WO2021045235A1 - 低温で高い油脂分解能力を有する新規微生物 - Google Patents

低温で高い油脂分解能力を有する新規微生物 Download PDF

Info

Publication number
WO2021045235A1
WO2021045235A1 PCT/JP2020/033836 JP2020033836W WO2021045235A1 WO 2021045235 A1 WO2021045235 A1 WO 2021045235A1 JP 2020033836 W JP2020033836 W JP 2020033836W WO 2021045235 A1 WO2021045235 A1 WO 2021045235A1
Authority
WO
WIPO (PCT)
Prior art keywords
strain
oil
burkholderia
fatty acids
oils
Prior art date
Application number
PCT/JP2020/033836
Other languages
English (en)
French (fr)
Inventor
克敏 堀
Original Assignee
国立大学法人東海国立大学機構
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 国立大学法人東海国立大学機構 filed Critical 国立大学法人東海国立大学機構
Priority to JP2021544077A priority Critical patent/JPWO2021045235A1/ja
Priority to EP20861191.3A priority patent/EP4026809A4/en
Priority to US17/640,296 priority patent/US20220371930A1/en
Publication of WO2021045235A1 publication Critical patent/WO2021045235A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F3/00Biological treatment of water, waste water, or sewage
    • C02F3/34Biological treatment of water, waste water, or sewage characterised by the microorganisms used
    • C02F3/347Use of yeasts or fungi
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F3/00Biological treatment of water, waste water, or sewage
    • C02F3/34Biological treatment of water, waste water, or sewage characterised by the microorganisms used
    • C02F3/343Biological treatment of water, waste water, or sewage characterised by the microorganisms used for digestion of grease, fat, oil
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N1/00Microorganisms, e.g. protozoa; Compositions thereof; Processes of propagating, maintaining or preserving microorganisms or compositions thereof; Processes of preparing or isolating a composition containing a microorganism; Culture media therefor
    • C12N1/14Fungi; Culture media therefor
    • C12N1/16Yeasts; Culture media therefor
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N1/00Microorganisms, e.g. protozoa; Compositions thereof; Processes of propagating, maintaining or preserving microorganisms or compositions thereof; Processes of preparing or isolating a composition containing a microorganism; Culture media therefor
    • C12N1/14Fungi; Culture media therefor
    • C12N1/16Yeasts; Culture media therefor
    • C12N1/165Yeast isolates
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N1/00Microorganisms, e.g. protozoa; Compositions thereof; Processes of propagating, maintaining or preserving microorganisms or compositions thereof; Processes of preparing or isolating a composition containing a microorganism; Culture media therefor
    • C12N1/20Bacteria; Culture media therefor
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N1/00Microorganisms, e.g. protozoa; Compositions thereof; Processes of propagating, maintaining or preserving microorganisms or compositions thereof; Processes of preparing or isolating a composition containing a microorganism; Culture media therefor
    • C12N1/20Bacteria; Culture media therefor
    • C12N1/205Bacterial isolates
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2101/00Nature of the contaminant
    • C02F2101/30Organic compounds
    • C02F2101/32Hydrocarbons, e.g. oil
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2103/00Nature of the water, waste water, sewage or sludge to be treated
    • C02F2103/32Nature of the water, waste water, sewage or sludge to be treated from the food or foodstuff industry, e.g. brewery waste waters
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12RINDEXING SCHEME ASSOCIATED WITH SUBCLASSES C12C - C12Q, RELATING TO MICROORGANISMS
    • C12R2001/00Microorganisms ; Processes using microorganisms
    • C12R2001/01Bacteria or Actinomycetales ; using bacteria or Actinomycetales
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12RINDEXING SCHEME ASSOCIATED WITH SUBCLASSES C12C - C12Q, RELATING TO MICROORGANISMS
    • C12R2001/00Microorganisms ; Processes using microorganisms
    • C12R2001/645Fungi ; Processes using fungi

Definitions

  • the present disclosure relates to microorganisms capable of degrading esters (eg, fats and oils) and / or fatty acids and their use. More specifically, it relates to Yarrowia yeast (for example, Yarrowia lipolytica) that decomposes fats and oils that are conventionally difficult to decompose, such as fats and oils containing trans fatty acids.
  • the present disclosure also relates to Yarrowia yeast, which improves the oil-decomposing ability of Burkholderia bacteria.
  • the present disclosure relates to combinations of microorganisms capable of decomposing oil and their use. More specifically, it relates to a combination of microorganisms having improved oil resolution than at least one microorganism alone in the combination.
  • the present disclosure also relates to the enhancement of lipase expression by a combination of microorganisms. More specifically, it relates to the combination of Burkholderia bacteria and Yarrowia yeast.
  • the wastewater from food factories and oil and fat factories contains a large amount of oil.
  • This oil has various biological treatment functions such as reduced treatment capacity due to activated sludge, solid-liquid separation failure due to reduced sedimentation, membrane fouling in the membrane separation activated sludge method (MBR), and inhibition of methane fermentation in anaerobic digestion. causes a decline. Therefore, as a pre-stage of biological treatment of wastewater containing a high oil content, oil is removed by, for example, a pressurized flotation separator. In addition, since kitchen wastewater from the food service industry also contains a large amount of oil, a grease trap is installed to remove the oil.
  • Both the pressurized flotation separator and the grease trap are sources of foul odors and pests, the cost of collecting and transporting separated oil and the treatment of industrial waste, and the labor and cost of management and cleaning. I have.
  • an oil decomposition technique using microorganisms has been studied, and several related microbial preparations are commercially available.
  • the oil concentration is reduced to a desired level within a settable residence time by microbial decomposition. It is extremely difficult to lower. Therefore, at present, in most cases, a pressurized flotation separator or a conventional grease trap is used.
  • the decomposition rate becomes a problem as described above, but in many cases, the decrease in activity due to low temperatures in winter makes it difficult to apply microorganisms. Especially at low temperatures in winter, the rate of decomposition of fats and oils by microorganisms is extremely slow, and it is considered impossible to treat wastewater and waste by specific microorganisms.
  • the present inventors have found a microorganism belonging to Yarowia (genus), which is a novel microorganism having a unique esterase activity. It was also found that this microorganism can decompose and assimilate trans fatty acid-containing fats and oils and / or trans fatty acids. It was also found that this microorganism can decompose and assimilate fats and oils and / or fatty acids at low temperatures. It was also found that this microorganism can decompose and assimilate a wide range of fatty acids from short chains to long chains and esters and fats and oils containing them.
  • the present disclosure also relates to applications of the combinations of microorganisms of the present disclosure, such as oil treatment.
  • the present disclosure provides applications of the microorganisms of the present disclosure, new combinations of microorganisms capable of oil decomposition, and oil decomposition methods using these combinations.
  • the present disclosure provides: (Item A1) Yarrow yeast with the ability to break down trans fatty acids.
  • (Item A2) Yarowia yeast with the ability to assimilate trans fatty acids.
  • (Item A3) Yarrow yeast having the ability to decompose trans fatty acid-containing fats and oils.
  • (Item A4) Yarrow yeast having the ability to assimilate trans fatty acid-containing fats and oils.
  • (Item A5) Yarrow yeast having the ability to decompose esters (eg, fats and oils) and / or fatty acids at 15 ° C.
  • (Item A6) Yarrow yeast having the ability to assimilate esters (eg, fats and oils) and / or fatty acids at 15 ° C.
  • (Item A7) The Yarrowia yeast according to any one of the above items, wherein the ability to assimilate or decompose is maintained at 15 ° C.
  • (Item A8) Yarrowia yeast having the ability to decompose short-chain to medium-chain fatty acid (C2-C12) -containing esters.
  • (Item A9) Yarrow yeast having the ability to decompose short-chain to long-chain fatty acid (C2 or higher) -containing fats and oils.
  • Yarrowia yeast which has the ability to decompose triglycerides.
  • the Yarrowia yeast according to any one of the above items. (Item A14) An oil decomposing agent containing the Yarrowia yeast according to any one of the above items.
  • (Item A16) (A) To decompose trans fatty acids (B) To decompose trans fatty acid-containing fats and oils (C) To decompose esters (eg, fats and oils) and / or fatty acids at 15 ° C. At least one selected from the group consisting of (d) for decomposing short-chain to medium-chain fatty acid (C2-C12) -containing esters and (e) for decomposing short-chain to long-chain fatty acid (C2 or higher) -containing fats and oils.
  • a composition comprising the Yarrowia yeast according to any one of the above items or the oil decomposing agent according to any one of the above items.
  • Kit for decomposition of esters eg oils and fats.
  • Kit for decomposition of esters eg oils and fats.
  • Ester eg, oil
  • decomposition removal method The method according to any one of the above items, wherein the treatment target includes a trans fatty acid or a trans fatty acid-containing fat or oil.
  • Steps of decomposing trans fatty acids (A) Steps of decomposing trans fatty acids, (B) Steps of decomposing trans fatty acid-containing fats and oils, (C) Degrading esters (eg, fats and oils) and / or fatty acids at 15 ° C. (D) Steps of decomposing short-chain to medium-chain fatty acid (C2-C12) -containing esters, and (e) Steps of decomposing short-chain to long-chain fatty acid (C2 or more) -containing fats and oils, The method according to any one of the above items, comprising at least one step selected from the group consisting of.
  • (Item B1) A composition for treating fats and oils in combination with a lipase-producing Yarrowia yeast containing a Burkholderia bacterium and a lipase-producing Burkholderia bacterium.
  • (Item B2) A composition for treating fats and oils in combination with lipase-producing Yarrowia yeast and lipase-producing Burkholderia bacteria, including Yarrowia yeast.
  • (Item B3) A combination for fat treatment that comprises a combination of Burkholderia bacterium and Yarrowia yeast, wherein both the Burkholderia bacterium and the Yarrowia yeast produce lipase.
  • the Burkholderia bacterium includes a Burkholderia bacterium.
  • the Burkholderia bacterium comprises Burkholderia arboris, Burkholderia ambifaria, or Burkholderia cepacia complex. A thing or combination.
  • (Item B7) The composition or combination according to any one of the above items, wherein the combination of Burkholderia bacterium and Yarrowia yeast has a fat resolution higher than the fat resolution calculated from the value of the fat resolution of each single culture. ..
  • (Item B8) The composition or combination according to any one of the above items, wherein the number of cells of the Burkholderia bacterium: the number of cells of the Yarrowia yeast is 1: 20 to 20: 1.
  • (Item B9) The composition or combination according to any one of the above items, wherein at least one of the Burkholderia bacterium and the Yarrowia yeast has an ability to decompose fatty acids at 15 ° C.
  • the Burkholderia bacteria are Burkholderia arboris KH-1 strain (strain specified by accession number NITE BP-02731) and Burkholderia ambifaria KH-1AL1 strain (accession number NITE). Strain identified by BP-02977), Burkholderia cepacia complex KH-1AL2 strain (strain identified by accession number NITE BP-02978) or Burkholderia cepacia complex KH- The composition or combination according to any one of the above items, which is 1AL3 strain (a strain specified by accession number NITE BP-02979) or an induction strain thereof.
  • the Yarrowia yeast is identified by Yarrowia lipolytica KH-2 strain (microorganism strain specified by accession number NITE BP-02732) and Yarrowia lipolytica KH-2AL1 strain (accession number NITE BP-03091).
  • (Item B13) The oil decomposing agent according to any one of the above items, which comprises an additional oil treatment component.
  • (Item B14) A method for removing oil decomposition, which comprises allowing the composition or combination according to any one of the above items, or the oil decomposing agent according to any one of the above items, to act on a treatment target.
  • (Item B15) A composition for improving lipase production of a lipase-producing Yarrowia yeast, which comprises Burkholderia bacteria.
  • (Item B16) A composition for improving lipase production of Burkholderia bacteria that produce lipase, including Yarrowia yeast.
  • (Item B17) A composition for enhancing the ability of the lipase-producing Yarrowia yeast to process fats and oils, including Burkholderia bacteria.
  • (Item B18) A composition for enhancing the ability of Burkholderia bacteria that produce lipases to process fats and oils, including Yarrowia yeast.
  • (Item B19) A method for improving lipase production of at least one of the Burkholderia bacterium and the Yarrowia yeast, which comprises a step of mixing and culturing the Burkholderia bacterium and the Yarrowia yeast.
  • (Item B20) Use of Burkholderia bacteria to treat fats and oils in combination with lipase-producing Yarrowia yeast and lipase-producing Burkholderia bacteria.
  • (Item B21) Use of Yarrowia yeast to treat fats and oils in combination with lipase-producing Yarrowia yeast and lipase-producing Burkholderia bacteria.
  • (Item B22) Use of the Burkholderia bacterium and the Yarrowia yeast for treating fats and oils with a combination of Burkholderia bacterium and Yarrowia yeast, wherein both the Burkholderia bacterium and the Yarrowia yeast produce lipase.
  • (Item B26) The use according to any one of the above items, wherein the combination of Burkholderia bacteria and Yarrowia yeast has a fat decomposing ability higher than the fat decomposing value calculated from the fat decomposing value of each single culture.
  • (Item B27) The use according to any one of the above items, wherein the number of cells of the Burkholderia bacterium: the number of cells of the Yarrowia yeast is 1:20 to 20: 1.
  • (Item B28) The use according to any one of the above items, wherein at least one of the Burkholderia bacterium and the Yarrowia yeast has the ability to degrade fatty acids at 15 ° C.
  • the Burkholderia bacteria are Burkholderia bacterium KH-1 strain (strain specified by accession number NITE BP-02731), KH-1AL1 strain (strain specified by accession number NITE BP-02977), KH- 1AL2 strain (strain specified by accession number NITE BP-02978) or KH-1AL3 strain (strain specified by accession number NITE BP-02979), or an inducible strain thereof, as described in any one of the above items. Use of.
  • the Yarrowia yeast is Yarrowia lipolytica KH-2 strain (microorganism strain specified by accession number NITE BP-02732), Yarrowia lipolytica KH-2AL1 strain (microorganism strain specified by accession number NITE BP-03091), or Yarrowia lipolytica.
  • (Item B32) The use according to any one of the above items, which comprises allowing the combination of Burkholderia bacteria and Yarrowia yeast to act on the treatment subject.
  • (Item B33) Use of Burkholderia bacteria to improve lipase production in the Yarrowia yeast that produces lipase.
  • (Item B34) Use of Yarrowia yeast to improve lipase production in Burkholderia bacteria that produce lipase.
  • (Item B35) Use of Burkholderia bacteria to enhance the ability of Yarrowia yeast to process fats and oils that produce lipase.
  • (Item B36) Use of Yarrowia yeast to enhance the ability of Burkholderia bacteria to process fats and oils that produce lipase.
  • (Item B37) Use of the Burkholderia bacterium and the Yarrowia yeast to improve lipase production of at least one of the Burkholderia bacterium and the Yarrowia yeast.
  • (Item B38) A method for treating fats and oils in combination with a lipase-producing Yarrowia yeast and a lipase-producing Burkholderia bacterium, which comprises contacting the Burkholderia bacterium with the subject.
  • (Item B39) A method for treating fats and oils in combination with a lipase-producing Yarrowia yeast and a lipase-producing Burkholderia bacterium, which comprises contacting the Yarrowia yeast with the subject.
  • (Item B40) A method for treating fats and oils in combination with a lipase-producing Yarrowia yeast and a lipase-producing Burkholderia bacterium, comprising contacting the subject with a combination of Burkholderia bacteria and Burkholderia yeast.
  • (Item B41) The method according to any one of the above items, wherein the Yarrowia yeast contains Yarrowia lipolytica.
  • (Item B42) The method according to any one of the above items, wherein the Burkholderia bacterium includes a Burkholderia bacterium.
  • the Burkholderia bacteria are Burkholderia bacterium KH-1 strain (strain specified by accession number NITE BP-02731), KH-1AL1 strain (strain specified by accession number NITE BP-02977), KH- 1AL2 strain (strain specified by accession number NITE BP-02978) or KH-1AL3 strain (strain specified by accession number NITE BP-02979), or an inducible strain thereof, as described in any one of the above items. the method of.
  • the Yarrowia yeast is Yarrowia lipolytica KH-2 strain (microorganism strain specified by accession number NITE BP-02732), Yarrowia lipolytica KH-2AL1 strain (microorganism strain specified by accession number NITE BP-03091), or Yarrowia lipolytica.
  • the method according to any one of the above items which is a KH-2AL3 strain (a microbial strain specified by accession number NITE BP-03092) or an inducible strain thereof.
  • an additional oil treatment component is used.
  • (Item B50) The method according to any one of the above items, which is a method for removing oil decomposition.
  • (Item B51) A method for improving lipase production of lipase-producing Yarrowia yeast, which comprises the step of feeding Burkholderia bacteria into the target.
  • (Item B52) A method for improving lipase production of Burkholderia bacteria that produce lipase, including the step of adding Yarrowia yeast to the subject.
  • (Item B53) A method for enhancing the ability of the lipase-producing Yarrowia yeast to process fats and oils, including the step of feeding Burkholderia bacteria into the target.
  • (Item B54) A method for enhancing the ability of Burkholderia bacteria that produce lipases to process fats and oils, including the step of adding Yarrowia yeast to the target.
  • (Item C1) Yarrow yeast with the ability to break down trans fatty acids.
  • (Item C2) Yarrow yeast having the ability to decompose trans fatty acid-containing fats and oils.
  • (Item C3) Yarrowia yeast capable of degrading esters and / or fatty acids at 15 ° C.
  • (Item C4) Yarrowia yeast capable of degrading short-chain to medium-chain fatty acid-containing esters.
  • (Item C5) Yarrow yeast having the ability to decompose short-chain to long-chain fatty acid-containing fats and oils.
  • Yarrowia yeast which has the ability to decompose triglycerides.
  • a Yarrowia yeast that has the ability to improve the lipase production of Burkholderia bacteria that produce lipase.
  • Yarrowia lipolytica KH-2 strain (microorganism strain specified by accession number NITE BP-02732), Yarrowia lipolytica KH-2AL1 strain (microorganism strain specified by accession number NITE BP-03091), or Yarrowia lipolytica KH-2AL3 strain ( (Microbial strain specified by accession number NITE BP-03092), or an inducible strain thereof, which has the characteristics of Yarrowia yeast according to any one of the above items, any of the above items.
  • the Yarrowia yeast described in item 1. An oil decomposing agent containing the Yarrowia yeast according to any one of the above items.
  • (Item C15) The oil decomposing agent according to any one of the above items, which comprises an additional oil treatment component.
  • (Item C16) (A) To decompose trans fatty acids (B) To decompose trans fatty acid-containing fats and oils (C) To decompose esters and / or fatty acids at 15 ° C. At least one selected from the group consisting of (d) for decomposing short-chain to medium-chain fatty acid (C2-C12) -containing esters and (e) for decomposing short-chain to long-chain fatty acid (C2 or higher) -containing fats and oils.
  • a composition comprising the Yarrowia yeast according to any one of the above items, or an oil-degrading agent for the purpose.
  • (Item C17) A kit for ester decomposition comprising the Yarrowia yeast or oil decomposing agent according to any one of the above items, or the composition according to any one of the above items, and an additional oil treatment component.
  • (Item C18) A method for decomposing and removing an ester, which comprises allowing the Yarrowia yeast, the oil decomposing agent, or the composition according to any one of the above items to act on a treatment target.
  • (Item C19) The method according to any one of the above items, wherein the treatment target includes a trans fatty acid or a trans fatty acid-containing fat or oil.
  • Steps of decomposing trans fatty acids (A) Steps of decomposing trans fatty acids, (B) Steps of decomposing trans fatty acid-containing fats and oils, (C) Degrading esters and / or fatty acids at 15 ° C. (D) Steps of decomposing short-chain to medium-chain fatty acid (C2-C12) -containing esters, and (e) Steps of decomposing short-chain to long-chain fatty acid (C2 or more) -containing fats and oils, The method according to any one of the above items, comprising at least one step selected from the group consisting of.
  • (Item C21) A composition for treating fats and oils or fatty acids in combination with a lipase-producing Yarrowia yeast containing a Burkholderia bacterium and a lipase-producing Burkholderia bacterium.
  • (Item C22) A composition for treating fats and oils or fatty acids in combination with lipase-producing Burkholderia yeast and lipase-producing Burkholderia bacteria, including Yarrowia yeast.
  • (Item C23) A combination for the treatment of fats and oils or fatty acids comprising a combination of Burkholderia bacterium and Yarrowia yeast, wherein both the Burkholderia bacterium and the Yarrowia yeast produce lipase.
  • the composition or combination according to any one of the above items, wherein at least one of the Burkholderia bacterium and the Yarrowia yeast has an ability to decompose fatty acids at 15 ° C. (Item C30)
  • the Burkholderia bacteria are Burkholderia bacterium KH-1 strain (strain specified by accession number NITE BP-02731), KH-1AL1 strain (strain specified by accession number NITE BP-02977), KH- 1AL2 strain (strain specified by accession number NITE BP-02978) or KH-1AL3 strain (strain specified by accession number NITE BP-02979), or an inducible strain thereof, as described in any one of the above items.
  • the Yarrowia yeast is Yarrowia lipolytica KH-2 strain (microorganism strain specified by accession number NITE BP-02732), Yarrowia lipolytica KH-2AL1 strain (microorganism strain specified by accession number NITE BP-03091), or Yarrowia lipolytica.
  • the composition or combination according to any one of the above items which is a KH-2AL3 strain (a microbial strain specified by accession number NITE BP-03092) or an inducible strain thereof.
  • (Item C33) The oil decomposing agent according to any one of the above items, which comprises an additional oil treatment component.
  • (Item C34) A method for removing oil decomposition, which comprises allowing the composition or combination according to any one of the above items or an oil decomposing agent to act on a treatment target.
  • (Item C35) A composition for improving lipase production of a lipase-producing Yarrowia yeast, which comprises Burkholderia bacteria.
  • (Item C36) A composition for improving lipase production of Burkholderia bacteria that produce lipase, including Yarrowia yeast.
  • (Item C37) A composition for enhancing the ability of the lipase-producing Yarrowia yeast to process fats and oils or fatty acids, including Burkholderia bacteria.
  • (Item C38) A composition for enhancing the ability of Burkholderia bacteria producing lipases to process fats and oils or fatty acids, including Yarrowia yeast.
  • (Item C39) A method for improving lipase production of at least one of the Burkholderia bacterium and the Yarrowia yeast, which comprises a step of mixing and culturing the Burkholderia bacterium and the Yarrowia yeast.
  • microorganisms or combinations of microorganisms of the present disclosure and the compositions or combinations that provide them can achieve rapid fat and / or fatty acid decomposition, thus purifying environmental pollution by oil, food waste treatment, composting treatment, wastewater. It can be applied to a wide range of situations such as waste treatment such as treatment and composting, can handle a wide range of oil concentrations, and can decompose trans fatty acids and fats and oils containing the same fatty acids, especially in food factories. It is possible to treat oil-containing objects such as wastewater discharged from.
  • the microorganisms of the present disclosure and compositions containing them are capable of decomposing trans fatty acids and fats and oils contained therein generated in the step of hydrogenation to oils, and in particular, margarines, fat spreads and shortenings containing a large amount of fats and oils containing such fatty acids. It has the effect of being able to treat things that could not be treated with conventional microorganisms.
  • the microorganisms of the present disclosure and compositions containing them provide the effect of achieving trans fatty acid decomposition, which can be used at a practical level as yeast (microorganism) which is a main microorganism in wastewater treatment and waste treatment.
  • (B) is the result of measuring the oil content corresponding to the normal hexane value with the oil content measuring reagent kit.
  • the left is BR3200, and the right is the decomposition result by the KH-2 strain.
  • Elaidic acid degrading activity by BioRemov 3200 (BR3200) (Novozymes, Denmark) (left) or KH-2 strain (right) at 15 ° C. is shown.
  • (A) is a photograph in which fatty acids in the culture solution were detected by thin layer chromatography.
  • (B) is the result of measuring the oil content corresponding to the normal hexane value with the oil content measuring reagent kit.
  • the left is BR3200, and the right is the decomposition result by the KH-2 strain.
  • the degradation of triellaidin by the KH-2 strain is shown. It is a photograph which analyzed the residual oil content in a culture solution by thin layer chromatography. From the left, each photograph shows the decomposition of triellaidin at 28 ° C and the decomposition of triellaidin at 15 ° C.
  • BS inorganic salt medium
  • KH-2 shows KH-2 strain addition.
  • the oil and fat resolution of KH-2 strain in actual wastewater is shown.
  • each column shows the results of no addition of microorganisms (control), addition of BioRemov 3200 (BR3200), and addition of KH-2 strain.
  • the oil and fat resolution of KH-2 strain in actual wastewater is shown. This is the result of measuring the oil content corresponding to the normal hexane value with the oil content measuring reagent kit.
  • the white bar shows the result after culturing for 24 hours, and the black bar shows the result after culturing for 48 hours.
  • the vertical axis shows the normal hexane value (mg / L).
  • Decomposition of canola oil by the KH-2 strain in a 15 ° C. culture (pH 7.0) is shown.
  • the oil content (residual oil content) equivalent to the normal hexane value was measured with the oil content measurement reagent kit, and the ratio when the measured value at 0 hours was set to 100% was calculated.
  • the results (upper row) and the results of quantifying all fatty acids (total of fatty acids in triglyceride and free fatty acids) by gas chromatography (lower row) are shown.
  • Decomposition of canola oil by the KH-2 strain in a 15 ° C. culture (pH 7.0) is shown.
  • the results (upper row) and the results of quantifying all fatty acids (total of fatty acids in triglyceride and free fatty acids) by gas chromatography (lower row) are shown.
  • Decomposition of canola oil by the KH-2 strain in 28 ° C. culture (pH 7.0) is shown. It is a photograph which analyzed the residual oil content in a culture solution by thin layer chromatography. From the left, each column shows the results at 0 hours, 12 hours, 24 hours, and 30 hours after the start of culture.
  • the elaidic acid decomposition activity by the sterile group, KH-2 strain, KH-2AL1 strain or KH-2AL3 strain at 28 ° C. is shown.
  • (A) is a photograph in which fatty acids in the culture solution were detected by thin layer chromatography.
  • (B) is the result of measuring the oil content corresponding to the normal hexane value with the oil content measuring reagent kit. From the left, the results of degradation by the sterile group, KH-2 strain, KH-2AL1 strain, and KH-2AL3 strain. The elaidic acid decomposition activity by the sterile group, KH-2 strain, KH-2AL1 strain or KH-2AL3 strain at 15 ° C. is shown.
  • (A) is a photograph in which fatty acids in the culture solution were detected by thin layer chromatography.
  • (B) is the result of measuring the oil content corresponding to the normal hexane value with the oil content measuring reagent kit. From the left, the results of degradation by the sterile group, KH-2 strain, KH-2AL1 strain, and KH-2AL3 strain. The aseptic group at 28 ° C., KH-2AL1 strain or KH-2AL3 strain shows the trieridin degrading activity. This is the result of measuring the oil content corresponding to the normal hexane value with the oil content measuring reagent kit. From the left, the results of degradation by the sterile group, KH-2 strain, KH-2AL1 strain, and KH-2AL3 strain. Decomposition of canola oil by KH-2AL1 strain in 15 ° C.
  • each column shows the results at 0, 24, 48, and 72 hours after the start of culture.
  • Decomposition of canola oil by KH-2AL3 strain in 15 ° C. culture (pH 7.0) is shown.
  • the oil content (residual oil content) equivalent to the normal hexane value was measured with the oil content measurement reagent kit, and the ratio when the measured value at 0 hours was set to 100% was calculated.
  • the results (upper row) and the results of quantifying all fatty acids (total of fatty acids in triglyceride and free fatty acids) by gas chromatography (lower row) are shown.
  • Decomposition of canola oil by KH-2AL3 strain in 15 ° C. culture (pH 7.0) is shown. It is a photograph which analyzed the residual oil content in a culture solution by thin layer chromatography. From left to right, each column shows the results at 0, 24, 48, and 72 hours after the start of culture. The assimilation ability of triellaidin or elaidic acid of KH-2 strain at 15 ° C. is shown. The photo on the left shows the results of culturing in an elaidic acid-containing medium, and the photo on the right shows the results of culturing in a medium containing elaidic acid. The results of KH-2 strain addition condition (left) and no microbial addition (control, right) are shown.
  • a comparison of the detergency of the KH-2 strain and the detergent is shown. It is a photograph of a ventilation fan filter with oil stains soaked in the culture supernatant of KH-2 strain, an oil detergent, and a general detergent and washed. The left shows before processing. The right column shows the upper row: KH-2 strain culture supernatant treatment, the middle row: oil detergent treatment, and the lower row: general detergent treatment, respectively.
  • a comparison of the palmiteraidic acid and vaccenic acid degrading activities of the KH-2 strain and BioRemove 3200 (BR3200) (Novozymes, Denmark) is shown.
  • the amount of decrease (decomposition amount) of total fatty acids (total of fatty acids in triglyceride and free fatty acids) 48 hours after the start of culture is quantified by gas chromatography, and fats and oils calculated from the value of fats and oils resolution of each single culture. The result of comparison with the resolution is shown.
  • the vertical axis shows the relative oil / fat resolution at each mixing ratio compared with the oil / fat resolution (100%) calculated from the value of the oil / fat resolution of each single culture, and the horizontal axis shows the KH-2 strain content (based on the number of cells). ) Is shown. Decomposition of canola oil at various mixing ratios of KH-1 strain and KH-2 strain at 28 ° C. is shown.
  • the result of quantifying the amount of decrease (decomposition amount) of total fatty acids (total of fatty acids in triglyceride and free fatty acids) 18 hours after the start of culture in the cell number standard) by gas chromatography is shown.
  • the vertical axis shows the amount of decomposition of total fatty acids
  • the horizontal axis shows the KH-1 strain: KH-2 strain mixing ratio (based on the number of cells).
  • the straight dashed line indicates the oil / fat resolution calculated from the value of the oil / fat resolution of each single culture.
  • the vertical axis shows the amount of decomposition of total fatty acids
  • the horizontal axis shows the KH-1 strain: KH-2 strain mixing ratio (based on the number of cells).
  • the straight dashed line indicates the fatty acid resolution calculated from the value of the fatty acid resolution of each single culture.
  • the gene expression level of each microorganism in the symbiotic system of KH-1 strain + KH-2 strain is shown.
  • the left panel shows the results of the KH-1 strain after culturing for 71 hours
  • the vertical axis shows the KH-1 strain + KH-2 strain when the RNA expression level of each gene in the case of single culture of the KH-1 strain is 1.
  • the relative expression level of the gene in the symbiotic culture of is shown.
  • the first lipase of the KH-1 strain is represented by the nucleotide sequence of SEQ ID NO: 1 and the amino acid sequence of SEQ ID NO: 2.
  • the second lipase of the KH-1 strain is represented by the nucleotide sequence of SEQ ID NO: 3 and the amino acid sequence of SEQ ID NO: 4.
  • the right panel shows the results of the KH-2 strain after culturing for 48 hours, and the vertical axis shows the KH-1 strain + KH-2 strain when the RNA expression level of each gene in the case of single culture of the KH-2 strain is 1. The relative expression level of the gene in the symbiotic culture of is shown.
  • the first lipase of the KH-2 strain is represented by the nucleotide sequence of SEQ ID NO: 5 and the amino acid sequence of SEQ ID NO: 6.
  • the second lipase of the KH-2 strain is represented by the nucleotide sequence of SEQ ID NO: 7 and the amino acid sequence of SEQ ID NO: 8. It shows the degrading activity of the model substrate (4-nitrophenyl butyrate, 4-nitrophenyl palmitate) by the culture supernatant of the KH-1 strain alone or the KH-1 strain + KH-2 strain symbiotic system.
  • the left panel is the activity evaluated by 4-nitrophenyl butyrate
  • the right panel is the activity evaluated by 4-nitrophenyl palmitate.
  • each panel the left shows the result of culturing for 48 hours, and the right shows the result of culturing for 71 hours.
  • the vertical axis shows the relative value of the absorbance of the symbiotic culture of KH-1 strain + KH-2 strain when the absorbance at 410 nm in the case of single culture of KH-1 strain is 1.
  • a stock name such as KH-1 stock may be omitted from being labeled as "stock” in some cases, but those skilled in the art will appropriately indicate that it is a stock depending on the context. to understand.
  • esterase refers to a hydrolase that decomposes an ester into an acid and an alcohol by a chemical reaction with water.
  • esterase typically refers to a hydrolase that decomposes a fatty acid ester into a fatty acid and an alcohol by a chemical reaction with water.
  • lipase is a kind of esterase, and refers to an enzyme that reversibly catalyzes the reaction of hydrolyzing neutral fat (glycerol ester) and decomposing it into fatty acid and glycerol.
  • glycerol ester neutral fat
  • triglycerol lipase classified into EC3.1.1.3 by the enzyme number (EC number) can be mentioned.
  • the "symbiotic system” refers to a combination of a plurality of types of microorganisms existing in the same environment or system.
  • “to coexist” refers to the presence of a combination of a plurality of types of microorganisms in the same environment or system.
  • a symbiotic system is separate into an environment in which there are multiple types of microorganisms that are mixed and present in a composition, multiple types of microorganisms that are supported on a carrier in a composition, and each microbial species. It is used in any sense of the combination of multiple types of microorganisms formed as a result of being charged into.
  • the respective microbial species in the symbiotic system may be in contact with each other (including fusion and inclusion).
  • the symbiotic system may be in a state in which the environment created by the action (eg, release, degradation) of at least one microbial species in the symbiotic system is available to another microbial species in the symbiotic system.
  • the respective microbial species may or may not be contactable (eg, each microbial species is located upstream and downstream in the system).
  • the environment created by the action of at least one microbial species in the symbiotic system is, for example, an environment in which a certain component is reduced, a certain component (a component generated by decomposition by a certain microbial species, an action (for example, reaction) of this component).
  • Examples include an environment in which secondary components (such as secondary components) have increased, and an environment in which certain factors (pH, etc.) have changed.
  • a typical example of a symbiotic system is that a product produced by decomposition of a chemical substance by one or more of the microorganisms constituting the symbiotic system becomes a growth substrate such as a carbon source of another microorganism.
  • microorganisms having the same ability to decompose and assimilate a growth substrate generally have a competitive relationship over the substrate, so that it is considered difficult to establish a symbiotic system.
  • symbiotic refers to the ability of a combination of a plurality of types of microorganisms to form a symbiotic system.
  • the oil / fat resolution calculated from the value of the oil / fat resolution of each single culture is obtained with respect to the oil / fat resolution of the microbial strains alone constituting the combination of microorganisms (for example, Burghorderia bacteria and Yarrowia yeast). It is a numerical value obtained by calculating based on the value to be obtained and considering the contribution of each mixture. Typically, each is calculated from the sum of the values obtained by multiplying the simple ratio by the value of the oil / fat resolution obtained based on the value of the result of culturing under the same conditions (medium composition, time, temperature, etc.). Examples include, but are not limited to, oil / fat resolution values.
  • one type of Burkholderia bacteria and one "fat resolution is calculated from the value of fats and oils resolution of each single culture" for the combination of a total cell concentration 1 ⁇ 10 5 cells / mL made of Yarrowia yeast of , [(Fat resolution when this Burgholderia bacterium 1 ⁇ 10 5 cells / mL is independently cultured) ⁇ (Mixing ratio of this Burgholderia bacterium) + (This Yarrowia yeast 1 ⁇ 10 5 cells / mL is independently cultured (Fat and oil resolution) x (mixing ratio of this Yarrow yeast)] can be calculated.
  • the cell concentration at the time of single culture which is the basis of the calculation, is not particularly limited, and can be appropriately selected by those skilled in the art, and can be calculated by multiplying by an appropriate coefficient (which may be 1). Further, as another example, it may be calculated from the value of the oil / fat resolution based on the initial input microorganism amount (if necessary, the growth rate of the microorganism may be taken into consideration). "Fatty acid resolution calculated from the value of fatty acid resolution of each single culture" and "sum of fatty acid resolution calculated from the value of fatty acid resolution of each single culture" are also understood in the same context.
  • fat and oil refers to an oily substance, and the fat and oil includes an ester group-containing compound formed by dehydration condensation of a compound containing a hydroxyl group and a fatty acid.
  • the compound containing this hydroxyl group is glycerin, but other examples include polyglycerin and the like.
  • ester group-containing compounds formed by dehydration condensation of glycerin and fatty acids are referred to herein as "glycerides”.
  • the compound containing a hydroxyl group has a plurality of hydroxyl groups, if at least one of the hydroxyl groups is dehydrated and condensed with a fatty acid to form an ester, the compound corresponds to the ester group-containing compound in the present specification. ..
  • the fats and oils may include fats and oils containing cis fatty acids, fats and oils containing trans fatty acids, or both.
  • Oils and fats are contained in, for example, kitchen wastewater from the food service industry and wastewater from food factories, and grease traps and pressurized flotation separators, which are treatment facilities that remove them by solid-liquid separation, are sources of foul odors and pests.
  • There are many problems such as labor and cost required for maintenance such as recovery, transportation, and cleaning of separated oil, and cost of coagulant required for this.
  • the combinations of microorganisms of the present disclosure and the compositions or combinations that provide them can be used to extinguish oil in grease traps and in factory wastewater treatment equipment.
  • the present disclosure provides microbial preparations for grease traps and factory effluents. Especially when applied to factory wastewater, it is possible to reduce or even replace the operating rate of the pressurized flotation separator.
  • Kitchen wastewater in the food service industry usually contains a high concentration of fats and oils of 1 g / L or more, and when it is high, 10 g / L or more, and the residence time of wastewater in many grease traps is extremely short, about 10 minutes.
  • the microorganisms of the present disclosure can also be used in such an environment.
  • Oils and fats are also abundant in kitchen waste, livestock waste, and sludge from wastewater treatment plants. Microorganisms are often used to treat such solid waste, but if the amount of oil contained is large, the treatment becomes difficult or the oil remains.
  • the combinations of microorganisms of the present disclosure and the compositions or combinations providing the same are also applicable to the decomposition treatment of oils in such wastes.
  • oil includes fats and oils and fatty acids.
  • the "fatty acid” is a compound having 2 to 100 carbon atoms and having at least one carboxyl group.
  • the carbon chain in the fatty acid is a straight chain, but it may be a branched chain or may contain a ring.
  • the fatty acid contains one carboxyl group, but may contain a plurality of carboxyl groups.
  • trans fatty acid-containing fat and oil refers to a compound formed by dehydration condensation of a trans fatty acid and a compound containing a hydroxyl group.
  • the trans fatty acid includes elaidic acid, vaccenic acid and the like, but the type of trans fatty acid is not particularly limited as referred to herein.
  • the ratio of trans fatty acids present in the trans fatty acid-containing fats and oils is not particularly limited.
  • the "trans-type” and “cis-type” of double bonds are used in the sense commonly used in the art and have four substituents (R 1 , R 2 , etc.) on the two carbon atoms forming the double bond.
  • R 3 and R 4 is bonded In the case where R 1 and R 2 or R 3 and R 4 are groups other than hydrogen and the remaining two substituents are hydrogen atoms, it is called a cis type, and R 1 and R 4 or R 3 and R are called cis type.
  • the case where 2 is a group other than hydrogen and the remaining two substituents are hydrogen atoms is called a trans type.
  • Trans fatty acids are naturally present in trace amounts as conjugated linoleic acid and vaccenic acid, and are relatively abundant in the fat content of ruminants, for example. Trans fatty acids can occur during hydrogenation steps to produce saturated fatty acids from unsaturated fatty acids, and during the purification of unsaturated fatty acid-rich vegetable oils. Therefore, margarine, fat spread, shortening, etc. may contain a relatively large amount of trans fatty acids.
  • short-chain to medium-chain fatty acid-containing ester refers to an ester of a fatty acid containing one or more of a short-chain fatty acid or a medium-chain fatty acid.
  • Short-chain fatty acids “medium-chain fatty acids,” and “long-chain fatty acids” are used in the sense commonly used in the art and have 2-6, 7-12, and 13 or more carbon atoms, respectively. Means fatty acid.
  • Short-chain fatty acids include acetic acid (2 carbon atoms), butyric acid (4 carbon atoms), caproic acid (6 carbon atoms) and the like.
  • Medium-chain fatty acids include caprylic acid (8 carbon atoms), capric acid (10 carbon atoms), lauric acid (12 carbon atoms) and the like.
  • Long-chain fatty acids include myristic acid (14 carbons), palmitic acid (16 carbons), palmiteraidic acid (16 carbons), stearic acid (18 carbons), oleic acid (18 carbons), and elaidic acid. (18 carbon atoms), linoleic acid (18 carbon atoms), vaccenic acid (18 carbon atoms), linolenic acid (18 carbon atoms) and the like are included.
  • the "normal hexane value" is the amount of non-volatile substances extracted by normal hexane, and refers to an index indicating the amount of oil (fat and oil, its hydrolyzate, etc.) in water.
  • the normal hexane value can be determined according to, for example, JIS K0102. It can also be obtained using a simple measurement reagent kit based on the measurement of polynippam extract.
  • adjuvantation means to be used as a nutrient source, and substances (for example, fats and oils) targeted for assimilation are decomposed and disappear or decrease as a result.
  • composition means that when used with respect to esters (eg, fats and oils) and / or fatty acids, the ester (eg, fats and oils) and / or fatty acids of interest are smaller molecules. For example, it is divided into glycerol and (free) fatty acids, and the conversion of fatty acids to fatty acids with fewer carbon atoms and the conversion to carbon dioxide and water are also called decomposition.
  • the "ability to decompose an ester” or “esterase activity” refers to the activity of hydrolyzing an ester into alcohols and acids (for example, free fatty acids).
  • “ability to decompose esters” or “esterase activity” refers to 4-nitro produced by a hydrolysis reaction of microorganisms, combinations of microorganisms, or their culture supernatants in contact with esters of 4-nitrophenols and fatty acids. It may be measured by measuring the amount of phenol, or it may be measured in the same manner as the measurement of the ability to decompose fats and oils described in the present specification.
  • the term "having lipase activity" means having the activity of hydrolyzing fats and oils produced by dehydration condensation of glycerol and fatty acids into glycerol and free fatty acids. Lipase activity is also referred to herein as triglyceride lipase activity. For example, whether or not it has lipase activity can be confirmed by reducing the amount of fats and oils (animal and vegetable oils such as canola oil, triolein, etc.) contained in the medium to which microorganisms are added.
  • fats and oils animal and vegetable oils such as canola oil, triolein, etc.
  • the term "microorganism" produces lipase means that the microorganism produces lipase extracellularly or intracellularly.
  • lipase when lipase is produced extracellularly, it is said that lipase is secreted or lipase is secreted and produced.
  • the secreted lipase may be released into the external environment apart from the bacterial cell cells, or may remain on the cell surface layer by some interaction with the cell surface layer.
  • the production of lipase by a microorganism can be measured and identified by the following decomposition test. Degradation ability must be shown in one of the following tests, and decomposition does not necessarily have to be confirmed in all tests.
  • -A test to confirm whether or not it has the ability to assimilate fats and oils at a predetermined temperature (for example, 15 ° C. and 28 ° C.).
  • -A test for confirming whether a clear zone is observed around a colony formed on an agar medium containing oil and fat at a predetermined temperature (for example, 15 ° C. and 28 ° C.).
  • -A test in which fats and oils are given as a carbon source and cultured at a predetermined temperature (for example, 15 ° C., 28 ° C.), and the amount of decrease in the normal hexane value in the culture supernatant is measured.
  • fats and oils are given as a carbon source and cultured at a predetermined temperature (for example, 15 ° C. and 28 ° C.), and the time change of the amount of fats and oils and free fatty acids in the culture supernatant is measured by thin layer chromatography. If the amount of fats and oils decreases over time, it has the ability to decompose. Alternatively, once the amount of free fatty acids increases, it can be said to have the ability to decompose.
  • -Fat and oil is given as a carbon source and cultured at a predetermined temperature (for example, 15 ° C., 28 ° C.), and the concentration of free fatty acids in the culture supernatant is measured by gas chromatography, gas chromatography mass spectrometry, high performance liquid chromatography, etc. A test measured by instrumental analysis. Once the concentration of free fatty acids increases, it can be said to have the ability to decompose.
  • -A test to prepare a water test containing fats and oils as the main organic matter (for example, 70% by weight or more of the total organic matter) and measure the biochemical oxygen demand (BOD).
  • the protein in the culture supernatant or the cultured cells is analyzed by electrophoresis or mass spectrometry to confirm the content of lipase.
  • the "lipase activity" of microorganisms, combinations of microorganisms, or their culture supernatants is analyzed according to the above-mentioned method for measuring "esterase activity". Individual, more detailed measurement methods are provided herein, and one of ordinary skill in the art can perform these measurements using any other device or condition.
  • the ability to decompose an ester at 15 ° C means that the ester has an activity of hydrolyzing the ester into alcohols and acids at a low temperature (microorganisms and the like).
  • the ability to decompose fats and oils at 15 ° C. hydrolyzes the microorganisms of the present disclosure (including derivatives of the KH-2 strain) at 15 ° C. by contacting 4-nitrophenol with an ester of an acid (eg, free fatty acid). It may be measured by measuring the amount of 4-nitrophenol produced by the reaction, or it may be measured in the same manner as the measurement of the ability to decompose fats and oils at 15 ° C. described herein.
  • the term "ability to decompose fats and oils at 15 ° C.” means that (microorganisms and the like) have an activity of hydrolyzing fats and oils into glycerol and free fatty acids at low temperatures.
  • the ability to decompose fats and oils at 15 ° C. can be measured and identified by the following tests. Degradation ability must be shown in one of the following tests, and decomposition does not necessarily have to be confirmed in all tests. ⁇ A test to confirm whether or not it has the ability to assimilate fats and oils at 15 ° C. -A test to confirm whether a clear zone is observed around the colonies formed on the agar medium containing fats and oils at 15 ° C.
  • -A test in which fats and oils are given as a carbon source and cultured at 15 ° C., and the amount of decrease in the normal hexane value in the culture supernatant is measured.
  • -A test in which fats and oils are given as a carbon source and cultured at 15 ° C., and the time change of the amount of fats and oils and free fatty acids in the culture supernatant is measured by thin layer chromatography. If the amount of fats and oils decreases over time, it has the ability to decompose. Alternatively, once the amount of free fatty acids increases, it can be said to have the ability to decompose.
  • -A test in which fats and oils are given as a carbon source and cultured at 15 ° C., and the concentration of free fatty acids in the culture supernatant is measured by instrumental analysis such as gas chromatography, gas chromatography mass spectrometry, or high performance liquid chromatography. Once the concentration of free fatty acids increases, it can be said to have the ability to decompose.
  • -A test to prepare a water test containing fats and oils as the main organic matter (for example, 70% by weight or more of the total organic matter) and measure the biochemical oxygen demand (BOD). Individual, more detailed measurement methods are provided herein, and one of ordinary skill in the art can perform these measurements using any other device or condition.
  • the "ability to assimilate trans fatty acid-containing fats and oils” refers to the activity of assimilating trans fatty acid-containing fats and oils.
  • “assimilating trans fatty acid-containing fats and oils” is used in the meaning commonly used in the present technical field, and means that microorganisms take in trans fatty acid-containing fats and oils as a nutrient source such as a carbon source. When “assimilating”, it includes hydrolysis to glycerol and free fatty acids, as well as conversion to some of the other substances. The ability to assimilate trans fatty acid-containing fats and oils can be measured and identified by the following tests.
  • -A test to confirm whether it can grow in a medium containing trans fatty acid-containing fats and oils as the sole carbon source.
  • -A test to confirm whether colonies are formed in a medium containing trans fatty acid-containing fats and oils as the sole carbon source.
  • -A test to measure the decrease in normal hexane level in the culture supernatant with growth.
  • -A test in which total fatty acids (the sum of fatty acids in fats and oils and free fatty acids) in the culture supernatant are converted to methyl esters as they grow, and then the total amount is measured by gas chromatography.
  • the term "ability to decompose trans fatty acid-containing fats and oils” refers to the activity of hydrolyzing trans fatty acid-containing fats and oils into glycerol and free fatty acids.
  • the ability to decompose trans fatty acid-containing fats and oils can be measured and identified by the following tests. Degradation ability must be shown in one of the following tests, and decomposition does not necessarily have to be confirmed in all tests.
  • -A test to confirm whether or not it has the ability to assimilate trans fatty acid-containing fats and oils.
  • -A test that measures the amount of fats and oils and free fatty acids in the culture supernatant by thin layer chromatography.
  • -A test in which trans fatty acid-containing fats and oils are given as a carbon source and cultured, and the amount of decrease in the normal hexane value in the culture supernatant is measured.
  • -A test in which free fatty acids contained in the culture supernatant and fatty acids in fats and oils are converted to methyl esters and then their concentrations are measured by gas chromatography.
  • -A test that measures the concentration of free fatty acids in the culture supernatant by gas chromatography-mass spectrometry.
  • -A test that measures the concentration of free fatty acids in the culture supernatant by high performance liquid chromatography.
  • -A test to confirm whether a clear zone is observed around colonies formed on an agar medium containing trans fatty acid-containing fats and oils.
  • -A test to prepare a water test containing trans fatty acid-containing fats and oils as the main organic matter (for example, 70% by weight or more of the total organic matter) and measure the biochemical oxygen demand (BOD).
  • BOD biochemical oxygen demand
  • the term "ability to assimilate trans fatty acids” refers to the ability to assimilate trans fatty acids (eg, elaidic acid, palmiteraidic acid and / or vaccenic acid).
  • the ability to assimilate trans fatty acids can be measured and identified by the following tests. It suffices to show the ability to assimilate in one of the following tests, and it is not always necessary for all the tests to be approved for assimilation.
  • -A test to confirm whether it can grow in a medium containing trans fatty acids as the only carbon source.
  • -A test to confirm whether colonies are formed in a medium containing trans fatty acids as the only carbon source.
  • -A test in which trans fatty acids are given as a carbon source and cultured, and the decrease in normal hexane level in the culture supernatant is measured as the culture grows.
  • -A test in which the concentration of trans fatty acids in the culture supernatant is measured by gas chromatography as the culture grows.
  • -A test that measures the concentration of trans fatty acids in the culture supernatant with growth by gas chromatography-mass spectrometry.
  • -A test that measures the concentration of trans fatty acids in the culture supernatant with growth by high performance liquid chromatography.
  • -A test that measures the amount of trans fatty acids in the culture supernatant with growth by thin layer chromatography.
  • the term "ability to decompose trans fatty acids” refers to the ability to decompose trans fatty acids (eg, elaidic acid, palmiteraidic acid and / or vaccenic acid).
  • the ability to degrade trans fatty acids can be measured and identified by the following tests. Degradation ability must be shown in one of the following tests, and decomposition does not necessarily have to be confirmed in all tests.
  • -A test to confirm the ability to assimilate trans fatty acids.
  • -A test that measures the amount of trans fatty acids in the culture supernatant by thin layer chromatography.
  • -A test in which trans fatty acids are given as a carbon source and cultured, and the decrease in normal hexane level in the supernatant is measured.
  • -A test that measures the concentration of trans fatty acids in the culture supernatant by gas chromatography.
  • -A test that measures the concentration of trans fatty acids in the culture supernatant by gas chromatography-mass spectrometry.
  • -A test that measures the concentration of trans fatty acids in the culture supernatant by high performance liquid chromatography.
  • the "ability to assimilate fats and oils” refers to the activity of assimilating fats and oils.
  • assistant fats and oils is used in the sense commonly used in the art and means that microorganisms take up fats and oils or their degradation products as nutrient sources such as carbon sources. When “assimilating”, it includes hydrolysis to glycerol and free fatty acids, as well as conversion to some of the other substances.
  • the ability to assimilate fats and oils can be measured and identified by the following tests. It suffices to show the ability to assimilate in one of the following tests, and it is not always necessary for all the tests to be approved for assimilation.
  • -A test to confirm whether it can grow in a medium containing fats and oils as the only carbon source.
  • the term "ability to decompose fats and oils” refers to the activity of hydrolyzing fats and oils into glycerol and free fatty acids.
  • the ability to break down fats and oils can be measured and identified by the following tests. Degradation ability must be shown in one of the following tests, and decomposition does not necessarily have to be confirmed in all tests.
  • -A test that measures the amount of fats and oils and free fatty acids in the culture supernatant by thin layer chromatography.
  • -A test in which fats and oils are given as a carbon source and cultured, and the amount of decrease in normal hexane value in the culture supernatant is measured.
  • -A test in which free fatty acids contained in the culture supernatant and fatty acids in fats and oils are converted to methyl esters and then their concentrations are measured by gas chromatography.
  • -A test that measures the concentration of free fatty acids in the culture supernatant by gas chromatography-mass spectrometry.
  • -A test that measures the concentration of free fatty acids in the culture supernatant by high performance liquid chromatography.
  • -A test to confirm whether a clear zone is observed around the colonies formed on the agar medium containing fats and oils.
  • -A test to prepare a water test containing fatty acid-containing fats and oils as the main organic matter (for example, 70% by weight or more of the total organic matter) and measure the biochemical oxygen demand (BOD).
  • BOD biochemical oxygen demand
  • the term "ability to assimilate fatty acids” refers to the ability to assimilate fatty acids.
  • the ability to assimilate fatty acids can be measured and identified by the following tests. It suffices to show the ability to assimilate in one of the following tests, and it is not always necessary for all the tests to be approved for assimilation.
  • -A test to confirm whether it can grow in a medium containing fatty acids as the only carbon source.
  • -A test to confirm whether colonies are formed in a medium containing fatty acids as the only carbon source.
  • -A test in which fatty acids are given as a carbon source and cultured, and the decrease in normal hexane level in the culture supernatant with growth is measured.
  • -A test in which the concentration of fatty acids in the culture supernatant is measured by gas chromatography as the culture grows.
  • -A test that measures the concentration of fatty acids in the culture supernatant with growth by gas chromatography-mass spectrometry.
  • -A test that measures the concentration of fatty acids in the culture supernatant with growth by high performance liquid chromatography.
  • -A test that measures the amount of fatty acids in the culture supernatant with growth by thin layer chromatography.
  • the term "ability to break down fatty acids” refers to the ability to break down fatty acids.
  • the ability to break down fatty acids can be measured and identified by the following tests. Degradation ability must be shown in one of the following tests, and decomposition does not necessarily have to be confirmed in all tests.
  • -A test that measures the amount of fatty acids in the culture supernatant by thin layer chromatography.
  • -A test in which fatty acids are given as a carbon source and cultured, and the decrease in normal hexane level in the supernatant is measured.
  • -A test that measures the concentration of fatty acids in the culture supernatant by gas chromatography.
  • -A test that measures the concentration of fatty acids in the culture supernatant by gas chromatography-mass spectrometry.
  • -A test that measures the concentration of fatty acids in the culture supernatant by high performance liquid chromatography.
  • -A test to confirm whether a clear zone is observed around the colonies formed on the agar medium containing fatty acids.
  • -A test to prepare a water test containing fatty acids as the main organic matter (for example, 70% by weight or more of the total organic matter) and measure the biochemical oxygen demand (BOD). Individual, more detailed measurement methods are provided herein, and one of ordinary skill in the art can perform these measurements using any other device or condition.
  • the "oil treatment component” means a component that assists the assimilation and decomposition of fats and oils and / or fatty acids. Specifically, in addition to components that promote the dispersion of fats and oils and / or fatty acids such as surfactant, components that decompose fats and oils into fatty acids and glycerol, those that decompose fatty acids, those that decompose glycerol, and oils. Includes those that are adsorbed and removed from the object to be treated.
  • oil-decomposing agent refers to a microorganism of the present disclosure or at least one of a combination of the microorganisms of the present disclosure as an active ingredient, and is used alone or in a combination of the microorganisms of the present disclosure. Refers to a preparation that can be decomposed.
  • Formulations capable of degrading fats and oils and / or fatty acids in the microbial combinations of the present disclosure include only one microbial combination of the microbial combinations of the present disclosure (eg, either Burghorderia bacteria or Yarrowia yeast).
  • the oil decomposing agent may be used in combination with an oil treatment component.
  • the timing of the combined use of the oil decomposing agent and the oil treatment component may be the simultaneous use or one of them may be used first.
  • the oil-degrading agent retains the microbial strain used or a component (eg, carbon source, nitrogen source) that enhances the activity of the esterase (eg, lipase) derived from the microbial strain, a surfactant, a dry protective agent, and a microorganism for a long period of time.
  • a component eg, carbon source, nitrogen source
  • the esterase eg, lipase
  • the "inducible strain,” “similar strain,” or “mutant strain” preferably comprises a region that is substantially homologous to the DNA of the microorganism of interest, although not intended to be limiting.
  • Such strains contain genes (eg, 16S rDNA or 26S rDNA) and, in various embodiments, are aligned by a computer homology program known in the art and compared to the sequence of the entire genome of the original strain. Have at least 30%, 40%, 50%, 60%, 70%, 80%, 90%, 95% or 99% identical whole genomic sequences.
  • such inducers, similar strains or variants are equivalent in biological function of the original microorganism (eg, oil resolution, lipase production of the other microorganism or ability to enhance oil resolution, etc.).
  • the above microorganisms are provided in the present disclosure.
  • gene mutations can be introduced using any known mutagen, UV, plasma and the like.
  • the "inducible strain”, “similar strain” or “mutant strain” is a strain of the same genus and / or species as the original strain.
  • suitable and available in vitro assays described herein or known in the art can be used to study the biological function of such microorganisms.
  • the term “similarity” of a gene or base sequence refers to the degree of similarity between two or more gene sequences to each other, and the high degree of similarity of other sequences of identity.
  • Similarity is a numerical value that takes into account similar bases in addition to identity.
  • protein protein
  • polypeptide oligopeptide
  • peptide refers to a polymer of amino acids of any length.
  • the polymer may be linear, branched or cyclic.
  • the amino acid may be natural or non-natural, or may be a modified amino acid.
  • the term may also include those assembled into a complex of multiple polypeptide chains.
  • the term also includes naturally or artificially modified amino acid polymers. Such modifications include, for example, disulfide bond formation, glycosylation, lipidation, acetylation, phosphorylation or any other manipulation or modification (eg, conjugation with a labeling component).
  • amino acid is a general term for organic compounds having an amino group and a carboxyl group.
  • amino acid sequence may be chemically modified.
  • any amino acid in the amino acid sequence may form a salt or a solvate.
  • any amino acid in the amino acid sequence may be L-type or D-type.
  • the protein according to the embodiment of the present disclosure contains the above-mentioned "specific amino acid sequence”.
  • Chemical modifications that amino acids contained in proteins undergo in vivo include, for example, N-terminal modification (eg, acetylation, myristoylation, etc.), C-terminal modification (eg, amidation, glycosylphosphatidylinositol addition, etc.), or side chain. Modifications (eg, phosphorylation, glycosylation, etc.) are known. Amino acids may be natural or non-natural as long as they meet the purposes of the present disclosure.
  • polynucleotide In the present specification, "polynucleotide”, “oligonucleotide” and “nucleic acid” are used interchangeably in the present specification and refer to a polymer of nucleotides of arbitrary length. The term also includes “oligonucleotide derivatives” or “polynucleotide derivatives”. "Nucleobase sequence” or “nucleic acid sequence” means the sequence of successive nucleic acid bases in “polynucleotide”, “oligonucleotide” or “nucleic acid”.
  • oligonucleotide derivative refers to an oligonucleotide or polynucleotide containing a derivative of a nucleotide or having an unusual bond between nucleotides, and is used interchangeably.
  • an oligonucleotide includes, for example, 2'-O-methyl-ribonucleotide, an oligonucleotide derivative in which a phosphate diester bond in an oligonucleotide is converted into a phosphorothioate bond, and a phosphate diester bond in an oligonucleotide.
  • oligonucleotide derivatives converted to N3'-P5'phosphoroamidate bond an oligonucleotide derivative in which ribose and phosphate diester bond in the oligonucleotide are converted into peptide nucleic acid bond, and uracil in the oligonucleotide is C- 5 Oligonucleotide derivatives substituted with propynyl uracil, oligonucleotide derivatives in which uracil in the oligonucleotide is replaced with C-5 thiazole uracil, oligonucleotide derivatives in which cytosine in the oligonucleotide is replaced with C-5 propynyl cytosine, oligonucleotides Oligonucleotide derivatives in which cytosine in nucleotides is replaced with phenoxazine-modified cytosine, oligonucleotide derivatives in which
  • a particular base sequence is also a conservatively modified variant (eg, a degenerate codon substitution) and a complementary sequence, as well as the explicitly indicated sequence. Is intended to be included.
  • the degenerate codon substituent creates a sequence in which the third position of one or more selected (or all) codons is replaced with a mixed base and / or deoxyinosin residue. It can be achieved by (Batzer et al., Nucleic Acid Res. 19: 5081 (1991); Ohtsuka et al., J. Biol. Chem. 260: 2605-2608 (1985); Rossolini et al., Mol. Cell. .Probes 8: 91-98 (1994)).
  • nucleic acid is also used interchangeably with genes, cDNAs, mRNAs, oligonucleotides, and polynucleotides.
  • nucleotide may be natural or non-natural.
  • the "gene” refers to a factor that defines a genetic trait, and the “gene” may refer to a "polynucleotide", an “oligonucleotide”, and a “nucleic acid”.
  • homology of a gene means the degree of identity of two or more gene sequences to each other, and generally, having “homology” means a high degree of identity or similarity.
  • the higher the homology of two genes the higher the identity or similarity of their sequences.
  • the DNA sequences are typically at least 50% identical, preferably at least 70% identical, and more preferably at least 80%, 90%. , 95%, 96%, 97%, 98% or 99%, the genes are homologous.
  • Amino acids can be referred to herein by either their generally known three-letter symbols or the one-letter symbols recommended by the IUPAC-IUB Biochemical Nomenclature Commission. Nucleotides can also be referred to by the generally recognized one-letter code.
  • comparison of amino acid sequence and base sequence similarity, identity and homology is calculated using default parameters using BLAST, a tool for sequence analysis.
  • the identity search can be performed using, for example, NCBI's BLAST 2.7.1 (issued 2017.10.19).
  • the value of "identity" in the present specification usually means the value when the above BLAST is used and aligned under the default conditions. However, if a higher value is obtained by changing the parameter, the highest value is set as the identity value. When identity is evaluated in multiple regions, the highest value among them is set as the identity value.
  • Similarity is a numerical value that takes into account similar amino acids in addition to identity.
  • identity is, for example, 70% or more, 75% or more, 80% or more, 85% or more, 90% or more, 95% or more, 96% or more. , 97% or more, 98% or more, 99% or more, or 100% or more, and may be within the range of any two of the numerical values that are the starting points thereof.
  • identity is calculated by calculating the ratio of the number of amino acids or bases homologous in the amino acid or base sequence between two or more, according to a known method as described above.
  • similarity instead of “identity” is a numerical value that also considers those that fall under the definition of “similar” "amino acid” or “base” described in the present specification.
  • polynucleotides, oligonucleotides, nucleic acids, peptides or proteins that have homology, identity and / or similarity between their sequences may be referred to as "modifiers" of each other.
  • polynucleotide that hybridizes under stringent conditions refers to well-known conditions commonly used in the art.
  • a polynucleotide can be obtained by using a polynucleotide selected from the polynucleotides of the present disclosure as a probe and using a colony hybridization method, a plaque hybridization method, a Southern blot hybridization method, or the like. Specifically, using a filter on which DNA derived from colonies or plaques is immobilized, hybridization is performed at 65 ° C. in the presence of 0.7 to 1.0 M NaCl, and then the concentration is 0.1 to 2 times higher.
  • a polynucleotide that can be identified by washing the filter under 65 ° C. conditions using an SSC (saline-sodium citrate) solution (the composition of the 1-fold SSC solution is 150 mM sodium chloride and 15 mM sodium citrate).
  • SSC saline-sodium citrate
  • the composition of the 1-fold SSC solution is 150 mM sodium chloride and 15 mM sodium citrate.
  • stringent condition for example, the following conditions can be adopted.
  • a denaturant such as formamide (eg, at 42 ° C., 50% (v / v) formamide and 0.1% bovine serum albumin / 0.1% ficol / 0.1% polyvinylpyrrolidone / 50 mM sodium chloride buffer, pH 6.5, And 750 mM sodium chloride, 75 mM sodium citrate), or (3) 20% formamide, 5 x SSC, 50 mM sodium phosphate (pH 7.6), 5 x denhard solution, 10% dextran sulfate, and 20 mg / ml denaturation.
  • formamide eg, at 42 ° C., 50% (v / v) formamide and 0.1% bovine serum albumin / 0.1% ficol / 0.1% polyvinylpyrrolidone / 50 mM sodium chloride buffer, pH 6.5, And 750 mM sodium chloride, 75 mM sodium citrate
  • 20% formamide 5 x SSC, 50 mM sodium phosphate (pH 7.6),
  • polypeptides used in the present disclosure are encoded by nucleic acid molecules that hybridize under highly or moderately stringent conditions to the nucleic acid molecules encoding the polypeptides specifically described herein. Polypeptides are also included.
  • biological function refers to a specific function that a microorganism may have when referring to a microorganism, which includes, for example, decomposition of esters (eg, fats and oils) (eg, low temperature). (Degradation in), lipase production, oil decomposition, ability to enhance lipase production of other microorganisms, ability to enhance oil decomposition activity of other microorganisms, etc., but are not limited thereto.
  • a biological function can be exerted by a corresponding "biological activity”.
  • biological activity refers to an activity that a microorganism can have in a certain environment, and includes an activity that exerts various functions (for example, an oil decomposition activity at 15 ° C.). To. Such biological activity can be measured by techniques well known in the art.
  • activity refers to various measurable indicators that affect a response (ie, have a measurable effect in response to some exposure or stimulus), eg, some stimulus of the microorganisms of the present disclosure. Post-event or post-event upstream or downstream protein levels or other similar functional measures may also be included.
  • the "quantity" of an analyte in a sample generally refers to an absolute value that reflects the mass of the analyte that can be detected in the volume of the sample. However, the quantity also contemplates a relative quantity compared to another analyte quantity. For example, the amount of analyte in the sample may be greater than the control or normal level of the analyte normally present in the sample.
  • kits are usually divided into two or more compartments and the parts to be provided (for example, the composition containing the microorganisms of the present disclosure, additional components, buffers, instructions, etc.) The unit provided.
  • the form of this kit is preferred when the purpose is to provide a composition that should not be mixed and provided for stability and the like, but is preferably mixed and used immediately before use.
  • Such kits preferably have instructions or instructions that describe how to use or treat the parts provided (eg, microbial compositions, additional ingredients), etc. It is advantageous to have instructions.
  • the kit typically includes instructions and the like that describe how to use the microorganisms, compositions, etc. of the present disclosure.
  • the "instruction sheet” is described to explain to the user how to use the microorganisms of the present disclosure or a combination of the microorganisms of the present disclosure.
  • This instruction contains language indicating how to use the microorganisms of the present disclosure or combinations of microorganisms of the present disclosure.
  • This instruction if necessary, is provided by the regulatory agency of the country in which the method of this disclosure is implemented (eg, Ministry of Health, Labor and Welfare or Ministry of Agriculture, Forestry and Fisheries in Japan, Food and Drug Administration (FDA) in the United States, Department of Agriculture (USDA) etc.), and it is clearly stated that it has been approved by its regulatory agency. Instructions may be provided in paper media, but are not limited to, and may also be provided in the form of, for example, electronic media (eg, homepages provided on the Internet, email).
  • the present disclosure provides microorganisms with newly discovered ability for the decomposition of fats and oils and / or fatty acids.
  • the microorganisms of the present disclosure have lipase activity against triglycerides containing long-chain fatty acids (fatty acids containing 13 or more carbon atoms, for example 14 to 22), and are shorter to medium-chain than 4-nitrophenyl ester of long-chain fatty acids.
  • It has a high hydrolysis activity for 4-nitrophenyl ester of fatty acid (fatty acid containing 2 to 12 carbon atoms), and has an ability to decompose short to long chain fatty acid (fatty acid containing 2 or more carbon atoms) -containing fats and oils.
  • has the ability to decompose short-to-medium chain fatty acid (fatty acid containing 2-12 carbon atoms)-containing ester has the ability to assimilate the ester (eg, fat) and / or fatty acid at 15 ° C, and has the ability to assimilate the fatty acid (eg, fatty acid) at 15 ° C.
  • it has the ability to decompose fats and oils) and / or fatty acids, has the ability to assimilate trans fatty acid-containing fats and oils, has the ability to decompose trans fatty acid-containing fats and oils, and has the ability to decompose trans fatty acids (eg, ellagic acid, palmiteraidic acid).
  • decompose trans fatty acids eg, ellagic acid, palmiteraidic acid
  • the present disclosure provides new microorganisms with ester (eg, fat) resolution.
  • the microorganisms of the present disclosure may have a wide range of hydrolyzing activity on fats and oils of short to long chain fatty acids.
  • the disclosure provides new microorganisms capable of improving lipase production and / or oil (including fatty acids, fats) resolution of Burkholderia bacteria when combined with Burkholderia bacteria.
  • the microorganism of the present disclosure is a yeast of the genus Yarrowia.
  • Microorganisms of the genus Yarrowia are fungi, and the trophozoites are unicellular and have a cell wall for a certain period of the life cycle. Morphologically, it has a circular or oval shape with few features.
  • the genus Yarrowia includes species such as bubula, deformans, lipolytica, porcina and yakushimensis.
  • the microorganism of the present disclosure is Yarrowia lipolytica.
  • the present inventor identified a strain of a new microorganism found by examining the trans fatty acid decomposition / assimilation ability and the ability to decompose low-temperature esters (for example, fats and oils) as Yarrowia lipolytica, and the patented microorganism of the Independent Administrative Institution Product Evaluation Technology Infrastructure Organization. It was deposited at the Depositary Center, received on June 4, 2018, and a certificate of deposit was issued on June 12, 2018. The accession number is NITE BP-02732.
  • the microorganisms of the present disclosure are Yarrowia yeast KH-2 strain (strain specified by accession number NITE BP-02732), KH-2AL1 strain (strain specified by accession number NITE BP-03091) or It is a KH-2AL3 strain (a strain specified by accession number NITE BP-03092) or an inducible strain thereof.
  • the Yarrowia yeasts of the present disclosure can be yeasts of the genera Candida, Zygoascus, Ogataea, Pichia or Aciculoconidium.
  • yeasts of the genus Candida include deformans, oslonensis, galli, phangngensis, hollandica, alimentaria, hispaniensis and incommunis, and examples of the genus Zygoascus include steatolyticus var. Steatolyticus and (Aciculoconidium). ) The genus is aculeatum.
  • the microorganisms of the present disclosure are Yarrowia yeast KH-2 strain (strain specified by accession number NITE BP-02732), KH-2AL1 strain (strain specified by accession number NITE BP-03091) or It is an inducible strain of KH-2AL3 strain (a strain specified by accession number NITE BP-03092).
  • the inducing strain does not need to be a strain obtained based on the Yarrowia yeast KH-2 strain, KH-2AL1 strain or KH-2AL3 strain, and the Yarrowia yeast KH-2 strain, KH-2AL1 strain.
  • the bacterium that is the inducible strain of the present disclosure has lipase activity, similar to the Yarrowia yeast KH-2 strain, KH-2AL1 strain or KH-2AL3 strain, and has a low temperature (for example, 25 ° C. or lower, Ability to assimilate (decompose) esters (eg, trans fatty acid-containing fats and oils) at 20 ° C or lower, 15 ° C or lower, 10 ° C or lower, 5 ° C or lower, etc.
  • lipase activity similar to the Yarrowia yeast KH-2 strain, KH-2AL1 strain or KH-2AL3 strain, and has a low temperature (for example, 25 ° C. or lower, Ability to assimilate (decompose) esters (eg, trans fatty acid-containing fats and oils) at 20 ° C or lower, 15 ° C or lower, 10 ° C or lower, 5 ° C or lower, etc.
  • the inducible strain of the present disclosure is a yeast of the genus Yarrowia, more specifically Yarrowia lipolytica.
  • the microorganisms of the present disclosure contain esters (for example, fats and oils) as the sole carbon source and are inorganic whose pH is adjusted to 6 to 8. It can be isolated on salt agar medium. Further, in one embodiment, the microorganisms of the present disclosure (including the derived strains of KH-2 strain, KH-2AL1 strain or KH-2AL3 strain) are placed on an agar medium in which an ester (for example, fat or oil) is dispersed and contained. It can be discriminated by confirming that a clear zone (halo) is formed around the resulting colony.
  • esters for example, fats and oils
  • the microorganisms of the present disclosure are canola oil at 15 ° C. or 28 ° C., preferably 10 g / L at 15 ° C. Can be formed and grown on an agar medium to which is added as a carbon source.
  • ester eg, fat
  • ester eg, fat
  • the microorganisms of the present disclosure (including derived strains of KH-2 strain, KH-2AL1 strain or KH-2AL3 strain) have esterase activity.
  • the microorganisms of the present disclosure (including derived strains of KH-2 strain, KH-2AL1 strain or KH-2AL3 strain) are long-chain fatty acids (fatty acids containing 13 or more carbon atoms, for example 14 to 22). Has lipase activity against triglycerides including.
  • the microorganisms of the present disclosure (including derived strains of KH-2 strain, KH-2AL1 strain or KH-2AL3 strain) contain short to medium chain fatty acids (fatty acids containing 2 to 12 carbon atoms).
  • the microorganisms of the present disclosure including derivatives of KH-2, KH-2AL1 or KH-2AL3, are short- to medium-chain fatty acids rather than 4-nitrophenyl esters of long-chain fatty acids. It has high hydrolysis activity for 4-nitrophenyl ester (fatty acid containing 2 to 12 carbon atoms).
  • the microorganisms of the present disclosure including derivatives of KH-2 strain, KH-2AL1 strain or KH-2AL3 strain, degrade or contribute esters (eg, fats and oils) and / or fatty acids at 15 ° C. Has the ability to become.
  • the microorganisms of the present disclosure are trans fatty acids (eg, elaidic acid, palmiteraidic acid and / or vaccenic acid). ) Or the ability to assimilate or decompose trans fatty acid-containing fats and oils is maintained at 15 ° C.
  • the microorganisms of the present disclosure including derivatives of the KH-2, KH-2AL1 or KH-2AL3 strains, are trans fatty acids (eg, elaidic acid, palmiteraidic acid and / or vaccenic acid). ) Or has the ability to assimilate trans fatty acid-containing fats and oils.
  • the microorganisms of the present disclosure including derivatives of the KH-2 strain, KH-2AL1 strain or KH-2AL3 strain, are trans fatty acids (eg, elaidic acid, palmitelydic acid and / or vaccenic acid).
  • the microorganisms of the present disclosure (including derived strains of KH-2 strain, KH-2AL1 strain or KH-2AL3 strain) have the ability to decompose trans fatty acid-containing fats and oils.
  • the microorganisms of the present disclosure (including derived strains of KH-2 strain, KH-2AL1 strain or KH-2AL3 strain) have a lipase activity that degrades triolein. In one embodiment, the microorganisms of the present disclosure, including derivatives of the KH-2 strain, KH-2AL1 strain or KH-2AL3 strain, have lipase activity that degrades triellaidin.
  • the microorganisms of the present disclosure are various fatty acids (oleic acid, elaidic acid, palmite) including trans fatty acids at low temperatures. It has the ability to decompose or assimilate (elaidic acid, vaccenic acid).
  • the microorganisms of the present disclosure are pH 7.0 and 15 containing trans fatty acid (eg, elaidic acid) -containing fats and oils. It may have a fat degrading ability to assimilate and / or decompose trans fatty acid-containing fats and oils in a medium at ° C. or 28 ° C.
  • trans fatty acid eg, elaidic acid
  • the microorganisms of the present disclosure each contain 0.25 weights of Triton® X-100 and elidic acid.
  • an inorganic salt medium containing erizic acid concentration in the supernatant after 24 hours or 46 hours for example, Triton® X-100 and eridic acid at concentrations of 0.25% by weight and 0.2% by weight, respectively).
  • Elysinic acid concentration in the supernatant after 24 hours when the microorganisms were inoculated at a cell optical density such that OD 660 0.5 and cultured at pH 7.0 and 28 ° C., or Triton® X.
  • Elaidic acid concentration in the supernatant after 46 hours when cultured at 28 ° C. is less than 1500 mg / L, less than 1200 mg / L, less than 1000 mg / L, less than 900 mg / L, less than 800 mg / L, less than 700 mg / L. , Less than 600 mg / L, less than 500 mg / L, less than 400 mg / L, less than 300 mg / L, less than 200 mg / L, less than 150 mg / L, less than 100 mg / L, less than 70 mg / L, less than 50 mg / L, less than 20 mg / L It has a trans fatty acid decomposing ability of less than 10 mg / L or less than 5 mg / L.
  • the microorganisms of the present disclosure are less than 800 mg / L, less than 700 mg / L, less than 600 mg / L or 500 mg when judged under these conditions. It preferably has the ability to reduce the elaidic acid concentration in the supernatant to less than / L, especially less than 700 mg / L, and microorganisms with such trans fatty acid degradability can be beneficially used in the various applications of the present disclosure. it can.
  • the elaidic acid concentration in the supernatant after 90 hours is less than 1500 mg / L, less than 1200 mg / L, less than 1000 mg / L, less than 900 mg / L, less than 800 mg / L, less than 700 mg / L, less than 600 mg / L, 500 mg / L.
  • the microorganisms of the present disclosure are less than 1000 mg / L, less than 700 mg / L, less than 500 mg / L, and 400 mg when judged under these conditions. It preferably has the ability to reduce the elaidic acid concentration in the supernatant to less than / L, less than 300 mg / L, less than 200 mg / L or less than 100 mg / L, particularly less than 500 mg / L, and has such trans fatty acid decomposing ability. Microorganisms can be beneficially used in the various uses of the present disclosure.
  • Residual oil concentration in the supernatant of is less than 800 mg / L, less than 700 mg / L, less than 600 mg / L, less than 500 mg / L, less than 400 mg / L, less than 350 mg / L, less than 300 mg / L, less than 250 mg / L, 200 mg. It has trans fatty acid-containing fats and oils decomposing ability of less than / L, less than 150 mg / L, less than 100 mg / L, less than 70 mg / L, less than 50 mg / L, less than 20 mg / L, or less than 10 mg / L.
  • microorganisms of the present disclosure are less than 400 mg / L, less than 350 mg / L, less than 300 mg / L, 250 mg when judged under these conditions. It is preferable to have the ability to reduce the residual oil concentration in the supernatant to less than / L, less than 200 mg / L, less than 150 mg / L, or less than 100 mg / L, particularly less than 350 mg / L, and such trans fatty acid-containing fats and oils. Microorganisms with resolution can be beneficially used in the various applications of the present disclosure.
  • the microorganisms of the present disclosure including derivatives of KH-2, KH-2AL1 or KH-2AL3, are placed in an inorganic salt medium containing 1% (v / v) of canola oil.
  • an inorganic salt medium containing 1% (v / v) of canola oil.
  • microorganisms of the present disclosure include derived strains of KH-2 strain, KH-2AL1 strain or KH-2AL3 strain) have a residual oil content of less than 65% and less than 60% in a 15 ° C. culture when judged under these conditions. , 55%, less than 50%, less than 45% or less than 40%, particularly less than 45%, and microorganisms having such low temperature oil degradability are beneficial in the various applications of the present disclosure. Can be used for.
  • the microorganisms of the present disclosure including derivatives of KH-2, KH-2AL1 or KH-2AL3, are placed in an inorganic salt medium containing 1% (v / v) of canola oil.
  • an inorganic salt medium containing 1% (v / v) of canola oil.
  • the microorganisms of the present disclosure (including derived strains of KH-2 strain, KH-2AL1 strain or KH-2AL3 strain) have a residual oil content of less than 20% and less than 17% in a 28 ° C. culture when judged under these conditions. , Less than 15%, less than 12%, or less than 10%, particularly less than 10%, and microorganisms having such fast oil degradability are beneficially used in the various applications of the present disclosure. be able to.
  • the microorganisms of the present disclosure including derivatives of KH-2, KH-2AL1 or KH-2AL3, are placed in an inorganic salt medium containing 1% (v / v) of canola oil.
  • an inorganic salt medium containing 1% (v / v) of canola oil.
  • the oil content corresponding to the normal hexane value in the above is 1000% or less, 800% or less, 600% or less, 400% or less, 200% or less, as compared with the oil content equivalent to the normal hexane value in the supernatant after 24 hours in the culture at 28 ° C. It has an oil / fat resolution of 150% or less, 100% or less, 80% or less, 60% or less, 40% or less, 20% or less, 10% or less, or 5% or less.
  • the microorganisms of the present disclosure (including derived strains of KH-2 strain, KH-2AL1 strain or KH-2AL3 strain) have a residual fat and oil ratio in 15 ° C culture as compared with 28 ° C culture when judged under these conditions.
  • a fat and oil resolution of 800% or less, 700% or less, 600% or less, 500% or less, 400% or less, particularly 500% or less, and microorganisms having such a low temperature fat and oil resolution are various of the present disclosure. It can be usefully used in applications.
  • the microorganisms of the present disclosure including derivatives of KH-2, KH-2AL1 or KH-2AL3, are placed in an inorganic salt medium containing 1% (v / v) of canola oil.
  • Total fatty acid decomposition rate in culture is 1000% or more, 800% or more, 600% or more, 400% or more, 200% or more, 150% or more, 100% or more, 80% or more, 60% or more, 50% or more, 40%. As described above, it has an oil / fat resolution of 30% or more, 20% or more, 10% or more, or 5% or more.
  • the microorganisms of the present disclosure (including derived strains of KH-2 strain, KH-2AL1 strain or KH-2AL3 strain) have a total fatty acid decomposition rate in a 15 ° C culture as compared with a 28 ° C culture when judged under these conditions.
  • microorganisms having such a low temperature oil / fat degradability are various of the present disclosure. Can be beneficially used in the applications of.
  • the Yarrowia yeasts of the present disclosure have the ability to improve lipase production of Burkholderia bacteria that produce lipase. In one embodiment, the Yarrowia yeast of the present disclosure has the ability to confer on the Burkholderia bacterium a fat and oil resolution higher than that of the Burkholderia bacterium in single culture. In one embodiment, the Yarrowia yeast of the present disclosure has the ability to confer on the Burkholderia bacterium a fatty acid resolution higher than that of the Burkholderia bacterium in single culture. In one embodiment, the Burkholderia bacterium is any of the Burkholderia bacteria in the microbial combination of the present disclosure.
  • any feature of the microbial combinations of the present disclosure described below herein is also a description of the ability of the Yarrowia yeast of the present disclosure to impart to the Burkholderia bacteria of the present disclosure.
  • 1% (v / v) and Burkholderia bacteria and Yarrowia yeast inorganic salts medium supplemented with canola oil 1 total number of cells at a mixing ratio of 1 (cell number basis) 5 ⁇ 10 5 cells / mL
  • the cells were mixed and inoculated at a cell concentration such that, and cultured at pH 7.0 and 28 ° C. for 18 hours, compared with the fat and oil resolution calculated from the fat and oil resolution values of each single culture based on gas chromatography analysis.
  • the disclosure regarding the combination of the microbial strains of Burgholderia bacterium and Yarrowia yeast so as to be 100% or more is the disclosure regarding the ability of Yarrowia yeast to impart the same oil / fat resolution to Burghorderia bacteria under the same culture conditions and at the same mixing ratio. But also. Similarly, each disclosure of the characteristics of the microbial combinations of the present disclosure is equivalent to describing the ability of the Yarrowia yeast of the present disclosure to impart to the Burkholderia bacteria of the present disclosure.
  • the Yarrowia yeast of the present disclosure is conferred on Burkholderia bacteria in one or more abilities (described above) based on the Yarrowia yeast alone described herein, and in a combination of microorganisms of the present disclosure. Has both the ability to do (below).
  • Yarrowia yeast which combines the capabilities of these different aspects, is particularly unexpected. Examples of Yarrowia yeast having such different aspects of ability include, but are not limited to, KH-2 strain, KH-2AL1 strain, KH-2AL3 strain, and the like.
  • the present disclosure provides a combination of Burkholderia bacteria and Yarrowia yeast that degrades fats and oils and / or fatty acids (also referred to herein as “combination of microorganisms of the present disclosure”).
  • Burkholderiales refers to bacteria, including microorganisms of the order Burkholderiales, the details of which will be described later herein.
  • Yarrowia yeast refers to yeast containing microorganisms of the genus Yarrowia, the details of which are described elsewhere herein.
  • the combination of Burkholderia bacteria and Yarrowia yeast can be a combination that can achieve particularly good oil resolution.
  • an improvement in oil resolution was observed with the combination of Burkholderia bacteria and Yarrowia yeast.
  • Microorganisms having similar oil decomposing ability can be preferably used, and strains having similar susceptibility can be preferably used as Burkholderia bacteria.
  • burkholderia bacteria since it is expected that the substance produced as a result of the decomposition of oil by Burkholderia bacteria improved the oil resolution of Yarrowia yeast as an inducer, microorganisms having similar oil resolution are preferable as Burkholderia bacteria.
  • a strain having similar susceptibility can be preferably used as the Yarrowia yeast.
  • At least one of the Burkholderia bacteria and Yarrowia yeast in the microbial combination of the present disclosure is capable of producing lipase.
  • both Burkholderia bacteria and Yarrowia yeast in the microbial combinations of the present disclosure have the ability to produce lipase.
  • the inventors have found that the combination of Burkholderia bacteria and Yarrowia yeast, each of which independently produces lipase, competes with each other for similar properties and suppresses each other's ability (reduced overall oil resolution). Despite the expectation, it was found to show unexpectedly high oil resolution.
  • Burkholderia bacteria and Yarrowia yeast in the microbial combinations of the present disclosure are symbiotic.
  • the Yarrowia yeast in the microbial combination of the present disclosure may improve lipase expression and / or production of Burkholderia bacteria.
  • Burkholderia bacteria in the microbial combinations of the present disclosure may improve lipase expression and / or production of Yarrowia yeast.
  • the microorganisms in the combination of microorganisms of the present disclosure can be produced by culturing by any suitable method.
  • the microbial combination of the present disclosure is capable of degrading oils and / or fatty acids of each microorganism used in this combination (eg, the ability to decompose fats and oils and / or fatty acids at 28 ° C, fats and / or fatty acids at 15 ° C. It provides an oil decomposition capacity that exceeds the ability to decompose (such as the ability to decompose).
  • the microbial combination of the present disclosure sums up the oil-decomposing capacity of each microorganism used in this combination (eg, the ability to decompose oil at 28 ° C, the ability to decompose oil at 15 ° C, etc.). Provides greater oil cracking capacity.
  • the combination of microorganisms can be usefully used even if the other capacities decline. Can be done.
  • the combination of microorganisms of the present disclosure has the ability to decompose fats and oils containing cis fatty acids, fats and oils containing trans fatty acids, or both.
  • the microbial combination of the present disclosure provides improved lipase expression and / or production of Burkholderia bacteria and / or Yarrowia yeast used in this combination.
  • the ratio of the number of cells of Burghorderia bacteria to the number of cells of Yarrowia yeast in the microbial combination of the present disclosure is about 1000: 1 to 1: 100, about 1000: 1 to 1:50, about. 1000: 1 to 1:20, about 1000: 1 to 1:10, about 1000: 1 to 1: 5, about 1000: 1 to 1: 2, about 1000: 1 to 1: 1, about 1000: 1 to 2.
  • ⁇ 5 1, about 50: 1 ⁇ 1: 100, about 50: 1 ⁇ 1: 50, about 50: 1 ⁇ 1: 20, about 50: 1 ⁇ 1:10, about 50: 1 ⁇ 1: 5, About 50: 1 to 1: 2, about 50: 1 to 1: 1, about 50: 1 to 2: 1, about 50: 1 to 5: 1, about 20: 1 to 1: 100, about 20: 1 to 1:50, about 20: 1 to 1:20, about 20: 1 to 1:10, about 20: 1 to 1: 5, about 20: 1 to 1: 2, about 20: 1 to 1: 1, about 20: 1 to 2: 1, about 10: 1 to 1:10, about 9: 1 to 1: 9, about 8: 1 to 1: 8, about 1000: 1, about 100: 1, about 50: 1, About 20: 1, about 10: 1, about 9: 1, about 8: 1, about 7: 1, about 6: 1, about 5: 1, about 2: 1, about 1: 1, about 1: 2, It can be about 1: 5, about 1: 6, about 1: 7, about 1: 8, about 1: 9, about 1:10, about
  • the dry weight ratio of Burkholderia bacteria to Yarrowia yeast in the microbial combination of the present disclosure is about 100: 1 to 1: 100, about 100: 1 to 1:50, about 100: 1 to. 1:20, about 100: 1 to 1:10, about 100: 1 to 1: 5, about 100: 1 to 1: 2, about 100: 1 to 1: 1, about 100: 1 to 2: 1, about 100: 1 to 5: 1, about 50: 1 to 1: 100, about 50: 1 to 1:50, about 50: 1 to 1:20, about 50: 1 to 1:10, about 50: 1 to 1.
  • the microbial combinations of the present disclosure are each when cultured at a predetermined temperature (eg, 15 ° C. or 28 ° C.) in an inorganic salt medium supplemented with 1% (v / v) canola oil. It has a higher oil / fat resolution than the oil / fat resolution calculated from the value of the oil / fat resolution of the single culture of.
  • the microbial combination of the present disclosure is equivalent to the total number of cells in this combination when cultured at a predetermined temperature in an inorganic salt medium supplemented with 1% (v / v) canola oil. It has higher oil and fat resolution than either Burkholderia bacteria alone or Yarrowia yeast alone in this combination of cell numbers.
  • the microbial combinations of the present disclosure are individually cultured when cultured at a predetermined temperature (eg, 28 ° C.) in an inorganic salt medium supplemented with 1% (v / v) oleic acid. It has a fatty acid resolution higher than the fatty acid resolution calculated from the value of the fatty acid resolution of.
  • the microbial combination of the present disclosure is equivalent to the total number of cells in this combination when cultured at a predetermined temperature in an inorganic salt medium supplemented with 1% (v / v) oleic acid. It has higher fatty acid resolution than either Burghorderia bacteria alone or Yarrowia yeast alone in this combination of cell numbers.
  • This fat and / or fatty acid resolution can also be tested by thin layer chromatography as described herein, for example, collecting culture supernatant over time and corresponding to spots and / or fatty acids corresponding to fats and oils. It can also be determined by comparing the time until the spots disappear.
  • the total fatty acids determined by gas chromatography analysis of the culture supernatant 48 hours after the start of culturing were less than 95%, less than 90%, less than 85%, and 80% at the start of culturing.
  • a combination of microbial strains of the Burghorderia bacterium and Yarrowia yeast and their mixing ratios are used.
  • the total fatty acids determined by gas chromatography analysis of the culture supernatant 18 hours after the start of culturing were less than 95%, less than 90%, less than 85%, and 80% at the start of culturing.
  • a combination of microbial strains of the Burghorderia bacterium and Yarrowia yeast and their mixing ratios are used.
  • the Burkholderia bacteria and Yarrowia yeast inorganic salt medium is added oleic acid, pH 7.
  • the total fatty acids determined by gas chromatography analysis of the culture supernatant 48 hours after the start of culturing were less than 95%, less than 90%, less than 85%, and 80% at the start of culturing.
  • 100% or more and 105% or more compared with the fatty acid resolution calculated from the value of the fatty acid resolution of each single culture based on gas chromatography analysis. 110% or more, 120% or more, 130% or more, 140% or more, 150% or more, 160% or more, 170% or more, 180% or more, 190% or more or 200% or more.
  • the combination of yeast microbial strains and their mixing ratios are used.
  • the microbial combination of the present disclosure is a combination that enhances lipase expression and / or production of Burkholderia bacteria in the microbial combination of the present disclosure.
  • the burgorderia bacterium lipase is the first lipase (base sequence: SEQ ID NO: 1, amino acid sequence: SEQ ID NO: 2, or a variant thereof, etc.) and / or the second lipase (base sequence: SEQ ID NO: 2, or variants thereof). : SEQ ID NO: 3, amino acid sequence: SEQ ID NO: 4, or a variant thereof, etc.).
  • improved lipase expression and / or production can be used to increase lipase gene expression (RNA, produced protein, secreted protein, etc.) when using the microbial combinations of the present disclosure, by the Burghorderia bacterium alone. It can be determined by comparing with the results when compared to culture.
  • the microbial combination of the present disclosure is a combination that enhances lipase expression and / or production of Yarrowia yeast in the microbial combination of the present disclosure.
  • the Yarrowia yeast lipase is the first lipase (base sequence: SEQ ID NO: 5, amino acid sequence: SEQ ID NO: 6, or a variant thereof, etc.) and / or the second lipase (base sequence: sequence). No. 7, amino acid sequence: SEQ ID NO: 8, or variants thereof, etc.).
  • improved lipase expression and / or production can be combined with lipase gene expression (RNA amount, protein production amount, secreted protein amount, etc.) when using the microbial combinations of the present disclosure with Yarrowia yeast monoculture. It can be determined by comparing with the results of the comparison.
  • the microbial combinations of the present disclosure are 2.5 ⁇ 10 5 cells / mL Burgholderia and 2.5 ⁇ in an inorganic salt medium supplemented with 1% (v / v) canola oil.
  • the disclosure provides a composition for improving lipase production of a lipase-producing Burkholderia bacterium, including Yarrowia yeast.
  • the present disclosure provides Yarrowia yeast for improving lipase production of Burkholderia bacteria that produce lipase.
  • the present disclosure provides compositions for improving lipase production of lipase-producing Yarrowia yeast, including Burkholderia bacteria.
  • the present disclosure provides Burkholderia bacteria for improving lipase production of lipase-producing Yarrowia yeast.
  • lipase is used as a new function, ability or use of Yarrowia yeast.
  • An invention based on the finding that it may improve the lipase production of the burghorderia bacteria produced, or as a new function, ability or use of the burghorderia bacterium, to improve the lipase production of the Yarrowia yeast producing lipase. It can be said that it is an invention based on the finding that it makes it possible. Therefore, in these aspects, it is understood that the matters relating to the combination of microorganisms of the present disclosure described herein are similarly applicable in these novel applications.
  • the disclosure provides a composition for enhancing the ability of Burkholderia bacteria producing lipases to process fats and oils and / or fatty acids, including Yarrowia yeast.
  • the present disclosure provides Yarrowia yeast for enhancing the ability of Burkholderia bacteria producing lipase to process fats and oils and / or fatty acids.
  • the disclosure provides a composition for enhancing the ability of a lipase-producing Yarrowia yeast to process fats and oils and / or fatty acids, including Burkholderia bacteria.
  • Burkholderia bacteria are provided to enhance the ability of Yarrowia yeast to produce lipases to process fats and oils and / or fatty acids.
  • a new function, ability or use of the Yarrowia yeast is the fats and oils of Burkholderia bacteria that produce lipase and / Or an invention based on the finding that it may enhance the ability to process fatty acids, or as a new function, ability or use of Burkholderia bacteria, to treat fats and / or fatty acids of lipase-producing Yarrowia yeast. It can be said that it is an invention based on the finding of strengthening the ability to do. Therefore, in these aspects, it is understood that the matters relating to the combination of microorganisms of the present disclosure described herein are similarly applicable in these novel applications.
  • one preferred embodiment comprises a composition for improving lipase production of a Burkholderia bacterium that produces lipase, and / or Yarrowia yeast, which comprises Yarrowia yeast.
  • a composition for enhancing the ability of Burkholderia bacteria to produce lipases to process fats and oils and / or fatty acids is that the ability of Burkholderia bacteria, which is relatively easy to prepare, is small.
  • Burkholderia yeast it is possible to achieve the same or higher fat and fat and / or fatty acid decomposition effect. I don't want to be bound by theory, but for example, Ngamdee W et al., BMC Microbiol.
  • the present inventors have found that a combination of microorganisms of the present disclosure may have a fat and / or fatty acid degradation that exceeds the fat and / or fatty acid decomposing values calculated from the values of the fat and / or fatty acid degradability of each single culture.
  • this finding suggests that the use of the microbial combinations of the present disclosure improves the fat and / or fatty acid decomposing of fast-growing Burghorderia bacteria and accelerates overall fat and / or fatty acid degradation. Therefore, efficient and stable use of microorganisms becomes possible.
  • the Burkholderiales bacterium in the microbial combination of the present disclosure is a bacterium of the order Burkholderiales. In one embodiment, the Burkholderia bacterium in the microbial combination of the present disclosure is a bacterium of the Burkholderiaceae family. In one embodiment, the Burkholderia bacterium in the microbial combination of the present disclosure is a bacterium of the genus Burkholderia.
  • the genus Burkholderia is a gram-negative non-spore-forming aerobic bacillus with polar flagella and is a reference genus of the Burkholderia family.
  • the Burkholderia bacterium in the microbial combination of the present disclosure is Burkholderia arboris, Burkholderia ambifaria or Burkholderia cepacia, preferably. Is Burkholderia Arboris or Burkholderia Ambifaria. In one embodiment, the Burkholderia bacterium in the combination of microorganisms of the present disclosure is a microorganism belonging to the Burkholderia cepacia complex.
  • Burkholderia cepacia complex is a classification of microorganisms of the genus Burkholderia that are genetically very close to each other, such as ambifaria, anthina, arboris, cenocepacia, cepacia, contaminans, diffusa, dolosa, lata, latency, metallica, multivorans, pseudomultivorans, puraquae, pyrrocinia. , Semiinalis, stabilis, stagnalis, territorii, ubonensis, and vietnamiensis (Martina P et al., Int J Syst Evol Microbiol. 2018 Jan; 68 (1): 14-20.).
  • the Burkholderia bacteria in the microbial combination of the present disclosure are metallica, seminalis, anthina, ambifaria, diffusa, ubonensis, multivorans, latency, cenocepacia, vietnamiensis, pyrrocinia, stabilis, glumae, gladioli, plantarii, oklahomensis. , Thailandensis, mallei, pseudomallei or phytofirmans.
  • the Burkholderia bacterium in the microbial combination of the present disclosure may be a bacterium of the genus Ralstonia or Pseudomonas.
  • the present inventor identified a new microbial strain (KH-1 strain) as Burghorderia Arboris by determining the base sequence of 16S ribosomal DNA and phylogenetic analysis, and the Patent Microorganism Depositary Center, Product Evaluation Technology Infrastructure Organization, Incorporated Administrative Agency. It was deposited in Japan and received on June 4, 2018, and a certificate of acceptance was issued on June 12, 2018. The accession number is NITE BP-02731.
  • strains of Burkholderia bacteria KH-1AL1 strain, KH-1AL2 strain and KH-1AL3 strain
  • KH-1AL1 strain were further identified and deposited at the Patent Microorganisms Depositary Center of the Japan Product Evaluation Technology Infrastructure Organization, 2019. It was received on June 26, 2019, and a certificate of acceptance was issued on July 8, 2019.
  • accession numbers are NITE BP-02977, NITE BP-02978, and NITE BP-02979, respectively.
  • the burghorderia bacteria in the microbial combination of the present disclosure are burghorderia strain KH-1 (strain specified by accession number NITE BP-02731), KH-1AL1 strain (accession number NITE BP). Strain specified by -02977), KH-1AL2 strain (strain specified by accession number NITE BP-02978) or KH-1AL3 strain (strain specified by accession number NITE BP-02979), or its It is an inducer strain.
  • the burghorderia bacteria in the microbial combination of the present disclosure are burghorderia strain KH-1 (strain specified by accession number NITE BP-02731), KH-1AL1 strain (accession number NITE BP). -Strain specified by -02977), KH-1AL2 strain (strain specified by accession number NITE BP-02978) or KH-1AL3 strain (strain specified by accession number NITE BP-02979).
  • the inducing strain does not need to be a strain obtained based on the Burghorderia strain KH-1, KH-1AL1, KH-1AL2 strain or KH-1AL3 strain, and these Burghols are not required.
  • the Burghorderia bacteria in the microbial combination of the present disclosure produce lipase, as well as the Burghorderia strains KH-1, KH-1AL1, KH-1AL2 or KH-1AL3. At least selected from the group consisting of the ability and the ability to assimilate (decompose) fats and oils and / or fatty acids at low temperatures (eg, 25 ° C or lower, 20 ° C or lower, 15 ° C or lower, 10 ° C or lower, 5 ° C or lower, etc.).
  • the Burkholderia bacterium which is an inducible strain in the combination of microorganisms of the present disclosure, is a bacterium of the family Burkholderiaceae, and more specifically, a bacterium of the genus Burkholderia. More specifically, it is a bacterium belonging to Burkholderia arboris, Burkholderia ambifaria, or Burkholderia cepacia complex.
  • the Burkholderia bacterium in the combination of microorganisms of the present disclosure can be isolated on an inorganic salt agar medium containing fats and oils as the sole carbon source and having a pH adjusted to 6-8.
  • the Burkholderia bacterium in the microbial combination of the present disclosure produces lipase.
  • the Burkholderia bacterium in the combination of microorganisms of the present disclosure may be discriminated by confirming that a clear zone (halo) is formed around the colony formed on the agar medium. ..
  • the Burkholderia bacterium in the microbial combination of the present disclosure has the ability to degrade fats and oils and / or fatty acids at 15 ° C. In one embodiment, the Burkholderia bacterium in the microbial combination of the present disclosure retains its ability to produce lipase and / or assimilate or degrade fatty acids or fats and oils at 15 ° C.
  • the Burkholderia bacterium in the microbial combination of the present disclosure can secrete biosurfactant when cultured in a medium containing fats and oils and fatty acids.
  • the Burghorderia bacteria in the microbial combination of the present disclosure are such to be 3 ⁇ 10 6 cells / mL or 2 ⁇ 10 6 cells / mL in an inorganic salt medium containing 10 g / L canola oil.
  • the oil content corresponding to the normal hexane value in the supernatant after 24 or 48 hours was 9 g / L.
  • less than 8g / L less than 7g / L, less than 6g / L, less than 5g / L, less than 4g / L, less than 3g / L, less than 2g / L, less than 1g / L, less than 0.7g / L, 0 Less than .5 g / L, less than 0.2 g / L, less than 0.1 g / L, less than 0.07 g / L, less than 0.05 g / L, less than 0.02 g / L, or less than 0.01 g / L Has oil and fat decomposing ability.
  • Burkholderia bacteria in combination of the microorganism of the present disclosure normal hexane to less than about 6 g / L when inoculated and cultured for 48 hours at a cell concentration of 2 ⁇ 10 6 cells / mL when determined in this condition It is preferable to have a fat and oil resolution that lowers the oil content equivalent to the value , and when inoculated at a cell concentration of 3 ⁇ 10 6 cells / mL and cultured for 24 hours, the fat and oil that lowers the oil content equivalent to the normal hexane value to less than 6 g / L. It is particularly preferable to have a resolution, and a microorganism having such a low temperature oil / fat resolution can be beneficially used in various applications of the present disclosure.
  • Burkholderia bacteria in combination of the microorganism of the present disclosure the mineral salts medium containing canola oil 10 g / L, microbial at a cell concentration, such a final concentration of 3 ⁇ 10 6 cells / mL
  • the oil content corresponding to the normal hexane value in the supernatant after 24 hours in the 15 ° C. culture was 28 ° C.
  • Burkholderia bacteria in the combination of microorganisms of the present disclosure have a residual fat and oil ratio of 800% or less, 700% or less, 600% or less, and 500% in a 15 ° C culture as compared with a 28 ° C culture when judged under these conditions.
  • a fat and oil resolution of 400% or less, particularly 700% or less it is preferable to have a microorganism having such a low temperature fat and oil resolution can be beneficially used in various applications of the present disclosure.
  • Burkholderia bacteria in combination of the microorganism of the present disclosure the mineral salts medium containing canola oil 10 g / L, microbial at a cell concentration, such a final concentration of 3 ⁇ 10 6 cells / mL
  • the total fatty acid decomposition rate in the 15 ° C. culture was 1000% or more as compared with the 28 ° C. culture.
  • the Burkholderia bacterium in the combination of microorganisms of the present disclosure has a total fatty acid decomposition rate of 50% or more, 40% or more, 30% or more, 20 in a 15 ° C culture as compared with a 28 ° C culture when judged under these conditions. It is preferable to have a fat and oil decomposing ability of% or more or 10% or more, particularly 30% or more, and a microorganism having such a low temperature fat and oil decomposing ability can be beneficially used in various applications of the present disclosure.
  • the Yarrowia yeast in the microbial combination of the present disclosure can be any Yarrowia genus yeast described herein.
  • At least one microorganism in the combination of microorganisms of the present disclosure can be isolated on an inorganic salt agar medium containing fats and oils as the sole carbon source and having a pH adjusted to 6-8. Further, in one embodiment, at least one kind of microorganism in the combination of microorganisms of the present disclosure can be identified by confirming that a clear zone (halo) is formed around the colony formed on the agar medium. obtain. In one embodiment, one microorganism in the microbial combination of the present disclosure colonizes on an agar medium supplemented with 10 g / L canola oil as a carbon source at 15 ° C. or 28 ° C., preferably 15 ° C.
  • both Burkholderia bacteria and Yarrowia yeast in the combination of microorganisms of the present disclosure can form colonies and grow under the same conditions.
  • both Burkholderia bacteria and Yarrowia yeast have a minimum ability to assimilate (decompose) fats and oils.
  • the ability of microorganisms to decompose and assimilate fats and oils and fatty acids can be evaluated by quantifying the fatty acids contained in the fats and oils remaining in the medium and the free fatty acids produced by the decomposition by gas chromatography.
  • quantifying the fatty acids contained in the fats and oils remaining in the medium and the free fatty acids produced by the decomposition by gas chromatography To show a specific quantification procedure, first, 3 mL of the culture supernatant is acidified with hydrochloric acid, and an equal amount of ethyl acetate is added. After stirring for 5 minutes, the mixture is centrifuged, and 1 mL of the ethyl acetate layer is transferred to another container to evaporate the solvent and concentrate.
  • the ability of microorganisms to decompose and assimilate fats and oils and fatty acids can be evaluated by analyzing the fats and oils remaining in the medium and fatty acids, which are decomposition products, by thin layer chromatography.
  • fats and oils are extracted by adding an equal amount of chloroform to the culture supernatant. 5 ⁇ L of this extract is developed on a silica gel coated plate using a developing solvent containing chloroform, acetone and methanol in a volume ratio of 96: 4: 1 respectively.
  • the ratio of the developing solvent and the like can be appropriately changed. For example, good results can be obtained even when chloroform, acetone and methanol are each in a volume ratio of 96: 4: 2. Plates are treated with molybtriic acid n-hydrate to develop fats and / or fatty acids.
  • the ability of microorganisms to decompose and assimilate esters (eg, fats and oils) and fatty acids can be evaluated by examining their ability to grow in media containing each fat or fatty acid as the sole carbon source.
  • the microorganisms in the microbial combination of the present disclosure are capable of producing esterases (eg, lipases).
  • lipase activity was produced by hydrolysis of the ester by performing an enzymatic reaction using 4-nitrophenyl palmitate (4-NPP), which is an ester of palmitic acid and 4-nitrophenol, as a substrate.
  • 4-NPP 4-nitrophenyl palmitate
  • the amount of p-nitrophenol can be determined by measuring the absorbance at 410 nm.
  • 4-NPP (18.9 mg) is added to 3% (v / v) Triton® X-100 (12 ml) and dissolved at 70 ° C. to prepare a substrate solution.
  • the microorganisms in the combination of microorganisms of the present disclosure may be proliferative and oil decomposable under weakly acidic conditions (eg, pH about 5.5-6.0).
  • the growth ability of microorganisms can be examined by a method of measuring the absorbance (turbidity) of 660 nm as the optical density of the cells, a method of measuring a colony forming unit (CFU), or the like. In the latter, a certain amount of the stock solution and the diluted solution of the culture solution are spread on the agar medium, and the colonies formed by the static culture are counted.
  • a method of measuring the absorbance (turbidity) of 660 nm as the optical density of the cells a method of measuring a colony forming unit (CFU), or the like.
  • CFU colony forming unit
  • the Burkholderia bacterium and / or Yarrowia yeast in the microbial combination of the present disclosure is the result of KH-1 strain + this Yarrowia yeast or this Burkholderia bacterium + KH-2 strain, and the result is KH-1 strain. It can be selected on the basis of being equal to or better than the KH-2 strain alone or the KH-2 strain alone.
  • 1% (v / v) Canola Oil mineral salts medium was added to KH-1 strain of + Yarrowia yeast or Burkholderia total bacteria + KH-2 strain 5 ⁇ 10 5 cells / mL Total fatty acids determined by gas chromatography analysis of the culture supernatant obtained by inoculating at the cell concentration of the above and culturing at pH 7.0, 15 ° C. for 48 hours, or culturing at pH 7.0, 28 ° C. for 18 hours.
  • the measured values are less than 200%, less than 180%, less than 160%, less than 140%, less than 120%, less than 100%, 70, as compared with the total bacterial measurement values of KH-1 strain + KH-2 strain under the same conditions. If less than%, or less than 50%, the Burghorderia bacterium and / or Yarrowia yeast can be preferably used.
  • Each microorganism is inoculated at a bacterial cell optical density of 0.02, and total RNA is extracted from cells cultured at pH 7.0 and 15 ° C. for 71 hours to quantify a specific burghorderia bacterial lipase.
  • the expression level when PCR analysis was performed was 50% or more, 70% or more, and 100% as compared with the expression level of Burghorderia bacterial lipase in the mixed culture of KH-1 strain + KH-2 strain under the same conditions.
  • the Burghorderia bacterium and / or Yarrowia yeast can be preferably used.
  • 1% (v / v) KH-1 strain inorganic salts medium supplemented with canola oil: Yarrowia yeast or Burkholderia bacteria: KH-2 strain 2.5 ⁇ 10 5 cells / mL : 2.5 ⁇ 10 5 cells / mL was inoculated, total RNA was extracted from cells cultured at pH 7.0 and 15 ° C. for 48 hours, and quantitative PCR was performed for a specific Yarrow yeast lipase. The expression level in the analysis was 50% or more, 70% or more, 100% or more, 120, as compared with the expression level of Yarrowia yeast lipase in the mixed culture of KH-1 strain + KH-2 strain under the same conditions. When% or more, 140% or more, 160% or more, 180% or more, 200% or more, the Burghorderia bacterium and / or Yarrowia yeast can be preferably used.
  • compositions or combinations comprising the microorganisms of the present disclosure.
  • the disclosure provides a composition or combination comprising a culture supernatant of the microorganisms of the present disclosure.
  • the microorganisms of the present disclosure can be produced by culturing by any suitable method.
  • the composition or combination is an oil degrading agent.
  • to decompose trans fatty acids eg, elaidic acid, palmiteraidic acid and / or vaccenic acid
  • esters eg, fats and oils
  • an oil decomposing agent for decomposing fatty acids for decomposing short- to medium-chain fatty acid (C2-C12) -containing esters, and / or for decomposing short- to long-chain fatty acid (C2 or higher) -containing fats and oils. ..
  • the composition is a fatty acid degrading agent. By treating with the fatty acid decomposing agent of the present disclosure, a compound containing less carbon than the number of carbons contained in the fatty acid can be produced.
  • the composition is a trans fatty acid (eg, elaidic acid, palmiteraidic acid and / or vaccenic acid) degrading agent.
  • the disclosure provides a composition or combination comprising at least one microorganism in the combination of microorganisms of the present disclosure.
  • a combination of microorganisms of the present disclosure is provided in a composition (optionally in combination with a microorganism that would be a combination of the microorganisms of the present disclosure) or a combination.
  • At least one microorganism in the combination of microorganisms of the present disclosure can be produced by culturing by any suitable method.
  • the combination of microorganisms of the present disclosure used in this composition or combination may be any of the combinations of microorganisms of the present disclosure described above.
  • the composition or combination of the present disclosure is an oil decomposing agent.
  • the composition of the present disclosure comprises one of the Burghorderia bacteria and the Yarrowia yeast in the combination of microorganisms of the present disclosure, lipase expression of the other of the Burghorderia bacterium and the Yarrowia yeast, and / Or a composition for improving production, in one embodiment the lipase is the first lipase of the Burghorderia bacterium (nucleic acid sequence: SEQ ID NO: 1, amino acid sequence: SEQ ID NO: 2 or a modification thereof).
  • second lipase base sequence: SEQ ID NO: 3, amino acid sequence: SEQ ID NO: 4, or variants thereof, etc.
  • first lipase of Yarrowia yeast base sequence: SEQ ID NO: 5, amino acid sequence: sequence
  • second lipase base sequence: SEQ ID NO: 7, amino acid sequence: SEQ ID NO: 8 or variants thereof.
  • to decompose fats and oils and / or fatty acids at predetermined temperatures eg, 15 ° C., 28 ° C.
  • the oil degrading agent contains only one of the microorganism combinations of the present disclosure (eg, either Burghorderia bacteria or Yarrowia yeast) and does not itself exhibit the desired fat and / or fatty acid resolution.
  • the composition is a fatty acid degrading agent.
  • a compound containing less carbon than the number of carbons contained in the fatty acid can be produced.
  • the oils and fats to which the oil decomposing agents of the present disclosure are applied include, for example, vegetable oils and fats (cotton seed oil, rapeseed oil, soybean oil, corn oil, olive oil, saflower oil, rice oil, sesame oil, palm oil, palm oil). , Fallen flower oil, etc.), animal fats and oils (lard, beef fat, milk fat, etc.), fish oils, processed products of these fats and oils (margarine, shortening, butter, etc.), insulating oils, lubricating oils, etc., but are limited to these. Not done.
  • the fats and oils may be present in the form of an emulsion or in a free state.
  • Specific embodiments include fats and oils containing trans fatty acids (eg, elaidic acid, palmiteraidic acid and / or vaccenic acid) as fats and oils to which the oil decomposing agents of the present disclosure are applied.
  • trans fatty acids eg, elaidic acid, palmiteraidic acid and / or vaccenic acid
  • examples include, but are not limited to, processed products (margarine, shortening, butter, etc.) such as oils and fats produced by hydrogenation.
  • the addition of hydrogen reduces the number of double bonds of unsaturated fatty acids and increases the proportion of saturated fatty acids, which may result in the production of trans fatty acids. It is said that trans fatty acids are contained in margarine, fat spread, shortening produced by hydrogenation, Western confectionery such as bread, cakes and donuts using them as raw materials, and fried foods.
  • trans fatty acids are produced from the cis-type unsaturated fatty acids contained in the oil, it is said that refined vegetable oils such as salad oil also contain a trace amount of trans fatty acids.
  • the subject to which the oil-decomposing agent or fatty acid-decomposing agent of the present disclosure is applied is not particularly limited, and for example, industrial wastewater, domestic wastewater, industrial waste, domestic waste (such as garbage), livestock waste, farms (and (Drainage), barn (and its drainage), and slaughterhouse (and its drainage), oil-contaminated soil, oil-contaminated water (sea, ponds, rivers, animal drinking water, etc.), animal body Insulating oil or deterioration leaked from tables, water tanks (for cultivation, viewing, etc.), arbitrary oil-contaminated products (tableware, machine parts, etc.), grease traps installed in kitchens, drain pipes, fat burgers, transformers, etc. Insulation oil and the like, but are not limited to these.
  • a "grease trap” is a device for separating and collecting oil in wastewater, and is typically composed of three tanks.
  • the first tank is equipped with a basket to capture food pieces and leftover food. Oil and water are separated in the second tank.
  • the wastewater separated from the oil is sent to the third tank to remove settling dust and the like.
  • Grease traps are required to be installed in commercial kitchens such as restaurants, hospitals, and hotels.
  • a separate decomposition treatment tank may be provided, but an oil decomposing agent or microorganism may be directly put into the grease trap for decomposition treatment in the grease trap.
  • low temperature treatment may be a desirable embodiment.
  • industrial wastewater domestic wastewater, industrial waste, household waste (garbage, etc.), oil-contaminated soil, oil-contaminated water (sea, ponds, rivers, animal drinking water, etc.), etc.
  • a carrier or the like in which a preparation or the like is added or added, or one or more of the combinations of microorganisms of the present disclosure are immobilized is installed in a drainage route, a drainage storage tank, a grease trap, or the like.
  • a dedicated decomposition treatment tank may be separately provided outside the grease trap.
  • the wastewater includes, but is not limited to, wastewater from restaurants, hospitals, hotels, etc., domestic wastewater, industrial wastewater discharged from food processing factories, oil processing factories, etc.
  • the forms of the combinations, combinations or compositions of the microorganisms of the present disclosure include, for example, a liquid state, a solid state and the like.
  • a combination, combination or composition of microorganisms in a liquid state a culture solution of microorganisms, a substance obtained by collecting microorganisms from the culture solution by centrifugation or the like and then redispersing them in water, a buffer solution or a culture solution, etc.
  • the solid state microorganism or composition include those dehydrated by centrifugation, press compression, etc., those in a paste state / mayonnaise state such as between solid and liquid, and dried products that have been dried (for example, vacuum-dried, freeze-dried).
  • Etc. are exemplified.
  • the solid form include powders, granules, tablets and the like.
  • the combination of microorganisms of the present disclosure may be provided in a state where the microorganism or the culture supernatant is fixed on the carrier.
  • the combinations of microorganisms of the present disclosure and the compositions or combinations that provide them have a total of about 1 ⁇ 10 8 cells / mL, about 1 ⁇ 10 7 cells / mL, about 1 ⁇ 10 6 Cells / mL, about 1 x 10 5 cells / mL, about 1 x 10 4 cells / mL, about 1 x 10 3 cells / mL, about 1 x 10 2 cells / mL, about 10 cells / mL or about 1 cell / mL It can be added to the liquid to a cell concentration of mL.
  • the combinations of microorganisms of the present disclosure and the compositions or combinations providing them can be used in any suitable environment.
  • the combinations of microorganisms of the present disclosure and the compositions or combinations that provide them are 10-60 ° C, 12-50 ° C, 15-40 ° C, 20-35 ° C, less than 60 ° C, 50 ° C.
  • Less than, less than 40 ° C, less than 30 ° C, less than 25 ° C, less than 20 ° C, less than 15 ° C, about 60 ° C, about 50 ° C, about 40 ° C, about 30 ° C, about 25 ° C, about 15 ° C, or about 10 ° C Can be used in the environment of.
  • the combinations of microorganisms of the present disclosure and the compositions or combinations that provide them are pH 4-12, pH 5-11, pH 6-10, pH 7-9, pH 5.5-8.5, about pH 4 , About pH5, about pH6, about pH7, about pH8, about pH9, about pH10, or about pH11.
  • the microbial combinations of the present disclosure and the compositions or combinations providing them are 0.05 mg / L or higher, 0.1 mg / L or higher, 0.5 mg / L or higher, or 1 mg / L or higher.
  • the microbial combinations of the present disclosure and the compositions or combinations that provide them are in an environment with normal hexane values of 100-40,000 mg / L, 200-30000 mg / L, 300-30000 mg / L (eg,). , In drainage).
  • Solid waste which may contain water
  • sludge slurries and kitchen waste treatment may have higher concentrations of fats and oils, but in one embodiment, the combinations of microorganisms of the present disclosure and the provisions thereof.
  • the composition or combination of these can also be usefully applied to such solid waste.
  • the microorganisms, compositions or combinations of the present disclosure are 50% by weight or more, 20% by weight or more, 10% by weight or more, 7% by weight or more, 5% by weight or more, 2% by weight or more, 1% by weight. % Or more, 0.7% by weight or more, 0.5% by weight or more, 0.2% by weight or more, 0.1% by weight or more, 0.07% by weight or more, 0.05% by weight or more, 0.02% by weight As described above, it can be added to a subject containing 0.01% by weight or more, 0.007% by weight or more, 0.005% by weight or more, 0.002% by weight or more, or 0.001% by weight or more of trans fatty acid.
  • the microorganisms, compositions or combinations of the present disclosure have a trans fatty acid content of 50% by weight or more, 20% by weight or more and 10% by weight or more in the contained ester (for example, fat or oil). 7% by weight or more, 5% by weight or more, 2% by weight or more, 1% by weight or more, 0.7% by weight or more, 0.5% by weight or more, 0.2% by weight or more, 0.1% by weight or more, 0. 07% by weight or more, 0.05% by weight or more, 0.02% by weight or more, 0.01% by weight or more, 0.007% by weight or more, 0.005% by weight or more, 0.002% by weight or more or 0.001 It can be added to a subject that is greater than or equal to weight%.
  • the microorganisms of the present disclosure are to which forms in which nitrogen is available to the microorganisms, preferably ammonium salts, nitrates, sulfates, etc.
  • it may be present in a form containing an organic nitrogen compound, more preferably ammonium sulfate, urea, an amino acid, or a peptide such as peptone, trypton, or casamino acid.
  • C / N is the weight ratio of normal hexane-derived carbon atoms and nitrogen atoms contained in the wastewater. In one embodiment, nitrogen may be further added to fall within these ranges.
  • the microorganism of the present disclosure a combination of microorganisms and a composition or combination providing the same are added to a form in which phosphorus (P) is available to the microorganism, preferably a phosphate or nucleic acid. , More preferably in the form of phosphate.
  • P phosphorus
  • microorganisms of the present disclosure combinations of microorganisms and compositions or combinations providing the same include salts, surfactants, light, currents, agitation operations, aeration operations, or any combination thereof. It may be used under existing conditions.
  • the microorganisms of the present disclosure combinations of microorganisms and compositions or combinations providing the same, after removing substances that kill the microorganisms of the present disclosure and suppress growth (chlorine, antibiotics, etc.). May be applied with.
  • the microorganisms of the present disclosure may be used with carriers capable of immobilizing microorganisms. Washout can be effectively avoided by using such a carrier.
  • the material of the carrier is not particularly limited as long as it can fix microorganisms, for example, carbon fiber (PAN-based, pitch-based, phenol resin-based, etc.), polyethylene resin, polypropylene resin, polyurethane resin, polystyrene resin, polyvinyl chloride.
  • Resins polyvinyl acetate resins, polyvinyl alcohol resins, polyethylene glycol resins, acrylic resins, gelatin, sodium alginate, carrageenan, dextrin, ceramics, silicon, metals, charcoal, activated charcoal, minerals (zeolite, diatomaceous earth, etc.), and composites thereof. And so on. It is preferable to use a porous or fibrous carrier in order to increase the immobilization rate of microorganisms and the efficiency of action of microorganisms.
  • the gel-like carrier may contain microorganisms.
  • Examples of the shape of the carrier include a cube, a rectangular parallelepiped, a columnar shape, a spherical shape, a disk shape, a sheet shape, and a film shape.
  • microbial immobilization technology for example, “Wastewater treatment by microbial immobilization method (edited by Ryuichi Sudo, Industrial Water Research Association)” and “Water treatment by microbial immobilization method-carrier immobilization method comprehensive immobilization method biological activated charcoal method (New Water Treatment Series (1)) (Kazuhiro Mochizuki, Katsutoshi Hori, Hideki Tatsumoto (Author), NTS Co., Ltd.) ”.
  • microorganisms of the present disclosure may be used in combination with additional ingredients.
  • additional ingredients may be added to the composition or combination, or may be used separately from the microorganism, microbial combination or composition, when used separately. May be provided as a kit.
  • additional components include components that enhance the activity of the microorganism used (eg, carbon source, nitrogen source), surfactants, desiccants, components for long-term maintenance of the microorganism, preservatives, and additives. Molds, enhancers, antioxidants, and other microorganisms can be used, but are not limited to these, and any suitable component can be used.
  • microorganisms include microorganisms that decompose (assimilate) glycerol, proteins, amino acids, nucleic acids, or microorganisms that decompose (assimilate) polysaccharides (for example, cellulose).
  • Other microorganisms are preferably capable of coexisting with the microorganisms of the present disclosure.
  • microorganism that decomposes (assimilates) glycerol for example, eubacteria, yeast, and filamentous fungi can be used.
  • Candida yeast is used.
  • a specific example of yeast of the genus Candida is Candida silindracea SL1B2 (deposited at the National Institute of Technology and Evaluation Patent Microorganisms Depositary Center with accession number NITE P-714).
  • the strain has excellent glycerol assimilation ability.
  • the disclosure provides a method for degrading and removing esters (eg, fats and oils) and / or fatty acids, which comprises allowing the microorganisms, compositions or combinations of the present disclosure to act on a subject to be treated.
  • the subject to be treated may include trans fatty acids (eg, elaidic acid, palmiteraidic acid and / or vaccenic acid) or trans fatty acid-containing fats and oils.
  • the treatment target can be any treatment target described herein to which the microorganisms, compositions or combinations of the present disclosure can be applied.
  • esters (eg, fats and oils) and / or fatty acid decomposition removal methods of the present disclosure can be carried out in any environment described herein to which the microorganisms, compositions or combinations of the present disclosure can be applied.
  • the esters (eg, fats and oils) and / or fatty acid degrading and removing methods of the present disclosure include trans fatty acids, a step of degrading trans fatty acids (eg, ellagic acid, palmitelydic acid and / or baxenoic acid).
  • Degrading fats and oils degrading esters (eg, fats and oils) and / or fatty acids at 15 ° C., degrading short- to medium-chain fatty acid (C2-C12) -containing esters, and / or short- to long-chain It may include the step of decomposing fatty acid (C2 or higher) -containing fats and oils.
  • the esters (eg, fats and oils) and / or fatty acid decomposition removal methods of the present disclosure can use any of the additional ingredients described herein that can be used in combination with the microorganisms, compositions or combinations of the present disclosure. ..
  • the present disclosure provides a method for degrading and removing fats and oils and / or fatty acids, which comprises allowing a combination of microorganisms of the present disclosure and a composition or combination providing the same to act on a subject to be treated.
  • the disclosure comprises the step of mixing (eg, coexisting) Burkholderia bacteria and Yarrowia yeast in the microbial combination of the present disclosure and culturing the Burkholderia bacteria and the Yarrowia yeast.
  • a method for improving the production of at least one of the lipases is provided.
  • the combination of microorganisms of the present disclosure may be applied as a combination, or may be applied so as to be a combination of the microorganisms of the present disclosure as a result of applying each microorganism (or a composition containing the same).
  • the specification describes that any embodiment acts, applies or inputs a combination of microorganisms of the present disclosure.
  • the method for decomposing and removing esters (eg, fats and oils) and / or fatty acids of the present disclosure is a step of charging the microorganisms of the present disclosure, a combination of microorganisms, and a composition or combination providing the same into a fat and oil decomposition tank.
  • the input may be continuous or sequential.
  • the HRT (hydraulic residence time) of the oil / fat decomposition tank is usually 12 hours or more, preferably 18 hours or more, more preferably 20 hours or more, still more preferably 24 hours or more.
  • HRT can be usually 18 hours or longer, preferably 20 hours or longer, more preferably 24 hours or longer, if a reduction in normal hexane value of 80% or more is expected.
  • the HRT can be usually 8 hours or more, preferably 12 hours or more, more preferably 18 hours or more.
  • the microbial concentration in the fat decomposition tank may depend on the concentration of esters (for example, fats and oils) and / or fatty acids in the wastewater, and the higher the concentration of fats and oils and / or fatty acids, the higher the cell concentration can be maintained.
  • esters for example, fats and oils
  • / or fatty acids the higher the cell concentration can be maintained.
  • defoaming operations such as shortening the HRT, showering, and adding a defoaming agent can be performed.
  • the antifoaming agent can inhibit the growth of microorganisms, it is desirable to set the addition amount in consideration of the relevant matters.
  • the normal hexane value of the outflow water from the fat decomposition tank is preferably 60 mg / L or less, more preferably 30 mg / L or less in the case of low-concentration wastewater in which the normal hexane value of the inflow water is about 300 mg / L or less.
  • the inflow water is preferably 600 mg / L or less, more preferably 300 mg / L or less, still more preferably 150 mg / L or less, and most preferably 30 mg / L or less. ..
  • the inflow water is preferably 1000 mg / L or less, more preferably 500 mg / L or less, still more preferably 100 mg / L or less, and most preferably 30 mg / L or less. ..
  • ultra-high concentration wastewater having a normal hexane value of about 30,000 mg / L or more in the inflow water it is preferably 3000 mg / L or less, more preferably 1000 mg / L or less, and further preferably 300 mg / L or less.
  • the normal hexane value of the oil and / or fatty acid-containing wastewater is preferably 80% or more, more preferably 90% or more, still more preferably 95% or more, and most preferably 99%.
  • the above can be reduced.
  • this reference value is achieved, even the main treatment such as the activated sludge treatment in the subsequent stage may be unnecessary if only the normal hexane value is focused on.
  • the amount of the added microorganisms in the effluent is preferably 0.01 times or more, more preferably 0.1 times or more, still more preferably 0.5 times or more, and most preferably 1 time or more with respect to the added amount. is there.
  • the method for decomposing and removing fats and oils and / or fatty acids of the present disclosure may include additional steps in addition to the above steps. Examples of such a step include a step of returning all or part of the effluent from the oil / fat decomposition tank to the oil / fat decomposition tank again.
  • a sufficient fat and oil and / or fatty acid decomposition effect can be obtained without performing such a return treatment. It is not mandatory to return to.
  • Example 1 Identification of microorganisms capable of assimilating and decomposing trans fatty acid-containing fats and oils
  • a yeast conservation population was cultivated and microorganisms were isolated from it.
  • each microorganism is placed on an agar medium containing canola oil (Nissin Canola oil, Nissin Oillio, Tokyo) as the sole carbon source.
  • the cells were inoculated with lines and cultured at 15 ° C. for 5 days.
  • microorganisms that can be cultivated at low temperature using fats and oils as a nutrient source were found.
  • LMS 15 mL harmony centrifuge tube
  • a separated microbial strain can be cultivated in a low temperature environment using fats and oils as a nutrient source, can assimilate (decompose) fats and oils at low temperatures, and decompose trans fatty acid-containing fats and oils and trans fatty acids. -It was found to be capitalized, and this new strain was named KH-2 strain.
  • Example 2 Oil / fat / fatty acid assimilation / decomposition ability of KH-2 strain
  • an agar medium containing triolein, oleic acid or canola oil (above) as the sole carbon source final concentration of fat or fatty acid 1%, Triton® X-100 final concentration 0.25%
  • Bacteria were inoculated on an inorganic salt agar medium (containing 1.5% agar in the inorganic salt medium) (pH 7.0) with a final concentration of polyvinyl alcohol of 0.5%, and cultured at 28 ° C. for 3 days. did.
  • the composition of the mineral salts medium is, Na 2 HPO 4 3.5g / LKH -2 strain PO 4 2.0g / L, (NH 4) 2 SO 4 4.0g / L, MgCl 2 ⁇ 6H 2 O 0.34g / L, FeSO 4 ⁇ 7H 2 O 2.8mg / L, MnSO 4 ⁇ 5H 2 O 2.4mg / L, CoCl 2 ⁇ 6H 2 O 2.4mg / L, CaCl 2 ⁇ 2H 2 O 1.7mg / L, CuCl 2 ⁇ 2H 2 O 0.2mg / L, a ZnSO 4 ⁇ 7H 2 O 0.3mg / L, and Na 2 MoO 4 0.25mg / L.
  • FIG. Colonies are formed on any agar medium, and the KH-2 strain is a typical example of free fatty acids in canola oil, which is a typical oil-containing vegetable oil, triolein, which is a triglyceride oil, and decomposition products of these oils. It has been shown that oleic acid can be decomposed, assimilated and proliferated.
  • an agar medium containing ellagic acid as the sole carbon source (final concentration of elladic acid 0.1%, Triton® X-100 final concentration 0.25%, inorganic salt agar medium (pH 7) .0))
  • the bacteria were inoculated on the screen and cultured at 15 ° C. for 14 days. The result is shown in FIG. It was shown that colonies were formed on the agar medium, and elaidic acid, which is a typical trans fatty acid, could be decomposed and assimilated and proliferated.
  • Example 3A Trans fatty acid decomposition ability of KH-2 strain at 28 ° C.
  • the trans fatty acid degrading ability of the KH-2 strain and BioRemov 3200 (BR3200) (Novozymes, Denmark) at 28 ° C. was compared.
  • the fats and oils in the supernatant after culturing were analyzed by thin layer chromatography. Specifically, an equal amount of chloroform was added to the culture supernatant, and after stirring, 12 ⁇ l of the chloroform layer was applied to a silica gel plate and developed with a chloroform: acetone: methanol (96: 4: 2) solution. After development, fatty acid was visualized by spraying molybtriic acid n-hydrate solution (2.4 g / 60 ml ethanol) and heating at 110 ° C. for 12 minutes, and the amount of fatty acid remaining in the medium was compared (FIG. 3A (a)). )).
  • the KH-2 strain was found to have a strong ability to decompose trans fatty acids.
  • Example 3B Trans fatty acid decomposition ability of KH-2 strain at 15 ° C.
  • the trans fatty acid degrading ability of the KH-2 strain and BioRemov 3200 (BR3200) (Novozymes, Denmark) at 15 ° C. was compared.
  • the fats and oils in the supernatant after culturing were analyzed by thin layer chromatography. Specifically, 1/2 amount of chloroform was added to the culture supernatant, and after stirring, 5 ⁇ l of the chloroform layer was applied to a silica gel plate and developed with a chloroform: acetone: methanol (96: 4: 1) solution. After development, fatty acid was visualized by spraying molybtriic acid n-hydrate solution (2.4 g / 60 ml ethanol) and heating at 110 ° C. for 12 minutes, and the amount of fatty acid remaining in the medium was compared (FIG. 3B (a). )).
  • Example 4A Trans fatty acid-containing oil / fat decomposition ability of KH-2 strain
  • BS inorganic salt medium
  • the fats and oils in the supernatant after culturing were analyzed by thin layer chromatography. Specifically, an equal amount of chloroform was added to the culture supernatant, and after stirring, 12 ⁇ l of the chloroform layer was applied to a silica gel plate and developed with a chloroform: acetone: methanol (96: 4: 2) solution. After development, molybtriic acid n-hydrate solution (2.4 g / 60 ml ethanol) is sprayed and heated at 110 ° C. for 12 minutes to visualize fats and oils and free fatty acids, and the fats and oils remaining in the medium and their decomposition products. The amount of fatty acids was compared (Fig. 4). It was found that the KH-2 strain has the ability to decompose trans fatty acid-containing fats and oils at both normal temperature (28 ° C.) and low temperature (15 ° C.).
  • Example 5 Oil and fat decomposition ability of KH-2 strain in actual wastewater
  • BR3200 BioRemov 3200
  • Nitrogen (ammonium sulfate) and phosphorus equivalent to the inorganic salt medium (above) were added to a wastewater sample containing a large amount of trans fatty acid-containing fats and oils from a food factory using hydrogenated fats and oils, and cultured.
  • Example 6 Oil decomposition ability of KH-2 strain at 15 ° C.
  • Example 7 Oil and fat decomposition ability of KH-2 strain at 28 ° C.
  • Cells of KH-2 strain 1% canola oil Nisshin OilliO
  • Tsuikin body optical density OD 660 0.05 to mineral salts medium (pH 7) containing (HITACHI U-2810 spectrophotometer The cells were inoculated to a total (Hitachi, Tokyo)) and cultured at 28 ° C. in a fermenter.
  • Example 8 Decomposition of fatty acids and fats and oils by additional strains
  • Samples were taken from a river near a food factory where oil-containing wastewater flows out, and microorganisms were isolated from the samples.
  • lipase was produced in a low temperature environment (15 ° C.), and it was examined whether fats and oils could be decomposed.
  • microorganisms capable of decomposing fats and oils at low temperatures were found.
  • These microbial strains were named KH-2AL1 strain and KH-2AL3 strain, respectively.
  • the KH-2AL1 strain was identified as Yarrowia lipolytica because the partial nucleotide sequence of 26S rDNA matched Yarrowia lipolytica with a homology rate of 100%.
  • the KH-2AL3 strain was identified as Yarrowia lipolytica because the partial nucleotide sequence of 26S rDNA matched Yarrowia lipolytica with a homology rate of 100%.
  • trans fatty acid decomposing ability The trans fatty acid decomposing ability, trans fatty acid-containing fat and oil decomposing ability, and fat and oil decomposing ability were also examined for these strains.
  • Example 3 Trans fatty acid decomposition
  • the KH-2AL1 strain and the KH-2AL3 strain were also tested for their ability to decompose trans fatty acids.
  • an inorganic salt medium composition, pH 7.0
  • Triton® X-100 Triton® X-100
  • KH-2AL1 strain and the KH-2AL3 strain have the same trans fatty acid-containing fat-decomposing ability as the KH-2 strain.
  • the Yarrowia yeast of the present disclosure has a high ability to decompose and assimilate fats and oils even at low temperatures.
  • Example 9 Capability of assimilating trans fatty acids of KH-2 strain and its contained fats and oils at 15 ° C.
  • the cells of the KH-2 strain having a density of OD 660 0.08 (HITACHI U-2810 spectrophotometer (Hitachi, Tokyo)) were inoculated and cultured at 15 ° C. for 5 days with shaking at 130 rpm.
  • Example 10 Comparison of detergency between KH-2 strain and detergent
  • Example 11 Decomposition of various esters
  • the lipase activity of a microorganism is measured by its hydrolysis activity using an ester (4-nitrophenyl ester) of 4-nitrophenol and a long-chain fatty acid (for example, palmitic acid) as a model substrate.
  • 4-nitrophenol which is a hydrolyzate, has a yellow color, it can be easily quantitatively evaluated by the colorimetric method.
  • an ester of a long-chain fatty acid for example, C16 or higher constituting the animal and vegetable fats and oils and 4-nitrophenol is usually used.
  • the KH-2 strain has low activity on the ester substrate of long-chain fatty acid and 4-nitrophenol, and high activity on the ester substrate with short-chain fatty acid (C6 or less) or medium-chain fatty acid (C7-12). I found out. That is, based on experiments usually performed by those skilled in the art (experiments to examine the resolution of esters of long-chain fatty acids and 4-nitrophenols), it was concluded that the KH-2 strain does not have the ability to decompose triglycerides of long-chain fatty acids. Be guided.
  • the present inventor has found that the KH-2 strain has a high activity of degrading triglycerides of long-chain fatty acids, as shown in the above examples, which can be said to be a completely unexpected finding. ..
  • the microorganisms of the present disclosure may have a wide range of lipase activity on fats and oils of short-chain to long-chain fatty acids.
  • Example 12 Assimilation and resolution of various trans fatty acids
  • the activity of the KH-2 strain to degrade the trans fatty acids palmitoleic acid (16: 1) and vaccenic acid (18: 1) was compared with BioRemov 3200 (BR3200) (Novozymes, Denmark).
  • KH-2 strain and BR3200 are inorganic salts prepared so that the final concentration of palmiterazic acid or baxenoic acid is 0.2% and the final concentration of Triton® X-100 is 0.25%, respectively.
  • a control sample that did not use microorganisms was also prepared.
  • the residual oil content in the culture solution was analyzed by thin layer chromatography. Specifically, fatty acids were extracted with half the amount of chloroform of the sample, 6 ⁇ l of the extract was applied to a silica gel plate, and the mixture was developed with a chloroform: acetone: methanol (96: 4: 2) solution. After development, fatty acids were visualized by a color-developing reaction with molybtriic acid n-hydrate in the same manner as in Example 4, and the amount of fatty acids remaining in the medium was compared (FIGS. 14 and 15).
  • the KH-2 strain was able to completely decompose palmiteraidic acid and vaccenic acid within 24 hours at 28 ° C. and within 48-72 hours at 15 ° C.
  • BR3200 did not have the ability to decompose these fatty acids.
  • the microorganism of the present disclosure can assimilate and decompose various trans fatty acids and trans fatty acid-containing fats and oils.
  • a related strain can be acquired as follows. PBS is added to various isolation sources such as yeast storage libraries, soils, rivers, lakes, and activated sludge to prepare dilution series and spread on inorganic salt agar medium with triellaidin or elaidic acid as the sole carbon source. Alternatively, 1 to 10% by weight of the above separation source is added to an inorganic salt medium containing 0.3 to 1% by weight of shortening, and the cells are cultured at 15 ° C. or 28 ° C. until emulsification and microbial growth are observed. After repeating this enrichment culture an arbitrary number of times, a dilution series of the culture solution may be prepared and spread as described above.
  • isolation sources such as yeast storage libraries, soils, rivers, lakes, and activated sludge
  • inorganic salt agar medium with triellaidin or elaidic acid as the sole carbon source.
  • 1 to 10% by weight of the above separation source is added to an inorganic salt medium containing 0.3 to
  • Colonies are obtained by statically culturing the agar medium after inoculation at 15 ° C or 28 ° C. Among them, those in which a clear zone was formed around the colony were picked up and inoculated into about 2 mL of an inorganic salt agar medium (containing the above-mentioned concentration of triellaidin or triellaidic acid) at 15 ° C. or 28 ° C. Incubate in. After culturing, the degree of decomposition of fats and oils in the culture supernatant is analyzed by thin layer chromatography to obtain microorganisms capable of decomposing fats and oils at low temperatures or having trans fatty acid-containing fat and oil decomposition ability.
  • Example 14 Use in an apparatus
  • An inorganic salt medium containing canola oil 10 mL / L were cultured KH-2 strain to 2 ⁇ 10 9 cells / mL, and cultured stock. This was diluted 10-fold and microbial agent (2 ⁇ 10 8 cells / mL) with. This is refrigerated and stored in the microorganism storage tank of the automatic amplification and charging device to be used as an inoculum.
  • This inoculum is automatically inoculated in an inorganic salt medium in the culture amplification tank of the same device by 1/100 amount every day, and cultured until the number of microorganisms is 100 times, that is, the cell concentration is the same as that of the microbial preparation.
  • Example 15 The KH-2 strain was inoculated to 1 ⁇ 10 6 cells / mL in extinction type garbage processor, 12-24 hours at 25 ⁇ 35 ° C., for processing. Measure the normal hexane value in the wastewater from the kitchen waste treatment machine. A significant reduction in value is observed as compared to the control example in which the KH-2 strain is not introduced.
  • the oily sludge recovered by levitation separation is put into a culture tank, and an inorganic salt medium having a weight of 10 to 1000% of the put weight is added.
  • an inorganic salt medium having a weight of 10 to 1000% of the put weight.
  • KH-2 strain was inoculated KH-2 strain as a 1 ⁇ 10 5 cells / mL, with stirring aeration from 12 to 240 hours at between 20 ⁇ 35 ° C., incubated.
  • the amount of decomposition / reduction of oily sludge is examined by measuring the amount of oil based on the normal hexane value of the treated liquid or measuring the weight of the residue containing oil as the main component remaining after evaporating the water content.
  • remarkable oily sludge decomposition was observed as compared with the control example in which the KH-2 strain was not introduced.
  • Charcoal grease trap various plastics, carriers such as ceramic pieces were charged an appropriate amount (e.g., 1 ⁇ 10 5 cells / mL) for the automatic insertion of KH-2 strain of daily, after operation termination of the cafeteria. Water is sampled daily just before the start of operation and the normal hexane level is analyzed. After 1 week, a remarkable decrease in the normal hexane level was observed as compared with the control example in which the KH-2 strain was not added, and the appearance of the glue strap itself also showed effects such as reduction of oil adhesion and suspension. ..
  • Example 16 Combination of microorganisms having useful oil / fat resolution
  • strains of Burkholderia bacteria and Yarrowia yeast that have oil decomposing ability. By combining these strains with another microbial strain having a fat decomposing ability, a combination of microorganisms having an excellent fat decomposing ability can be obtained.
  • Inorganic salt medium Na 2 HPO 4 3.5 g /
  • canola oil canola oil, Nisshin Oillio, Tokyo
  • Example 17 Further analysis of symbiotic oil / fat decomposition ability
  • the oil and fat resolution of combinations of KH-1 strain and KH-2 strain in various mixing ratios at various temperatures was tested.
  • Each was added in a ratio and cultured at 15 ° C. The culture supernatant obtained after culturing for 48 hours was subjected to total fatty acid analysis by gas chromatography according to the following procedure.
  • the result of gas chromatography analysis is shown in FIG.
  • the symbiotic system of the KH-1 strain and the KH-2 strain showed oil / fat resolution exceeding the oil / fat resolution calculated from the value of the oil / fat resolution of each single culture at various mixing ratios.
  • the KH-1 strain and the KH-2 strain each produce lipase alone, and microorganisms having such similar properties compete with each other.
  • KH-1 strain and KH-2 strain inorganic salt medium (the above composition, pH 7) containing 1% (v / v) of canola oil (Nisshin Canola oil, Nisshin Oillio, Tokyo) at a final concentration.
  • KH-1 strain: KH-2 strain 10: 0, 9: 1, 5: 5, 1: 9, and 0:10 (cell count basis) so that the concentration is 5 ⁇ 10 5 cells / mL.
  • Each was added in a ratio and cultured at 28 ° C. The culture supernatant obtained after culturing for 18 hours was subjected to total fatty acid analysis by gas chromatography in the same manner as described above.
  • the result of gas chromatography analysis is shown in FIG.
  • the symbiotic system of the KH-1 strain and the KH-2 strain showed oil / fat resolution exceeding the oil / fat resolution calculated from the value of the oil / fat resolution of each single culture at various mixing ratios.
  • the symbiotic system of the KH-1 strain and the KH-2 strain has high oil / fat resolution in various temperature ranges.
  • Example 18 Analysis of symbiotic fatty acid decomposition ability
  • the fatty acid resolution of combinations of KH-1 and KH-2 strains in various mixing ratios was tested.
  • the oil / fat resolution of the combination of KH-1 strain and KH-2 strain was tested at 28 ° C.
  • Example 19 Gene expression in a symbiotic system
  • RNA was removed and cDNA was synthesized using PrimeScript TM RT reagent Kit with gDNA Laser Perfect Real Time (Takara Bio Inc.). The cDNA stock solution was then diluted 3-fold using the dilution solution included in the kit. Quantitative real-time RT-PCR was performed by Applied Biosystems® StepOnePlus TM (Applied Biosystems) using synthetic primers specific for the genes encoding the first and second lipases of the KH-1 strain. It was.
  • the first lipase and the second lipase of the KH-1 strain refer to those whose representative amino acid sequences and base sequences are shown by SEQ ID NOs: 1 to 4.
  • the PCR reaction was performed in a 20 ⁇ l solution containing PowerUp TM SYBR® Green Master Mix (Thermo Fisher Scientific) (10 ⁇ l), each primer (final concentration 0.5 ⁇ M), and cDNA (1 ⁇ l).
  • the PCR reaction was carried out in a fast cycling mode, with one cycle of denaturation at 95 ° C. for 2 minutes followed by a program of repeating 40 cycles of 95 ° C. for 3 seconds and 60 ° C. for 30 seconds.
  • the expression level was normalized by the expression level of RNA polymerase, Sigma 70 (rpoD). After confirming that the melting curve had a single peak, the data was analyzed by the comparative Ct method ( ⁇ Ct method).
  • the KH-1 strain and the KH-2 strain were cultured overnight in LB medium, and then washed twice with PBS buffer to remove the medium components.
  • the cells were inoculated to 2.5 ⁇ 10 5 cells / mL KH-1 strain + 2.5 ⁇ 10 5 cells / mL KH-2 strain, and then cultured in a fermenter at 15 ° C. for 48 hours.
  • the first lipase and the second lipase of the KH-2 strain refer to those whose representative amino acid sequences and base sequences are shown by SEQ ID NOs: 5 to 8.
  • the PCR reaction was carried out in the same manner as the above KH-1 strain.
  • the expression level was normalized by the expression level of alpha-1,2-mannosyltransferase (arg9). After confirming that the melting curve had a single peak, the data was analyzed by the comparative Ct method ( ⁇ Ct method).
  • Example 20 Lipase activity of symbiotic culture supernatant
  • the lipase activity of the culture supernatants of KH-1 and KH-2 strains was measured using a model substrate.
  • KH-1 strain alone with a measured value of OD 660 of 0.02 in 3 L of an inorganic salt medium (the above composition) containing 1% (v / v) of canola oil (Nisshin Canola oil, Nisshin Oillio, Tokyo) at a final concentration.
  • the supernatant was obtained 48 hours and 71 hours after the start of culturing.
  • 4-Nitrophenyl palmitate or 4-nitrophenyl butyrate was added to a 3% (v / v) Triton® X-100 aqueous solution and heated at 70 ° C. to prepare a substrate solution with a final concentration of 5 mM. .. 60 ⁇ L each of substrate solution, 150 mM GTA buffer (pH 7.0) and culture supernatant were mixed and the absorbance at 410 nm (showing free 4-nitrophenol) was monitored at room temperature for 1 minute.
  • the results are shown in Fig. 20.
  • the symbiotic culture supernatants of the KH-1 strain and the KH-2 strain showed strong lipase activity as compared with the culture supernatant of the KH-1 strain alone.
  • the combination of microorganisms of the present disclosure can decompose various fats and oils by the produced lipase.
  • Example 21 Identification of another strain
  • a sample was collected from a river near a food factory where oil-containing wastewater flows out, and microorganisms were isolated from it.
  • lipase was produced in a low temperature environment (15 ° C.), and it was examined whether fats and oils could be decomposed.
  • microorganisms capable of decomposing fats and oils at low temperatures were found.
  • These microbial strains were named KH-1AL1, KH-1AL2, and KH-1AL3, respectively.
  • the KH-1AL1 strain was identified as Burkholderia ambifaria because the partial nucleotide sequence of 16S rDNA matched Burkholderia ambifaria with a homology rate of 100%.
  • the partial base sequence of 16S rDNA matches Burkholderia contaminans with a homology rate of 99.9%, and B. seminalis, B. territorii, and B. cepacia (each of which is a partial base of 16S rDNA) on the molecular phylogenetic tree.
  • the homology in the sequence was 99.7%, 99.7%, 99.8%) and was classified in the same group.
  • the KH-1AL2 strain was identified as a bacterium of the Burkholderia cepacia complex.
  • the partial base sequence of 16S rDNA matches Burkholderia contaminans with a homology rate of 99.9%, and B. seminalis, B. territorii, and B. cepacia (each of which is a partial base of 16S rDNA) on the molecular phylogenetic tree.
  • the homology in the sequence was 99.7%, 99.7%, 99.8%) and was classified in the same group.
  • Burkholderia cepacia complex is a classification of microorganisms of the genus Burkholderia that are genetically very close to each other, such as ambifaria, anthina, arboris, cenocepacia, cepacia, contaminans, diffusa, dolosa, lata, latency, metallica, multivorans, pseudomultivorans, puraquae, pyrrocinia.
  • Example 22 Symbiotic system using other combinations
  • KH-1 strain, KH-1AL1 strain, and KH-1AL3 strain alone or 1/10 of the number of cells of each was KH-2.
  • the mixed cultures replaced with the strain, KH-2AL1 strain, or KH-2AL3 strain were compared, and the oil / fat resolution was tested.
  • KH-1 strain, KH-1AL1 strain or KH-1AL3 in an inorganic salt medium (the above composition, pH 7) containing 1% (v / v) of canola oil (Nisshin Canola oil, Nisshin Oillio, Tokyo) at the final concentration.
  • strain alone or with KH-2 strain thereof, the combination of the KH-2AL1 strain or KH-2AL3 strain was added so that the total cell concentration of 2 ⁇ 10 6 cells / mL, and incubated at 15 ° C..
  • the culture supernatant obtained at the time of culturing for 48 hours was analyzed using an oil content measurement reagent kit (Kyoritsu Institute of Physical and Chemical Research, Tokyo) (measurement reagent kit by the polynippam extract substance measurement method) in the same manner as described above.
  • Example 23 Decomposition of trans fatty acid-containing fats and oils by lipase
  • the lipase of 2 is purified by hydrophobic column chromatography and the like. These purified lipases and triellaidin are mixed and the degradation of triellaidin is investigated.
  • Both the first and second lipases of the KH-1 strain and the first and second lipases of the KH-2 strain were shown to degrade the trans-triglyceride trierides.
  • the expression of the first and second lipases of the KH-1 strain and the first and second lipases of the KH-2 strain can be improved (Example 19). It is expected that various fats and oils including the above will be efficiently decomposed.
  • Example 24 Confirmation test
  • the decomposition of fats and oils may be confirmed by oil content analysis, thin layer chromatography analysis or the like as in Example 3 in addition to the above gas chromatography analysis.
  • Example 20 Obtain the culture supernatant in the same manner as in Example 20, mix it with canola oil, and incubate it.
  • the symbiotic culture supernatants of the KH-1 strain and the KH-2 strain show strong lipase activity as compared with the culture supernatant of the KH-1 strain alone.
  • the cells are added so as to have a cell number ratio of, for example, 19: 1, 1:19, and cultured at 15 ° C. or 28 ° C. Similar to the above, better fat decomposition than any of the microorganisms alone can be confirmed.
  • the cell concentration ratio of microorganisms at the time of mixed culture is obtained by sampling the mixed culture solution at regular time intervals and calculating the concentration of each microorganism.
  • the oil / fat resolution at the mixing ratio is examined. Confirm that the oil / fat resolution exceeds the oil / fat resolution calculated from the value of the oil / fat resolution of each single culture.
  • Substitute strains of microorganisms that can be used in the combinations of microorganisms of the present disclosure can be obtained as follows. PBS is added to various isolation sources such as microbial preservation libraries, soils, rivers, lakes and activated sludge to prepare dilution series and spread on inorganic salt agar medium with canola oil as the sole carbon source. Colonies are obtained by statically culturing the agar medium after inoculation at 15 ° C or 28 ° C.
  • KH-1 strain, KH-1AL1 strain, KH-1AL3 strain, KH-2 strain, KH-2AL1 strain, or KH-2AL3 strain were picked up, and together with KH-1 strain, KH-1AL1 strain, KH-1AL3 strain, KH-2 strain, KH-2AL1 strain, or KH-2AL3 strain. Inoculate in an inorganic salt medium supplemented with canola oil and incubate at 15 ° C. or 28 ° C. After culturing, the degree of decomposition of fats and oils in the culture supernatant is analyzed by thin layer chromatography to obtain KH-1 strain, KH-1AL1 strain, KH-1AL3 strain, KH-2 strain, KH-2AL1 strain, or KH. -A microorganism having an excellent fat-decomposing ability as compared with the -2AL3 strain alone is obtained.
  • Example 26 Use in an apparatus
  • burghorideria bacteria and Yarrowia yeast are cultivated to prepare a culture stock solution.
  • This is diluted to make a microbial preparation.
  • This is refrigerated and stored in the microorganism storage tank of the automatic amplification and charging device to be used as an inoculum.
  • This inoculum is automatically inoculated in an appropriate amount in an inorganic salt medium in the culture amplification tank of the same device, and cultured until the number of microorganisms reaches the same cell concentration as that of the microbial preparation.
  • the microbial concentration of decomposing bacteria in the oil treatment water is adjusted to the target concentration, and the wastewater from food factories that discharge wastewater containing a large amount of oil and fat is decomposed. ..
  • a remarkable reduction in the normal hexane value is observed as compared with the control example in which no microorganism is added.
  • Example 27 Additional application example
  • An appropriate amount of Burghojoba bacteria and Yarrowia yeast are inoculated into an extinct kitchen waste disposer and treated at an appropriate temperature. Measure the normal hexane value in the wastewater from the kitchen waste treatment machine. A significant reduction in value is observed compared to the control example without the introduction of microorganisms.
  • Carriers such as charcoal, various plastics, and ceramic pieces are put into the grease trap, and appropriate amounts of Burghosawa bacteria and Yarrowia yeast are automatically put in every day after the operation of the cafeteria is completed. Over time, water is sampled just before the start of operation and the normal hexane value is analyzed. A remarkable decrease in the normal hexane value is observed as compared with the control example in which no microorganism is introduced, and the appearance of the glue strap itself is also observed to have effects such as reduction of oil adhesion and suspension.
  • the present disclosure provides microorganisms having ester (eg, fats and oils) and / or fatty acid resolution and compositions containing them, and by using such microorganisms or compositions, esters (eg, fats and oils) and / or It is possible to reduce the environmental load caused by wastewater from food factories containing a large amount of fatty acids.
  • the present disclosure also provides a combination of microorganisms having fat and / or fatty acid decomposing ability, and by using such a combination of microorganisms, the environmental load due to wastewater from a food factory containing a large amount of fat and / or fatty acid is reduced. Can be made to.
  • KH-1 (NITE BP-02731) KH-1AL1 (NITE BP-02977) KH-1AL2 (NITE BP-02978) KH-1AL3 (NITE BP-02979) KH-2 (NITE BP-02732) KH-2AL1 (NITE BP-03091) KH-2AL3 (NITE BP-03092)

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Health & Medical Sciences (AREA)
  • Organic Chemistry (AREA)
  • Microbiology (AREA)
  • Biotechnology (AREA)
  • Zoology (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Wood Science & Technology (AREA)
  • Genetics & Genomics (AREA)
  • Mycology (AREA)
  • Medicinal Chemistry (AREA)
  • Biomedical Technology (AREA)
  • Biochemistry (AREA)
  • General Engineering & Computer Science (AREA)
  • General Health & Medical Sciences (AREA)
  • Tropical Medicine & Parasitology (AREA)
  • Virology (AREA)
  • Biodiversity & Conservation Biology (AREA)
  • Hydrology & Water Resources (AREA)
  • Environmental & Geological Engineering (AREA)
  • Water Supply & Treatment (AREA)
  • Botany (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Micro-Organisms Or Cultivation Processes Thereof (AREA)
  • Purification Treatments By Anaerobic Or Anaerobic And Aerobic Bacteria Or Animals (AREA)

Abstract

一つの局面において、本開示は、エステル分解能のある新たな微生物を提供する。一つの局面において、本開示は、油脂分解能のある新たな微生物の組み合わせを提供する。一つの実施形態では、本開示の微生物は、ヤロウィア(Yarrowia)属の酵母を含む。一つの実施形態では、本開示の微生物は、ヤロウィア リポリティカ(Yarrowia lipolytica)を含む。一つの実施形態では、本開示は、ブルクホルデリア細菌とヤロウィア酵母との組み合わせを提供する。一つの実施形態では、本開示の微生物を含む油分解剤を提供する。

Description

低温で高い油脂分解能力を有する新規微生物
 本開示は、エステル(例えば、油脂)および/または脂肪酸分解能力を有する微生物およびその使用に関する。より特定すると、トランス脂肪酸含有油脂などの従来分解が困難な油脂を分解するヤロウィア酵母(例えば、ヤロウィア リポリティカ)に関する。また、本開示は、ブルクホルデリア細菌の油分解能力を向上させるヤロウィア酵母に関する。さらに、本開示は、油分解能力を有する微生物の組み合わせおよびその使用に関する。より特定すると、組み合わせにおける少なくとも1種の微生物単独より改善された油分解能を有する微生物の組み合わせに関する。また、本開示は、微生物の組み合わせによるリパーゼの発現増強に関する。より特定すると、ブルクホルデリア細菌とヤロウィア酵母との組み合わせに関する。
 食品工場や油脂工場の排水には多量の油分が含まれる。この油分は、活性汚泥による処理能力の低下、沈降性の低下による固液分離不全、膜分離活性汚泥法(MBR)における膜のファウリング、嫌気消化におけるメタン発酵阻害など、様々な生物処理機能の低下を引き起こす。そのため、油分高含有排水の生物処理の前段として、例えば加圧浮上分離装置などにより油分を除去することが行われている。また、外食産業の厨房排水も油分を多く含むため、油分を除くためのグリーストラップが設置されている。加圧浮上分離装置もグリーストラップのどちらも、悪臭や害虫の発生源であること、分離した油の回収・運搬と産業廃棄物処理にかかるコスト、管理や清掃等にかかる労苦やコストなどの問題を抱えている。このような問題を解決する手段として、微生物による油分解技術が検討され、関連する微生物製剤も複数、市販されているが、設定可能な滞留時間内で望まれるレベルまで、油分濃度を微生物分解により下げるのは極めて困難である。そのため、現状では、加圧浮上分離装置や従来のグリーストラップが用いられていることがほとんどである。
 また、生ゴミの発酵処理においても、油分が多い場合は、発酵阻害や消滅型処理機における排水中への油の高含有などの問題がある。また、加圧浮上分離装置やグリーストラップにより分離回収した油性汚泥は産業廃棄物となるため、その処理には大きなコストがかかる。そこで、これらの油分を微生物で分解することが検討されているが、やはり上述の排水処理と同様に、微生物の分解能力に限界があるのが実情である。
 微生物による油分除去では、以上のように分解速度が問題になるが、特に冬場の低温による活性低下が、微生物の適用を困難にしている場合が多い。特に冬場の低温では、微生物による油脂の分解速度は極めて遅く、特定の微生物により排水処理や廃棄物処理を行うことは不可能であると考えられている。
喜田義一ら、日立化成テクニカルレポート:46号:49-54頁(2006)
 本発明者らは、鋭意研究した結果、ユニークなエステラーゼ活性を有する新規微生物であるヤロウィア(属)に属する微生物を見出した。この微生物は、トランス脂肪酸含有油脂および/またはトランス脂肪酸を分解・資化できる局面も見出された。この微生物は、低温で油脂および/または脂肪酸を分解・資化できる局面も見出された。この微生物は、短鎖から長鎖までの脂肪酸およびそれらを含むエステル・油脂などを幅広く分解・資化できる局面も見出された。また、本発明者らは、ブルクホルデリア細菌の油分解能力を向上させるヤロウィア酵母を見出した。さらに、本発明者らは、強力に油脂および脂肪酸を分解するブルクホルデリア細菌とヤロウィア酵母との組み合わせを見出した。本開示は、本開示の微生物の組み合わせの応用、例えば油処理等にも関する。本開示は、本開示の微生物の応用、油分解能力を有する新たな微生物の組み合わせおよびこの組み合わせを用いた油分解方法を提供する。
 したがって、本開示は以下を提供する。
(項目A1)
 トランス脂肪酸を分解する能力を有する、ヤロウィア酵母。
(項目A2)
 トランス脂肪酸を資化する能力を有する、ヤロウィア酵母。
(項目A3)
 トランス脂肪酸含有油脂を分解する能力を有する、ヤロウィア酵母。
(項目A4)
 トランス脂肪酸含有油脂を資化する能力を有する、ヤロウィア酵母。
(項目A5)
 15℃においてエステル(例えば、油脂)および/または脂肪酸を分解する能力を有する、ヤロウィア酵母。
(項目A6)
 15℃においてエステル(例えば、油脂)および/または脂肪酸を資化する能力を有する、ヤロウィア酵母。
(項目A7)
 前記資化または分解する能力が15℃において保持される、上記項目のいずれか一項に記載のヤロウィア酵母。
(項目A8)
 短鎖~中鎖脂肪酸(C2~C12)含有エステルを分解する能力を有する、ヤロウィア酵母。
(項目A9)
 短鎖~長鎖脂肪酸(C2以上)含有油脂を分解する能力を有する、ヤロウィア酵母。
(項目A10)
 長鎖脂肪酸(C13以上)の4-ニトロフェニルエステルよりも短鎖~中鎖脂肪酸(C2~C12)の4-ニトロフェニルエステルに対して高い分解活性を有し、かつ、長鎖脂肪酸(C13以上)のトリグリセリドを分解する能力を有する、ヤロウィア酵母。
(項目A11)
 上記項目Aにおいて特定される2つ以上の特徴を有する、上記項目のいずれか一項に記載のヤロウィア酵母。
(項目A12)
 ヤロウィア リポリティカ(Yarrowia lipolytica)である、上記項目のいずれか一項に記載の酵母。
(項目A13)
 受託番号NITE BP-02732で特定されるヤロウィア酵母KH-2株であるか、またはその誘導株であって該誘導株は、上記項目Aのいずれか一項または複数に記載のヤロウィア酵母の特徴を有する、上記項目のいずれか一項に記載のヤロウィア酵母。
(項目A14)
 上記項目のいずれか一項に記載のヤロウィア酵母を含む、油分解剤。
(項目A15)
 さらなる油処理成分を含む、上記項目のいずれか一項に記載の油分解剤。
(項目A16)
 (a)トランス脂肪酸を分解するため、
 (b)トランス脂肪酸含有油脂を分解するため、
 (c)15℃においてエステル(例えば、油脂)および/または脂肪酸を分解するため、
 (d)短鎖~中鎖脂肪酸(C2~C12)含有エステルを分解するため、および
 (e)短鎖~長鎖脂肪酸(C2以上)含有油脂を分解するため
からなる群より選択される少なくとも1つのための、上記項目のいずれか一項に記載のヤロウィア酵母または上記項目のいずれか一項に記載の油分解剤を含む、組成物。
(項目A17)
 上記項目のいずれか一項に記載のヤロウィア酵母もしくは上記項目のいずれか一項に記載の油分解剤と、または上記項目のいずれか一項に記載の組成物と、さらなる油処理成分とを備える、エステル(例えば、油脂)分解のためのキット。
(項目A18)
 上記項目のいずれか一項に記載のヤロウィア酵母、または上記項目のいずれか一項に記載の油分解剤、上記項目のいずれか一項に記載の組成物を処理対象に作用させることを包含する、エステル(例えば、油脂)分解除去方法。
(項目A19)
 前記処理対象はトランス脂肪酸またはトランス脂肪酸含有油脂を含む、上記項目のいずれか一項に記載の方法。
(項目A20)
 (a)トランス脂肪酸を分解するステップ、
 (b)トランス脂肪酸含有油脂を分解するステップ、
 (c)15℃においてエステル(例えば、油脂)および/または脂肪酸を分解するステップ、
 (d)短鎖~中鎖脂肪酸(C2~C12)含有エステルを分解するステップ、および
 (e)短鎖~長鎖脂肪酸(C2以上)含有油脂を分解するステップ、
からなる群より選択される少なくとも一つのステップを含む、上記項目のいずれか一項に記載の方法。
(項目B1)
 ブルクホルデリア細菌を含む、リパーゼを生産するヤロウィア酵母とリパーゼを生産するブルクホルデリア細菌との組み合わせで油脂を処理するための組成物。
(項目B2)
 ヤロウィア酵母を含む、リパーゼを生産するヤロウィア酵母とリパーゼを生産するブルクホルデリア細菌との組み合わせで油脂を処理するための組成物。
(項目B3)
 ブルクホルデリア細菌およびヤロウィア酵母の組み合わせを含む油脂処理のための組み合わせ物であって、該ブルクホルデリア細菌および該ヤロウィア酵母の両方がリパーゼを生産する、組み合わせ物。
(項目B4)
 前記ヤロウィア酵母はヤロウィア リポリティカ(Yarrowia lipolytica)を含む、上記項目のいずれか一項に記載の組成物または組み合わせ物。
(項目B5)
 前記ブルクホルデリア細菌はブルクホルデリア属細菌を含む、上記項目のいずれか一項に記載の組成物または組み合わせ物。
(項目B6)
 前記ブルクホルデリア細菌はブルクホルデリア アルボリス(Burkholderia arboris)、ブルクホルデリア アンビファリア(Burkholderia ambifaria)、またはブルクホルデリア セパシア コンプレックス(Burkholderia cepacia complex)を含む、上記項目のいずれか一項に記載の組成物または組み合わせ物。
(項目B7)
 前記ブルクホルデリア細菌およびヤロウィア酵母の組み合わせが、各々の単独培養の油脂分解能の値から計算される油脂分解能よりも高い油脂分解能を有する、上記項目のいずれか一項に記載の組成物または組み合わせ物。
(項目B8)
 前記ブルクホルデリア細菌の細胞数:前記ヤロウィア酵母の細胞数が、1:20~20:1である、上記項目のいずれか一項に記載の組成物または組み合わせ物。
(項目B9)
 前記ブルクホルデリア細菌および前記ヤロウィア酵母の少なくとも1つが15℃において脂肪酸を分解する能力を有する、上記項目のいずれか一項に記載の組成物または組み合わせ物。
(項目B10)
 前記ブルクホルデリア細菌は、ブルクホルデリア アルボリス(Burkholderia arboris)KH-1株(受託番号NITE BP-02731で特定される菌株)、ブルクホルデリア アンビファリア(Burkholderia ambifaria)KH-1AL1株(受託番号NITE BP-02977で特定される菌株)、ブルクホルデリア セパシア コンプレックス(Burkholderia cepacia complex)KH-1AL2株(受託番号NITE BP-02978で特定される菌株)もしくはブルクホルデリア セパシア コンプレックス(Burkholderia cepacia complex)KH-1AL3株(受託番号NITE BP-02979で特定される菌株)、またはその誘導株である、上記項目のいずれか一項に記載の組成物または組み合わせ物。
(項目B11)
 前記ヤロウィア酵母は、ヤロウィア リポリティカ(Yarrowia lipolytica)KH-2株(受託番号NITE BP-02732で特定される微生物株)、ヤロウィア リポリティカ(Yarrowia lipolytica)KH-2AL1株(受託番号NITE BP-03091で特定される微生物株)、もしくはヤロウィア リポリティカ(Yarrowia lipolytica)KH-2AL3株(受託番号NITE BP-03092で特定される微生物株)、またはその誘導株である、上記項目のいずれか一項に記載の組成物または組み合わせ物。
(項目B12)
 油分解剤である、上記項目のいずれか一項に記載の組成物または組み合わせ物。
(項目B13)
 さらなる油処理成分を含む、上記項目のいずれか一項に記載の油分解剤。
(項目B14)
 上記項目のいずれか一項に記載の組成物もしくは組み合わせ物、または上記項目のいずれか一項に記載の油分解剤を処理対象に作用させることを包含する、油分解除去方法。
(項目B15)
 ブルクホルデリア細菌を含む、リパーゼを生産するヤロウィア酵母のリパーゼ生産を向上させるための組成物。
(項目B16)
 ヤロウィア酵母を含む、リパーゼを生産するブルクホルデリア細菌のリパーゼ生産を向上させるための組成物。
(項目B17)
 ブルクホルデリア細菌を含む、リパーゼを生産するヤロウィア酵母の油脂を処理する能力を強化するための組成物。
(項目B18)
 ヤロウィア酵母を含む、リパーゼを生産するブルクホルデリア細菌の油脂を処理する能力を強化するための組成物。
(項目B19)
 ブルクホルデリア細菌とヤロウィア酵母とを混合して培養する工程を含む、該ブルクホルデリア細菌および該ヤロウィア酵母のうちの少なくとも1種のリパーゼ生産を向上させる方法。
(項目B20)
 リパーゼを生産するヤロウィア酵母とリパーゼを生産するブルクホルデリア細菌との組み合わせで油脂を処理するためのブルクホルデリア細菌の使用。
(項目B21)
 リパーゼを生産するヤロウィア酵母とリパーゼを生産するブルクホルデリア細菌との組み合わせで油脂を処理するためのヤロウィア酵母の使用。
(項目B22)
 ブルクホルデリア細菌およびヤロウィア酵母の組み合わせで油脂を処理のための該ブルクホルデリア細菌および該ヤロウィア酵母の使用であって、該ブルクホルデリア細菌および該ヤロウィア酵母の両方がリパーゼを生産する、使用。
(項目B23)
 前記ヤロウィア酵母はヤロウィア リポリティカ(Yarrowia lipolytica)を含む、上記項目のいずれか一項に記載の使用。
(項目B24)
 前記ブルクホルデリア細菌はブルクホルデリア属細菌を含む、上記項目のいずれか一項に記載の使用。
(項目B25)
 前記ブルクホルデリア細菌はブルクホルデリア アルボリス(Burkholderia arboris)、ブルクホルデリア アンビファリア(Burkholderia ambifaria)、またはブルクホルデリア セパシア コンプレックス(Burkholderia cepacia complex)を含む、上記項目のいずれか一項に記載の使用。
(項目B26)
 前記ブルクホルデリア細菌およびヤロウィア酵母の組み合わせが、各々の単独培養の油脂分解能の値から計算される油脂分解能よりも高い油脂分解能を有する、上記項目のいずれか一項に記載の使用。
(項目B27)
 前記ブルクホルデリア細菌の細胞数:前記ヤロウィア酵母の細胞数が、1:20~20:1である、上記項目のいずれか一項に記載の使用。
(項目B28)
 前記ブルクホルデリア細菌および前記ヤロウィア酵母の少なくとも1つが15℃において脂肪酸を分解する能力を有する、上記項目のいずれか一項に記載の使用。
(項目B29)
 前記ブルクホルデリア細菌は、ブルクホルデリア属細菌KH-1株(受託番号NITE BP-02731で特定される菌株)、KH-1AL1株(受託番号NITE BP-02977で特定される菌株)、KH-1AL2株(受託番号NITE BP-02978で特定される菌株)もしくはKH-1AL3株(受託番号NITE BP-02979で特定される菌株)、またはその誘導株である、上記項目のいずれか一項に記載の使用。
(項目B30)
 前記ヤロウィア酵母は、ヤロウィア リポリティカKH-2株(受託番号NITE BP-02732で特定される微生物株)、ヤロウィア リポリティカKH-2AL1株(受託番号NITE BP-03091で特定される微生物株)、もしくはヤロウィア リポリティカKH-2AL3株(受託番号NITE BP-03092で特定される微生物株)、またはその誘導株である、上記項目のいずれか一項に記載の使用。
(項目B31)
 さらなる油処理成分を組み合わせる、上記項目のいずれか一項に記載の使用。
(項目B32)
 前記ブルクホルデリア細菌およびヤロウィア酵母の組み合わせを処理対象に作用させることを包含する、上記項目のいずれか一項に記載の使用。
(項目B33)
 リパーゼを生産するヤロウィア酵母のリパーゼ生産を向上させるためのブルクホルデリア細菌の使用。
(項目B34)
 リパーゼを生産するブルクホルデリア細菌のリパーゼ生産を向上させるためのヤロウィア酵母の使用。
(項目B35)
 リパーゼを生産するヤロウィア酵母の油脂を処理する能力を強化するためのブルクホルデリア細菌の使用。
(項目B36)
 リパーゼを生産するブルクホルデリア細菌の油脂を処理する能力を強化するためのヤロウィア酵母の使用。
(項目B37)
 ブルクホルデリア細菌およびヤロウィア酵母のうちの少なくとも1種のリパーゼ生産を向上させるための該ブルクホルデリア細菌および該ヤロウィア酵母の使用。
(項目B38)
 ブルクホルデリア細菌を対象に接触させる工程を含む、リパーゼを生産するヤロウィア酵母とリパーゼを生産するブルクホルデリア細菌との組み合わせで油脂を処理するための方法。
(項目B39)
 ヤロウィア酵母を対象に接触させる工程を含む、リパーゼを生産するヤロウィア酵母とリパーゼを生産するブルクホルデリア細菌との組み合わせで油脂を処理するための方法。
(項目B40)
 ブルクホルデリア細菌およびヤロウィア酵母の組み合わせを対象に接触させる工程を含む、リパーゼを生産するヤロウィア酵母とリパーゼを生産するブルクホルデリア細菌との組み合わせで油脂を処理するための方法。
(項目B41)
 前記ヤロウィア酵母はヤロウィア リポリティカ(Yarrowia lipolytica)を含む、上記項目のいずれか一項に記載の方法。
(項目B42)
 前記ブルクホルデリア細菌はブルクホルデリア属細菌を含む、上記項目のいずれか一項に記載の方法。
(項目B43)
 前記ブルクホルデリア細菌はブルクホルデリア アルボリス(Burkholderia arboris)、ブルクホルデリア アンビファリア(Burkholderia ambifaria)、またはブルクホルデリア セパシア コンプレックス(Burkholderia cepacia complex)を含む、上記項目のいずれか一項に記載の方法。
(項目B44)
 前記ブルクホルデリア細菌およびヤロウィア酵母の組み合わせが、各々の単独培養の油脂分解能の値から計算される油脂分解能よりも高い油脂分解能を有する、上記項目のいずれか一項に記載の方法。
(項目B45)
 前記ブルクホルデリア細菌の細胞数:前記ヤロウィア酵母の細胞数が、1:20~20:1である、上記項目のいずれか一項に記載の方法。
(項目B46)
 前記ブルクホルデリア細菌および前記ヤロウィア酵母の少なくとも1つが15℃において脂肪酸を分解する能力を有する、上記項目のいずれか一項に記載の方法。
(項目B47)
 前記ブルクホルデリア細菌は、ブルクホルデリア属細菌KH-1株(受託番号NITE BP-02731で特定される菌株)、KH-1AL1株(受託番号NITE BP-02977で特定される菌株)、KH-1AL2株(受託番号NITE BP-02978で特定される菌株)もしくはKH-1AL3株(受託番号NITE BP-02979で特定される菌株)、またはその誘導株である、上記項目のいずれか一項に記載の方法。
(項目B48)
 前記ヤロウィア酵母は、ヤロウィア リポリティカKH-2株(受託番号NITE BP-02732で特定される微生物株)、ヤロウィア リポリティカKH-2AL1株(受託番号NITE BP-03091で特定される微生物株)、もしくはヤロウィア リポリティカKH-2AL3株(受託番号NITE BP-03092で特定される微生物株)、またはその誘導株である、上記項目のいずれか一項に記載の方法。
(項目B49)
 さらなる油処理成分を使用する、上記項目のいずれか一項に記載の方法。
(項目B50)
 油分解除去方法である、上記項目のいずれか一項に記載の方法。
(項目B51)
 ブルクホルデリア細菌を対象に投入する工程を含む、リパーゼを生産するヤロウィア酵母のリパーゼ生産を向上させるための方法。
(項目B52)
 ヤロウィア酵母を対象に投入する工程を含む、リパーゼを生産するブルクホルデリア細菌のリパーゼ生産を向上させるための方法。
(項目B53)
 ブルクホルデリア細菌を対象に投入する工程を含む、リパーゼを生産するヤロウィア酵母の油脂を処理する能力を強化するための方法。
(項目B54)
 ヤロウィア酵母を対象に投入する工程を含む、リパーゼを生産するブルクホルデリア細菌の油脂を処理する能力を強化するための方法。
(項目C1)
 トランス脂肪酸を分解する能力を有する、ヤロウィア酵母。
(項目C2)
 トランス脂肪酸含有油脂を分解する能力を有する、ヤロウィア酵母。
(項目C3)
 15℃においてエステルおよび/または脂肪酸を分解する能力を有する、ヤロウィア酵母。
(項目C4)
 短鎖~中鎖脂肪酸含有エステルを分解する能力を有する、ヤロウィア酵母。
(項目C5)
 短鎖~長鎖脂肪酸含有油脂を分解する能力を有する、ヤロウィア酵母。
(項目C6)
 長鎖脂肪酸(C13以上)の4-ニトロフェニルエステルよりも短鎖~中鎖脂肪酸(C2~C12)の4-ニトロフェニルエステルに対して高い分解活性を有し、かつ、長鎖脂肪酸(C13以上)のトリグリセリドを分解する能力を有する、ヤロウィア酵母。
(項目C7)
 リパーゼを生産するブルクホルデリア細菌のリパーゼ生産を向上させる能力を有する、ヤロウィア酵母。
(項目C8)
 ブルクホルデリア細菌の単独培養時の油脂または脂肪酸分解能よりも高い油脂または脂肪酸分解能を前記ブルクホルデリア細菌に付与する能力を有する、ヤロウィア酵母。
(項目C9)
 前記ブルクホルデリア細菌はブルクホルデリア属細菌を含む、上記項目のいずれか一項に記載のヤロウィア酵母。
(項目C10)
 前記ブルクホルデリア細菌はブルクホルデリア アルボリス(Burkholderia arboris)、ブルクホルデリア アンビファリア(Burkholderia ambifaria)、またはブルクホルデリア セパシア コンプレックス(Burkholderia cepacia complex)を含む、上記項目のいずれか一項に記載のヤロウィア酵母。
(項目C11)
 項目C1~6のいずれか一項または複数に記載のヤロウィア酵母の特徴、および
 項目C7~10のいずれか一項または複数に記載のヤロウィア酵母の特徴、
を有する、ヤロウィア酵母。
(項目C12)
 ヤロウィア リポリティカ(Yarrowia lipolytica)である、上記項目のいずれか一項に記載のヤロウィア酵母。
(項目C13)
 ヤロウィア リポリティカKH-2株(受託番号NITE BP-02732で特定される微生物株)、ヤロウィア リポリティカKH-2AL1株(受託番号NITE BP-03091で特定される微生物株)、もしくはヤロウィア リポリティカKH-2AL3株(受託番号NITE BP-03092で特定される微生物株)であるか、またはその誘導株であって該誘導株は、上記項目のいずれか一項に記載のヤロウィア酵母の特徴を有する、上記項目のいずれか一項に記載のヤロウィア酵母。
(項目C14)
 上記項目のいずれか一項に記載のヤロウィア酵母を含む、油分解剤。
(項目C15)
 さらなる油処理成分を含む、上記項目のいずれか一項に記載の油分解剤。
(項目C16)
 (a)トランス脂肪酸を分解するため、
 (b)トランス脂肪酸含有油脂を分解するため、
 (c)15℃においてエステルおよび/または脂肪酸を分解するため、
 (d)短鎖~中鎖脂肪酸(C2~C12)含有エステルを分解するため、および
 (e)短鎖~長鎖脂肪酸(C2以上)含有油脂を分解するため
からなる群より選択される少なくとも1つのための、上記項目のいずれか一項に記載のヤロウィア酵母、または油分解剤を含む、組成物。
(項目C17)
 上記項目のいずれか一項に記載のヤロウィア酵母もしくは油分解剤と、または上記項目のいずれか一項に記載の組成物と、さらなる油処理成分とを備える、エステル分解のためのキット。
(項目C18)
 上記項目のいずれか一項に記載のヤロウィア酵母、油分解剤、または組成物を処理対象に作用させることを包含する、エステル分解除去方法。
(項目C19)
 前記処理対象はトランス脂肪酸またはトランス脂肪酸含有油脂を含む、上記項目のいずれか一項に記載の方法。
(項目C20)
 (a)トランス脂肪酸を分解するステップ、
 (b)トランス脂肪酸含有油脂を分解するステップ、
 (c)15℃においてエステルおよび/または脂肪酸を分解するステップ、
 (d)短鎖~中鎖脂肪酸(C2~C12)含有エステルを分解するステップ、および
 (e)短鎖~長鎖脂肪酸(C2以上)含有油脂を分解するステップ、
からなる群より選択される少なくとも一つのステップを含む、上記項目のいずれか一項に記載の方法。
(項目C21)
 ブルクホルデリア細菌を含む、リパーゼを生産するヤロウィア酵母とリパーゼを生産するブルクホルデリア細菌との組み合わせで油脂または脂肪酸を処理するための組成物。
(項目C22)
 ヤロウィア酵母を含む、リパーゼを生産するヤロウィア酵母とリパーゼを生産するブルクホルデリア細菌との組み合わせで油脂または脂肪酸を処理するための組成物。
(項目C23)
 ブルクホルデリア細菌およびヤロウィア酵母の組み合わせを含む油脂または脂肪酸処理のための組み合わせ物であって、該ブルクホルデリア細菌および該ヤロウィア酵母の両方がリパーゼを生産する、組み合わせ物。
(項目C24)
 前記ヤロウィア酵母はヤロウィア リポリティカ(Yarrowia lipolytica)を含む、上記項目のいずれか一項に記載の組成物または組み合わせ物。
(項目C25)
 前記ブルクホルデリア細菌はブルクホルデリア属細菌を含む、上記項目のいずれか一項に記載の組成物または組み合わせ物。
(項目C26)
 前記ブルクホルデリア細菌はブルクホルデリア アルボリス(Burkholderia arboris)、ブルクホルデリア アンビファリア(Burkholderia ambifaria)、またはブルクホルデリア セパシア コンプレックス(Burkholderia cepacia complex)を含む、上記項目のいずれか一項に記載の組成物または組み合わせ物。
(項目C27)
 前記ブルクホルデリア細菌およびヤロウィア酵母の組み合わせが、各々の単独培養の油脂または脂肪酸分解能の値から計算される油脂または脂肪酸分解能よりも高い油脂または脂肪酸分解能を有する、上記項目のいずれか一項に記載の組成物または組み合わせ物。
(項目C28)
 前記ブルクホルデリア細菌の細胞数:前記ヤロウィア酵母の細胞数が、1:20~20:1である、上記項目のいずれか一項に記載の組成物または組み合わせ物。
(項目C29)
 前記ブルクホルデリア細菌および前記ヤロウィア酵母の少なくとも1つが15℃において脂肪酸を分解する能力を有する、上記項目のいずれか一項に記載の組成物または組み合わせ物。
(項目C30)
 前記ブルクホルデリア細菌は、ブルクホルデリア属細菌KH-1株(受託番号NITE BP-02731で特定される菌株)、KH-1AL1株(受託番号NITE BP-02977で特定される菌株)、KH-1AL2株(受託番号NITE BP-02978で特定される菌株)もしくはKH-1AL3株(受託番号NITE BP-02979で特定される菌株)、またはその誘導株である、上記項目のいずれか一項に記載の組成物または組み合わせ物。
(項目C31)
 前記ヤロウィア酵母は、ヤロウィア リポリティカKH-2株(受託番号NITE BP-02732で特定される微生物株)、ヤロウィア リポリティカKH-2AL1株(受託番号NITE BP-03091で特定される微生物株)、もしくはヤロウィア リポリティカKH-2AL3株(受託番号NITE BP-03092で特定される微生物株)、またはその誘導株である、上記項目のいずれか一項に記載の組成物または組み合わせ物。
(項目C32)
 油分解剤である、上記項目のいずれか一項に記載の組成物または組み合わせ物。
(項目C33)
 さらなる油処理成分を含む、上記項目のいずれか一項に記載の油分解剤。
(項目C34)
 上記項目のいずれか一項に記載の組成物もしくは組み合わせ物、または油分解剤を処理対象に作用させることを包含する、油分解除去方法。
(項目C35)
 ブルクホルデリア細菌を含む、リパーゼを生産するヤロウィア酵母のリパーゼ生産を向上させるための組成物。
(項目C36)
 ヤロウィア酵母を含む、リパーゼを生産するブルクホルデリア細菌のリパーゼ生産を向上させるための組成物。
(項目C37)
 ブルクホルデリア細菌を含む、リパーゼを生産するヤロウィア酵母の油脂または脂肪酸を処理する能力を強化するための組成物。
(項目C38)
 ヤロウィア酵母を含む、リパーゼを生産するブルクホルデリア細菌の油脂または脂肪酸を処理する能力を強化するための組成物。
(項目C39)
 ブルクホルデリア細菌とヤロウィア酵母とを混合して培養する工程を含む、該ブルクホルデリア細菌および該ヤロウィア酵母のうちの少なくとも1種のリパーゼ生産を向上させる方法。
 本開示において、上記1または複数の特徴は、明示された組み合わせに加え、さらに組み合わせて提供されうることが意図される。本開示のなおさらなる実施形態および利点は、必要に応じて以下の詳細な説明を読んで理解すれば、当業者に認識される。
 本開示の微生物もしくは微生物の組み合わせおよびこれを提供する組成物または組み合わせ物は、迅速な油脂および/または脂肪酸分解を達成し得るので、油による環境汚染の浄化、生ごみ処理、コンポスト化処理、排水処理などの廃棄物処理および堆肥化など広範な状況に適用可能であり、広範囲の油濃度に対応可能であり、また、トランス脂肪酸および同脂肪酸含有油脂を分解し得るという点で、特に食品工場などから出される排水等に代表される油含有対象の処理が可能となる。
 本開示は分解が難しい油、すなわち油種の問題も解決することができる。本開示の微生物およびこれを含む組成物は、油への水素化工程で生じるトランス脂肪酸とその含有油脂を分解し得るものであり、特にそのような脂肪酸含有油脂を多く含むマーガリン、ファットスプレッド、ショートニングなどの、従来微生物で処理できなかったものでも処理し得るという効果を奏する。特に本開示の微生物およびこれを含む組成物は、排水処理や廃棄物処理の主役微生物となる酵母(微生物)として実用レベルで利用可能な、トランス脂肪酸分解を達成する効果を提供する。
トリオレイン(左)、オレイン酸(中央)またはキャノーラ油(右)を添加した培地上で28℃においてKH-2株を3日間培養した後の写真である。 エライジン酸を添加した培地上で15℃においてKH-2株を14日間培養した後の写真である。 28℃におけるBioRemove3200(BR3200)(Novozymes、デンマーク)(左)またはKH-2株(右)によるエライジン酸分解活性を示す。(a)は薄層クロマトグラフィーによって培養液中の脂肪酸を検出した写真である。(b)はノルマルヘキサン値相当の油分を、油分測定試薬キットにより測定した結果である。左はBR3200であり、右はKH-2株による分解結果である。 15℃におけるBioRemove3200(BR3200)(Novozymes、デンマーク)(左)またはKH-2株(右)によるエライジン酸分解活性を示す。(a)は薄層クロマトグラフィーによって培養液中の脂肪酸を検出した写真である。(b)はノルマルヘキサン値相当の油分を、油分測定試薬キットにより測定した結果である。左はBR3200であり、右はKH-2株による分解結果である。 KH-2株によるトリエライジンの分解を示す。薄層クロマトグラフィーによって培養液中の残存油分を解析した写真である。それぞれの写真は、左から、28℃におけるトリエライジン分解、15℃におけるトリエライジン分解を示す。BS(無機塩培地)は微生物添加なし(対照)を示し、KH-2はKH-2株添加を示す。 実排水におけるKH-2株の油脂分解能を示す。薄層クロマトグラフィーによって培養液中の残存油分を解析した写真である。左の写真は24時間培養後の結果を示し、右の写真は48時間培養後の結果を示す。それぞれの列は、左から、微生物添加なし(対照)、BioRemove3200(BR3200)添加、KH-2株添加の結果を示す。 実排水におけるKH-2株の油脂分解能を示す。ノルマルヘキサン値相当の油分を、油分測定試薬キットにより測定した結果である。左から、それぞれ、微生物添加なし(対照)、BioRemove3200(BR3200)添加、KH-2株添加の結果を示す。白のバーは24時間培養後の結果を示し、黒のバーは48時間培養後の結果を示す。縦軸はノルマルヘキサン値(mg/L)を示す。 15℃培養(pH7.0)におけるKH-2株によるキャノーラ油の分解を示す。培養開始後0時間、24時間、48時間および72時間において、ノルマルヘキサン値相当の油分(残留油分)を油分測定試薬キットにより測定し、0時間の測定値を100%としたときの割合を計算した結果(上段)、および全脂肪酸(トリグリセリド中の脂肪酸と遊離脂肪酸との合計)をガスクロマトグラフィーにより定量した結果(下段)を示す。 15℃培養(pH7.0)におけるKH-2株によるキャノーラ油の分解を示す。薄層クロマトグラフィーによって培養液中の残存油分を解析した写真である。それぞれの列は、左から、培養開始後0時間、24時間、48時間および72時間時点の結果を示す。 28℃培養(pH7.0)におけるKH-2株によるキャノーラ油の分解を示す。培養開始後0時間、12時間、24時間および30時間において、ノルマルヘキサン値相当の油分(残留油分)を油分測定試薬キットにより測定し、0時間の測定値を100%としたときの割合を計算した結果(上段)、および全脂肪酸(トリグリセリド中の脂肪酸と遊離脂肪酸との合計)をガスクロマトグラフィーにより定量した結果(下段)を示す。 28℃培養(pH7.0)におけるKH-2株によるキャノーラ油の分解を示す。薄層クロマトグラフィーによって培養液中の残存油分を解析した写真である。それぞれの列は、左から、培養開始後0時間、12時間、24時間および30時間時点の結果を示す。 28℃における無菌区、KH-2株、KH-2AL1株またはKH-2AL3株によるエライジン酸分解活性を示す。(a)は薄層クロマトグラフィーによって培養液中の脂肪酸を検出した写真である。(b)はノルマルヘキサン値相当の油分を、油分測定試薬キットにより測定した結果である。左から、無菌区、KH-2株、KH-2AL1株、およびKH-2AL3株による分解結果である。 15℃における無菌区、KH-2株、KH-2AL1株またはKH-2AL3株によるエライジン酸分解活性を示す。(a)は薄層クロマトグラフィーによって培養液中の脂肪酸を検出した写真である。(b)はノルマルヘキサン値相当の油分を、油分測定試薬キットにより測定した結果である。左から、無菌区、KH-2株、KH-2AL1株、およびKH-2AL3株による分解結果である。 28℃における無菌区、KH-2株、KH-2AL1株またはKH-2AL3株によるトリエライジン分解活性を示す。ノルマルヘキサン値相当の油分を、油分測定試薬キットにより測定した結果である。左から、無菌区、KH-2株、KH-2AL1株、およびKH-2AL3株による分解結果である。 15℃培養(pH7.0)におけるKH-2AL1株によるキャノーラ油の分解を示す。培養開始後0時間、24時間、48時間および72時間において、ノルマルヘキサン値相当の油分(残留油分)を油分測定試薬キットにより測定し、0時間の測定値を100%としたときの割合を計算した結果(上段)、および全脂肪酸(トリグリセリド中の脂肪酸と遊離脂肪酸との合計)をガスクロマトグラフィーにより定量した結果(下段)を示す。 15℃培養(pH7.0)におけるKH-2AL1株によるキャノーラ油の分解を示す。薄層クロマトグラフィーによって培養液中の残存油分を解析した写真である。それぞれの列は、左から、培養開始後0時間、24時間、48時間および72時間時点の結果を示す。 15℃培養(pH7.0)におけるKH-2AL3株によるキャノーラ油の分解を示す。培養開始後0時間、24時間、48時間および72時間において、ノルマルヘキサン値相当の油分(残留油分)を油分測定試薬キットにより測定し、0時間の測定値を100%としたときの割合を計算した結果(上段)、および全脂肪酸(トリグリセリド中の脂肪酸と遊離脂肪酸との合計)をガスクロマトグラフィーにより定量した結果(下段)を示す。 15℃培養(pH7.0)におけるKH-2AL3株によるキャノーラ油の分解を示す。薄層クロマトグラフィーによって培養液中の残存油分を解析した写真である。それぞれの列は、左から、培養開始後0時間、24時間、48時間および72時間時点の結果を示す。 15℃におけるKH-2株のトリエライジンまたはエライジン酸の資化能を示す。左の写真はエライジン酸含有培地での培養結果を示し、右の写真はトリエライジン含有培地での培養結果を示す。KH-2株添加条件(左)および微生物添加なし(対照、右)の結果を示す。 KH-2株と洗剤との洗浄力の比較を示す。油汚れのついた換気扇フィルターを、KH-2株の培養上清、油用洗剤、一般洗剤に漬け置き洗いをした写真である。左は処理を行う前を示す。右列は、それぞれ、上段:KH-2株培養上清処理、中段:油用洗剤処理、および下段:一般洗剤処理を示す。 KH-2株およびBioRemove3200(BR3200)(Novozymes、デンマーク)のパルミテライジン酸およびバクセン酸分解活性の比較を示す。15℃で48時間または72時間培養を行った後、薄層クロマトグラフィーによって培養液中の脂肪酸を解析した写真である。パネルは、左から、パルミテライジン酸48時間培養、バクセン酸48時間培養、パルミテライジン酸72時間培養、およびバクセン酸72時間培養である。各パネルにおいて、右は陰性対照(BS)であり、中央はBR3200であり、左はKH-2株である。 KH-2株およびBioRemove3200(BR3200)(Novozymes、デンマーク)のパルミテライジン酸およびバクセン酸分解活性の比較を示す。28℃で24時間培養を行った後、薄層クロマトグラフィーによって培養液中の脂肪酸を解析した写真である。左のパネルはパルミテライジン酸培養、右のパネルはバクセン酸培養である。各パネルにおいて、右は陰性対照(BS)であり、中央はBR3200であり、左はKH-2株である。 15℃におけるKH-1株とKH-2株との種々の混合比におけるキャノーラ油の分解を示す。5×10細胞/mLとなるような合計細胞濃度でのKH-1株:KH-2株=10:0、9:1、5:5、1:9、および0:10の各比における培養開始後48時間での全脂肪酸(トリグリセリド中の脂肪酸と遊離脂肪酸との合計)の減少量(分解量)をガスクロマトグラフィーにより定量し、各々の単独培養の油脂分解能の値から計算される油脂分解能と比較した結果を示す。縦軸は、各々の単独培養の油脂分解能の値から計算される油脂分解能(100%)と比較した各混合比における相対油脂分解能を示し、横軸は、KH-2株含有率(細胞数基準)を示す。 28℃におけるKH-1株とKH-2株との種々の混合比におけるキャノーラ油の分解を示す。5×10細胞/mLとなるような合計細胞濃度でのKH-1株:KH-2株=10:0、9:1、5:5、1:9、および0:10の各比(細胞数基準)における培養開始後18時間での全脂肪酸(トリグリセリド中の脂肪酸と遊離脂肪酸との合計)の減少量(分解量)をガスクロマトグラフィーにより定量した結果を示す。縦軸は、全脂肪酸の分解量を示し、横軸は、KH-1株:KH-2株混合比率(細胞数基準)を示す。直線の破線は、各々の単独培養の油脂分解能の値から計算される油脂分解能を示す。図16のように各々の単独培養の油脂分解能の値から計算される油脂分解能と比較した結果を計算した場合も図16と同様の傾向を示す。 28℃におけるKH-1株とKH-2株との種々の混合比におけるオレイン酸の分解を示す。5×10細胞/mLとなるような合計細胞濃度でのKH-1株:KH-2株=10:0、9:1、5:5、1:9、および0:10の各比(細胞数基準)における培養開始後18時間での全脂肪酸の減少量(分解量)をガスクロマトグラフィーにより定量した結果を示す。縦軸は、全脂肪酸の分解量を示し、横軸は、KH-1株:KH-2株混合比率(細胞数基準)を示す。直線の破線は、各々の単独培養の脂肪酸分解能の値から計算される脂肪酸分解能を示す。 KH-1株+KH-2株の共生系におけるそれぞれの微生物の遺伝子の発現量を示す。左パネルは71時間培養時のKH-1株の結果であり、縦軸は、KH-1株単独培養の場合の各遺伝子のRNA発現量を1とした場合のKH-1株+KH-2株の共生系培養の遺伝子の相対発現量を示す。KH-1株の第1のリパーゼは、配列番号1の塩基配列および配列番号2のアミノ酸配列で示される。KH-1株の第2のリパーゼは、配列番号3の塩基配列および配列番号4のアミノ酸配列で示される。右パネルは48時間培養時のKH-2株の結果であり、縦軸は、KH-2株単独培養の場合の各遺伝子のRNA発現量を1とした場合のKH-1株+KH-2株の共生系培養の遺伝子の相対発現量を示す。KH-2株の第1のリパーゼは、配列番号5の塩基配列および配列番号6のアミノ酸配列で示される。KH-2株の第2のリパーゼは、配列番号7の塩基配列および配列番号8のアミノ酸配列で示される。 KH-1株単独またはKH-1株+KH-2株の共生系の培養上清によるモデル基質(4-ニトロフェニルブチレート、4-ニトロフェニルパルミテート)の分解活性を示す。左パネルは4-ニトロフェニルブチレートで評価した活性であり、右パネルは4-ニトロフェニルパルミテートで評価した活性である。各パネルにおいて、左は培養48時間の結果を示し、右は培養71時間の結果を示す。縦軸は、KH-1株単独培養の場合の410nmの吸光度を1とした場合のKH-1株+KH-2株の共生系培養の吸光度の相対値を示す。
 以下、本開示を最良の形態を示しながら説明する。本明細書の全体にわたり、単数形の表現は、特に言及しない限り、その複数形の概念をも含むことが理解されるべきである。従って、単数形の冠詞(例えば、英語の場合は「a」、「an」、「the」など)は、特に言及しない限り、その複数形の概念をも含むことが理解されるべきである。また、本明細書において使用される用語は、特に言及しない限り、当該分野で通常用いられる意味で用いられることが理解されるべきである。したがって、他に定義されない限り、本明細書中で使用される全ての専門用語および科学技術用語は、本開示の属する分野の当業者によって一般的に理解されるのと同じ意味を有する。矛盾する場合、本明細書(定義を含めて)が優先する。
 以下に本明細書において特に使用される用語の定義および/または基本的技術内容を適宜説明する。なお、本明細書では、KH-1株などの株名は、場合により「株」との表示を省略することがあるが、当業者は文脈に応じて、株との表示があると適切に理解する。
 (定義等)
 本明細書において、「エステラーゼ」とは、エステルを水との化学反応で酸とアルコールに分解する加水分解酵素のことをいう。本明細書において、典型的には、エステラーゼは、脂肪酸エステルを水との化学反応で脂肪酸とアルコールに分解する加水分解酵素のことをいう。
 本明細書において「リパーゼ」とは、エステラーゼの一種であり、中性脂肪(グリセロールエステル)を加水分解して、脂肪酸とグリセロールに分解する反応を可逆的に触媒する酵素をいう。例えば、リパーゼとして、酵素番号(EC番号)でEC3.1.1.3に分類される、トリグリセロールリパーゼが挙げられる。
 本明細書において、「共生系」とは、同じ環境または系に存在する複数の種類の微生物の組み合わせを指す。また、「共生させる」とは、複数の種類の微生物の組み合わせを同じ環境または系に存在させることを指す。例えば、共生系は、ある組成物中に混合されて存在する複数の種類の微生物、ある組成物中で担体に担持されて存在する複数の種類の微生物、およびそれぞれの微生物種がある環境に別々に投入された結果として形成される複数の種類の微生物の組み合わせのいずれの意味でも使用される。一つの実施形態では、共生系におけるそれぞれの微生物種は互いに接触(融合および内包を含む)できる状態であってもよい。一つの実施形態では、共生系は、共生系における少なくとも一方の微生物種の作用(例えば、放出、分解)により生じた環境を共生系における別の微生物種が利用することができる状態であり得、この場合、それぞれの微生物種間は接触可能であってもよいし、接触可能でなくてもよい(例えば、各微生物が系において上流および下流に配置される)。共生系における少なくとも一方の微生物種の作用により生じた環境として、例えば、ある成分が減少した環境、ある成分(ある微生物種による分解で生じた成分、この成分の作用(例えば、反応)により生じた二次的成分など)が増加した環境、ある因子(pHなど)が変化した環境が挙げられる。特に、共生系を構成する微生物の一つまたは複数による化学物質の分解で生じた産物が、他の微生物の炭素源などの増殖基質になる場合が、典型的な共生系の例である。また、微生物の混合系において、同じ増殖基質の分解・資化能力をもつ微生物同士は、一般的には、該基質をめぐって競争関係になることが多いため、共生系は成立しにくいと考えられる。本明細書において、「共生可能」とは、複数の種類の微生物の組み合わせが共生系を形成できる能力を有することを指す。
 本明細書において、「各々の単独培養の油脂分解能の値から計算される油脂分解能」とは、微生物の組み合わせ(例えば、ブルクホルデリア細菌およびヤロウィア酵母)を構成する微生物株単独の油脂分解能について得られる値に基づき、各々の混合物における寄与度を考慮して計算して得られる数値を言う。代表的には、各々、それぞれ同条件(培地組成、時間、温度など)で培養した結果の値に基づいて得られる油脂分解能の値を、単純比率を乗じて得られる値の和から計算される油脂分解能の値が挙げられるがこれに限定されない。この場合、「各々の単独培養の油脂分解能の値から計算される油脂分解能の和」と表現されうる。このほか、混合時の初期比率に基づいて寄与度を考慮した値を用いてもよい。この場合は、「各々の単独培養の油脂分解能の初期値から計算される油脂分解能」と表現されうる。例えば、1種類のブルクホルデリア細菌および1種類のヤロウィア酵母からなる合計細胞濃度1×10細胞/mLとなる組み合わせについての「各々の単独培養の油脂分解能の値から計算される油脂分解能」は、[(このブルクホルデリア細菌1×10細胞/mLを単独培養した場合の油脂分解能)×(このブルクホルデリア細菌の混合割合)+(このヤロウィア酵母1×10細胞/mLを単独培養した場合の油脂分解能)×(このヤロウィア酵母の混合割合)]で計算することができる。計算の基礎となる単独培養時の細胞濃度は、特に限定されず、当業者であれば適切に選択でき、適切な係数(1であってもよい)を掛けることで計算することができる。また、他の例として、初期投入微生物量に基づく油脂分解能の値(必要に応じて、微生物の増殖速度を考慮してもよい)から計算してもよい。「各々の単独培養の脂肪酸分解能の値から計算される脂肪酸分解能」および「各々の単独培養の脂肪酸分解能の値から計算される脂肪酸分解能の和」も同様の文脈で理解される。
 本明細書において、「油脂」とは、オイル状の物質を指し、油脂には、ヒドロキシル基を含有する化合物と脂肪酸とが脱水縮合して形成されるエステル基含有化合物が含まれる。代表的には、このヒドロキシル基を含有する化合物はグリセリンであるが、その他にも、ポリグリセリンなどが挙げられる。本技術分野において通常使用される意味と同様に、本明細書において、グリセリンと脂肪酸とが脱水縮合して形成されるエステル基含有化合物を「グリセリド」と呼ぶ。このヒドロキシル基を含有する化合物が複数のヒドロキシル基を有する場合、そのヒドロキシル基のうちの少なくとも1つが脂肪酸と脱水縮合してエステルを形成していれば、本明細書におけるエステル基含有化合物に該当する。本明細書において、油脂には、シス脂肪酸含有油脂、トランス脂肪酸含有油脂またはその両方が含まれていてもよい。
 油脂は、例えば、外食産業の厨房排水や、食品工場の排水などに含まれ、固液分離によりこれを除く処理設備であるグリーストラップや加圧浮上分離装置は、悪臭や害虫の発生源であり、分離した油の回収や運搬、清掃等のメンテナンスにかかる労苦やコスト、これに必要な凝集剤のコストなど、多くの問題を抱える。グリーストラップ内や工場排水処理設備内の油を消滅させるために本開示の微生物の組み合わせおよびこれを提供する組成物または組み合わせ物は用いられ得る。
 本開示は、グリーストラップ用および工場排水用微生物製剤を提供する。特に工場排水に適用すれば、加圧浮上分離装置の稼働率の低減や代替まで可能である。外食産業の厨房排水は通常1g/L以上、高いときは10g/L以上もの高濃度の油脂を含んでいるだけでなく、多くのグリーストラップ内の排水の滞留時間は10分程度と極めて短いが、本開示の微生物はこのような環境でも用いることができる。
 油脂は生ごみや畜産廃棄物、排水処理場からの汚泥などにも多く含まれる。このような固形廃棄物の処理には微生物が利用されることも多いが、含有油分が多いと処理が困難になったり、油分が残存してしまったりする。本開示の微生物の組み合わせおよびこれを提供する組成物または組み合わせ物は、そのような廃棄物中の油分の分解処理にも適用可能である。
 本明細書において、「油」は、油脂および脂肪酸を含む。
 本明細書において、「脂肪酸」とは、2~100の炭素原子を有し、少なくとも1つのカルボキシル基を有する化合物である。代表的には、脂肪酸における炭素鎖は直鎖であるが、分枝鎖であってもよいし、環を含んでもよい。代表的には、脂肪酸は、カルボキシル基を一つ含むが、複数のカルボキシル基を含んでもよい。脂肪酸における炭素鎖はC=Cの二重結合を含んでもよく、「トランス脂肪酸」は、本技術分野において通常使用される意味で使用され、トランス型の二重結合を有する不飽和脂肪酸を意味する。
 本明細書において、「トランス脂肪酸含有油脂」とは、トランス脂肪酸とヒドロキシル基を含有する化合物とが脱水縮合して形成される化合物を指す。トランス脂肪酸には、エライジン酸、バクセン酸などが包含されるが、本明細書中で言及する場合、トランス脂肪酸の種類に特に制限はない。トランス脂肪酸含有油脂中に存在するトランス脂肪酸の比率は、特に限定されない。二重結合の「トランス型」および「シス型」は、本技術分野において通常使用される意味で使用され、二重結合を形成した2つの炭素原子に4つの置換基(R、R、RおよびR)が結合した以下の構造
Figure JPOXMLDOC01-appb-C000001

において、RおよびRまたはRおよびRが水素以外の基であり、残りの2個の置換基が水素原子である場合をシス型とよび、RおよびRまたはRおよびRが水素以外の基であり、残りの2個の置換基が水素原子である場合をトランス型と呼ぶ。トランス脂肪酸は、天然には共役リノール酸やバクセン酸として微量に存在し、例えば、反芻動物の脂肪分に比較的多く含まれている。トランス脂肪酸は、不飽和脂肪酸から飽和脂肪酸を製造するための水素化工程、および不飽和脂肪酸を多く含む植物油の精製の際に生じ得る。そのため、マーガリン、ファットスプレッド、ショートニングなどには、トランス脂肪酸が比較的多く含まれ得る。
 本明細書において、「短鎖~中鎖脂肪酸含有エステル」とは、短鎖脂肪酸または中鎖脂肪酸のうちの1つ以上を含む脂肪酸のエステルを指す。「短鎖脂肪酸」、「中鎖脂肪酸」および「長鎖脂肪酸」は、本技術分野において通常使用される意味で使用され、それぞれ炭素数が2~6個、7~12個および13個以上の脂肪酸を意味する。短鎖脂肪酸には、酢酸(炭素数2)、酪酸(炭素数4)、カプロン酸(炭素数6)などが包含される。中鎖脂肪酸には、カプリル酸(炭素数8)、カプリン酸(炭素数10)、ラウリン酸(炭素数12)などが包含される。長鎖脂肪酸には、ミリスチン酸(炭素数14)、パルミチン酸(炭素数16)、パルミテライジン酸(炭素数16)、ステアリン酸(炭素数18)、オレイン酸(炭素数18)、エライジン酸(炭素数18)、リノール酸(炭素数18)、バクセン酸(炭素数18)、リノレン酸(炭素数18)などが包含される。
 本明細書において、「ノルマルヘキサン値」とは、ノルマルヘキサンにより抽出される不揮発性物質の量であり、水中の油分(油脂、その加水分解産物など)の量を示す指標を指す。ノルマルヘキサン値は、例えば、JIS K 0102に従って求めることができる。また、ポリニッパム抽出物質測定による簡易測定試薬キットなどを用いて求めることもできる。
 本明細書において、「資化」とは、栄養源として利用することをいい、資化の対象となった物質(例えば油脂)は、分解されて、結果として消失または減少することになる。
 本明細書において、「分解」とは、エステル(例えば、油脂)および/または脂肪酸について用いる場合、対象となったエステル(例えば、油脂)および/または脂肪酸がそれより小さな分子になることをいい、例えば、グリセロールと(遊離)脂肪酸に分かれることをいい、脂肪酸がより炭素数の少ない脂肪酸に変換されることや、二酸化炭素や水にまで変換されることも分解とよぶ。
 本明細書において、「エステルを分解する能力」または「エステラーゼ活性」とは、エステルを、アルコール類と酸(例えば、遊離脂肪酸)とに加水分解する活性を指す。例えば、「エステルを分解する能力」または「エステラーゼ活性」は、微生物、微生物の組み合わせ、またはそれらの培養上清を4-ニトロフェノールと脂肪酸とのエステルと接触させ、加水分解反応により生じる4-ニトロフェノールの量を計測することによって測定してもよいし、本明細書に記載の油脂を分解する能力の測定と同様に測定してもよい。また、「エステルを分解する能力」または「エステラーゼ活性」のうちのより具体的な能力である「短鎖~中鎖脂肪酸含有エステルを分解する能力」や「短鎖~長鎖脂肪酸含有油脂を分解する能力」も同様に測定することができると理解される。
 本明細書において、(微生物などが)「リパーゼ活性を有する」とは、グリセロールと脂肪酸との脱水縮合で生じた油脂をグリセロールと遊離脂肪酸とに加水分解する活性を有することを指し、このようなリパーゼ活性は本明細書においてトリグリセリドリパーゼ活性とも称される。例えば、リパーゼ活性を有するかどうかは、微生物を添加した培地中に含まれる油脂(キャノーラ油などの動植物油、トリオレインなど)が減少することで確認することができる。
 本明細書において、微生物が「リパーゼを生産する」とは、微生物が細胞外または細胞内にリパーゼを生産することを指す。特に、細胞外にリパーゼを生産する場合、リパーゼを分泌するまたはリパーゼを分泌生産すると言う。ただしその場合、分泌されたリパーゼは菌体細胞から離れて外環境中に放出されてもよいし、細胞表層との何らかの相互作用により細胞表層にとどまってもよい。ただし、例えば、微生物がリパーゼを生産することは、以下の分解試験で測定し、同定することができる。次のいずれかの試験で分解能力が示されればよく、必ずしも全ての試験で分解が認められなければいけないものではない。
・所定の温度(例えば、15℃、28℃)で油脂を資化する能力があるかどうかを確認する試験。
・所定の温度(例えば、15℃、28℃)で油脂を含む寒天培地上で形成されるコロニーの周辺に、クリアゾーンが観察されるかどうかを確認する試験。
・油脂を炭素源として与えて所定の温度(例えば、15℃、28℃)で培養し、培養上清中のノルマルヘキサン値の減少量を測定する試験。
・油脂を炭素源として与えて所定の温度(例えば、15℃、28℃)で培養し、培養上清中の油脂および遊離脂肪酸の量の時間変化を薄層クロマトグラフィーで測定する試験。油脂の量が時間の経過とともに減少すれば分解能力がある。あるいは、遊離脂肪酸の量がいったん増えれば、分解する能力があると言える。
・油脂を炭素源として与えて所定の温度(例えば、15℃、28℃)で培養し、培養上清中の遊離脂肪酸の濃度をガスクロマトグラフィー、ガスクロマトグラフィー質量分析、高速液体クロマトグラフィー等の機器分析により測定する試験。遊離脂肪酸の濃度がいったん増えれば、分解する能力があると言える。
・油脂を主たる有機物(例えば、全有機物中の70重量%以上)として含む検水を作成し、生化学的酸素要求量(BOD)を測定する試験。
・培養上清または培養細胞中のタンパク質を、電気泳動や質量分析で解析し、リパーゼの含有を確認する。
・微生物のリパーゼ遺伝子の発現を、そのmRNAを定量または検出することで確認する。
・微生物、微生物の組み合わせ、またはそれらの培養上清の「リパーゼ活性」を上述の「エステラーゼ活性」の測定法に準じて分析する。
 個々のより詳細な測定方法は、本明細書に提供されており、また、当業者であれば、任意のその他の機器・条件を使用してこれらの測定を実施することができる。
 本明細書において、「15℃においてエステルを分解する能力」とは、(微生物などが)低温においてエステルを、アルコール類と酸とに加水分解する活性を有することを指す。15℃において油脂を分解する能力は、本開示の微生物(KH-2株の誘導株を含む)を15℃において4-ニトロフェノールと酸(例えば、遊離脂肪酸)とのエステルと接触させ、加水分解反応により生じる4-ニトロフェノールの量を計測することによって測定してもよいし、本明細書に記載の15℃において油脂を分解する能力の測定と同様に測定してもよい。
 本明細書において、「15℃において油脂を分解する能力」とは、(微生物などが)低温において油脂を、グリセロールと遊離脂肪酸とに加水分解する活性を有することを指す。15℃において油脂を分解する能力は、以下の試験で測定し、同定することができる。次のいずれかの試験で分解能力が示されればよく、必ずしも全ての試験で分解が認められなければいけないものではない。
・15℃で油脂を資化する能力があるかどうかを確認する試験。
・15℃で油脂を含む寒天培地上で形成されるコロニーの周辺に、クリアゾーンが観察されるかどうかを確認する試験。
・油脂を炭素源として与えて15℃で培養し、培養上清中のノルマルヘキサン値の減少量を測定する試験。
・油脂を炭素源として与えて15℃で培養し、培養上清中の油脂および遊離脂肪酸の量の時間変化を薄層クロマトグラフィーで測定する試験。油脂の量が時間の経過とともに減少すれば分解能力がある。あるいは、遊離脂肪酸の量がいったん増えれば、分解する能力があると言える。
・油脂を炭素源として与えて15℃で培養し、培養上清中の遊離脂肪酸の濃度をガスクロマトグラフィー、ガスクロマトグラフィー質量分析、高速液体クロマトグラフィー等の機器分析により測定する試験。遊離脂肪酸の濃度がいったん増えれば、分解する能力があると言える。
・油脂を主たる有機物(例えば、全有機物中の70重量%以上)として含む検水を作成し、生化学的酸素要求量(BOD)を測定する試験。
 個々のより詳細な測定方法は、本明細書に提供されており、また、当業者であれば、任意のその他の機器・条件を使用してこれらの測定を実施することができる。
 本明細書において、「トランス脂肪酸含有油脂を資化する能力」とは、トランス脂肪酸含有油脂を資化する活性を指す。本明細書において、「トランス脂肪酸含有油脂を資化する」は、本技術分野において通常使用される意味で使用され、微生物がトランス脂肪酸含有油脂を炭素源などの栄養源として取り込むことを意味する。「資化」する場合、グリセロールと遊離脂肪酸とに加水分解することのほか、他の物質の一部に変化することも含まれる。トランス脂肪酸含有油脂を資化する能力は、以下の試験で測定し、同定することができる。次のいずれかの試験で資化能力が示されればよく、必ずしも全ての試験で資化が認められなければいけないものではない。
・トランス脂肪酸含有油脂を唯一の炭素源として含む培地で増殖可能であるかどうかを確認する試験。
・トランス脂肪酸含有油脂を唯一の炭素源として含む培地でコロニーを形成するかどうかを確認する試験。
・増殖に伴い培養上清中のノルマルヘキサン値の減少を測定する試験。
・増殖に伴い培養上清中の全脂肪酸(油脂中の脂肪酸と遊離脂肪酸との和)を、メチルエステルに変換後、その総量をガスクロマトグラフィーで測定する試験。
・増殖に伴い培養上清中の油脂および遊離脂肪酸の量を薄層クロマトグラフィーで測定する試験。
 個々のより詳細な測定方法は、本明細書に提供されており、また、当業者であれば、任意のその他の機器・条件を使用してこれらの測定を実施することができる。
 本明細書において、「トランス脂肪酸含有油脂を分解する能力」とは、トランス脂肪酸含有油脂を、グリセロールと遊離脂肪酸とに加水分解する活性を指す。トランス脂肪酸含有油脂を分解する能力は、以下の試験で測定し、同定することができる。次のいずれかの試験で分解能力が示されればよく、必ずしも全ての試験で分解が認められなければいけないものではない。
・トランス脂肪酸含有油脂を資化する能力があるかどうかを確認する試験。
・培養上清中の油脂および遊離脂肪酸の量を薄層クロマトグラフィーで測定する試験。
・トランス脂肪酸含有油脂を炭素源として与えて培養し、培養上清中のノルマルヘキサン値の減少量を測定する試験。
・培養上清中に含まれる遊離脂肪酸と油脂中の脂肪酸をメチルエステルに変換後、その濃度をガスクロマトグラフィーで測定する試験。
・培養上清中の遊離脂肪酸の濃度をガスクロマトグラフィー質量分析で測定する試験。
・培養上清中の遊離脂肪酸の濃度を高速液体クロマトグラフィーで測定する試験。
・トランス脂肪酸含有油脂を含む寒天培地上で形成されるコロニーの周辺に、クリアゾーンが観察されるかどうかを確認する試験。
・トランス脂肪酸含有油脂を主たる有機物(例えば、全有機物中の70重量%以上)として含む検水を作成し、生化学的酸素要求量(BOD)を測定する試験。
 個々のより詳細な測定方法は、本明細書に提供されており、また、当業者であれば、任意のその他の機器・条件を使用してこれらの測定を実施することができる。
 本明細書において、「トランス脂肪酸を資化する能力」とは、トランス脂肪酸(例えば、エライジン酸、パルミテライジン酸および/またはバクセン酸)を、資化する能力を指す。トランス脂肪酸を資化する能力は、以下の試験で測定し、同定することができる。次のいずれかの試験で資化能力が示されればよく、必ずしも全ての試験で資化が認められなければいけないものではない。
・トランス脂肪酸を唯一の炭素源として含む培地で増殖可能であるかどうかを確認する試験。
・トランス脂肪酸を唯一の炭素源として含む培地でコロニーを形成するかどうかを確認する試験。
・トランス脂肪酸を炭素源として与えて培養し、増殖に伴い培養上清中のノルマルヘキサン値の減少を測定する試験。
・増殖に伴い培養上清中のトランス脂肪酸の濃度をガスクロマトグラフィーで測定する試験。
・増殖に伴い培養上清中のトランス脂肪酸の濃度をガスクロマトグラフィー質量分析で測定する試験。
・増殖に伴い培養上清中のトランス脂肪酸の濃度を高速液体クロマトグラフィーで測定する試験。
・増殖に伴い培養上清中のトランス脂肪酸の量を薄層クロマトグラフィーで測定する試験。
 個々のより詳細な測定方法は、本明細書に提供されており、また、当業者であれば、任意のその他の機器・条件を使用してこれらの測定を実施することができる。
 本明細書において、「トランス脂肪酸を分解する能力」とは、トランス脂肪酸(例えば、エライジン酸、パルミテライジン酸および/またはバクセン酸)を、分解する能力を指す。トランス脂肪酸を分解する能力は、以下の試験で測定し、同定することができる。次のいずれかの試験で分解能力が示されればよく、必ずしも全ての試験で分解が認められなければいけないものではない。
・トランス脂肪酸を資化する能力があるかどうかを確認する試験。
・培養上清中のトランス脂肪酸の量を薄層クロマトグラフィーで測定する試験。
・トランス脂肪酸を炭素源として与えて培養し、上清中のノルマルヘキサン値の減少を測定する試験。
・培養上清中のトランス脂肪酸の濃度をガスクロマトグラフィーで測定する試験。
・培養上清中のトランス脂肪酸の濃度をガスクロマトグラフィー質量分析で測定する試験。
・培養上清中のトランス脂肪酸の濃度を高速液体クロマトグラフィーで測定する試験。
・トランス脂肪酸を含む寒天培地上で形成されるコロニーの周辺に、クリアゾーンが観察されるかどうかを確認する試験。
・トランス脂肪酸を主たる有機物(例えば、全有機物中の70重量%以上)として含む検水を作成し、生化学的酸素要求量(BOD)を測定する試験。
 個々のより詳細な測定方法は、本明細書に提供されており、また、当業者であれば、任意のその他の機器・条件を使用してこれらの測定を実施することができる。
 本明細書において、「油脂を資化する能力」とは、油脂を資化する活性を指す。本明細書において、「油脂を資化する」は、本技術分野において通常使用される意味で使用され、微生物が油脂またはその分解産物を炭素源などの栄養源として取り込むことを意味する。「資化」する場合、グリセロールと遊離脂肪酸とに加水分解することのほか、他の物質の一部に変化することも含まれる。油脂を資化する能力は、以下の試験で測定し、同定することができる。次のいずれかの試験で資化能力が示されればよく、必ずしも全ての試験で資化が認められなければいけないものではない。
・油脂を唯一の炭素源として含む培地で増殖可能であるかどうかを確認する試験。
・油脂を唯一の炭素源として含む培地でコロニーを形成するかどうかを確認する試験。
・増殖に伴い培養上清中のノルマルヘキサン値の減少を測定する試験。
・増殖に伴い培養上清中の全脂肪酸(油脂中の脂肪酸と遊離脂肪酸との和)を、メチルエステルに変換後、その総量をガスクロマトグラフィーで測定する試験。
・増殖に伴い培養上清中の油脂および遊離脂肪酸の量を薄層クロマトグラフィーで測定する試験。
 個々のより詳細な測定方法は、本明細書に提供されており、また、当業者であれば、任意のその他の機器・条件を使用してこれらの測定を実施することができる。
 本明細書において、「油脂を分解する能力」とは、油脂を、グリセロールと遊離脂肪酸とに加水分解する活性を指す。油脂を分解する能力は、以下の試験で測定し、同定することができる。次のいずれかの試験で分解能力が示されればよく、必ずしも全ての試験で分解が認められなければいけないものではない。
・油脂を資化する能力があるかどうかを確認する試験。
・培養上清中の油脂および遊離脂肪酸の量を薄層クロマトグラフィーで測定する試験。
・油脂を炭素源として与えて培養し、培養上清中のノルマルヘキサン値の減少量を測定する試験。
・培養上清中に含まれる遊離脂肪酸と油脂中の脂肪酸をメチルエステルに変換後、その濃度をガスクロマトグラフィーで測定する試験。
・培養上清中の遊離脂肪酸の濃度をガスクロマトグラフィー質量分析で測定する試験。
・培養上清中の遊離脂肪酸の濃度を高速液体クロマトグラフィーで測定する試験。
・油脂を含む寒天培地上で形成されるコロニーの周辺に、クリアゾーンが観察されるかどうかを確認する試験。
・脂肪酸含有油脂を主たる有機物(例えば、全有機物中の70重量%以上)として含む検水を作成し、生化学的酸素要求量(BOD)を測定する試験。
 個々のより詳細な測定方法は、本明細書に提供されており、また、当業者であれば、任意のその他の機器・条件を使用してこれらの測定を実施することができる。
 本明細書において、「脂肪酸を資化する能力」とは、脂肪酸を資化する能力を指す。脂肪酸を資化する能力は、以下の試験で測定し、同定することができる。次のいずれかの試験で資化能力が示されればよく、必ずしも全ての試験で資化が認められなければいけないものではない。
・脂肪酸を唯一の炭素源として含む培地で増殖可能であるかどうかを確認する試験。
・脂肪酸を唯一の炭素源として含む培地でコロニーを形成するかどうかを確認する試験。
・脂肪酸を炭素源として与えて培養し、増殖に伴い培養上清中のノルマルヘキサン値の減少を測定する試験。
・増殖に伴い培養上清中の脂肪酸の濃度をガスクロマトグラフィーで測定する試験。
・増殖に伴い培養上清中の脂肪酸の濃度をガスクロマトグラフィー質量分析で測定する試験。
・増殖に伴い培養上清中の脂肪酸の濃度を高速液体クロマトグラフィーで測定する試験。
・増殖に伴い培養上清中の脂肪酸の量を薄層クロマトグラフィーで測定する試験。
 個々のより詳細な測定方法は、本明細書に提供されており、また、当業者であれば、任意のその他の機器・条件を使用してこれらの測定を実施することができる。
 本明細書において、「脂肪酸を分解する能力」とは、脂肪酸を、分解する能力を指す。脂肪酸を分解する能力は、以下の試験で測定し、同定することができる。次のいずれかの試験で分解能力が示されればよく、必ずしも全ての試験で分解が認められなければいけないものではない。
・脂肪酸を資化する能力があるかどうかを確認する試験。
・培養上清中の脂肪酸の量を薄層クロマトグラフィーで測定する試験。
・脂肪酸を炭素源として与えて培養し、上清中のノルマルヘキサン値の減少を測定する試験。
・培養上清中の脂肪酸の濃度をガスクロマトグラフィーで測定する試験。
・培養上清中の脂肪酸の濃度をガスクロマトグラフィー質量分析で測定する試験。
・培養上清中の脂肪酸の濃度を高速液体クロマトグラフィーで測定する試験。
・脂肪酸を含む寒天培地上で形成されるコロニーの周辺に、クリアゾーンが観察されるかどうかを確認する試験。
・脂肪酸を主たる有機物(例えば、全有機物中の70重量%以上)として含む検水を作成し、生化学的酸素要求量(BOD)を測定する試験。
 個々のより詳細な測定方法は、本明細書に提供されており、また、当業者であれば、任意のその他の機器・条件を使用してこれらの測定を実施することができる。
 本明細書において、「油処理成分」とは、油脂および/または脂肪酸の資化および分解を補助する成分を意味する。具体的には、サーファクタントなどの、油脂および/または脂肪酸の分散化を促進する成分、油脂を脂肪酸とグリセロールとに分解する成分のほか、脂肪酸を分解するもの、グリセロールを分解するもののほか、油を吸着して処理の対象物から除去するものなどを包含する。
 本明細書において「油分解剤」とは、本開示の微生物、あるいは本開示の微生物の組み合わせの少なくとも1種の微生物を有効成分とし、単独であるいは本開示の微生物の組み合わせにおいて油脂および/または脂肪酸の分解が可能な製剤を指す。本開示の微生物の組み合わせにおいて油脂および/または脂肪酸の分解が可能な製剤は、本開示の微生物の組み合わせのうちの1種の微生物(例えば、ブルクホルデリア細菌またはヤロウィア酵母のいずれか)のみを含む組成物であって、それ自体では所望の油脂および/または脂肪酸分解能を呈さない組成物であっても、本開示の微生物の組み合わせを形成するように使用されるときに、所望の油脂および/または脂肪酸分解能を呈する場合、この組成物は、油分解剤であり得る。本開示において、油分解剤は、油処理成分と併用して使用されてもよい。この場合の油分解剤と油処理成分との併用使用のタイミングは、同時に使用しても、いずれか片方を先に使用することにしてもよい。さらに、油分解剤には、使用する微生物株または微生物株由来のエステラーゼ(例えば、リパーゼ)の活性を高める成分(例えば炭素源、窒素源)、界面活性剤、乾燥保護剤、微生物を長期間維持するための成分、防腐剤、賦形剤、強化剤、酸化防止剤等を更に含有させてもよい。
 本明細書で使用される「誘導株」、「類似株」または「変異株」は、好ましくは、限定を意図するものではないが、対象となる微生物のDNAに実質的に相同な領域を含む遺伝子(例えば、16S rDNAや26S rDNA)を含み、このような株は、種々の実施形態において、当該分野で公知のコンピュータ相同性プログラムによってアラインメントを行って元となる株の全ゲノムの配列と比較した際、少なくとも30%、40%、50%、60%、70%、80%、90%、95%または99%同一である全ゲノム配列を有する。これは、遺伝子の変異、置換、欠失および/または付加によって改変された微生物であり、その誘導株がなお元の微生物の生物学的機能を、必ずしも同じ度合いでなくてもよいが示す微生物を意味する。1つの実施形態では、このような誘導株、類似株または変異株は、元の微生物の生物学的機能(例えば、油分解能、他方の微生物のリパーゼ産生または油分解能を強化する能力等)が同等以上である微生物が本開示において提供される。例えば、遺伝子の変異は、任意の公知の変異剤、UV、プラズマなどを使用して導入することができる。一つの実施形態では、「誘導株」、「類似株」または「変異株」は、元の株と同じ属および/または種である株である。例えば、本明細書において記載されあるいは当該分野で公知の適切で利用可能なin vitroアッセイによって、このような微生物の生物学的機能を調べることが可能である。本明細書において遺伝子または塩基配列の「類似性」は、2以上の遺伝子配列の、互いに対する類似性の程度をいい、同一性の他配列の類似の程度が高いことをいう。「類似性」は、同一性に加え、類似の塩基についても計算に入れた数値であり、ここで類似の塩基とは、混合塩基(例えば、R=A+G、M=A+C、W=A+T、S=C+G、Y=C+T、K=G+T、H=A+T+C、B=G+T+C、D=G+A+T、V=A+C+G、N=A+C+G+T)において、一部が一致する場合をいう。
 本明細書において「タンパク質」、「ポリペプチド」、「オリゴペプチド」および「ペプチド」は、本明細書において同じ意味で使用され、任意の長さのアミノ酸のポリマーをいう。このポリマーは、直鎖であっても分岐していてもよく、環状であってもよい。アミノ酸は、天然のものであっても非天然のものであってもよく、改変されたアミノ酸であってもよい。この用語はまた、複数のポリペプチド鎖の複合体へとアセンブルされたものを包含し得る。この用語はまた、天然または人工的に改変されたアミノ酸ポリマーも包含する。そのような改変としては、例えば、ジスルフィド結合形成、グリコシル化、脂質化、アセチル化、リン酸化または任意の他の操作もしくは改変(例えば、標識成分との結合体化)が包含される。この定義にはまた、例えば、アミノ酸の1または2以上のアナログを含むポリペプチド(例えば、非天然アミノ酸などを含む)、ペプチド様化合物(例えば、ペプトイド)および当該分野において公知の他の改変が包含される。本明細書において、「アミノ酸」は、アミノ基とカルボキシル基を持つ有機化合物の総称である。本開示の実施形態に係るタンパク質または酵素が「特定のアミノ酸配列」を含むとき、そのアミノ酸配列中のいずれかのアミノ酸が化学修飾を受けていてもよい。また、そのアミノ酸配列中のいずれかのアミノ酸が塩、または溶媒和物を形成していてもよい。また、そのアミノ酸配列中のいずれかのアミノ酸がL型、またはD型であってもよい。それらのような場合でも、本開示の実施形態に係る蛋白質は、上記「特定のアミノ酸配列」を含むといえる。蛋白質に含まれるアミノ酸が生体内で受ける化学修飾としては、例えば、N末端修飾(例えば、アセチル化、ミリストイル化等)、C末端修飾(例えば、アミド化、グリコシルホスファチジルイノシトール付加等)、または側鎖修飾(例えば、リン酸化、糖鎖付加等)等が知られている。アミノ酸は、本開示の目的を満たす限り、天然のものでも非天然のものでもよい。
 本明細書において「ポリヌクレオチド」、「オリゴヌクレオチド」および「核酸」は、本明細書において同じ意味で使用され、任意の長さのヌクレオチドのポリマーをいう。この用語はまた、「オリゴヌクレオチド誘導体」または「ポリヌクレオチド誘導体」を含む。「塩基配列」または「核酸配列」は、「ポリヌクレオチド」、「オリゴヌクレオチド」または「核酸」において、連続する核酸塩基の順序を意味する。「オリゴヌクレオチド誘導体」または「ポリヌクレオチド誘導体」とは、ヌクレオチドの誘導体を含むか、またはヌクレオチド間の結合が通常とは異なるオリゴヌクレオチドまたはポリヌクレオチドをいい、互換的に使用される。そのようなオリゴヌクレオチドとして具体的には、例えば、2’-O-メチル-リボヌクレオチド、オリゴヌクレオチド中のリン酸ジエステル結合がホスホロチオエート結合に変換されたオリゴヌクレオチド誘導体、オリゴヌクレオチド中のリン酸ジエステル結合がN3’-P5’ホスホロアミデート結合に変換されたオリゴヌクレオチド誘導体、オリゴヌクレオチド中のリボースとリン酸ジエステル結合とがペプチド核酸結合に変換されたオリゴヌクレオチド誘導体、オリゴヌクレオチド中のウラシルがC-5プロピニルウラシルで置換されたオリゴヌクレオチド誘導体、オリゴヌクレオチド中のウラシルがC-5チアゾールウラシルで置換されたオリゴヌクレオチド誘導体、オリゴヌクレオチド中のシトシンがC-5プロピニルシトシンで置換されたオリゴヌクレオチド誘導体、オリゴヌクレオチド中のシトシンがフェノキサジン修飾シトシン(phenoxazine-modified cytosine)で置換されたオリゴヌクレオチド誘導体、DNA中のリボースが2’-O-プロピルリボースで置換されたオリゴヌクレオチド誘導体およびオリゴヌクレオチド中のリボースが2’-メトキシエトキシリボースで置換されたオリゴヌクレオチド誘導体などが例示される。他にそうではないと示されなければ、特定の塩基配列はまた、明示的に示された配列と同様に、その保存的に改変された改変体(例えば、縮重コドン置換体)および相補配列を包含することが企図される。具体的には、縮重コドン置換体は、1またはそれ以上の選択された(または、すべての)コドンの3番目の位置が混合塩基および/またはデオキシイノシン残基で置換された配列を作成することにより達成され得る(Batzer et al., Nucleic Acid Res.19:5081(1991);Ohtsuka et al., J. Biol. Chem. 260: 2605-2608(1985);Rossolini et al., Mol.Cell.Probes 8:91-98(1994))。本明細書において「核酸」はまた、遺伝子、cDNA、mRNA、オリゴヌクレオチド、およびポリヌクレオチドと互換可能に使用される。本明細書において「ヌクレオチド」は、天然のものでも非天然のものでもよい。
 本明細書において「遺伝子」とは、遺伝形質を規定する因子をいい、「遺伝子」は、「ポリヌクレオチド」、「オリゴヌクレオチド」および「核酸」を指すことがある。
 本明細書において遺伝子の「相同性」とは、2以上の遺伝子配列の、互いに対する同一性の程度をいい、一般に「相同性」を有するとは、同一性または類似性の程度が高いことをいう。従って、ある2つの遺伝子の相同性が高いほど、それらの配列の同一性または類似性は高い。2種類の遺伝子が相同性を有するか否かは、配列の直接の比較、または核酸の場合ストリンジェントな条件下でのハイブリダイゼーション法によって調べられ得る。2つの遺伝子配列を直接比較する場合、その遺伝子配列間でDNA配列が、代表的には少なくとも50%同一である場合、好ましくは少なくとも70%同一である場合、より好ましくは少なくとも80%、90%、95%、96%、97%、98%または99%同一である場合、それらの遺伝子は相同性を有する。
 アミノ酸は、その一般に公知の3文字記号か、またはIUPAC-IUB Biochemical Nomenclature Commissionにより推奨される1文字記号のいずれかにより、本明細書中で言及され得る。ヌクレオチドも同様に、一般に認知された1文字コードにより言及され得る。本明細書では、アミノ酸配列および塩基配列の類似性、同一性および相同性の比較は、配列分析用ツールであるBLASTを用いてデフォルトパラメータを用いて算出される。同一性の検索は例えば、NCBIのBLAST2.7.1(2017.10.19発行)を用いて行うことができる。本明細書における「同一性」の値は通常は上記BLASTを用い、デフォルトの条件でアラインした際の値をいう。ただし、パラメータの変更により、より高い値が出る場合は、最も高い値を同一性の値とする。複数の領域で同一性が評価される場合はそのうちの最も高い値を同一性の値とする。「類似性」は、同一性に加え、類似のアミノ酸についても計算に入れた数値である。
 本開示の一実施形態において同一性等の数値である「70%以上」は、例えば、70%以上、75%以上、80%以上、85%以上、90%以上、95%以上、96%以上、97%以上、98%以上、99%以上、または100%以上であってもよく、それら起点となる数値のいずれか2つの値の範囲内であってもよい。上記「同一性」は、2つもしくは複数間のアミノ酸または塩基配列において相同なアミノ酸または塩基数の割合を、上述したような公知の方法に従って算定される。具体的に説明すると、割合を算定する前には、比較するアミノ酸または塩基配列群のアミノ酸または塩基配列を整列させ、同一アミノ酸または塩基の割合を最大にするために必要である場合はアミノ酸または塩基配列の一部に間隙を導入する。整列のための方法、割合の算定方法、比較方法、およびそれらに関連するコンピュータプログラムは、当該分野で従来からよく知られている(例えば、上述したBLAST等)。本明細書において「同一性」および「類似性」は、特に断りのない限りNCBIのBLASTによって測定された値で表すことができる。BLASTでアミノ酸または塩基配列を比較するときのアルゴリズムには、Blastpをデフォルト設定で使用できる。測定結果はPositivesまたはIdentitiesとして数値化される。この場合、「同一性」に代えて「類似性」という場合は、本明細書に記載される「類似」する「アミノ酸」または「塩基」の定義に該当するものも考慮した数値である。本明細書において、その配列間で相同性、同一性および/または類似性を有するポリヌクレオチド、オリゴヌクレオチド、核酸、ペプチドまたはタンパク質は、互いに「改変体」と称され得る。
 本明細書において「ストリンジェント(な)条件でハイブリダイズするポリヌクレオチド」とは、当該分野で慣用される周知の条件をいう。本開示のポリヌクレオチド中から選択されたポリヌクレオチドをプローブとして、コロニー・ハイブリダイゼーション法、プラーク・ハイブリダイゼーション法あるいはサザンブロットハイブリダイゼーション法などを用いることにより、そのようなポリヌクレオチドを得ることができる。具体的には、コロニーあるいはプラーク由来のDNAを固定化したフィルターを用いて、0.7~1.0MのNaCl存在下、65℃でハイブリダイゼーションを行った後、0.1~2倍濃度のSSC(saline-sodium citrate)溶液(1倍濃度のSSC溶液の組成は、150mM塩化ナトリウム、15mMクエン酸ナトリウムである)を用い、65℃条件下でフィルターを洗浄することにより同定できるポリヌクレオチドを意味する。「ストリンジェントな条件」は、例えば、以下の条件を採用することができる。(1)洗浄のために低イオン強度および高温度を用いる(例えば、50℃で、0.015Mの塩化ナトリウム/0.0015Mのクエン酸ナトリウム/0.1%のドデシル硫酸ナトリウム)、(2)ハイブリダイゼーション中にホルムアミド等の変性剤を用いる(例えば、42℃で、50%(v/v)ホルムアミドと0.1%ウシ血清アルブミン/0.1%フィコール/0.1%のポリビニルピロリドン/50mMのpH6.5のリン酸ナトリウムバッファー、および750mMの塩化ナトリウム、75mMクエン酸ナトリウム)、または(3)20%ホルムアミド、5×SSC、50mMリン酸ナトリウム(pH7.6)、5×デンハード液、10%硫酸デキストラン、および20mg/mlの変性剪断サケ精子DNAを含む溶液中で、37℃で一晩インキュベーションし、次に約37-50℃で1×SSCでフィルターを洗浄する。なお、ホルムアミド濃度は50%またはそれ以上であってもよい。洗浄時間は、5、15、30、60、もしくは120分、またはそれら以上であってもよい。ハイブリダイゼーション反応のストリンジェンシーに影響する要素としては温度、塩濃度など複数の要素が考えられ、詳細はAusubel et al., Current Protocols in Molecular Biology, Wiley Interscience Publishers,(1995)を参照することができる。「高度にストリンジェントな条件」の例は、0.0015M塩化ナトリウム、0.0015Mクエン酸ナトリウム、65~68℃、または0.015M塩化ナトリウム、0.0015Mクエン酸ナトリウム、および50%ホルムアミド、42℃である。ハイブリダイゼーション、Molecular Cloning 2nd ed.,Current Protocols in Molecular Biology, Supplement 1-38, DNA Cloning 1:Core Techniques, A Practical Approach, Second Edition, Oxford University Press(1995)などの実験書に記載されている方法に準じて行うことができる。ここで、ストリンジェントな条件下でハイブリダイズする配列からは、好ましくは、A配列のみまたはT配列のみを含む配列が除外される。中程度のストリンジェントな条件は、例えば、DNAの長さに基づき、当業者によって、容易に決定することができ、Sambrookら、Molecular Cloning:A Laboratory Manual、第3番、Vol.1、7.42-7.45 Cold Spring Harbor Laboratory Press,2001に示され、そしてニトロセルロースフィルターに関し、5×SSC、0.5% SDS、1.0mM EDTA(pH8.0)の前洗浄溶液、約40-50℃での、約50%ホルムアミド、2×SSC-6×SSC(または約42℃での約50%ホルムアミド中の、スターク溶液(Stark’s solution)などの他の同様のハイブリダイゼーション溶液)のハイブリダイゼーション条件、および約60℃、0.5×SSC、0.1% SDSの洗浄条件の使用が含まれる。従って、本開示において使用されるポリペプチドには、本開示で特に記載されたポリペプチドをコードする核酸分子に対して、高度または中程度でストリンジェントな条件下でハイブリダイズする核酸分子によってコードされるポリペプチドも包含される。
 本明細書において「生物学的機能」とは、ある微生物について言及するとき、その微生物が有し得る特定の機能をいい、これには、例えば、エステル(例えば、油脂)の分解(例えば、低温における分解)、リパーゼの生産、油の分解、他の微生物のリパーゼ生産を増強する能力、他の微生物の油分解活性を増強する能力等を挙げることができるがそれらに限定されない。本明細書において、生物学的機能は、対応する「生物学的活性」によって発揮され得る。本明細書において「生物学的活性」とは、ある微生物が、ある環境において有し得る活性のことをいい、種々の機能(例えば、15℃における油の分解活性)を発揮する活性が包含される。このような生物学的活性は、当該分野において周知の技術によって測定することができる。従って、「活性」は、応答に影響する(すなわち、いくらかの曝露または刺激に応答する測定可能な影響を有する)、種々の測定可能な指標をいい、例えば、本開示の微生物のいくつかの刺激後または事象後の上流または下流のタンパク質の量あるいは他の類似の機能の尺度も含まれ得る。
 本明細書で使用されるとき、試料中の分析物の「量」は、一般には、試料の体積中で検出し得る分析物の質量を反映する絶対値を指す。しかし、量は、別の分析物量と比較した相対量も企図する。例えば、試料中の分析物の量は、試料中に通常存在する分析物の対照レベルまたは正常レベルより大きい量であってもよい。
 用語「約」は、示された値プラスまたはマイナス10%を指す。
 本明細書において「キット」とは、通常2つ以上の区画に分けて、提供されるべき部分(例えば、本開示の微生物を含む組成物、追加的な成分、緩衝液、説明書など)が提供されるユニットをいう。安定性等のため、混合されて提供されるべきでなく、使用直前に混合して使用することが好ましいような組成物の提供を目的とするときに、このキットの形態は好ましい。そのようなキットは、好ましくは、提供される部分(例えば、微生物を含む組成物、追加的な成分)などをどのように使用するか、あるいは、どのように処理すべきかを記載する指示書または説明書を備えていることが有利である。本明細書においてキットが使用される場合、キットには、通常、本開示の微生物や組成物等の使い方などを記載した指示書などが含まれる。
 本明細書において「指示書」は、本開示の微生物または本開示の微生物の組み合わせを使用する方法を使用者に対して説明するために記載したものである。この指示書は、本開示の微生物または本開示の微生物の組み合わせの使用方法を指示する文言が記載されている。この指示書は、必要な場合は、本開示の方法が実施される国の監督官庁(例えば、日本であれば厚生労働省または農林水産省等、米国であれば食品医薬品局(FDA)、農務省(USDA)など)が規定した様式に従って作成され、その監督官庁により承認を受けた旨が明記される。指示書は、紙媒体で提供され得るが、それに限定されず、例えば、電子媒体(例えば、インターネットで提供されるホームページ、電子メール)のような形態でも提供され得る。
 (好ましい実施形態)
 以下に本開示の好ましい実施形態を説明する。以下に提供される実施形態は、本開示のよりよい理解のために提供されるものであり、本開示の範囲は以下の記載に限定されるべきでないことが理解される。従って、当業者は、本明細書中の記載を参酌して、本開示の範囲内で適宜改変を行うことができることは明らかである。また、本開示の以下の実施形態は単独でも使用されあるいはそれらを組み合わせて使用することができることが理解される。
 (新たな能力を有する微生物)
 一つの局面において、本開示は、油脂および/または脂肪酸の分解に関して新たに見出された能力を有する微生物を提供する。特に、本開示の微生物は、長鎖脂肪酸(炭素原子を13以上、例えば14~22含む脂肪酸)を含むトリグリセリドに対するリパーゼ活性を有する、長鎖脂肪酸の4-ニトロフェニルエステルよりも短鎖~中鎖脂肪酸(炭素原子を2~12含む脂肪酸)の4-ニトロフェニルエステルに対して高い加水分解活性を有する、短~長鎖脂肪酸(炭素原子を2以上含む脂肪酸)含有油脂を分解する能力を有する、短~中鎖脂肪酸(炭素原子を2~12含む脂肪酸)含有エステルを分解する能力を有する、15℃においてエステル(例えば、油脂)および/または脂肪酸を資化する能力を有する、15℃においてエステル(例えば、油脂)および/または脂肪酸を分解する能力を有する、トランス脂肪酸含有油脂を資化する能力を有する、トランス脂肪酸含有油脂を分解する能力を有する、トランス脂肪酸(例えば、エライジン酸、パルミテライジン酸および/またはバクセン酸)を資化する能力を有する、および/またはトランス脂肪酸(例えば、エライジン酸、パルミテライジン酸および/またはバクセン酸)を分解する能力を有する、ブルクホルデリア細菌のリパーゼ生産を向上させる能力を有する、ブルクホルデリア細菌の脂肪酸および/または油脂分解能を向上させる能力を有する、という1つ以上の特徴を有するものである。一つの局面において、本開示は、エステル(例えば、油脂)分解能のある新たな微生物を提供する。本開示の微生物は、短鎖~長鎖脂肪酸の油脂に対する幅広い加水分解活性を有し得る。一つの局面において、本開示は、ブルクホルデリア細菌と組み合わせた場合にブルクホルデリア細菌のリパーゼ生産および/または油(脂肪酸、油脂を含む)分解能を向上させる能力を有する新たな微生物を提供する。
 一つの実施形態では、本開示の微生物は、ヤロウィア(Yarrowia)属の酵母である。ヤロウィア属の微生物は、真菌類であり、生活環の一定期間において栄養体が単細胞性を示し、細胞壁を持っている。形態的には特徴の少ない円形か楕円形をしている。ヤロウィア属には、bubula、deformans、lipolytica、porcinaおよびyakushimensisなどの種が含まれる。一つの実施形態では、本開示の微生物は、ヤロウィア リポリティカ(Yarrowia lipolytica)である。本発明者は、トランス脂肪酸分解・資化能力および低温エステル(例えば、油脂)分解能力を調べることで見出した新たな微生物の菌株をヤロウィア リポリティカと同定し、独立行政法人製品評価技術基盤機構特許微生物寄託センターにこれを寄託し、2018年6月4日に受領され、2018年6月12日に受託証が発行された。受託番号はNITE BP-02732である。また、ヤロウィア リポリティカのさらなる菌株(KH-2AL1株およびKH-2AL3株)をさらに同定し、独立行政法人製品評価技術基盤機構特許微生物寄託センターにこれらを寄託し、2019年12月23日に受領され、2020年1月16日に受託証が発行された。受託番号はそれぞれ、NITE BP-03091およびNITE BP-03092である。一つの実施形態では、本開示の微生物は、ヤロウィア酵母KH-2株(受託番号NITE BP-02732で特定される菌株)、KH-2AL1株(受託番号NITE BP-03091で特定される菌株)もしくはKH-2AL3株(受託番号NITE BP-03092で特定される菌株)であるか、またはその誘導株である。本開示のさらなる局面では、本開示のヤロウィア酵母は、カンジダ(Candida)属、ジゴアスカス(Zygoascus)属、オガタエア(Ogataea)属、ピチア(Pichia)属または(Aciculoconidium)属の酵母であり得る。このようなカンジダ(Candida)属の酵母としては、deformans、oslonensis、galli、phangngensis、hollandica、alimentaria、hispaniensisおよびincommunisが挙げられ、ジゴアスカス(Zygoascus)属としては、steatolyticus var.steatolyticusが挙げられ、(Aciculoconidium)属としてはaculeatumが挙げられる。
 一つの実施形態では、本開示の微生物は、ヤロウィア酵母KH-2株(受託番号NITE BP-02732で特定される菌株)、KH-2AL1株(受託番号NITE BP-03091で特定される菌株)もしくはKH-2AL3株(受託番号NITE BP-03092で特定される菌株)の誘導株である。ここで、誘導株とは、ヤロウィア酵母KH-2株、KH-2AL1株もしくはKH-2AL3株を元として得られた株であることは必要とせず、ヤロウィア酵母KH-2株、KH-2AL1株もしくはKH-2AL3株の生物学的機能を、必ずしも同じ度合いでなくてもよいが示す微生物を指す。一つの実施形態では、本開示の誘導株である微生物は、ヤロウィア酵母KH-2株、KH-2AL1株もしくはKH-2AL3株と同様に、リパーゼ活性を有すること、低温(例えば、25℃以下、20℃以下、15℃以下、10℃以下、5℃以下など)においてエステル(例えば、トランス脂肪酸含有油脂)を資化(分解)する能力、トランス脂肪酸(例えば、エライジン酸、パルミテライジン酸および/またはバクセン酸)を資化(分解)する能力、ブルクホルデリア細菌のリパーゼ生産を向上させる能力、およびブルクホルデリア細菌の脂肪酸および/または油脂分解能を向上させる能力からなる群から選択される生物学的機能を示すが、その生物学的機能の程度はKH-2株、KH-2AL1株もしくはKH-2AL3株と異なっていてもよい。一つの実施形態では、本開示の誘導株である微生物は、ヤロウィア(Yarrowia)属の酵母であり、より具体的には、ヤロウィア リポリティカ(Yarrowia lipolytica)であり得る。
 本開示の微生物(KH-2株、KH-2AL1株もしくはKH-2AL3株の誘導株を含む)は、エステル(例えば、油脂)を唯一の炭素源として含み、pHを6~8に調整した無機塩寒天培地上で単離可能であり得る。また、一つの実施形態では、本開示の微生物(KH-2株、KH-2AL1株もしくはKH-2AL3株の誘導株を含む)は、エステル(例えば、油脂)を分散含有させた寒天培地上に生じたコロニー周辺にクリアゾーン(ハロー)が形成されるのを確認することで判別可能であり得る。一つの実施形態では、本開示の微生物(KH-2株、KH-2AL1株もしくはKH-2AL3株の誘導株を含む)は、15℃または28℃、好ましくは15℃において10g/Lのキャノーラ油を炭素源として添加した寒天培地上でコロニーを形成し、生育できる。限定を意図するものではないが、本開示の微生物は、最低限のエステル(例えば、油脂)資化(分解)能またはエステル(例えば、油脂)耐性を有することが有用であり得る。
 一つの実施形態では、本開示の微生物(KH-2株、KH-2AL1株もしくはKH-2AL3株の誘導株を含む)は、エステラーゼ活性を有する。一つの実施形態では、本開示の微生物(KH-2株、KH-2AL1株もしくはKH-2AL3株の誘導株を含む)は、長鎖脂肪酸(炭素原子を13以上、例えば14~22含む脂肪酸)を含むトリグリセリドに対するリパーゼ活性を有する。一つの実施形態では、本開示の微生物(KH-2株、KH-2AL1株もしくはKH-2AL3株の誘導株を含む)は、短~中鎖脂肪酸(炭素原子を2~12含む脂肪酸)を含むエステル(例えば、トリグリセリド)に対するエステラーゼ活性を有する。一つの実施形態では、本開示の微生物(KH-2株、KH-2AL1株もしくはKH-2AL3株の誘導株を含む)は、長鎖脂肪酸の4-ニトロフェニルエステルよりも短鎖~中鎖脂肪酸(炭素原子を2~12含む脂肪酸)の4-ニトロフェニルエステルに対して高い加水分解活性を有する。一つの実施形態では、本開示の微生物(KH-2株、KH-2AL1株もしくはKH-2AL3株の誘導株を含む)は、15℃においてエステル(例えば、油脂)および/または脂肪酸を分解または資化する能力を有する。一つの実施形態では、本開示の微生物(KH-2株、KH-2AL1株もしくはKH-2AL3株の誘導株を含む)は、トランス脂肪酸(例えば、エライジン酸、パルミテライジン酸および/またはバクセン酸)またはトランス脂肪酸含有油脂を、資化または分解する能力が15℃において保持される。
 一つの実施形態では、本開示の微生物(KH-2株、KH-2AL1株もしくはKH-2AL3株の誘導株を含む)は、1%(v/v)キャノーラ油添加無機塩培地に、初期菌体光学密度OD660=0.05になるように接種した後、28℃で24時間、28℃で48時間または15℃で48時間培養した後、遠心分離して菌体を除去した上清1mlと、0.05molの脂肪酸4-ニトロフェニルエステルを12mlの3%(v/v)Triton(登録商標) X-100水溶液に溶解させて調製した基質溶液1mlと、150mMのGTA緩衝液(pH7.0)1mlとを混合し、攪拌しながら410nmの吸光度を1分間モニターした場合に、長鎖脂肪酸(炭素原子を13以上含む脂肪酸)の4-ニトロフェニルエステルよりも短鎖~中鎖脂肪酸(炭素原子を2~12含む脂肪酸)の4-ニトロフェニルエステルに対して1倍、1.5倍、2倍、5倍、10倍、20倍、50倍、100倍、200倍または500倍高い加水分解活性を有する。
 一つの実施形態では、本開示の微生物(KH-2株、KH-2AL1株もしくはKH-2AL3株の誘導株を含む)は、トランス脂肪酸(例えば、エライジン酸、パルミテライジン酸および/またはバクセン酸)またはトランス脂肪酸含有油脂を資化する能力を有する。一つの実施形態では、本開示の微生物(KH-2株、KH-2AL1株もしくはKH-2AL3株の誘導株を含む)は、トランス脂肪酸(例えば、エライジン酸、パルミテライジン酸および/またはバクセン酸)を分解する能力を有する。一つの実施形態では、本開示の微生物(KH-2株、KH-2AL1株もしくはKH-2AL3株の誘導株を含む)は、トランス脂肪酸含有油脂を分解する能力を有する。
 一つの実施形態では、本開示の微生物(KH-2株、KH-2AL1株もしくはKH-2AL3株の誘導株を含む)は、トリオレインを分解するリパーゼ活性を有する。一つの実施形態では、本開示の微生物(KH-2株、KH-2AL1株もしくはKH-2AL3株の誘導株を含む)は、トリエライジンを分解するリパーゼ活性を有する。
 一つの実施形態では、本開示の微生物(KH-2株、KH-2AL1株もしくはKH-2AL3株の誘導株を含む)は、低温でトランス脂肪酸を含む各種脂肪酸(オレイン酸、エライジン酸、パルミテライジン酸、バクセン酸)を分解または資化する能力を有する。
 一つの実施形態では、本開示の微生物(KH-2株、KH-2AL1株もしくはKH-2AL3株の誘導株を含む)は、トランス脂肪酸(例えば、エライジン酸)含有油脂を含むpH7.0かつ15℃または28℃の培地中で、トランス脂肪酸含有油脂を資化および/または分解する油脂分解能を有し得る。
 一つの実施形態では、本開示の微生物(KH-2株、KH-2AL1株もしくはKH-2AL3株の誘導株を含む)は、Triton(登録商標) X-100およびエライジン酸をそれぞれ0.25重量%と0.2重量%の濃度で含む無機塩培地にOD660=0.5または0.8となるような菌体光学密度で微生物を植菌し、pH7.0、28℃で培養したときに24時間後または46時間後の上清におけるエライジン酸濃度(例えば、Triton(登録商標) X-100およびエライジン酸をそれぞれ0.25重量%と0.2重量%の濃度で含む無機塩培地にOD660=0.5となるような菌体光学密度で微生物を植菌し、pH7.0、28℃で培養したときに24時間後の上清におけるエライジン酸濃度、またはTriton(登録商標) X-100およびエライジン酸をそれぞれ0.25重量%と0.2重量%の濃度で含む無機塩培地にOD660=0.8となるような菌体光学密度で微生物を植菌し、pH7.0、28℃で培養したときに46時間後の上清におけるエライジン酸濃度)が、1500mg/L未満、1200mg/L未満、1000mg/L未満、900mg/L未満、800mg/L未満、700mg/L未満、600mg/L未満、500mg/L未満、400mg/L未満、300mg/L未満、200mg/L未満、150mg/L未満、100mg/L未満、70mg/L未満、50mg/L未満、20mg/L未満、10mg/L未満、または5mg/L未満となるトランス脂肪酸分解能を有する。本開示の微生物(KH-2株、KH-2AL1株もしくはKH-2AL3株の誘導株を含む)は、この条件で判定した場合に800mg/L未満、700mg/L未満、600mg/L未満または500mg/L未満、特に、700mg/L未満まで上清におけるエライジン酸濃度を低下させる能力を有することが好ましく、このようなトランス脂肪酸分解能を有する微生物は本開示の種々の用途において有益に使用することができる。
 一つの実施形態では、本開示の微生物(KH-2株、KH-2AL1株もしくはKH-2AL3株の誘導株を含む)は、Triton(登録商標) X-100およびエライジン酸をそれぞれ0.25重量%と0.2重量%の濃度で含む無機塩培地にOD660=0.8となるような菌体光学密度で微生物を植菌し、pH7.0、15℃で培養したときに48時間後または90時間後の上清におけるエライジン酸濃度が、1500mg/L未満、1200mg/L未満、1000mg/L未満、900mg/L未満、800mg/L未満、700mg/L未満、600mg/L未満、500mg/L未満、400mg/L未満、300mg/L未満、200mg/L未満、150mg/L未満、100mg/L未満、70mg/L未満、50mg/L未満、20mg/L未満、10mg/L未満、または5mg/L未満となるトランス脂肪酸分解能を有する。本開示の微生物(KH-2株、KH-2AL1株もしくはKH-2AL3株の誘導株を含む)は、この条件で判定した場合に1000mg/L未満、700mg/L未満、500mg/L未満、400mg/L未満、300mg/L未満、200mg/L未満または100mg/L未満、特に、500mg/L未満まで上清におけるエライジン酸濃度を低下させる能力を有することが好ましく、このようなトランス脂肪酸分解能を有する微生物は本開示の種々の用途において有益に使用することができる。
 一つの実施形態では、本開示の微生物(KH-2株、KH-2AL1株もしくはKH-2AL3株の誘導株を含む)は、Triton(登録商標) X-100およびトリエライジンをそれぞれ0.25重量%と0.1重量%の濃度で含む無機塩培地にOD660=0.8となるような菌体光学密度で微生物を植菌し、pH7.0、28℃で培養したときに5日間後の上清における残留油濃度が、800mg/L未満、700mg/L未満、600mg/L未満、500mg/L未満、400mg/L未満、350mg/L未満、300mg/L未満、250mg/L未満、200mg/L未満、150mg/L未満、100mg/L未満、70mg/L未満、50mg/L未満、20mg/L未満、または10mg/L未満となるトランス脂肪酸含有油脂分解能を有する。本開示の微生物(KH-2株、KH-2AL1株もしくはKH-2AL3株の誘導株を含む)は、この条件で判定した場合に400mg/L未満、350mg/L未満、300mg/L未満、250mg/L未満、200mg/L未満、150mg/L未満、または100mg/L未満、特に、350mg/L未満まで上清における残留油濃度を低下させる能力を有することが好ましく、このようなトランス脂肪酸含有油脂分解能を有する微生物は本開示の種々の用途において有益に使用することができる。
 一つの実施形態では、本開示の微生物(KH-2株、KH-2AL1株もしくはKH-2AL3株の誘導株を含む)は、1%(v/v)のキャノーラ油を含む無機塩培地に、最終濃度がOD660=0.05となるような菌体光学密度で微生物を植菌し、pH7.0、15℃で培養したとき、培養開始から24時間後の残留油分が、培養開始時の95%未満、90%未満、85%未満、80%未満、75%未満、70%未満、65%未満、60%未満、55%未満、50%未満、45%未満、40%未満、35%未満、30%未満、25%未満、20%未満、15%未満、10%未満、7%未満、5%未満、2%未満、または1%未満となる油脂分解能を有する。本開示の微生物(KH-2株、KH-2AL1株もしくはKH-2AL3株の誘導株を含む)は、この条件で判定した場合に、15℃培養における残留油分が、65%未満、60%未満、55%未満、50%未満、45%未満または40%未満、特に、45%未満である油脂分解能を有することが好ましく、このような低温油脂分解能を有する微生物は本開示の種々の用途において有益に使用することができる。
 一つの実施形態では、本開示の微生物(KH-2株、KH-2AL1株もしくはKH-2AL3株の誘導株を含む)は、1%(v/v)のキャノーラ油を含む無機塩培地に、最終濃度がOD660=0.05となるような菌体光学密度で微生物を植菌し、pH7.0、28℃で培養したとき、培養開始から24時間後の残留油分が、培養開始時の50%未満、45%未満、40%未満、35%未満、30%未満、25%未満、20%未満、17%未満、15%未満、12%未満、10%未満、7%未満、5%未満、4%未満、3%未満、2%未満、または1%未満となる油脂分解能を有する。本開示の微生物(KH-2株、KH-2AL1株もしくはKH-2AL3株の誘導株を含む)は、この条件で判定した場合に、28℃培養における残留油分が、20%未満、17%未満、15%未満、12%未満、または10%未満、特に、10%未満である油脂分解能を有することが好ましく、このような高速油脂分解能を有する微生物は本開示の種々の用途において有益に使用することができる。
 一つの実施形態では、本開示の微生物(KH-2株、KH-2AL1株もしくはKH-2AL3株の誘導株を含む)は、1%(v/v)のキャノーラ油を含む無機塩培地に、最終濃度がOD660=0.05となるような菌体光学密度で微生物を植菌し、pH7.0、15℃および28℃でそれぞれ培養したときに、15℃培養における24時間後の上清におけるノルマルヘキサン値相当の油分が、28℃培養における24時間後の上清におけるノルマルヘキサン値相当の油分と比較して1000%以下、800%以下、600%以下、400%以下、200%以下、150%以下、100%以下、80%以下、60%以下、40%以下、20%以下、10%以下または5%以下となる油脂分解能を有する。本開示の微生物(KH-2株、KH-2AL1株もしくはKH-2AL3株の誘導株を含む)は、この条件で判定した場合に、28℃培養に比べて15℃培養における油脂残存率が、800%以下、700%以下、600%以下、500%以下、400%以下、特に、500%以下である油脂分解能を有することが好ましく、このような低温油脂分解能を有する微生物は本開示の種々の用途において有益に使用することができる。
 一つの実施形態では、本開示の微生物(KH-2株、KH-2AL1株もしくはKH-2AL3株の誘導株を含む)は、1%(v/v)のキャノーラ油を含む無機塩培地に、最終濃度がOD660=0.05となるような菌体光学密度で微生物を植菌し、pH7.0、15℃および28℃でそれぞれ培養を開始したときに、28℃培養に比べて15℃培養における全脂肪酸分解速度が、1000%以上、800%以上、600%以上、400%以上、200%以上、150%以上、100%以上、80%以上、60%以上、50%以上、40%以上、30%以上、20%以上、10%以上または5%以上となる油脂分解能を有する。本開示の微生物(KH-2株、KH-2AL1株もしくはKH-2AL3株の誘導株を含む)は、この条件で判定した場合に、28℃培養に比べて15℃培養における全脂肪酸分解速度が、50%以上、40%以上、30%以上、20%以上または10%以上、特に、30%以上である油脂分解能を有することが好ましく、このような低温油脂分解能を有する微生物は本開示の種々の用途において有益に使用することができる。
 一つの実施形態では、本開示のヤロウィア酵母は、リパーゼを生産するブルクホルデリア細菌のリパーゼ生産を向上させる能力を有する。一つの実施形態では、本開示のヤロウィア酵母は、ブルクホルデリア細菌の単独培養時の油脂分解能よりも高い油脂分解能を前記ブルクホルデリア細菌に付与する能力を有する。一つの実施形態では、本開示のヤロウィア酵母は、ブルクホルデリア細菌の単独培養時の脂肪酸分解能よりも高い脂肪酸分解能を前記ブルクホルデリア細菌に付与する能力を有する。一つの実施形態では、前記ブルクホルデリア細菌は、本開示の微生物の組み合わせにおけるブルクホルデリア細菌のいずれかである。本明細書において以下に記載される本開示の微生物の組み合わせの任意の特徴は、本開示のヤロウィア酵母が、本開示のブルクホルデリア細菌に付与する能力についての記載でもあることが企図される。例えば、1%(v/v)のキャノーラ油を添加した無機塩培地にブルクホルデリア細菌とヤロウィア酵母とを1:1の混合比(細胞数基準)で細胞総数が5×10細胞/mLとなるような細胞濃度で混合植菌し、pH7.0、28℃で18時間培養した場合に、ガスクロマトグラフィー分析に基づき各々の単独培養の油脂分解能の値から計算される油脂分解能と比べて、100%以上となるようなブルクホルデリア細菌およびヤロウィア酵母の微生物株の組み合わせに関する開示は、同培養条件下かつ同混合比で同油脂分解能をブルクホルデリア細菌に付与するヤロウィア酵母の能力に関する開示でもある。同様に、本開示の微生物の組み合わせの特徴に関する開示は、それぞれ、本開示のヤロウィア酵母が本開示のブルクホルデリア細菌に付与する能力について記載しているに等しい。一つの実施形態では、本開示のヤロウィア酵母は、本明細書に記載のヤロウィア酵母単独に基づく1つまたは複数の能力(上述される)、および本開示の微生物の組み合わせにおいてブルクホルデリア細菌に付与する能力(下記)の両方を有する。これらの異なる側面の能力を併せ持つヤロウィア酵母は、特に、予想外である。このような異なる側面の能力を併せ持つヤロウィア酵母の例としては、例えばKH-2株、KH-2AL1株、KH-2AL3株などを挙げることができるが、これらに限定されない。
 (油分解性の微生物の組み合わせ)
 一つの局面において、本開示は、油脂および/または脂肪酸を分解するブルクホルデリア細菌とヤロウィア酵母との組み合わせ(本明細書において、「本開示の微生物の組み合わせ」とも呼ぶ)を提供する。本明細書において、「ブルクホルデリア細菌」とは、ブルクホルデリア(Burkholderiales)目の微生物を含む細菌を指し、詳細は、本明細書において後述される。本明細書において、「ヤロウィア酵母」とは、ヤロウィア(Yarrowia)属の微生物を含む酵母を指し、詳細は、本明細書の別の箇所に記載される。種々の微生物の組み合わせの中でブルクホルデリア細菌とヤロウィア酵母との組み合わせは特に良好な油分解能を達成できる組み合わせであり得る。実施例に示されるように、ブルクホルデリア細菌とヤロウィア酵母との組み合わせにより油分解能の向上が観察された。理論に束縛されることを望むものではないが、これは、ヤロウィア酵母が油を分解した結果生じた物質が誘導物質としてブルクホルデリア細菌の油分解能を向上させたと予想されるため、ヤロウィア酵母としては同様の油分解能を有する微生物が好適に使用され得、ブルクホルデリア細菌としては同様の感受性を有する株が好適に使用され得る。同様に、ブルクホルデリア細菌が油を分解した結果生じた物質が誘導物質としてヤロウィア酵母の油分解能を向上させたと予想されるため、ブルクホルデリア細菌としては同様の油分解能を有する微生物が好適に使用され得、ヤロウィア酵母としては同様の感受性を有する株が好適に使用され得る。
 一つの実施形態では、本開示の微生物の組み合わせにおけるブルクホルデリア細菌およびヤロウィア酵母の少なくとも1つはリパーゼを生産する能力を有する。一つの実施形態では、本開示の微生物の組み合わせにおけるブルクホルデリア細菌およびヤロウィア酵母の両方がリパーゼを生産する能力を有する。発明者らは、それぞれが単独でリパーゼを生産するブルクホルデリア細菌およびヤロウィア酵母の組み合わせが、類似の性質を有することで互いに競合して互いの能力を抑制し合う(総合的な油分解能が低下する)ことが予想されたにもかかわらず、予想外に高い油分解能を示すことを見出した。一つの実施形態では、本開示の微生物の組み合わせにおけるブルクホルデリア細菌およびヤロウィア酵母は共生可能である。一つの実施形態では、本開示の微生物の組み合わせにおけるヤロウィア酵母は、ブルクホルデリア細菌のリパーゼ発現および/または生産を向上させ得る。一つの実施形態では、本開示の微生物の組み合わせにおけるブルクホルデリア細菌は、ヤロウィア酵母のリパーゼ発現および/または生産を向上させ得る。本開示の微生物の組み合わせにおける微生物は、任意の適当な方法により培養することで製造することができる。
 一つの局面において、本開示の微生物の組み合わせは、この組み合わせにおいて使用される各微生物の油分解能力(例えば、28℃において油脂および/または脂肪酸を分解する能力、15℃において油脂および/または脂肪酸を分解する能力を分解する能力等)を上回る油分解能力を提供する。一つの局面において、本開示の微生物の組み合わせは、この組み合わせにおいて使用される各微生物の油分解能力(例えば、28℃において油を分解する能力、15℃において油を分解する能力等)の合計を上回る油分解能力を提供する。特に、油分解能力のうちのいずれかが各々の単独培養の油分解能の値から計算される油分解能を上回れば、別の能力が低下する場合であっても、その微生物の組み合わせは有用に使用され得る。一つの実施形態では、本開示の微生物の組み合わせは、シス脂肪酸含有油脂、トランス脂肪酸含有油脂またはその両方を含む油脂を分解する能力を有する。
 一つの局面において、本開示の微生物の組み合わせは、この組み合わせにおいて使用されるブルクホルデリア細菌および/またはヤロウィア酵母のリパーゼ発現および/または生産の向上を提供する。
 一つの実施形態では、本開示の微生物の組み合わせにおけるブルクホルデリア細菌の細胞数とヤロウィア酵母の細胞数との比は、約1000:1~1:100、約1000:1~1:50、約1000:1~1:20、約1000:1~1:10、約1000:1~1:5、約1000:1~1:2、約1000:1~1:1、約1000:1~2:1、約1000:1~5:1、約500:1~1:100、約500:1~1:50、約500:1~1:20、約500:1~1:10、約500:1~1:5、約500:1~1:2、約500:1~1:1、約500:1~2:1、約500:1~5:1、約200:1~1:100、約200:1~1:50、約200:1~1:20、約200:1~1:10、約200:1~1:5、約200:1~1:2、約200:1~1:1、約200:1~2:1、約200:1~5:1、約100:1~1:100、約100:1~1:50、約100:1~1:20、約100:1~1:10、約100:1~1:5、約100:1~1:2、約100:1~1:1、約100:1~2:1、約100:1~5:1、約50:1~1:100、約50:1~1:50、約50:1~1:20、約50:1~1:10、約50:1~1:5、約50:1~1:2、約50:1~1:1、約50:1~2:1、約50:1~5:1、約20:1~1:100、約20:1~1:50、約20:1~1:20、約20:1~1:10、約20:1~1:5、約20:1~1:2、約20:1~1:1、約20:1~2:1、約10:1~1:10、約9:1~1:9、約8:1~1:8、約1000:1、約100:1、約50:1、約20:1、約10:1、約9:1、約8:1、約7:1、約6:1、約5:1、約2:1、約1:1、約1:2、約1:5、約1:6、約1:7、約1:8、約1:9、約1:10、約1:100であり得る。
 細胞数の比や細胞濃度は、任意の好適な方法を使用して決定および/または調製することができ、1つの例として、微生物の細胞数濃度と菌体の光学密度(OD660)との関係について、予め検量線を作成しておくことにより、細胞数濃度の決定、および光学密度を基にした目的の細胞数濃度の微生物細胞懸濁液の調製が可能である。例えば、OD660=0.01のKH-1株は約1×10細胞/mL、OD660=0.01のKH-2株は約1×10細胞/mLと換算され得る。
 一つの実施形態では、本開示の微生物の組み合わせにおけるブルクホルデリア細菌とヤロウィア酵母との乾燥重量比は、約100:1~1:100、約100:1~1:50、約100:1~1:20、約100:1~1:10、約100:1~1:5、約100:1~1:2、約100:1~1:1、約100:1~2:1、約100:1~5:1、約50:1~1:100、約50:1~1:50、約50:1~1:20、約50:1~1:10、約50:1~1:5、約50:1~1:2、約50:1~1:1、約50:1~2:1、約50:1~5:1、約20:1~1:10、約20:1~1:50、約20:1~1:20、約20:1~1:10、約20:1~1:5、約20:1~1:2、約20:1~1:1、約20:1~2:1、約20:1~5:1、約10:1~1:100、約10:1~1:50、約10:1~1:20、約10:1~1:10、約10:1~1:5、約10:1~1:2、約10:1~1:1、約10:1~2:1、約10:1~5:1、約5:1~1:100、約5:1~1:50、約5:1~1:20、約5:1~1:10、約5:1~1:5、約5:1~1:2、約5:1~1:1、約5:1~2:1、約2:1~1:100、約2:1~1:50、約2:1~1:20、約2:1~1:10、約2:1~1:5、約2:1~1:2、約2:1~1:1、約100:1、約10:1、約5:1、約2:1、約1:1、約1:2、約1:5、約1:10、約1:20、約1:50、約1:100であり得る。
 一つの実施形態では、本開示の微生物の組み合わせは、1%(v/v)のキャノーラ油を添加した無機塩培地において所定の温度(例えば、15℃または28℃)で培養した場合に、各々の単独培養の油脂分解能の値から計算される油脂分解能よりも高い油脂分解能を有する。一つの実施形態では、本開示の微生物の組み合わせは、1%(v/v)のキャノーラ油を添加した無機塩培地において所定の温度で培養した場合に、この組み合わせの合計細胞数と同量の細胞数のこの組み合わせにおけるブルクホルデリア細菌単独またはヤロウィア酵母単独のいずれよりも高い油脂分解能を有する。一つの実施形態では、本開示の微生物の組み合わせは、1%(v/v)のオレイン酸を添加した無機塩培地において所定の温度(例えば、28℃)で培養した場合に、各々の単独培養の脂肪酸分解能の値から計算される脂肪酸分解能よりも脂肪酸分解能を有する。一つの実施形態では、本開示の微生物の組み合わせは、1%(v/v)のオレイン酸を添加した無機塩培地において所定の温度で培養した場合に、この組み合わせの合計細胞数と同量の細胞数のこの組み合わせにおけるブルクホルデリア細菌単独またはヤロウィア酵母単独のいずれよりも高い脂肪酸分解能を有する。この油脂および/または脂肪酸分解能は、本明細書に記載される薄層クロマトグラフィーにより試験することもでき、例えば、経時的に培養上清を回収し、油脂に相当するスポットおよび/または脂肪酸に相当するスポットが消失するまでの時間を比較することによって判定することもできる。
 一つの実施形態では、1%(v/v)のキャノーラ油を添加した無機塩培地にブルクホルデリア細菌およびヤロウィア酵母を合計5×10細胞/mLの細胞濃度で植菌して、pH7.0、15℃で培養したとき、培養開始から48時間後の培養上清をガスクロマトグラフィー分析して決定した全脂肪酸が、培養開始時の95%未満、90%未満、85%未満、80%未満、75%未満、70%未満、65%未満、60%未満、55%未満、50%未満、45%未満、40%未満、35%未満、30%未満、25%未満、20%未満、15%未満、10%未満、7%未満、5%未満、2%未満、または1%未満となるようなブルクホルデリア細菌およびヤロウィア酵母の微生物株の組み合わせとその混合比とが使用される。
 一つの実施形態では、1%(v/v)のキャノーラ油を添加した無機塩培地にブルクホルデリア細菌とヤロウィア酵母とを細胞総数が5×10細胞/mLとなるような細胞濃度で混合植菌し、pH7.0、15℃で48時間培養した場合に、ガスクロマトグラフィー分析に基づき各々の単独培養の油脂分解能の値から計算される油脂分解能と比べて、100%以上、101%以上、102%以上、103%以上、104%以上、105%以上、106%以上、107%以上、108%以上、109%以上、110%以上、115%以上、120%以上、または125%以上となるようなブルクホルデリア細菌およびヤロウィア酵母の微生物株の組み合わせとその混合比とが使用される。
 一つの実施形態では、1%(v/v)のキャノーラ油を添加した無機塩培地にブルクホルデリア細菌およびヤロウィア酵母を合計5×10細胞/mLの細胞濃度で植菌して、pH7.0、28℃で培養したとき、培養開始から18時間後の培養上清をガスクロマトグラフィー分析して決定した全脂肪酸が、培養開始時の95%未満、90%未満、85%未満、80%未満、75%未満、70%未満、65%未満、60%未満、55%未満、50%未満、45%未満、40%未満、35%未満、30%未満、25%未満、20%未満、15%未満、10%未満、7%未満、5%未満、2%未満、または1%未満となるようなブルクホルデリア細菌およびヤロウィア酵母の微生物株の組み合わせとその混合比とが使用される。
 一つの実施形態では、1%(v/v)のキャノーラ油を添加した無機塩培地にブルクホルデリア細菌とヤロウィア酵母とを細胞総数が5×10細胞/mLとなるような細胞濃度で混合植菌し、pH7.0、28℃で18時間培養した場合に、ガスクロマトグラフィー分析に基づき各々の単独培養の油脂分解能の値から計算される油脂分解能と比べて、100%以上、101%以上、102%以上、103%以上、104%以上、105%以上、106%以上、107%以上、108%以上、109%以上、110%以上、115%以上、120%以上、または125%以上となるようなブルクホルデリア細菌およびヤロウィア酵母の微生物株の組み合わせとその混合比とが使用される。
 一つの実施形態では、1%(v/v)のオレイン酸を添加した無機塩培地にブルクホルデリア細菌およびヤロウィア酵母を合計5×10細胞/mLの細胞濃度で植菌して、pH7.0、15℃で培養したとき、培養開始から48時間後の培養上清をガスクロマトグラフィー分析して決定した全脂肪酸が、培養開始時の95%未満、90%未満、85%未満、80%未満、75%未満、70%未満、65%未満、60%未満、55%未満、50%未満、45%未満、40%未満、35%未満、30%未満、25%未満、20%未満、15%未満、10%未満、7%未満、5%未満、2%未満、または1%未満となるようなブルクホルデリア細菌およびヤロウィア酵母の微生物株の組み合わせとその混合比とが使用される。
 一つの実施形態では、1%(v/v)のオレイン酸を添加した無機塩培地にブルクホルデリア細菌とヤロウィア酵母とを細胞総数が5×10細胞/mLとなるような細胞濃度で混合植菌し、pH7.0、15℃で48時間培養した場合に、ガスクロマトグラフィー分析に基づき各々の単独培養の脂肪酸分解能の値から計算される脂肪酸分解能と比べて、100%以上、105%以上、110%以上、120%以上、130%以上、140%以上、150%以上、160%以上、170%以上、180%以上、190%以上または200%以上となるようなブルクホルデリア細菌およびヤロウィア酵母の微生物株の組み合わせとその混合比とが使用される。
 一つの実施形態では、本開示の微生物の組み合わせは、本開示の微生物の組み合わせにおけるブルクホルデリア細菌のリパーゼ発現および/または生産を向上させる組み合わせである。一つの実施形態では、ブルクホルデリア細菌のリパーゼは、第1のリパーゼ(塩基配列:配列番号1、アミノ酸配列:配列番号2、またはこれらの改変体など)および/または第2のリパーゼ(塩基配列:配列番号3、アミノ酸配列:配列番号4、またはこれらの改変体など)を含む。一つの実施形態では、リパーゼ発現および/または生産の向上は、本開示の微生物の組み合わせを使用した場合のリパーゼ遺伝子発現(RNA量、生産タンパク質量、分泌タンパク質量など)を、ブルクホルデリア細菌単独培養と比較した場合の結果と比較することで決定され得る。
 一つの実施形態では、本開示の微生物の組み合わせは、1%(v/v)のキャノーラ油を添加した無機塩培地にOD660の測定値がブルクホルデリア細菌:ヤロウィア酵母=0.018:0.02になるような菌体光学密度で各微生物を植菌して、pH7.0、15℃で培養したとき、培養開始から71時間後の細胞から全RNAを抽出して特定のブルクホルデリア細菌リパーゼについて定量的PCR解析を行った場合の発現量が、OD660の測定値が0.02となるような菌体光学密度でブルクホルデリア細菌単独を植菌した場合と比べて、6倍以上、7倍以上または8倍以上となるような組み合わせである。
 一つの実施形態では、本開示の微生物の組み合わせは、本開示の微生物の組み合わせにおけるヤロウィア酵母のリパーゼ発現および/または生産を向上させる組み合わせである。一つの実施形態では、ヤロウィア酵母のリパーゼは、第1のリパーゼ(塩基配列:配列番号5、アミノ酸配列:配列番号6、またはこれらの改変体など)および/または第2のリパーゼ(塩基配列:配列番号7、アミノ酸配列:配列番号8、またはこれらの改変体など)を含む。一つの実施形態では、リパーゼ発現および/または生産の向上は、本開示の微生物の組み合わせを使用した場合のリパーゼ遺伝子発現(RNA量、生産タンパク質量、分泌タンパク質量など)を、ヤロウィア酵母単独培養と比較した場合の結果と比較することで決定され得る。
 一つの実施形態では、本開示の微生物の組み合わせは、1%(v/v)のキャノーラ油を添加した無機塩培地に2.5×10細胞/mLのブルクホルデリア細菌および2.5×10細胞/mLのヤロウィア酵母を植菌して、pH7.0、15℃で培養したとき、培養開始から48時間後の細胞から全RNAを抽出して特定のヤロウィア酵母リパーゼについて定量的PCR解析を行った場合の発現量が、5×10細胞/mLのヤロウィア酵母単独を植菌した場合と比べて、1.1倍以上、1.2倍以上、1.5倍以上、1.7倍以上、2倍以上、5倍以上、10倍以上または20倍以上となるような組み合わせである。
 1つの局面では、本開示は、ヤロウィア酵母を含む、リパーゼを生産するブルクホルデリア細菌のリパーゼ生産を向上させるための組成物を提供する。あるいは、本開示は、リパーゼを生産するブルクホルデリア細菌のリパーゼ生産を向上させるためのヤロウィア酵母を提供する。別の局面では、本開示は、ブルクホルデリア細菌を含む、リパーゼを生産するヤロウィア酵母のリパーゼ生産を向上させるための組成物を提供する。あるいは、本開示は、リパーゼを生産するヤロウィア酵母のリパーゼ生産を向上させるためのブルクホルデリア細菌を提供する。本明細書に記載されるように、本開示では、2種の微生物の組合せ効果が観察されているが、これは別の見方をすると、ヤロウィア酵母の新たな機能、能力または用途として、リパーゼを生産するブルクホルデリア細菌のリパーゼ生産を向上させることがあることを見出したことに基づく発明、あるいはブルクホルデリア細菌の新たな機能、能力または用途として、リパーゼを生産するヤロウィア酵母のリパーゼ生産を向上させることを見出したことに基づく発明であるともいえる。したがって、これらの局面において、本明細書に記載される本開示の微生物の組み合わせに関する事項は、これらの新規用途においても同様に適用可能であることが理解される。
 別の局面では、本開示は、ヤロウィア酵母を含む、リパーゼを生産するブルクホルデリア細菌の油脂および/または脂肪酸を処理する能力を強化するための組成物を提供する。あるいは、本開示は、リパーゼを生産するブルクホルデリア細菌の油脂および/または脂肪酸を処理する能力を強化するためのヤロウィア酵母を提供する。さらに別の局面では、本開示は、ブルクホルデリア細菌を含む、リパーゼを生産するヤロウィア酵母の油脂および/または脂肪酸を処理する能力を強化するための組成物を提供する。あるいは、リパーゼを生産するヤロウィア酵母の油脂および/または脂肪酸を処理する能力を強化するためのブルクホルデリア細菌を提供する。本開示では、2種の微生物の組合せ効果が観察されているが、これは別の見方をすると、ヤロウィア酵母の新たな機能、能力または用途として、リパーゼを生産するブルクホルデリア細菌の油脂および/または脂肪酸を処理する能力を強化することがあることを見出したことに基づく発明、あるいはブルクホルデリア細菌の新たな機能、能力または用途として、リパーゼを生産するヤロウィア酵母の油脂および/または脂肪酸を処理する能力を強化することを見出したことに基づく発明であるともいえる。したがって、これらの局面において、本明細書に記載される本開示の微生物の組合せに関する事項は、これらの新規用途においても同様に適用可能であることが理解される。
 理論に束縛されることを望まないが、1つの好ましい実施形態では、ヤロウィア酵母を含む、リパーゼを生産するブルクホルデリア細菌のリパーゼ生産を向上させるための組成物、および/またはヤロウィア酵母を含む、リパーゼを生産するブルクホルデリア細菌の油脂および/または脂肪酸を処理する能力を強化するための組成物を提供することが好ましい理由として、比較的調製が容易であるブルクホルデリア細菌の能力を少量のヤロウィア酵母を利用することで同等またはそれ以上の油脂および/または脂肪酸分解効果を達成することができることにある。理論に束縛されることを望まないが、例えば、Ngamdee Wら、BMC Microbiol. 2015 Mar 3;15:56.「Competition between Burkholderia pseudomallei and B.thailandensis」およびMitch Rら、Appl Microbiol Biotechnol. 2015; 99(22):9723-9743.「Irradiation of Yarrowia lipolytica NRRL YB-567 creating novel strains with enhanced ammonia and oil production on protein and carbohydrate substrates」によると、ブルクホルデリア細菌の倍化時間は約39分であり、ヤロウィア酵母の倍化時間は約1.5時間であるため、ブルクホルデリア細菌の方が増殖速度が速い。本発明者は、本開示の微生物の組み合わせが各々の単独培養の油脂および/または脂肪酸分解能の値から計算される油脂および/または脂肪酸分解能を超える油脂および/または脂肪酸分解能を有し得ることを見出したが、この知見により、本開示の微生物の組み合わせを使用することで、増殖速度の速いブルクホルデリア細菌の油脂および/または脂肪酸分解能が向上し、総合的な油脂および/または脂肪酸分解が加速するため、微生物の効率的・安定的な利用が可能になる。
 一つの実施形態では、本開示の微生物の組み合わせにおけるブルクホルデリア細菌は、ブルクホルデリア(Burkholderiales)目の細菌である。一つの実施形態では、本開示の微生物の組み合わせにおけるブルクホルデリア細菌は、ブルクホルデリア(Burkholderiaceae)科の細菌である。一つの実施形態では、本開示の微生物の組み合わせにおけるブルクホルデリア細菌は、ブルクホルデリア(Burkholderia)属の細菌である。ブルクホルデリア属はグラム陰性の非芽胞形成好気性の極鞭毛を持つ桿菌であり、ブルクホルデリア科の基準属である。一つの実施形態では、本開示の微生物の組み合わせにおけるブルクホルデリア細菌は、ブルクホルデリア アルボリス(Burkholderia arboris)、ブルクホルデリア アンビファリア(Burkholderia ambifaria)またはブルクホルデリア セパシア(Burkholderia cepacia)であり、好ましくは、ブルクホルデリア アルボリスまたはブルクホルデリア アンビファリアである。一つの実施形態では、本開示の微生物の組み合わせにおけるブルクホルデリア細菌は、Burkholderia cepacia complexに属する微生物である。Burkholderia cepacia complexとは、遺伝子的に非常に近いBurkholderia属の微生物の分類であり、ambifaria、anthina、arboris、cenocepacia、cepacia、contaminans、diffusa、dolosa、lata、latens、metallica、multivorans、pseudomultivorans、puraquae、pyrrocinia、seminalis、stabilis、stagnalis、territorii、ubonensis、およびvietnamiensisが含まれる(Martina Pら、Int J Syst Evol Microbiol. 2018 Jan;68(1):14-20.)。別の実施形態では、本開示の微生物の組み合わせにおけるブルクホルデリア細菌は、metallica、seminalis、anthina、ambifaria、diffusa、ubonensis、multivorans、latens、cenocepacia、vietnamiensis、pyrrocinia、stabilis、glumae、gladioli、plantarii、oklahomensis、thailandensis、mallei、pseudomalleiまたはphytofirmansであってもよい。本開示のさらなる局面では、本開示の微生物の組み合わせにおけるブルクホルデリア細菌は、ラルストニア(Ralstonia)属またはシュードモナス(Pseudomonas)属の細菌であってもよい。本発明者は、16SリボゾームDNAの塩基配列の決定及び系統解析によって、新たな微生物の菌株(KH-1株)をブルクホルデリア アルボリスと同定し、独立行政法人製品評価技術基盤機構特許微生物寄託センターにこれを寄託し、2018年6月4日に受領され、2018年6月12日に受託証が発行された。受託番号はNITE BP-02731である。また、ブルクホルデリア属の細菌の菌株(KH-1AL1株、KH-1AL2株およびKH-1AL3株)をさらに同定し、独立行政法人製品評価技術基盤機構特許微生物寄託センターにこれらを寄託し、2019年6月26日に受領され、2019年7月8日に受託証が発行された。受託番号はそれぞれ、NITE BP-02977、NITE BP-02978、およびNITE BP-02979である。一つの実施形態では、本開示の微生物の組み合わせにおけるブルクホルデリア細菌は、ブルクホルデリア菌KH-1株(受託番号NITE BP-02731で特定される菌株)、KH-1AL1株(受託番号NITE BP-02977で特定される菌株)、KH-1AL2株(受託番号NITE BP-02978で特定される菌株)もしくはKH-1AL3株(受託番号NITE BP-02979で特定される菌株)であるか、またはその誘導株である。
 一つの実施形態では、本開示の微生物の組み合わせにおけるブルクホルデリア細菌は、ブルクホルデリア菌KH-1株(受託番号NITE BP-02731で特定される菌株)、KH-1AL1株(受託番号NITE BP-02977で特定される菌株)、KH-1AL2株(受託番号NITE BP-02978で特定される菌株)もしくはKH-1AL3株(受託番号NITE BP-02979で特定される菌株)の誘導株である。ここで、誘導株とは、ブルクホルデリア菌KH-1株、KH-1AL1株、KH-1AL2株もしくはKH-1AL3株を元として得られた株であることは必要とせず、これらのブルクホルデリア菌株の生物学的機能を、必ずしも同じ度合いでなくてもよいが示す微生物であり、好ましくは同程度以上の生物学的活性を有する微生物を指す。一つの実施形態では、本開示の微生物の組み合わせにおけるブルクホルデリア細菌は、ブルクホルデリア細菌KH-1株、KH-1AL1株、KH-1AL2株もしくはKH-1AL3株と同様に、リパーゼを生産する能力、および低温(例えば、25℃以下、20℃以下、15℃以下、10℃以下、5℃以下など)において油脂および/または脂肪酸を資化(分解)する能力からなる群から選択される少なくとも1つの生物学的機能を示すが、その生物学的機能の程度はKH-1株、KH-1AL1株、KH-1AL2株もしくはKH-1AL3株と異なっていてもよい。一つの実施形態では、本開示の微生物の組み合わせにおける誘導株であるブルクホルデリア細菌は、ブルクホルデリア(Burkholderiaceae)科の細菌であり、より具体的には、ブルクホルデリア(Burkholderia)属の細菌であり、さらに具体的には、ブルクホルデリア アルボリス(Burkholderia arboris)、ブルクホルデリア アンビファリア(Burkholderia ambifaria)、またはBurkholderia cepacia complexに属する微生物である。
 本開示の微生物の組み合わせにおけるブルクホルデリア細菌は、油脂を唯一の炭素源として含み、pHを6~8に調整した無機塩寒天培地上で単離可能であり得る。一つの実施形態では、本開示の微生物の組み合わせにおけるブルクホルデリア細菌は、リパーゼを生産する。また、一つの実施形態では、本開示の微生物の組み合わせにおけるブルクホルデリア細菌は、寒天培地上に生じたコロニー周辺にクリアゾーン(ハロー)が形成されるのを確認することで判別可能であり得る。
 一つの実施形態では、本開示の微生物の組み合わせにおけるブルクホルデリア細菌は、15℃において油脂および/または脂肪酸を分解する能力を有する。一つの実施形態では、本開示の微生物の組み合わせにおけるブルクホルデリア細菌は、リパーゼを生産する能力、および/または脂肪酸または油脂を資化または分解する能力が15℃において保持される。
 一つの実施形態では、本開示の微生物の組み合わせにおけるブルクホルデリア細菌は、油脂や脂肪酸を含む培地中で培養すると、バイオサーファクタントを分泌し得る。
 一つの実施形態では、本開示の微生物の組み合わせにおけるブルクホルデリア細菌は、10g/Lのキャノーラ油を含む無機塩培地に、3×10細胞/mLまたは2×10細胞/mLとなるような細胞濃度で微生物を植菌し、200ml/minの空気還流下、pH7.0、15℃で培養したときに、24または48時間後の上清におけるノルマルヘキサン値相当の油分が、9g/L未満、8g/L未満、7g/L未満、6g/L未満、5g/L未満、4g/L未満、3g/L未満、2g/L未満、1g/L未満、0.7g/L未満、0.5g/L未満、0.2g/L未満、0.1g/L未満、0.07g/L未満、0.05g/L未満、0.02g/L未満、または0.01g/L未満となる油脂分解能を有する。特に、本開示の微生物の組み合わせにおけるブルクホルデリア細菌は、この条件で判定した場合に2×10細胞/mLの細胞濃度で植菌し48時間培養した場合に約6g/L未満までノルマルヘキサン値相当の油分を低下させる油脂分解能を有することが好ましく、3×10細胞/mLの細胞濃度で植菌し24時間培養した場合に6g/L未満までノルマルヘキサン値相当の油分を低下させる油脂分解能を有することが特に好ましく、このような低温油脂分解能を有する微生物は本開示の種々の用途において有益に使用することができる。
 一つの実施形態では、本開示の微生物の組み合わせにおけるブルクホルデリア細菌は、10g/Lのキャノーラ油を含む無機塩培地に、最終濃度が3×10細胞/mLとなるような細胞濃度で微生物を植菌し、200ml/minの空気還流下、pH7.0、15℃および28℃でそれぞれ培養したときに、15℃培養における24時間後の上清におけるノルマルヘキサン値相当の油分が、28℃培養における24時間後の上清におけるノルマルヘキサン値相当の油分と比較して1000%以下、800%以下、600%以下、400%以下、200%以下、150%以下、100%以下、80%以下、60%以下、40%以下、20%以下、10%以下または5%以下となる油脂分解能を有する。本開示の微生物の組み合わせにおけるブルクホルデリア細菌は、この条件で判定した場合に、28℃培養に比べて15℃培養における油脂残存率が、800%以下、700%以下、600%以下、500%以下、400%以下、特に、700%以下である油脂分解能を有することが好ましく、このような低温油脂分解能を有する微生物は本開示の種々の用途において有益に使用することができる。
 一つの実施形態では、本開示の微生物の組み合わせにおけるブルクホルデリア細菌は、10g/Lのキャノーラ油を含む無機塩培地に、最終濃度が3×10細胞/mLとなるような細胞濃度で微生物を植菌し、200ml/minの空気還流下、pH7.0、15℃および28℃でそれぞれ培養を開始したときに、28℃培養に比べて15℃培養における全脂肪酸分解速度が、1000%以上、800%以上、600%以上、400%以上、200%以上、150%以上、100%以上、80%以上、60%以上、50%以上、40%以上、30%以上、20%以上、10%以上または5%以上となる油脂分解能を有する。本開示の微生物の組み合わせにおけるブルクホルデリア細菌は、この条件で判定した場合に、28℃培養に比べて15℃培養における全脂肪酸分解速度が、50%以上、40%以上、30%以上、20%以上または10%以上、特に、30%以上である油脂分解能を有することが好ましく、このような低温油脂分解能を有する微生物は本開示の種々の用途において有益に使用することができる。
 一つの実施形態では、本開示の微生物の組み合わせにおけるヤロウィア酵母は、本明細書に記載の任意のヤロウィア(Yarrowia)属の酵母であり得る。
 本開示の微生物の組み合わせにおける少なくとも1種の微生物は、油脂を唯一の炭素源として含み、pHを6~8に調整した無機塩寒天培地上で単離可能であり得る。また、一つの実施形態では、本開示の微生物の組み合わせにおける少なくとも1種の微生物は、寒天培地上に生じたコロニー周辺にクリアゾーン(ハロー)が形成されるのを確認することで判別可能であり得る。一つの実施形態では、本開示の微生物の組み合わせにおける1種の微生物は、15℃または28℃、好ましくは15℃において10g/Lのキャノーラ油を炭素源として添加した寒天培地上でコロニーを形成し、生育できることが好ましく、本開示の微生物の組み合わせにおけるブルクホルデリア細菌およびヤロウィア酵母の両方が同条件でコロニーを形成し、生育できることがより好ましい。本開示の微生物の組み合わせにおいて、ブルクホルデリア細菌およびヤロウィア酵母がどちらも最低限の油脂資化(分解)能を有していることが有用であり得る。
 一つの実施形態では、微生物の油脂および脂肪酸の分解・資化能力は、培地中に残存する油脂に含まれる脂肪酸および分解により生じた遊離脂肪酸をガスクロマトグラフィーで定量することにより評価できる。具体的な定量手順を示すと、まず、培養上清3mLを塩酸により酸性にし、等量の酢酸エチルを加える。5分間攪拌後遠心し、酢酸エチル層1mLを別容器に移して溶媒を蒸発させて濃縮する。クロロホルム1mlに溶解し、メタノリシス溶液(メタノール:硫酸=17:3)を4mL加えて100℃で2時間加熱し、油脂中の脂肪酸および遊離脂肪酸をメチルエステル化させる。その後、クロロホルム:純水=1:1の溶液を添加して攪拌した後、クロロホルム層を0.5%オクタン酸メチルと1:1の割合で混合し、ガスクロマトグラフィーで分析し、全脂肪酸のメチルエステルを定量する。試薬の量や抽出溶媒の種類などについては適宜変更することができ、例えば、以下のような代替的な手順が可能である。培養上清1mLを塩酸により酸性にし、2mLのクロロホルムを加える。2分間攪拌後遠心し、クロロホルム層1mLを別容器に移して溶媒を蒸発させて濃縮する。メタノリシス溶液(メタノール:硫酸=17:3)を2mL加えて100℃で2時間加熱し、油脂中の脂肪酸および遊離脂肪酸をメチルエステル化させる。その後、クロロホルム2mL、純水1mLを加えて攪拌の後、クロロホルム層をガスクロマトグラフィーで分析し、全脂肪酸のメチルエステルを定量する。
 一つの実施形態では、微生物の油脂および脂肪酸の分解・資化能力は、培地中に残存する油脂および分解生成物である脂肪酸を薄層クロマトグラフィーで分析することにより評価できる。具体的な手順を示すと、まず、培養上清に等量のクロロホルムを加えることによって、油脂を抽出する。この抽出物5μLを、クロロホルム、アセトンおよびメタノールを、体積比でそれぞれ96:4:1の比率で含む展開溶媒を使用し、シリカゲルコートプレート上に展開する。展開溶媒の比率などについては適宜変更することができ、例えば、クロロホルム、アセトンおよびメタノールを、体積比でそれぞれ96:4:2の比率としても、良好な結果を得ることができる。プレートをモリブトリン酸n水和物により処理し、油脂および/または脂肪酸を発色させる。
 一つの実施形態では、微生物のエステル(例えば、油脂)および脂肪酸の分解・資化能力は、それぞれの油脂または脂肪酸を唯一の炭素源とする培地での増殖能を調べることで評価できる。
 一つの実施形態では、本開示の微生物の組み合わせにおける微生物は、エステラーゼ(例えば、リパーゼ)を生産する能力がある。
 一つの実施形態では、リパーゼ活性は、パルミチン酸と4-ニトロフェノールとのエステルである4-ニトロフェニルパルミテート(4-NPP)を基質として用いて酵素反応を行い、エステルの加水分解により生じたp-ニトロフェノールの量を410nmの吸光度を測定することによって決定できる。まず、4-NPP(18.9mg)を3%(v/v)Triton(登録商標) X―100(12ml)に加え、70℃で溶解して基質溶液とする。基質溶液1mL、イオン交換水0.9mLおよび150mM GTA緩衝液(150mM 3,3-ジメチルグルタル酸、150mM Tris,および150mM 2-アミノ-2-メチル-1,3-プロパンジオールにNaOHまたはHClを加えてpH7.0に調製)1mLをセルに入れ、28℃で5分間保温する。これに培養上清を0.1mL添加して、攪拌しながら410nmの値を測定する。リパーゼ活性は、1μモルの4-ニトロフェノールを生産する酵素量を1ユニット(U)と定義して活性測定を行い、培養上清1mL当たりのユニットを算出する。
 一つの実施形態では、本開示の微生物の組み合わせにおける微生物は、弱酸性条件(例えば、pH約5.5~6.0)において増殖・油分解可能であり得る。
 一つの実施形態では、微生物の増殖能力は、菌体の光学密度として660nmの吸光度(濁度)を測定する方法や、コロニーフォーミングユニット(CFU)を測定する方法などで調べることができる。後者では、寒天培地上に培養液の原液および希釈液を一定量塗り拡げ、静置培養により形成されたコロニーを計数する。
 当業者は、上記の測定法を適当に使用してKH-1株、KH-1AL1株、KH-1AL2株、KH-1AL3株もしくはKH-2株、KH-2AL1株、KH-2AL3株の誘導株を試験して、上記の生物学的機能(およびその程度)を有する誘導株を取得することができる。
 一つの実施形態では、本開示の微生物の組み合わせにおけるブルクホルデリア細菌および/またはヤロウィア酵母は、KH-1株+このヤロウィア酵母またはこのブルクホルデリア細菌+KH-2株の結果が、KH-1株単独またはKH-2株単独と同等またはより優れていることを基準に選択することができる。
 一つの実施形態では、例えば、1%(v/v)のキャノーラ油を添加した無機塩培地にKH-1株+ヤロウィア酵母またはブルクホルデリア細菌+KH-2株を合計5×10細胞/mLの細胞濃度で植菌して、pH7.0、15℃で48時間培養するか、またはpH7.0、28℃で18時間培養したときの培養上清をガスクロマトグラフィー分析して決定した全脂肪酸測定値が、同条件におけるKH-1株+KH-2株の全脂肪酸測定値と比較して、200%未満、180%未満、160%未満、140%未満、120%未満、100%未満、70%未満、または50%未満である場合、そのブルクホルデリア細菌および/またはヤロウィア酵母は好適に使用され得る。
 一つの実施形態では、1%(v/v)のキャノーラ油を添加した無機塩培地にOD660の測定値がKH-1株:ヤロウィア酵母またはブルクホルデリア細菌:KH-2株=0.018:0.02になるような菌体光学密度で各微生物を植菌して、pH7.0、15℃で71時間培養した細胞から全RNAを抽出して特定のブルクホルデリア細菌リパーゼについて定量的PCR解析を行った場合の発現量が、同条件におけるKH-1株+KH-2株の混合培養時のブルクホルデリア細菌リパーゼの発現量と比較して、50%以上、70%以上、100%以上、120%以上、140%以上、160%以上、180%以上、200%以上である場合、そのブルクホルデリア細菌および/またはヤロウィア酵母は好適に使用され得る。
 一つの実施形態では、1%(v/v)のキャノーラ油を添加した無機塩培地にKH-1株:ヤロウィア酵母またはブルクホルデリア細菌:KH-2株=2.5×10細胞/mL:2.5×10細胞/mLになるように各微生物を植菌して、pH7.0、15℃で48時間培養した細胞から全RNAを抽出して特定のヤロウィア酵母リパーゼについて定量的PCR解析を行った場合の発現量が、同条件におけるKH-1株+KH-2株の混合培養時のヤロウィア酵母リパーゼの発現量と比較して、50%以上、70%以上、100%以上、120%以上、140%以上、160%以上、180%以上、200%以上である場合、そのブルクホルデリア細菌および/またはヤロウィア酵母は好適に使用され得る。
 (組成物または組み合わせ物)
 一つの局面において、本開示は、本開示の微生物を含む組成物または組み合わせ物を提供する。一つの局面において、本開示は、本開示の微生物の培養上清を含む組成物または組み合わせ物を提供する。本開示の微生物は、任意の適当な方法により培養することで製造することができる。一つの実施形態では、組成物または組み合わせ物は油分解剤である。一つの実施形態では、トランス脂肪酸(例えば、エライジン酸、パルミテライジン酸および/またはバクセン酸)を分解するため、トランス脂肪酸含有油脂を分解するため、15℃においてエステル(例えば、油脂)および/または脂肪酸を分解するため、短鎖~中鎖脂肪酸(C2~C12)含有エステルを分解するため、および/または短鎖~長鎖脂肪酸(C2以上)含有油脂を分解するための、油分解剤である。一つの実施形態では、組成物は脂肪酸分解剤である。本開示の脂肪酸分解剤によって処理することで、脂肪酸に含まれる炭素数よりも少ない炭素を含む化合物が生成され得る。一つの実施形態では、組成物はトランス脂肪酸(例えば、エライジン酸、パルミテライジン酸および/またはバクセン酸)分解剤である。
 一つの局面において、本開示は、本開示の微生物の組み合わせにおける少なくとも1種の微生物を含む組成物または組み合わせ物を提供する。この態様においては、組成物(必要に応じて、本開示の微生物の組み合わせとなるような微生物と組み合わせて)または組み合わせ物において本開示の微生物の組み合わせが提供される。本開示の微生物の組み合わせにおける少なくとも1種の微生物は、任意の適当な方法により培養することで製造することができる。この組成物または組み合わせ物において使用される本開示の微生物の組み合わせは、上記された本開示の微生物の組み合わせのいずれであってもよい。
 一つの実施形態では、本開示の組成物または組み合わせ物は油分解剤である。一つの実施形態では、本開示の組成物は、本開示の微生物の組み合わせにおけるブルクホルデリア細菌およびヤロウィア酵母のうちの一方を含む、該ブルクホルデリア細菌およびヤロウィア酵母のうちの他方のリパーゼ発現および/または生産を向上させるための組成物であり、一つの実施形態では、リパーゼは、ブルクホルデリア細菌の第1のリパーゼ(塩基配列:配列番号1、アミノ酸配列:配列番号2、またはこれらの改変体など)、第2のリパーゼ(塩基配列:配列番号3、アミノ酸配列:配列番号4、またはこれらの改変体など)、ヤロウィア酵母の第1のリパーゼ(塩基配列:配列番号5、アミノ酸配列:配列番号6、またはこれらの改変体など)および/または第2のリパーゼ(塩基配列:配列番号7、アミノ酸配列:配列番号8、またはこれらの改変体など)を含む。一つの実施形態では、所定の温度(例えば、15℃、28℃)において油脂および/または脂肪酸を分解するため、短鎖~中鎖脂肪酸(C2~C12)含有油脂を分解するため、および/または短鎖~長鎖脂肪酸(C2以上)含有油脂を分解するための、油分解剤である。油分解剤は、本開示の微生物の組み合わせのうちの1種の微生物(例えば、ブルクホルデリア細菌またはヤロウィア酵母のいずれか)のみを含み、それ自体では所望の油脂および/または脂肪酸分解能を呈さない場合であっても、本開示の微生物の組み合わせを形成するように使用されるときに、所望の油脂および/または脂肪酸分解能を呈すればよい。一つの実施形態では、組成物は脂肪酸分解剤である。本開示の脂肪酸分解剤によって処理することで、脂肪酸に含まれる炭素数よりも少ない炭素を含む化合物が生成され得る。
 (適用対象)
 一つの実施形態では、本開示の油分解剤を適用する油脂として、例えば、植物性油脂(綿実油、菜種油、大豆油、トウモロコシ油、オリーブ油、サフラワー油、米油、ごま油、パーム油、ヤシ油、落花生油等)、動物性油脂(ラード、牛脂、乳脂肪等)、魚油、これらの油脂の加工品(マーガリン、ショートニング、バター等)、絶縁油、潤滑油などが挙げられるが、これらに限定されない。油脂は、エマルジョンの形態で存在していてもよいし、遊離の状態で存在していてもよい。
 具体的な実施形態としては、本開示の油分解剤を適用する油脂として、トランス脂肪酸(例えば、エライジン酸、パルミテライジン酸および/またはバクセン酸)を含む油脂が挙げられ、そのような油脂としては、水素添加して製造される油脂などの加工品(マーガリン、ショートニング、バター等)が挙げられるがこれに限定されない。水素を添加することで不飽和脂肪酸の二重結合の数が減り、飽和脂肪酸の割合が増えるが、これによって、トランス脂肪酸が生成する場合がある。水素添加によって製造されるマーガリン、ファットスプレッド、ショートニングや、それらを原材料に使ったパン、ケーキ、ドーナツなどの洋菓子、揚げ物などにトランス脂肪酸が含まれるとされる。植物や魚からとった油を精製する工程で、好ましくない臭いを取り除くために高温で処理を行う。この際に、油に含まれているシス型の不飽和脂肪酸からトランス脂肪酸ができるため、サラダ油などの精製した植物油にも微量のトランス脂肪酸が含まれるとされる。
 本開示の油分解剤または脂肪酸分解剤を適用する対象は、特に制限されず、例えば、産業排水、家庭排水、産業廃棄物、家庭廃棄物(生ゴミなど)、畜産廃棄物、養殖場(およびその排水)、畜舎(およびその排水)、と殺場(およびその排水)、油により汚染された土壌、油により汚染された水(海、池、川、動物用飲用水など)、動物の体表、水槽(養殖用、鑑賞用など)、任意の油汚染製品(食器、機械部品など)、厨房等に設置されるグリーストラップ、排水管、ファットバーグ、変圧器などから漏れた絶縁油や劣化した絶縁油などが挙げられるが、これらに限定されない。「グリーストラップ」とは、排水中の油を分離し、収集するための装置であり、典型的には3槽から構成される。第1槽はバスケットを備え、食材片や残飯などを捕捉する。第2槽では油水が分離される。油と分離した排水は第3槽に送られ、沈降性のゴミなどが除去される。飲食店や病院、ホテル等の業務用厨房にはグリーストラップの設置が義務づけられている。グリーストラップに適用する際は、別に分解処理槽を設けてもよいが、油分解剤や微生物を直接グリーストラップに投入してグリーストラップ内で分解処理することもできる。
 本開示の微生物の組み合わせは、低温での処理の効率も高いことから、低温処理が望ましい実施形態であり得る。例えば、産業排水、家庭排水、産業廃棄物、家庭廃棄物(生ゴミなど)、油により汚染された土壌、油により汚染された水(海、池、川、動物用飲用水など)などの、20℃未満(例えば、15℃)での処理が想定される例も、本開示の微生物の組み合わせによって処理される対象として好ましい一例である。
 具体的には、製剤などを投入ないし添加したり、または本開示の微生物の組み合わせのうちの1種または複数種を固定化した担体などを排水経路や排水貯留槽、グリーストラップ内等に設置したりする。グリーストラップ外に、別途、専用の分解処理槽を設けることにしてもよい。
 一つの実施形態では、排水としては、飲食店、病院、ホテル等の排水、家庭排水、食品加工工場、油加工工場等から排出される産業排水などが挙げられるが、これらに限定されない。
 (使用形態)
 本開示の微生物の組み合わせ、組み合わせ物または組成物の形態としては、例えば、液体状態、固体状態などが挙げられる。液体状態の微生物の組み合わせ、組み合わせ物または組成物としては、微生物の培養液、培養液から微生物を遠心分離などにより集菌した後、水や緩衝液或いは培養液などに再度分散させたものなどが例示される。固体状態の微生物または組成物としては、遠心分離やプレス圧縮等により脱水したもの、固体と液体の中間のようなペースト状態・マヨネーズ状態のもの、乾燥(例えば、減圧乾燥、凍結乾燥)した乾燥体などが例示される。固体の形状として、例えば、粉末、顆粒、錠剤などが挙げられる。また、本開示の微生物の組み合わせは、微生物または培養上清が担体に固定された状態で提供されてもよい。
 一つの実施形態において、本開示の微生物の組み合わせおよびこれを提供する組成物または組み合わせ物は、微生物合計が約1×10細胞/mL、約1×10細胞/mL、約1×10細胞/mL、約1×10細胞/mL、約1×10細胞/mL、約1×10細胞/mL、約1×10細胞/mL、約10細胞/mLまたは約1細胞/mLの細胞濃度となるように液体に添加され得る。
 (適用環境)
 本開示の微生物の組み合わせおよびこれを提供する組成物または組み合わせ物は、任意の好適な環境下で使用できる。一つの実施形態において、本開示の微生物の組み合わせおよびこれを提供する組成物または組み合わせ物は、10~60℃、12~50℃、15~40℃、20~35℃、60℃未満、50℃未満、40℃未満、30℃未満、25℃未満、20℃未満、15℃未満、約60℃、約50℃、約40℃、約30℃、約25℃、約15℃、または約10℃の環境で使用され得る。
 一つの実施形態において、本開示の微生物の組み合わせおよびこれを提供する組成物または組み合わせ物は、pH4~12、pH5~11、pH6~10、pH7~9、pH5.5~8.5、約pH4、約pH5、約pH6、約pH7、約pH8、約pH9、約pH10、または約pH11の環境で使用され得る。
 一つの実施形態において、本開示の微生物の組み合わせおよびこれを提供する組成物または組み合わせ物は、0.05mg/L以上、0.1mg/L以上、0.5mg/L以上、または1mg/L以上の溶存酸素濃度(DO)の環境で使用され得る。
 一つの実施形態において、本開示の微生物の組み合わせおよびこれを提供する組成物または組み合わせ物は、100~40000mg/L、200~30000mg/L、300~30000mg/Lのノルマルヘキサン値の環境中(例えば、排水中)で使用され得る。汚泥のスラリーや生ごみ処理などの固形廃棄物(水を含んでもよい)では、より高濃度に油脂が存在する場合があるが、一つの実施形態において、本開示の微生物の組み合わせおよびこれを提供する組成物または組み合わせ物は、このような固形廃棄物に対しても有用に適用され得る。
 一つの実施形態において、本開示の微生物、組成物または組み合わせ物は、50重量%以上、20重量%以上、10重量%以上、7重量%以上、5重量%以上、2重量%以上、1重量%以上、0.7重量%以上、0.5重量%以上、0.2重量%以上、0.1重量%以上、0.07重量%以上、0.05重量%以上、0.02重量%以上、0.01重量%以上、0.007重量%以上、0.005重量%以上、0.002重量%以上または0.001重量%以上のトランス脂肪酸を含む対象に添加され得る。
 一つの実施形態において、本開示の微生物、組成物または組み合わせ物は、含まれるエステル(例えば、油脂)の中のトランス脂肪酸が占める割合が50重量%以上、20重量%以上、10重量%以上、7重量%以上、5重量%以上、2重量%以上、1重量%以上、0.7重量%以上、0.5重量%以上、0.2重量%以上、0.1重量%以上、0.07重量%以上、0.05重量%以上、0.02重量%以上、0.01重量%以上、0.007重量%以上、0.005重量%以上、0.002重量%以上または0.001重量%以上である対象に添加され得る。
 一つの実施形態において、本開示の微生物、微生物の組み合わせおよびこれを提供する組成物または組み合わせ物を添加する対象には、窒素が微生物に利用可能な形態、好ましくはアンモニウム塩、硝酸塩、硫酸塩、又は有機窒素化合物、より好ましくは硫酸アンモニウム、尿素、アミノ酸、又はペプトン、トリプトン、カザミノ酸などのペプチドを含む形態で存在していてもよい。存在する窒素の量は、C/N=2~50の範囲であり得、好ましくはC/N=2~30、より好ましくはC/N=2~20の範囲であり得る。ただし、C/Nとは、排水中に含まれるノルマルヘキサン由来炭素原子と窒素原子の重量比である。一つの実施形態において、これらの範囲となるように窒素をさらに添加してもよい。
 一つの実施形態において、本開示の微生物、微生物の組み合わせおよびこれを提供する組成物または組み合わせ物を添加する対象には、リン(P)が微生物が利用可能な形態、好ましくはリン酸塩又は核酸、より好ましくはリン酸塩の形態で存在していてもよい。存在するリンの量は、窒素に対してN/P=1~20となる量であり得る。ただし、N/Pとは、排水中に含まれる窒素原子とリン原子の重量比である。一つの実施形態において、これらの範囲となるようにリンをさらに添加してもよい。
 一つの実施形態において、本開示の微生物、微生物の組み合わせおよびこれを提供する組成物または組み合わせ物は、塩、界面活性剤、光、電流、撹拌操作、ばっ気操作、またはこれらの任意の組み合わせが存在する条件で使用されてもよい。
 一つの実施形態において、本開示の微生物、微生物の組み合わせおよびこれを提供する組成物または組み合わせ物は、本開示の微生物を殺傷し、生育を抑制する物質(塩素、抗生物質など)を除去した後で適用してもよい。
 一つの実施形態において、本開示の微生物、微生物の組み合わせおよびこれを提供する組成物または組み合わせ物は、微生物を固定できる担体とともに使用されてもよい。このような担体を使用することでウォッシュアウトを効果的に避けられ得る。担体の材質としては、微生物を固定できるものであれば特に制限なく、例えば、炭素繊維(PAN系、ピッチ系、フェノール樹脂系等)、ポリエチレン樹脂、ポリプロピレン樹脂、ポリウレタン樹脂、ポリスチレン樹脂、ポリ塩化ビニル樹脂、ポリ酢酸ビニル樹脂、ポリビニルアルコール樹脂、ポリエチレングリコール樹脂、アクリル樹脂、ゼラチン、アルギン酸ナトリウム、カラギーナン、デキストリン、セラミックス、シリコン、金属、木炭、活性炭、鉱物(ゼオライト、珪藻土等)、およびこれらの複合体などが挙げられる。微生物の固定化率及び微生物の作用効率を高めるために、多孔質又は繊維状の担体を用いることが好ましい。また、ゲル状担体に微生物を包含させてもよい。担体の形状は、例えば、立方体状、直方体状、円柱状、球状、円板状、シート状、膜状などが挙げられる。微生物の固定化技術については、例えば、「微生物固定化法による排水処理(須藤隆一編著、産業用水調査会)」や「微生物固定化法による水処理―担体固定化法包括固定化法生物活性炭法(新しい水処理シリーズ(1))(望月 和博、堀 克敏、立本英機(著)、株式会社エヌ・ティー・エス)」などを参照のこと。
 (追加成分)
 一つの実施形態において、本開示の微生物、微生物の組み合わせおよびこれを提供する組成物または組み合わせ物は、追加の成分と組み合わされて使用してもよい。一つの実施形態において、追加の成分は、組成物または組み合わせ物に添加されていてもよいし、微生物、微生物の組み合わせまたは組成物とは別個に使用されてもよく、別個に使用される場合には、キットとして提供されてもよい。
 一つの実施形態において、追加の成分として、使用する微生物の活性を高める成分(例えば炭素源、窒素源)、界面活性剤、乾燥保護剤、微生物を長期間維持するための成分、防腐剤、賦形剤、強化剤、酸化防止剤、他の微生物が挙げられるが、これらに限定されず任意の好適な成分を使用することができる。
 一つの実施形態において、他の微生物として、グリセロールを分解(資化)する微生物、タンパク質、アミノ酸、核酸、または多糖類(例えば、セルロース)を分解(資化)する微生物などが挙げられる。他の微生物は、本開示の微生物と共生可能であることが好ましい。
 グリセロールを分解(資化)する微生物としては、例えば、真性細菌、酵母、糸状真菌類を用いることができる。好ましくは、カンジダ属酵母を用いる。カンジダ属酵母の具体例はカンジダ シリンドラセアSL1B2である(受託番号NITE P-714で独立行政法人製品評価技術基盤機構 特許微生物寄託センターに寄託されている)。当該菌株はグリセロール資化能に優れる。グリセロールを分解(資化)する微生物を併用することで、グリセロールの蓄積による油脂分解速度の低下が防止され、一層効率的な油脂分解が達成可能となり得る。
 (微生物を使用する方法)
 一つの局面において、本開示は、本開示の微生物、組成物または組み合わせ物を処理対象に作用させることを包含する、エステル(例えば、油脂)および/または脂肪酸分解除去方法を提供する。この処理対象は、トランス脂肪酸(例えば、エライジン酸、パルミテライジン酸および/またはバクセン酸)またはトランス脂肪酸含有油脂を含んでいてもよい。処理対象は、本開示の微生物、組成物または組み合わせ物を適用することができる任意の本明細書に記載の処理対象であり得る。本開示のエステル(例えば、油脂)および/または脂肪酸分解除去方法は、本開示の微生物、組成物または組み合わせ物を適用することができる任意の本明細書に記載の環境において実施することができる。一つの実施形態において、本開示のエステル(例えば、油脂)および/または脂肪酸分解除去方法は、トランス脂肪酸(例えば、エライジン酸、パルミテライジン酸および/またはバクセン酸)を分解するステップ、トランス脂肪酸含有油脂を分解するステップ、15℃においてエステル(例えば、油脂)および/または脂肪酸を分解するステップ、短鎖~中鎖脂肪酸(C2~C12)含有エステルを分解するステップ、および/または短鎖~長鎖脂肪酸(C2以上)含有油脂を分解するステップを含み得る。本開示のエステル(例えば、油脂)および/または脂肪酸分解除去方法では、本開示の微生物、組成物または組み合わせ物と組み合わせて使用され得る任意の本明細書に記載の追加成分を使用することができる。
 一つの局面において、本開示は、本開示の微生物の組み合わせおよびこれを提供する組成物または組み合わせ物を処理対象に作用させることを包含する、油脂および/または脂肪酸分解除去方法を提供する。一つの局面において、本開示は、本開示の微生物の組み合わせにおけるブルクホルデリア細菌とヤロウィア酵母とを混合して(例えば、共生させて)培養する工程を含む、該ブルクホルデリア細菌および該ヤロウィア酵母のうちの少なくとも1種のリパーゼ生産を向上させる方法を提供する。本開示の微生物の組み合わせは、組み合わせとして適用されてもよいし、それぞれの微生物(またはこれを含む組成物)を適用した結果として本開示の微生物の組み合わせとなるように適用してもよく、本明細書では、いずれの実施形態も本開示の微生物の組み合わせを作用、適用または投入すると記載する。
 一つの実施形態において、本開示のエステル(例えば、油脂)および/または脂肪酸分解除去方法は、本開示の微生物、微生物の組み合わせおよびこれを提供する組成物または組み合わせ物を油脂分解槽に投入する工程を含み、投入は、連続的であっても、逐次的であってもよい。油脂分解槽のHRT(水理学的滞留時間)は、通常12時間以上、好ましくは18時間以上、より好ましくは20時間以上、更に好ましくは24時間以上である。ノルマルヘキサンが10000mg/Lを超える排水について、80%以上のノルマルヘキサン値の低減を期待する場合は、HRTを通常18時間以上、好ましくは20時間以上、より好ましくは24時間以上であり得る。ノルマルヘキサン値が3000mg/L以下の排水について、80%以上のノルマルヘキサン値の低減を期待する場合は、HRTは通常8時間以上、好ましくは12時間以上、より好ましくは18時間以上であり得る。
 油脂分解槽の微生物濃度は排水中のエステル(例えば、油脂)および/または脂肪酸濃度に依存する場合があり、油脂および/または脂肪酸濃度が高いほど菌体濃度が高く維持され得る。油脂分解槽が発泡する場合は、対策として、HRTを短くする、シャワリング、消泡剤添加などの消泡操作を行うことができる。ただし、消泡剤は微生物の生育を阻害し得るので、添加量は当該事項を考慮して設定することが望ましい。
 油脂分解槽からの流出水のノルマルヘキサン値は、流入水のノルマルヘキサン値が300mg/L程度以下の低濃度排水の場合、好ましくは60mg/L以下、より好ましくは30mg/L以下である。流入水のノルマルヘキサン値が3000mg/L程度の中濃度排水の場合、好ましくは600mg/L以下、より好ましくは300mg/L以下、更に好ましくは150mg/L以下、最も好ましくは30mg/L以下である。流入水のノルマルヘキサン値が10000mg/L程度の高濃度排水の場合、好ましくは1000mg/L以下、より好ましくは500mg/L以下、更に好ましくは100mg/L以下、最も好ましくは30mg/L以下である。流入水のノルマルヘキサン値が30000mg/L程度以上の超高濃度排水の場合、好ましくは3000mg/L以下、より好ましくは1000mg/L以下、更に好ましくは300mg/L以下である。
 一つの実施形態において、本開示の方法により、油脂および/または脂肪酸含有排水のノルマルヘキサン値を、好ましくは80%以上、より好ましくは90%以上、更に好ましくは95%以上、最も好ましくは99%以上低下させることができる。その結果、多くの排水において、油脂分解槽からの流出水のノルマルヘキサン値を、多くの自治体で下水道への放流基準値となっている30mg/L未満に下げることも可能である。この基準値を達成すると、ノルマルヘキサン値だけに着目すれば、後段の活性汚泥処理などの本処理すら不要となり得る。
 油脂分解槽からの流出水中において、投入した微生物の量が増加している必要はない。流出水中の投入した微生物の量は、投入した量に対して、好ましくは0.01倍以上、より好ましくは0.1倍以上、更に好ましくは0.5倍以上、最も好ましくは1倍以上である。
 本開示の油脂および/または脂肪酸分解除去方法は、上記工程以外にも追加の工程を含むことができる。そのような工程としては、例えば、油脂分解槽からの流出水の全部又は一部を再度油脂分解槽に戻す工程などが挙げられる。しかしながら、本開示の方法では、このような返送処理を行わなくても十分な油脂および/または脂肪酸分解効果が得られ得るので、油脂分解槽からの流出水の全部又は一部を再度油脂分解槽に戻すことは必須ではない。
 (一般技術)
 本明細書において用いられる分子生物学的手法、生化学的手法、微生物学的手法は、当該分野において周知であり慣用されるものであり、例えば、Savli, H., Karadenizli, A., Kolayli, F., Gundes, S., Ozbek, U., and Vahaboglu, H. 2003. Expression stability of six housekeeping genes:A proposal for resistance gene quantification studies of Pseudomonas aeruginosa by real-time quantitative RT-PCR. J. Med. Microbiol. 52:403-408.、Marie-Ange Teste, Manon Duquenne, Jean M Francois and Jean-Luc Parrou 2009.Validation of reference genes for quantitative expression analysis by real-time RT-PCR in Saccharomyces cerevisiae. BMC Molecular Biology 10:99、石井誠治、奥村弘、松原チヨ、二宮扶実、吉岡浩、2004年、「熱感応性ポリマーを用いた水中油分の簡易測定方法」Vol.46、No.12、「用水と排水」などに記載されており、これらは本明細書において関連する部分(全部であり得る)が参考として援用される。
 (注記)
 本明細書において「または」は、文章中に列挙されている事項の「少なくとも1つ以上」を採用できるときに使用される。「もしくは」も同様である。本明細書において「2つの値」の「範囲内」と明記した場合、その範囲には2つの値自体も含む。
 本明細書において引用された、科学文献、特許、特許出願などの参考文献は、その全体が、各々具体的に記載されたのと同じ程度に本明細書において参考として援用される。
 以上、本開示を、理解の容易のために好ましい実施形態を示して説明してきた。以下に、実施例に基づいて本開示を説明するが、上述の説明および以下の実施例は、例示の目的のみに提供され、本開示を限定する目的で提供したのではない。従って、本発明の範囲は、本明細書に具体的に記載された実施形態にも実施例にも限定されず、特許請求の範囲によってのみ限定される。
 以下に実施例を記載する。必要な場合、以下の実施例で用いる生物の取り扱いは、必要な場合、名古屋大学や監督官庁およびカルタヘナ法において規定される基準を遵守した。試薬類は具体的には実施例中に記載した製品を使用したが、他メーカー(Sigma-Aldrich、富士フイルム、和光純薬、ナカライ、R&D Systems、USCN Life Science INC、関東化学、フナコシ、東京化成、Merck等)の同等品でも代用可能である。また、特に記述がない限り、各種油脂や脂肪酸等の培地への添加濃度は、培地中での該物質の最終濃度を指し、パーセント表記については、油脂や脂肪酸が液体の性状のものは容量/容量(v/v%)で、固体の性状のものは重量/容量(w/v%)のことを表している。
 (実施例1:トランス脂肪酸含有油脂を資化・分解し得る微生物の同定)
 酵母の保存集団を培養し、そこから微生物を分離した。分離した微生物について、低温環境下(15℃)で培養可能かどうかを調べるために、キャノーラ油(日清キャノーラ油、日清オイリオ、東京)を唯一の炭素源として含む寒天培地上に各微生物を画線植菌して、15℃で5日間培養した。その結果、油脂を栄養源とする低温で培養可能な微生物が見出された。
 また、各微生物の低温(15℃)における油脂分解能を調べた。各微生物のコロニーを、10g/Lのキャノーラ油を唯一の炭素源として含む20mLの無機塩培地(NaHPO 3.5g/L、KHPO 2.0g/L、(NHSO 4.0g/L、MgCl・6HO 0.34g/L、FeSO・7HO 2.8mg/L、MnSO・5HO 2.4mg/L、CoCl・6HO 2.4mg/L、CaCl・2HO 1.7mg/L、CuCl・2HO 0.2mg/L、ZnSO・7HO 0.3mg/L、およびNaMoO 0.25mg/L)に、爪楊枝を使って植菌し、100mL三角フラスコ中で培養した。その結果、低温で油脂を分解、資化して増殖する微生物が見出された。
 次に、各微生物のトランス脂肪酸の分解・資化能を調べた。唯一の炭素源としてエライジン酸を0.2%の終濃度で添加した2mLの無機塩培地(上記組成)に、終菌体光学密度OD660=0.04となるように各微生物を植菌した。15mLのハーモニー遠沈管(エルエムエス、東京)中、28℃、130rpmで24時間培養を行った。その結果、トランス脂肪酸であるエライジン酸を分解、資化して増殖可能な微生物が見出された。
 これらの試験により、分離したある微生物株は、油脂を栄養源とする低温環境下で培養可能であり、低温で油脂を資化(分解)することができ、トランス脂肪酸含有油脂およびトランス脂肪酸を分解・資化することが見出され、この新規株をKH-2株と命名した。
 その後の解析により、KH-2株は、Yarrowia lipolyticaであることが判明した。
 ここでは、KH-2株に注目して解析を行ったが、同様の試験により油脂および/または脂肪酸分解能を調べることによって他の株の油脂および/または脂肪酸分解能も特定することができる。
(実施例2:KH-2株の油脂・脂肪酸資化・分解能力)
 KH-2株について、トリオレイン、オレイン酸またはキャノーラ油(上記)を唯一の炭素源として含む寒天培地(油脂または脂肪酸終濃度1%、Triton(登録商標) X-100終濃度0.25%、ポリビニルアルコール終濃度0.5%、無機塩寒天培地(無機塩培地に1.5%の寒天を含む)(pH7.0))上に菌を画線植菌して、28℃で3日間培養した。無機塩培地の組成は、NaHPO 3.5g/LKH-2株PO 2.0g/L、(NH SO4.0g/L、MgCl・6HO 0.34g/L、FeSO・7HO 2.8mg/L、MnSO・5HO 2.4mg/L、CoCl・6HO 2.4mg/L、CaCl・2HO 1.7mg/L、CuCl・2HO 0.2mg/L、ZnSO・7HO 0.3mg/L、およびNaMoO 0.25mg/Lである。その結果を図1に示す。どの寒天培地上にもコロニーが形成され、KH-2株は、代表的な油脂含有植物油であるキャノーラ油、トリグリセリド油脂であるトリオレイン、これら油脂の分解産物で遊離脂肪酸の典型的な例であるオレイン酸を分解、資化し、増殖可能であることが示された。
 さらに、KH-2株について、エライジン酸を唯一の炭素源として含む寒天培地(エライジン酸終濃度0.1%、Triton(登録商標) X-100終濃度0.25%、無機塩寒天培地(pH7.0))上に菌を画線植菌して、15℃で14日間培養した。その結果を図2に示す。寒天培地上にコロニーが形成され、代表的なトランス脂肪酸であるエライジン酸を分解、資化し、増殖可能であることが示された。
(実施例3A:28℃におけるKH-2株のトランス脂肪酸分解能力)
 KH-2株およびBioRemove3200(BR3200)(Novozymes、デンマーク)の28℃におけるトランス脂肪酸分解能力を比較した。菌体を、0.2%のエライジン酸、0.25%のTriton(登録商標) X-100を含む20mLの無機塩培地(上記組成、pH7.0)に終菌体光学密度OD660=0.5(HITACHI U-2810分光光度計(日立製作所、東京))のKH-2株またはメーカー推奨濃度の5倍である5×10CFU/mlのBR3200となるように植菌し、28℃において130rpmで振盪しながら24時間培養した。
 培養後の上清中の油脂を薄層クロマトグラフィーで解析した。具体的には、培養上清に等量のクロロホルムを加え、攪拌した後、クロロホルム層12μlをシリカゲルプレートにアプライし、クロロホルム:アセトン:メタノール(96:4:2)溶液で展開した。展開後、モリブトリン酸n水和物液(2.4g/60mlエタノール)を噴霧し、110℃で12分加熱することで脂肪酸を可視化し、培地に残存する脂肪酸量を比較した(図3A(a))。
 また、24時間培養上清0.5mLを、油分測定試薬キット(共立理化学研究所、東京)(ポリニッパム抽出物質測定法による測定試薬キット)を製造元の推奨プロトコルに従って使用して解析した(図3A(b))。
 KH-2株は強力なトランス脂肪酸分解能力があることが見出された。
(実施例3B:15℃におけるKH-2株のトランス脂肪酸分解能力)
 KH-2株およびBioRemove3200(BR3200)(Novozymes、デンマーク)の15℃におけるトランス脂肪酸分解能力を比較した。菌体を、0.2%のエライジン酸、0.25%のTriton(登録商標) X-100を含む20mLの無機塩培地(上記組成、pH7.0)に終菌体光学密度OD660=0.8(HITACHI U-2810分光光度計(日立製作所、東京))のKH-2株またはメーカー推奨濃度の8倍である8×10CFU/mlのBR3200となるように植菌し、15℃において130rpmで振盪しながら48時間培養した。
 培養後の上清中の油脂を薄層クロマトグラフィーで解析した。具体的には、培養上清に1/2量のクロロホルムを加え、攪拌した後、クロロホルム層5μlをシリカゲルプレートにアプライし、クロロホルム:アセトン:メタノール(96:4:1)溶液で展開した。展開後、モリブトリン酸n水和物液(2.4g/60mlエタノール)を噴霧し、110℃で12分加熱することで脂肪酸を可視化し、培地に残存する脂肪酸量を比較した(図3B(a))。
 また、48時間培養後に上清0.5mLを、油分測定試薬キット(共立理化学研究所、東京)(ポリニッパム抽出物質測定法による測定試薬キット)を製造元の推奨プロトコルに従って使用して解析した(図3B(b))。
 KH-2株は低温(15℃)でも強力なトランス脂肪酸分解能力があることが見出された。
(実施例4A:KH-2株のトランス脂肪酸含有油脂分解能力)
 KH-2株の15℃および28℃におけるトランス脂肪酸含有油脂の分解能力を試験した。0.1%のトリエライジンを含む無機塩培地(BS)に終菌体光学密度OD660=0.8(HITACHI U-2810分光光度計(日立製作所、東京))のKH-2株を植菌し、15℃または28℃において130rpmで振盪しながら6日間培養した。微生物を添加しなかった対照試料と比較した。
 培養後の上清中の油脂を薄層クロマトグラフィーで解析した。具体的には、培養上清に等量のクロロホルムを加え、攪拌した後、クロロホルム層12μlをシリカゲルプレートにアプライし、クロロホルム:アセトン:メタノール(96:4:2)溶液で展開した。展開後、モリブトリン酸n水和物液(2.4g/60mlエタノール)を噴霧し、110℃で12分加熱することで油脂と遊離脂肪酸を可視化し、培地に残存する油脂及びその分解産物である脂肪酸量を比較した(図4)。
 KH-2株は常温(28℃)でも低温(15℃)でもトランス脂肪酸含有油脂を分解する能力があることが見出された。
(実施例5:実排水におけるKH-2株の油脂分解能力)
 実排水を使用して、KH-2株とBioRemove3200(BR3200)(Novozymes、デンマーク)との油脂分解能を比較した(図5)。
 水素添加油脂を使用している食品工場からのトランス脂肪酸含有油脂を多く含む廃水サンプルに無機塩培地(上記)相当の窒素分(硫酸アンモニウム)とリンを添加して培養した。KH-2株はLB培地にて培養し、無機塩培地で2回洗浄した後、菌体光学密度OD660=0.1(HITACHI U-2810分光光度計(日立製作所、東京))となるように植菌し、BR3200はメーカー推奨濃度の10倍である1×10CFU/mlで植菌した。微生物を添加しなかった対照試料とも比較した。28℃で培養し、24時間および48時間後にサンプルを採取した。サンプルは薄層クロマトグラフィー(シリカゲルプレートにアプライし、クロロホルム:アセトン:メタノール(96:4:1)溶液で展開後、モリブトリン酸n水和物で可視化)(図5A)および油分測定試薬キット(ノルマルヘキサン値測定、上記)(図5B)を使用して解析した。BR3200は過剰量でも分解の進行が遅かったのに対し、KH-2株は優れた分解能力を示した。
(実施例6:15℃におけるKH-2株の油脂分解能力)
 KH-2株の菌体を、1%キャノーラ油(日清キャノーラ油、日清オイリオ)を含む無機塩培地(pH7)に終菌体光学密度OD660=0.05(HITACHI U-2810分光光度計(日立製作所、東京))となるように植菌し、15℃においてファーメンターで培養した。培養の0時間、24時間、48時間および72時間時点でサンプルを採取し、サンプリングした培養液から遠心分離により菌体を除去し、この上清において、ノルマルヘキサン値相当の油分を油分測定試薬キット(ノルマルヘキサン抽出、上記)により測定し(図6A、上段)、全脂肪酸(トリグリセリド中の脂肪酸と遊離脂肪酸との総量)をガスクロマトグラフィーにより定量し(図6A、下段)、薄層クロマトグラフィー(シリカゲルプレートにアプライし、クロロホルム:アセトン:メタノール(96:4:1)溶液で展開後、モリブトリン酸n水和物で可視化)で解析した(図6B)。ガスクロマトグラフィーによる定量は以下のように行った。培養上清3mlを塩酸により酸性にし、等量の酢酸エチルを添加した。5分間攪拌後遠心分離し、酢酸エチル層1mlを耐有機溶媒チューブに移し完全に蒸発させた。クロロホルム1mlに溶解し、メタノール:硫酸=17:3で混合したメタノリシス溶液を4ml添加し、100℃で2時間加熱することにより、全脂肪酸をメチルエステル化した。クロロホルム:純水=1:1の割合で混合した溶液を添加して十分攪拌した後、クロロホルム層と0.5%オクタン酸メチル(内部標準)を1:1で混合し、FID検出器を搭載したガスクロマトグラフィー(GC-17A(島津製作所、京都))により解析した。
 これらの結果から、KH-2株は低温でも高い油脂分解・資化能力を有することが確認された。
(実施例7:28℃におけるKH-2株の油脂分解能力)
 KH-2株の菌体を、1%キャノーラ油(日清キャノーラ油、日清オイリオ)を含む無機塩培地(pH7)に終菌体光学密度OD660=0.05(HITACHI U-2810分光光度計(日立製作所、東京))となるように植菌し、28℃においてファーメンターで培養した。培養の0時間、12時間、24時間および30時間時点でサンプルを採取し、サンプリングした培養液から遠心分離により菌体を除去し、この上清において、実施例6と同様に、ノルマルヘキサン値相当の油分を測定し(図7A、上段)、全脂肪酸をガスクロマトグラフィーにより定量し(図7A、下段)、薄層クロマトグラフィーで解析した(図7B)。
 KH-2株は28℃では極めて迅速に油脂を分解し、12時間で最初に培地に含有された1%の油脂の70%以上が分解され、24時間以内に油脂も脂肪酸もほぼ消滅した。
(実施例8:追加の株による脂肪酸および油脂分解)
 油脂含有排水が流出する食品工場近傍の河川から試料を採取し、そこから微生物を分離した。分離した微生物について、低温環境下(15℃)でリパーゼを生産し、油脂を分解可能か調べた。その結果、低温で油脂を分解することができる微生物が見出された。これらの微生物株を、それぞれ、KH-2AL1株およびKH-2AL3株と命名した。
 KH-2AL1株およびKH-2AL3株をさらに特徴付けるために26S rDNAの遺伝子配列解析を行った。
 KH-2AL1株は、26S rDNAの部分塩基配列がYarrowia lipolyticaに相同率100%で一致したため、Yarrowia lipolyticaと同定された。
 KH-2AL3株は、26S rDNAの部分塩基配列がYarrowia lipolyticaに相同率100%で一致したため、Yarrowia lipolyticaと同定された。
 これらの株についてもトランス脂肪酸分解能、トランス脂肪酸含有油脂分解能および油脂分解能を調べた。
(トランス脂肪酸分解)
 実施例3と同様に、KH-2AL1株およびKH-2AL3株についてもトランス脂肪酸の分解能力を試験した。菌体を、0.2%のエライジン酸、0.25%のTriton(登録商標) X-100を含む10mLの無機塩培地(上記組成、pH7.0)に終菌体光学密度OD660=0.8(HITACHI U-2810分光光度計(日立製作所、東京))のKH-2株、KH-2AL1株またはKH-2AL3株となるように植菌し、130rpmで振盪しながら28℃で46時間または15℃で90時間培養した。実施例3と同様に、薄層クロマトグラフィー(28℃;図8A(a)、15℃;図8B(a))および油分測定試薬キットによる分析(28℃;図8A(b)、15℃;図8B(b))を行い、培養上清における油脂分解を調べた。
 KH-2AL1株およびKH-2AL3株は、KH-2株と同様のトランス脂肪酸分解能力を有することが見出された。
(トランス脂肪酸含有油脂分解)
 実施例4と同様に、KH-2AL1株およびKH-2AL3株についてもトランス脂肪酸含有油脂の分解能力を試験した。0.1%のトリエライジンおよび0.25%のTriton(登録商標) X-100を含む無機塩培地(BS)に終菌体光学密度OD660=0.8(HITACHI U-2810分光光度計(日立製作所、東京))のKH-2株、KH-2AL1株またはKH-2AL3株を植菌し、28℃において130rpmで振盪しながら5日間培養した。微生物を添加しなかった対照試料と比較した。実施例3と同様に、培養上清における油脂分解を調べた。油分測定試薬キットによる分析結果を図9に示す。
 KH-2AL1株およびKH-2AL3株は、KH-2株と同様のトランス脂肪酸含有油脂分解能力を有することが見出された。
(油脂分解)
 KH-2AL1株またはKH-2AL3株の菌体を、1%キャノーラ油(日清キャノーラ油、日清オイリオ)を含む無機塩培地(pH7)に終菌体光学密度OD660=0.05(HITACHI U-2810分光光度計(日立製作所、東京))となるように植菌し、15℃においてファーメンターで72時間培養した。培養上清を使用して、油分測定試薬キットによる分析(図10A、図11A、上段)、ガスクロマトグラフィーによる全脂肪酸分析(図10A、図11A、下段)、および薄層クロマトグラフィー分析(図10B、図11B)を行った。
 これらの結果から、本開示のヤロウィア酵母は、低温でも高い油脂分解・資化能力を有することが確認された。
(実施例9:15℃におけるKH-2株のトランス脂肪酸およびその含有油脂の資化能力)
 KH-2株の15℃におけるトランス脂肪酸およびその含有油脂の資化能力を試験した。0.2%のエライジン酸またはエライジン酸換算で0.2%のトリエライジンと、0.25%のTriton(登録商標) X-100とを含む無機塩培地(pH7.0)に終菌体光学密度OD660=0.08(HITACHI U-2810分光光度計(日立製作所、東京))のKH-2株の菌体を植菌し、15℃において130rpmで振盪しながら5日間培養した。微生物を添加しなかった対照試料と比較した。結果を図12に示す。
 KH-2株を植菌した試料では、培地が濁っていることが観察され、このことから、KH-2株は、15℃でもエライジン酸またはトリエライジンを唯一の炭素源とする環境下で増殖可能であり、これらの化合物を資化する能力があることが示された。
(実施例10:KH-2株と洗剤との洗浄力の比較)
 油汚れのついた換気扇フィルターを、KH-2株の培養上清(培養条件:1%キャノーラ油添加無機塩培地(上記組成)、初期菌体光学密度OD660=0.01になるよう接種、28℃、70時間培養。培養後、遠心分離して菌体を除去した上清を、水酸化ナトリウム水溶液を用いてpHが8.0になるように調整した)、油用洗剤(天然酵素洗剤ニコエコ台所用(ニコエコ、長野)説明書に従って143倍に水で希釈)、一般洗剤(ファミリー(登録商標)(花王、東京)、説明書に従い、666倍に希釈)に室温(25℃)で漬け置き洗いした(図13)。洗浄時間は、KH-2株培養上清、油用洗剤、一般洗剤、それぞれ30分間、2時間、4時間とした。
 一般洗剤と油用洗剤ではそれぞれ2時間、4時間の浸漬洗浄でも油汚れを完全に落とすことはできなかったが、KH-2株では30分間の浸漬洗浄で新品のようにフィルターは真っ白になった。
(実施例11:各種エステル分解)
 KH-2株の培養上清において分解されるエステルの基質特異性を調べた。
 1%キャノーラ油添加無機塩培地(上記組成)、初期菌体光学密度OD660=0.05になるようにKH-2株を接種した後、28℃で24時間、28℃で48時間または15℃で48時間培養した後、遠心分離して菌体を除去した上清を使用した。
 5種類の脂肪酸(酢酸(C2)、酪酸(C4)、オクタン酸(C8)、ラウリル酸(C12)、パルミチン酸(C16))の4-ニトロフェニルエステル(基質)のいずれか0.05molと、12mlの3%(v/v)Triton(登録商標) X-100水溶液とを混合し、70℃で融解して基質溶液を調製した。
 基質溶液、150mMのGTA緩衝液(pH7.0)および各上清を1mlずつ混合し、攪拌しながら410nm(加水分解により生じる4-ニトロフェノールに対応する)の吸光度を1分間モニターした。
 結果を以下の表に示す。5種類の基質の中で最大の分解(4-ニトロフェノール遊離)が観察されたものを100%として、各基質で生じた4-ニトロフェノール遊離量の%を表示する。
Figure JPOXMLDOC01-appb-T000002
 一般に、微生物のリパーゼ活性は、4-ニトロフェノールと長鎖脂肪酸(例えば、パルミチン酸)とのエステル(4-ニトロフェニルエステル)をモデル基質として使用して、その加水分解活性で測定される。加水分解産物である4-ニトロフェノールが黄色を呈するため、比色法により簡単に定量評価できる。この際、動植物油脂(トリグリセリド)の分解活性と相関させるため、通常、動植物油脂を構成する長鎖脂肪酸(例えば、C16以上)と4-ニトロフェノールとのエステルが用いられる。しかし、KH-2株は、長鎖脂肪酸と4-ニトロフェノールとのエステル基質に対する活性は低く、短鎖脂肪酸(C6以下)または中鎖脂肪酸(C7~12)とのエステル基質に対する活性が高いことが分かった。すなわち、当業者が通常行う実験(長鎖脂肪酸と4-ニトロフェノールとのエステルの分解能を調べる実験)に基づくと、KH-2株は長鎖脂肪酸のトリグリセリドを分解する能力を持たないという結論が導かれる。しかし、本発明者は、上記の実施例に示されるように、KH-2株が長鎖脂肪酸のトリグリセリドを分解する高い活性を有することを見出し、これは、全く予想外の知見であるといえる。また、この結果から、本開示の微生物は、短鎖~長鎖脂肪酸の油脂に対する幅広いリパーゼ活性を有し得ると予測される。
(実施例12:種々のトランス脂肪酸の資化・分解能)
 KH-2株がトランス脂肪酸であるパルミテライジン酸(16:1)およびバクセン酸(18:1)を分解する活性をBioRemove3200(BR3200)(Novozymes、デンマーク)と比較した。
 KH-2株およびBR3200を、それぞれ、パルミテライジン酸またはバクセン酸の終濃度が0.2%かつTriton(登録商標) X-100の終濃度が0.25%となるように調製した無機塩培地(上記組成、pH7)5mLに、HITACHI U-2810分光光度計(日立製作所、東京)を使用して、菌体光学密度による最終濃度がOD660=0.5となるようにKH-2株を植菌し、メーカー推奨濃度の5倍である5×10CFU/mlとなるようにBR3200を植菌した。これを130rpmで振盪しながら15℃で48時間または72時間、あるいは28℃で24時間培養した後、それぞれの株の培養上清を取得した。微生物を使用しなかった対照試料も用意した。
 その後、薄層クロマトグラフィーによって培養液中の残存油分を解析した。具体的には、サンプルの2分の1の量のクロロホルムで脂肪酸を抽出し、抽出液6μlをシリカゲルプレートにアプライし、クロロホルム:アセトン:メタノール(96:4:2)溶液で展開した。展開後、実施例4と同様にモリブトリン酸n水和物による発色反応で脂肪酸を可視化し、培地中に残存する脂肪酸量を比較した(図14、図15)。
 KH-2株は、28℃では24時間以内に、15℃では48~72時間以内に、パルミテライジン酸およびバクセン酸を完全に分解可能であった。他方、BR3200には、これら脂肪酸の分解能力はなかった。このように、本開示の微生物は、種々のトランス脂肪酸およびトランス脂肪酸含有油脂を資化・分解可能であり得る。
(実施例13:類縁株の取得)
 以下のようにして類縁株が取得され得る。
 酵母保存ライブラリー、土壌、河川、湖水、活性汚泥など様々な分離源にPBSを加えて希釈系列を調製し、トリエライジンまたはエライジン酸を唯一の炭素源とする無機塩寒天培地にスプレッディングする。あるいは、0.3~1重量%のショートニングを含む無機塩培地に、上記分離源を1~10重量%添加し、乳化と微生物の増殖が認められるまで15℃または28℃で培養する。この集積培養を任意の回数繰り返したのちに、培養液の希釈系列を調製し、上述のとおりスプレッディングしてもよい。植菌後の寒天培地を15℃または28℃で静置培養することでコロニーを得る。その中で、コロニー周辺にクリアゾーンを形成したものを中心にピックアップし、2mLほどの無機塩寒天培地(上述の濃度のトリエライジンまたはトリエライジン酸を含む)に植菌し、15℃または28℃で培養する。培養後、培養上清の油脂の分解の程度を薄層クロマトグラフィーで解析することにより、低温で油脂分解可能またはトランス脂肪酸含有油脂分解能力を有する微生物を得る。
(実施例14:装置内での使用)
 10mL/Lのキャノーラ油を含む無機塩培地でKH-2株を2×10細胞/mLまで培養し、培養原液とする。これを10倍希釈して微生物製剤(2×10細胞/mL)とする。これを自動増幅投入装置の微生物保存タンク中に冷蔵保存し、種菌とする。この種菌を、同装置の培養増幅槽中の無機塩培地中に、毎日1/100量ずつ自動植菌し、微生物数が100倍、すなわち微生物製剤と同じ細胞濃度になるまで培養する。これを油分解処理槽の排水量の1/1000投入することで、油処理水中の分解菌の微生物濃度を2×10細胞/mLとし、24時間、トランス脂肪酸含有油脂を多く含む排水を排出する食品工場からの排水を分解処理する。この時の季節は冬で、処理中の水温は12~17℃の間で変動する。その結果、微生物を投入しない対照例と比較して顕著なノルマルヘキサン値の低減が観察される。
(実施例15:他の実施形態)
 消滅型生ゴミ処理機にKH-2株を1×10細胞/mLとなるように植菌し、25~35℃で12~24時間、処理する。生ゴミ処理機から出る排水中のノルマルヘキサン値を測定する。KH-2株を投入しない対照例と比較して顕著な値の低減が観察される。
 浮上分離により回収した油性汚泥を培養槽に投入し、その投入重量の10~1000%の重量の無機塩培地を加える。ここにKH-2株を1×10細胞/mLとなるように植菌し、攪拌曝気しながら、20~35℃の間で12~240時間、インキュベートする。その後、処理済み液のノルマルヘキサン値による油分量の測定、あるいは水分を蒸発させた後に残った油を主成分とする残渣の重量を測定することにより、油性汚泥の分解・減少量を調べる。その結果、KH-2株を投入しない対照例と比較して顕著な油性汚泥分解が認められる。
 グリーストラップに木炭、各種プラスチック、セラミックス片などの担体を投入し、適量(例えば、1×10細胞/mL)のKH-2株を毎日、食堂の操業終了後に自動投入する。毎日、操業開始直前に採水し、ノルマルヘキサン値を分析する。1週間後には、KH-2株を投入しない対照例と比較して顕著なノルマルヘキサン値の低下が認められる他、グルーストラップ自体の見た目も、油の付着や浮遊が減るなどの効果が認められる。
(実施例16:有用な油脂分解能を有する微生物の組み合わせ)
 ブルクホルデリア細菌およびヤロウィア酵母には油脂分解能を有する株が存在する。これらの株を、油脂分解能を有する別の微生物株と組み合わせることで油脂分解能の優れた微生物の組み合わせを得ることができる。
 実施例ではブルクホルデリア細菌およびいくつかのヤロウィア酵母の代表的な組み合わせを用いて、共培養による油脂分解能を試験した。ブルクホルデリア細菌およびヤロウィア酵母の組み合わせで、優れた油脂分解能が観察された。以下、詳述する。
 共にリパーゼ分泌能力と油脂分解能力を有するブルクホルデリア細菌およびヤロウィア酵母の組み合わせを共培養して、油脂分解能を試験し、共培養した場合に油脂分解能の優れた組み合わせを得る。ブルクホルデリア細菌およびヤロウィア酵母の共生系を、キャノーラ油(日清キャノーラ油、日清オイリオ、東京)を終濃度で1%(v/v)含む無機塩培地(NaHPO 3.5g/L、KHPO 2.0g/L、(NHSO 4.0g/L、MgCl・6HO 0.34g/L、FeSO・7HO 2.8mg/L、MnSO・5HO 2.4mg/L、CoCl・6HO 2.4mg/L、CaCl・2HO 1.7mg/L、CuCl・2HO 0.2mg/L、ZnSO・7HO 0.3mg/L、およびNaMoO 0.25mg/L)中で共培養し、培養上清を取得し、薄層クロマトグラフィー分析や、ガスクロマトグラフィー分析などにより油脂の分解を試験した。その結果、優れた油脂分解能を有する、ブルクホルデリア細菌およびヤロウィア酵母の共生系を見出した。この共生系において有用に使用され得る微生物株として、例えば、KH-1株(Burkholderia arboris)およびKH-2株(Yarrowia lipolytica)が見出された。
 以下の実施例では、この代表的組み合わせに注目して解析を行ったが、同様の試験により油脂分解能を調べることによって他の有用な組み合わせを見出すことができる。
(実施例17:共生系の油脂分解能力のさらなる分析)
 種々の混合比率のKH-1株およびKH-2株の組み合わせの種々の温度における油脂分解能を試験した。
(15℃での分析)
 キャノーラ油(日清キャノーラ油、日清オイリオ、東京)を終濃度で1%(v/v)含む無機塩培地(上記組成、pH7)に、KH-1株およびKH-2株を、合計細胞濃度が5×10細胞/mLになるように、KH-1株:KH-2株=10:0、9:1、5:5、1:9、および0:10(細胞数基準)の比でそれぞれ添加し、15℃で培養した。48時間培養した時点において取得した培養上清について、下記の手順に従って、ガスクロマトグラフィーによる全脂肪酸分析を行った。
 ガスクロマトグラフィーによる全脂肪酸分析 培養上清3mlを塩酸により酸性にし、等量の酢酸エチルを添加した。5分間攪拌後遠心分離し、酢酸エチル層1.5mlを耐有機溶媒チューブに移し完全に蒸発させた。クロロホルム1mlに溶解し、メタノール:硫酸=17:3のメタノリシス溶液を4ml添加し、100℃で2時間加熱することにより、全脂肪酸をメチルエステル化した。クロロホルム:純水=1:1の割合で混合した溶液を添加して十分攪拌した後、クロロホルム層と0.5%オクタン酸メチル(内部標準)を1:1で混合し、FID検出器を搭載したガスクロマトグラフィー(GC-17A(島津製作所、京都))により分析した。
(結果)
 ガスクロマトグラフィー分析の結果を図16に示す。KH-1株およびKH-2株の共生系は、種々の混合比率において各々の単独培養の油脂分解能の値から計算される油脂分解能を超える油脂分解能を示した。KH-1株単独およびKH-2株単独の結果から観察されるように、KH-1株およびKH-2株それぞれが単独でリパーゼを生産し、このような類似の性質を有する微生物は互いに競合し、結果として互いの能力を抑制し合う(総合的な油脂分解能が低下する)ことが通常予想されるが、発明者らは、予想外に共生系における油脂分解能の向上を見出した。
(28℃での分析)
 KH-1株およびKH-2株の組み合わせの油脂分解能を28℃においても試験した。
 キャノーラ油(日清キャノーラ油、日清オイリオ、東京)を終濃度で1%(v/v)含む無機塩培地(上記組成、pH7)に、KH-1株およびKH-2株を、合計細胞濃度が5×10細胞/mLになるように、KH-1株:KH-2株=10:0、9:1、5:5、1:9、および0:10(細胞数基準)の比でそれぞれ添加し、28℃で培養した。18時間培養した時点において取得した培養上清について、上記と同様にガスクロマトグラフィーによる全脂肪酸分析を行った。
(結果)
 ガスクロマトグラフィー分析の結果を図17に示す。KH-1株およびKH-2株の共生系は、種々の混合比率において各々の単独培養の油脂分解能の値から計算される油脂分解能を超える油脂分解能を示した。このように、KH-1株およびKH-2株の共生系は、種々の温度域において高い油脂分解能を有する。
(実施例18:共生系の脂肪酸分解能力の分析)
 種々の混合比率のKH-1株およびKH-2株の組み合わせの脂肪酸分解能を試験した。
(28℃での分析)
 KH-1株およびKH-2株の組み合わせの油脂分解能を28℃において試験した。
 オレイン酸を終濃度で1%(v/v)含む無機塩培地(上記組成、pH7)に、KH-1株およびKH-2株を、合計細胞濃度が5×10細胞/mLになるように、KH-1株:KH-2株=10:0、9:1、5:5、1:9、および0:10(細胞数基準)の比でそれぞれ添加し、28℃で培養した。18時間培養した時点において取得した培養上清について、上記と同様にガスクロマトグラフィーによる全脂肪酸分析を行った。
(結果)
 ガスクロマトグラフィー分析の結果を図18に示す。KH-1株およびKH-2株の共生系は、種々の混合比率において各々の単独培養の場合を超える脂肪酸分解能を示した。このように、KH-1株およびKH-2株の共生系は、高い脂肪酸分解能を有する非常に好ましい組み合わせであることが分かった。
(実施例19:共生系における遺伝子発現)
 KH-1株およびKH-2株の共生系において各々の遺伝子発現の変化を調べた。
(KH-1株の分析)
 まず、共生系におけるKH-1株の遺伝子発現を分析した。
 手順は以下の通りであった。KH-1株およびKH-2株をLB培地で一晩培養後、PBS緩衝液で2回洗浄し培地成分を除去した。キャノーラ油(日清キャノーラ油、日清オイリオ、東京)を終濃度で1%(v/v)含む無機塩培地(上記組成)3LにOD660の測定値が0.02のKH-1株単独、またはOD660の測定値がKH-1株:KH-2株=0.018:0.02になるような菌体光学密度で各微生物を植菌した後、15℃のファーメンターで培養した。71時間培養後、Cica geneus RNA Prep Kit(For Tissue)(関東化学)を使用して全RNAを抽出した。
 全RNAを鋳型とし、PrimeScriptTM RT reagent Kit with gDNA Eraser Perfect Real Time(タカラバイオ社)を使用して、ゲノムDNAを除去し、cDNAを合成した。その後、キットに付属の希釈溶液を使用してcDNA原液を3倍に希釈した。KH-1株の第1のリパーゼおよび第2のリパーゼをコードする遺伝子に特異的な合成プライマーを使用して、Applied Biosystems(登録商標) StepOnePlusTM (Applied Biosystems)により、定量リアルタイムRT-PCRを行った。ここで、KH-1株の第1のリパーゼおよび第2のリパーゼとは、その代表的なアミノ酸配列および塩基配列が配列番号1~4で示されるものを指す。PCR反応は、PowerUpTM SYBR(登録商標)Green Master Mix(Thermo Fisher Scientific)(10μl)、各プライマー(終濃度0.5μM)、cDNA(1μl)を含む20μl溶液中で実施した。PCR反応はファストサイクリングモードを使用し、95℃で2分の変性を1サイクル行った後、95℃で3秒間、60℃で30秒間のサイクルを40回反復するプログラムで行った。
 発現レベルは、RNAポリメラーゼ、シグマ70(rpoD)の発現レベルで正規化した。データは溶融曲線がシングルピークであることを確認した後、比較Ct法(ΔΔCt法)により解析した。
(結果)
 結果を図19の左パネルに示す。KH-1株およびKH-2株の共生系では、KH-1株単独と比較して、KH-1株の第1のリパーゼおよび第2のリパーゼの発現が予想外に向上していた。このことは、KH-2株の存在が、KH-1株のリパーゼ発現の増強を誘導することを示している。理論に束縛されることを望むものではないが、KH-2株により生じた油脂分解物が誘導物質として機能してKH-1株のリパーゼの発現を活性化していると予想される。そのため、ヤロウィア酵母としては同様の油脂分解能を有する微生物が好適に使用され得、ブルクホルデリア細菌としては同様の感受性を有する株が好適に使用され得ると予想される。
(KH-2株の分析)
 同様に、共生系におけるKH-2株の遺伝子発現を分析した。
 上記と同様に、KH-1株およびKH-2株をLB培地で一晩培養後、PBS緩衝液で2回洗浄し培地成分を除去した。キャノーラ油(日清キャノーラ油、日清オイリオ、東京)を終濃度で1%(v/v)含む無機塩培地(上記組成)3Lに5×10細胞/mLのKH-2株単独、または2.5×10細胞/mLのKH-1株+2.5×10細胞/mLのKH-2株になるよう植菌した後、15℃のファーメンターで48時間培養した。
 上記のKH-1株と同様に、全RNAを抽出し、cDNAを合成し、KH-2株の第1のリパーゼ、第2のリパーゼのリパーゼをコードする遺伝子に特異的な合成プライマーを使用して、定量リアルタイムRT-PCRを行った。ここで、KH-2株の第1のリパーゼ、第2のリパーゼとは、その代表的なアミノ酸配列および塩基配列が配列番号5~8で示されるものを指す。上記のKH-1株と同様に、PCR反応を行った。
 発現レベルは、アルファ-1,2-マンノシルトランスフェラーゼ(alg9)の発現レベルで正規化した。データは溶融曲線がシングルピークであることを確認した後、比較Ct法(ΔΔCt法)により解析した。
(結果)
 結果を図19の右パネルに示す。KH-1株およびKH-2株の共生系では、KH-2株単独と比較して、KH-2株の第1のリパーゼおよび第2のリパーゼの発現が予想外に向上していた。このことは、KH-1株の存在もまた、KH-2株のリパーゼ発現の増強を誘導することを示しており、KH-1株により生じた油脂分解物が誘導物質として機能してKH-2株のリパーゼの発現を活性化していると予想される。そのため、ブルクホルデリア細菌としては同様の油脂分解能を有する微生物が好適に使用され得、ヤロウィア酵母としては同様の感受性を有する株が好適に使用され得ると予想される。
(実施例20:共生系培養上清のリパーゼ活性)
 KH-1株およびKH-2株の培養物上清のリパーゼ活性をモデル基質を使用して測定した。
 KH-1株およびKH-2株をLB培地で一晩培養後、PBS緩衝液で2回洗浄し培地成分を除去した。キャノーラ油(日清キャノーラ油、日清オイリオ、東京)を終濃度で1%(v/v)含む無機塩培地(上記組成)3LにOD660の測定値が0.02のKH-1株単独、またはOD660の測定値がKH-1株:KH-2株=0.018:0.02になるような菌体光学密度で各微生物を植菌した後、15℃のファーメンターで培養した。その上清を、培養開始48時間後および71時間後に取得した。4-ニトロフェニルパルミテートまたは4-ニトロフェニルブチレートを3%(v/v)Triton(登録商標) X-100水溶液に添加して70℃で加温し、終濃度5mMの基質溶液を調製した。基質溶液、150mM GTA緩衝液(pH7.0)および培養上清をそれぞれ60μLずつ混合し、410nmの吸光度(遊離の4-ニトロフェノール示す)を室温で1分間モニターした。
 結果を図20に示す。KH-1株およびKH-2株の共生系の培養上清は、KH-1株単独の培養上清と比較して、強力なリパーゼ活性を示した。このように、本開示の微生物の組み合わせは生産されたリパーゼにより種々の油脂を分解できることが理解される。
(実施例21:他の株の同定)
 別種株の取得
 油脂含有排水が流出する食品工場近傍の河川から試料を採取し、そこから微生物を分離した。分離した微生物について、低温環境下(15℃)でリパーゼを生産し、油脂を分解可能か調べた。その結果、低温で油脂を分解することができる微生物が見出された。これらの微生物株を、それぞれ、KH-1AL1株、KH-1AL2株、およびKH-1AL3株と命名した。
 KH-1AL1株、KH-1AL2株、およびKH-1AL3株をさらに特徴付けるために16S rDNAの遺伝子配列解析を行った。
 KH-1AL1株は、16S rDNAの部分塩基配列がBurkholderia ambifariaに相同率100%で一致したため、Burkholderia ambifariaと同定された。
 KH-1AL2株は、16S rDNAの部分塩基配列がBurkholderia contaminansに相同率99.9%で一致し、分子系統樹上ではB. seminalis、B. territorii、B. cepacia(それぞれ、16S rDNAの部分塩基配列における相同性は99.7%、99.7%、99.8%)と同じ群に分類された。その結果、KH-1AL2株は、Burkholderia cepacia complexの細菌であると同定された。
 KH-1AL3株は、16S rDNAの部分塩基配列がBurkholderia contaminansに相同率99.9%で一致し、分子系統樹上ではB. seminalis、B. territorii、B. cepacia(それぞれ、16S rDNAの部分塩基配列における相同性は99.7%、99.7%、99.8%)と同じ群に分類された。その結果、KH-1AL3株は、Burkholderia cepacia complexの細菌であると同定された。
 Burkholderia cepacia complexとは、遺伝子的に非常に近いBurkholderia属の微生物の分類であり、ambifaria、anthina、arboris、cenocepacia、cepacia、contaminans、diffusa、dolosa、lata、latens、metallica、multivorans、pseudomultivorans、puraquae、pyrrocinia、seminalis、stabilis、stagnalis、territorii、ubonensis、およびvietnamiensisが含まれる(Martina Pら、Int J Syst Evol Microbiol. 2018 Jan;68(1):14-20.)。
 分析の結果、Burkholderia cepacia complexに属する種々の細菌が、高い油脂および/または脂肪酸分解能力を示したため、Burkholderia cepacia complexに属する細菌は、特に有用に利用できると期待される。
 (実施例22:他の組み合わせを用いた共生系)
 実施例17と同様に、実施例8および21で同定した代替株を加え、KH-1株、KH-1AL1株、KH-1AL3株の単独またはそれぞれの細胞数の10分の1をKH-2株、KH-2AL1株、またはKH-2AL3株で置き換えた混合培養の比較を行い、油脂分解能を試験した。
 キャノーラ油(日清キャノーラ油、日清オイリオ、東京)を終濃度で1%(v/v)含む無機塩培地(上記組成、pH7)に、KH-1株、KH-1AL1株もしくはKH-1AL3株の単独、またはこれらとKH-2株、KH-2AL1株もしくはKH-2AL3株との組み合わせを、合計細胞濃度が2×10細胞/mLになるように添加し、15℃で培養した。48時間培養した時点において取得した培養上清について、上記と同様に、油分測定試薬キット(共立理化学研究所、東京)(ポリニッパム抽出物質測定法による測定試薬キット)を使用して解析した。
(結果)
 各条件における結果を以下の表に示す。
Figure JPOXMLDOC01-appb-T000003
 本開示のいずれのブルクホルデリア細菌についても、本開示のヤロウィア酵母と組み合わせることでさらなる油脂分解能の向上が観察された。このように、本開示のブルクホルデリア細菌およびヤロウィア酵母の組み合わせは、予想外に優れた油脂分解能を達成する。
 (実施例23:リパーゼによるトランス脂肪酸含有油脂の分解)
 実施例19のKH-1株の第1および第2のリパーゼによるトリエライジンの分解活性、ならびにKH-2株の第1および第2のリパーゼによるトリエライジンの分解活性を調べる。
 KH-1株および/またはKH-2株の培養物、または目的のリパーゼを発現させるように遺伝子導入した大腸菌株の培養物から、KH-1株の第1のリパーゼ、KH-1株の第2のリパーゼ、KH-2株の第1のリパーゼ、およびKH-2株の第2のリパーゼを、疎水性カラムクロマトグラフィーなどによって精製する。これらの精製リパーゼとトリエライジンとを混合してトリエライジンの分解を調べる。
 KH-1株の第1および第2のリパーゼも、KH-2株の第1および第2のリパーゼも、トランス体のトリグリセリドであるトリエライジンを分解することが示された。本開示の共生系では、KH-1株の第1および第2のリパーゼ、ならびにKH-2株の第1および第2のリパーゼの発現が向上し得るため(実施例19)、トランス脂肪酸含有油脂を含め種々の油脂が効率的に分解されることが期待される。
(実施例24:確認試験)
 油脂の分解の確認は、上記のガスクロマトグラフィー分析以外にも実施例3のような油分分析、薄層クロマトグラフィー分析などによって行ってもよい。
 実施例20と同様に培養上清を取得し、これをキャノーラ油と混合してインキュベートする。KH-1株およびKH-2株の共生系の培養上清は、KH-1株単独の培養上清と比較して、強力なリパーゼ活性を示す。
 実施例17で試験したブルクホルデリア細菌およびヤロウィア酵母の混合比以外でも、例えば、19:1、1:19などの細胞数比になるように添加し15℃または28℃で培養する。上記と同様に、いずれかの微生物単独よりも優れた油脂分解が確認され得る。
 ブルクホルデリア細菌およびヤロウィア酵母それぞれの微生物の増殖曲線を作成し、その結果から所定の時間、例えば24時間で得られる微生物量を求める。所定の時間内に調製できる各微生物量を組み合わせて油脂分解能を測定する。各々の単独培養の油脂分解能の値から計算される油脂分解能を超える油脂分解能が達成される組み合わせは、優れた油脂分解能を達成する。
 ブルクホルデリア細菌およびヤロウィア酵母を混合培養により同時増殖させる。一定時間ごとに混合培養液をサンプリングし、それぞれの微生物濃度を算出することで、混合培養時における微生物の細胞濃度比を求める。一定時間、例えば24時間培養後に得られる混合培養液を使って、その混合比における油脂分解能を調べる。各々の単独培養の油脂分解能の値から計算される油脂分解能を超えることを確認する。
(実施例25:共生系で有用なブルクホルデリア細菌・ヤロウィア酵母の追加の代替株の取得)
 以下のようにして本開示の微生物の組み合わせにおいて使用され得る微生物の代替株が取得され得る。
 微生物保存ライブラリー、土壌、河川、湖水、活性汚泥など様々な分離源にPBSを加えて希釈系列を調製し、キャノーラ油を唯一の炭素源とする無機塩寒天培地にスプレッディングする。植菌後の寒天培地を15℃または28℃で静置培養することでコロニーを得る。その中で、コロニー周辺にクリアゾーンを形成したものを中心にピックアップし、KH-1株、KH-1AL1株、KH-1AL3株、KH-2株、KH-2AL1株、またはKH-2AL3株とともにキャノーラ油添加無機塩培地に植菌し、15℃または28℃で培養する。培養後、培養上清の油脂の分解の程度を薄層クロマトグラフィーで解析することにより、KH-1株、KH-1AL1株、KH-1AL3株、KH-2株、KH-2AL1株、またはKH-2AL3株単独と比較して優れた油脂分解能力を有する微生物を得る。
(実施例26:装置内での使用)
 上記実施例と同様にブルクホリデリア細菌およびヤロウィア酵母を培養し、培養原液とする。これを希釈して微生物製剤とする。これを自動増幅投入装置の微生物保存タンク中に冷蔵保存し、種菌とする。この種菌を、同装置の培養増幅槽中の無機塩培地中に、適量ずつ自動植菌し、微生物数が微生物製剤と同様の細胞濃度になるまで培養する。これを油分解処理槽の排水量に対して適量投入することで、油処理水中の分解菌の微生物濃度を目的濃度に調整し、油脂を多く含む排水を排出する食品工場からの排水を分解処理する。その結果、微生物を投入しない対照例と比較して顕著なノルマルヘキサン値の低減が観察される。
(実施例27:追加の応用例)
 消滅型生ゴミ処理機に適量のブルクホリデリア細菌およびヤロウィア酵母を植菌して適温で処理する。生ゴミ処理機から出る排水中のノルマルヘキサン値を測定する。微生物を投入しない対照例と比較して顕著な値の低減が観察される。
 浮上分離により回収した油性汚泥を培養槽に投入し、適量の無機塩培地を加える。ここに適量のブルクホリデリア細菌およびヤロウィア酵母を植菌し、攪拌曝気しながら、適温でインキュベートする。その後、処理済み液のノルマルヘキサン値による油分量の測定、あるいは水分を蒸発させた後に残った油を主成分とする残渣の重量を測定することにより、油性汚泥の分解・減少量を調べる。その結果、微生物を投入しない対照例と比較して顕著な油性汚泥分解が認められる。
 グリーストラップに木炭、各種プラスチック、セラミックス片などの担体を投入し、適量のブルクホリデリア細菌およびヤロウィア酵母を毎日、食堂の操業終了後に自動投入する。経時的に、操業開始直前に採水し、ノルマルヘキサン値を分析する。微生物を投入しない対照例と比較して顕著なノルマルヘキサン値の低下が認められる他、グルーストラップ自体の見た目も、油の付着や浮遊が減るなどの効果が認められる。
 (注記)
 以上のように、本開示の好ましい実施形態を用いて本開示を例示してきたが、本発明は、特許請求の範囲によってのみその範囲が解釈されるべきであることが理解される。本明細書において引用した特許、特許出願及び他の文献は、その内容自体が具体的に本明細書に記載されているのと同様にその内容が本明細書に対する参考として援用されるべきであることが理解される。
 本出願は、2019年9月6日に日本国特許庁に出願された特願2019-163252号および2020年1月8日に日本国特許庁に出願された特願2020-001744号に対する優先権の利益を主張し、その内容全体が本明細書に援用される。
 本開示は、エステル(例えば、油脂)および/または脂肪酸分解能を有する微生物およびこれを含む組成物を提供し、このような微生物または組成物を使用することで、エステル(例えば、油脂)および/または脂肪酸を多く含む食品工場排水などによる環境負荷を低減させることができる。また、本開示は、油脂および/または脂肪酸分解能を有する微生物の組み合わせを提供し、このような微生物の組み合わせを使用することで、油脂および/または脂肪酸を多く含む食品工場排水などによる環境負荷を低減させることができる。
 KH-1(NITE BP-02731)
 KH-1AL1(NITE BP-02977)
 KH-1AL2(NITE BP-02978)
 KH-1AL3(NITE BP-02979)
 KH-2(NITE BP-02732)
 KH-2AL1(NITE BP-03091)
 KH-2AL3(NITE BP-03092)
配列番号1 KH-1株の第1のリパーゼの成熟塩基配列
配列番号2 KH-1株の第1のリパーゼの成熟アミノ酸配列
配列番号3 KH-1株の第2のリパーゼの成熟塩基配列
配列番号4 KH-1株の第2のリパーゼの成熟アミノ酸配列
配列番号5 KH-2株の第1のリパーゼの代表的塩基配列の成熟配列
配列番号6 KH-2株の第1のリパーゼの代表的アミノ酸配列の成熟配列
配列番号7 KH-2株の第2のリパーゼの代表的塩基配列の成熟配列
配列番号8 KH-2株の第2のリパーゼの代表的アミノ酸配列の成熟配列

Claims (39)

  1.  トランス脂肪酸を分解する能力を有する、ヤロウィア酵母。
  2.  トランス脂肪酸含有油脂を分解する能力を有する、ヤロウィア酵母。
  3.  15℃においてエステルおよび/または脂肪酸を分解する能力を有する、ヤロウィア酵母。
  4.  短鎖~中鎖脂肪酸含有エステルを分解する能力を有する、ヤロウィア酵母。
  5.  短鎖~長鎖脂肪酸含有油脂を分解する能力を有する、ヤロウィア酵母。
  6.  長鎖脂肪酸(C13以上)の4-ニトロフェニルエステルよりも短鎖~中鎖脂肪酸(C2~C12)の4-ニトロフェニルエステルに対して高い分解活性を有し、かつ、長鎖脂肪酸(C13以上)のトリグリセリドを分解する能力を有する、ヤロウィア酵母。
  7.  リパーゼを生産するブルクホルデリア細菌のリパーゼ生産を向上させる能力を有する、ヤロウィア酵母。
  8.  ブルクホルデリア細菌の単独培養時の油脂または脂肪酸分解能よりも高い油脂または脂肪酸分解能を前記ブルクホルデリア細菌に付与する能力を有する、ヤロウィア酵母。
  9.  前記ブルクホルデリア細菌はブルクホルデリア属細菌を含む、請求項7または8に記載のヤロウィア酵母。
  10.  前記ブルクホルデリア細菌はブルクホルデリア アルボリス(Burkholderia arboris)、ブルクホルデリア アンビファリア(Burkholderia ambifaria)、またはブルクホルデリア セパシア コンプレックス(Burkholderia cepacia complex)を含む、請求項7~9のいずれか一項に記載のヤロウィア酵母。
  11.  請求項1~6のいずれか一項または複数に記載のヤロウィア酵母の特徴、および
     請求項7~10のいずれか一項または複数に記載のヤロウィア酵母の特徴、
    を有する、ヤロウィア酵母。
  12.  ヤロウィア リポリティカ(Yarrowia lipolytica)である、請求項1~11のいずれか一項に記載のヤロウィア酵母。
  13.  ヤロウィア リポリティカKH-2株(受託番号NITE BP-02732で特定される微生物株)、ヤロウィア リポリティカKH-2AL1株(受託番号NITE BP-03091で特定される微生物株)、もしくはヤロウィア リポリティカKH-2AL3株(受託番号NITE BP-03092で特定される微生物株)であるか、またはその誘導株であって該誘導株は、請求項1~11のいずれか一項または複数に記載のヤロウィア酵母の特徴を有する、請求項1~12のいずれか一項に記載のヤロウィア酵母。
  14.  請求項1~13のいずれか一項に記載のヤロウィア酵母を含む、油分解剤。
  15.  さらなる油処理成分を含む、請求項14に記載の油分解剤。
  16.  (a)トランス脂肪酸を分解するため、
     (b)トランス脂肪酸含有油脂を分解するため、
     (c)15℃においてエステルおよび/または脂肪酸を分解するため、
     (d)短鎖~中鎖脂肪酸(C2~C12)含有エステルを分解するため、および
     (e)短鎖~長鎖脂肪酸(C2以上)含有油脂を分解するため
    からなる群より選択される少なくとも1つのための、請求項1~13のいずれか一項に記載のヤロウィア酵母、または請求項14もしくは15に記載の油分解剤を含む、組成物。
  17.  請求項1~13のいずれか一項に記載のヤロウィア酵母もしくは請求項14または15に記載の油分解剤と、または請求項16に記載の組成物と、さらなる油処理成分とを備える、エステル分解のためのキット。
  18.  請求項1~13のいずれか一項に記載のヤロウィア酵母、または請求項14もしくは15に記載の油分解剤、または請求項16に記載の組成物を処理対象に作用させることを包含する、エステル分解除去方法。
  19.  前記処理対象はトランス脂肪酸またはトランス脂肪酸含有油脂を含む、請求項18に記載の方法。
  20.  (a)トランス脂肪酸を分解するステップ、
     (b)トランス脂肪酸含有油脂を分解するステップ、
     (c)15℃においてエステルおよび/または脂肪酸を分解するステップ、
     (d)短鎖~中鎖脂肪酸(C2~C12)含有エステルを分解するステップ、および
     (e)短鎖~長鎖脂肪酸(C2以上)含有油脂を分解するステップ、
    からなる群より選択される少なくとも一つのステップを含む、請求項18または19に記載の方法。
  21.  ブルクホルデリア細菌を含む、リパーゼを生産するヤロウィア酵母とリパーゼを生産するブルクホルデリア細菌との組み合わせで油脂または脂肪酸を処理するための組成物。
  22.  ヤロウィア酵母を含む、リパーゼを生産するヤロウィア酵母とリパーゼを生産するブルクホルデリア細菌との組み合わせで油脂または脂肪酸を処理するための組成物。
  23.  ブルクホルデリア細菌およびヤロウィア酵母の組み合わせを含む油脂または脂肪酸処理のための組み合わせ物であって、該ブルクホルデリア細菌および該ヤロウィア酵母の両方がリパーゼを生産する、組み合わせ物。
  24.  前記ヤロウィア酵母はヤロウィア リポリティカ(Yarrowia lipolytica)を含む、請求項21~23のいずれか一項に記載の組成物または組み合わせ物。
  25.  前記ブルクホルデリア細菌はブルクホルデリア属細菌を含む、請求項21~24のいずれか一項に記載の組成物または組み合わせ物。
  26.  前記ブルクホルデリア細菌はブルクホルデリア アルボリス(Burkholderia arboris)、ブルクホルデリア アンビファリア(Burkholderia ambifaria)、またはブルクホルデリア セパシア コンプレックス(Burkholderia cepacia complex)を含む、請求項21~25のいずれか一項に記載の組成物または組み合わせ物。
  27.  前記ブルクホルデリア細菌およびヤロウィア酵母の組み合わせが、各々の単独培養の油脂または脂肪酸分解能の値から計算される油脂または脂肪酸分解能よりも高い油脂または脂肪酸分解能を有する、請求項21~26のいずれか一項に記載の組成物または組み合わせ物。
  28.  前記ブルクホルデリア細菌の細胞数:前記ヤロウィア酵母の細胞数が、1:20~20:1である、請求項21~27のいずれか一項に記載の組成物または組み合わせ物。
  29.  前記ブルクホルデリア細菌および前記ヤロウィア酵母の少なくとも1つが15℃において脂肪酸を分解する能力を有する、請求項21~28のいずれか一項に記載の組成物または組み合わせ物。
  30.  前記ブルクホルデリア細菌は、ブルクホルデリア属細菌KH-1株(受託番号NITE BP-02731で特定される菌株)、KH-1AL1株(受託番号NITE BP-02977で特定される菌株)、KH-1AL2株(受託番号NITE BP-02978で特定される菌株)もしくはKH-1AL3株(受託番号NITE BP-02979で特定される菌株)、またはその誘導株である、請求項21~29のいずれか一項に記載の組成物または組み合わせ物。
  31.  前記ヤロウィア酵母は、ヤロウィア リポリティカKH-2株(受託番号NITE BP-02732で特定される微生物株)、ヤロウィア リポリティカKH-2AL1株(受託番号NITE BP-03091で特定される微生物株)、もしくはヤロウィア リポリティカKH-2AL3株(受託番号NITE BP-03092で特定される微生物株)、またはその誘導株である、請求項21~30のいずれか一項に記載の組成物または組み合わせ物。
  32.  油分解剤である、請求項21~31のいずれか一項に記載の組成物または組み合わせ物。
  33.  さらなる油処理成分を含む、請求項32に記載の油分解剤。
  34.  請求項21~31のいずれか一項に記載の組成物もしくは組み合わせ物、または請求項32または33に記載の油分解剤を処理対象に作用させることを包含する、油分解除去方法。
  35.  ブルクホルデリア細菌を含む、リパーゼを生産するヤロウィア酵母のリパーゼ生産を向上させるための組成物。
  36.  ヤロウィア酵母を含む、リパーゼを生産するブルクホルデリア細菌のリパーゼ生産を向上させるための組成物。
  37.  ブルクホルデリア細菌を含む、リパーゼを生産するヤロウィア酵母の油脂または脂肪酸を処理する能力を強化するための組成物。
  38.  ヤロウィア酵母を含む、リパーゼを生産するブルクホルデリア細菌の油脂または脂肪酸を処理する能力を強化するための組成物。
  39.  ブルクホルデリア細菌とヤロウィア酵母とを混合して培養する工程を含む、該ブルクホルデリア細菌および該ヤロウィア酵母のうちの少なくとも1種のリパーゼ生産を向上させる方法。
PCT/JP2020/033836 2019-09-06 2020-09-07 低温で高い油脂分解能力を有する新規微生物 WO2021045235A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2021544077A JPWO2021045235A1 (ja) 2019-09-06 2020-09-07
EP20861191.3A EP4026809A4 (en) 2019-09-06 2020-09-07 NEW MICRO-ORGANISM WITH HIGH ABILITY TO BREAK DOWN OIL AT LOW TEMPERATURE
US17/640,296 US20220371930A1 (en) 2019-09-06 2020-09-07 Novel microorganism having high ability to degrade oil at low temperature

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2019163252 2019-09-06
JP2019-163252 2019-09-06
JP2020-001744 2020-01-08
JP2020001744 2020-01-08

Publications (1)

Publication Number Publication Date
WO2021045235A1 true WO2021045235A1 (ja) 2021-03-11

Family

ID=74852351

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/033836 WO2021045235A1 (ja) 2019-09-06 2020-09-07 低温で高い油脂分解能力を有する新規微生物

Country Status (4)

Country Link
US (1) US20220371930A1 (ja)
EP (1) EP4026809A4 (ja)
JP (1) JPWO2021045235A1 (ja)
WO (1) WO2021045235A1 (ja)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006042774A (ja) * 2004-08-03 2006-02-16 Hinode Sangyo Kk 新規ヤロウィア属酵母及び排水の生物学的処理方法
JP2015192611A (ja) * 2014-03-31 2015-11-05 シーシーアイ株式会社 油脂および脂肪酸の新規分解微生物
WO2019098255A1 (ja) * 2017-11-14 2019-05-23 国立大学法人名古屋大学 油脂含有排水処理方法、システムおよび装置
JP2019163252A (ja) 2018-03-19 2019-09-26 株式会社スプラウト 植物抽出物、その製造方法、その用途、及びその植物抽出物を含む薬用化粧品、製品
JP2020001744A (ja) 2018-06-27 2020-01-09 大日本印刷株式会社 パウチ
WO2020009232A1 (ja) * 2018-07-06 2020-01-09 国立大学法人名古屋大学 脂肪酸含有油脂を分解する新規微生物

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5685783B2 (ja) * 2012-01-19 2015-03-18 国立大学法人名古屋大学 新規ヤロウィア属微生物、並びにそれを用いた油分解剤及び油分解除去方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006042774A (ja) * 2004-08-03 2006-02-16 Hinode Sangyo Kk 新規ヤロウィア属酵母及び排水の生物学的処理方法
JP2015192611A (ja) * 2014-03-31 2015-11-05 シーシーアイ株式会社 油脂および脂肪酸の新規分解微生物
WO2019098255A1 (ja) * 2017-11-14 2019-05-23 国立大学法人名古屋大学 油脂含有排水処理方法、システムおよび装置
JP2019163252A (ja) 2018-03-19 2019-09-26 株式会社スプラウト 植物抽出物、その製造方法、その用途、及びその植物抽出物を含む薬用化粧品、製品
JP2020001744A (ja) 2018-06-27 2020-01-09 大日本印刷株式会社 パウチ
WO2020009232A1 (ja) * 2018-07-06 2020-01-09 国立大学法人名古屋大学 脂肪酸含有油脂を分解する新規微生物

Non-Patent Citations (19)

* Cited by examiner, † Cited by third party
Title
"Molecular Cloning", article "Current Protocols in Molecular Biology"
AUSUBEL ET AL.: "DNA Cloning 1: Core Techniques, A Practical Approach", 1995, WILEY INTERSCIENCE PUBLISHERS
BATZER ET AL., NUCLEIC ACID RES, vol. 19, 1991, pages 5081
JOURNAL OF WATER AND WASTE
KAZUHIRO MOCHIZUKIKATSUTOSHI HORIHIDEKI TACHIMOTO: "Biological activated carbon method (New water treatment series", THE INDUSTRIAL WATER INSTITUTE, article "Water treatment by microorganism immobilization method - carrier immobilization method and comprehensive immobilization method"
MARIE-ANGE TESTEMANON DUQUENNEJEAN M FRANCOISJEAN-LUC PARROU: "Validation of reference genes for quantitative expression analysis by real-time RT-PCR in Saccharomyces cerevisiae", BMC MOLECULAR BIOLOGY, vol. 10, 2009, pages 99, XP021062364, DOI: 10.1186/1471-2199-10-99
MARTINA P ET AL., INT J SYST EVOL MICROBIOL, vol. 68, no. 1, January 2018 (2018-01-01), pages 14 - 20
MITCH R ET AL.: "Irradiation of Yarrowia lipolytica NRRL YB-567 creating novel strains with enhanced ammonia and oil entity production on protein and carbohydrate substrates", APPL MICROBIOL BIOTECHNOL, vol. 99, no. 22, 2015, pages 9723 - 9743
NGAMDEE W ET AL.: "Competition between Burkholderia pseudomallei and B.thailandensis", BMC MICROBIOL, vol. 15, 3 March 2015 (2015-03-03), pages 56, XP021213718, DOI: 10.1186/s12866-015-0395-7
OHTSUKA ET AL., J. BIOL. CHEM., vol. 260, 1985, pages 2605 - 2608
OSWAL N, SARMA P.M, ZINJARDE S.S, PANT A: "Palm oil mill effluent treatment by a tropical marine yeast", BIORESOURCE TECHNOLOGY, vol. 85, no. 1, October 2002 (2002-10-01), pages 35 - 37, XP055798681 *
PARFENE GEORGIANA, HORINCAR VICENTIU BOGDAN, BAHRIM GABRIELA, VANNINI LUCIA, GOTTARDI DAVIDE, GUERZONI MARIA ELISABETTA: "Lipolytic activity of lipases from different strains of Yarrowia lipolytica in hydrolysed vegetable fats at low temperature and water activity", ROMANIAN BIOTECHNOLOGICAL LETTERS, vol. 16, no. 6, 2011, pages 46 - 52, XP055798683 *
ROSSOLINI ET AL., MOL. CELL. PROBES, vol. 8, 1994, pages 91 - 98
SAMBROOK ET AL.: "Molecular Cloning: A Laboratory Manual", vol. 1, 2001, COLD SPRING HARBOR LABORATORY PRESS, pages: 42 - 45
SATHISH YADAV K N; ADSUL M G; BASTAWDE K B; JADHAV D D; THULASIRAM H V; GOKHALE D V: "Differential induction, purification and characterization of cold active lipase from Yarrowia lipolytica NCIM 3639", BIORESOURCE TECHNOLOGY, vol. 102, no. 22, 10 September 2011 (2011-09-10), pages 10663 - 10670, XP028320081 *
SAVLI, H.KARADENIZLI, A.KOLAYLI, F.GUNDES, S.OZBEK, U.VAHABOGLU, H.: "Expression stability of six housekeeping genes: A proposal for resistance gene quantification studies of Pseudomonas aeruginosa by real-time quantitative RT-PCR", J. MED. MICROBIOL., vol. 52, 2003, pages 403 - 408
See also references of EP4026809A4
SEIJ I ISHIIHIROSHI OKUMURACHIYO MATSUBARAFUMI NINOMIYAHIROSHI YOSHIOKA, SIMPLE METHOD OF MEASURING OIL-IN-WATER CONTENT USING HEAT SENSITIVE POLYMER, vol. 46, no. 12, 2004
YOSHIKAZU KITA ET AL., HITACHI CHEMICAL TECHNICAL REPORT, no. 46, 2006, pages 49 - 54

Also Published As

Publication number Publication date
US20220371930A1 (en) 2022-11-24
EP4026809A1 (en) 2022-07-13
JPWO2021045235A1 (ja) 2021-03-11
EP4026809A4 (en) 2024-01-03

Similar Documents

Publication Publication Date Title
Tighiri et al. Biotreatment of landfill leachate by microalgae-bacteria consortium in sequencing batch mode and product utilization
Taskin et al. Microbial lipid production by cold‐adapted oleaginous yeast Yarrowia lipolytica B9 in non‐sterile whey medium
KR102026750B1 (ko) 신규 야로위아속 미생물, 및 이것을 사용한 오일 분해제 및 오일 분해 제거 방법
Odeyemi et al. Lipolytic activity of some strains of Klebsiella, Pseudomonas and Staphylococcus spp. from restaurant wastewater and receiving stream
JP2011160713A (ja) 油脂分解微生物、微生物固定化担体、廃水の処理方法、並びに、廃水処理システム
JP2024052862A (ja) 脂肪酸含有油脂を分解する新規微生物
Darvishi et al. Biovalorization of vegetable oil refinery wastewater into value‐added compounds by Yarrowia lipolytica
Fadile et al. Aerobic treatment of lipid-rich wastewater by a bacterial consortium
Tzirita et al. Enhanced fat degradation following the addition of a Pseudomonas species to a bioaugmentation product used in grease traps
Gowthami et al. Utilization of coconut oil cake for the production of lipase using Bacillus coagulans VKL1
Sugimori et al. Isolation and lipid degradation profile of Raoultella planticola strain 232-2 capable of efficiently catabolizing edible oils under acidic conditions
JP2008220225A (ja) 油脂分解性微生物及びそれを用いた油脂含有廃水の処理方法
Ali et al. Significant enhancement of Pseudomonas aeruginosa FW_SH-1 lipase production using response surface methodology and analysis of its hydrolysis capability
Fendri et al. Isolation, identification and characterization of a new lipolytic Pseudomonas sp., strain AHD‐1, from Tunisian soil
JP7084656B2 (ja) トランス脂肪酸含有油脂を分解する新規リパーゼ
WO2021045235A1 (ja) 低温で高い油脂分解能力を有する新規微生物
JP2013116067A (ja) 油脂分解酵母およびそれを用いた処理方法
Tzirita et al. A study of the suitability of three commercial bioaugmentation products for use in grease traps
Bunmadee et al. Isolation and identification of a newly isolated lipase-producing bacteria (Acinetobacter baumannii RMUTT3S8-2) from oily wastewater treatment pond in a poultry processing factory and its optimum lipase production
RU2501852C2 (ru) Препарат для очистки почвы от нефти и нефтепродуктов
JP2011125825A (ja) 油脂分解菌及び油脂分解剤
Tzirita A characterisation of bioaugmentation products for the treatment of waste fats, oils and grease (FOG)
Salwoom et al. Isolation, characterisation and lipase production of a cold-adapted bacterial strain isolated from Signy Island, Antarctica
JP7260369B2 (ja) 油脂の新規分解微生物
JP7264699B2 (ja) 油分解剤および油の分解方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20861191

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2021544077

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2020861191

Country of ref document: EP

Effective date: 20220406

ENP Entry into the national phase

Ref document number: 2020861191

Country of ref document: EP

Effective date: 20220406