WO2021045399A1 - Turbo motor capable of high-efficiency cooling through sealed cooling of stator - Google Patents

Turbo motor capable of high-efficiency cooling through sealed cooling of stator Download PDF

Info

Publication number
WO2021045399A1
WO2021045399A1 PCT/KR2020/010548 KR2020010548W WO2021045399A1 WO 2021045399 A1 WO2021045399 A1 WO 2021045399A1 KR 2020010548 W KR2020010548 W KR 2020010548W WO 2021045399 A1 WO2021045399 A1 WO 2021045399A1
Authority
WO
WIPO (PCT)
Prior art keywords
stator
refrigerant
motor housing
cooling
fixing ring
Prior art date
Application number
PCT/KR2020/010548
Other languages
French (fr)
Korean (ko)
Inventor
박창진
Original Assignee
박창진
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 박창진 filed Critical 박창진
Priority to CN202080059509.7A priority Critical patent/CN114391212A/en
Publication of WO2021045399A1 publication Critical patent/WO2021045399A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K5/00Casings; Enclosures; Supports
    • H02K5/04Casings or enclosures characterised by the shape, form or construction thereof
    • H02K5/20Casings or enclosures characterised by the shape, form or construction thereof with channels or ducts for flow of cooling medium
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K5/00Casings; Enclosures; Supports
    • H02K5/04Casings or enclosures characterised by the shape, form or construction thereof
    • H02K5/20Casings or enclosures characterised by the shape, form or construction thereof with channels or ducts for flow of cooling medium
    • H02K5/203Casings or enclosures characterised by the shape, form or construction thereof with channels or ducts for flow of cooling medium specially adapted for liquids, e.g. cooling jackets
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K9/00Arrangements for cooling or ventilating
    • H02K9/10Arrangements for cooling or ventilating by gaseous cooling medium flowing in closed circuit, a part of which is external to the machine casing
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K9/00Arrangements for cooling or ventilating
    • H02K9/19Arrangements for cooling or ventilating for machines with closed casing and closed-circuit cooling using a liquid cooling medium, e.g. oil
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K9/00Arrangements for cooling or ventilating
    • H02K9/19Arrangements for cooling or ventilating for machines with closed casing and closed-circuit cooling using a liquid cooling medium, e.g. oil
    • H02K9/20Arrangements for cooling or ventilating for machines with closed casing and closed-circuit cooling using a liquid cooling medium, e.g. oil wherein the cooling medium vaporises within the machine casing
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K2205/00Specific aspects not provided for in the other groups of this subclass relating to casings, enclosures, supports
    • H02K2205/09Machines characterised by drain passages or by venting, breathing or pressure compensating means

Definitions

  • the present invention relates to a turbo motor capable of high-efficiency cooling through sealed cooling of a stator capable of directly cooling a stator by immersing a stator in a motor housing in which a refrigerant is sealedly accommodated.
  • the motor is formed of a stator core, coil, etc. in which silicon steel sheets are stacked to generate magnetic force by receiving power, and a rotor that rotates by magnetization of the stator. Since the turbo motor may use an AC converter for high-speed rotation, electrical heat may inevitably be generated. If such electric heat generation is not removed, the life of the motor may be shortened, and a fire accident due to heat generation may occur.
  • an air-cooled cooling method in which the motor is cooled by circulating air and a water-cooled cooling method in which the motor is cooled by circulating cooling water are mainly used.
  • the motor can be cooled by supplying air with a cooling fan on one side of the motor or a separate circulation fan, but the heat absorption rate of air itself is not large, and the surrounding cooling fan is provided.
  • the cooling efficiency is deteriorated.
  • the water-cooled cooling method has a higher heat absorption rate than air
  • a heat exchanger, a water tank, and a pipe must be separately provided to cool the water that has absorbed the heat
  • most of the components of the turbo motor are devices that use power.
  • Patent Document 1 Korean Patent Registration No. 10-0273433-0000 (registered on Sep. 2, 2000)
  • Patent Document 2 Korean Patent Registration No. 10-0474323-0000 (registered on Feb. 22, 2005)
  • the present invention is to provide a technical field of a turbo motor capable of high-efficiency cooling through airtight cooling of a stator that cools the stator by immersing and combining a stator in a motor housing in which a refrigerant is hermetically accommodated.
  • the present invention provides a refrigerant flow path that flows through the outer surface of the stator core and passes through the inside of the coil, so that high-efficiency cooling is achieved through airtight cooling of the stator, which allows the refrigerant to directly cool while contacting the stator. It is to provide the technical field of possible turbo motors.
  • the present invention is a turbo motor capable of high-efficiency cooling through airtight cooling of the stator that can be applied to various types of stators by changing the location and number of refrigerant inlets and refrigerant outlets according to the size and shape of the stator. It is to provide the technical field of
  • a turbo motor including a stator that is provided with a stator core and a coil and generates magnetic force by being supplied with power, and a rotor that rotates by magnetization of the stator, spaced apart from the outer peripheral surface of the rotor
  • a motor housing in which the stator is immersed in and coupled to the refrigerant, and a refrigerant inlet through which the refrigerant flows into the motor housing;
  • a stator including a refrigerant outlet formed through an outer surface of the motor housing, a refrigerant outlet through which refrigerant flows out of the motor housing, and a refrigerant flow path provided inside the motor housing to cool the stator while the refrigerant flows
  • a turbo motor capable of high-efficiency cooling may be provided through hermetic cooling of.
  • a first stator fixing ring provided at one end of the stator to support the stator and configured to pass the refrigerant introduced from the refrigerant inlet, and the other end of the stator
  • a turbo motor capable of high-efficiency cooling through airtight cooling of the stator including a second stator fixing ring formed to support the stator and flowing the refrigerant passing through the coil to the refrigerant outlet may be provided.
  • the refrigerant flow path wherein the refrigerant introduced from the refrigerant inlet flows along a side surface of the stator core, passes through the first stator fixing ring, and passes through the coil.
  • a turbo motor capable of high-efficiency cooling may be provided through airtight cooling of the stator formed to flow out through the refrigerant outlet.
  • the refrigerant inlet is formed in a plurality, and the refrigerant is provided to separate and flow into the stator, and the refrigerant outlet is formed at least one between the refrigerant inlet and separates and flows in.
  • a turbo motor capable of high-efficiency cooling may be provided through airtight cooling of the stator provided so that the refrigerant is incorporated and flows out of the motor housing.
  • a plurality of first stator fixing rings are provided at both ends of the stator to support the stator, and formed to pass the introduced refrigerant, and a plurality of first stator fixing rings formed at the center side of the stator.
  • a turbo motor capable of high-efficiency cooling through airtight cooling of the stator including a second stator fixing ring formed to support the stator and flowing the refrigerant passing through the coil to the refrigerant outlet may be provided.
  • the refrigerant flow path wherein the refrigerant introduced from the refrigerant inlet flows along a side surface of the stator core to one side and the other side of the stator, passes through the first stator fixing ring, and ,
  • a turbo motor capable of high-efficiency cooling through airtight cooling of a stator formed to pass through the coil and flow out through the refrigerant outlet may be provided.
  • high-efficiency cooling is possible through airtight cooling of the stator, which is formed on the outer surface of the motor housing and includes at least one pressure regulator provided to adjust the internal pressure of the motor housing.
  • Turbo motors may be provided.
  • the stator is immersed in a motor housing in which the refrigerant is sealed and coupled, and the introduced refrigerant passes through the outer surface of the stator core, the inside of the coil, etc., absorbing heat emitted from the stator, and absorbing the heating energy of the stator.
  • the stator can be cooled directly and efficiently while the refrigerant in the liquid state is changed to the refrigerant in the gaseous state.
  • the present invention can be applied to cooling various types of stators by changing the location and number of refrigerant inlets and refrigerant outlets according to the size and shape of the stator, and forming refrigerant passages accordingly.
  • FIG. 1 is a diagram illustrating a turbo motor capable of high-efficiency cooling through airtight cooling of a stator that cools a stator according to an embodiment of the present invention.
  • FIG. 2 is a diagram illustrating a turbo motor capable of high-efficiency cooling through airtight cooling of a stator for cooling a stator according to another embodiment of the present invention.
  • FIG. 1 is a diagram illustrating a turbo motor capable of high-efficiency cooling through closed cooling of a stator that cools a stator according to an embodiment of the present invention
  • FIG. 2 is a diagram of a stator cooling a stator according to another embodiment of the present invention.
  • a turbo motor capable of high-efficiency cooling through sealed cooling of a stator includes a motor housing 110, a refrigerant inlet 120, a refrigerant outlet 130, and a refrigerant flow path ( 140), a first stator fixing ring 150, a second stator fixing ring 160, a pressure regulator 170, and the like.
  • the turbo motor of the present invention is provided with a stator core 11 and a coil 12, as in a conventional turbo motor, and is supplied with power to generate magnetic force by magnetization of the stator 10 and the stator 10. It may include a rotor 20 that rotates.
  • the motor housing 110 is formed to be spaced apart from the outer circumferential surface of the rotor 20 and seals and accommodates the refrigerant, and the stator 20 is immersed and coupled to the refrigerant inside the motor housing 110 to be cooled by the refrigerant. I can.
  • a refrigerant inlet 120 and a refrigerant outlet 130 are formed on the outer surface of the motor housing 110 so that refrigerant flows in and out, and is fixed in contact with the outside of the slot (not shown) of the stator to seal and receive the refrigerant.
  • a first stator fixing ring 150, a second stator fixing ring 160, and a pressure regulator 170 are provided in the housing 110, and a first stator fixing ring 150 is provided on one side of the stator 10.
  • the stator 10 may be coupled to the inside of the motor housing 110.
  • the stator 10 is separated from the rotor 20 and sealed to the motor housing 110 in the form of a cylinder, etc.
  • An isolating member may be provided, and this isolating member (drawing number omitted) is formed of a non-magnetic material, so that the isolating member (drawing number omitted) is magnetized by the stator 10, the rotor 20, etc. Can be prevented.
  • the refrigerant inlet 120 is formed to pass through the outer surface of the motor housing 110, so that the refrigerant flows into the motor housing 110, in a plurality according to the shape of the stator 10, the refrigerant passage 140, etc. It may be formed, a detailed description thereof will be described later in the refrigerant passage 140.
  • the refrigerant introduced from the refrigerant inlet 120 flows along the side of the stator core 11, passes through a hole (not shown) of the first stator fixing ring 150, and moves to the coil 12, etc. ) Can be cooled.
  • the refrigerant inlet 120 may be provided adjacent to the second stator fixing ring 160.
  • a refrigerant inlet 120 is formed adjacent to the second stator fixing ring 160, and the introduced refrigerant flows through the outer circumferential surface of the stator 10 to cool the stator core 11, etc., and the first stator fixing ring 150 ) Passes through the hole (not shown) and cools the coil 12 while flowing the wound coil 12, and the second stator fixing ring 160 installed spaced apart from the first stator fixing ring 150 It is possible to cool the outer coil 12 of the.
  • the refrigerant outlet 130 is formed to pass through the outer surface of the motor housing 110 so that the refrigerant flows out of the motor housing 110, and at least one or more depending on the shape of the stator 10, the refrigerant passage 140, etc. Can be installed as.
  • the refrigerant passage 140 is provided in the motor housing 110 and is formed to cool the stator 10 while the refrigerant flows.
  • the refrigerant introduced from the refrigerant inlet 120 passes through the stator and the refrigerant outlet 130 It is the passage of the refrigerant that flows out into the air.
  • the refrigerant inlet 120 may be formed adjacent to the second stator fixing ring 160, and the second stator fixing ring 160 is formed in a closed form, so that the refrigerant connects the second stator fixing ring 160 Since it cannot move through, the introduced refrigerant may flow in the direction of the first stator fixing ring 150.
  • the refrigerant moving toward the first stator fixing ring 150 may absorb heat emitted from the stator core 11 and coil 12 while flowing through the outer surface of the stator core 11 formed of a silicon steel plate or the like. In this case, the refrigerant may directly cool the stator core 11 by contacting the stator core 11, and may directly cool the coil 12 or the like by absorbing heat radiated from the coil 12 or the like.
  • the stator core 11 can continuously absorb heat from the stator core 11 and the coil 12 while moving, the stator core 11 The effect of cooling the entire part of) can occur in a balanced manner.
  • the refrigerant passing through the hole (not shown) of the first stator fixing ring 150 passes through the coil 12 inside the stator 10, the gap between the motor housing 110 and the coil 12, etc. , It is possible to absorb heat generated from the stator 10.
  • the coil 12 is inserted into a slot (not shown) formed on the inside of the stator core 11 and wound in the longitudinal direction, and generally, three pairs of independent windings are wound at intervals of 120 degrees, and then a Y connection or a connection method is used. It can be connected and wired.
  • the refrigerant passing through the coil 12 or the like may flow out from the motor housing 110 through the refrigerant outlet 130 formed adjacent to the second stator fixing ring 160.
  • the location of the coolant inlet 120, the coolant outlet 130, and the like may be changed.
  • the stator 10 is formed in a large size (that is, the length of the stator 10 is formed to be extended), and a refrigerant inlet 120, a refrigerant outlet 130, etc. are provided at the positions as described above.
  • the introduced refrigerant flows while cooling the extended stator core 11, the extended coil 12, and the like, and the refrigerant flow path 140 through which the refrigerant flows is also formed in an extended form.
  • the stator core 11 is formed by dividing it, and the refrigerant inlet 120 is formed in plural so that the refrigerant is separated and introduced into the stator 10, and the refrigerant outlet ( 130) is the outer surface of the motor housing 110 corresponding to between the refrigerant inlet 120 (that is, the central position of the stator 10), the separated and introduced refrigerant is combined to the outer side of the motor housing 110 Is formed to flow out.
  • the first stator fixing ring 150 is provided in plural at both ends of the stator 10 to support the stator 10, and is formed to pass the introduced refrigerant
  • the second stator fixing ring 160 is a stator A plurality of pieces are provided at the center of (10) to support the stator 10, the refrigerant passing through the coil 12 is guided to the refrigerant outlet 130 and formed to flow, and the refrigerant passage 140 includes a refrigerant inlet.
  • the refrigerant introduced from 120 flows along the side of the stator core 11 to one side and the other side of the stator 10, passes through the first stator fixing ring 150, passes through the coil 12, and passes through the refrigerant outlet. It is formed to flow out through (130).
  • the refrigerant when the refrigerant inlet 120, the refrigerant outlet 130, etc. are formed, the refrigerant may be distributed and introduced through the plurality of refrigerant inlets 120, and each of the introduced refrigerants is the second stator. Since it can be moved to each refrigerant flow path 140 formed to individually cool each of the stators 10 spatially separated by the fixing ring 160, the refrigerant moves along the shortened refrigerant flow path 140 While doing it, the stator core 11, the coil 12, and the like can be cooled.
  • a plurality of refrigerant inlets 120 are formed adjacent to the second stator fixing ring 160 supporting each stator 10, and a motor housing corresponding to a position between each stator 10
  • the introduced refrigerant is blocked by the second stator fixing ring 160 so that it cannot flow between each stator 10, and the outer surface of the stator core 11 It can absorb heat such as the stator core 11 while flowing along. Subsequently, the refrigerant may flow toward the coil 12 through the hole (not shown) of the first stator fixing ring 150 and pass through the coil 12, etc., thereby passing through each stator 10 and transferring heat.
  • the absorbed refrigerant may be combined at positions between the respective stators 10 and discharged to the refrigerant outlet 130.
  • the refrigerant passage 140 as described above When the refrigerant passage 140 as described above is formed, the refrigerant can be individually introduced into each stator 10 to cool and discharge the stator 10, so even if the stator 10 is provided separately The stator 10 can be cooled in a balanced manner.
  • the refrigerant hermetically accommodated in the motor housing 110 is vaporized to a gas at a certain temperature or higher and liquefied to a liquid at a certain temperature or lower, and has insulation, non-flammability, and non-explosiveness so that it can be immersed in the motor housing 110.
  • a material that can be used may be used.
  • refrigerants such as R-22 and R-134a, which are used in refrigerators, may be used, and CO2 refrigerants having flammability and explosive properties cannot be used.
  • R-22 is a kind of freon refrigerant, and its refrigeration capacity is the best among freon refrigerants, and it can be widely used from small devices to large devices. In particular, it is mainly used for reciprocating air conditioners, and may also be used in a low-temperature refrigeration device.
  • the freon refrigerant destroys the ozone layer and affects global warming, and when moisture penetrates, it has corrosiveness to metals.
  • 134a is a refrigerant developed as an alternative refrigerant for R-12 and has a colorless, transparent, non-flammable property. It is mainly used for refrigerators and automobile air conditioners, and it does not contain chlorine in its molecules, so there is no ozone depletion index, but the global warming index is high.
  • the refrigerant used is 1.
  • the evaporation power is higher than atmospheric pressure and the condensation power is low at room temperature, 2.
  • the latent heat of evaporation is large, the specific heat in the liquid state is small, 3. It is chemically stable 4. It has high thermal conductivity 5. It is inert metal There is no hyperchemical reaction. 6.
  • High electrical resistance, good insulation 7. No flammability and explosiveness, 8 Refrigerants that do not affect or minimize ozone layer collapse and global warming can be used.
  • the refrigerant vaporizes from liquid to gas and can absorb a lot of heat.
  • the refrigerant flowing into the refrigerant inlet 120 is the stator 10 within the motor housing 110. As the heat of the lamp is absorbed and discharged through the refrigerant outlet 130, it may be cooled by absorbing the heat by directly or indirectly contacting the heating unit inside the motor housing 110.
  • the first stator fixing ring 150 is provided at one end of the stator 10 to support the stator 10 and is formed so that the refrigerant introduced from the refrigerant inlet 120 passes.
  • the first stator fixing ring 150 has an open hole (not shown) so that the refrigerant introduced through the refrigerant inlet 120 absorbs heat from the stator core 11 and flows toward the coil 12. Since is formed, the refrigerant may pass through the first stator fixing ring 150 through a hole (not shown) or the like.
  • first stator fixing ring 150 is coupled to one end of the stator 10 to support the stator 10 so that the stator 10 can be immersed in the refrigerant and coupled to the motor housing 110, and As shown in FIG. 2, when the stator 10 is formed separately, a plurality of stators 10 may be provided so as to support each stator 10 at one end thereof.
  • the second stator fixing ring 160 is provided at the other end of the stator 10 to support the stator 10, and is formed so that the refrigerant passing through the coil 12 flows to the refrigerant outlet 130.
  • the second stator fixing ring so that the refrigerant passing through the coil 12 and absorbing heat does not move to the refrigerant inlet 120 formed adjacent to the second stator fixing ring 160 and flows out to the refrigerant outlet 130 ( 160) may be formed in a closed shape.
  • the second stator fixing ring 160 is coupled to the other end of the stator 10 to support the stator 10 so that the stator 10 can be immersed in the refrigerant and coupled to the motor housing 110, and As shown in FIG. 2, when the stator 10 is formed separately, a plurality of stators 10 may be provided so as to support each stator 10 at one end thereof.
  • At least one pressure regulator 170 is provided to adjust the internal pressure of the motor housing 110 and is formed on the outer surface of the motor housing 110.
  • the refrigerant flow path 140 When the refrigerant flow path 140 is formed, the refrigerant individually flows into the stator 10 so that the refrigerant flows along the refrigerant flow path 140 to cool and discharge the stator 10. During this process, the internal The internal pressure of the motor housing 110 may be rapidly increased by the refrigerant phase-changed to a gaseous state by heat generated from the stator 10.
  • the pressure regulator 170 is provided in the form of a solenoid valve on the outer surface of the motor housing 110, when the internal pressure of the motor housing 110 rises rapidly and reaches a certain pressure or more, the pressure regulator ( When 170 is opened and returned to a predetermined pressure or lower, the pressure regulator 170 is closed, thereby preventing a rapid increase in the internal pressure of the motor housing 110 and maintaining the internal pressure constant.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Motor Or Generator Cooling System (AREA)

Abstract

The present invention relates to a turbo motor capable of high-efficiency cooling through sealed cooling of a stator and, more particularly, to a turbo motor comprising: a stator that is provided with a stator core and a coil and generates magnetic force by being supplied with power; and a rotor rotating by magnetization of the stator, wherein the turbo motor can directly and efficiently cool the stator by means of a refrigerant by comprising: a motor housing which is formed apart from the outer circumferential surface of the rotor and hermetically accommodates the refrigerant, and to which the stator is coupled thereinside while being immersed in the refrigerant; a refrigerant inlet formed through the outer surface of the motor housing and through which the refrigerant flows into the motor housing; a refrigerant outlet formed through the outer surface of the motor housing and through which refrigerant flows out of the motor housing; and a refrigerant flow path provided inside the motor housing and formed so as to cool the stator while the refrigerant flows.

Description

스테이터의 밀폐 냉각을 통해 고효율 냉각이 가능한 터보 모터Turbo motor for high-efficiency cooling through sealed cooling of the stator
본 발명은 냉매가 밀폐 수용된 모터하우징에 스테이터를 침지시킴으로써, 스테이터를 직접 냉각시킬 수 있는 스테이터의 밀폐 냉각을 통해 고효율 냉각이 가능한 터보 모터에 관한 것이다.The present invention relates to a turbo motor capable of high-efficiency cooling through sealed cooling of a stator capable of directly cooling a stator by immersing a stator in a motor housing in which a refrigerant is sealedly accommodated.
잘 알려진 바와 같이, 모터는 규소 강판 등이 적층된 스테이터 코어, 코일 등으로 형성되어 전원을 공급받아 자력을 발생시키는 스테이터와, 스테이터의 자화에 의해 회전 운동을 하는 로터로 형성되는 것으로, 특히, 고속 터보 모터는 고속 회전을 위해 교류 변환 장치가 사용될 수 있으므로, 필연적으로 전기적인 열이 발생할 수 있다. 이러한 전기적인 발열이 제거되지 않을 경우, 모터의 수명이 단축될 수 있고, 발열에 의한 화재 사고 등이 발생될 수 있다.As is well known, the motor is formed of a stator core, coil, etc. in which silicon steel sheets are stacked to generate magnetic force by receiving power, and a rotor that rotates by magnetization of the stator. Since the turbo motor may use an AC converter for high-speed rotation, electrical heat may inevitably be generated. If such electric heat generation is not removed, the life of the motor may be shortened, and a fire accident due to heat generation may occur.
이에 따라 이러한 발열을 냉각시키기 위한 냉각 방식으로, 공기를 순환시켜 모터를 냉각시키는 공랭식 냉각 방식, 냉각수를 순환시켜 모터를 냉각시키는 수냉식 냉각 방식 등이 주로 이용된다.Accordingly, as a cooling method for cooling such heat generation, an air-cooled cooling method in which the motor is cooled by circulating air, and a water-cooled cooling method in which the motor is cooled by circulating cooling water are mainly used.
공랭식 냉각 방식은 모터의 일측에 냉각용 팬을 구비하거나 별도의 순환용 팬을 구비하여 공기를 공급함으로써 모터를 냉각시킬 수 있지만, 공기 자체의 열의 흡수율이 크지 않고, 냉각용 팬이 구비되어 있는 주변 환경의 온도가 높을 경우, 고온의 공기로써 모터를 냉각시키게 되므로 냉각 효율이 떨어지는 문제점이 있다.In the air-cooled cooling method, the motor can be cooled by supplying air with a cooling fan on one side of the motor or a separate circulation fan, but the heat absorption rate of air itself is not large, and the surrounding cooling fan is provided. When the temperature of the environment is high, since the motor is cooled with high-temperature air, there is a problem in that the cooling efficiency is deteriorated.
또한, 수냉식 냉각 방식은 공기보다 열의 흡수율은 높지만, 열을 흡수한 물을 냉각시키기 위해 열교환기, 물탱크, 배관 등을 별도로 구비해야 하고, 터보 모터의 구성 장치의 대부분이 전원을 이용하는 장치인바, 물의 누수로 대형 사고 등이 발생될 수 있는 문제점이 내재되어 있다.In addition, although the water-cooled cooling method has a higher heat absorption rate than air, a heat exchanger, a water tank, and a pipe must be separately provided to cool the water that has absorbed the heat, and most of the components of the turbo motor are devices that use power. There is an inherent problem in that a major accident may occur due to water leakage.
[선행기술문헌][Prior technical literature]
[특허문헌][Patent Literature]
(특허문헌 1) 1. 한국등록특허 제10-0273433-0000호(2000.09.02.등록)(Patent Document 1) 1. Korean Patent Registration No. 10-0273433-0000 (registered on Sep. 2, 2000)
(특허문헌 2) 2. 한국등록특허 제10-0474323-0000호(2005.02.22.등록)(Patent Document 2) 2. Korean Patent Registration No. 10-0474323-0000 (registered on Feb. 22, 2005)
본 발명은 냉매가 밀폐 수용되는 모터하우징에 스테이터가 침지되어 결합됨으로써, 스테이터를 냉각시키는 스테이터의 밀폐 냉각을 통해 고효율 냉각이 가능한 터보 모터의 기술분야를 제공하는데 있다.The present invention is to provide a technical field of a turbo motor capable of high-efficiency cooling through airtight cooling of a stator that cools the stator by immersing and combining a stator in a motor housing in which a refrigerant is hermetically accommodated.
또한, 본 발명은 스테이터 코어의 외측면을 유동하고, 코일의 내부 등을 통과할 수 있는 냉매유로를 구비함으로써, 냉매가 스테이터를 접촉하면서 직접적으로 냉각시킬 수 있는 스테이터의 밀폐 냉각을 통해 고효율 냉각이 가능한 터보 모터의 기술분야를 제공하는데 있다.In addition, the present invention provides a refrigerant flow path that flows through the outer surface of the stator core and passes through the inside of the coil, so that high-efficiency cooling is achieved through airtight cooling of the stator, which allows the refrigerant to directly cool while contacting the stator. It is to provide the technical field of possible turbo motors.
또한, 본 발명은 스테이터의 크기, 형상 등에 따라, 냉매유입구, 냉매유출구 등의 위치, 개수 등을 변경시켜 형성시킴으로써, 다양한 형태의 스테이터에 적용될 수 있는 스테이터의 밀폐 냉각을 통해 고효율 냉각이 가능한 터보 모터의 기술분야를 제공하는데 있다.In addition, the present invention is a turbo motor capable of high-efficiency cooling through airtight cooling of the stator that can be applied to various types of stators by changing the location and number of refrigerant inlets and refrigerant outlets according to the size and shape of the stator. It is to provide the technical field of
본 발명의 실시예들의 목적은 이상에서 언급한 목적으로 제한되지 않으며, 언급되지 않은 또 다른 목적들은 아래의 기재로부터 본 발명이 속하는 기술 분야에서 통상의 지식을 가진 자에게 명확하게 이해될 수 있을 것이다.The objects of the embodiments of the present invention are not limited to the above-mentioned objects, and other objects not mentioned will be clearly understood by those of ordinary skill in the technical field to which the present invention pertains from the following description. .
본 발명의 실시예에 따르면, 스테이터 코어 및 코일이 구비되며 전원을 공급받아 자력을 발생시키는 스테이터와, 상기 스테이터의 자화에 의해 회전운동하는 로터를 포함하는 터보 모터에 있어서, 상기 로터의 외주면에 이격되어 형성되고, 냉매를 밀폐 수용되며, 내부에 상기 스테이터가 상기 냉매에 침지되어 결합되는 모터하우징과, 상기 모터하우징의 외측면을 관통하여 형성되며, 상기 모터하우징으로 냉매가 유입되는 냉매유입구와, 상기 모터하우징의 외측면을 관통하여 형성되며, 상기 모터하우징으로부터 냉매가 유출되는 냉매유출구와, 상기 모터하우징 내부에 구비되어, 상기 냉매가 유동하면서 상기 스테이터가 냉각되도록 형성되는 냉매유로 를 포함하는 스테이터의 밀폐 냉각을 통해 고효율 냉각이 가능한 터보 모터가 제공될 수 있다.According to an embodiment of the present invention, in a turbo motor including a stator that is provided with a stator core and a coil and generates magnetic force by being supplied with power, and a rotor that rotates by magnetization of the stator, spaced apart from the outer peripheral surface of the rotor A motor housing in which the stator is immersed in and coupled to the refrigerant, and a refrigerant inlet through which the refrigerant flows into the motor housing; A stator including a refrigerant outlet formed through an outer surface of the motor housing, a refrigerant outlet through which refrigerant flows out of the motor housing, and a refrigerant flow path provided inside the motor housing to cool the stator while the refrigerant flows A turbo motor capable of high-efficiency cooling may be provided through hermetic cooling of.
또한, 본 발명의 실시예에 따르면, 상기 스테이터의 일측 단부에 구비되어 상기 스테이터를 지지하며, 상기 냉매 유입구에서 유입된 상기 냉매가 통과되도록 형성되는 제 1 스테이터 고정링과, 상기 스테이터의 타측 단부에 구비되어 상기 스테이터를 지지하며, 상기 코일을 통과한 상기 냉매가 상기 냉매유출구로 유동되도록 형성되는 제 2 스테이터 고정링을 포함하는 스테이터의 밀폐 냉각을 통해 고효율 냉각이 가능한 터보 모터가 제공될 수 있다.In addition, according to an embodiment of the present invention, a first stator fixing ring provided at one end of the stator to support the stator and configured to pass the refrigerant introduced from the refrigerant inlet, and the other end of the stator A turbo motor capable of high-efficiency cooling through airtight cooling of the stator including a second stator fixing ring formed to support the stator and flowing the refrigerant passing through the coil to the refrigerant outlet may be provided.
또한, 본 발명의 실시예에 따르면, 상기 냉매유로는, 상기 냉매유입구로부터 유입된 상기 냉매가 상기 스테이터 코어의 측면을 따라 유동되며, 상기 제 1 스테이터 고정링을 통과하고, 상기 코일을 통과하여 상기 냉매유출구를 통해 유출되도록 형성되는 스테이터의 밀폐 냉각을 통해 고효율 냉각이 가능한 터보 모터가 제공될 수 있다.In addition, according to an embodiment of the present invention, the refrigerant flow path, wherein the refrigerant introduced from the refrigerant inlet flows along a side surface of the stator core, passes through the first stator fixing ring, and passes through the coil. A turbo motor capable of high-efficiency cooling may be provided through airtight cooling of the stator formed to flow out through the refrigerant outlet.
또한, 본 발명의 실시예에 따르면, 상기 냉매유입구는 복수 개로 형성되어, 상기 냉매가 상기 스테이터에 분리되어 유입되도록 구비되고, 상기 냉매유출구는 상기 냉매유입구의 사이에 적어도 하나로 형성되어, 분리되어 유입된 상기 냉매가 합체되어 상기 모터하우징의 외측으로 유출되도록 구비되는 스테이터의 밀폐 냉각을 통해 고효율 냉각이 가능한 터보 모터가 제공될 수 있다.In addition, according to an embodiment of the present invention, the refrigerant inlet is formed in a plurality, and the refrigerant is provided to separate and flow into the stator, and the refrigerant outlet is formed at least one between the refrigerant inlet and separates and flows in. A turbo motor capable of high-efficiency cooling may be provided through airtight cooling of the stator provided so that the refrigerant is incorporated and flows out of the motor housing.
또한, 본 발명의 실시예에 따르면, 상기 스테이터의 양측 단부에 복수 개로 구비되어 상기 스테이터를 지지하며, 유입된 상기 냉매가 통과되도록 형성되는 제 1 스테이터 고정링과, 상기 스테이터의 중심측에 복수 개로 구비되어 상기 스테이터를 지지하며, 상기 코일을 통과한 상기 냉매가 상기 냉매유출구로 유동되도록 형성되는 제 2 스테이터 고정링을 포함하는 스테이터의 밀폐 냉각을 통해 고효율 냉각이 가능한 터보 모터가 제공될 수 있다.In addition, according to an embodiment of the present invention, a plurality of first stator fixing rings are provided at both ends of the stator to support the stator, and formed to pass the introduced refrigerant, and a plurality of first stator fixing rings formed at the center side of the stator. A turbo motor capable of high-efficiency cooling through airtight cooling of the stator including a second stator fixing ring formed to support the stator and flowing the refrigerant passing through the coil to the refrigerant outlet may be provided.
또한, 본 발명의 실시예에 따르면, 상기 냉매유로는, 상기 냉매유입구로부터 유입된 상기 냉매가 상기 스테이터의 일측 및 타측으로 상기 스테이터 코어의 측면을 따라 유동되며, 상기 제 1 스테이터 고정링을 통과하고, 상기 코일을 통과하여 상기 냉매유출구를 통해 유출되도록 형성되는 스테이터의 밀폐 냉각을 통해 고효율 냉각이 가능한 터보 모터가 제공될 수 있다.In addition, according to an embodiment of the present invention, the refrigerant flow path, wherein the refrigerant introduced from the refrigerant inlet flows along a side surface of the stator core to one side and the other side of the stator, passes through the first stator fixing ring, and , A turbo motor capable of high-efficiency cooling through airtight cooling of a stator formed to pass through the coil and flow out through the refrigerant outlet may be provided.
또한, 본 발명의 실시예에 따르면, 상기 모터하우징의 외측면에 형성되며, 상기 모터하우징의 내부 압력을 조절하기 위해 적어도 하나로 구비되는 압력 조절구를 포함하는 스테이터의 밀폐 냉각을 통해 고효율 냉각이 가능한 터보 모터가 제공될 수 있다.In addition, according to an embodiment of the present invention, high-efficiency cooling is possible through airtight cooling of the stator, which is formed on the outer surface of the motor housing and includes at least one pressure regulator provided to adjust the internal pressure of the motor housing. Turbo motors may be provided.
본 발명은, 냉매가 밀폐 수용된 모터하우징에 스테이터가 침지되어 결합되며, 유입된 냉매가 스테이터 코어의 외측면, 코일의 내부 등을 통과하면서 스테이터에서 방출되는 열을 흡수하고, 스테이터의 발열 에너지를 흡수함으로써 액체 상태의 냉매가 기체상태의 냉매로 변하면서 스테이터를 직접적이고 효율적으로 냉각시킬 수 있다.In the present invention, the stator is immersed in a motor housing in which the refrigerant is sealed and coupled, and the introduced refrigerant passes through the outer surface of the stator core, the inside of the coil, etc., absorbing heat emitted from the stator, and absorbing the heating energy of the stator. By doing so, the stator can be cooled directly and efficiently while the refrigerant in the liquid state is changed to the refrigerant in the gaseous state.
또한, 본 발명은, 스테이터의 크기, 형상 등에 따라, 냉매유입구, 냉매유출구 등의 위치, 개수 등을 변경시키고, 그에 따른 냉매유로를 형성시킴으로써, 다양한 형태의 스테이터를 냉각시키는 데 적용될 수 있다.In addition, the present invention can be applied to cooling various types of stators by changing the location and number of refrigerant inlets and refrigerant outlets according to the size and shape of the stator, and forming refrigerant passages accordingly.
도 1은 본 발명의 일 실시예에 따른 스테이터를 냉각시키는 스테이터의 밀폐 냉각을 통해 고효율 냉각이 가능한 터보 모터를 예시한 도면이다.1 is a diagram illustrating a turbo motor capable of high-efficiency cooling through airtight cooling of a stator that cools a stator according to an embodiment of the present invention.
도 2는 본 발명의 다른 실시예에 따른 스테이터를 냉각시키는 스테이터의 밀폐 냉각을 통해 고효율 냉각이 가능한 터보 모터를 예시한 도면이다.2 is a diagram illustrating a turbo motor capable of high-efficiency cooling through airtight cooling of a stator for cooling a stator according to another embodiment of the present invention.
본 발명의 실시예들에 대한 이점 및 특징, 그리고 그것들을 달성하는 방법은 첨부되는 도면과 함께 상세하게 후술되어 있는 실시예들을 참조하면 명확해질 것이다. 그러나 본 발명은 이하에서 개시되는 실시예들에 한정되는 것이 아니라 서로 다른 다양한 형태로 구현될 수 있으며, 단지 본 실시예들은 본 발명의 개시가 완전하도록 하고, 본 발명이 속하는 기술분야에서 통상의 지식을 가진 자에게 발명의 범주를 완전하게 알려주기 위해 제공되는 것이며, 본 발명은 청구항의 범주에 의해 정의될 뿐이다. 명세서 전체에 걸쳐 동일 참조 부호는 동일 구성 요소를 지칭한다.Advantages and features of the embodiments of the present invention, and a method of achieving them will be apparent with reference to the embodiments described later in detail together with the accompanying drawings. However, the present invention is not limited to the embodiments disclosed below, but may be implemented in a variety of different forms, and only these embodiments make the disclosure of the present invention complete, and are common knowledge in the technical field to which the present invention pertains. It is provided to completely inform the scope of the invention to those who have, and the invention is only defined by the scope of the claims. The same reference numerals refer to the same elements throughout the specification.
본 발명의 실시예들을 설명함에 있어서 공지 기능 또는 구성에 대한 구체적인 설명이 본 발명의 요지를 불필요하게 흐릴 수 있다고 판단되는 경우에는 그 상세한 설명을 생략할 것이다. 그리고 후술되는 용어들은 본 발명의 실시예에서의 기능을 고려하여 정의된 용어들로서 이는 사용자, 운용자의 의도 또는 관례 등에 따라 달라질 수 있다. 그러므로 그 정의는 본 명세서 전반에 걸친 내용을 토대로 내려져야 할 것이다. In describing the embodiments of the present invention, if it is determined that a detailed description of a known function or configuration may unnecessarily obscure the subject matter of the present invention, a detailed description thereof will be omitted. In addition, terms to be described later are terms defined in consideration of functions in an embodiment of the present invention, which may vary according to the intention or custom of users or operators. Therefore, the definition should be made based on the contents throughout the present specification.
이하, 첨부된 도면을 참조하여 본 발명의 실시예를 상세히 설명하기로 한다.Hereinafter, exemplary embodiments of the present invention will be described in detail with reference to the accompanying drawings.
도 1은 본 발명의 일 실시예에 따른 스테이터를 냉각시키는 스테이터의 밀폐 냉각을 통해 고효율 냉각이 가능한 터보 모터를 예시한 도면이고, 도 2는 본 발명의 다른 실시예에 따른 스테이터를 냉각시키는 스테이터의 밀폐 냉각을 통해 고효율 냉각이 가능한 터보 모터를 예시한 도면이다.1 is a diagram illustrating a turbo motor capable of high-efficiency cooling through closed cooling of a stator that cools a stator according to an embodiment of the present invention, and FIG. 2 is a diagram of a stator cooling a stator according to another embodiment of the present invention. A diagram illustrating a turbo motor capable of high-efficiency cooling through hermetic cooling.
도 1 및 도 2를 참조하면, 본 발명의 실시예에 따른 스테이터의 밀폐 냉각을 통해 고효율 냉각이 가능한 터보 모터는 모터하우징(110), 냉매유입구(120), 냉매유출구(130), 냉매유로(140), 제 1 스테이터 고정링(150), 제 2 스테이터 고정링(160), 압력 조절구(170) 등을 포함할 수 있다.1 and 2, a turbo motor capable of high-efficiency cooling through sealed cooling of a stator according to an embodiment of the present invention includes a motor housing 110, a refrigerant inlet 120, a refrigerant outlet 130, and a refrigerant flow path ( 140), a first stator fixing ring 150, a second stator fixing ring 160, a pressure regulator 170, and the like.
먼저, 본 발명의 터보 모터는 통상의 터보 모터와 동일하게, 스테이터 코어(11) 및 코일(12)이 구비되며 전원을 공급받아 자력을 발생시키는 스테이터(10), 스테이터(10)의 자화에 의해 회전운동하는 로터(20) 등을 포함할 수 있다.First, the turbo motor of the present invention is provided with a stator core 11 and a coil 12, as in a conventional turbo motor, and is supplied with power to generate magnetic force by magnetization of the stator 10 and the stator 10. It may include a rotor 20 that rotates.
모터하우징(110)은 로터(20)의 외주면에 이격되어 형성되고, 냉매를 밀폐 수용하는 것으로, 스테이터(20)가 모터하우징(110)의 내부의 냉매에 침지되어 결합됨으로써, 냉매에 의해 냉각될 수 있다.The motor housing 110 is formed to be spaced apart from the outer circumferential surface of the rotor 20 and seals and accommodates the refrigerant, and the stator 20 is immersed and coupled to the refrigerant inside the motor housing 110 to be cooled by the refrigerant. I can.
모터하우징(110)의 외측면에 냉매유입구(120) 및 냉매유출구(130)가 형성되어 냉매가 유입 및 유출되고, 스테이터의 슬롯(도면 미도시) 외부에 접하여 고정되어 냉매를 밀폐 수용하며, 모터하우징(110)에 제 1 스테이터 고정링(150), 제 2 스테이터 고정링(160), 압력 조절구(170) 등이 구비되고, 제 1 스테이터 고정링(150)이 스테이터(10)의 일측에, 제 2 스테이터 고정링(160)이 스테이터(10)의 타측에 결합됨으로써, 스테이터(10)가 모터하우징(110)의 내부에 결합될 수 있다.A refrigerant inlet 120 and a refrigerant outlet 130 are formed on the outer surface of the motor housing 110 so that refrigerant flows in and out, and is fixed in contact with the outside of the slot (not shown) of the stator to seal and receive the refrigerant. A first stator fixing ring 150, a second stator fixing ring 160, and a pressure regulator 170 are provided in the housing 110, and a first stator fixing ring 150 is provided on one side of the stator 10. , As the second stator fixing ring 160 is coupled to the other side of the stator 10, the stator 10 may be coupled to the inside of the motor housing 110.
또한, 스테이터(10)가 결합된 모터하우징(110)과 로터(20)의 이격된 공간에, 스테이터(10)를 로터(20)와 격리 수용하여 모터하우징(110)에 밀폐시키기 위해 실린더 형태 등으로 형성된 격리부재(도면번호 생략)가 구비될 수 있으며, 이러한 격리부재(도면번호 생략)는 비자성체로 형성되어, 스테이터(10), 로터(20) 등에 의해 격리부재(도면번호 생략)가 자화되는 것을 방지할 수 있다.In addition, in a space separated from the motor housing 110 and the rotor 20 to which the stator 10 is coupled, the stator 10 is separated from the rotor 20 and sealed to the motor housing 110 in the form of a cylinder, etc. An isolating member (drawing number omitted) may be provided, and this isolating member (drawing number omitted) is formed of a non-magnetic material, so that the isolating member (drawing number omitted) is magnetized by the stator 10, the rotor 20, etc. Can be prevented.
냉매유입구(120)는 모터하우징(110)의 외측면을 관통하여 형성되어, 모터하우징(110) 내부로 냉매가 유입되는 것으로, 스테이터(10), 냉매유로(140) 등의 형태에 따라 복수 개로 형성될 수 있는바, 이에 대한 자세한 설명은 냉매유로(140)에서 후술하도록 한다.The refrigerant inlet 120 is formed to pass through the outer surface of the motor housing 110, so that the refrigerant flows into the motor housing 110, in a plurality according to the shape of the stator 10, the refrigerant passage 140, etc. It may be formed, a detailed description thereof will be described later in the refrigerant passage 140.
냉매유입구(120)에서 유입된 냉매는 스테이터 코어(11)의 측면을 따라 유동하고 제 1 스테이터 고정링(150)의 홀(도면 미도시)을 통과하여 코일(12) 등으로 이동하면서 스테이터(10)를 냉각시킬 수 있다. The refrigerant introduced from the refrigerant inlet 120 flows along the side of the stator core 11, passes through a hole (not shown) of the first stator fixing ring 150, and moves to the coil 12, etc. ) Can be cooled.
특히, 냉매가 스테이터(10)의 열을 효율적으로 냉각시키기 위해, 냉매유입구(120)는 제 2 스테이터 고정링(160)에 인접하여 구비될 수 있다.In particular, in order for the refrigerant to efficiently cool the heat of the stator 10, the refrigerant inlet 120 may be provided adjacent to the second stator fixing ring 160.
냉매유입구(120)가 제 2 스테이터 고정링(160)에 인접하여 형성되고, 유입된 냉매는 스테이터(10)의 외주면을 유동하며 스테이터 코어(11) 등을 냉각시키고, 제 1 스테이터 고정링(150)의 홀(도면 미도시)을 통과한 후 권선된 코일(12)을 유동하면서 코일(12) 등을 냉각시키며, 제 1 스테이터 고정링(150)과 이격되어 설치된 제 2 스테이터 고정링(160)의 외측 코일(12) 등을 냉각시킬 수 있다.A refrigerant inlet 120 is formed adjacent to the second stator fixing ring 160, and the introduced refrigerant flows through the outer circumferential surface of the stator 10 to cool the stator core 11, etc., and the first stator fixing ring 150 ) Passes through the hole (not shown) and cools the coil 12 while flowing the wound coil 12, and the second stator fixing ring 160 installed spaced apart from the first stator fixing ring 150 It is possible to cool the outer coil 12 of the.
냉매유출구(130)는 모터하우징(110)의 외측면을 관통하여 형성되어, 모터하우징(110)으로부터 냉매가 유출되는 것으로, 스테이터(10), 냉매유로(140) 등의 형태에 따라 적어도 하나 이상으로 설치될 수 있다.The refrigerant outlet 130 is formed to pass through the outer surface of the motor housing 110 so that the refrigerant flows out of the motor housing 110, and at least one or more depending on the shape of the stator 10, the refrigerant passage 140, etc. Can be installed as.
냉매유로(140)는 모터하우징(110) 내부에 구비되어, 냉매가 유동하면서 스테이터(10)가 냉각되도록 형성되는 것으로, 냉매유입구(120)에서 유입된 냉매가 스테이터를 통과하고 냉매유출구(130)으로 유출되는 냉매의 이동 통로이다.The refrigerant passage 140 is provided in the motor housing 110 and is formed to cool the stator 10 while the refrigerant flows. The refrigerant introduced from the refrigerant inlet 120 passes through the stator and the refrigerant outlet 130 It is the passage of the refrigerant that flows out into the air.
냉매유입구(120)는 제 2 스테이터 고정링(160)에 인접하여 형성될 수 있는데, 제 2 스테이터 고정링(160)은 폐쇄된 형태로 형성되어 있어, 냉매가 제 2 스테이터 고정링(160)을 통과하여 이동할 수 없으므로, 유입된 냉매는 제 1 스테이터 고정링(150) 방향으로 유동될 수 있다. 제 1 스테이터 고정링(150) 측으로 이동하는 냉매는 규소강판 등으로 형성된 스테이터 코어(11)의 외측면을 유동하면서 스테이터 코어(11), 코일(12) 등에서 방출되는 열을 흡수할 수 있다. 이 경우, 냉매는 스테이터 코어(11)에 접촉됨으로써 스테이터 코어(11)를 직접적으로 냉각시킬 수 있고, 코일(12) 등에서 발산되는 열을 흡수하여 코일(12) 등도 직접적으로 냉각시킬 수 있다.The refrigerant inlet 120 may be formed adjacent to the second stator fixing ring 160, and the second stator fixing ring 160 is formed in a closed form, so that the refrigerant connects the second stator fixing ring 160 Since it cannot move through, the introduced refrigerant may flow in the direction of the first stator fixing ring 150. The refrigerant moving toward the first stator fixing ring 150 may absorb heat emitted from the stator core 11 and coil 12 while flowing through the outer surface of the stator core 11 formed of a silicon steel plate or the like. In this case, the refrigerant may directly cool the stator core 11 by contacting the stator core 11, and may directly cool the coil 12 or the like by absorbing heat radiated from the coil 12 or the like.
상술한 바와 같이, 냉매유입구(120)를 통해 지속적으로 냉매가 유입되고, 유입된 냉매는 이동하면서 스테이터 코어(11), 코일(12) 등의 열을 지속적으로 흡수할 수 있으므로, 스테이터 코어(11)의 전 부분이 균형있게 냉각되는 효과가 발생될 수 있다.As described above, since the refrigerant continuously flows through the refrigerant inlet 120 and the introduced refrigerant can continuously absorb heat from the stator core 11 and the coil 12 while moving, the stator core 11 The effect of cooling the entire part of) can occur in a balanced manner.
또한, 제 1 스테이터 고정링(150)의 홀(도면 미도시)을 통과한 냉매는 스테이터(10) 내측의 코일(12), 모터하우징(110)과 코일(12) 사이의 유격 등을 통과하면서, 스테이터(10)에서 발생되는 열을 흡수할 수 있다. In addition, the refrigerant passing through the hole (not shown) of the first stator fixing ring 150 passes through the coil 12 inside the stator 10, the gap between the motor housing 110 and the coil 12, etc. , It is possible to absorb heat generated from the stator 10.
코일(12)은 스테이터 코어(11)의 내측에 형성된 슬롯(도면 미도시)에 삽입되어 길이 방향으로 권취된 형태로, 일반적으로 120도 간격으로 독립된 3쌍을 감은 다음, Y 결선 또는 결선 방식으로 접속하여 결선될 수 있다. The coil 12 is inserted into a slot (not shown) formed on the inside of the stator core 11 and wound in the longitudinal direction, and generally, three pairs of independent windings are wound at intervals of 120 degrees, and then a Y connection or a connection method is used. It can be connected and wired.
코일(12) 등을 통과한 냉매는 제 2 스테이터 고정링(160)에 인접하여 형성된 냉매유출구(130)를 통해 모터하우징(110)으로부터 유출될 수 있다.The refrigerant passing through the coil 12 or the like may flow out from the motor housing 110 through the refrigerant outlet 130 formed adjacent to the second stator fixing ring 160.
한편, 스테이터(10), 냉매유로(140) 등의 형태에 따라 냉매유입구(120), 냉매유출구(130) 등의 형성 위치, 형성 개수 등이 변경될 수 있다.On the other hand, depending on the shape of the stator 10 and the coolant passage 140, the location of the coolant inlet 120, the coolant outlet 130, and the like may be changed.
예를 들어, 스테이터(10)가 대형 크기로 형성되고(즉, 스테이터(10)의 길이가 연장되게 형성되고), 상술한 바와 같은 위치에 냉매유입구(120), 냉매유출구(130) 등이 구비될 경우, 유입된 냉매는 연장된 스테이터 코어(11), 연장된 코일(12) 등을 냉각시키면서 유동하는바, 냉매가 유동되는 냉매유로(140)도 연장된 형태로 형성된다. For example, the stator 10 is formed in a large size (that is, the length of the stator 10 is formed to be extended), and a refrigerant inlet 120, a refrigerant outlet 130, etc. are provided at the positions as described above. In this case, the introduced refrigerant flows while cooling the extended stator core 11, the extended coil 12, and the like, and the refrigerant flow path 140 through which the refrigerant flows is also formed in an extended form.
이러한 경우, 일정양의 열을 흡수할 수 있는 냉매는 연장된 냉매유로(140)를 유동하면서 스테이터(10)로부터 보다 많은 양의 열을 흡수해야 하므로, 코일(12)의 말단부, 냉매유출구(130) 인근 등에서 냉매가 흡수하는 열의 양이 현저히 감소될 있어, 냉매유입구(120) 인근 등에서 냉매의 열흡수율과 냉매유출구(130) 인근 등에서 냉매의 열흡수율의 차이가 커지는 문제점이 있다.In this case, since the refrigerant capable of absorbing a certain amount of heat must absorb a greater amount of heat from the stator 10 while flowing through the extended refrigerant flow path 140, the end of the coil 12, the refrigerant outlet 130 ) Since the amount of heat absorbed by the refrigerant in the vicinity is significantly reduced, there is a problem that the difference between the heat absorption rate of the refrigerant in the vicinity of the refrigerant inlet 120 and the heat absorption rate of the refrigerant in the vicinity of the refrigerant outlet 130 increases.
이러한 문제점을 극복하기 위해, 도 2 와 같이, 스테이터 코어(11)가 양분하여 형성되며, 냉매유입구(120)는 복수 개로 형성되어 냉매가 스테이터(10)에 분리되어 유입되도록 구비되고, 냉매유출구(130)는 냉매유입구(120)의 사이(즉, 스테이터(10)의 중앙부 위치)에 대응되는 모터하우징(110)의 외측면에, 분리되어 유입된 상기 냉매가 합체되어 모터하우징(110)의 외측으로 유출되도록 형성된다. In order to overcome this problem, as shown in FIG. 2, the stator core 11 is formed by dividing it, and the refrigerant inlet 120 is formed in plural so that the refrigerant is separated and introduced into the stator 10, and the refrigerant outlet ( 130) is the outer surface of the motor housing 110 corresponding to between the refrigerant inlet 120 (that is, the central position of the stator 10), the separated and introduced refrigerant is combined to the outer side of the motor housing 110 Is formed to flow out.
또한, 제 1 스테이터 고정링(150)은 스테이터(10)의 양측 단부에 복수 개로 구비되어 스테이터(10)를 지지하며, 유입된 냉매가 통과되도록 형성되고, 제 2 스테이터 고정링(160)은 스테이터(10)의 중심측에 복수 개로 구비되어 스테이터(10)를 지지하며, 코일(12)을 통과한 냉매가 냉매유출구(130)로 가이드되어 유동되도록 형성되며, 냉매유로(140)는, 냉매유입구(120)로부터 유입된 냉매가 스테이터(10)의 일측 및 타측으로 스테이터 코어(11)의 측면을 따라 유동되며, 제 1 스테이터 고정링(150)을 통과하고, 코일(12)을 통과하여 냉매유출구(130)를 통해 유출되도록 형성된다.In addition, the first stator fixing ring 150 is provided in plural at both ends of the stator 10 to support the stator 10, and is formed to pass the introduced refrigerant, and the second stator fixing ring 160 is a stator A plurality of pieces are provided at the center of (10) to support the stator 10, the refrigerant passing through the coil 12 is guided to the refrigerant outlet 130 and formed to flow, and the refrigerant passage 140 includes a refrigerant inlet. The refrigerant introduced from 120 flows along the side of the stator core 11 to one side and the other side of the stator 10, passes through the first stator fixing ring 150, passes through the coil 12, and passes through the refrigerant outlet. It is formed to flow out through (130).
상술한 바와 같이, 냉매유입구(120), 냉매유출구(130) 등이 형성될 경우, 복수 개의 냉매유입구(120)를 통해 냉매가 분배되어 유입될 수 있고, 유입된 각각의 냉매가, 제 2 스테이터 고정링(160)에 의해 공간적으로 분리된 각각의 스테이터(10)를 개별적으로 냉각시킬 수 있도록 형성된 각각의 냉매유로(140)로 이동될 수 있으므로, 단축된 냉매유로(140)를 따라 냉매가 이동하면서 스테이터 코어(11), 코일(12) 등을 냉각시킬 수 있다.As described above, when the refrigerant inlet 120, the refrigerant outlet 130, etc. are formed, the refrigerant may be distributed and introduced through the plurality of refrigerant inlets 120, and each of the introduced refrigerants is the second stator. Since it can be moved to each refrigerant flow path 140 formed to individually cool each of the stators 10 spatially separated by the fixing ring 160, the refrigerant moves along the shortened refrigerant flow path 140 While doing it, the stator core 11, the coil 12, and the like can be cooled.
도 2 와 같이, 각각의 스테이터(10)를 지지하는 제 2 스테이터 고정링(160)에 인접하여 복수 개의 냉매유입구(120)가 형성되고, 각각의 스테이터(10) 사이의 위치에 대응되는 모터하우징(110)의 위치에 냉매유출구(130)가 형성될 경우, 유입된 냉매는 제 2 스테이터 고정링(160)에 막혀서 각각의 스테이터(10) 사이로 유동될 수 없고, 스테이터 코어(11)의 외측면을 따라 유동하면서 스테이터 코어(11) 등의 열을 흡수할 수 있다. 이어서, 냉매는 제 1 스테이터 고정링(150)의 홀(도면 미도시)을 통해 코일(12) 측으로 유동되어 코일(12) 등을 통과할 수 있어, 각각의 스테이터(10)를 통과하며 열을 흡수한 냉매는 각각의 스테이터(10) 사이의 위치에서 합쳐져서 냉매유출구(130)로 배출될 수 있다. 2, a plurality of refrigerant inlets 120 are formed adjacent to the second stator fixing ring 160 supporting each stator 10, and a motor housing corresponding to a position between each stator 10 When the refrigerant outlet 130 is formed at the position of 110, the introduced refrigerant is blocked by the second stator fixing ring 160 so that it cannot flow between each stator 10, and the outer surface of the stator core 11 It can absorb heat such as the stator core 11 while flowing along. Subsequently, the refrigerant may flow toward the coil 12 through the hole (not shown) of the first stator fixing ring 150 and pass through the coil 12, etc., thereby passing through each stator 10 and transferring heat. The absorbed refrigerant may be combined at positions between the respective stators 10 and discharged to the refrigerant outlet 130.
상술한 바와 같은 냉매유로(140)가 형성될 경우, 각각의 스테이터(10)로 냉매가 개별적으로 유입되어 스테이터(10)를 냉각시키고 배출될 수 있으므로, 스테이터(10)가 분리되어 구비되더라도 전체의 스테이터(10)를 균형있게 냉각시킬 수 있다. When the refrigerant passage 140 as described above is formed, the refrigerant can be individually introduced into each stator 10 to cool and discharge the stator 10, so even if the stator 10 is provided separately The stator 10 can be cooled in a balanced manner.
한편, 모터하우징(110)에 밀폐 수용되는 냉매는 일정 온도 이상에서 기체로 기화되고 일정 온도 이하에서 액체로 액화되며, 모터하우징(110) 내부에 침지될 수 있도록 절연성, 비가연성, 비폭발성 등이 있는 물질이 사용될 수 있는데, 일반적으로 냉동기에 사용되는 냉매인 R-22, R-134a 등이 사용될 수 있고, 가연성, 폭발성 등이 있는 CO2 냉매 등은 사용될 수 없다.On the other hand, the refrigerant hermetically accommodated in the motor housing 110 is vaporized to a gas at a certain temperature or higher and liquefied to a liquid at a certain temperature or lower, and has insulation, non-flammability, and non-explosiveness so that it can be immersed in the motor housing 110. A material that can be used may be used. In general, refrigerants such as R-22 and R-134a, which are used in refrigerators, may be used, and CO2 refrigerants having flammability and explosive properties cannot be used.
R-22는 프레온 냉매의 일종으로, 냉동 능력은 프레온 냉매 중 가장 우수하며, 소형 장치부터 대형 장치까지 폭넓게 사용될 수 있다. 특히, 왕복동식 에어컨 등에 주로 사용되고, 저온용 냉동장치에도 사용될 수 있다. 다만, 프레온 냉매는 오존층을 파괴하고 지구온난화에 영향을 미치며, 수분이 침투하면 금속에 대한 부식성이 있다.R-22 is a kind of freon refrigerant, and its refrigeration capacity is the best among freon refrigerants, and it can be widely used from small devices to large devices. In particular, it is mainly used for reciprocating air conditioners, and may also be used in a low-temperature refrigeration device. However, the freon refrigerant destroys the ozone layer and affects global warming, and when moisture penetrates, it has corrosiveness to metals.
또한, 134a는 R-12 대체 냉매로 개발된 냉매로 무색투명의 비가연성의 성질이 있다. 주로 냉장고나 자동차 에어컨용으로 사용되고, 분자 중에 염소를 포함하고 있지 않아서 오존층 파괴지수는 없지만 지구 온난화 지수는 높다.In addition, 134a is a refrigerant developed as an alternative refrigerant for R-12 and has a colorless, transparent, non-flammable property. It is mainly used for refrigerators and automobile air conditioners, and it does not contain chlorine in its molecules, so there is no ozone depletion index, but the global warming index is high.
사용되는 냉매는 1.증발력이 대기압보다 높고 상온에서 응축력이 낮고, 2. 증발잠열이 크며, 액체상태의 비열이 작고, 3. 화학적으로 안정하고 4. 열전도도가 높으며 5. 불활성으로 금속과 화학적인 반응이 없으며 6. 전기 저항성이 크며 절연성이 좋고 7. 인화성, 폭발성이 없으며, 8 오존층 붕괴와 지구 온난화에 영향을 주지 않거나 최소화할 수 있는 냉매를 사용할 수 있다.The refrigerant used is 1. The evaporation power is higher than atmospheric pressure and the condensation power is low at room temperature, 2. The latent heat of evaporation is large, the specific heat in the liquid state is small, 3. It is chemically stable 4. It has high thermal conductivity 5. It is inert metal There is no hyperchemical reaction. 6. High electrical resistance, good insulation 7. No flammability and explosiveness, 8 Refrigerants that do not affect or minimize ozone layer collapse and global warming can be used.
R-22, R-134a 등의 냉매의 특성상, 냉매가 액체에서 기체로 기화되면서 많은 열을 흡수할 수 있는데, 냉매유입구(120)로 유입된 냉매는 모터하우징(110) 내에서 스테이터(10) 등의 열을 흡수하고 냉매유출구(130)로 배출되면서 모터하우징(110) 내부의 발열부와 직접 또는 간접으로 접촉하여 열을 흡수하여 냉각시킬 수 있다.Due to the characteristics of refrigerants such as R-22 and R-134a, the refrigerant vaporizes from liquid to gas and can absorb a lot of heat. The refrigerant flowing into the refrigerant inlet 120 is the stator 10 within the motor housing 110. As the heat of the lamp is absorbed and discharged through the refrigerant outlet 130, it may be cooled by absorbing the heat by directly or indirectly contacting the heating unit inside the motor housing 110.
제 1 스테이터 고정링(150)은 스테이터(10)의 일측 단부에 구비되어 스테이터(10)를 지지하는 것으로, 냉매유입구(120)에서 유입된 냉매가 통과되도록 형성된다.The first stator fixing ring 150 is provided at one end of the stator 10 to support the stator 10 and is formed so that the refrigerant introduced from the refrigerant inlet 120 passes.
냉매유입구(120)를 통해 유입된 냉매가 스테이터 코어(11)의 열을 흡수하고 코일(12) 측으로 유동될 수 있도록 제 1 스테이터 고정링(150)에는 개방된 형태의 홀(도면 미도시) 등이 형성되어 있어, 홀(도면 미도시) 등을 통하여 냉매가 제 1 스테이터 고정링(150)을 통과할 수 있다. The first stator fixing ring 150 has an open hole (not shown) so that the refrigerant introduced through the refrigerant inlet 120 absorbs heat from the stator core 11 and flows toward the coil 12. Since is formed, the refrigerant may pass through the first stator fixing ring 150 through a hole (not shown) or the like.
또한, 제 1 스테이터 고정링(150)은 스테이터(10)가 냉매에 침지되어 모터하우징(110)에 결합될 수 있도록, 스테이터(10)의 일측 단부에 결합되어 스테이터(10)를 지지할 수 있고, 도 2 와 같이, 스테이터(10)가 분리되어 형성될 경우, 각각의 스테이터(10)를 일측 단부에서 지지할 수 있도록, 복수 개로 구비될 수 있다.In addition, the first stator fixing ring 150 is coupled to one end of the stator 10 to support the stator 10 so that the stator 10 can be immersed in the refrigerant and coupled to the motor housing 110, and As shown in FIG. 2, when the stator 10 is formed separately, a plurality of stators 10 may be provided so as to support each stator 10 at one end thereof.
제 2 스테이터 고정링(160)은 스테이터(10)의 타측 단부에 구비되어 스테이터(10)를 지지하는 것으로, 코일(12)을 통과한 냉매가 냉매유출구(130)로 유동되도록 형성된다.The second stator fixing ring 160 is provided at the other end of the stator 10 to support the stator 10, and is formed so that the refrigerant passing through the coil 12 flows to the refrigerant outlet 130.
코일(12) 등을 통과하며 열을 흡수한 냉매가 제 2 스테이터 고정링(160)에 인접하여 형성된 냉매유입구(120)로 이동하지 않고, 냉매유출구(130)로 유출되도록 제 2 스테이터 고정링(160)은 폐쇄된 형태로 형성될 수 있다.The second stator fixing ring so that the refrigerant passing through the coil 12 and absorbing heat does not move to the refrigerant inlet 120 formed adjacent to the second stator fixing ring 160 and flows out to the refrigerant outlet 130 ( 160) may be formed in a closed shape.
또한, 제 2 스테이터 고정링(160)은 스테이터(10)가 냉매에 침지되어 모터하우징(110)에 결합될 수 있도록, 스테이터(10)의 타측 단부에 결합되어 스테이터(10)를 지지할 수 있고, 도 2 와 같이, 스테이터(10)가 분리되어 형성될 경우, 각각의 스테이터(10)를 일측 단부에서 지지할 수 있도록, 복수 개로 구비될 수 있다.In addition, the second stator fixing ring 160 is coupled to the other end of the stator 10 to support the stator 10 so that the stator 10 can be immersed in the refrigerant and coupled to the motor housing 110, and As shown in FIG. 2, when the stator 10 is formed separately, a plurality of stators 10 may be provided so as to support each stator 10 at one end thereof.
압력 조절구(170)는 모터하우징(110)의 내부 압력을 조절하기 위하여 적어도 하나로 구비되는 것으로, 모터하우징(110)의 외측면에 형성된다.At least one pressure regulator 170 is provided to adjust the internal pressure of the motor housing 110 and is formed on the outer surface of the motor housing 110.
냉매유로(140)가 형성될 경우, 스테이터(10)로 냉매가 개별적으로 유입되어 냉매유로(140)를 따라 냉매가 유동하며 스테이터(10)를 냉각시키고 배출될 수 있는데, 이러한 과정 중, 내부의 스테이터(10)에서 발생된 열에 의하여 기체 상태로 상변화된 냉매에 의하여 모터하우징(110) 내부 압력이 급격하게 상승될 수 있다.When the refrigerant flow path 140 is formed, the refrigerant individually flows into the stator 10 so that the refrigerant flows along the refrigerant flow path 140 to cool and discharge the stator 10. During this process, the internal The internal pressure of the motor housing 110 may be rapidly increased by the refrigerant phase-changed to a gaseous state by heat generated from the stator 10.
압력 조절구(170)가 모터하우징(110)의 외측면에 솔레노이드 밸브 등의 형태로 구비됨으로써, 모터하우징(110)의 내부 압력이 급격하게 상승하여 일정 압력 이상에 도달할 경우, 압력 조절구(170)가 개방되고, 일정 압력 이하로 회귀될 경우, 압력 조절구(170)이 폐쇄됨으로써, 모터하우징(110) 내부 압력의 급격한 상승을 방지하고 내부 압력을 일정하게 유지시킬 수 있다. Since the pressure regulator 170 is provided in the form of a solenoid valve on the outer surface of the motor housing 110, when the internal pressure of the motor housing 110 rises rapidly and reaches a certain pressure or more, the pressure regulator ( When 170 is opened and returned to a predetermined pressure or lower, the pressure regulator 170 is closed, thereby preventing a rapid increase in the internal pressure of the motor housing 110 and maintaining the internal pressure constant.
이상의 설명에서는 본 발명의 다양한 실시예들을 제시하여 설명하였으나 본 발명이 반드시 이에 한정되는 것은 아니며, 본 발명이 속하는 기술분야에서 통상의 지식을 가진 자라면 본 발명의 기술적 사상을 벗어나지 않는 범위 내에서 여러 가지 치환, 변형 및 변경이 가능함을 쉽게 알 수 있을 것이다.In the above description, various embodiments of the present invention have been presented and described, but the present invention is not necessarily limited thereto, and those of ordinary skill in the art to which the present invention pertains, within the scope of the technical spirit of the present invention. It will be easy to see that branch substitutions, modifications and changes are possible.

Claims (5)

  1. 스테이터 코어 및 코일이 구비되며 전원을 공급받아 자력을 발생시키는 스테이터와, 상기 스테이터의 자화에 의해 회전운동하는 로터를 포함하는 터보 모터에 있어서,In a turbo motor comprising a stator core and a coil provided with a power supply to generate magnetic force, and a rotor rotating by magnetization of the stator,
    상기 로터의 외주면에 이격되어 형성되고, 냉매를 밀폐 수용되며, 내부에 상기 스테이터가 상기 냉매에 침지되어 결합되는 모터하우징과,A motor housing formed to be spaced apart from the outer circumferential surface of the rotor, sealingly receiving a refrigerant, and immersing the stator in the refrigerant to be coupled therein,
    상기 모터하우징의 외측면을 관통하여 형성되며, 상기 모터하우징으로 냉매가 유입되는 냉매유입구와,A refrigerant inlet formed through the outer surface of the motor housing and through which refrigerant flows into the motor housing;
    상기 모터하우징의 외측면을 관통하여 형성되며, 상기 모터하우징으로부터 냉매가 유출되는 냉매유출구와,A refrigerant outlet formed through the outer surface of the motor housing and through which refrigerant flows out of the motor housing;
    상기 모터하우징 내부에 구비되어, 상기 냉매가 유동하면서 상기 스테이터가 냉각되도록 형성되는 냉매유로 A refrigerant flow path provided inside the motor housing and formed to cool the stator while the refrigerant flows
    를 포함하고,Including,
    상기 냉매유입구는 복수 개로 형성되어, 상기 냉매가 상기 스테이터에 분리되어 유입되도록 구비되고,The refrigerant inlet is formed in plural, and is provided so that the refrigerant is separated and introduced into the stator,
    상기 냉매유출구는 상기 냉매유입구의 사이에 적어도 하나로 형성되어, 분리되어 유입된 상기 냉매가 합체되어 상기 모터하우징의 외측으로 유출되도록 구비되며,The refrigerant outlet is formed at least one between the refrigerant inlet and is provided so that the separated and introduced refrigerant is combined to flow out of the motor housing,
    상기 스테이터의 양측 단부에 복수 개로 구비되어 상기 스테이터를 지지하며, 유입된 상기 냉매가 통과되도록 형성되는 제 1 스테이터 고정링과,A first stator fixing ring provided in plural at both ends of the stator to support the stator and configured to pass the introduced refrigerant,
    상기 스테이터의 중심측에 복수 개로 구비되어 상기 스테이터를 지지하며, 상기 코일을 통과한 상기 냉매가 상기 냉매유출구로 유동되도록 형성되는 제 2 스테이터 고정링 A second stator fixing ring provided in plural at the center of the stator to support the stator, and configured to flow the refrigerant passing through the coil to the refrigerant outlet
    을 포함하는 스테이터의 밀폐 냉각을 통해 고효율 냉각이 가능한 터보 모터.Turbo motor capable of high-efficiency cooling through hermetic cooling of the stator comprising a.
  2. 제 1 항에 있어서,The method of claim 1,
    상기 스테이터의 일측 단부에 구비되어 상기 스테이터를 지지하며, 상기 냉매 유입구에서 유입된 상기 냉매가 통과되도록 형성되는 제 1 스테이터 고정링과,A first stator fixing ring provided at one end of the stator to support the stator, and configured to pass the refrigerant introduced from the refrigerant inlet,
    상기 스테이터의 타측 단부에 구비되어 상기 스테이터를 지지하며, 상기 코일을 통과한 상기 냉매가 상기 냉매유출구로 유동되도록 형성되는 제 2 스테이터 고정링A second stator fixing ring provided at the other end of the stator to support the stator, and configured to flow the refrigerant passing through the coil to the refrigerant outlet
    을 포함하는 스테이터의 밀폐 냉각을 통해 고효율 냉각이 가능한 터보 모터.Turbo motor capable of high-efficiency cooling through hermetic cooling of the stator comprising a.
  3. 제 2 항에 있어서, The method of claim 2,
    상기 냉매유로는,The refrigerant flow path,
    상기 냉매유입구로부터 유입된 상기 냉매가 상기 스테이터 코어의 측면을 따라 유동되며, 상기 제 1 스테이터 고정링을 통과하고, 상기 코일을 통과하여 상기 냉매유출구를 통해 유출되도록 형성되는 The refrigerant introduced from the refrigerant inlet flows along the side of the stator core, passes through the first stator fixing ring, passes through the coil, and flows out through the refrigerant outlet.
    스테이터의 밀폐 냉각을 통해 고효율 냉각이 가능한 터보 모터.Turbo motor for high-efficiency cooling through sealed cooling of the stator.
  4. 제 1 항에 있어서,The method of claim 1,
    상기 냉매유로는, The refrigerant flow path,
    상기 냉매유입구로부터 유입된 상기 냉매가 상기 스테이터의 일측 및 타측으로 상기 스테이터 코어의 측면을 따라 유동되며, 상기 제 1 스테이터 고정링을 통과하고, 상기 코일을 통과하여 상기 냉매유출구를 통해 유출되도록 형성되는 The refrigerant introduced from the refrigerant inlet flows to one side and the other side of the stator along side surfaces of the stator core, passes through the first stator fixing ring, passes through the coil, and flows out through the refrigerant outlet.
    스테이터의 밀폐 냉각을 통해 고효율 냉각이 가능한 터보 모터.Turbo motor for high-efficiency cooling through sealed cooling of the stator.
  5. 제 3 항 또는 제 4항에 있어서,The method according to claim 3 or 4,
    상기 모터하우징의 외측면에 형성되며, 상기 모터하우징의 내부 압력을 조절하기 위해 적어도 하나로 구비되는 압력 조절구A pressure regulator formed on the outer surface of the motor housing and provided with at least one to adjust the internal pressure of the motor housing
    를 포함하는 스테이터의 밀폐 냉각을 통해 고효율 냉각이 가능한 터보 모터. Turbo motor capable of high-efficiency cooling through sealed cooling of the stator comprising a.
PCT/KR2020/010548 2019-09-04 2020-08-10 Turbo motor capable of high-efficiency cooling through sealed cooling of stator WO2021045399A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202080059509.7A CN114391212A (en) 2019-09-04 2020-08-10 Turbo motor with efficient cooling by sealed cooling of the stator

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR1020190109310A KR102144666B1 (en) 2019-09-04 2019-09-04 Turbo motor for high efficiency cooling through sealed cooling of stator
KR10-2019-0109310 2019-09-04

Publications (1)

Publication Number Publication Date
WO2021045399A1 true WO2021045399A1 (en) 2021-03-11

Family

ID=72050326

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2020/010548 WO2021045399A1 (en) 2019-09-04 2020-08-10 Turbo motor capable of high-efficiency cooling through sealed cooling of stator

Country Status (3)

Country Link
KR (1) KR102144666B1 (en)
CN (1) CN114391212A (en)
WO (1) WO2021045399A1 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102610711B1 (en) * 2021-06-07 2023-12-05 박창진 A turbo motor that engages two or more airfoil journal bearings and rotors into the air gap between the stator and the rotor
KR102379441B1 (en) 2021-11-26 2022-03-28 하이터빈 주식회사 Single stage low vibration turbine with impeller and fan

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0591696A (en) * 1991-09-26 1993-04-09 Mitsubishi Electric Corp Rotating machine
JP2000116061A (en) * 1998-10-07 2000-04-21 Mitsubishi Motors Corp Cooling structure of rotating electric machine
JP2005354821A (en) * 2004-06-11 2005-12-22 Honda Motor Co Ltd Motor
KR200484535Y1 (en) * 2017-03-09 2017-09-20 (주)명치기계공업 A turbo blower comprising intake port
US20180238347A1 (en) * 2015-09-04 2018-08-23 Turbowin Co., Ltd. Direct drive type dual turbo blower cooling structure

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100474323B1 (en) 1997-12-30 2005-06-27 엘지전자 주식회사 Motor Cooling Unit of Turbo Compressor
KR100273433B1 (en) 1998-07-01 2001-01-15 구자홍 Drive motor cooling structure of turbo compressor

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0591696A (en) * 1991-09-26 1993-04-09 Mitsubishi Electric Corp Rotating machine
JP2000116061A (en) * 1998-10-07 2000-04-21 Mitsubishi Motors Corp Cooling structure of rotating electric machine
JP2005354821A (en) * 2004-06-11 2005-12-22 Honda Motor Co Ltd Motor
US20180238347A1 (en) * 2015-09-04 2018-08-23 Turbowin Co., Ltd. Direct drive type dual turbo blower cooling structure
KR200484535Y1 (en) * 2017-03-09 2017-09-20 (주)명치기계공업 A turbo blower comprising intake port

Also Published As

Publication number Publication date
KR102144666B1 (en) 2020-08-14
CN114391212A (en) 2022-04-22

Similar Documents

Publication Publication Date Title
WO2021045399A1 (en) Turbo motor capable of high-efficiency cooling through sealed cooling of stator
US6131647A (en) Cooling system for cooling hot object in container
CN1685590B (en) Electric machine with cooling system
US20100176670A1 (en) Machine cooling scheme
CN102696082B (en) There is transformer and the cooling means thereof of dividing plate
US9511377B2 (en) High gradient, oil-cooled iron removal device with inner circulation
CN108281590B (en) Battery thermal management device and battery provided with same
JP2008011641A (en) Rotating electric machine
BRPI0611565A2 (en) arrangement and method for heat transport and use in conjunction with subsea equipment
US20200240677A1 (en) Hermetic motor cooling system
CN114785030A (en) Heat dissipation casing, motor and air compressor machine
RU2685701C1 (en) Electric machine
WO2019146832A1 (en) Outdoor unit of air conditioner
GB2059569A (en) Improvements in and relating to cooling apparatus
US7073340B2 (en) Cryogenic compressor enclosure device and method
WO2022065790A1 (en) Refrigerant heat exchange system using circulation of liquid medium
WO2010134719A2 (en) Vehicle air-conditioning apparatus comprising a thermoelectric module
US20050156470A1 (en) Electric motor comprising a stator cooling unit
KR102610711B1 (en) A turbo motor that engages two or more airfoil journal bearings and rotors into the air gap between the stator and the rotor
RU2228571C2 (en) Totally enclosed electrical machine
WO2017037822A1 (en) Rotating electrical machine
WO2020013613A1 (en) Refrigerator
WO2024014635A1 (en) Cartridge-replaceable magnetic cooling system
CN209930048U (en) Stator module for efficient asynchronous motor
WO2023132047A1 (en) Stationary inductor unit

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20860190

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20860190

Country of ref document: EP

Kind code of ref document: A1