WO2022065790A1 - Refrigerant heat exchange system using circulation of liquid medium - Google Patents

Refrigerant heat exchange system using circulation of liquid medium Download PDF

Info

Publication number
WO2022065790A1
WO2022065790A1 PCT/KR2021/012544 KR2021012544W WO2022065790A1 WO 2022065790 A1 WO2022065790 A1 WO 2022065790A1 KR 2021012544 W KR2021012544 W KR 2021012544W WO 2022065790 A1 WO2022065790 A1 WO 2022065790A1
Authority
WO
WIPO (PCT)
Prior art keywords
refrigerant
chamber
pipe
circulation
liquid medium
Prior art date
Application number
PCT/KR2021/012544
Other languages
French (fr)
Korean (ko)
Inventor
김주태
김주배
Original Assignee
김주태
김주배
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 김주태, 김주배 filed Critical 김주태
Publication of WO2022065790A1 publication Critical patent/WO2022065790A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B1/00Compression machines, plants or systems with non-reversible cycle
    • F25B1/005Compression machines, plants or systems with non-reversible cycle of the single unit type
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B39/00Evaporators; Condensers
    • F25B39/04Condensers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B41/00Fluid-circulation arrangements
    • F25B41/40Fluid line arrangements
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D1/00Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators
    • F28D1/02Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid
    • F28D1/04Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid with tubular conduits
    • F28D1/047Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid with tubular conduits the conduits being bent, e.g. in a serpentine or zig-zag
    • F28D1/0472Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid with tubular conduits the conduits being bent, e.g. in a serpentine or zig-zag the conduits being helically or spirally coiled
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F1/00Tubular elements; Assemblies of tubular elements
    • F28F1/10Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses
    • F28F1/40Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses the means being only inside the tubular element
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2339/00Details of evaporators; Details of condensers
    • F25B2339/04Details of condensers
    • F25B2339/047Water-cooled condensers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2400/00General features or devices for refrigeration machines, plants or systems, combined heating and refrigeration systems or heat-pump systems, i.e. not limited to a particular subgroup of F25B
    • F25B2400/04Refrigeration circuit bypassing means
    • F25B2400/0417Refrigeration circuit bypassing means for the subcooler

Definitions

  • the present invention relates to a system for heat exchange of refrigerant in a condenser, and more particularly, through the circulation of cooling water, which is a liquid medium, to take the heat of the refrigerant flowing into the condenser and to liquefy it at the same time. It is a technical field related to the refrigerant heat exchange system used.
  • the gaseous refrigerant which absorbs heat while vaporizing, increases its pressure as it passes through the compressor, and then liquefies while dissipating heat in the condenser.
  • the liquefied refrigerant repeats the process of taking heat while passing through the evaporator in which the volume expands again.
  • the evaporator is usually present indoors or inside the refrigerator, while the condenser is located outdoors or outside the refrigerator.
  • the technology related to the refrigerant cycle for evaporation, compression, condensation, expansion, etc. has a tradition of more than 100 years, and it is true that there are various attempts to improve the technology, large and small.
  • a compressor for compressing a refrigerant a condenser for taking heat from the compressed high-temperature refrigerant and condensing it, an expansion valve for expanding the condensed refrigerant, and heat exchange with the refrigerant compressed in the condenser
  • the present invention relates to a heat storage type natural air conditioning cooling system including an indoor unit having an indoor temperature sensor for detecting the temperature around
  • the absorption chiller relates to a refrigerant evaporation accelerating device, which is installed connected between the generator and the condenser and a part of the high-temperature and high-pressure refrigerant heated in the generator flows through the refrigerant in a low-temperature and low-pressure state, and connects the evaporator and the absorber
  • An opening/closing means that is installed to selectively control the amount of refrigerant flowing out in a high-temperature and high-pressure state, and one side of the opening/closing means are electrically connected to detect the temperature of the room and the temperature of the cold water pipe communicating with the indoor unit, giving a motivation to
  • Patent Document 3 it relates to an energy-saving industrial air conditioner and an operating method thereof, and more particularly, to an energy-saving industrial air conditioner that reduces power consumption by operating the industrial air conditioner using outdoor air having a relatively lower temperature than the indoor temperature.
  • An air conditioner and its operating method comprising: a compressor circulating a refrigerant in a cooling circuit and having an electromagnetic valve that opens and closes according to an operation mode; a condenser connected to the compressor to convert the gaseous refrigerant into a liquid refrigerant; a receiver for storing the liquid refrigerant converted in the condenser; Solenoid valve of the compressor cooling circuit that is connected to the receiver and opens and closes according to the operation mode; an expansion valve connected to the solenoid valve of the compressor cooling circuit to convert relatively high temperature and high pressure liquid refrigerant into low temperature and low pressure; an evaporator connected to the expansion valve to cool the indoor space by exchanging heat with indoor air when the liquid refrigerant evaporates; a liquid separator connected to the evaporator to separate the liquid refrigerant and the gas refrigerant flowing out of the evaporator to deliver only the gas refrigerant to the compressor; a naturally cooling solenoid valve that is connected to the receiver and opens and closes according to
  • a control unit for selecting a natural cooling operation mode for circulating a liquid pump cooling circuit including a receiver, a natural cooling electromagnetic valve, a liquid pump, a three-way valve, an evaporator, a liquid separator, and a circulation pipe.
  • the refrigerant heat exchange system using the circulation of a liquid medium according to the present invention has been devised to solve the conventional problems as described above, and presents the following problems to be solved.
  • the structure of the condenser is to be dramatically improved and the area to be physically secured is reduced.
  • the refrigerant heat exchange system using the circulation of a liquid medium according to the present invention has the following problem solving means for the above problems to be solved.
  • the refrigerant is vaporized through an evaporation unit, the vaporized refrigerant is pressurized through a compression unit, and a high-pressure gaseous refrigerant is introduced, the high-pressure gas
  • the exchange chamber cools the cooling water introduced therein by bypassing the refrigerant through a bypassing pipe provided in a condensing pipe through which the condensed refrigerant flows.
  • a relief chamber receiving the cooled coolant from the exchange chamber and recovering heat of the compressed vaporized refrigerant flowing into the condensing pipe introduced therein; and a supply chamber that stores coolant, flows coolant into the exchange chamber, and selectively introduces coolant into the relief chamber.
  • the exchange chamber accommodates and stores cooling water in an internal space, and accommodates a bypass pipe for flowing the refrigerant therein, the bypassing It is disposed adjacent to the pipe and may be characterized in that it accommodates a cooling pipe for flowing the cooling water through an internal conduit.
  • the bypass pipe may be characterized in that it is spirally loaded while being adjacent to the inner surface of the exchange chamber.
  • the cooling pipe is disposed adjacent to the bypassing pipe and is spirally loaded to dissipate and transfer heat to the bypassing pipe.
  • the relief chamber receives the cooling water from the cooling pipe inside the exchange chamber and receives the inside, and heats from the condensing pipe flowing into the cooling water. It may be characterized by condensing the refrigerant in the condensing pipe by taking it.
  • the relief chamber is characterized in that the condensing pipe extending from the inside of the exchange chamber is spirally loaded while adjacent to the inner surface of the relief chamber can be done with
  • the relief chamber has vertical through-holes formed by penetrating up and down, and a space for accommodating the cooling water is provided centering on the vertical through-holes.
  • the supply chamber may include: a tower chamber having a vertical tower space, accommodating the cooling water on the tower space, and vertically inserted into the vertical through-hole of the relief chamber; and a base chamber disposed under the tower chamber, communicating internally with the tower chamber to receive and store the cooling water, and selectively supply the cooling water to the exchange chamber and the relief chamber It can be characterized as
  • the condensing pipe protrudes inwardly on the inner circumferential surface, is formed along the longitudinal direction of the condensing pipe, and is spirally formed along the longitudinal direction of the condensing pipe It may include a spiral portion that becomes, the spiral portion, it may be characterized in that the flow of the refrigerant flowing inside the condensing pipe is caused to spiral.
  • the condensing pipe conduit further comprises a limiting unit for reducing bubbles generated in the refrigerant flowing in the condensing pipe can be done with
  • the limiting unit may include: a cover case forming an external body and flowing the refrigerant through an internal conduit; a limiting body disposed on the inner conduit of the cover case and forming a resistance to the flow of the refrigerant; a bubble barrier portion provided in the limiting body, inclined at a predetermined angle in the direction in which the refrigerant flows, and passing the refrigerant through an opening in the inner surface; And it is provided on the limiting body, it may be characterized in that it comprises a bubble engaging portion that is formed to protrude in a direction opposite to the direction in which the refrigerant flows.
  • the refrigerant heat exchange system using the circulation of the liquid medium according to the present invention having the above configuration provides the following effects.
  • the condenser exists in the same space as the evaporator, but is physically partitioned so that mutual heat exchange does not occur.
  • the heat emitted from the condenser is absorbed through the cooling water in the chamber, and the water in the chamber does not come into contact with the evaporator, so stable cooling and heating management is possible.
  • the cooling water uses water in the chamber as a main component, and effectively absorbs the heat of the refrigerant through the heat capacity of the large-capacity water in the chamber.
  • FIG. 1 is an overall conceptual diagram showing that a refrigerant heat exchange system using the circulation of a liquid medium according to an embodiment of the present invention is applied.
  • FIG. 2 is a perspective view of a refrigerant heat exchange system using the circulation of a liquid medium according to an embodiment of the present invention.
  • FIG 3 is an exploded perspective view of an exchange chamber in a refrigerant heat exchange system using circulation of a liquid medium according to an embodiment of the present invention.
  • FIG. 4 is an exploded perspective view of a relief chamber in a refrigerant heat exchange system using a liquid medium circulation according to an embodiment of the present invention.
  • FIG. 5 is an exploded perspective view of a relieving chamber and a supplying chamber in a refrigerant heat exchange system using the circulation of a liquid medium according to an embodiment of the present invention.
  • FIG. 6 is a partially cut-away perspective view and a cross-sectional view illustrating an internal structure of a condensing pipe in a refrigerant heat exchange system using circulation of a liquid medium according to an embodiment of the present invention.
  • FIG. 7 is an exploded perspective view illustrating an internal structure of a limiting unit in a refrigerant heat exchange system using the circulation of a liquid medium according to an embodiment of the present invention.
  • the refrigerant heat exchange system using the circulation of a liquid medium according to the present invention can have various changes and can have various embodiments, and specific embodiments are illustrated in the drawings and described in detail in the detailed description. However, this is not intended to limit the present invention to specific embodiments, and it should be understood to include all modifications, equivalents and substitutes included in the spirit and scope of the present invention.
  • 1 is an overall conceptual diagram showing that a refrigerant heat exchange system using the circulation of a liquid medium according to an embodiment of the present invention is applied.
  • 2 is a perspective view of a refrigerant heat exchange system using the circulation of a liquid medium according to an embodiment of the present invention.
  • 3 is an exploded perspective view of an exchange chamber in a refrigerant heat exchange system using circulation of a liquid medium according to an embodiment of the present invention.
  • 4 is an exploded perspective view of a relief chamber in a refrigerant heat exchange system using a liquid medium circulation according to an embodiment of the present invention.
  • 5 is an exploded perspective view of a relieving chamber and a supplying chamber in a refrigerant heat exchange system using the circulation of a liquid medium according to an embodiment of the present invention.
  • FIG. 6 is a partially cut-away perspective view and a cross-sectional view illustrating an internal structure of a condensing pipe in a refrigerant heat exchange system using circulation of a liquid medium according to an embodiment of the present invention.
  • 7 is an exploded perspective view illustrating an internal structure of a limiting unit in a refrigerant heat exchange system using the circulation of a liquid medium according to an embodiment of the present invention.
  • the refrigerant vaporizes through the evaporation unit 1, and after taking heat from the room or the refrigerator, the vaporized refrigerant is It relates to a system in which heat is dissipated or heat exchanged for condensing again after being pressurized through the compressor unit (2) to make a high-pressure gas refrigerant.
  • 1 relates to an overall heat exchange mechanism to which the present invention is applied, and mainly contains technical ideas about heat exchange such as condensation, expansion, and evaporation of the refrigerant after the refrigerant recovers heat from a room or a desired space.
  • an exchange chamber 100 in the case of a refrigerant heat exchange system using the circulation of a liquid medium according to the present invention, as shown in FIG. 2 , an exchange chamber 100 , a relieving chamber 200 , and a supply chamber (supplying chamber, 300) will be included.
  • the refrigerant that has passed through the evaporation unit 1 in FIG. 1 enters the condensing pipe 10 of FIG. 2 .
  • the condensing pipe 10 forms a path through which the refrigerant flows as described above. After leaving the evaporation unit 1, it comes out through the compression unit 2, and thereafter, before entering the relief chamber 200. 10a, 10b in the relief chamber, and 10c when exiting the relief chamber. In addition, in the case of the condensing pipe 10 , when exiting the relief chamber 200 , after passing through the expansion valve v , the main path entering the evaporation unit 1 and a partial flow into the exchange chamber 100 , bypassing It may flow to the bypass pipe 11 which is a path.
  • the exchange chamber 100 has a bypassing pipe 11 branched from the condensing pipe 10 therein, and the bypassing pipe 11 is the condensing pipe 10 is expanded. It branches on the pipe after the valve v, and the branched pipe enters the exchange chamber 100 as shown in FIG. 3 .
  • cooling pipe 20 supplied from the supply chamber 300 is directly introduced into the exchange chamber 100 .
  • the cooling pipe 20 in the exchange chamber 100 it exists as the second cooling unit 22 and is wound in a circular spiral shape, and the cooling water in the second cooling unit 22 of the cooling pipe 20 is a refrigerant. After heat exchange with the bypassed second pipe 11b, that is, cooled, it enters the space inside the relief chamber 200, which will be described later.
  • the cooling water is received from the third cooling unit 23 from the second cooling unit 22 of the exchange chamber 100 , and the cooled cooling water is stored therein.
  • the cooling water entering the relief chamber 200 takes heat from the refrigerant flowing in the inner pipe 10b, and then returns to the supply chamber 300 through the down pipe 202h.
  • the relief chamber 200 is cooled and condensed through the inlet pipe 10a and the inner pipe 10b charged to the coolant in the relief chamber 200, and the outlet pipe After exiting through (10c), it passes through the expansion valve (v).
  • the supply chamber 300 selectively supplies cooling water to the exchange chamber 100 through the first cooling unit 21 , or selectively supplies cooling water into the relief chamber 200 through the supply pipe 310h. perform the supply function.
  • the second pipe 11b loaded therein is disposed adjacent to the inner surface of the exchange chamber 100 , and the second cooling unit 22 is placed in a square shape. It is preferable to load it spirally while winding it.
  • the second cooling unit 22 is loaded therein, and the second cooling unit 22 is disposed inside the second pipe 11b, It is preferable to arrange it in a spiral while winding it in a circle.
  • the second cooling unit 22 which is spirally wound in a circle, is wound around the inside of the second pipe 11b, recovers the cold air generated by the second pipe 11b, and is cooled.
  • a vertical through-hole (h) is formed in the middle, and the cooling water is accommodated only in an area excluding the vertical through-hole (h).
  • the inner pipe 10b is disposed.
  • the supply chamber 300 preferably includes a tower chamber (tower chamber, 310), and a base chamber (base chamber, 320), as shown in FIG.
  • the tower chamber 310 In the case of the tower chamber 310 , it is formed as a vertical tower space, receives cooling water on the vertical tower space, and is vertically inserted into the vertical through-hole h of the relief chamber 200 .
  • the base chamber 320 it is disposed under the tower chamber 310 , and is internally communicated with the tower chamber 310 to receive and store cooling water, and the exchange chamber 100 and the relief chamber 200 . It is a configuration that selectively supplies cooling water to the
  • the cooling water of the base chamber 320 may pass through the first cooling unit 21 and may be provided to the second cooling unit 22 of the exchange chamber 100 through a pump.
  • the cooling water of the tower chamber 200 may be introduced into the first relief pipe 201h through the supply pipe 310h and the cooling water evaporated in the relief chamber 200 may be replenished.
  • the cooling water existing in the base chamber 320 enters the exchange chamber 100 through the first cooling unit 21 . Thereafter, the cooling water is cooled through heat exchange with the second pipe 11b through which the bypassed refrigerant that flows around the inside of the exchange chamber 100 flows while being wound around the second cooling unit 21 . Thereafter, the cooling water exits the exchange chamber 100 and enters the relief chamber 200 through the third cooling unit 23 to cool the inner pipe 10b through which the refrigerant flows, and to the base chamber through the 202h pipe. back again to (320).
  • the refrigerant expanded by absorbing heat through the evaporation unit 1 passes through the compression unit 2 corresponding to the compressor, and then flows through the condensing pipe 10 to the relief chamber 20 Heat is taken away by cooling water from the inner inner pipe 11b and condensed, and then exits through the outlet pipe 10c. Thereafter, the refrigerant that has passed through the expansion valve v basically goes to the evaporation unit 1, but a part enters the exchange chamber 100 through the first pipe 11a of the bypassing pipe 11 and as described above. After taking the heat of the same coolant, it meets the refrigerant that has passed through the evaporation unit 1 and enters the compressor unit 2 .
  • the condensing pipe 10 as described above may include a spiral portion (P), as shown in FIG.
  • the spiral portion P protrudes inwardly from the inner circumferential surface, and is formed in a spiral shape along the longitudinal direction of the condensing pipe 10 while being formed along the longitudinal direction of the condensing pipe 10 .
  • the spiral part (P) causes the flow of the refrigerant flowing inside the condensing pipe (10) to be spirally, and through this, the liquid particles of the refrigerant are crossed over the inner surface of the condensing pipe (10) and the surface of the spiral part (P). to make contact, so that the heat of the refrigerant is taken away efficiently.
  • the refrigerant heat exchange system using the circulation of the liquid medium according to the present invention may further include a limiting unit (limiting unit, 30) as shown in Figs.
  • the limiting unit 30 is provided on the condensing pipe 10 , thereby reducing bubbles generated in the refrigerant flowing in the condensing pipe 10 .
  • the limiting unit 30 may include a cover case 31 , a limiting body 32 , a bubble partition wall part 33 , and a bubble stopping part 34 .
  • cover case 31 In the case of the cover case 31, it forms an external body and is configured to flow the refrigerant through an internal conduit.
  • the limiting body 32 is disposed on the inner pipe of the cover case 31, forms a resistance to the flow of the refrigerant, the bubble partition wall 33, the bubble engaging portion 34 It is a fixed attachment configuration.
  • the bubble partition wall part 33 it is provided on the limiting body 32 as described above, is inclined at a predetermined angle in the direction in which the coolant flows, and the coolant passes through the opening 33h on the inner surface.
  • the predetermined angle may be formed to form an acute angle with the direction in which the refrigerant flows, as shown in FIG. 7 , or an obtuse angle may be formed with the direction in which the refrigerant flows to be symmetrical thereto.

Abstract

Disclosed is a technical idea characterized by comprising: an exchange chamber that cools cooling water introduced inside by bypassing a refrigerant through a bypassing pipe provided in a condensing pipe through which the condensed refrigerant flows; a relieving chamber that receives the cooled cooling water from the exchange chamber and recovers the heat of the compressed vaporized refrigerant flowing into the condensing pipe introduced to the inside; and a supplying chamber that stores cooling water and allows the refrigerant to flow into the exchange chamber.

Description

리퀴드 매개체의 서큘레이션을 이용한 냉매 열교환 시스템Refrigerant heat exchange system using liquid medium circulation
본 발명은 응축기의 냉매 열교환을 위한 시스템에 관한 것으로서, 보다 자세하게는, 리퀴드 매개체인 냉각수의 서큘레이션을 통하여, 응축기로 유입되는 냉매의 열을 빼앗음과 동시에 액화를 도모하는, 리퀴드 매개체의 서큘레이션을 이용한 냉매 열교환 시스템에 관한 기술 분야이다.The present invention relates to a system for heat exchange of refrigerant in a condenser, and more particularly, through the circulation of cooling water, which is a liquid medium, to take the heat of the refrigerant flowing into the condenser and to liquefy it at the same time. It is a technical field related to the refrigerant heat exchange system used.
실내 온도의 조절이나, 혹은 냉장고 등의 온도 조절을 위한 각종 장치나 제품들에 있어서 증기압축식 냉동 사이클의 경우, 기본적으로 작용되는 에너지 및 냉매 순환의 원리는 동일하다.In the case of a vapor compression type refrigeration cycle in various devices or products for controlling room temperature or temperature, such as a refrigerator, the principle of energy and refrigerant circulation that basically acts is the same.
먼저, 고압의 액체 상태의 냉매를 부피가 팽창하는 관으로 강제 인입시키면서, 냉매를 기화시키고 기화의 과정에서 냉매는 주위의 열을 빼앗게 된다.First, while forcibly introducing a high-pressure liquid refrigerant into a tube that expands in volume, the refrigerant is vaporized, and in the process of vaporization, the refrigerant takes away heat from the surroundings.
기화하면서 열을 흡수한 기체 상태의 냉매는 압축기를 통과하면서 압력이 높아진 후, 응축기에서 열을 발산함과 동시에 액화가 진행된다. The gaseous refrigerant, which absorbs heat while vaporizing, increases its pressure as it passes through the compressor, and then liquefies while dissipating heat in the condenser.
이렇게 액화된 냉매는 상술한 바와 같이 다시 부피가 팽창하는 증발기를 거치면서 열을 빼앗는 과정을 되풀이 하게 된다.As described above, the liquefied refrigerant repeats the process of taking heat while passing through the evaporator in which the volume expands again.
응축기의 경우, 빼앗은 열을 방출하는 공간에 해당하므로 열을 빼앗은 공간과 열을 다시 배출하는 공간을 분리할 필요가 있기 때문에, 응축기는 증발기와 어떠한 형태로든 열의 이동을 차단시켜야 한다.In the case of the condenser, since it corresponds to a space for discharging the stolen heat, it is necessary to separate the space from which the heat is taken and the space for discharging the heat again.
증발기는 보통 실내 혹은 냉장고 내부 공간에 존재하되, 응축기는 실외 혹은 냉장고 외부에 존재한다.The evaporator is usually present indoors or inside the refrigerator, while the condenser is located outdoors or outside the refrigerator.
실내에 존재하는 증발기로부터 실외에 존재하는 실외기 즉, 응축기로 가는 과정은 매우 멀고 험난하고, 실외기 자체의 별도 가동 과정에서 별도의 에너지 자원을 낭비하는 문제점이 있다. There is a problem in that the process from the evaporator existing indoors to the outdoor unit existing outdoors, that is, the condenser, is very long and difficult, and a separate energy resource is wasted in the separate operation process of the outdoor unit itself.
응축기와 증발기를 물리적으로 분리하되, 일체 혹은 매우 인접한 공간에 배치할 수 있는 기술적인 시도가 요원하다.Although the condenser and the evaporator are physically separated, a technical attempt to place them in one or very adjacent spaces is far from being possible.
증발, 압축, 응축, 팽창 등에 대한 냉매 싸이클과 관련한 기술은 100여년의 전통을 가지고 있는바, 이와 관련된 크고 작은 다양한 기술적인 개선의 시도가 존재하는 것은 사실이다.The technology related to the refrigerant cycle for evaporation, compression, condensation, expansion, etc. has a tradition of more than 100 years, and it is true that there are various attempts to improve the technology, large and small.
예컨대, "자연공조 냉방시스템 및 그 운전방법(등록번호 제10-0605022, 특허문헌1)"이 존재한다.For example, "Natural air conditioning cooling system and its operation method (Registration No. 10-0605022, Patent Document 1)" exists.
특허문헌1에 따른 발명의 경우, 냉매를 압축하는 압축기와, 압축된 고온의 냉매로부터 열을 빼앗아 응축시키는 응축기와, 응축된 냉매를 팽창시키는 팽창밸브와, 응축기에서 압축된 냉매와의 열 교환을 통해 열을 빼앗은 물을 순환시키기 위한 실외기 순환펌프와, 냉각코일(dry cooler coil)의 일면에 설치되어 공기의 흐름을 만드는 실외기 팬과, 외기온도를 측정하는 외기온도 감지센서와, 냉각코일을 통과한 물의 온도를 측정하기 위한 냉수온도 감지센서를 구비하는 실외기 유닛과; 실외기 팬과, 응축기로부터 온도가 강하된 냉매를 직접 팽창시켜 온도를 낮추는 직팽코일(DX coil)과, 저온의 냉수를 순환시켜 실내를 냉방하기 위한 냉수코일과, 냉수를 순환시키기 위한 실내기 순환펌프 및 실내기의 냉수코일 주위의 온도를 감지하기 위한 실내온도 감지센서를 구비하는 실내기 유닛을 구비하는 축열식 자연공조 냉방시스템 및 그 운전방법에 관한 것이다. In the case of the invention according to Patent Document 1, a compressor for compressing a refrigerant, a condenser for taking heat from the compressed high-temperature refrigerant and condensing it, an expansion valve for expanding the condensed refrigerant, and heat exchange with the refrigerant compressed in the condenser The outdoor unit circulation pump for circulating the water that has lost heat through it, the outdoor unit fan installed on one side of the dry cooler coil to create an air flow, the outdoor air temperature sensor to measure the outdoor temperature, and the cooling coil pass an outdoor unit having a cold water temperature sensor for measuring the temperature of one water; An outdoor unit fan, a direct expansion coil (DX coil) that lowers the temperature by directly expanding the refrigerant whose temperature has dropped from the condenser, a cold water coil for cooling the room by circulating low-temperature cold water, an indoor unit circulation pump for circulating the cold water, and The present invention relates to a heat storage type natural air conditioning cooling system including an indoor unit having an indoor temperature sensor for detecting the temperature around a cold water coil of the indoor unit, and to a method for operating the same.
"흡수식 냉난방기의 냉매싸이클(특1994-0015428, 특허문헌2)"도 존재한다."The refrigerant cycle of an absorption type air conditioner (Patent Document 2, 1994-0015428)" also exists.
특허문헌2에 따른 발명의 경우, 흡수식 냉동기이 냉매증발 촉진장치에 관한 것으로, 발생기와 응축기사이에 연결 설치되어 발생기에서 가열된 고온고압의 냉매일부를 저온저압상태의 냉매가 흐르며 증발기와 흡수기를 연결하는 연결관으로 유출안내하는 유출안내부와, 유출안내부하단과 연통되는 연결관의 내부일측에 설치되어 유출안내부를 통해 유출되는 고온고압의 냉매를 가속시키는 가속부와, 유출안내부의 적소에 개폐가능하게 설치되어 고온고압상태로 유출되는 냉매의 유출량을 선택적으로 조절하는 개폐수단과, 개폐수단과 일측이 전기접속되어 실내의 온도와 실내기와 연통되는 냉수파이프온도를 감지하여 선택적으로 이를 개폐시키는 동기를 부여하는 조절수단을 포함하므로서 흡수식냉동기의 냉매를 유속과 유량을 증대시키므로서 냉각효율을 향상시킨 것이다.In the case of the invention according to Patent Document 2, the absorption chiller relates to a refrigerant evaporation accelerating device, which is installed connected between the generator and the condenser and a part of the high-temperature and high-pressure refrigerant heated in the generator flows through the refrigerant in a low-temperature and low-pressure state, and connects the evaporator and the absorber An outflow guide for guiding the outflow to the connection pipe, an accelerator installed on one side of the inner side of the connection pipe that communicates with the outflow guide end to accelerate the high-temperature and high-pressure refrigerant flowing out through the outflow guide, so that it can be opened and closed at the right place of the outflow guide An opening/closing means that is installed to selectively control the amount of refrigerant flowing out in a high-temperature and high-pressure state, and one side of the opening/closing means are electrically connected to detect the temperature of the room and the temperature of the cold water pipe communicating with the indoor unit, giving a motivation to selectively open and close it The cooling efficiency is improved by increasing the flow rate and flow rate of the refrigerant of the absorption chiller by including a control means.
"에너지 절약형 산업용 공조기 및 그 운전방법(등록번호 제10-1727561호, 특허문헌3)"이 존재한다."Energy-saving industrial air conditioner and its operation method (Registration No. 10-1727561, Patent Document 3)" exists.
특허문헌3에 따른 발명의 경우, 에너지 절약형 산업용 공조기 및 그 운전방법에 관한 것으로, 보다 상세하게는 실내온도에 비해 비교적 온도가 낮은 외기를 이용하여 산업용 공조기를 운전하여 전력 소비량을 감소시키는 에너지 절약형 산업용 공조기 및 그 운전방법으로서, 냉매를 냉각회로 내에 순환시키며, 운전모드에 따라 열리고 닫히는 전자변이 형성된 압축기; 압축기에 연결되어 기체 냉매를 액체 냉매로 변환시키는 응축기; 응축기에서 변환되는 액체 냉매를 저장하는 수액기; 수액기에 연결되어 운전모드에 따라 열리고 닫히는 압축기 냉각회로 전자변; 압축기 냉각회로 전자변에 연결되어 상대적으로 고온, 고압의 액체 냉매를 저온, 저압으로 변환시키는 팽창변; 팽창변에 연결되어 액체 냉매가 증발할 때 실내공기와 열교환하여 실내공간을 냉각시키는 증발기; 증발기에 연결되어 증발기에서 유출되는 액체 냉매와 기체 냉매를 분리하여 기체 냉매만을 압축기에 전달하는 액분리기; 수액기에 연결되어 운전모드에 따라 열리고 닫히는 자연냉각 전자변; 자연냉각 전자변에 연결되어 냉매를 냉각회로 내에 순환시키는 액펌프; 액펌프와 증발기에 연결되며, 냉매의 개폐량을 조절하는 삼방변; 액분리기를 응축기에 직접 연결하며, 운전모드에 따라 열리고 닫히는 전자변을 포함하는 순환배관; 삼방변을 순환 배관에 연결하는 바이패스 배관; 및 실내온도를 측정하는 실내온도 감지센서와 외기온도를 측정하는 외기온도 감지센서를 포함하며, 실내온도 감지센서에서 측정된 실내온도에 따라 압축기에 의해 냉매가 응축기와 수액기, 압축기 냉각회로 전자변, 팽창변, 증발기, 액분리기 및 압축기를 포함하는 압축기 냉각회로를 순환하는 냉동기 운전모드나 외기온도 감지센서에서 측정된 외기온도가 실내 온도 감지센서에서 측정된 실내온도보다 낮은 경우 액펌프에 의해 냉매가 응축기와 수액기, 자연냉각 전자변, 액펌프, 삼방변, 증발기, 액분리기 및 순환 배관을 포함하는 액펌프 냉각회로를 순환하는 자연냉각 운전모드를 선택하는 제어부를 포함하는 것을 개시한다.In the case of the invention according to Patent Document 3, it relates to an energy-saving industrial air conditioner and an operating method thereof, and more particularly, to an energy-saving industrial air conditioner that reduces power consumption by operating the industrial air conditioner using outdoor air having a relatively lower temperature than the indoor temperature. An air conditioner and its operating method, comprising: a compressor circulating a refrigerant in a cooling circuit and having an electromagnetic valve that opens and closes according to an operation mode; a condenser connected to the compressor to convert the gaseous refrigerant into a liquid refrigerant; a receiver for storing the liquid refrigerant converted in the condenser; Solenoid valve of the compressor cooling circuit that is connected to the receiver and opens and closes according to the operation mode; an expansion valve connected to the solenoid valve of the compressor cooling circuit to convert relatively high temperature and high pressure liquid refrigerant into low temperature and low pressure; an evaporator connected to the expansion valve to cool the indoor space by exchanging heat with indoor air when the liquid refrigerant evaporates; a liquid separator connected to the evaporator to separate the liquid refrigerant and the gas refrigerant flowing out of the evaporator to deliver only the gas refrigerant to the compressor; a naturally cooling solenoid valve that is connected to the receiver and opens and closes according to the operation mode; a liquid pump connected to the natural cooling solenoid valve to circulate the refrigerant in the cooling circuit; a three-way valve connected to the liquid pump and the evaporator to control the opening/closing amount of the refrigerant; a circulation pipe that directly connects the liquid separator to the condenser and includes an electromagnetic valve that opens and closes according to an operation mode; a bypass pipe connecting the three sides to the circulation pipe; and an indoor temperature sensor for measuring the indoor temperature and an outdoor temperature sensor for measuring the outdoor temperature, wherein, according to the indoor temperature measured by the indoor temperature sensor, the refrigerant is transferred to the condenser and receiver, the compressor cooling circuit electromagnetic valve, In the refrigerator operation mode that circulates the compressor cooling circuit including the expansion valve, the evaporator, the liquid separator and the compressor, or when the outdoor temperature measured by the outdoor temperature sensor is lower than the indoor temperature measured by the indoor temperature sensor, the refrigerant is transferred to the condenser by the liquid pump. and a control unit for selecting a natural cooling operation mode for circulating a liquid pump cooling circuit including a receiver, a natural cooling electromagnetic valve, a liquid pump, a three-way valve, an evaporator, a liquid separator, and a circulation pipe.
종래 기술들은 응축기의 가동을 위하여 별도의 에너지를 소비하게 되고, 아울러, 증발기와 응축기가 물리적으로 크게 분리되어 배치되는바 큰 공간을 차지하는 비효율성을 가지고 있다.Conventional technologies consume separate energy for operation of the condenser, and, in addition, have inefficiency in occupying a large space as the evaporator and the condenser are physically separated from each other.
본 발명에 따른 리퀴드 매개체의 서큘레이션을 이용한 냉매 열교환 시스템은 상기한 바와 같은 종래 문제점을 해결하기 위해 안출된 것으로서, 다음과 같은 해결하고자 하는 과제를 제시한다.The refrigerant heat exchange system using the circulation of a liquid medium according to the present invention has been devised to solve the conventional problems as described above, and presents the following problems to be solved.
첫째, 응축기의 구조를 획기적으로 개선하고, 물리적으로 확보하는 영역을 줄이고자 한다.First, the structure of the condenser is to be dramatically improved and the area to be physically secured is reduced.
둘째, 응축기의 열 발산의 매커니즘을 개선하여, 외부에서 인입되는 전력의 낭비를 방지하고자 한다.Second, by improving the mechanism of heat dissipation of the condenser, it is intended to prevent the waste of electric power drawn in from the outside.
셋째, 응축기와 증발기의 물리적인 분할을 통한 불필요한 공간 자원의 낭비를 방지한다.Third, unnecessary waste of space resources is prevented by physically dividing the condenser and the evaporator.
본 발명의 해결 과제는 이상에서 언급된 것들에 한정되지 않으며, 언급되지 아니한 다른 해결과제들은 아래의 기재로부터 당업자에게 명확하게 이해될 수 있을 것이다.The problems to be solved of the present invention are not limited to those mentioned above, and other problems not mentioned will be clearly understood by those skilled in the art from the following description.
본 발명에 따른 리퀴드 매개체의 서큘레이션을 이용한 냉매 열교환 시스템은 상기의 해결하고자 하는 과제를 위하여 다음과 같은 과제 해결 수단을 가진다.The refrigerant heat exchange system using the circulation of a liquid medium according to the present invention has the following problem solving means for the above problems to be solved.
본 발명에 따른 리퀴드 매개체의 서큘레이션을 이용한 냉매 열교환 시스템의 경우, 증발 유닛을 통해 냉매를 기화시키고, 기화된 냉매를 콤프레싱 유닛을 통해 가압하여, 고압의 기체 냉매를 인입하여, 상기 고압의 기체 냉매의 열을 발산시키도록 상기 냉매의 열을 교환 시키기 위한 시스템으로서, 응축된 냉매가 유동하는 콘덴싱 파이프에 제공된 바이패싱 파이프를 통하여 상기 냉매를 바이패스 시켜, 내부로 인입된 냉각수를 냉각시키는 익스체인지 챔버; 상기 익스체인지 챔버로부터 냉각된 냉각수를 전달받으며, 내부로 인입되는 콘덴싱 파이프 내부로 유동되는 압축된 기화 냉매의 열을 회수하는 릴리빙 챔버; 및 냉각수를 보관하며, 상기 익스체인지 챔버 내부로 냉각수를 유동시키며, 상기 릴리빙 챔버에는 선택적으로 냉각수를 유입시키는 서플라잉 챔버를 포함하는 것을 특징으로 할 수 있다.In the case of the refrigerant heat exchange system using the circulation of a liquid medium according to the present invention, the refrigerant is vaporized through an evaporation unit, the vaporized refrigerant is pressurized through a compression unit, and a high-pressure gaseous refrigerant is introduced, the high-pressure gas As a system for exchanging the heat of the refrigerant to dissipate the heat of the refrigerant, the exchange chamber cools the cooling water introduced therein by bypassing the refrigerant through a bypassing pipe provided in a condensing pipe through which the condensed refrigerant flows. ; a relief chamber receiving the cooled coolant from the exchange chamber and recovering heat of the compressed vaporized refrigerant flowing into the condensing pipe introduced therein; and a supply chamber that stores coolant, flows coolant into the exchange chamber, and selectively introduces coolant into the relief chamber.
본 발명에 따른 리퀴드 매개체의 서큘레이션을 이용한 냉매 열교환 시스템의 경우, 상기 익스체인지 챔버는, 내부의 공간에 냉각수를 수용하여 저장하며, 상기 냉매를 유동시키는 바이패싱 파이프를 내부에 수용하며, 상기 바이패싱 파이프에 인접하여 배치되며 내부 관로를 통해 상기 냉각수를 유동시키는 쿨링 파이프를 수용하는 것을 특징으로 할 수 있다.In the case of the refrigerant heat exchange system using the circulation of a liquid medium according to the present invention, the exchange chamber accommodates and stores cooling water in an internal space, and accommodates a bypass pipe for flowing the refrigerant therein, the bypassing It is disposed adjacent to the pipe and may be characterized in that it accommodates a cooling pipe for flowing the cooling water through an internal conduit.
본 발명에 따른 리퀴드 매개체의 서큘레이션을 이용한 냉매 열교환 시스템의 경우, 상기 바이패싱 파이프는, 상기 익스체인지 챔버의 내면에 인접하면서 나선형으로 적재되는 것을 특징으로 할 수 있다.In the case of the refrigerant heat exchange system using the circulation of the liquid medium according to the present invention, the bypass pipe may be characterized in that it is spirally loaded while being adjacent to the inner surface of the exchange chamber.
본 발명에 따른 리퀴드 매개체의 서큘레이션을 이용한 냉매 열교환 시스템의 경우, 상기 쿨링 파이프는, 상기 바이패싱 파이프에 인접하여 배치되고, 나선형으로 적재되어, 상기 바이패싱 파이프로 열을 발산하여 전달하는 것을 특징으로 할 수 있다.In the case of the refrigerant heat exchange system using the circulation of a liquid medium according to the present invention, the cooling pipe is disposed adjacent to the bypassing pipe and is spirally loaded to dissipate and transfer heat to the bypassing pipe. can be done with
본 발명에 따른 리퀴드 매개체의 서큘레이션을 이용한 냉매 열교환 시스템의 경우, 상기 릴리빙 챔버는, 상기 익스체인지 챔버 내부의 쿨링 파이프로부터 냉각수를 전달받아 내부에 수용하며, 상기 냉각수 내로 유입되는 콘덴싱 파이프로부터 열을 빼앗아 상기 콘덴싱 파이프 내의 냉매를 응축시키는 것을 특징으로 할 수 있다.In the case of the refrigerant heat exchange system using the circulation of a liquid medium according to the present invention, the relief chamber receives the cooling water from the cooling pipe inside the exchange chamber and receives the inside, and heats from the condensing pipe flowing into the cooling water. It may be characterized by condensing the refrigerant in the condensing pipe by taking it.
본 발명에 따른 리퀴드 매개체의 서큘레이션을 이용한 냉매 열교환 시스템의 경우, 상기 릴리빙 챔버는, 상기 익스체인지 챔버 내부로부터 연장된 상기 콘덴싱 파이프를 상기 릴리빙 챔버의 내부면에 인접하면서 나선형으로 적재시키는 것을 특징으로 할 수 있다.In the case of the refrigerant heat exchange system using the circulation of a liquid medium according to the present invention, the relief chamber is characterized in that the condensing pipe extending from the inside of the exchange chamber is spirally loaded while adjacent to the inner surface of the relief chamber can be done with
본 발명에 따른 리퀴드 매개체의 서큘레이션을 이용한 냉매 열교환 시스템의 경우, 상기 릴리빙 챔버는, 상하로 관통되어 형성된 수직 관통홀을 구비하며, 상기 수직 관통홀을 중심으로 상기 냉각수를 수용하는 공간이 마련되며, 상기 서플라잉 챔버는, 수직의 타워 공간이 마련되어, 상기 타워 공간 상에 상기 냉각수를 수용하며, 상기 릴리빙 챔버의 상기 수직 관통홀에 상하 삽입되는 타워 챔버(tower chamber); 및 상기 타워 챔버의 하부에 배치되어, 상기 타워 챔버와 내부적으로 연통되어 상기 냉각수를 수용하여 저장하며, 상기 익스체인지 챔버와 상기 릴리빙 챔버에 상기 냉각수를 선택적으로 공급하는 베이스 챔버(base chamber)를 포함하는 것을 특징으로 할 수 있다.In the case of the refrigerant heat exchange system using the circulation of a liquid medium according to the present invention, the relief chamber has vertical through-holes formed by penetrating up and down, and a space for accommodating the cooling water is provided centering on the vertical through-holes. The supply chamber may include: a tower chamber having a vertical tower space, accommodating the cooling water on the tower space, and vertically inserted into the vertical through-hole of the relief chamber; and a base chamber disposed under the tower chamber, communicating internally with the tower chamber to receive and store the cooling water, and selectively supply the cooling water to the exchange chamber and the relief chamber It can be characterized as
본 발명에 따른 리퀴드 매개체의 서큘레이션을 이용한 냉매 열교환 시스템의 경우, 상기 콘덴싱 파이프는, 내주면에 내향 돌출되며, 상기 콘덴싱 파이프의 길이 방향을 따라 형성되면서, 상기 콘덴싱 파이프의 길이 방향을 따라 나선형으로 형성되는 스파이럴부를 포함하며, 상기 스파이럴부는, 상기 콘덴싱 파이프 내부에서 유동되는 상기 냉매의 유동을 나선형으로 일으키는 것을 특징으로 할 수 있다.In the case of the refrigerant heat exchange system using the circulation of a liquid medium according to the present invention, the condensing pipe protrudes inwardly on the inner circumferential surface, is formed along the longitudinal direction of the condensing pipe, and is spirally formed along the longitudinal direction of the condensing pipe It may include a spiral portion that becomes, the spiral portion, it may be characterized in that the flow of the refrigerant flowing inside the condensing pipe is caused to spiral.
본 발명에 따른 리퀴드 매개체의 서큘레이션을 이용한 냉매 열교환 시스템의 경우, 상기 콘덴싱 파이프의 관로 상에 제공되어, 상기 콘덴싱 파이프 내에서 유동되는 냉매에서 발생되는 기포를 저감시키는 리미팅 유닛을 더 포함하는 것을 특징으로 할 수 있다.In the case of the refrigerant heat exchange system using the circulation of the liquid medium according to the present invention, it is provided on the condensing pipe conduit, and further comprises a limiting unit for reducing bubbles generated in the refrigerant flowing in the condensing pipe can be done with
본 발명에 따른 리퀴드 매개체의 서큘레이션을 이용한 냉매 열교환 시스템의 경우, 상기 리미팅 유닛은, 외부의 몸체를 형성하며, 내부 관로를 통해 상기 냉매를 유동시키는 커버 케이스; 상기 커버 케이스의 내부 관로 상에 배치되며, 상기 냉매의 유동에 저항을 형성하는 리미팅 보디; 상기 리미팅 보디에 제공되며, 상기 냉매가 유동되는 방향에 소정의 각도로 기울어지며, 내면에 개구를 통해 상기 냉매를 관통시키는 기포 격벽부; 및 상기 리미팅 보디에 제공되며, 상기 냉매가 유동되는 방향에 역행하는 방향으로 돌출 형성되는 기포 걸림부를 포함하는 것을 특징으로 할 수 있다.In the case of the refrigerant heat exchange system using the circulation of the liquid medium according to the present invention, the limiting unit may include: a cover case forming an external body and flowing the refrigerant through an internal conduit; a limiting body disposed on the inner conduit of the cover case and forming a resistance to the flow of the refrigerant; a bubble barrier portion provided in the limiting body, inclined at a predetermined angle in the direction in which the refrigerant flows, and passing the refrigerant through an opening in the inner surface; And it is provided on the limiting body, it may be characterized in that it comprises a bubble engaging portion that is formed to protrude in a direction opposite to the direction in which the refrigerant flows.
이상과 같은 구성의 본 발명에 따른 리퀴드 매개체의 서큘레이션을 이용한 냉매 열교환 시스템은 다음과 같은 효과를 제공한다.The refrigerant heat exchange system using the circulation of the liquid medium according to the present invention having the above configuration provides the following effects.
첫째, 응축기는 증발기와 같은 공간에 존재하되 물리적으로 구획되어 상호 열교환이 일어나지 않게 된다.First, the condenser exists in the same space as the evaporator, but is physically partitioned so that mutual heat exchange does not occur.
둘째, 응축기에서 발산되는 열은 챔버 내의 냉각수를 통하여 흡수하고, 이러한 챔버 내의 물은 증발기와 접촉되지 않는바, 안정적인 냉방 및 난방 관리가 가능하다.Second, the heat emitted from the condenser is absorbed through the cooling water in the chamber, and the water in the chamber does not come into contact with the evaporator, so stable cooling and heating management is possible.
셋째, 냉각수는 챔버 내의 물을 주성분으로 사용하고, 챔버의 대용량 물의 열용량을 통하여 냉매의 열을 효과적으로 흡수하게 된다.Third, the cooling water uses water in the chamber as a main component, and effectively absorbs the heat of the refrigerant through the heat capacity of the large-capacity water in the chamber.
넷째, 챔버와 챔버 사이의 냉각수의 순환을 통해, 냉매의 열 에너지를 효율적으로 흡수하여, 냉매의 액화를 도모하게 된다.Fourth, through the circulation of the coolant between the chamber and the chamber, heat energy of the coolant is efficiently absorbed, thereby liquefying the coolant.
본 발명의 효과는 이상에서 언급한 것들에 한정되지 않으며, 언급되지 아니한 다른 효과들은 아래의 기재로부터 당업자에게 명확하게 이해될 수 있을 것이다.Effects of the present invention are not limited to those mentioned above, and other effects not mentioned will be clearly understood by those skilled in the art from the following description.
도 1은 본 발명의 일 실시예에 따른 리퀴드 매개체의 서큘레이션을 이용한 냉매 열교환 시스템이 적용되는 것을 도시한 전체 개념도이다.1 is an overall conceptual diagram showing that a refrigerant heat exchange system using the circulation of a liquid medium according to an embodiment of the present invention is applied.
도 2는 본 발명의 일 실시예에 따른 리퀴드 매개체의 서큘레이션을 이용한 냉매 열교환 시스템의 사시도이다.2 is a perspective view of a refrigerant heat exchange system using the circulation of a liquid medium according to an embodiment of the present invention.
도 3은 본 발명의 일 실시예에 따른 리퀴드 매개체의 서큘레이션을 이용한 냉매 열교환 시스템 중, 익스체인지 챔버의 분해 사시도이다.3 is an exploded perspective view of an exchange chamber in a refrigerant heat exchange system using circulation of a liquid medium according to an embodiment of the present invention.
도 4는 본 발명의 일 실시예에 따른 리퀴드 매개체의 서큘레이션을 이용한 냉매 열교환 시스템 중, 릴리빙 챔버의 분해 사시도이다.4 is an exploded perspective view of a relief chamber in a refrigerant heat exchange system using a liquid medium circulation according to an embodiment of the present invention.
도 5는 본 발명의 일 실시예에 따른 리퀴드 매개체의 서큘레이션을 이용한 냉매 열교환 시스템 중, 릴리빙 챔버와 서플라잉 챔버의 분해 사시도이다.5 is an exploded perspective view of a relieving chamber and a supplying chamber in a refrigerant heat exchange system using the circulation of a liquid medium according to an embodiment of the present invention.
도 6은 본 발명의 일 실시예에 따른 리퀴드 매개체의 서큘레이션을 이용한 냉매 열교환 시스템 중, 콘덴싱 파이프의 내부 구조를 도시한 부분 절단 사시도와 절단면도이다.6 is a partially cut-away perspective view and a cross-sectional view illustrating an internal structure of a condensing pipe in a refrigerant heat exchange system using circulation of a liquid medium according to an embodiment of the present invention.
도 7은 본 발명의 일 실시예에 따른 리퀴드 매개체의 서큘레이션을 이용한 냉매 열교환 시스템 중, 리미팅 유닛의 내부 구조를 도시한 분해 사시도이다.7 is an exploded perspective view illustrating an internal structure of a limiting unit in a refrigerant heat exchange system using the circulation of a liquid medium according to an embodiment of the present invention.
본 발명에 따른 리퀴드 매개체의 서큘레이션을 이용한 냉매 열교환 시스템은 다양한 변경을 가할 수 있고 여러 가지 실시예를 가질 수 있는바, 특정 실시예들을 도면에 예시하고 상세한 설명에 상세하게 설명하고자 한다. 그러나, 이는 본 발명을 특정한 실시 형태에 대해 한정하려는 것이 아니며, 본 발명의 기술적 사상 및 기술 범위에 포함되는 모든 변경, 균등물 내지 대체물을 포함하는 것으로 이해되어야 한다. The refrigerant heat exchange system using the circulation of a liquid medium according to the present invention can have various changes and can have various embodiments, and specific embodiments are illustrated in the drawings and described in detail in the detailed description. However, this is not intended to limit the present invention to specific embodiments, and it should be understood to include all modifications, equivalents and substitutes included in the spirit and scope of the present invention.
도 1은 본 발명의 일 실시예에 따른 리퀴드 매개체의 서큘레이션을 이용한 냉매 열교환 시스템이 적용되는 것을 도시한 전체 개념도이다. 도 2는 본 발명의 일 실시예에 따른 리퀴드 매개체의 서큘레이션을 이용한 냉매 열교환 시스템의 사시도이다. 도 3은 본 발명의 일 실시예에 따른 리퀴드 매개체의 서큘레이션을 이용한 냉매 열교환 시스템 중, 익스체인지 챔버의 분해 사시도이다. 도 4는 본 발명의 일 실시예에 따른 리퀴드 매개체의 서큘레이션을 이용한 냉매 열교환 시스템 중, 릴리빙 챔버의 분해 사시도이다. 도 5는 본 발명의 일 실시예에 따른 리퀴드 매개체의 서큘레이션을 이용한 냉매 열교환 시스템 중, 릴리빙 챔버와 서플라잉 챔버의 분해 사시도이다. 도 6은 본 발명의 일 실시예에 따른 리퀴드 매개체의 서큘레이션을 이용한 냉매 열교환 시스템 중, 콘덴싱 파이프의 내부 구조를 도시한 부분 절단 사시도와 절단면도이다. 도 7은 본 발명의 일 실시예에 따른 리퀴드 매개체의 서큘레이션을 이용한 냉매 열교환 시스템 중, 리미팅 유닛의 내부 구조를 도시한 분해 사시도이다. 1 is an overall conceptual diagram showing that a refrigerant heat exchange system using the circulation of a liquid medium according to an embodiment of the present invention is applied. 2 is a perspective view of a refrigerant heat exchange system using the circulation of a liquid medium according to an embodiment of the present invention. 3 is an exploded perspective view of an exchange chamber in a refrigerant heat exchange system using circulation of a liquid medium according to an embodiment of the present invention. 4 is an exploded perspective view of a relief chamber in a refrigerant heat exchange system using a liquid medium circulation according to an embodiment of the present invention. 5 is an exploded perspective view of a relieving chamber and a supplying chamber in a refrigerant heat exchange system using the circulation of a liquid medium according to an embodiment of the present invention. 6 is a partially cut-away perspective view and a cross-sectional view illustrating an internal structure of a condensing pipe in a refrigerant heat exchange system using circulation of a liquid medium according to an embodiment of the present invention. 7 is an exploded perspective view illustrating an internal structure of a limiting unit in a refrigerant heat exchange system using the circulation of a liquid medium according to an embodiment of the present invention.
본 발명에 따른 리퀴드 매개체의 서큘레이션을 이용한 냉매 열교환 시스템의 경우, 도 1에 도시된 바와 같이, 증발 유닛(1)을 통해 냉매가 기화 하면서, 실내 혹은 냉장고 내의 열을 빼앗은 후, 기화된 냉매를 콤프레싱 유닛(2)을 통해 가압하여 고압의 기체 냉매로 만든 후, 이를 다시 응축을 위하여 열을 발산 혹은 열교환을 하도록 하는 시스템에 관한 것이다.In the case of a refrigerant heat exchange system using the circulation of a liquid medium according to the present invention, as shown in FIG. 1 , the refrigerant vaporizes through the evaporation unit 1, and after taking heat from the room or the refrigerator, the vaporized refrigerant is It relates to a system in which heat is dissipated or heat exchanged for condensing again after being pressurized through the compressor unit (2) to make a high-pressure gas refrigerant.
도 1에서는 본 발명이 적용되는 전반적인 열 교환 매커니즘에 관한 것으로서, 실내 혹은 목적하는 공간으로부터 냉매가 열 회수 후, 냉매의 응축, 팽창 및 증발 등의 열 교환에 대한 기술적 사상을 주로 담고 있다. 1 relates to an overall heat exchange mechanism to which the present invention is applied, and mainly contains technical ideas about heat exchange such as condensation, expansion, and evaporation of the refrigerant after the refrigerant recovers heat from a room or a desired space.
먼저, 본 발명에 따른 리퀴드 매개체의 서큘레이션을 이용한 냉매 열교환 시스템의 경우, 도 2에 도시된 바와 같이, 익스체인지 챔버(exchange chamber, 100), 릴리빙 챔버(relieving chamber, 200), 및 서플라잉 챔버(supplying chamber, 300)를 포함하게 된다.First, in the case of a refrigerant heat exchange system using the circulation of a liquid medium according to the present invention, as shown in FIG. 2 , an exchange chamber 100 , a relieving chamber 200 , and a supply chamber (supplying chamber, 300) will be included.
먼저 도 1에서 증발 유닛(1)을 통과한 냉매는 도 2의 콘덴싱 파이프(condensing pipe, 10)로 들어오게 된다. First, the refrigerant that has passed through the evaporation unit 1 in FIG. 1 enters the condensing pipe 10 of FIG. 2 .
콘덴싱 파이프(10)는 상술한 바와 같이 냉매가 유동하는 경로를 형성하는데, 증발 유닛(1)을 나온 후, 콤프레싱 유닛(2)을 거쳐 나오며, 이후, 릴리빙 챔버(200)에 진입하기 전에는 10a번, 릴리빙 챔버 내에서는 10b 그리고 릴리빙 챔버를 빠져 나오면 10c로 구획하기로 한다. 아울러, 콘덴싱 파이프(10)의 경우, 릴리빙 챔버(200)를 빠져 나오면, 팽창밸브(v)를 거친 후, 증발 유닛(1)으로 들어가는 본 경로와 익스체인지 챔버(100)로 일부 유동되는 바이패싱 경로인 바이패싱 파이프(11)로 유동될 수 있다. The condensing pipe 10 forms a path through which the refrigerant flows as described above. After leaving the evaporation unit 1, it comes out through the compression unit 2, and thereafter, before entering the relief chamber 200. 10a, 10b in the relief chamber, and 10c when exiting the relief chamber. In addition, in the case of the condensing pipe 10 , when exiting the relief chamber 200 , after passing through the expansion valve v , the main path entering the evaporation unit 1 and a partial flow into the exchange chamber 100 , bypassing It may flow to the bypass pipe 11 which is a path.
먼저, 익스체인지 챔버(100)는 도 2 및 3에 도시된 바와 같이, 내부의 공간에는 냉각수가 수용되어 있다. First, as shown in FIGS. 2 and 3 , in the exchange chamber 100 , coolant is accommodated in an internal space.
도 3에 도시된 바와 같이, 익스체인지 챔버(100)는 그 내부에 콘덴싱 파이프(10)로부터 분기되어 있는 바이패싱 파이프(11)이 존재하는데, 바이패싱 파이프(11)는 콘덴싱 파이프(10)가 팽창밸브(v) 후의 파이프 상에서 분기하고, 이렇게 분기한 파이프는 도 3에 도시된 바와 같이, 익스체인지 챔버(100) 내로 들어가게 된다. 3, the exchange chamber 100 has a bypassing pipe 11 branched from the condensing pipe 10 therein, and the bypassing pipe 11 is the condensing pipe 10 is expanded. It branches on the pipe after the valve v, and the branched pipe enters the exchange chamber 100 as shown in FIG. 3 .
아울러, 익스체인지 챔버(100) 내에는 서플라잉 챔버(300)에서 공급되는 쿨링 파이프(20)가 그대로 인입된다. In addition, the cooling pipe 20 supplied from the supply chamber 300 is directly introduced into the exchange chamber 100 .
익스체인지 챔버(100) 내의 쿨링 파이프(20)의 경우, 제2 쿨링부(22)로 존재하며, 원형으로 나선형으로 감기게 되며, 쿨링 파이프(20)의 제2쿨링부(22) 내의 냉각수는 냉매가 바이패싱 되어 있는 제2파이프(11b)와 열 교환 즉 냉각된 후, 후술하게 되는 릴리빙 챔버(200) 내부의 공간으로 들어오게 된다. In the case of the cooling pipe 20 in the exchange chamber 100 , it exists as the second cooling unit 22 and is wound in a circular spiral shape, and the cooling water in the second cooling unit 22 of the cooling pipe 20 is a refrigerant. After heat exchange with the bypassed second pipe 11b, that is, cooled, it enters the space inside the relief chamber 200, which will be described later.
릴리빙 챔버(200)의 경우, 익스체인지 챔버(100)의 제2 쿨링부(22)로부터 제3쿨링부(23)로부터 냉각수를 전달받아, 내부에 냉각된 냉각수를 보관하게 된다. 물론, 릴리빙 챔버(200) 내로 들어온 냉각수는 이너 파이프(10b) 내에서 유동되는 냉매로부터 열을 빼앗은 후, 하향 파이프(202h)를 통해 서플라잉 챔버(300)로 되돌아가게 된다.In the case of the relief chamber 200 , the cooling water is received from the third cooling unit 23 from the second cooling unit 22 of the exchange chamber 100 , and the cooled cooling water is stored therein. Of course, the cooling water entering the relief chamber 200 takes heat from the refrigerant flowing in the inner pipe 10b, and then returns to the supply chamber 300 through the down pipe 202h.
릴리빙 챔버(200)는 도 1 내지 4에 도시된 바와 같이, 인렛 파이프(10a)를 통하여, 릴리빙 챔버(200) 내의 냉각수에 장입되는 이너 파이프(10b)를 통해 냉각 및 응축되며, 아웃렛 파이프(10c)를 통하여 빠져 나간 후, 팽창밸브(v)를 거치게 된다.1 to 4, the relief chamber 200 is cooled and condensed through the inlet pipe 10a and the inner pipe 10b charged to the coolant in the relief chamber 200, and the outlet pipe After exiting through (10c), it passes through the expansion valve (v).
즉, 서플라잉 챔버(300)는 제1쿨링부(21)를 통하여, 익스체인지 챔버(100)에 냉각수를 선택적으로 공급하거나, 서플라이 파이프(310h)를 통하여 릴리빙 챔버(200) 내에 냉각수를 선택적으로 공급하는 기능을 수행한다.That is, the supply chamber 300 selectively supplies cooling water to the exchange chamber 100 through the first cooling unit 21 , or selectively supplies cooling water into the relief chamber 200 through the supply pipe 310h. perform the supply function.
도 3에 도시된 바와 같이, 익스체인지 챔버(100)의 경우, 그 내부에 적재된 제2파이프(11b)를 익스체인지 챔버(100) 내부면에 인접하도록 배치시키고, 제2쿨링부(22)를 사각으로 감으면서 나선형으로 적재시키는 것이 바람직하다.As shown in FIG. 3 , in the case of the exchange chamber 100 , the second pipe 11b loaded therein is disposed adjacent to the inner surface of the exchange chamber 100 , and the second cooling unit 22 is placed in a square shape. It is preferable to load it spirally while winding it.
아울러, 도 3에 도시된 바와 같이, 익스체인지 챔버(100)의 경우, 제2쿨링부(22)를 내부에 적재하되, 제2쿨링부(22)를 제2파이프(11b)내부에 배치시키며, 동그랗게 감으면서 나선형으로 배치시키는 것이 바람직하다. In addition, as shown in FIG. 3, in the case of the exchange chamber 100, the second cooling unit 22 is loaded therein, and the second cooling unit 22 is disposed inside the second pipe 11b, It is preferable to arrange it in a spiral while winding it in a circle.
원형으로 나선으로 감겨 적재된 제2쿨링부(22)는 제2파이프(11b)의 내부를 감아돌면서 제2파이프(11b)가 발생시키는 냉기를 회수하고 냉각된다. The second cooling unit 22, which is spirally wound in a circle, is wound around the inside of the second pipe 11b, recovers the cold air generated by the second pipe 11b, and is cooled.
릴리빙 챔버(200)는 도 4에 도시된 바와 같이 그 가운데 수직 관통홀(h)이 형성되어, 수직 관통홀(h)을 제외한 영역에만 냉각수를 수용하고 있으며, 이러한 냉각수 내에는 상술한 바와 같은 이너파이프(10b)를 배치시키게 된다. As shown in FIG. 4, in the relief chamber 200, a vertical through-hole (h) is formed in the middle, and the cooling water is accommodated only in an area excluding the vertical through-hole (h). The inner pipe 10b is disposed.
서플라잉 챔버(300)는 도 5에 도시된 바와 같이, 타워 챔버(tower chamber, 310), 및 베이스 챔버(base chamber, 320)를 포함하는 것이 바람직하다. The supply chamber 300 preferably includes a tower chamber (tower chamber, 310), and a base chamber (base chamber, 320), as shown in FIG.
타워 챔버(310)의 경우, 수직의 타워 공간으로 형성되며, 수직의 타워 공간 상에 냉각수를 수용하며, 릴리빙 챔버(200)의 수직 관통홀(h)에 상하 삽입되는 구성이다.In the case of the tower chamber 310 , it is formed as a vertical tower space, receives cooling water on the vertical tower space, and is vertically inserted into the vertical through-hole h of the relief chamber 200 .
아울러, 베이스 챔버(320)의 경우, 타워 챔버(310)의 하부에 배치되어, 타워 챔버(310)와 내부적으로 연통되어 냉각수를 수용하여 저장하며, 익스체인지 챔버(100)와 릴리빙 챔버(200)에 냉각수를 선택적으로 공급하는 구성이다.In addition, in the case of the base chamber 320 , it is disposed under the tower chamber 310 , and is internally communicated with the tower chamber 310 to receive and store cooling water, and the exchange chamber 100 and the relief chamber 200 . It is a configuration that selectively supplies cooling water to the
베이스 챔버(320)의 냉각수는 제1쿨링부(21)를 통하고, 펌프를 통해 익스체인지 챔버(100)의 제2쿨링부(22)로 제공될 수 있다. The cooling water of the base chamber 320 may pass through the first cooling unit 21 and may be provided to the second cooling unit 22 of the exchange chamber 100 through a pump.
타워 챔버(200)의 냉각수는 서플라이파이프(310h)를 통해 릴리빙 제1파이프(201h)로 유입되어 릴리빙 챔버(200) 내에서 증발되는 냉각수가 보충될 수 있다.The cooling water of the tower chamber 200 may be introduced into the first relief pipe 201h through the supply pipe 310h and the cooling water evaporated in the relief chamber 200 may be replenished.
냉각수의 순환 사이클의 경우, 베이스 챔버(320) 내에 존재하는 냉각수는 제1쿨링부(21)를 통하여 익스체인지 챔버(100) 내로 들어가게 된다. 이후, 냉각수는 제2쿨링부(21)를 휘돌아감아 돌면서, 익스체인지 챔버(100) 내부에 휘감아 돌며 유동되는 바이패스 되어 있는 냉매가 유동되는 제2파이프(11b)와 열교환을 통해 냉각된다. 이후, 냉각수는 익스체인지 챔버(100)를 빠져 나가서 제3쿨링부(23)를 통하여 릴리빙 챔버(200) 내부로 들어가서 냉매가 유동하는 이너파이프(10b)를 냉각시키고 202h부호의 파이프를 통하여 베이스 챔버(320)로 다시 되돌아 간다. In the case of the circulation cycle of the cooling water, the cooling water existing in the base chamber 320 enters the exchange chamber 100 through the first cooling unit 21 . Thereafter, the cooling water is cooled through heat exchange with the second pipe 11b through which the bypassed refrigerant that flows around the inside of the exchange chamber 100 flows while being wound around the second cooling unit 21 . Thereafter, the cooling water exits the exchange chamber 100 and enters the relief chamber 200 through the third cooling unit 23 to cool the inner pipe 10b through which the refrigerant flows, and to the base chamber through the 202h pipe. back again to (320).
냉매의 유동 싸이클의 경우, 증발 유닛(1)을 통해 열을 흡수하여 팽창한 냉매는 압축기에 해당하는 콤프레싱 유닛(2)을 거친 후, 콘덴싱 파이프(10)를 유동하여 릴리빙 챔버(20) 내부의 이너 파이프(11b)에서 냉각수에 의하여 열을 빼앗겨 응축되어 아웃렛 파이프(10c)를 통해 빠져나간다. 이후, 팽창 밸브(v)를 거친 냉매는 기본적으로 증발유닛(1)으로 가게 되지만, 일부는 바이패싱 파이프(11)의 제1파이프(11a)를 통해, 익스체인지 챔버(100) 내로 들어가 상술한 바와 같은 냉각수의 열을 빼앗은 후, 증발 유닛(1)을 통과한 냉매와 만나 콤프레싱 유닛(2)으로 들어가게 된다.In the case of the refrigerant flow cycle, the refrigerant expanded by absorbing heat through the evaporation unit 1 passes through the compression unit 2 corresponding to the compressor, and then flows through the condensing pipe 10 to the relief chamber 20 Heat is taken away by cooling water from the inner inner pipe 11b and condensed, and then exits through the outlet pipe 10c. Thereafter, the refrigerant that has passed through the expansion valve v basically goes to the evaporation unit 1, but a part enters the exchange chamber 100 through the first pipe 11a of the bypassing pipe 11 and as described above. After taking the heat of the same coolant, it meets the refrigerant that has passed through the evaporation unit 1 and enters the compressor unit 2 .
아울러, 상술한 바와 같은 콘덴싱 파이프(10)는 도 6에 도시된 바와 같이, 스파이럴부(P)를 포함할 수 있다.In addition, the condensing pipe 10 as described above may include a spiral portion (P), as shown in FIG.
스파이럴부(P)는 내주면에 내향 돌출되며, 콘덴싱 파이프(10)의 길이 방향을 따라 형성되면서, 콘덴싱 파이프(10)의 길이 방향을 따라 나선형으로 형성되는 구성이다.The spiral portion P protrudes inwardly from the inner circumferential surface, and is formed in a spiral shape along the longitudinal direction of the condensing pipe 10 while being formed along the longitudinal direction of the condensing pipe 10 .
스파이럴부(P)는 콘덴싱 파이프(10) 내부에서 유동되는 냉매의 유동을 나선형으로 일으키고, 이를 통해 냉매의 액체 입자들이 교차적으로 콘덴싱 파이프(10)의 내부면 그리고 스파이럴부(P)의 표면에 접촉하도록 하여, 냉매의 열을 효율적으로 빼앗도록 한다.The spiral part (P) causes the flow of the refrigerant flowing inside the condensing pipe (10) to be spirally, and through this, the liquid particles of the refrigerant are crossed over the inner surface of the condensing pipe (10) and the surface of the spiral part (P). to make contact, so that the heat of the refrigerant is taken away efficiently.
본 발명에 따른 리퀴드 매개체의 서큘레이션을 이용한 냉매 열교환 시스템의 경우, 도 2 및 7에 도시된 바와 같은 리미팅 유닛(limiting unit, 30)을 더 포함할 수 있다.In the case of the refrigerant heat exchange system using the circulation of the liquid medium according to the present invention, it may further include a limiting unit (limiting unit, 30) as shown in Figs.
스파이럴부(P)에 의할 경우, 기체가 액화되는 과정에서 나선형으로 회오리치면 내부에 기포가 오히려 발생되는 문제점이 있을 수 있고, 이 경우에는 열 교환의 효율이 떨어지거나 액화 과정에서 문제가 발생될 수 있다. In the case of the spiral part (P), there may be a problem that air bubbles are rather generated inside if the gas swirls spirally in the process of liquefaction, and in this case, the efficiency of heat exchange may decrease or a problem may occur during the liquefaction process. can
따라서, 도 7에 도시된 바와 같이, 리미팅 유닛(30)은 콘덴싱 파이프(10)의 관로 상에 제공되어, 콘덴싱 파이프(10) 내에서 유동되는 냉매에서 발생되는 기포를 저감시키게 된다.Accordingly, as shown in FIG. 7 , the limiting unit 30 is provided on the condensing pipe 10 , thereby reducing bubbles generated in the refrigerant flowing in the condensing pipe 10 .
리미팅 유닛(30)은 커버 케이스(31), 리미팅 보디(32), 기포 격벽부(33), 및 기포 걸림부(34)를 포함할 수 있다.The limiting unit 30 may include a cover case 31 , a limiting body 32 , a bubble partition wall part 33 , and a bubble stopping part 34 .
커버 케이스(31)의 경우, 외부의 몸체를 형성하며, 내부 관로를 통해 상기 냉매를 유동시키는 구성이다.In the case of the cover case 31, it forms an external body and is configured to flow the refrigerant through an internal conduit.
리미팅 보디(32)는 도 7에 도시된 바와 같이, 커버 케이스(31)의 내부 관로 상에 배치되며, 냉매의 유동에 저항을 형성하고, 기포 격벽부(33), 기포 걸림부(34)를 고정 부착하는 구성이다.As shown in Figure 7, the limiting body 32 is disposed on the inner pipe of the cover case 31, forms a resistance to the flow of the refrigerant, the bubble partition wall 33, the bubble engaging portion 34 It is a fixed attachment configuration.
기포 격벽부(33)의 경우, 상술한 바와 같이 리미팅 보디(32)에 제공되며, 냉매가 유동되는 방향에 소정의 각도로 기울어지며, 내면에 개구(33h)를 통해 냉매를 관통시키게 된다.In the case of the bubble partition wall part 33, it is provided on the limiting body 32 as described above, is inclined at a predetermined angle in the direction in which the coolant flows, and the coolant passes through the opening 33h on the inner surface.
소정의 각도는 도 7에 도시된 바와 같이, 냉매가 유동되는 방향과 예각을 이루도록 형성할 수도 있고, 이에 대칭되도록 냉매가 유동되는 방향과 둔각을 형성되도록 할 수도 있다.The predetermined angle may be formed to form an acute angle with the direction in which the refrigerant flows, as shown in FIG. 7 , or an obtuse angle may be formed with the direction in which the refrigerant flows to be symmetrical thereto.
도 7에 도시된 바와 같이, 기포 걸림부(34)의 경우, 리미팅 보디(32)에 제공되며, 냉매가 유동되는 방향에 역행하는 방향으로 돌출되고, 임의로 형성되는 기포의 흐름을 저지시켜, 기포로 하여금 액체에 다시 녹아들도록 하는 시간을 제공한다.7, in the case of the bubble catching portion 34, provided in the limiting body 32, protrudes in a direction opposite to the direction in which the refrigerant flows, and blocks the flow of arbitrarily formed bubbles, gives time to dissolve again in the liquid.
본 발명의 권리 범위는 특허청구범위에 기재된 사항에 의해 결정되며, 특허 청구범위에 사용된 괄호는 선택적 한정을 위해 기재된 것이 아니라, 명확한 구성요소를 위해 사용되었으며, 괄호 내의 기재도 필수적 구성요소로 해석되어야 한다.The scope of the present invention is determined by the matters described in the claims, and parentheses used in the claims are not described for selective limitation, but are used for clear components, and descriptions in parentheses are also interpreted as essential components. should be

Claims (10)

  1. 증발 유닛을 통해 냉매를 기화시키고, 기화된 냉매를 콤프레싱 유닛을 통해 가압하여, 고압의 기체 냉매를 인입하여, 상기 고압의 기체 냉매의 열을 발산시키도록 상기 냉매의 열을 교환 시키기 위한 시스템에 있어서,In a system for vaporizing the refrigerant through the evaporation unit, pressurizing the vaporized refrigerant through the compression unit, introducing the high-pressure gaseous refrigerant, and exchanging the heat of the refrigerant to dissipate the heat of the high-pressure gaseous refrigerant. in,
    응축된 냉매가 유동하는 콘덴싱 파이프에 제공된 바이패싱 파이프를 통하여 상기 냉매를 바이패스 시켜, 내부로 인입된 냉각수를 냉각시키는 익스체인지 챔버; an exchange chamber for cooling the coolant introduced therein by bypassing the coolant through a bypassing pipe provided in the condensing pipe through which the condensed coolant flows;
    상기 익스체인지 챔버로부터 냉각된 냉각수를 전달받으며, 내부로 인입되는 콘덴싱 파이프 내부로 유동되는 압축된 기화 냉매의 열을 회수하는 릴리빙 챔버; 및a relief chamber receiving the cooled coolant from the exchange chamber and recovering heat of the compressed vaporized refrigerant flowing into the condensing pipe introduced therein; and
    냉각수를 보관하며, 상기 익스체인지 챔버 내부로 냉각수를 유동시키는 서플라잉 챔버를 포함하는 것을 특징으로 하는, 리퀴드 매개체의 서큘레이션을 이용한 냉매 열교환 시스템.A refrigerant heat exchange system using circulation of a liquid medium, characterized in that it includes a supply chamber that stores the coolant and flows the coolant into the exchange chamber.
  2. 제1항에 있어서, 상기 익스체인지 챔버는, According to claim 1, wherein the exchange chamber,
    내부의 공간에 냉각수를 수용하여 저장하며, 상기 냉매를 유동시키는 바이패싱 파이프를 내부에 수용하며, 상기 바이패싱 파이프에 인접하여 배치되며 내부 관로를 통해 상기 냉각수를 유동시키는 쿨링 파이프를 수용하는 것을 특징으로 하는, 리퀴드 매개체의 서큘레이션을 이용한 냉매 열교환 시스템.Cooling water is accommodated and stored in the internal space, and a bypass pipe through which the refrigerant flows is accommodated therein, and a cooling pipe disposed adjacent to the bypassing pipe and configured to accommodate the cooling water through an internal conduit is accommodated. A refrigerant heat exchange system using the circulation of a liquid medium.
  3. 제2항에 있어서, 상기 바이패싱 파이프는,According to claim 2, wherein the bypassing pipe,
    상기 익스체인지 챔버의 내면에 인접하면서 나선형으로 적재되는 것을 특징으로 하는, 리퀴드 매개체의 서큘레이션을 이용한 냉매 열교환 시스템.Refrigerant heat exchange system using circulation of a liquid medium, characterized in that it is spirally loaded while adjacent to the inner surface of the exchange chamber.
  4. 제3항에 있어서, 상기 쿨링 파이프는,According to claim 3, wherein the cooling pipe,
    상기 바이패싱 파이프에 인접하여 배치되고, 나선형으로 적재되어, 상기 바이패싱 파이프로 열을 발산하여 전달하는 것을 특징으로 하는, 리퀴드 매개체의 서큘레이션을 이용한 냉매 열교환 시스템.Refrigerant heat exchange system using circulation of a liquid medium, characterized in that it is disposed adjacent to the bypassing pipe, is loaded in a spiral, and dissipates and transfers heat to the bypassing pipe.
  5. 제1항에 있어서, 상기 릴리빙 챔버는,According to claim 1, wherein the relief chamber,
    상기 익스체인지 챔버 내부의 쿨링 파이프로부터 냉각수를 전달받아 내부에 수용하며, 상기 냉각수 내로 유입되는 콘덴싱 파이프로부터 열을 빼앗아 상기 콘덴싱 파이프 내의 냉매를 응축시키는 것을 특징으로 하는, 리퀴드 매개체의 서큘레이션을 이용한 냉매 열교환 시스템.Refrigerant heat exchange using circulation of a liquid medium, characterized in that the cooling water is received from the cooling pipe inside the exchange chamber and accommodated therein, and heat is taken from the condensing pipe flowing into the cooling water to condense the refrigerant in the condensing pipe. system.
  6. 제5항에 있어서, 상기 릴리빙 챔버는,According to claim 5, The relief chamber,
    상기 콘덴싱 파이프를 상기 릴리빙 챔버의 내부면에 인접하면서 나선형으로 적재시키는 것을 특징으로 하는, 리퀴드 매개체의 서큘레이션을 이용한 냉매 열교환 시스템.Refrigerant heat exchange system using circulation of a liquid medium, characterized in that the condensing pipe is spirally loaded while being adjacent to the inner surface of the relief chamber.
  7. 제1항에 있어서, According to claim 1,
    상기 릴리빙 챔버는, The relief chamber,
    상하로 관통되어 형성된 수직 관통홀을 구비하며, 상기 수직 관통홀을 중심으로 상기 냉각수를 수용하는 공간이 마련되며,A vertical through-hole formed by penetrating vertically is provided, and a space for accommodating the cooling water is provided around the vertical through-hole,
    상기 서플라잉 챔버는,The supply chamber,
    수직의 타워 공간이 마련되어, 상기 타워 공간 상에 상기 냉각수를 수용하며, 상기 릴리빙 챔버의 상기 수직 관통홀에 상하 삽입되는 타워 챔버(tower chamber); 및a tower chamber having a vertical tower space, accommodating the cooling water on the tower space, and vertically inserted into the vertical through-hole of the relief chamber; and
    상기 타워 챔버의 하부에 배치되어, 상기 타워 챔버와 내부적으로 연통되어 상기 냉각수를 수용하여 저장하며, 상기 익스체인지 챔버에 상기 냉각수를 선택적으로 공급하는 베이스 챔버(base chamber)를 포함하는 것을 특징으로 하는, 리퀴드 매개체의 서큘레이션을 이용한 냉매 열교환 시스템.It is disposed in the lower part of the tower chamber, is in communication with the tower chamber to receive and store the cooling water, characterized in that it comprises a base chamber (base chamber) for selectively supplying the cooling water to the exchange chamber, Refrigerant heat exchange system using liquid medium circulation.
  8. 제2항에 있어서, 상기 콘덴싱 파이프는, According to claim 2, wherein the condensing pipe,
    내주면에 내향 돌출되며, 상기 콘덴싱 파이프의 길이 방향을 따라 형성되면서, 상기 콘덴싱 파이프의 길이 방향을 따라 나선형으로 형성되는 스파이럴부를 포함하며,It protrudes inwardly on the inner circumferential surface and is formed along the longitudinal direction of the condensing pipe, and includes a spiral part that is spirally formed along the longitudinal direction of the condensing pipe,
    상기 스파이럴부는,The spiral part,
    상기 콘덴싱 파이프 내부에서 유동되는 상기 냉매의 유동을 나선형으로 일으키는 것을 특징으로 하는, 리퀴드 매개체의 서큘레이션을 이용한 냉매 열교환 시스템.Refrigerant heat exchange system using circulation of a liquid medium, characterized in that the flow of the refrigerant flowing inside the condensing pipe is caused in a spiral.
  9. 제8항에 있어서, 상기 시스템은,The method of claim 8, wherein the system comprises:
    상기 콘덴싱 파이프의 관로 상에 제공되어, 상기 콘덴싱 파이프 내에서 유동되는 냉매에서 발생되는 기포를 저감시키는 리미팅 유닛을 더 포함하는 것을 특징으로 하는, 리퀴드 매개체의 서큘레이션을 이용한 냉매 열교환 시스템.Refrigerant heat exchange system using circulation of a liquid medium, characterized in that it further comprises a limiting unit provided on the condensing pipe conduit to reduce bubbles generated in the refrigerant flowing in the condensing pipe.
  10. 제9항에 있어서, 상기 리미팅 유닛은,The method of claim 9, wherein the limiting unit,
    외부의 몸체를 형성하며, 내부 관로를 통해 상기 냉매를 유동시키는 커버 케이스; a cover case forming an external body and flowing the refrigerant through an internal conduit;
    상기 커버 케이스의 내부 관로 상에 배치되며, 상기 냉매의 유동에 저항을 형성하는 리미팅 보디;a limiting body disposed on the inner conduit of the cover case and forming a resistance to the flow of the refrigerant;
    상기 리미팅 보디에 제공되며, 상기 냉매가 유동되는 방향에 소정의 각도로 기울어지며, 내면에 개구를 통해 상기 냉매를 관통시키는 기포 격벽부; 및a bubble partition portion provided in the limiting body, inclined at a predetermined angle in a direction in which the refrigerant flows, and passing the refrigerant through an opening in an inner surface; and
    상기 리미팅 보디에 제공되며, 상기 냉매가 유동되는 방향에 역행하는 방향으로 돌출 형성되는 기포 걸림부를 포함하는 것을 특징으로 하는, 리퀴드 매개체의 서큘레이션을 이용한 냉매 열교환 시스템.Provided in the limiting body, the refrigerant heat exchange system using the circulation of the liquid medium, characterized in that it comprises a bubble engaging portion that is formed to protrude in a direction opposite to the direction in which the refrigerant flows.
PCT/KR2021/012544 2020-09-28 2021-09-15 Refrigerant heat exchange system using circulation of liquid medium WO2022065790A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR10-2020-0125873 2020-09-28
KR1020200125873A KR102266937B1 (en) 2020-09-28 2020-09-28 System for heat exchange of refrigerant by using circulation of liquid medium

Publications (1)

Publication Number Publication Date
WO2022065790A1 true WO2022065790A1 (en) 2022-03-31

Family

ID=76603915

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2021/012544 WO2022065790A1 (en) 2020-09-28 2021-09-15 Refrigerant heat exchange system using circulation of liquid medium

Country Status (2)

Country Link
KR (1) KR102266937B1 (en)
WO (1) WO2022065790A1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102266937B1 (en) * 2020-09-28 2021-06-17 김주태 System for heat exchange of refrigerant by using circulation of liquid medium

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100347922B1 (en) * 2000-06-19 2002-08-09 엘지전자주식회사 Short tube of refrigerating cycle
KR20100081748A (en) * 2009-01-07 2010-07-15 한라공조주식회사 An air conditioning cycle equipped with condenser cooled by water for a vehicle
KR20150133966A (en) * 2014-05-21 2015-12-01 엘지전자 주식회사 Cooling system
KR101942572B1 (en) * 2017-09-12 2019-01-25 (주)삼익브리즈 Fluid mixing apparatus for heat exchange pipe
KR102048356B1 (en) * 2013-03-08 2019-11-25 엘지전자 주식회사 Refrigerant pipe, and fin type heat exchanger and air conditioner comprising the same
KR102266937B1 (en) * 2020-09-28 2021-06-17 김주태 System for heat exchange of refrigerant by using circulation of liquid medium

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0615428A (en) 1992-07-01 1994-01-25 Kubota Corp Manufacture of composite cast steel tube
KR100605022B1 (en) 2004-10-15 2006-07-28 주식회사 삼화에이스 Regenerative Cooling and Air Conditioning System and Method Thereof
KR101727561B1 (en) 2016-01-27 2017-05-02 한국이미지시스템(주) Energy-saving industrial air-conditioner and the operation method

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100347922B1 (en) * 2000-06-19 2002-08-09 엘지전자주식회사 Short tube of refrigerating cycle
KR20100081748A (en) * 2009-01-07 2010-07-15 한라공조주식회사 An air conditioning cycle equipped with condenser cooled by water for a vehicle
KR102048356B1 (en) * 2013-03-08 2019-11-25 엘지전자 주식회사 Refrigerant pipe, and fin type heat exchanger and air conditioner comprising the same
KR20150133966A (en) * 2014-05-21 2015-12-01 엘지전자 주식회사 Cooling system
KR101942572B1 (en) * 2017-09-12 2019-01-25 (주)삼익브리즈 Fluid mixing apparatus for heat exchange pipe
KR102266937B1 (en) * 2020-09-28 2021-06-17 김주태 System for heat exchange of refrigerant by using circulation of liquid medium

Also Published As

Publication number Publication date
KR102266937B1 (en) 2021-06-17

Similar Documents

Publication Publication Date Title
US11089719B2 (en) Computer room heat-pipe air conditioning system with emergency cooling function and control and method thereof
JP4407082B2 (en) Heating element cooling system and thermal management system
CN210234715U (en) Overhead battery thermal management device
WO2011108780A1 (en) Chiller
MXPA01011080A (en) Outdoor heat exchanger unit, outdoor unit, and gas heat pump type air conditioner.
HU216408B (en) An air cooling system
WO2016204392A1 (en) Refrigeration cycle of a vehicle air conditioner
JP2012243982A (en) Cooling apparatus
WO2022065790A1 (en) Refrigerant heat exchange system using circulation of liquid medium
WO2013181815A1 (en) Energy-saving cabinet air-conditioner
CN110854473A (en) Battery thermal management device
CN212618630U (en) Refrigerating system
WO2023226977A1 (en) Heat exchange device and heat exchange system
US20240017585A1 (en) Thermal management system for electric vehicle and electric vehicle
WO2010050663A1 (en) Hybrid heat pump style air condition system
CN101337135B (en) Low-temperature cold trap
CN216545773U (en) Cooling system and charging device
WO2022110745A1 (en) Heat dissipation system, heat management apparatus, and working method thereof
CN213367622U (en) Frequency converter and refrigerating system
WO2014098315A1 (en) Energy-saving dehumidifying apparatus using heat pipe
JP2024504886A (en) Thermal management system, thermal management method and power consumption equipment
CN218722376U (en) Power type heat pipe integrated air conditioning system
CN210744113U (en) Battery thermal management device
CN219288031U (en) Refrigerating apparatus
CN216282130U (en) Refrigeration device and communication system

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21872819

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21872819

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 21872819

Country of ref document: EP

Kind code of ref document: A1

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 21/09/2023)