WO2021045036A1 - Detection device - Google Patents

Detection device Download PDF

Info

Publication number
WO2021045036A1
WO2021045036A1 PCT/JP2020/033019 JP2020033019W WO2021045036A1 WO 2021045036 A1 WO2021045036 A1 WO 2021045036A1 JP 2020033019 W JP2020033019 W JP 2020033019W WO 2021045036 A1 WO2021045036 A1 WO 2021045036A1
Authority
WO
WIPO (PCT)
Prior art keywords
film
distance
main body
detection device
microstructure
Prior art date
Application number
PCT/JP2020/033019
Other languages
French (fr)
Japanese (ja)
Inventor
新井進
Original Assignee
住友ベークライト株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 住友ベークライト株式会社 filed Critical 住友ベークライト株式会社
Priority to JP2021543772A priority Critical patent/JPWO2021045036A1/ja
Publication of WO2021045036A1 publication Critical patent/WO2021045036A1/en

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/01Arrangements or apparatus for facilitating the optical investigation
    • G01N21/03Cuvette constructions
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N35/00Automatic analysis not limited to methods or materials provided for in any single one of groups G01N1/00 - G01N33/00; Handling materials therefor
    • G01N35/02Automatic analysis not limited to methods or materials provided for in any single one of groups G01N1/00 - G01N33/00; Handling materials therefor using a plurality of sample containers moved by a conveyor system past one or more treatment or analysis stations

Definitions

  • the present invention relates to a detection device for detecting an object to be detected.
  • Patent Document 1 A technique for detecting an object to be detected such as a biological substance in a minute space having a very small volume is known.
  • Patent Document 1 a mixed solution of a reagent and deoxyribonucleic acid (DNA) to be detected is divided into innumerable microdroplets, and a polymerase chain reaction (PCR: Polymerase Chain Reaction) is described.
  • PCR Polymerase Chain Reaction
  • Patent Document 1 discloses a microfluidic device (1000) including a flow path of a mixed solution and a microwell array in which a plurality of wells are formed as a detection device.
  • the reference reference numerals given in parentheses in the background art are those of Patent Document 1.
  • the microfluidic device (1000) includes a bottom member (1100), a lid member (1200), a flow path (1300), and one end of the flow path (1300).
  • a fluid a mixed solution of a detection target and a reagent
  • a fluid is introduced into the flow path (1300) from the flow path inlet (1210) using a syringe or the like, and discharged from the flow path outlet (1220). It is configured to allow a fluid to flow through (1300).
  • the detection device (microfluidic device (1000)) disclosed in Patent Document 1 has a complicated structure.
  • the complicated structure also affects, and it is necessary to use a syringe or the like to introduce a mixed solution of the detection target and the reagent, which complicates the inspection process. Therefore, there is a need for a detection device having a simpler structure and a microstructure for accommodating cells / microorganisms, viruses, microbeads for adsorbing these biological substances, droplets, etc., and a microstructure for flowing liquids. ..
  • a tubular main body portion and a microstructure for detecting an object to be detected are formed, and the bottom portion having one opening of the main body portion is closed.
  • the film attached to the main body as described above is provided, and the distance between the outer circumferences of the film is smaller than the distance between the outer walls of the bottom and larger than the distance between the inner walls of the bottom.
  • the entire detection device when the main body and the film on which the fine structure is formed are integrally formed, it is conceivable to produce the entire detection device by molding or the like. However, in the case of molding, there is a limit in reducing the thickness of the portion corresponding to the film. On the other hand, when the main body and the film are separated as in this configuration, a film can be made by forming a fine structure in a thinner film material. In production, it is necessary to inspect whether the detection device has an appropriate microstructure, but if the film on which the microstructure is formed (the part corresponding to the film) is relatively thin, By transmitting light, it is easy to confirm the fine structure, and the production cost can be suppressed.
  • the film is formed so that the distance between the outer circumferences of the film is smaller than the distance between the outer walls of the bottom and larger than the distance between the inner walls of the bottom. Therefore, the bottom portion is appropriately closed, and it is also suppressed that the bottom portion protrudes from the bottom portion and easily peels off. As described above, according to this configuration, it is possible to provide a detection device in which a fine structure for detecting a detection target is appropriately formed with a simpler configuration.
  • the distance between the outer circumferences of the film is at least 0.05 mm smaller than the distance between the outer walls of the bottom and at least 0.6 mm larger than the distance between the inner walls of the bottom.
  • the outer shape of the film has a size that can surely close the bottom even if the positional deviation between the main body and the film is maximized. According to this configuration, even if this misalignment is 0.05 [mm], the bottom can be reliably closed. Tolerances within 0.05 [mm] are sufficiently feasible tolerances, and the detection device can be appropriately configured. Further, it is preferable that the outer shape of the film has a sticking allowance so that the film is securely attached to the bottom portion and liquid leakage or the like does not occur. According to this configuration, even if the above-mentioned misalignment occurs, a sticking allowance of at least 0.25 [mm] is secured around the distance between the inner walls of the bottom. The sticking allowance of 0.25 [mm] is sufficient to secure the mounting strength between the main body and the film, and the detection device can be appropriately configured.
  • the microstructure is formed on the entire surface of the film.
  • the film includes a non-formed region in which the microstructure is not formed on the outer peripheral side of the film, and a formed region in which the microstructure is formed inside the non-formed region. It is preferable that the forming region is set in a range larger than the distance between the inner walls of the bottom portion.
  • the outer peripheral side of the film is attached to the bottom, but if a microstructure is formed at this attachment location, the microstructure may reduce the contact area between the bottom and the film, resulting in lower mounting strength.
  • the non-formed region as in this configuration, it is possible to suppress a decrease in the contact area between the bottom and the film, and it is possible to secure the mounting strength between the bottom and the film.
  • the formation region is set in a range larger than the distance between the inner walls of the bottom, a sufficient fine structure can be arranged in the detection device even if the position shift occurs between the main body and the film. ..
  • the film includes a non-formed region in which the microstructure is not formed on the outer peripheral side of the film, and a formed region in which the microstructure is formed inside the non-formed region. It is preferable that the forming region is set in a range smaller than the distance between the inner walls of the bottom portion.
  • the contact area between the bottom and the film may be reduced due to the fine structure, and the attachment strength may be lowered.
  • the formation region is set to a range smaller than the distance between the inner walls of the bottom as in this configuration, the microstructure will come into contact with the bottom if there is no misalignment between the main body and the film.
  • the position shift occurs between the main body and the film, the number of microstructures in contact with the bottom can be suppressed. Therefore, the mounting strength between the bottom and the film can be ensured.
  • the main body portion includes a leg portion that protrudes from the bottom portion along the outermost circumference of the main body portion, and the distance between the outer circumferences of the film is greater than the distance between the inner circumferences of the leg portion. It is also preferable that the size is small.
  • the main body portion is adjacent to the first tubular portion via the first tubular portion arranged on the side of the bottom portion and the stepped portion, and the first tubular portion is provided. It is preferable to provide a second tubular portion having a larger diameter than that of the above.
  • the liquid charged into the main body spreads to the inner wall of the main body and rises on the inner wall, and the opening on the opposite side of the bottom of the main body is used. It may leak out.
  • the step portion is provided, even if the liquid spreads on the inner wall of the first tubular portion and rises on the inner wall, the rise stays at the position of the step portion due to surface tension. As a result, the liquid is prevented from rising up the inner wall of the second tubular portion and leaking to the outside of the main body portion from the opening on the side opposite to the bottom portion.
  • FIG. 1 An exploded perspective view showing a configuration example of a detection device Vertical cross-sectional view showing a configuration example of a detection device Top view seen from the bottom side (film side) of the detection device Partially enlarged view of the film showing an example of a well Sectional view of a film showing an example of a well
  • a detection device 10 in which a biomarker existing in a biological sample such as blood is used as a detection target will be described as an example.
  • the detection target is, for example, cells / microorganisms, viruses, microbeads that adsorb these biological substances (biomarkers), and the like.
  • microbeads are illustrated.
  • the microbeads are a plurality of fine beads (about 2 [ ⁇ m] or less in diameter) covered with a specific antibody.
  • the microbeads can capture the microproteins of the biomarker, and the biomarker can be detected by a fluorescent label that emits a complex of the beads and the protein.
  • a plurality of beads for example, 10,000 to tens of thousands are arranged on one surface, and a complex is formed with beads (beads that emit light by a fluorescent label) on which a complex is formed. Beads that are not (beads that do not emit light due to fluorescent labeling) are present on one surface.
  • the detection device 10 of the present embodiment is formed with a fine structure (for example, well 7 (see FIGS. 4, 5, etc.)) so that such beads can be appropriately arranged on the surface.
  • FIG. 1 is an exploded perspective view showing a configuration example of the detection device 10.
  • a tubular main body 1 and a microstructure (here, a well 7) for detecting a detection object existing in a liquid are formed, and the main body is formed.
  • It includes a film 2 attached to the main body 1 so as to close the bottom 5 having one opening 6 of 1.
  • a fine structure such as a well 7, which will be described later, is formed on one surface of the film 2.
  • the film 2 is attached to the main body 1 with its microstructure facing the main body 1.
  • the main body 1 includes a first opening 61 and a second opening 62, and the bottom 5 includes a second opening 62.
  • the main body portion 1 is adjacent to the first tubular portion 4 via the first tubular portion 4 arranged on the side of the bottom portion 5 (the side of the second opening 62) and the stepped portion 8, and is the first.
  • a second tubular portion 3 having a diameter larger than that of the tubular portion 4 is provided.
  • the main body 1 and the film 2 are joined by, for example, welding (bonding) using a laser or ultrasonic waves, or bonding with an adhesive (including an adhesive tape).
  • FIG. 2 is a vertical cross-sectional view showing a configuration example of the detection device 10, and FIG. 3 is a plan view seen from the bottom 5 side (film 2 side) of the detection device 10.
  • the outer diameter R2 (distance between outer circumferences) of the film 2 is smaller than the outer diameter R51 (distance between outer walls: outer diameter of the main body 1 at the bottom 5) of the bottom 5, and the inner diameter R52 of the bottom 5 (distance between outer walls 5). It is larger than the distance between inner walls).
  • the outer diameter R2 of the film 2 is larger than the outer diameter R51 of the bottom 5 by the size (first clearance C1) considering the tolerance of positioning accuracy when the film 2 is attached to the main body 1. Small is preferable.
  • the maximum tolerance (first clearance C1) is 0.05 [mm]
  • the outer diameter R2 of the film 2 is preferably at least 0.05 [mm] smaller than the outer diameter R51 of the bottom 5. ..
  • the outer diameter R2 of the film 2 can secure a sticking allowance when the film 2 is stuck to the main body 1, and also from the joint portion between the bottom 5 and the film 2 when the liquid is put into the main body 1. It is preferable that a width (second clearance C2) that can prevent liquid leakage from the film is secured.
  • the width required for joining as a sticking allowance is 0.25 [mm]
  • the joining width that can prevent liquid leakage from the joining portion is 0.3 [mm]. Therefore, it is preferable that the outer diameter R2 of the film 2 is at least 0.6 mm larger than the inner diameter R52 of the bottom portion 5.
  • the outer diameter R51 of the main body 1 at the bottom 5 is about 8 to 9 [mm]
  • the inner diameter R52 of the main body 1 at the bottom 5 is about 6 to 7 [mm].
  • the main body portion 1 is adjacent to the first tubular portion 4 via the first tubular portion 4 arranged on the side of the bottom portion 5 and the stepped portion 8, and is more than the first tubular portion 4. It is provided with a second tubular portion 3 having a large diameter.
  • the main body 1 is a resin part formed by injection molding or the like. Therefore, in consideration of removing the molding die and charging the liquid into the detection device 10, the tubular shape has a smaller diameter in the direction from the first opening 61 to the second opening 62. Therefore, in each of the first tubular portion 4 and the second tubular portion 3, the inner diameters (R4 and R3) of each become smaller in the direction from the first opening 61 to the second opening 62. It has become.
  • a step portion 8 is provided between the first tubular portion 4 and the second tubular portion 3, and the second tubular portion 3 is larger than the maximum inner diameter R4 of the first tubular portion 4. The smallest inner diameter R3 is larger.
  • the liquid charged into the main body 1 spreads to the inner wall 1a of the main body 1 and rises from the first opening 61. There is a possibility of leakage to the outside of the main body 1.
  • the stepped portion 8 even if the liquid rises on the inner wall 4a of the first tubular portion 4, the rise is retained in the stepped portion 8 due to surface tension. Therefore, it is possible to prevent the liquid from further rising from the inner wall 3a of the second tubular portion 3 and leaking from the first opening 61 to the outside of the main body portion 1.
  • FIG. 4 is a partially enlarged view of the film 2 showing an example of the well 7 as a microstructure
  • FIG. 5 is a cross-sectional view of the film 2 showing an example of the well 7.
  • a plurality of wells 7 are regularly arranged in the film 2.
  • the well 7 is formed in a hemispherical shape recessed from the first surface 2a, which is one surface of the film 2, toward the second surface 2b, which is the other surface.
  • the thickness 7t of the film 2 is about 50 to 300 [ ⁇ m]
  • the diameter 7w of the first surface 2a of the well 7 is about 1 to 10 [ ⁇ m]
  • FIG. 5 shows an example in which the beads 20 are arranged in one well 7, but the beads 20 are arranged one by one in all the wells 7.
  • the film 2 is joined to the main body 1 with the first surface 2a on which the wells 7 are formed facing the bottom 5.
  • FIG. 6 schematically shows an example of the first arrangement of the wells 7 in the film 2.
  • the well 7 (microstructure) is formed on the entire surface of the film 2 (the entire surface of the first surface 2a).
  • a device for detecting a certain number of wells 7 can be detected by a device for detecting a certain number of wells 7 without being affected by misalignment at the time of joining the film 2 and the main body 1.
  • as many wells 7 as physically possible can be placed in the detection device 10.
  • the bonding strength may decrease. Therefore, a form in which the well 7 does not overlap with the bottom portion 5 (for example, a second arrangement example described later) or a form in which the overlapping range of the well 7 and the bottom portion 5 is smaller than that in the first arrangement example (for example, a second arrangement described later).
  • the second clearance C2 may be made larger than that of the arrangement example).
  • the main body 1 and the film 2 are joined by, for example, welding (bonding) using a laser or ultrasonic waves, or bonding with an adhesive (including an adhesive tape). Since the film 2 according to the first arrangement example can be welded to the main body 1 by melting the fine structure, it is particularly preferable that the film 2 is welded by using a laser or ultrasonic waves.
  • FIG. 7 schematically shows a second arrangement example of the well 7 in the film 2
  • FIG. 8 schematically shows a third arrangement example of the well 7 in the film 2.
  • the film 2 (first surface 2a) has a non-formed region E2 in which the well 7 (microstructure) is not formed on the outer peripheral side of the film 2 and a well 7 (microstructure) inside the non-formed region E2. It is provided with a formation region E1 in which a is formed.
  • the formation region E1 is set in a range larger than the inner diameter R52 of the bottom portion 5.
  • the formation region E1 is set in a range smaller than the inner diameter R52 of the bottom portion 5.
  • the formation region E1 is formed in a range larger than the inner diameter R52 of the bottom portion 5 by the third clearance C3 or more.
  • the third clearance C3 is equal to or higher than the first clearance C1.
  • the overlapping region is smaller than that of the first arrangement example described above, also in the second arrangement example, the portion where the well 7 is formed on the first surface 2a of the film 2 and the bottom portion 5 of the main body portion 1 May overlap when viewed in the direction orthogonal to the film surface. Therefore, the second clearance C2 may be made larger than the form in which the well 7 does not come into contact with the bottom portion 5 (for example, a third arrangement example described later).
  • the film 2 according to the second arrangement example is joined by welding using a laser or ultrasonic waves or by bonding with an adhesive. In welding, welding can be promoted by melting the fine structure, although it is partial, as in the film 2 of the first arrangement example.
  • the formation region E1 is formed in a range smaller than the inner diameter R52 of the bottom 5 by the fourth clearance C4 or more.
  • the fourth clearance C4 is equal to or higher than the first clearance C1.
  • Such a film 2 is formed, for example, by heat imprinting or UV imprinting processing in which a plate having protrusions corresponding to the wells 7 is brought into contact with the film material to form the wells 7, or photoresist processing. Can be done.
  • the thickness of the film 2 is about 200 [ ⁇ m].
  • the thickness thereof is 500 [ ⁇ m] or more.
  • the product inspection of the detection device 10 is performed by irradiating the film 2 with light to transmit it and confirming the shape and the number of the wells 7.
  • the thickness of the film 2 When the thickness of the film 2 is thin, light is transmitted, but when the thickness is increased, the light transmission is impaired and inspection cannot be performed, or it is necessary to satisfy the inspection equipment or lengthen the inspection process. As a result, the cost may increase. However, if the wells 7 are formed by heat imprinting on a thin film material, the cost can be reduced.
  • the main body 1 may include legs 9 protruding from the bottom 5 along the outermost circumference of the main body 1.
  • the outer diameter R51 of the bottom portion 5 excluding the leg portion 9 is substantially the same as the inner diameter R9 (inner distance) of the leg portion 9, and in this case, the outer diameter R51 of the film 2 is the leg.
  • the inner diameter of the portion 9 is smaller than the inner diameter R9. Therefore, with respect to the configuration based on the "outer diameter R51 (distance between outer walls) of the bottom portion 5" in the various forms described above as the form without the leg portion 9, the "leg portion" is provided in the form having the leg portion 9.
  • the configuration can be based on the inner diameter R9 (inner distance) of 9.
  • the leg portion 9 is not limited to the form formed over the entire circumference of the bottom portion 5 as illustrated in FIG. 10, but is partially formed along the circumferential direction of the bottom portion 5 as illustrated in FIG. It may be in the form formed in.
  • the inner diameter R9 of the legs 9 is the inner diameter of a virtual circle passing through the inner surface of each of the partially formed legs 9 as shown in FIG. ..
  • the well 7 has been illustrated and described as a microstructure.
  • the microstructure is not limited to the well 7, and may be a trench 7B as illustrated in FIG. Further, it may be a flow path to which such a trench 7B is connected.
  • the cross-sectional shape is not limited to a circular shape, and may be an elliptical shape, a rectangular annular shape, or a polygonal (for example, hexagonal, octagonal, dodecagonal, etc.) annular shape. Good (see FIG. 13).
  • the shape of the main body 1 (bottom 5) is not circular, the outer diameter R51 and the inner diameter R52 of the bottom 5 are not uniquely determined.
  • the plane shape of the bottom portion 5 and the plane diameter shape of the film 2 are similar figures including the case where the main body portion 1 has a cylindrical shape. Therefore, regarding the relationship between the outer diameter R51 of the bottom portion 5 and the outer diameter R2 of the film 2 based on the inner diameter R52 (first clearance C1 and second clearance C2), the clearance between two similar figures may be used. it can.
  • a film 2 corresponding to a similar shape is based on a line segment (for example, a major axis in the case of an elliptical shape or a diagonal line of a polygon) connecting one point (P1) of the outer shape of the bottom portion 5 and another point (P2).
  • Clearance can be defined on a line segment (L) (for example, major axis, diagonal line, etc.) connecting one point (P1) and another point (P2). Therefore, the above-mentioned “outer diameter (distance between outer walls, distance between outer walls)” and “inner diameter (distance between inner walls, distance between inner walls)” also include meanings such as “major diameter” and "diagonal line”.
  • the reference numerals “R51a” and “R51b” correspond to the “distance between outer walls” corresponding to the outer diameter R51 of the main body portion 1, and the reference numerals “R52a” and “R52b” correspond to the main body portion 1.
  • the reference numerals “R2a” and “R2b” correspond to the “outer circumference distance” corresponding to the outer diameter R2 of the film 2.
  • the distance between the outer walls, the distance between the outer walls, the distance between the inner walls, and the distance between the inner walls pass through a reference point (Q) such as the center of gravity or the center of the target plane figure (shape of the main body 1 or the like in a plan view). Suitable.
  • a reference point such as the center of gravity or the center of the target plane figure (shape of the main body 1 or the like in a plan view). Suitable.
  • the microstructure-forming region E1 such as the well 7.
  • the main body portion 1 is adjacent to the first tubular portion 4 via the first tubular portion 4 arranged on the side of the bottom portion 5 and the stepped portion 8, and the first tubular portion 4
  • the embodiment including the second tubular portion 3 having a larger diameter than the above has been described as an example.
  • the main body 1 may be formed in a continuous tubular shape without providing the stepped portion 8. For example, when it is assumed that the amount of liquid injected into the main body 1 is sufficiently smaller than the volume of the main body 1, the liquid flows out from the first opening 61 due to surface tension. Since the possibility is low, it is not necessary to provide the step portion 8.

Landscapes

  • Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Optical Measuring Cells (AREA)

Abstract

Provided is a detection device which has a simpler structure and in which a microstructure for detecting an object to be detected is appropriately formed. The detection device (10) comprises: a cylindrical body part (1); and a film (2) that has a microstructure (7) for detecting an object to be detected present in a liquid and is attached to the body part (1) to close a bottom section (5), having one opening (6), of the body part (1), wherein the distance (R2) between the outer peripheries of the film (2) is smaller than the distance (R51) between the outer walls of the bottom section (5) and is larger than the distance (R52) between the inner walls of the bottom section (5).

Description

検出用デバイスDetection device
 本発明は、検出対象物を検出するための検出用デバイスに関する。 The present invention relates to a detection device for detecting an object to be detected.
 微少量の容積を有する微小空間内で生体物質などの検出対象物の検出を行う技術が知られている。特開2017-72476号公報(特許文献1)には、試薬と検出対象であるデオキシリボ核酸(DNA)との混合液を無数の微小液滴に分割して、ポリメラーゼ連鎖反応(PCR : Polymerase Chain Reaction)によりDNAを増幅させ、DNAを含んだ液滴からは蛍光等のシグナルが検出されるようにしておいて、当該液滴を数えることによってDNAの検出及び定量を行うデジタルPCR技術について言及されている。混合物を微小液滴に分割するためには、微小な体積を有する微細構造(例えばウェル)が形成された検出デバイスが必要である。特許文献1には、検出デバイスとして、混合液の流路と、複数のウェルが形成されたマイクロウェルアレイとを備えたマイクロ流体デバイス(1000)が開示されている。以下、背景技術において括弧内に付す参照符号は、特許文献1のものである。 A technique for detecting an object to be detected such as a biological substance in a minute space having a very small volume is known. According to Japanese Patent Application Laid-Open No. 2017-72476 (Patent Document 1), a mixed solution of a reagent and deoxyribonucleic acid (DNA) to be detected is divided into innumerable microdroplets, and a polymerase chain reaction (PCR: Polymerase Chain Reaction) is described. ) Amplifies the DNA so that signals such as fluorescence can be detected from the droplets containing the DNA, and the digital PCR technology for detecting and quantifying the DNA by counting the droplets is mentioned. There is. In order to divide the mixture into microdroplets, a detection device with microstructures (eg wells) with microvolumes is needed. Patent Document 1 discloses a microfluidic device (1000) including a flow path of a mixed solution and a microwell array in which a plurality of wells are formed as a detection device. Hereinafter, the reference reference numerals given in parentheses in the background art are those of Patent Document 1.
 特許文献1の図1に例示されているように、マイクロ流体デバイス(1000)は、底部部材(1100)と、蓋部材(1200)と、流路(1300)と、流路(1300)の一端に設けられた流路入口(1210)と、流路(1300)の他端に設けられた流路出口(1220)と、流路(1300)の側面を形成する封止部材(1400)と、流路(1300)の内部に配置されたマイクロウェルアレイ(m)とを備えている。シリンジ等を利用して、流体(検出対象物と試薬との混合液)を流路入口(1210)から流路(1300)に導入し、流路出口(1220)から排出することで、流路(1300)に流体を流すように構成されている。 As illustrated in FIG. 1 of Patent Document 1, the microfluidic device (1000) includes a bottom member (1100), a lid member (1200), a flow path (1300), and one end of the flow path (1300). The flow path inlet (1210) provided in the flow path (1210), the flow path outlet (1220) provided at the other end of the flow path (1300), and the sealing member (1400) forming the side surface of the flow path (1300). It includes a microwell array (m) arranged inside the flow path (1300). A fluid (a mixed solution of a detection target and a reagent) is introduced into the flow path (1300) from the flow path inlet (1210) using a syringe or the like, and discharged from the flow path outlet (1220). It is configured to allow a fluid to flow through (1300).
特開2017-72476号公報Japanese Unexamined Patent Publication No. 2017-72476
 特許文献1に開示された検出用デバイス(マイクロ流体デバイス(1000))は、構造が複雑である。また、複雑な構造も影響し、検出対象物と試薬との混合液の導入にもシリンジ等を用いる必要があって検査工程も煩雑になる。従って、より簡素な構成で、細胞・微生物、ウイルスや、これらの生体物質を吸着させるマイクロビーズ、液滴等を収容する微細構造や液体が流通する微細構造が形成された検出用デバイスが求められる。 The detection device (microfluidic device (1000)) disclosed in Patent Document 1 has a complicated structure. In addition, the complicated structure also affects, and it is necessary to use a syringe or the like to introduce a mixed solution of the detection target and the reagent, which complicates the inspection process. Therefore, there is a need for a detection device having a simpler structure and a microstructure for accommodating cells / microorganisms, viruses, microbeads for adsorbing these biological substances, droplets, etc., and a microstructure for flowing liquids. ..
 上記背景に鑑みて、より簡素な構成で、検出対象物を検出するための微細構造が適切に形成された検出用デバイスの提供が望まれる。 In view of the above background, it is desired to provide a detection device having a simpler configuration and an appropriately formed fine structure for detecting an object to be detected.
 1つの態様として、上記に鑑みた検出用デバイスは、筒状の本体部と、検出対象物を検出するための微細構造が形成されると共に、前記本体部の一方の開口部を有する底部を塞ぐように前記本体部に取付けられたフィルムと、を備え、前記フィルムの外周間距離は前記底部の外壁間距離よりも小さく、前記底部の内壁間距離よりも大きい。 As one aspect, in the detection device in view of the above, a tubular main body portion and a microstructure for detecting an object to be detected are formed, and the bottom portion having one opening of the main body portion is closed. The film attached to the main body as described above is provided, and the distance between the outer circumferences of the film is smaller than the distance between the outer walls of the bottom and larger than the distance between the inner walls of the bottom.
 例えば、本体部と微細構造が形成されるフィルムとを一体的に形成する場合には、検出用デバイスの全体を成型等によって生産することが考えられる。しかし、成型の場合には、フィルムに相当する部分の厚みを薄くすることに限界がある。一方、本構成のように、本体部とフィルムとが分離していると、より薄いフィルム材料に微細構造を形成させてフィルムを作ることができる。生産に際しては、検出用デバイスに適切に微細構造が形成されているかを検査する必要があるが、微細構造が形成されたフィルム(フィルムに相当する箇所)の厚みが相対的に薄い場合には、光を透過させることによって微細構造の確認を行い易く、生産コストを抑制することができる。また、フィルムは、フィルムの外周間距離が底部の外壁間距離よりも小さく、底部の内壁間距離よりも大きくなるように形成されている。従って、底部を適切に塞ぐとともに、底部からはみ出して剥がれやすくなることも抑制されている。このように、本構成によれば、より簡素な構成で、検出対象物を検出するための微細構造が適切に形成された検出用デバイスを提供することができる。 For example, when the main body and the film on which the fine structure is formed are integrally formed, it is conceivable to produce the entire detection device by molding or the like. However, in the case of molding, there is a limit in reducing the thickness of the portion corresponding to the film. On the other hand, when the main body and the film are separated as in this configuration, a film can be made by forming a fine structure in a thinner film material. In production, it is necessary to inspect whether the detection device has an appropriate microstructure, but if the film on which the microstructure is formed (the part corresponding to the film) is relatively thin, By transmitting light, it is easy to confirm the fine structure, and the production cost can be suppressed. Further, the film is formed so that the distance between the outer circumferences of the film is smaller than the distance between the outer walls of the bottom and larger than the distance between the inner walls of the bottom. Therefore, the bottom portion is appropriately closed, and it is also suppressed that the bottom portion protrudes from the bottom portion and easily peels off. As described above, according to this configuration, it is possible to provide a detection device in which a fine structure for detecting a detection target is appropriately formed with a simpler configuration.
 ここで、前記フィルムの前記外周間距離は、前記底部の前記外壁間距離に対して少なくとも0.05mm小さく、前記底部の前記内壁間距離に対して少なくとも0.6mm大きいと好適である。 Here, it is preferable that the distance between the outer circumferences of the film is at least 0.05 mm smaller than the distance between the outer walls of the bottom and at least 0.6 mm larger than the distance between the inner walls of the bottom.
 フィルムの外形は、本体部とフィルムとの位置ずれが最大となっても確実に底部を塞ぐことが可能な大きさとすることが好ましい。本構成によれば、この位置ずれが0.05[mm]となっても確実に底部を塞ぐことができる。0.05[mm]以内の公差は、十分実現可能な公差であり、適切に検出用デバイスを構成することができる。また、フィルムの外形は、底部に対してフィルムが確実に取付けられて液漏れ等を生じないような貼代が確保されていることが好ましい。本構成によれば、上述した位置ずれが発生したとしても、底部の内壁間距離の周囲に少なくとも0.25[mm]の貼代が確保される。0.25[mm]の貼代は、本体部とフィルムとの取付け強度を確保するために十分であり、適切に検出用デバイスを構成することができる。 It is preferable that the outer shape of the film has a size that can surely close the bottom even if the positional deviation between the main body and the film is maximized. According to this configuration, even if this misalignment is 0.05 [mm], the bottom can be reliably closed. Tolerances within 0.05 [mm] are sufficiently feasible tolerances, and the detection device can be appropriately configured. Further, it is preferable that the outer shape of the film has a sticking allowance so that the film is securely attached to the bottom portion and liquid leakage or the like does not occur. According to this configuration, even if the above-mentioned misalignment occurs, a sticking allowance of at least 0.25 [mm] is secured around the distance between the inner walls of the bottom. The sticking allowance of 0.25 [mm] is sufficient to secure the mounting strength between the main body and the film, and the detection device can be appropriately configured.
 ここで、1つの態様として、前記微細構造は、前記フィルムの全面に形成されていると好適である。 Here, as one aspect, it is preferable that the microstructure is formed on the entire surface of the film.
 このように微細構造がフィルムの全面に形成されていると、フィルムと本体部との取付け時の位置ずれ等の影響を受けることなく、一定の数の微細構造を検出用デバイスに配置すると共に、物理的に可能な限り多くの微細構造を検出用デバイスに配置することができる。 When the fine structure is formed on the entire surface of the film in this way, a certain number of fine structures are arranged on the detection device without being affected by the positional deviation when the film and the main body are attached, and at the same time. As many microstructures as physically possible can be placed on the detection device.
 また、別の態様として、前記フィルムは、前記フィルムの外周側において前記微細構造が形成されない非形成領域と、前記非形成領域よりも内側において前記微細構造が形成される形成領域と、を備え、前記形成領域は、前記底部の前記内壁間距離よりも大きい範囲に設定されていると好適である。 As another aspect, the film includes a non-formed region in which the microstructure is not formed on the outer peripheral side of the film, and a formed region in which the microstructure is formed inside the non-formed region. It is preferable that the forming region is set in a range larger than the distance between the inner walls of the bottom portion.
 フィルムの外周側は、底部に取付けられるが、この取付け箇所に微細構造が形成されていていると、微細構造によって底部とフィルムとの接触面積が減少して取付け強度が低くなる可能性がある。本構成のように、非形成領域を設けることで、底部とフィルムとの接触面積が減少することを抑制でき、底部とフィルムとの取付け強度を確保することができる。また、底部の内壁間距離よりも大きい範囲に形成領域が設定されているので、本体部とフィルムとの間に位置ずれが生じても、十分な微細構造を検出用デバイスに配置することができる。 The outer peripheral side of the film is attached to the bottom, but if a microstructure is formed at this attachment location, the microstructure may reduce the contact area between the bottom and the film, resulting in lower mounting strength. By providing the non-formed region as in this configuration, it is possible to suppress a decrease in the contact area between the bottom and the film, and it is possible to secure the mounting strength between the bottom and the film. Further, since the formation region is set in a range larger than the distance between the inner walls of the bottom, a sufficient fine structure can be arranged in the detection device even if the position shift occurs between the main body and the film. ..
 また、別の態様として、前記フィルムは、前記フィルムの外周側において前記微細構造が形成されない非形成領域と、前記非形成領域よりも内側において前記微細構造が形成される形成領域と、を備え、前記形成領域は、前記底部の前記内壁間距離よりも小さい範囲に設定されていると好適である。 As another aspect, the film includes a non-formed region in which the microstructure is not formed on the outer peripheral side of the film, and a formed region in which the microstructure is formed inside the non-formed region. It is preferable that the forming region is set in a range smaller than the distance between the inner walls of the bottom portion.
 上述したように、底部に取付けられるフィルムの外周側に微細構造が形成されていると、微細構造によって底部とフィルムとの接触面積が減少して取付け強度が低くなる可能性がある。本構成のように、形成領域が底部の内壁間距離よりも小さい範囲に設定されていると、本体部とフィルムとの間に位置ずれが生じていない場合には、微細構造が底部に接触せず、本体部とフィルムとの間に位置ずれが生じても底部に接触する微細構造の数を抑制することができる。従って、底部とフィルムとの取付け強度を確保することができる。 As described above, if a fine structure is formed on the outer peripheral side of the film to be attached to the bottom, the contact area between the bottom and the film may be reduced due to the fine structure, and the attachment strength may be lowered. If the formation region is set to a range smaller than the distance between the inner walls of the bottom as in this configuration, the microstructure will come into contact with the bottom if there is no misalignment between the main body and the film. However, even if the position shift occurs between the main body and the film, the number of microstructures in contact with the bottom can be suppressed. Therefore, the mounting strength between the bottom and the film can be ensured.
 また、上述したそれぞれの態様において、前記本体部は、前記本体部の最外周に沿って前記底部から突出する脚部を備え、前記フィルムの前記外周間距離は、前記脚部の内側間距離よりも小さいと好適である。 Further, in each of the above-described aspects, the main body portion includes a leg portion that protrudes from the bottom portion along the outermost circumference of the main body portion, and the distance between the outer circumferences of the film is greater than the distance between the inner circumferences of the leg portion. It is also preferable that the size is small.
 脚部を設けることによって、底部に取付けられるフィルムと他の物体との間には、脚部が突出する分のクリアランスを設けることができる。従って、フィルムが他の物体に接触する可能性を低減でき、フィルムの損傷を抑制することができる。 By providing the legs, it is possible to provide a clearance for the legs to protrude between the film attached to the bottom and other objects. Therefore, the possibility that the film comes into contact with other objects can be reduced, and damage to the film can be suppressed.
 また、上述したそれぞれの態様において、前記本体部は、前記底部の側に配置された第1筒状部と、段差部を介して前記第1筒状部に隣接し、前記第1筒状部よりも大径の第2筒状部とを備えると好適である。 Further, in each of the above-described aspects, the main body portion is adjacent to the first tubular portion via the first tubular portion arranged on the side of the bottom portion and the stepped portion, and the first tubular portion is provided. It is preferable to provide a second tubular portion having a larger diameter than that of the above.
 段差部が設けられることなく本体部が形成されている場合には、本体部に投入された液体が本体部の内壁に拡がって内壁を上昇し、底部とは反対側の開口部から本体部の外に漏れる可能性がある。しかし、段差部を設けると、液体が第1筒状部の内壁に拡がってその内壁を上昇しても、表面張力によりその上昇が段差部の位置で留まる。これにより、液体が第2筒状部の内壁を上昇して、底部とは反対側の開口部から本体部の外に漏れることが抑制される。 When the main body is formed without a step, the liquid charged into the main body spreads to the inner wall of the main body and rises on the inner wall, and the opening on the opposite side of the bottom of the main body is used. It may leak out. However, if the step portion is provided, even if the liquid spreads on the inner wall of the first tubular portion and rises on the inner wall, the rise stays at the position of the step portion due to surface tension. As a result, the liquid is prevented from rising up the inner wall of the second tubular portion and leaking to the outside of the main body portion from the opening on the side opposite to the bottom portion.
 検出用デバイスのさらなる特徴と利点は、図面を参照して説明する実施形態についての以下の記載から明確となる。 Further features and advantages of the detection device will be clarified from the following description of the embodiments described with reference to the drawings.
検出用デバイスの構成例を示す分解斜視図An exploded perspective view showing a configuration example of a detection device 検出用デバイスの構成例を示す縦断面図Vertical cross-sectional view showing a configuration example of a detection device 検出用デバイスの底部側(フィルム側)から見た平面図Top view seen from the bottom side (film side) of the detection device ウェルの一例を示すフィルムの部分拡大図Partially enlarged view of the film showing an example of a well ウェルの一例を示すフィルムの断面図Sectional view of a film showing an example of a well フィルムにおけるウェルの第1の配置例を模式的に示す図The figure which shows typically the first arrangement example of the well in a film. フィルムにおけるウェルの第2の配置例を模式的に示す図The figure which shows typically the example of the 2nd arrangement of wells in a film. フィルムにおけるウェルの第3の配置例を模式的に示す図The figure which shows typically the 3rd arrangement example of the well in a film 検出用デバイスの他の構成例を示す縦断面図Longitudinal section showing another configuration example of the detection device 脚部の一例を示す本体部の底部側(脚部側)から見た平面図Top view seen from the bottom side (leg side) of the main body showing an example of the leg part 脚部の他の例を示す本体部の底部側(脚部側)から見た平面図Top view seen from the bottom side (leg side) of the main body showing another example of the leg ウェルの他の例を示すフィルムの部分拡大図Partial magnified view of the film showing other examples of wells 他の例の検出用デバイスの底部側(フィルム側)から見た平面図Top view seen from the bottom side (film side) of the detection device of another example
 以下、液体中に存在する検出対象物を検出するための検出用デバイスの実施形態を図面に基づいて説明する。ここでは、例えば、血液などの生体サンプル中に存在するバイオマーカーを検出対象として用いられる検出用デバイス10(図1等参照)を例として説明する。検出対象は、例えば、細胞・微生物、ウイルス、これらの生体物質(バイオマーカー)を吸着させるマイクロビーズなどである。本実施形態では、マイクロビーズを例示する。マイクロビーズは、特異的な抗体で覆われた微細な複数のビーズ(直径2[μm]以下程度)である。マイクロビーズによって、バイオマーカーの微細な蛋白質を捕捉し、ビーズと蛋白質との複合体を発光させる蛍光標識によってバイオマーカーを検出することができる。また、本実施形態では、複数のビーズ(例えば、1万~数万個)が1つの面上に配置され、複合体が形成されたビーズ(蛍光標識により発光するビーズ)と、複合体が形成されていないビーズ(蛍光標識により発光しないビーズ)とが、1つの面上に存在するようになっている。当該面上において発光しているビーズを画像処理によって検出することによって、検体中におけるバイオマーカーの数をデジタル化した数値として精度良く検出することができる。本実施形態の検出用デバイス10には、このようなビーズを面上に適切に配置することができるような微細構造(例えばウェル7(図4,図5等参照))が形成されている。 Hereinafter, an embodiment of a detection device for detecting a detection object existing in a liquid will be described with reference to the drawings. Here, for example, a detection device 10 (see FIG. 1 and the like) in which a biomarker existing in a biological sample such as blood is used as a detection target will be described as an example. The detection target is, for example, cells / microorganisms, viruses, microbeads that adsorb these biological substances (biomarkers), and the like. In this embodiment, microbeads are illustrated. The microbeads are a plurality of fine beads (about 2 [μm] or less in diameter) covered with a specific antibody. The microbeads can capture the microproteins of the biomarker, and the biomarker can be detected by a fluorescent label that emits a complex of the beads and the protein. Further, in the present embodiment, a plurality of beads (for example, 10,000 to tens of thousands) are arranged on one surface, and a complex is formed with beads (beads that emit light by a fluorescent label) on which a complex is formed. Beads that are not (beads that do not emit light due to fluorescent labeling) are present on one surface. By detecting the beads emitting light on the surface by image processing, the number of biomarkers in the sample can be accurately detected as a digitized numerical value. The detection device 10 of the present embodiment is formed with a fine structure (for example, well 7 (see FIGS. 4, 5, etc.)) so that such beads can be appropriately arranged on the surface.
 図1は、検出用デバイス10の構成例を示す分解斜視図である。図1に示すように、検出用デバイス10は、筒状の本体部1と、液体中に存在する検出対象物を検出するための微細構造(ここではウェル7)が形成されると共に、本体部1の一方の開口部6を有する底部5を塞ぐように本体部1に取付けられたフィルム2とを備えている。フィルム2の一方側の面には、後述するウェル7などの微細構造が形成されている。フィルム2は、微細構造を本体部1の側に向けて、本体部1に取付けられている。本体部1は、第1開口部61と、第2開口部62とを備え、底部5は第2開口部62を含む。また、本体部1は、底部5の側(第2開口部62の側)に配置された第1筒状部4と、段差部8を介して第1筒状部4に隣接し、第1筒状部4よりも大径の第2筒状部3とを備える。本体部1とフィルム2とは、例えばレーザーや超音波を用いた溶着(ボンディング)や、接着剤(接着テープを含む)による接着によって接合されている。 FIG. 1 is an exploded perspective view showing a configuration example of the detection device 10. As shown in FIG. 1, in the detection device 10, a tubular main body 1 and a microstructure (here, a well 7) for detecting a detection object existing in a liquid are formed, and the main body is formed. It includes a film 2 attached to the main body 1 so as to close the bottom 5 having one opening 6 of 1. A fine structure such as a well 7, which will be described later, is formed on one surface of the film 2. The film 2 is attached to the main body 1 with its microstructure facing the main body 1. The main body 1 includes a first opening 61 and a second opening 62, and the bottom 5 includes a second opening 62. Further, the main body portion 1 is adjacent to the first tubular portion 4 via the first tubular portion 4 arranged on the side of the bottom portion 5 (the side of the second opening 62) and the stepped portion 8, and is the first. A second tubular portion 3 having a diameter larger than that of the tubular portion 4 is provided. The main body 1 and the film 2 are joined by, for example, welding (bonding) using a laser or ultrasonic waves, or bonding with an adhesive (including an adhesive tape).
 図2は、検出用デバイス10の構成例を示す縦断面図であり、図3は、検出用デバイス10の底部5の側(フィルム2の側)から見た平面図である。これらの図に示すように、フィルム2の外径R2(外周間距離)は底部5の外径R51(外壁間距離:底部5における本体部1の外形)よりも小さく、底部5の内径R52(内壁間距離)よりも大きい。具体的には、フィルム2の外径R2は、本体部1に対してフィルム2を貼り付ける際の位置決め精度の公差を考慮した寸法(第1クリアランスC1)分、底部5の外径R51よりも小さいことが好ましい。例えば、最大公差(第1クリアランスC1)が0.05[mm]の場合には、フィルム2の外径R2は、底部5の外径R51に対して少なくとも0.05[mm]小さいことが好ましい。 FIG. 2 is a vertical cross-sectional view showing a configuration example of the detection device 10, and FIG. 3 is a plan view seen from the bottom 5 side (film 2 side) of the detection device 10. As shown in these figures, the outer diameter R2 (distance between outer circumferences) of the film 2 is smaller than the outer diameter R51 (distance between outer walls: outer diameter of the main body 1 at the bottom 5) of the bottom 5, and the inner diameter R52 of the bottom 5 (distance between outer walls 5). It is larger than the distance between inner walls). Specifically, the outer diameter R2 of the film 2 is larger than the outer diameter R51 of the bottom 5 by the size (first clearance C1) considering the tolerance of positioning accuracy when the film 2 is attached to the main body 1. Small is preferable. For example, when the maximum tolerance (first clearance C1) is 0.05 [mm], the outer diameter R2 of the film 2 is preferably at least 0.05 [mm] smaller than the outer diameter R51 of the bottom 5. ..
 また、フィルム2の外径R2は、本体部1に対してフィルム2を貼り付ける際の貼代を確保できると共に、本体部1に液体を入れた際に底部5とフィルム2との接合部からの液漏れを防止できる幅(第2クリアランスC2)が確保されていることが好ましい。例えば、貼代として接合に必要な幅が0.25[mm]の場合、上述した第1クリアランスC1(0.05[mm])を考慮すると、接合部からの液漏れを防止できる接合幅(第2クリアランスC2)は、0.3[mm]となる。従って、フィルム2の外径R2は、底部5の内径R52に対して少なくとも0.6mm大きいと好ましい。尚、本実施形態において、例えば、底部5における本体部1の外径R51は8~9[mm]、底部5における本体部1の内径R52は、6~7[mm]程度である。 Further, the outer diameter R2 of the film 2 can secure a sticking allowance when the film 2 is stuck to the main body 1, and also from the joint portion between the bottom 5 and the film 2 when the liquid is put into the main body 1. It is preferable that a width (second clearance C2) that can prevent liquid leakage from the film is secured. For example, when the width required for joining as a sticking allowance is 0.25 [mm], considering the above-mentioned first clearance C1 (0.05 [mm]), the joining width that can prevent liquid leakage from the joining portion ( The second clearance C2) is 0.3 [mm]. Therefore, it is preferable that the outer diameter R2 of the film 2 is at least 0.6 mm larger than the inner diameter R52 of the bottom portion 5. In the present embodiment, for example, the outer diameter R51 of the main body 1 at the bottom 5 is about 8 to 9 [mm], and the inner diameter R52 of the main body 1 at the bottom 5 is about 6 to 7 [mm].
 上述したように、本体部1は、底部5の側に配置された第1筒状部4と、段差部8を介して第1筒状部4に隣接し、第1筒状部4よりも大径の第2筒状部3とを備えている。本実施形態では、本体部1は、射出成型等によって形成される樹脂部品である。従って、成形型の抜きや、検出用デバイス10への液体の投入を考慮して、第1開口部61から第2開口部62の方向に向かうに従って、小径となる筒状に構成されている。このため、第1筒状部4及び第2筒状部3のそれぞれにおいても、それぞれの内径(R4及びR3)は、第1開口部61から第2開口部62の方向に向かうに従って、小径となっている。しかし、第1筒状部4と第2筒状部3との間には段差部8が設けられており、第1筒状部4の最大の内径R4よりも、第2筒状部3の最小の内径R3の方が大きい。 As described above, the main body portion 1 is adjacent to the first tubular portion 4 via the first tubular portion 4 arranged on the side of the bottom portion 5 and the stepped portion 8, and is more than the first tubular portion 4. It is provided with a second tubular portion 3 having a large diameter. In the present embodiment, the main body 1 is a resin part formed by injection molding or the like. Therefore, in consideration of removing the molding die and charging the liquid into the detection device 10, the tubular shape has a smaller diameter in the direction from the first opening 61 to the second opening 62. Therefore, in each of the first tubular portion 4 and the second tubular portion 3, the inner diameters (R4 and R3) of each become smaller in the direction from the first opening 61 to the second opening 62. It has become. However, a step portion 8 is provided between the first tubular portion 4 and the second tubular portion 3, and the second tubular portion 3 is larger than the maximum inner diameter R4 of the first tubular portion 4. The smallest inner diameter R3 is larger.
 段差部8が設けられることなく本体部1が形成されている場合には、本体部1に投入された液体が本体部1の内壁1aに拡がって内壁1aを上昇し、第1開口部61から本体部1の外に漏れる可能性がある。しかし、段差部8を設けることによって、液体が第1筒状部4の内壁4aを上昇しても、表面張力によりその上昇が段差部8において留まる。このため、液体がさらに第2筒状部3の内壁3aを上昇して、第1開口部61から本体部1の外に漏れることが抑制される。 When the main body 1 is formed without the step 8 being provided, the liquid charged into the main body 1 spreads to the inner wall 1a of the main body 1 and rises from the first opening 61. There is a possibility of leakage to the outside of the main body 1. However, by providing the stepped portion 8, even if the liquid rises on the inner wall 4a of the first tubular portion 4, the rise is retained in the stepped portion 8 due to surface tension. Therefore, it is possible to prevent the liquid from further rising from the inner wall 3a of the second tubular portion 3 and leaking from the first opening 61 to the outside of the main body portion 1.
 図4は、微細構造としてのウェル7の一例を示すフィルム2の部分拡大図であり、図5は、ウェル7の一例を示すフィルム2の断面図である。図4に示すように、フィルム2には複数のウェル7が規則的に配列されている。図5に示すように、ウェル7は、フィルム2の一方側の面である第1面2aから他方の面である第2面2bに向かって窪んだ半球状に形成されている。本実施形態では、フィルム2の厚み7tは50~300[μm]程度、ウェル7の第1面2aにおける径7wは1~10[μm]程度、ウェル7の第1面2aからの深さ7dは1~10[μm]程度、ウェル7の配置間隔7p(ピッチ)は3~15[μm]程度である。また、図5には、1つのウェル7にビーズ20が配置されている例を示しているが、ビーズ20は全てのウェル7に1つずつ配置される。尚、フィルム2は、ウェル7が形成される第1面2aを底部5の側に向けて本体部1に接合される。 FIG. 4 is a partially enlarged view of the film 2 showing an example of the well 7 as a microstructure, and FIG. 5 is a cross-sectional view of the film 2 showing an example of the well 7. As shown in FIG. 4, a plurality of wells 7 are regularly arranged in the film 2. As shown in FIG. 5, the well 7 is formed in a hemispherical shape recessed from the first surface 2a, which is one surface of the film 2, toward the second surface 2b, which is the other surface. In the present embodiment, the thickness 7t of the film 2 is about 50 to 300 [μm], the diameter 7w of the first surface 2a of the well 7 is about 1 to 10 [μm], and the depth 7d from the first surface 2a of the well 7. Is about 1 to 10 [μm], and the arrangement interval 7p (pitch) of the wells 7 is about 3 to 15 [μm]. Further, FIG. 5 shows an example in which the beads 20 are arranged in one well 7, but the beads 20 are arranged one by one in all the wells 7. The film 2 is joined to the main body 1 with the first surface 2a on which the wells 7 are formed facing the bottom 5.
 図6は、フィルム2におけるウェル7の第1の配置例を模式的に示している。図6に示す形態では、ウェル7(微細構造)は、フィルム2の全面(第1面2aの全面)に形成されている。このようにウェル7が第1面2aの全面に形成されていると、フィルム2と本体部1との接合時の位置ずれ等の影響を受けることなく、一定の数のウェル7を検出用デバイス10に配置すると共に、物理的に可能な限り多くのウェル7を検出用デバイス10に配置することができる。この場合、フィルム2の第1面2aにおいてウェル7が形成された部分と本体部1の底部5とがフィルム面に直交する方向に見て重複するので、接合強度が低下する可能性がある。従って、ウェル7が底部5と重複しないような形態(例えば後述する第2の配置例)や、ウェル7と底部5との重複範囲が第1の配置例よりも少ない形態(例えば後述する第2の配置例)に比べて、第2クリアランスC2を大きくしてもよい。上述したように、本体部1とフィルム2とは、例えばレーザーや超音波を用いた溶着(ボンディング)や、接着剤(接着テープを含む)による接着によって接合される。この第1の配置例に係るフィルム2は、微細構造を溶かすことによって本体部1へ溶着させることができるので、特に、レーザーや超音波を用いて溶着されると好適である。 FIG. 6 schematically shows an example of the first arrangement of the wells 7 in the film 2. In the form shown in FIG. 6, the well 7 (microstructure) is formed on the entire surface of the film 2 (the entire surface of the first surface 2a). When the wells 7 are formed on the entire surface of the first surface 2a in this way, a certain number of wells 7 can be detected by a device for detecting a certain number of wells 7 without being affected by misalignment at the time of joining the film 2 and the main body 1. In addition to being placed in 10, as many wells 7 as physically possible can be placed in the detection device 10. In this case, since the portion where the well 7 is formed on the first surface 2a of the film 2 and the bottom portion 5 of the main body portion 1 overlap when viewed in the direction orthogonal to the film surface, the bonding strength may decrease. Therefore, a form in which the well 7 does not overlap with the bottom portion 5 (for example, a second arrangement example described later) or a form in which the overlapping range of the well 7 and the bottom portion 5 is smaller than that in the first arrangement example (for example, a second arrangement described later). The second clearance C2 may be made larger than that of the arrangement example). As described above, the main body 1 and the film 2 are joined by, for example, welding (bonding) using a laser or ultrasonic waves, or bonding with an adhesive (including an adhesive tape). Since the film 2 according to the first arrangement example can be welded to the main body 1 by melting the fine structure, it is particularly preferable that the film 2 is welded by using a laser or ultrasonic waves.
 図7は、フィルム2におけるウェル7の第2の配置例を模式的に示し、図8は、フィルム2におけるウェル7の第3の配置例を模式的に示している。これらの形態では、フィルム2(第1面2a)は、フィルム2の外周側においてウェル7(微細構造)が形成されない非形成領域E2と、非形成領域E2よりも内側においてウェル7(微細構造)が形成される形成領域E1とを備えている。図7に例示する第2の配置例では、形成領域E1は、底部5の内径R52よりも大きい範囲に設定されている。図8に例示する第3の配置例では、形成領域E1は、底部5の内径R52よりも小さい範囲に設定されている。 FIG. 7 schematically shows a second arrangement example of the well 7 in the film 2, and FIG. 8 schematically shows a third arrangement example of the well 7 in the film 2. In these forms, the film 2 (first surface 2a) has a non-formed region E2 in which the well 7 (microstructure) is not formed on the outer peripheral side of the film 2 and a well 7 (microstructure) inside the non-formed region E2. It is provided with a formation region E1 in which a is formed. In the second arrangement example illustrated in FIG. 7, the formation region E1 is set in a range larger than the inner diameter R52 of the bottom portion 5. In the third arrangement example illustrated in FIG. 8, the formation region E1 is set in a range smaller than the inner diameter R52 of the bottom portion 5.
 図7に例示する第2の配置例において、形成領域E1は、底部5の内径R52よりも第3クリアランスC3以上大きい範囲に形成されている。ここで、第3クリアランスC3は、第1クリアランスC1以上であると好適である。このように構成されていると、フィルム2と本体部1との接合時に位置ずれが生じても、一定の数のウェル7を検出用デバイス10に配置することができる。また、上述した第1の配置例と同程度に、物理的に可能な限り多くのウェル7を検出用デバイス10に配置することができる。尚、上述した第1の配置例よりも重複する領域は少なくなるが、第2の配置例においても、フィルム2の第1面2aにおいてウェル7が形成された部分と本体部1の底部5とがフィルム面に直交する方向に見て重複する場合がある。従って、ウェル7が底部5と接触しないような形態(例えば後述する第3の配置例)に比べて、第2クリアランスC2を大きくしてもよい。第2の配置例に係るフィルム2は、レーザーや超音波を用いた溶着や、接着剤による接着によって接合される。溶着では、部分的ではあるが第1の配置例のフィルム2と同様に、微細構造を溶かすことによって溶着を促進させることができる。 In the second arrangement example illustrated in FIG. 7, the formation region E1 is formed in a range larger than the inner diameter R52 of the bottom portion 5 by the third clearance C3 or more. Here, it is preferable that the third clearance C3 is equal to or higher than the first clearance C1. With this configuration, a certain number of wells 7 can be arranged in the detection device 10 even if the position shift occurs when the film 2 and the main body 1 are joined. In addition, as many wells 7 as possible can be physically arranged in the detection device 10 in the same manner as in the first arrangement example described above. Although the overlapping region is smaller than that of the first arrangement example described above, also in the second arrangement example, the portion where the well 7 is formed on the first surface 2a of the film 2 and the bottom portion 5 of the main body portion 1 May overlap when viewed in the direction orthogonal to the film surface. Therefore, the second clearance C2 may be made larger than the form in which the well 7 does not come into contact with the bottom portion 5 (for example, a third arrangement example described later). The film 2 according to the second arrangement example is joined by welding using a laser or ultrasonic waves or by bonding with an adhesive. In welding, welding can be promoted by melting the fine structure, although it is partial, as in the film 2 of the first arrangement example.
 図8に例示する第3の配置例において、形成領域E1は、底部5の内径R52よりも第4クリアランスC4以上小さい範囲に形成されている。ここで、第4クリアランスC4は、第1クリアランスC1以上であると好適である。このように構成されていると、フィルム2と本体部1との接合時に位置ずれが生じても、フィルム2の第1面2aにおいてウェル7が形成された部分と本体部1の底部5とがフィルム面に直交する方向に見て重複することがない。検出用デバイス10に配置可能なウェル7の数は、第1の配置例及び第2の配置例に比べて少なくなるが、第1の配置例及び第2の配置例に比べて、フィルム2と底部5との接合強度を確保することができる。第3の配置例に係るフィルム2は、レーザーや超音波を用いた溶着や、接着剤による接着によって接合される。 In the third arrangement example illustrated in FIG. 8, the formation region E1 is formed in a range smaller than the inner diameter R52 of the bottom 5 by the fourth clearance C4 or more. Here, it is preferable that the fourth clearance C4 is equal to or higher than the first clearance C1. With this configuration, even if a positional shift occurs when the film 2 and the main body 1 are joined, the portion where the well 7 is formed on the first surface 2a of the film 2 and the bottom 5 of the main body 1 remain. There is no overlap when viewed in the direction orthogonal to the film surface. The number of wells 7 that can be arranged in the detection device 10 is smaller than that of the first arrangement example and the second arrangement example, but the film 2 and the film 2 are smaller than the first arrangement example and the second arrangement example. The joint strength with the bottom portion 5 can be ensured. The film 2 according to the third arrangement example is joined by welding using a laser or ultrasonic waves or by bonding with an adhesive.
 このようなフィルム2は、例えば、フィルム材料に対してウェル7に対応する突起を有した版を接触させてウェル7を形成させる熱インプリンティングもしくはUVインプリンティング加工や、フォトレジスト加工によって形成することができる。図5を参照して上述したように、フィルム2の厚みは200[μm]程度である。成型等によって、フィルム2に相当する部分を形成する場合には、その厚みは、500[μm]以上となる。例えば、検出用デバイス10の製品検査は、フィルム2に光を当てて透過させ、ウェル7の形状や個数を確認することによって行われる。フィルム2の厚みが薄い場合には、光が透過するが、厚みが増すと光の透過性が損なわれ、検査ができなかったり、検査設備の充足や検査工程の長時間化が必要となったりして、コストが増大する可能性がある。しかし、薄いフィルム材料への熱インプリンティング加工によってウェル7が形成されると、低コスト化が可能となる。 Such a film 2 is formed, for example, by heat imprinting or UV imprinting processing in which a plate having protrusions corresponding to the wells 7 is brought into contact with the film material to form the wells 7, or photoresist processing. Can be done. As described above with reference to FIG. 5, the thickness of the film 2 is about 200 [μm]. When a portion corresponding to the film 2 is formed by molding or the like, the thickness thereof is 500 [μm] or more. For example, the product inspection of the detection device 10 is performed by irradiating the film 2 with light to transmit it and confirming the shape and the number of the wells 7. When the thickness of the film 2 is thin, light is transmitted, but when the thickness is increased, the light transmission is impaired and inspection cannot be performed, or it is necessary to satisfy the inspection equipment or lengthen the inspection process. As a result, the cost may increase. However, if the wells 7 are formed by heat imprinting on a thin film material, the cost can be reduced.
 ところで、図9に例示するように、他の態様として、本体部1は、本体部1の最外周に沿って底部5から突出する脚部9を備えていてもよい。図9に示すように、脚部9を除いた底部5の外径R51は、ほぼ脚部9の内径R9(内側間距離)と同じであり、この場合、フィルム2の外径R51は、脚部9の内径R9よりも小さいと好適である。従って、脚部9を有さない形態として例示した上述した種々の形態において「底部5の外径R51(外壁間距離)」を基準とした構成については、脚部9を有する形態において「脚部9の内径R9(内側間距離)」を基準とした構成とすることができる。 By the way, as illustrated in FIG. 9, as another embodiment, the main body 1 may include legs 9 protruding from the bottom 5 along the outermost circumference of the main body 1. As shown in FIG. 9, the outer diameter R51 of the bottom portion 5 excluding the leg portion 9 is substantially the same as the inner diameter R9 (inner distance) of the leg portion 9, and in this case, the outer diameter R51 of the film 2 is the leg. It is preferable that the inner diameter of the portion 9 is smaller than the inner diameter R9. Therefore, with respect to the configuration based on the "outer diameter R51 (distance between outer walls) of the bottom portion 5" in the various forms described above as the form without the leg portion 9, the "leg portion" is provided in the form having the leg portion 9. The configuration can be based on the inner diameter R9 (inner distance) of 9.
 尚、脚部9については、図10に例示するように、底部5の全周に亘って形成される形態に限らず、図11に例示するように、底部5の周方向に沿って部分的に形成される形態であってもよい。脚部9が部分的に形成される場合、脚部9の内径R9は、図11に示すように部分的に形成されたそれぞれの脚部9の内面を通る仮想円の内径とすると好適である。 The leg portion 9 is not limited to the form formed over the entire circumference of the bottom portion 5 as illustrated in FIG. 10, but is partially formed along the circumferential direction of the bottom portion 5 as illustrated in FIG. It may be in the form formed in. When the legs 9 are partially formed, it is preferable that the inner diameter R9 of the legs 9 is the inner diameter of a virtual circle passing through the inner surface of each of the partially formed legs 9 as shown in FIG. ..
 このように、底部5に脚部9を設けると、検出用デバイス10を机等に置いた場合に、フィルム2が机等に接触しないようにすることができる。検出用デバイス10を利用する際に、フィルム2の破損等を防ぐことができる。また、製品としての検出用デバイス10が収容された箱等においても、フィルム2が接触することを抑制でき、製品の劣化を抑制することができる。 By providing the legs 9 on the bottom 5 in this way, it is possible to prevent the film 2 from coming into contact with the desk or the like when the detection device 10 is placed on the desk or the like. When the detection device 10 is used, it is possible to prevent the film 2 from being damaged. Further, even in a box or the like in which the detection device 10 as a product is housed, contact with the film 2 can be suppressed, and deterioration of the product can be suppressed.
〔その他の実施形態〕
 以下、その他の実施形態について説明する。尚、以下に説明する各実施形態の構成は、それぞれ単独で適用されるものに限られず、矛盾が生じない限り、他の実施形態の構成と組み合わせて適用することも可能である。
[Other Embodiments]
Hereinafter, other embodiments will be described. The configurations of the respective embodiments described below are not limited to those applied independently, and can be applied in combination with the configurations of other embodiments as long as there is no contradiction.
(1)上記においては、微細構造としてウェル7を例示して説明した。しかし、微細構造は、ウェル7に限らず、図12に例示するようなトレンチ7Bであってもよい。また、そのようなトレンチ7Bがつながった流路であってもよい。 (1) In the above, the well 7 has been illustrated and described as a microstructure. However, the microstructure is not limited to the well 7, and may be a trench 7B as illustrated in FIG. Further, it may be a flow path to which such a trench 7B is connected.
(2)上記においては、本体部1が円筒状に形成されている形態を例示して説明した。しかし、本体部1は筒状であれば、断面形状が円形である形状に限らず、楕円形状や、矩形環状、多角形(例えば六角形、八角形、十二角形など)環状であってもよい(図13参照)。本体部1(底部5)の形状が円ではない場合、底部5の外径R51及び内径R52は一義的には定まらない。しかし、底部5の平面形状とフィルム2の平面径状とは、本体部1が円筒状である場合も含めて相似形である。従って、底部5の外径R51及び内径R52を基準としたフィルム2の外径R2との関係(第1クリアランスC1、第2クリアランスC2)については、2つの相似形状の間のクリアランスとすることができる。 (2) In the above, the form in which the main body 1 is formed in a cylindrical shape has been illustrated and described. However, as long as the main body 1 has a tubular shape, the cross-sectional shape is not limited to a circular shape, and may be an elliptical shape, a rectangular annular shape, or a polygonal (for example, hexagonal, octagonal, dodecagonal, etc.) annular shape. Good (see FIG. 13). When the shape of the main body 1 (bottom 5) is not circular, the outer diameter R51 and the inner diameter R52 of the bottom 5 are not uniquely determined. However, the plane shape of the bottom portion 5 and the plane diameter shape of the film 2 are similar figures including the case where the main body portion 1 has a cylindrical shape. Therefore, regarding the relationship between the outer diameter R51 of the bottom portion 5 and the outer diameter R2 of the film 2 based on the inner diameter R52 (first clearance C1 and second clearance C2), the clearance between two similar figures may be used. it can.
 例えば、底部5の外形の一点(P1)と他の一点(P2)とを結ぶ線分(例えば、楕円形状の場合の長径や多角形の対角線など)を基準として、相似形状において対応するフィルム2の一点(P1)と他の一点(P2)とを結ぶ線分(L)(例えば、長径、対角線など)上においてクリアランスを規定することができる。従って、上述した「外径(外壁間距離、外周間距離)」や「内径(内壁間距離、内側間距離)」は、これら「長径」や「対角線」などの意味も含むものである。 For example, a film 2 corresponding to a similar shape is based on a line segment (for example, a major axis in the case of an elliptical shape or a diagonal line of a polygon) connecting one point (P1) of the outer shape of the bottom portion 5 and another point (P2). Clearance can be defined on a line segment (L) (for example, major axis, diagonal line, etc.) connecting one point (P1) and another point (P2). Therefore, the above-mentioned "outer diameter (distance between outer walls, distance between outer walls)" and "inner diameter (distance between inner walls, distance between inner walls)" also include meanings such as "major diameter" and "diagonal line".
 図13に示す例においては、符号“R51a”、“R51b”が、本体部1の外径R51に対応する「外壁間距離」に相当し、符号“R52a”、“R52b”が、本体部1の内径R52に対応する「内壁間距離」に相当し、符号“R2a”、“R2b”が、フィルム2の外径R2に対応する「外周間距離」に相当する。図示は省略するが、脚部9を備える場合の「内側間距離」も同様である。尚、外壁間距離、外周間距離、内壁間距離、内側間距離は、対象となる平面図形(本体部1等の平面視での形状)の重心や中心などの基準点(Q)を通ると好適である。また、ウェル7などの微細構造の形成領域E1についても同様である。 In the example shown in FIG. 13, the reference numerals “R51a” and “R51b” correspond to the “distance between outer walls” corresponding to the outer diameter R51 of the main body portion 1, and the reference numerals “R52a” and “R52b” correspond to the main body portion 1. Corresponds to the "inner wall distance" corresponding to the inner diameter R52, and the symbols "R2a" and "R2b" correspond to the "outer circumference distance" corresponding to the outer diameter R2 of the film 2. Although not shown, the same applies to the “inner distance” when the legs 9 are provided. The distance between the outer walls, the distance between the outer walls, the distance between the inner walls, and the distance between the inner walls pass through a reference point (Q) such as the center of gravity or the center of the target plane figure (shape of the main body 1 or the like in a plan view). Suitable. The same applies to the microstructure-forming region E1 such as the well 7.
(3)上記においては、本体部1が、底部5の側に配置された第1筒状部4と、段差部8を介して第1筒状部4に隣接し、第1筒状部4よりも大径の第2筒状部3とを備える形態を例示して説明した。しかし、本体部1は、段差部8を設けることなく、1つの連続した筒状に形成されていてもよい。例えば、本体部1に注入される液体の液量が、本体部1の容積に対して十分に少ないことが想定されるような場合には、表面張力によって液体が第1開口部61から流出する可能性が低くなるので、段差部8を設けなくてもよい。 (3) In the above, the main body portion 1 is adjacent to the first tubular portion 4 via the first tubular portion 4 arranged on the side of the bottom portion 5 and the stepped portion 8, and the first tubular portion 4 The embodiment including the second tubular portion 3 having a larger diameter than the above has been described as an example. However, the main body 1 may be formed in a continuous tubular shape without providing the stepped portion 8. For example, when it is assumed that the amount of liquid injected into the main body 1 is sufficiently smaller than the volume of the main body 1, the liquid flows out from the first opening 61 due to surface tension. Since the possibility is low, it is not necessary to provide the step portion 8.
1   :本体部
2   :フィルム
3   :第2筒状部
4   :第1筒状部
5   :底部
6   :開口部
7   :ウェル(微細構造)
7B  :トレンチ(微細構造)
8   :段差部
9   :脚部
10  :検出用デバイス
E1  :形成領域
E2  :非形成領域
R2  :フィルムの外径(外周間距離)
R3  :第2筒状部の内径
R4  :第1筒状部の内径
R51 :底部の外径(外壁間距離)
R52 :底部の内径(内壁間距離)
R9  :脚部の内径(内側間距離)
1: Main body part 2: Film 3: Second tubular part 4: First tubular part 5: Bottom part 6: Opening 7: Well (microstructure)
7B: Trench (microstructure)
8: Step 9: Leg 10: Detection device E1: Formed region E2: Non-formed region R2: Outer diameter of film (distance between outer circumferences)
R3: Inner diameter of the second tubular part R4: Inner diameter of the first tubular part R51: Outer diameter of the bottom (distance between outer walls)
R52: Inner diameter of bottom (distance between inner walls)
R9: Inner diameter of the leg (distance between the inside)

Claims (7)

  1.  筒状の本体部と、
     検出対象物を検出するための微細構造が形成されると共に、前記本体部の一方の開口部を有する底部を塞ぐように前記本体部に取付けられたフィルムと、を備え、
     前記フィルムの外周間距離は前記底部の外壁間距離よりも小さく、前記底部の内壁間距離よりも大きい、検出用デバイス。
    Cylindrical body and
    A microstructure for detecting an object to be detected is formed, and a film attached to the main body so as to close the bottom having one opening of the main body is provided.
    A detection device in which the distance between the outer circumferences of the film is smaller than the distance between the outer walls of the bottom and larger than the distance between the inner walls of the bottom.
  2.  前記フィルムの前記外周間距離は、前記底部の前記外壁間距離に対して少なくとも0.05mm小さく、前記底部の前記内壁間距離に対して少なくとも0.6mm大きい、請求項1に記載の検出用デバイス。 The detection device according to claim 1, wherein the distance between the outer circumferences of the film is at least 0.05 mm smaller than the distance between the outer walls of the bottom and at least 0.6 mm larger than the distance between the inner walls of the bottom. ..
  3.  前記微細構造は、前記フィルムの全面に形成されている、請求項1又は2に記載の検出用デバイス。 The detection device according to claim 1 or 2, wherein the microstructure is formed on the entire surface of the film.
  4.  前記フィルムは、前記フィルムの外周側において前記微細構造が形成されない非形成領域と、前記非形成領域よりも内側において前記微細構造が形成される形成領域と、を備え、
     前記形成領域は、前記底部の前記内壁間距離よりも大きい範囲に設定されている、請求項1又は2に記載の検出用デバイス。
    The film includes a non-formed region in which the microstructure is not formed on the outer peripheral side of the film, and a formed region in which the microstructure is formed inside the non-formed region.
    The detection device according to claim 1 or 2, wherein the formation region is set in a range larger than the distance between the inner walls of the bottom portion.
  5.  前記フィルムは、前記フィルムの外周側において前記微細構造が形成されない非形成領域と、前記非形成領域よりも内側において前記微細構造が形成される形成領域と、を備え、
     前記形成領域は、前記底部の前記内壁間距離よりも小さい範囲に設定されている、請求項1又は2に記載の検出用デバイス。
    The film includes a non-formed region in which the microstructure is not formed on the outer peripheral side of the film, and a formed region in which the microstructure is formed inside the non-formed region.
    The detection device according to claim 1 or 2, wherein the formation region is set in a range smaller than the distance between the inner walls of the bottom portion.
  6.  前記本体部は、前記本体部の最外周に沿って前記底部から突出する脚部を備え、前記フィルムの前記外周間距離は、前記脚部の内側間距離よりも小さい、請求項1から5の何れか一項に記載の検出用デバイス。 Claims 1 to 5, wherein the main body includes legs protruding from the bottom along the outermost circumference of the main body, and the distance between the outer circumferences of the film is smaller than the distance between the inner sides of the legs. The detection device according to any one item.
  7.  前記本体部は、前記底部の側に配置された第1筒状部と、段差部を介して前記第1筒状部に隣接し、前記第1筒状部よりも大径の第2筒状部とを備える、請求項1から6の何れか一項に記載の検出用デバイス。 The main body portion is adjacent to the first tubular portion via a stepped portion and a first tubular portion arranged on the side of the bottom portion, and has a second tubular shape having a diameter larger than that of the first tubular portion. The detection device according to any one of claims 1 to 6, further comprising a unit.
PCT/JP2020/033019 2019-09-03 2020-09-01 Detection device WO2021045036A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2021543772A JPWO2021045036A1 (en) 2019-09-03 2020-09-01

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2019-160351 2019-09-03
JP2019160351 2019-09-03

Publications (1)

Publication Number Publication Date
WO2021045036A1 true WO2021045036A1 (en) 2021-03-11

Family

ID=74852947

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/033019 WO2021045036A1 (en) 2019-09-03 2020-09-01 Detection device

Country Status (2)

Country Link
JP (1) JPWO2021045036A1 (en)
WO (1) WO2021045036A1 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006345815A (en) * 2005-06-17 2006-12-28 Toppan Printing Co Ltd Reaction chip
JP2007192806A (en) * 2005-12-22 2007-08-02 Canon Inc Substrate for target material detection element, target material detection element, device and method of detecting target material using it, and kit therefor
JP2008076306A (en) * 2006-09-22 2008-04-03 Sumitomo Bakelite Co Ltd Micro flow channel device
JP2014526041A (en) * 2011-06-30 2014-10-02 スリーエム イノベイティブ プロパティズ カンパニー System and method for detecting an analyte of interest in a sample using a filter and a microstructured surface

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006345815A (en) * 2005-06-17 2006-12-28 Toppan Printing Co Ltd Reaction chip
JP2007192806A (en) * 2005-12-22 2007-08-02 Canon Inc Substrate for target material detection element, target material detection element, device and method of detecting target material using it, and kit therefor
JP2008076306A (en) * 2006-09-22 2008-04-03 Sumitomo Bakelite Co Ltd Micro flow channel device
JP2014526041A (en) * 2011-06-30 2014-10-02 スリーエム イノベイティブ プロパティズ カンパニー System and method for detecting an analyte of interest in a sample using a filter and a microstructured surface

Also Published As

Publication number Publication date
JPWO2021045036A1 (en) 2021-03-11

Similar Documents

Publication Publication Date Title
JP7440465B2 (en) Multi-chamber lid device
US11938710B2 (en) Microfluidic assay assemblies and methods of manufacture
US9546932B2 (en) Microfluidic assay operating system and methods of use
JP7492103B2 (en) Method for filling a fluid chamber with liquid without bubbles - Patents.com
US10786800B2 (en) Methods and systems for epi-fluorescent monitoring and scanning for microfluidic assays
US7842157B2 (en) Method for bonding plastic micro chip
US9759718B2 (en) PDMS membrane-confined nucleic acid and antibody/antigen-functionalized microlength tube capture elements, and systems employing them, and methods of their use
JP6190822B2 (en) Microfluidic reactor system
US9011662B2 (en) Droplet actuator assemblies and methods of making same
US10076752B2 (en) Methods and systems for manufacture of microarray assay systems, conducting microfluidic assays, and monitoring and scanning to obtain microfluidic assay results
US9500645B2 (en) Micro-tube particles for microfluidic assays and methods of manufacture
JP2007285792A (en) Microchip
CN106414348A (en) Single-use bioreactor port with multiple sensors
JP2015510111A5 (en)
WO2016159068A1 (en) Microwell array, manufacturing method thereof, microfluidic device, method for sealing aqueous liquid in well of microwell array, and method for analyzing aqueous liquid
WO2018012429A1 (en) Fluid device, method of manufacturing fluid device, and valve for fluid device
US9855735B2 (en) Portable microfluidic assay devices and methods of manufacture and use
KR20140008976A (en) Microfluidic structure, microfluidic device having the same and method controlling the microfluidic device
WO2021045036A1 (en) Detection device
JP4701758B2 (en) Micro channel chip
US9080993B2 (en) Microdevice, microchip apparatus and analysis method utilizing the same
JP2012007920A (en) Manufacturing method of micro flow channel device
JP2008216121A (en) Method for manufacturing microchip
US20100310437A1 (en) Microchip and Method for Manufacturing the Same
JP2010217145A (en) Microchip and microchip set

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20859865

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2021543772

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20859865

Country of ref document: EP

Kind code of ref document: A1