플라즈마 하이브리드 용접장치
KR101736520B1 (ko) * 2009-10-26 2017-05-29 코히런트 게엠바하 레이저 빔으로 비결정질 반도체 층의 결정화하기 위한 방법 및 장치
KR20140083207A (ko) * 2012-12-26 2014-07-04 한국기계연구원 레이저를 이용한 초고온 열충격 및 산화시험장치
WO2017029961A1 (ja) * 2015-08-17 2017-02-23 株式会社 アルバック 基板処理方法、および、基板処理装置

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2024105167A1 (de) * 2022-11-18 2024-05-23 Plasmatreat Gmbh Ortsselektive plasmareduktion

Also Published As

Publication number Publication date
KR20210026851A (ko) 2021-03-10
KR102251801B1 (ko) 2021-05-12

Similar Documents

Publication Publication Date Title
US7309843B2 (en) Plasma-assisted joining
US7638727B2 (en) Plasma-assisted heat treatment
WO2021045496A1 (ko) 레이저 가열과 플라즈마를 이용한 산화환원 처리방법
TW200508419A (en) Method and apparatus for removing organic layers
EP1204388A4 (en) METHOD FOR PRODUCING A HEAT PRODUCT DEVICE
WO2000052732A3 (en) Active species control with time-modulated plasma
JPS5747876A (en) Plasma etching apparatus and method
JP4247916B2 (ja) マイクロ波浸炭炉及び浸炭方法
US7432470B2 (en) Surface cleaning and sterilization
US20060057016A1 (en) Plasma-assisted sintering
KR20120000759A (ko) 마이크로웨이브를 이용한 가스분해장치
JPS57177342A (en) Plasma treating apparatus of powder
US7465362B2 (en) Plasma-assisted nitrogen surface-treatment
EP1291076A3 (de) Pyrolysevorrichtung und Pyrolyseverfahren
JPS56123377A (en) Plasma cleaning and etching method
CN206173385U (zh) 一种材料热处理系统
US20060062930A1 (en) Plasma-assisted carburizing
JP2003269870A (ja) マイクロ波溶融方法
WO2023113180A1 (ko) 이중 고주파수에 의해 확장된 플라즈마를 이용한 화학반응 활성화 장치 및 방법
JPS5385782A (en) Treating apparatus with activated gas
CN106148653A (zh) 一种材料热处理系统
CN116959767A (zh) 基于铁磷酸盐玻璃对放射性废液的全激光固化方法
JP2005169293A (ja) 有機物の酸化又は分解方法
Piltikakis et al. A Study of a Microwave Waveguide Structure for Hydrocarbon Recovery from Mineral Oil Waste
JPS54107876A (en) Method and apparatus for reduction

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20860491

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20860491

Country of ref document: EP

Kind code of ref document: A1