WO2021044985A1 - Metal oxide particle dispersion composition and dispersion method for metal oxide particles - Google Patents

Metal oxide particle dispersion composition and dispersion method for metal oxide particles Download PDF

Info

Publication number
WO2021044985A1
WO2021044985A1 PCT/JP2020/032717 JP2020032717W WO2021044985A1 WO 2021044985 A1 WO2021044985 A1 WO 2021044985A1 JP 2020032717 W JP2020032717 W JP 2020032717W WO 2021044985 A1 WO2021044985 A1 WO 2021044985A1
Authority
WO
WIPO (PCT)
Prior art keywords
group
metal oxide
oxide particles
composition
less
Prior art date
Application number
PCT/JP2020/032717
Other languages
French (fr)
Japanese (ja)
Inventor
媛▲青▼ 張
博樹 千坂
大 塩田
Original Assignee
東京応化工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 東京応化工業株式会社 filed Critical 東京応化工業株式会社
Priority to KR1020227010786A priority Critical patent/KR20220057567A/en
Priority to CN202080059990.XA priority patent/CN114302923B/en
Publication of WO2021044985A1 publication Critical patent/WO2021044985A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F220/00Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical or a salt, anhydride ester, amide, imide or nitrile thereof
    • C08F220/02Monocarboxylic acids having less than ten carbon atoms; Derivatives thereof
    • C08F220/10Esters
    • C08F220/26Esters containing oxygen in addition to the carboxy oxygen
    • C08F220/28Esters containing oxygen in addition to the carboxy oxygen containing no aromatic rings in the alcohol moiety
    • C08F220/285Esters containing oxygen in addition to the carboxy oxygen containing no aromatic rings in the alcohol moiety and containing a polyether chain in the alcohol moiety
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07FACYCLIC, CARBOCYCLIC OR HETEROCYCLIC COMPOUNDS CONTAINING ELEMENTS OTHER THAN CARBON, HYDROGEN, HALOGEN, OXYGEN, NITROGEN, SULFUR, SELENIUM OR TELLURIUM
    • C07F7/00Compounds containing elements of Groups 4 or 14 of the Periodic Table
    • C07F7/02Silicon compounds
    • C07F7/08Compounds having one or more C—Si linkages
    • C07F7/18Compounds having one or more C—Si linkages as well as one or more C—O—Si linkages
    • C07F7/1804Compounds having Si-O-C linkages
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F2/00Processes of polymerisation
    • C08F2/44Polymerisation in the presence of compounding ingredients, e.g. plasticisers, dyestuffs, fillers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F2/00Processes of polymerisation
    • C08F2/46Polymerisation initiated by wave energy or particle radiation
    • C08F2/48Polymerisation initiated by wave energy or particle radiation by ultraviolet or visible light
    • C08F2/50Polymerisation initiated by wave energy or particle radiation by ultraviolet or visible light with sensitising agents
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F220/00Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical or a salt, anhydride ester, amide, imide or nitrile thereof
    • C08F220/02Monocarboxylic acids having less than ten carbon atoms; Derivatives thereof
    • C08F220/10Esters
    • C08F220/12Esters of monohydric alcohols or phenols
    • C08F220/16Esters of monohydric alcohols or phenols of phenols or of alcohols containing two or more carbon atoms
    • C08F220/18Esters of monohydric alcohols or phenols of phenols or of alcohols containing two or more carbon atoms with acrylic or methacrylic acids
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G77/00Macromolecular compounds obtained by reactions forming a linkage containing silicon with or without sulfur, nitrogen, oxygen or carbon in the main chain of the macromolecule
    • C08G77/04Polysiloxanes
    • C08G77/20Polysiloxanes containing silicon bound to unsaturated aliphatic groups
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G77/00Macromolecular compounds obtained by reactions forming a linkage containing silicon with or without sulfur, nitrogen, oxygen or carbon in the main chain of the macromolecule
    • C08G77/42Block-or graft-polymers containing polysiloxane sequences
    • C08G77/442Block-or graft-polymers containing polysiloxane sequences containing vinyl polymer sequences

Definitions

  • the present invention relates to a composition for dispersing metal oxide particles and a method for dispersing metal oxide particles.
  • a high refractive index material is used to form the optical member.
  • the highly refracting material for example, a material in which metal oxide particles such as titanium oxide and zirconium oxide are dispersed in an organic component is used.
  • a highly refracting material a composition containing metal oxide particles and a fluorene compound having a specific structure in which a benzene ring is bonded to fluorene and has a hydrolyzable silyl group is disclosed (see Patent Document 1).
  • composition of Patent Document 1 contains a fluorene compound having a specific structure in which a benzene ring is bonded to fluorene and has a hydrolyzable silyl group, it has a high refractive index and is excellent in dispersibility of metal oxide particles.
  • the composition of Patent Document 1 has a problem of insufficient heat resistance. Insufficient heat resistance causes problems such as generation of outgas derived from organic components due to heating, which is not preferable for use in display applications such as OLED display elements or in high bending layers in OLED lighting and the like. Further, the composition of Patent Document 1 has a problem that it is difficult to apply the inkjet method to the film formation because there is a risk of concentration change, ejection failure, deterioration of curing sensitivity, etc. when the film is formed by the inkjet method. .. Therefore, a highly refracting material having excellent heat resistance and to which the inkjet method can be applied is required. Therefore, a composition for dispersing metal oxide particles capable of preparing the highly refracting material by mixing the metal oxide particles. Is desired.
  • the present invention has been made in view of the above-mentioned problems of the prior art, and is excellent in heat resistance and can be applied to an inkjet method, for display applications such as OLED display elements, or for forming a high bending layer in OLED lighting and the like. It is an object of the present invention to provide a composition for dispersing metal oxide particles capable of preparing a highly refracting material, and a method for dispersing metal oxide particles.
  • the composition for dispersing metal oxide particles contains a silyl group-modified fluorene compound having a specific structure and a (meth) acrylate compound having a specific structure, and the composition in which metal oxide particles are dispersed therein.
  • a substance highly refracting material
  • the present invention is as follows.
  • the first aspect of the present invention is for dispersing metal oxide particles containing a silyl group-modified fluorene compound represented by the following formula (1) and a (meth) acrylate compound represented by the following formula (2). It is a composition.
  • the ring Z 1 represents a naphthalene ring and represents a naphthalene ring.
  • R 1a and R 1b independently represent a halogen atom, a cyano group or an alkyl group, respectively.
  • R 2a and R 2b each independently represent an alkyl group and represent an alkyl group.
  • R 3a and R 3b each independently represent an alkylene group and represent an alkylene group.
  • X a and X b each independently represent a group represented by -Si (OR 4 ) p (R 5 ) 3-p.
  • R 4 represents a hydrogen atom, an alkyl group or a group represented by- (R 6 O) q- R 7.
  • R 5 represents a hydrogen atom or a hydrocarbon group.
  • R 6 represents an alkylene group
  • R 7 represents an alkyl group k1 and k2 independently represent integers of 0 or more and 4 or less, respectively.
  • m1 and m2 independently represent integers of 0 or more and 2 or less, respectively.
  • p represents an integer of 1 or more and 3 or less
  • q represents an integer of 1 or more.
  • Z 2 represents an aromatic group containing two or more aromatic rings
  • R 8 represents a linear or branched alkylene group
  • R 9 represents a hydrogen atom or a methyl group
  • r represents an integer greater than or equal to 0.
  • the metal oxide particle dispersion composition according to the first aspect and the metal oxide particles are mixed, and the metal oxide particles are contained in the metal oxide particle dispersion composition. It is a method of dispersing metal oxide particles.
  • the composition for dispersing metal oxide particles of the present invention contains a silyl group-modified fluorene compound represented by the formula (1) and a (meth) acrylate compound represented by the formula (2), the metal oxide particles
  • a silyl group-modified fluorene compound represented by the formula (1) and a (meth) acrylate compound represented by the formula (2)
  • the metal oxide particles By dispersing the above, it is possible to prepare a highly refracting material having excellent heat resistance and to which the inkjet method can be applied. This highly refracting material is suitable for display applications such as OLED display elements or for forming a high bending layer in OLED lighting and the like. Further, the composition for dispersing metal oxide particles of the present invention has good dispersibility of metal oxide particles and a high refractive index.
  • composition for dispersing metal oxide particles of the present invention contains a silyl group-modified fluorene compound represented by the following formula (1) and a (meth) acrylate compound represented by the following formula (2).
  • a silyl group-modified fluorene compound represented by the following formula (1) and a (meth) acrylate compound represented by the following formula (2).
  • the components contained in the composition for dispersing metal oxide particles will be described in order.
  • the composition for dispersing metal oxide particles contains a silyl group-modified fluorene compound represented by the following formula (1).
  • the ring Z 1 represents a naphthalene ring and represents a naphthalene ring.
  • R 1a and R 1b independently represent a halogen atom, a cyano group or an alkyl group, respectively.
  • R 2a and R 2b each independently represent an alkyl group and represent an alkyl group.
  • R 3a and R 3b each independently represent an alkylene group and represent an alkylene group.
  • X a and X b each independently represent a group represented by -Si (OR 4 ) p (R 5 ) 3-p.
  • R 4 represents a hydrogen atom, an alkyl group or a group represented by- (R 6 O) q- R 7.
  • R 5 represents a hydrogen atom or a hydrocarbon group.
  • R 6 represents an alkylene group
  • R 7 represents an alkyl group k1 and k2 independently represent integers of 0 or more and 4 or less, respectively.
  • m1 and m2 independently represent integers of 0 or more and 2 or less, respectively.
  • p represents an integer of 1 or more and 3 or less
  • q represents an integer of 1 or more.
  • Z 2 represents an aromatic group containing two or more aromatic rings
  • R 8 represents a linear or branched alkylene group
  • R 9 represents a hydrogen atom or a methyl group
  • r represents an integer greater than or equal to 0.
  • halogen atom as R 1a and R 1b in the above formula (1) include a chlorine atom, a fluorine atom, a bromine atom, and an iodine atom.
  • the alkyl groups as R 1a and R 1b may be linear or branched, and may be, for example, methyl group, ethyl group, propyl group, isopropyl group, butyl. Examples thereof include alkyl groups having 1 or more and 6 or less carbon atoms such as groups and tert-butyl groups.
  • R 1a and R 1b may be the same or different.
  • k1 is 2 or more, 2 or more R 1a may be the same or different, when k2 is 2 or more, 2 or more R 1b may be the same or different.
  • k1 and k2 are independently integers of 0 or more and 4 or less, preferably 0 or 1, and preferably 0. k1 and k2 may be the same or different.
  • the alkyl group as R 2a and R 2b may be linear or branched, and may be, for example, a methyl group, an ethyl group, a propyl group, an isopropyl group, or butyl.
  • R 2a and R 2b may be the same or different.
  • m1 and m2 are independently integers of 0 or more and 2 or less, and are preferably 0 or 1.
  • m1 and m2 may be the same or different.
  • the alkylene group as R 3a and R 3b is an alkylene group having 2 or more and 10 or less carbon atoms such as an ethylene group, a trimethylene group, a propylene group, a butane-1,2-diyl group and a hexylene group.
  • the alkylene group having 2 or more and 6 or less carbon atoms is preferable, the alkylene group having 2 or more and 4 or less carbon atoms is more preferable, and the alkylene group having 2 or 3 carbon atoms is further preferable.
  • R 3a and R 3b may be the same or different.
  • the alkyl group as R 4 includes a methyl group, an ethyl group, a propyl group, an isopropyl group, a butyl group, a tert-butyl group, an n-pentyl group, an isopentyl group, a sec-pentyl group and a tert.
  • -Alkyl groups having 1 to 10 carbon atoms such as pentyl group, n-hexyl group, isohexyl group, sec-hexyl group, and tert-hexyl group can be mentioned, and alkyl groups having 1 to 6 carbon atoms are preferable.
  • An alkyl group having 1 or more and 4 or less carbon atoms is more preferable, and an alkyl group having 1 or 2 carbon atoms is further preferable. If R 4 is plural, R 4 may be the same or different.
  • Alkyl groups include methyl group, ethyl group, propyl group, isopropyl group, butyl group, tert-butyl group, n-pentyl group, isopentyl group, sec-pentyl group, tert-pentyl group, n-hexyl group and isohexyl group.
  • Se-hexyl group, tert-hexyl group and other alkyl groups having 1 to 10 carbon atoms are preferable, and alkyl groups having 1 to 6 carbon atoms are preferable, and alkyl groups having 1 to 4 carbon atoms are preferable. Is more preferable.
  • the aryl group include an aryl group having 6 to 10 carbon atoms such as a phenyl group and a tolyl group. If R 5 is more, the plurality of R 5 may be the same or different.
  • the alkylene group as R 6 is the same as the alkylene group described for R 3a and R 3b . If R 6 is plural, R 6 may be the same or different.
  • the alkyl group as R 7 is the same as the alkyl group described for R 4. If R 7 is plural, R 7 may be the same or different.
  • p is an integer of 1 or more and 3 or less, preferably 2 or 3, and particularly preferably 3 from the viewpoint of hydrolysis condensability.
  • q is an integer of 1 or more, and is, for example, 1 or more and 10 or less, preferably 1 or more and 6 or less, more preferably 1 or more and 4 or less, still more preferably 1 or 2, and particularly preferably 1.
  • X a and X b may be the same or different.
  • Specific examples of X a and X b that is, -Si (OR 4 ) p (R 5 ) 3-p , include a trimethoxysilyl group, a triethoxysilyl group, a methyldimethoxysilyl group, an ethyldimethoxysilyl group, and a methyldiethoxy. Examples thereof include a silyl group and an ethyldiethoxysilyl group.
  • the silyl group-modified fluorene compound represented by the formula (1) is preferably a silyl group-modified fluorene compound represented by the following formula (1-1).
  • R 2a attached to the naphthalene ring, R 2b, -O-CH 2 -CH 2 -CH 2 -S-R 3a -X a or -O-CH 2 -CH 2- CH 2- SR 3b- Xb is bonded to a 6-membered ring which is not bonded to a fluorene ring among the 6-membered rings constituting the naphthalene ring.
  • R 1a , R 1b , R 2a , R 2b , R 3a , R 3b , X a , X b , R 4 , R 5 , R 6 , R 7 , k1, k2, m1 , M2, p and q are the same as those in the formula (1), respectively.
  • silyl group-modified fluorene compound represented by the formula (1) Specific examples of the silyl group-modified fluorene compound represented by the formula (1) are illustrated below, but the present invention is not limited thereto.
  • the silyl group-modified fluorene compound represented by the above formula (1) can be produced by using an arbitrary organic synthesis reaction.
  • a fluorene compound having an allyloxy group represented by the following formula (i) and a compound represented by the following formula (ii) such as (3-mercaptopropyl) trimethoxysilane (MPTMS) are radically divided. It can be synthesized by photoreacting in a solvent such as tetrahydro (THF) in the presence of a polymerization initiator.
  • THF tetrahydro
  • triphenylphosphine triphenylborane may be used together with a radical polymerization initiator.
  • the exposure wavelength at the time of reaction is, for example, broadband light including i-line (365 nm).
  • the fluorene compound having an allyloxy group represented by the following formula (i) and the compound represented by the following formula (ii) are, for example, fluorene having an allyloxy group represented by the following formula (i) on a mass basis.
  • Compound: It is preferable to use an amount of the compound represented by the following formula (ii) 1: 3 to 5.
  • the fluorene compound having an allyloxy group represented by the above formula (i) can be synthesized by allylating the fluorene compound having a hydroxy group represented by the following formula (iii). For example, by reacting a fluorene compound having a hydroxy group represented by the following formula (iii) with an allyl halide such as allyl bromide in the presence of a base such as sodium hydroxide or potassium hydroxide, the above formula (i) A fluorene compound having an allyloxy group represented by is capable of being synthesized. Examples of the fluorene compound having a hydroxy group represented by the following formula (iii) include 9,9-bis (6-hydroxynaphthyl) fluorene.
  • the composition for dispersing metal oxide particles may contain one kind of silyl group-modified fluorene compound represented by the formula (1) alone or a mixture of two or more kinds.
  • the content of the silyl group-modified fluorene compound represented by the formula (1) is not particularly limited as long as the effects of the present invention can be achieved, but is represented by the formula (1).
  • the ratio of the mass of the silyl group-modified fluorene compound represented by the formula (1) to the total mass of the silyl group-modified fluorene compound and the mass of the (meth) acrylate compound represented by the formula (2) is 1% by mass or more.
  • the mass ratio of the silyl group-modified fluorene compound represented by the formula (1) is more preferably 5% by mass or more, and the mass of the silyl group-modified fluorene compound represented by the formula (1). Is more preferably 10% by mass or more.
  • the upper limit of the mass ratio of the silyl group-modified fluorene compound represented by the formula (1) is not particularly limited, but from the viewpoint of high refractive index, the mass of the silyl group-modified fluorene compound represented by the formula (1).
  • the ratio of the mass of the silyl group-modified fluorene compound represented by the formula (1) to the total mass of the (meth) acrylate compound represented by the formula (2) is preferably 50% by mass or less, preferably 30 mass. It is more preferably% or less, and further preferably 25% by mass or less.
  • composition for dispersing metal oxide particles contains a (meth) acrylate compound represented by the above formula (2) together with a silyl group-modified fluorene compound represented by the above formula (1).
  • (meth) acrylate means both "acrylate” and "methacrylate”.
  • the aromatic group containing two or more aromatic rings as Z 2 may have a substituent, preferably the number of aromatic ring within Z 2 is 5 or less, It is more preferably 3 or less.
  • the number of aromatic rings the number of benzene rings is counted as one, and for the naphthalene ring, which is a condensed ring, the number of rings is 2.
  • the aromatic ring contained in Z 2 include a benzene ring and a naphthalene ring.
  • the substituents that the aromatic group as Z 2 may have include an alkyl group having 1 to 12 carbon atoms, an alkoxy group having 1 to 12 carbon atoms, and an alkoxy group having 2 to 12 carbon atoms.
  • Examples thereof include a carbonyl group, an acyl group having 1 to 12 carbon atoms, an acyloxy group having 1 to 12 carbon atoms, a hydroxyl group, a halogen atom, a cyano group or a nitro group.
  • An aromatic group containing two or more aromatic rings as Z 2 is exemplified below, but the present invention is not limited thereto, and Z 2 is a biphenyl group which may have the above-mentioned substituent. Alternatively, it is preferably a naphthyl group, more preferably a biphenyl group.
  • * represents a bond.
  • examples of the linear or branched alkylene group as R 8 include a linear or branched alkylene group having 1 or more and 4 or less carbon atoms (preferably 2 or 3 carbon atoms).
  • a methylene group, an ethylene group, a trimethylene group, a propylene group, a butane-1,2-diyl group and the like can be mentioned.
  • r is preferably 0 or more and 3 or less, more preferably 0 or more and 2 or less, further preferably 0 or 1, and particularly preferably 0.
  • the composition for dispersing metal oxide particles may contain one kind of (meth) acrylate compound represented by the formula (2) alone or a mixture of two or more kinds.
  • the content of the (meth) acrylate compound represented by the formula (2) is not particularly limited as long as the effects of the present invention can be achieved, but is represented by the formula (1).
  • the ratio of the mass of the (meth) acrylate compound represented by the formula (2) to the total mass of the silyl group-modified fluorene compound and the mass of the (meth) acrylate compound represented by the formula (2) is 50% by mass or more.
  • the mass ratio of the (meth) acrylate compound represented by the formula (2) is more preferably 70% by mass or more, and the mass of the (meth) acrylate compound represented by the formula (2). Is more preferably 75% by mass or more.
  • the upper limit of the mass ratio of the (meth) acrylate compound represented by the formula (2) is not particularly limited, but from the viewpoint of dispersibility, the mass and the formula of the silyl group-modified fluorene compound represented by the formula (1).
  • the ratio of the mass of the (meth) acrylate compound represented by the formula (2) to the total mass of the (meth) acrylate compound represented by (2) is preferably 99% by mass or less, more preferably 95% by mass or less. , 90% by mass or less is more preferable.
  • the composition for dispersing metal oxide particles may or may not further contain a radical polymerization initiator, but preferably contains a radical polymerization initiator.
  • the radical polymerization initiator may be either a photoradical polymerization initiator or a thermal radical polymerization initiator, and a photoradical polymerization initiator and a thermal radical polymerization initiator may be used in combination.
  • Examples of the photoradical polymerization initiator include Omnirad 651, Omnirad 184 (1-hydroxycyclohexyl-phenylketone), Omnirad 1173, Omnirad 2959, Omnirad 127, Omnirad 907, Omnirad 397, Omnirad 369, Omnirad 369, Omnirad 369, and Omnirad 369.
  • Alkylphenyl polymerization initiators such as V.
  • acylphosphine oxide-based polymerization initiators such as Omnirad TPO H and Omnirad 819 (all manufactured by IGM Resins VV), Irgacure OXE01, and Irgacure OXE02 (all).
  • Examples thereof include an oxime ester-based polymerization initiator (manufactured by BASF).
  • photoradical polymerization initiator examples include 1-hydroxycyclohexylphenylketone, 2-hydroxy-2-methyl-1-phenylpropan-1-one, 1- [4- (2-hydroxyethoxy) phenyl] -2. -Hydroxy-2-methyl-1-propane-1-one, 1- (4-isopropylphenyl) -2-hydroxy-2-methylpropan-1-one, 1- (4-dodecylphenyl) -2-hydroxy- 2-Methylpropan-1-one, 2,2-dimethoxy-1,2-diphenylethane-1-one, bis (4-dimethylaminophenyl) ketone, 2-methyl-1- [4- (methylthio) phenyl] -2-morpholinopropane-1-one, 2-benzyl-2-dimethylamino-1- (4-morpholinophenyl) -butane-1-one, 1,2-octanedione, 1- [4- (phenylthio)
  • thermal radical polymerization initiator examples include ketone peroxide (methyl ethyl ketone peroxide and cyclohexanone peroxide, etc.), peroxyketal (2,2-bis (tert-butylperoxy) butane and 1,1-bis (tert-butylper).
  • Oxy) cyclohexane, etc. hydroperoxide (tert-butyl hydroperoxide, cumene hydroperoxide, etc.), dialkyl peroxide (di-tert-butyl peroxide (perbutyl (registered trademark) D (manufactured by Nichiyu Co., Ltd.)), And di-tert-hexyl peroxide (perhexyl (registered trademark) D (manufactured by Nichiyu Co., Ltd.), etc.), diacyl peroxide (isobutyryl peroxide, lauroyl peroxide, benzoyl peroxide, etc.), peroxydicarbonate ( Diisopropyl peroxydicarbonate, etc.), peroxy ester (tert-butylperoxyisobutyrate and 2,5-dimethyl-2,5-di (benzoylperoxy) hexane, etc.) ⁇ organic peroxides, 1 , 1'-
  • the content of the radical polymerization initiator is not particularly limited as long as the object of the present invention is not impaired, and the content of the radical polymerization initiator is not particularly limited. Is 0.01% by mass or more and 30% by mass or less with respect to the total mass of the silyl group-modified fluorene compound represented by the above formula (1) and the mass of the (meth) acrylate compound represented by the formula (2). Preferably, it is more preferably 0.05% by mass or more and 15% by mass or less, and further preferably 0.08% by mass or more and 10% by mass or less.
  • the composition for dispersing metal oxide particles may contain an organic solvent, but the content of the organic solvent is preferably 10% by mass or less, more preferably 5% by mass or less, and does not contain an organic solvent. Is even more preferable.
  • the composition for dispersing metal oxide particles contains an organic solvent, when the inkjet method is applied, there is a problem that the concentration of the contained components may change due to the volatilization of the organic solvent, the ejection may be poor, and the curing sensitivity may be deteriorated. These problems can be suppressed by using a composition for dispersing metal oxide particles having a solvent content of 10% by mass or less, 5% by mass or less, and further containing no organic solvent.
  • examples of the organic solvent include ethylene glycol monomethyl ether, ethylene glycol monoethyl ether, ethylene glycol-n-propyl ether, ethylene glycol mono-n-butyl ether, diethylene glycol monomethyl ether, diethylene glycol monoethyl ether, and diethylene glycol.
  • (Poly) alkylene glycol monoalkyl ethers ethylene glycol monomethyl ether acetate, ethylene glycol monoethyl ether acetate, diethylene glycol monomethyl ether acetate, diethylene glycol monoethyl ether acetate, propylene glycol monomethyl ether acetate, propylene glycol monoethyl ether acetate, etc.
  • the composition for dispersing metal oxide particles contains a silyl group-modified fluorene compound represented by the formula (1) and a (meth) acrylate compound represented by the formula (2), it will be shown in Examples described later. As such, it has excellent heat resistance. Further, since the silyl group-modified fluorene compound represented by the formula (1) has a high refractive index, the composition for dispersing metal oxide particles has a high refractive index.
  • the composition for dispersing metal oxide particles can reduce the content of the organic solvent to 10% by mass or less or 5% by mass or less, and can also prevent the composition from containing the organic solvent.
  • the inkjet method can be applied because it is possible to suppress changes in the concentration of contained components due to volatilization of the organic solvent, poor ejection, and deterioration of curing sensitivity.
  • the composition for dispersing metal oxide particles has good dispersibility of metal oxide particles. Therefore, by mixing the above composition for dispersing metal oxide particles with metal oxide particles having a high refractive index to disperse the metal oxide particles, the heat resistance is excellent and the inkjet method can be applied.
  • the material can be prepared. As described above, since the high refractive index and the excellent heat resistance suppress the generation of outgas, the high refractive index material can be applied as a high bending layer in display applications or OLED lighting applications. For example, it can be applied to the high refraction layer of OLED. Further, since the inkjet method can be applied to the high-refraction material, for example, a coating film made of the high-refraction material can be easily formed.
  • the composition for dispersing metal oxide particles is any polymerizable compound other than the silyl group-modified fluorene compound represented by the above formula (1) and the (meth) acrylate compound represented by the above formula (2) (“Other”.
  • the polymerizable compound of the above formula (1) may or may not be contained, and examples of the other polymerizable compounds include a silyl group-modified fluorene compound represented by the above formula (1) and the above formula (2). Examples thereof include a resin having an ethylenically unsaturated group, a monomer having an ethylenically unsaturated group, or a combination thereof other than the (meth) acrylate compound represented by.
  • Monomers having an ethylenically unsaturated group include monofunctional monomers and polyfunctional monomers. Hereinafter, the monofunctional monomer and the polyfunctional monomer will be described in order.
  • Examples of the monofunctional monomer include (meth) acrylamide, methylol (meth) acrylamide, methoxymethyl (meth) acrylamide, ethoxymethyl (meth) acrylamide, propoxymethyl (meth) acrylamide, butoxymethoxymethyl (meth) acrylamide, and N-methylol ( Meta) acrylamide, N-hydroxymethyl (meth) acrylamide, (meth) acrylic acid, fumaric acid, maleic acid, maleic anhydride, itaconic acid, itaconic anhydride, citraconic acid, citraconic anhydride, crotonic acid, 2-acrylamide- 2-Methylpropanesulfonic acid, tert-butylacrylamide sulfonic acid, methyl (meth) acrylate, ethyl (meth) acrylate, butyl (meth) acrylate, 2-ethylhexyl (meth) acrylate, cyclohexyl (meth) acryl
  • polyfunctional monomer examples include ethylene glycol di (meth) acrylate, diethylene glycol di (meth) acrylate, tetraethylene glycol di (meth) acrylate, propylene glycol di (meth) acrylate, polypropylene glycol di (meth) acrylate, and butylene glycol di ( Meta) acrylate, neopentyl glycol di (meth) acrylate, alkylene oxide-modified neopentyl glycol diacrylate with 1 to 5 carbon atoms (among others, propylene oxide-modified neopentyl glycol diacrylate) 1,6-hexane glycol di (meth) ) Acrylate, Trimethylol Propanetri (meth) Acrylate, Glycerindi (Meta) Acrylate, Pentaerythritol Triacrylate, Pentaerythritol Tetraacrylate, Dipentaerythritol Pentaacrylate, Dipent
  • the composition for dispersing metal oxide particles may or may not contain a resin other than the resin used as the other polymerizable compound.
  • the other resins include alkali-soluble resins and resins whose solubility in a developing solution changes due to the action of an acid.
  • the alkali-soluble resin refers to KOH having a concentration of 0.05% by mass by forming a resin film having a thickness of 1 ⁇ m on a substrate with a resin solution (solvent: propylene glycol monomethyl ether acetate) having a resin concentration of 20% by mass.
  • a resin solution solvent: propylene glycol monomethyl ether acetate
  • the composition for dispersing metal oxide particles may contain various additives, if necessary. Specifically, sensitizers, curing accelerators, photocrosslinkers, dispersion aids, fillers, adhesion promoters, silane coupling agents, antistatic agents, antioxidants, UV absorbers, anti-aggregation agents, heat. Examples thereof include polymerization inhibitors, plasticizers, flame retardants, defoamers, leveling agents, thickeners, thixophilic imparting agents, and surfactants.
  • thermal polymerization inhibitor used in the composition for dispersing metal oxide particles examples include hydroquinone and hydroquinone monoethyl ether.
  • defoaming agent examples include silicone-based and fluorine-based compounds, and examples of the surfactant include anion-based, cationic and nonionic compounds.
  • the composition for dispersing metal oxide particles includes a membrane filter of 0.2 ⁇ m or less, a membrane filter of 0.5 ⁇ m or more and 1 ⁇ m or less, and the like, if necessary, after the above components are uniformly stirred, mixed, and dispersed. It can be prepared by filtering with a filter.
  • the composition for dispersing the metal oxide particles becomes a highly refracting material that can be preferably used for forming a high bending layer in a display application or the like or in OLED lighting or the like.
  • this highly refracting material has excellent heat resistance, and an inkjet method can be applied.
  • the dispersibility of the metal oxide particles is also excellent.
  • the metal oxide can be appropriately selected depending on the application, and the metal of the metal oxide includes, for example, a transition metal [for example, a Group 3 metal in the periodic table (for example, yttrium, cerium, etc.), a period.
  • Group 4 metals eg, titanium, zirconium, hafnium, etc.
  • Periodic Group 4 metals eg, niobium, tantalum, etc.
  • Periodic Table Group 6 metals eg, tungsten
  • Periodic Table Group 8 metals eg, Tungsten.
  • the metal oxide may be an oxide containing a single metal or an oxide (or a compound oxide) containing two or more kinds of metals.
  • Representative metal oxides include, for example, metal oxides (particles) containing at least one non-silicon-based metal selected from titanium, zirconium, aluminum, and zinc.
  • the metal oxide may be a metal oxide containing at least one selected from zirconium and titanium.
  • the metal oxide may be a natural product (or mineral) or the like, and is obtained by hydrolysis of a hydrolyzable condensable compound (that is, a hydrolyzable condensable metal compound, for example, a metal alkoxide) corresponding to the metal of the metal oxide. It may be the obtained hydrolyzed condensate (so-called metal oxide obtained by the sol-gel method). That is, the metal oxide particles (metal oxide) may be a hydrolyzed condensate of a condensing component (hydrolyzed condensable component) composed of a hydrolyzable condensable metal compound.
  • a hydrolyzable condensable compound that is, a hydrolyzable condensable metal compound, for example, a metal alkoxide
  • the metal oxide particles (metal oxide) may be a hydrolyzed condensate of a condensing component (hydrolyzed condensable component) composed of a hydrolyzable condensable
  • the surface of the metal oxide particles usually has a functional group (a functional group derived from a solgel reaction raw material such as a hydroxyl group directly bonded to a metal atom or a hydrolyzable condensable group such as an alkoxy group). In many cases. Then, such a functional group easily reacts with the silyl group of the silyl group-modified fluorene compound represented by the above formula (1) (hydrolysis condensation reaction) to stabilize the metal oxide particles.
  • a functional group may be a functional group existing in the metal oxide particles themselves, or may be further introduced by surface-treating the metal oxide particles, and is a functional group derived from the raw material of the sol-gel method. It may be.
  • the hydrolysis-condensable compound includes a hydrolysis-condensable group (for example, an alkoxy group, an aryloxy group, etc.) directly bonded to a metal atom (for example, zirconium, titanium, etc.).
  • a hydrolysis-condensable group for example, an alkoxy group, an aryloxy group, etc.
  • a metal atom for example, zirconium, titanium, etc.
  • examples thereof include compounds having at least one halogen atom (such as a halogen atom such as a chlorine atom and a hydroxyl group).
  • hydrolyzable and condensable metal compounds include metal alkoxides (alkoxides of the above-exemplified metals), such as zirconium alkoxides [eg, tetraalkoxide zirconium (eg, tetramethoxyzirconium, etc.).
  • Tetra C 1-18 alkoxide zirconium such as tetraethoxyzinczyl, tetraisopropoxyzirconium, tetraisobutoxyzirconium, tetran-butoxyzaldehyde, tetrakis (2-ethylhexyloxy) zirconium, tetrakis (2-methyl-2-butoxy) zirconium, Tetra C 1-12 alkoxyzincyl, more preferably tetra C 1-6 alkoxyzincyl, etc.], titanium alkoxides [eg, tetramethoxytitanium, tetraethoxytitanium, tetrapropoxy, etc.], Titanium alkoxides [eg, tetramethoxytitanium, tetraethoxytitanium, tetrapropoxy, etc.] Tetra C 1-18 alkoxide titanium such as titanium, tetraisopropoxy titanium,
  • the metal oxide particles may be surface-treated (or surface-modified), if necessary, as described above.
  • the surface treatment agent include hydrolyzable and condensable silicon compounds.
  • a hydrolysis-condensable silicon compound and a hydrolysis-condensation metal compound may be combined and hydrolyzed and condensed.
  • hydrolyzable condensable silicon compounds for example, dialkyl dialkoxy silanes (e.g., di-C 1-4 alkyl di C 1-4 alkoxysilane such as dimethyldimethoxysilane), alkylaryl dialkoxysilane (e.g., methyl phenyl dimethoxy silane C 1-4 alkyl -C 6-10 aryldi C 1-4 alkoxysilane) of diaryl dialkoxy silanes (e.g., di-C 6-10 aryldi C 1-4 alkoxysilane such as diphenyldimethoxysilane), alkyl Trialkoxysilane (eg C 1-4 alkyltri C 1-4 alkoxysilane such as methyltrimethoxysilane), aryltrialkoxysilane (eg C 6-10 aryltri C 1-4 alkoxy such as phenyltrimethoxysilane) Alkoxysilanes (or silicon alkoxys
  • silicon compounds may be used alone or in combination of two or more.
  • the average particle size (average primary particle size) of the metal oxide particles is not particularly limited, but may be usually nanometer size.
  • the average volume particle size (cumulative 50% volume particle size) of the metal oxide particles can be selected from the range of 1000 nm or less (for example, 1 nm or more and 800 nm or less), and is 700 nm or less (for example, 1 nm or more and 600 nm or less), preferably.
  • It may be 500 nm or less (for example, 2 nm or more and 400 nm or less), more preferably 300 nm or less (for example, 3 nm or more and 200 nm or less), particularly 100 nm or less (for example, 5 nm or more and 70 nm or less), and particularly sufficient transparency is ensured.
  • it may be usually about 50 nm or less [for example, 1 nm or more and 40 nm or less, preferably 3 nm or more and 35 nm or less, and more preferably 30 nm or less (for example, 5 nm or more and 25 nm or less)].
  • composition for dispersing metal oxide particles contains a silyl group-modified fluorene compound represented by the following formula (1), it usually keeps (or reflects) such a nanometer size.
  • the metal oxide particles can be dispersed in the organic component (silyl group-modified fluorene compound represented by the formula (1) and the (meth) acrylate compound represented by the formula (2)).
  • the method for dispersing the metal oxide particles in the composition for dispersing the metal oxide particles is not particularly limited.
  • the composition for dispersing the metal oxide particles and the metal oxide particles are mixed to obtain the metal oxide particles into a metal. It may be dispersed in the composition for dispersing oxide particles.
  • the blending amount of the metal oxide particles is not particularly limited, but for example, the mass of the silyl group-modified fluorene compound represented by the above formula (1) with respect to 100 parts by mass of the metal oxide particles is 0.5 parts by mass or more and 100 parts by mass. It is preferably 1 part by mass or more and 50 parts by mass or less, and further preferably 2 parts by mass or more and 10 parts by mass or less.
  • the high refraction material may contain an organic solvent.
  • the content of the organic solvent is small.
  • Specific examples of the organic solvent that the highly refracting material may contain are the same as those exemplified as the organic solvent when the composition for dispersing metal oxide particles contains an organic solvent.
  • a highly refracting material obtained by mixing and dispersing metal oxide particles in a composition for dispersing metal oxide particles preferably has a refractive index of 1.6 or more, more preferably 1.63 or more. It is more preferably .65 or more, particularly preferably 1.70 or more, and most preferably 1.75 or more.
  • the upper limit of the refractive index is not particularly limited, but may be, for example, 3 or less and 2.5 or less.
  • the refractive index is preferably the refractive index for light rays having a wavelength of 656 nm, and the refractive index is based on the conditions measured in the examples described later unless otherwise specified.
  • the viscosity of the highly refracting material is not particularly limited, but is preferably in the range of 300 cP (mPa ⁇ s) or less from the viewpoint of being applicable to the inkjet method described later.
  • the viscosity of the highly refracting material is more preferably 60 mPa ⁇ s or less, and particularly preferably 30 mPa ⁇ s or less. There is no particular lower limit, but it is 0.1 mPa ⁇ s or more.
  • the above viscosity is a viscosity measured at 25 ° C. using an E-type viscometer.
  • a step of applying the high-refractive-index material (a mixture of the composition for dispersing metal oxide particles and metal oxide particles) onto a substrate to form a coating film (hereinafter, simply "coating film formation").
  • a cured film can be formed by a cured film forming method including a step of curing the coating film.
  • the cured film forming method preferably further includes a pattern forming step, specifically, (1) The step of pressing the mold against the surface of the coating film to form a pattern on the coating film is further included (imprint method), or (2) the step of curing the coating film is performed by position-selective exposure.
  • the coating film exposed in a position-selective manner is further developed to form a pattern (development method).
  • the development method (2) the development can be carried out using an alkaline developer or a developer containing an organic solvent, but the development is more preferably carried out using a developer containing an organic solvent.
  • the base material can be selected according to various applications, and for example, metals such as quartz, glass, optical film, ceramic material, vapor-deposited film, magnetic film, reflective film, Ni, Cu, Cr, and Fe.
  • SOG Spin On Glass
  • polyester film polycarbonate film
  • polyimide film polyimide film
  • TFT array substrate PDP electrode plate
  • glass or transparent plastic substrate glass or transparent plastic substrate
  • conductive substrate such as ITO or metal
  • insulation silicon, silicon nitride, polysilicon, silicon oxide, semiconductor-made substrates such as amorphous silicon, and the like.
  • the shape of the base material is not particularly limited, and may be a plate shape or a roll shape.
  • a light-transmitting or non-light-transmitting material can be selected depending on
  • a contact transfer type coating device such as an inkjet, a roll coater, a reverse coater, or a bar coater, a spinner (rotary coating device), a dispenser, or a spray is placed on a substrate on which a cured film is to be formed.
  • a non-contact coating device such as a curtain flow coater can be used to apply a highly refractory material, and if necessary, the solvent can be removed by drying (prebaking) to form a coating film.
  • the thickness of the coating film is not particularly limited, but is preferably 10 nm or more and 50 ⁇ m or less, more preferably 50 nm or more and 30 ⁇ m or less, further preferably 100 nm or more and 10 ⁇ m or less, and 150 nm or more and 5 ⁇ m or less. Is particularly preferable.
  • the droplets piled up on the substrate, the highly refracting material embedded in the recesses of the substrate having irregularities, the highly refracting material filled in the recesses of the mold, and the like are also referred to as "coating film" for convenience. Since the high refraction material can be suitably used for the inkjet method, the inkjet method can be applied when pattern formation is performed by the imprint method as described in (1) above.
  • a mold is pressed against the surface of the pattern forming layer in order to transfer the pattern to the coating film.
  • a fine pattern previously formed on the pressing surface of the mold can be transferred to the coating film.
  • a high refraction material may be applied to a mold having a pattern and the substrate may be pressed against the substrate.
  • a light-transmitting mold can be pressed against the surface of the coating film and exposed from the back surface of the mold to cure the coating film. It is also possible to apply a highly refracting material on a light-transmitting substrate, press a mold against it, expose it from the back surface of the substrate, and cure the highly refracting material.
  • the mold material is not particularly limited, but may be any material having predetermined strength and durability.
  • Specific examples of the light-transmitting molding material include glass, quartz, PMMA, polycarbonate resin, light-transparent resin such as polyethylene terephthalate (PET), transparent metal vapor deposition film, flexible film such as polydimethylsiloxane, and photocuring. Examples include a film and a metal film.
  • the non-light transmitting mold material is not particularly limited, but may be any material having a predetermined strength. Specific examples include ceramic materials, vapor-deposited films, magnetic films, reflective films, metal substrates such as Ni, Cu, Cr, and Fe, and substrates such as SiC, silicon, silicon nitride, polysilicon, silicon oxide, and amorphous silicon. It is not particularly restricted. Further, the shape of the mold is not particularly limited, and either a plate mold or a roll mold may be used. Roll molds are especially applied when continuous transfer productivity is required.
  • the mold pressure is 10 atm or less.
  • the mold pressure it is preferable to select a region where the uniformity of mold transfer can be ensured within a range where the residual film of the highly refracting material on the convex portion of the mold is reduced.
  • a vacuum state is used as a pre-stage of the following exposure, it is effective in preventing air bubbles from being mixed in, suppressing a decrease in reactivity due to oxygen mixing, and improving the adhesion between the mold and the highly refracting material. Good.
  • the preferred degree of vacuum during exposure is in the range of 10 -1 Pa to normal pressure.
  • the curing method is not particularly limited as long as it can cure the highly refracting material, and preferably includes exposure and / or heating, and includes exposure.
  • the light source is not particularly limited in the exposure, and examples thereof include a high-pressure mercury lamp, an ultra-high pressure mercury lamp, a xenon lamp, a carbon arc lamp, and an LED.
  • ArF excimer laser coating KrF excimer laser, F 2 excimer laser, extreme ultraviolet (EUV), vacuum ultraviolet (VUV), electron beams, X-rays, soft X-ray, g-line, i-line
  • EUV extreme ultraviolet
  • VUV vacuum ultraviolet
  • electron beams X-rays
  • soft X-ray soft X-ray
  • g-line g-line
  • i-line i-line
  • the coating film can be exposed by irradiating with radiation or an electromagnetic wave such as h-ray, j-ray, or k-ray.
  • the exposure to the coating film may be regioselective via a negative mask.
  • Exposure dose varies depending on the composition of the high-refractive materials, for example preferably 10 mJ / cm 2 or more 2000 mJ / cm 2 or less, 100 mJ / cm 2 or more 1500 mJ / cm 2 and more preferably less, 200 mJ / cm 2 or more 1200 mJ / cm 2 or less is more preferable.
  • the exposure illuminance varies depending on the composition of the highly refracting material, but is preferably in the range of 1 mW / cm 2 or more and 50 mW / cm 2 or less.
  • the temperature at the time of heating is not particularly limited, and is preferably 180 ° C. or higher and 280 ° C. or lower, more preferably 200 ° C.
  • the heating time is typically preferably 1 minute or more and 60 minutes or less, more preferably 10 minutes or more and 50 minutes or less, and particularly preferably 20 minutes or more and 40 minutes or less.
  • the step of curing the coating film is performed by regioselective exposure, and the coating film exposed in a regioselective manner is developed and patterned.
  • a membrane can be obtained.
  • the exposed coating film is developed with a developing solution to form a cured product patterned into a desired shape.
  • the developing method is not particularly limited, and a dipping method, a spray method, a paddle method, a dynamic dispensing method and the like can be used.
  • Specific examples of the developing solution containing an organic solvent include alcohol solvents such as PE (propylene glycol monomethyl ether) or glycol ether solvents, ether solvents such as tetrahydrofuran, ester solvents such as butyl acetate, acetone, and methyl amyl ketone. Examples thereof include ketone solvents such as.
  • Specific examples of the alkaline developing solution include organic ones such as monoethanolamine, diethanolamine and triethanolamine, and aqueous solutions such as sodium hydroxide, potassium hydroxide, sodium carbonate, ammonia and quaternary ammonium salts.
  • the cured product after exposure or the patterned cured product after development may be post-baked to further heat cure.
  • the post-baking temperature is preferably 150 ° C. or higher and 270 ° C. or lower.
  • the cured product obtained by curing the high-refractive-index material (the composition for dispersing the metal oxide particles and the metal oxide particles mixed and dispersed) has excellent heat resistance and a high refractive index. Since the high refractive index and excellent heat resistance suppress the generation of outgas, the cured product is suitable for display applications and applications where the influence of outgas is large, such as a high refraction layer in OLED lighting and the like. ..
  • the refractive index of the cured product is preferably 1.6 or more, more preferably 1.63 or more, further preferably 1.65 or more, and particularly preferably 1.7 or more. Most preferably, it is 1.75 or more.
  • the upper limit of the refractive index is not particularly limited, but may be, for example, 3 or less and 2.5 or less.
  • the thickness of the cured film is not particularly limited, but is preferably 10 nm or more and 50 ⁇ m or less, more preferably 50 nm or more and 30 ⁇ m or less, and 100 nm or more and 10 ⁇ m or less. It is more preferable, and it is particularly preferable that it is 150 nm or more and 5 ⁇ m or less.
  • the cured product is suitable as a transparent optical member having various high refractive indexes, which will be described below.
  • the cured product has an excellent refractive index, excellent heat resistance, and suppresses the generation of outgas, and is therefore suitable as a high bending layer for display applications, OLED lighting, and the like.
  • it is suitable as a high refraction layer of OLED.
  • the cured product since the cured product has an excellent refractive index, it is suitable as a transmissive transparent screen, a reflective transparent screen, or the like in a head-up display, a head-mounted display device, a projector, or the like.
  • the cured product is, for example, a sealing material for an OLED display element, an OLED lighting, a hard coat, an insulating film, an antireflection film, an interlayer insulating film, a carbon hard mask, a display panel material (flattening film, pixels of a color filter). , Organic EL partition, spacer) and the like.
  • the cured product is preferably used as a transparent film for covering metal wiring or the like in a display element such as a touch panel.
  • a silyl group-modified fluorene compound represented by the following formula (a2) was synthesized according to Synthesis Example 1 of Patent Document 1.
  • Example 1 2 g of the silyl group-modified fluorene compound represented by the above formula (a1) as the silyl group-modified fluorene compound represented by the formula (1) and phenylphenyl acrylate as the (meth) acrylate compound represented by the formula (2). 8 g was mixed to obtain a composition for dispersing metal oxide particles.
  • Heat resistance evaluation 2 The heat resistance of the metal oxide particle dispersion compositions obtained in Example 1 and Comparative Example 1 was evaluated by the following method. First, the metal oxide particle dispersion compositions obtained in Example 1 and Comparative Example 1 were each applied to a silicon substrate by an inkjet method so as to have a thickness of 1 ⁇ m. Then, it was allowed to absorb moisture by leaving it for 24 hours in an environment of a temperature of 85 ° C. and a humidity of 85%. Using each substrate before and after moisture absorption as a sample, use the TDS method (heat temperature desorption gas spectroscopy) to heat each substrate to 40 to 100 ° C. under vacuum conditions using a temperature desorption gas analyzer (manufactured by ESCO).
  • TDS method heat temperature desorption gas spectroscopy
  • the composition for dispersing metal oxide particles of Example 1 containing the silyl group-modified fluorene compound represented by the formula (1) and the (meth) acrylate compound represented by the formula (2) has excellent heat resistance. It was possible to prepare a highly refracting material to which the inkjet method can be applied.
  • the composition for dispersing metal oxide particles of Comparative Example 1 containing no silyl group-modified fluorene compound represented by the formula (1) has heat resistance as compared with the composition for dispersing metal oxide particles of Example 1. Was bad. More specifically, since the silyl group-modified fluorene compound represented by the formula (1) contained in the composition for dispersing metal oxide particles of Example 1 has excellent heat resistance, the composition for dispersing metal oxide particles also described above.
  • composition for dispersing metal oxide particles of Example 1 does not contain an organic solvent, changes in the concentration of the contained components due to volatilization of the organic solvent, poor ejection, and deterioration of curing sensitivity are suppressed, and the inkjet method is applied. I was able to.
  • the composition for dispersing metal oxide particles had good dispersibility of metal oxide particles and a high refractive index.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Electroluminescent Light Sources (AREA)
  • Emulsifying, Dispersing, Foam-Producing Or Wetting Agents (AREA)
  • Addition Polymer Or Copolymer, Post-Treatments, Or Chemical Modifications (AREA)

Abstract

Provided is a metal oxide particle dispersion composition enabling preparation of a high-refractive material which exhibits excellent heat-resistance performance, to which an inkjet method can be applied, and which is for forming a high-refractive layer in OLED illumination and the like or for use in a display such as an OLED display element. This metal oxide particle dispersion composition contains: a specific silyl group-modified fluorene compound in which a naphthalene ring is bound to fluorene; and a specific (meth)acrylate compound. The silyl group is preferably a trimethoxysilyl group, a triethoxysilyl group, a methyldimethoxysilyl group, an ethyldimethoxysilyl group, a methyldiethoxysilyl group, or an ethyldiethoxysilyl group.

Description

金属酸化物粒子分散用組成物及び金属酸化物粒子の分散方法Composition for Dispersing Metal Oxide Particles and Dispersion Method of Metal Oxide Particles
 本発明は、金属酸化物粒子を分散させるための金属酸化物粒子分散用組成物及び金属酸化物粒子の分散方法に関する。 The present invention relates to a composition for dispersing metal oxide particles and a method for dispersing metal oxide particles.
 光学部材の形成に、高屈折率材料が用いられている。高屈折材料として、例えば、酸化チタンや酸化ジルコニウム等の金属酸化物粒子を有機成分に分散したものが用いられている。
 このような高屈折材料として、金属酸化物粒子とフルオレンにベンゼン環が結合し加水分解性シリル基を有する特定構造のフルオレン化合物とを含む組成物が、開示されている(特許文献1参照)。特許文献1の組成物は、フルオレンにベンゼン環が結合し加水分解性シリル基を有する特定構造のフルオレン化合物を含むため、高い屈折率を有し、また、金属酸化物粒子の分散性に優れる。
A high refractive index material is used to form the optical member. As the highly refracting material, for example, a material in which metal oxide particles such as titanium oxide and zirconium oxide are dispersed in an organic component is used.
As such a highly refracting material, a composition containing metal oxide particles and a fluorene compound having a specific structure in which a benzene ring is bonded to fluorene and has a hydrolyzable silyl group is disclosed (see Patent Document 1). Since the composition of Patent Document 1 contains a fluorene compound having a specific structure in which a benzene ring is bonded to fluorene and has a hydrolyzable silyl group, it has a high refractive index and is excellent in dispersibility of metal oxide particles.
特開2012-233142号公報Japanese Unexamined Patent Publication No. 2012-233142
 しかしながら、特許文献1の組成物は、耐熱性が不十分であるという問題がある。耐熱性が不十分であると、加熱により有機成分に由来するアウトガスが発生する等の問題が生じ、OLED表示素子等のディスプレイ用途等又はOLED照明等での高屈層において用いるには好ましくない。
 また、特許文献1の組成物は、インクジェット法により膜を形成すると、濃度変化、吐出不良や、硬化感度の劣化等のおそれがあるため、膜の形成にインクジェット法を適用し難いという問題もある。
 したがって、耐熱性に優れ、インクジェット法を適用することができる高屈折材料が求められ、そのため、金属酸化物粒子を混合することで、該高屈折材料を調製可能な金属酸化物粒子分散用組成物が望まれる。
However, the composition of Patent Document 1 has a problem of insufficient heat resistance. Insufficient heat resistance causes problems such as generation of outgas derived from organic components due to heating, which is not preferable for use in display applications such as OLED display elements or in high bending layers in OLED lighting and the like.
Further, the composition of Patent Document 1 has a problem that it is difficult to apply the inkjet method to the film formation because there is a risk of concentration change, ejection failure, deterioration of curing sensitivity, etc. when the film is formed by the inkjet method. ..
Therefore, a highly refracting material having excellent heat resistance and to which the inkjet method can be applied is required. Therefore, a composition for dispersing metal oxide particles capable of preparing the highly refracting material by mixing the metal oxide particles. Is desired.
 本発明は、上記従来技術の課題に鑑みなされたものであり、耐熱性に優れ、インクジェット法を適用することができる、OLED表示素子等のディスプレイ用途等又はOLED照明等における高屈層形成用の高屈折材料を調製可能な金属酸化物粒子分散用組成物、及び金属酸化物粒子の分散方法を提供することを目的とする。 The present invention has been made in view of the above-mentioned problems of the prior art, and is excellent in heat resistance and can be applied to an inkjet method, for display applications such as OLED display elements, or for forming a high bending layer in OLED lighting and the like. It is an object of the present invention to provide a composition for dispersing metal oxide particles capable of preparing a highly refracting material, and a method for dispersing metal oxide particles.
 本発明者らは、金属酸化物粒子分散用組成物を特定構造のシリル基変性フルオレン化合物と特定構造の(メタ)アクリレート化合物とを含有するものとし、これに金属酸化物粒子を分散させた組成物(高屈折材料)は、耐熱性に優れ、インクジェット法を適用することができることを見出し、本発明を完成するに至った。すなわち、本発明は以下の通りである。 The present inventors assume that the composition for dispersing metal oxide particles contains a silyl group-modified fluorene compound having a specific structure and a (meth) acrylate compound having a specific structure, and the composition in which metal oxide particles are dispersed therein. We have found that a substance (highly refracting material) has excellent heat resistance and can apply an inkjet method, and have completed the present invention. That is, the present invention is as follows.
 本発明の第1の態様は、下記式(1)で表されるシリル基変性フルオレン化合物と、下記式(2)で表される(メタ)アクリレート化合物とを含有する、金属酸化物粒子分散用組成物である。
Figure JPOXMLDOC01-appb-C000004
(式(1)中、環Zは、ナフタレン環を表し、
1a及びR1bは、それぞれ独立に、ハロゲン原子、シアノ基又はアルキル基を表し、
2a及びR2bは、それぞれ独立に、アルキル基を表し、
3a及びR3bは、それぞれ独立に、アルキレン基を表し、
及びXは、それぞれ独立に、-Si(OR(R3-pで表される基を表し、
は、水素原子、アルキル基又は-(RO)-Rで表される基を表し、
は、水素原子又は炭化水素基を表し、
は、アルキレン基を表し、
は、アルキル基を表し、
k1及びk2は、それぞれ独立に、0以上4以下の整数を表し、
m1及びm2は、それぞれ独立に、0以上2以下の整数を表し、
pは1以上3以下の整数を表し、
qは1以上の整数を表す。)
Figure JPOXMLDOC01-appb-C000005
(式(2)中、Zは2個以上の芳香環を含む芳香族基を表し、Rは直鎖状又は分岐状アルキレン基を表し、Rは水素原子又はメチル基を表し、rは0以上の整数を表す。)
The first aspect of the present invention is for dispersing metal oxide particles containing a silyl group-modified fluorene compound represented by the following formula (1) and a (meth) acrylate compound represented by the following formula (2). It is a composition.
Figure JPOXMLDOC01-appb-C000004
(In the formula (1), the ring Z 1 represents a naphthalene ring and represents a naphthalene ring.
R 1a and R 1b independently represent a halogen atom, a cyano group or an alkyl group, respectively.
R 2a and R 2b each independently represent an alkyl group and represent an alkyl group.
R 3a and R 3b each independently represent an alkylene group and represent an alkylene group.
X a and X b each independently represent a group represented by -Si (OR 4 ) p (R 5 ) 3-p.
R 4 represents a hydrogen atom, an alkyl group or a group represented by- (R 6 O) q- R 7.
R 5 represents a hydrogen atom or a hydrocarbon group.
R 6 represents an alkylene group
R 7 represents an alkyl group
k1 and k2 independently represent integers of 0 or more and 4 or less, respectively.
m1 and m2 independently represent integers of 0 or more and 2 or less, respectively.
p represents an integer of 1 or more and 3 or less,
q represents an integer of 1 or more. )
Figure JPOXMLDOC01-appb-C000005
(In formula (2), Z 2 represents an aromatic group containing two or more aromatic rings, R 8 represents a linear or branched alkylene group, R 9 represents a hydrogen atom or a methyl group, and r Represents an integer greater than or equal to 0.)
 本発明の第2の態様は、第1の態様にかかる金属酸化物粒子分散用組成物と金属酸化物粒子とを混合して、前記金属酸化物粒子を前記金属酸化物粒子分散用組成物中に分散させる、金属酸化物粒子の分散方法である。 In the second aspect of the present invention, the metal oxide particle dispersion composition according to the first aspect and the metal oxide particles are mixed, and the metal oxide particles are contained in the metal oxide particle dispersion composition. It is a method of dispersing metal oxide particles.
 本発明の金属酸化物粒子分散用組成物は、式(1)で表されるシリル基変性フルオレン化合物と式(2)で表される(メタ)アクリレート化合物とを含有するため、金属酸化物粒子を分散させることにより、耐熱性に優れ、且つ、インクジェット法を適用することができる高屈折材料を調製可能である。この高屈折材料は、OLED表示素子等のディスプレイ用途等又はOLED照明等における高屈層形成に適している。また、本発明の金属酸化物粒子分散用組成物は、金属酸化物粒子の分散性がよく、屈折率も高い。 Since the composition for dispersing metal oxide particles of the present invention contains a silyl group-modified fluorene compound represented by the formula (1) and a (meth) acrylate compound represented by the formula (2), the metal oxide particles By dispersing the above, it is possible to prepare a highly refracting material having excellent heat resistance and to which the inkjet method can be applied. This highly refracting material is suitable for display applications such as OLED display elements or for forming a high bending layer in OLED lighting and the like. Further, the composition for dispersing metal oxide particles of the present invention has good dispersibility of metal oxide particles and a high refractive index.
<<金属酸化物粒子分散用組成物>>
 本発明の金属酸化物粒子分散用組成物は、下記式(1)で表されるシリル基変性フルオレン化合物と、下記式(2)で表される(メタ)アクリレート化合物とを含有する。
 以下、金属酸化物粒子分散用組成物が含有する成分について、順に説明する。
<< Composition for Dispersing Metal Oxide Particles >>
The composition for dispersing metal oxide particles of the present invention contains a silyl group-modified fluorene compound represented by the following formula (1) and a (meth) acrylate compound represented by the following formula (2).
Hereinafter, the components contained in the composition for dispersing metal oxide particles will be described in order.
<式(1)で表されるシリル基変性フルオレン化合物>
 金属酸化物粒子分散用組成物は下記式(1)で表されるシリル基変性フルオレン化合物を含有する。
Figure JPOXMLDOC01-appb-C000006
(式(1)中、環Zは、ナフタレン環を表し、
1a及びR1bは、それぞれ独立に、ハロゲン原子、シアノ基又はアルキル基を表し、
2a及びR2bは、それぞれ独立に、アルキル基を表し、
3a及びR3bは、それぞれ独立に、アルキレン基を表し、
及びXは、それぞれ独立に、-Si(OR(R3-pで表される基を表し、
は、水素原子、アルキル基又は-(RO)-Rで表される基を表し、
は、水素原子又は炭化水素基を表し、
は、アルキレン基を表し、
は、アルキル基を表し、
k1及びk2は、それぞれ独立に、0以上4以下の整数を表し、
m1及びm2は、それぞれ独立に、0以上2以下の整数を表し、
pは1以上3以下の整数を表し、
qは1以上の整数を表す。)
Figure JPOXMLDOC01-appb-C000007
(式(2)中、Zは2個以上の芳香環を含む芳香族基を表し、Rは直鎖状又は分岐状アルキレン基を表し、Rは水素原子又はメチル基を表し、rは0以上の整数を表す。)
<Cyril group-modified fluorene compound represented by the formula (1)>
The composition for dispersing metal oxide particles contains a silyl group-modified fluorene compound represented by the following formula (1).
Figure JPOXMLDOC01-appb-C000006
(In the formula (1), the ring Z 1 represents a naphthalene ring and represents a naphthalene ring.
R 1a and R 1b independently represent a halogen atom, a cyano group or an alkyl group, respectively.
R 2a and R 2b each independently represent an alkyl group and represent an alkyl group.
R 3a and R 3b each independently represent an alkylene group and represent an alkylene group.
X a and X b each independently represent a group represented by -Si (OR 4 ) p (R 5 ) 3-p.
R 4 represents a hydrogen atom, an alkyl group or a group represented by- (R 6 O) q- R 7.
R 5 represents a hydrogen atom or a hydrocarbon group.
R 6 represents an alkylene group
R 7 represents an alkyl group
k1 and k2 independently represent integers of 0 or more and 4 or less, respectively.
m1 and m2 independently represent integers of 0 or more and 2 or less, respectively.
p represents an integer of 1 or more and 3 or less,
q represents an integer of 1 or more. )
Figure JPOXMLDOC01-appb-C000007
(In formula (2), Z 2 represents an aromatic group containing two or more aromatic rings, R 8 represents a linear or branched alkylene group, R 9 represents a hydrogen atom or a methyl group, and r Represents an integer greater than or equal to 0.)
 上記式(1)中、R1a及びR1bとしてのハロゲン原子の具体例としては、塩素原子、フッ素原子、臭素原子、及びヨウ素原子が挙げられる。
 上記式(1)中、R1a及びR1bとしてのアルキル基は、直鎖状であっても、分岐鎖状であってもよく、例えば、メチル基、エチル基、プロピル基、イソプロピル基、ブチル基、及びtert-ブチル基等の炭素原子数1以上6以下のアルキル基が挙げられる。
 R1a及びR1bは、同一でも異なっていてもよい。
 k1が2以上である場合、2以上のR1aは同一でも異なっていてもよく、k2が2以上である場合、2以上のR1bは同一でも異なっていてもよい。
 k1及びk2は、それぞれ独立に、0以上4以下の整数であり、0又は1であることが好ましく、0であることが好ましい。
 k1及びk2は、同一でも異なっていてもよい。
Specific examples of the halogen atom as R 1a and R 1b in the above formula (1) include a chlorine atom, a fluorine atom, a bromine atom, and an iodine atom.
In the above formula (1), the alkyl groups as R 1a and R 1b may be linear or branched, and may be, for example, methyl group, ethyl group, propyl group, isopropyl group, butyl. Examples thereof include alkyl groups having 1 or more and 6 or less carbon atoms such as groups and tert-butyl groups.
R 1a and R 1b may be the same or different.
If k1 is 2 or more, 2 or more R 1a may be the same or different, when k2 is 2 or more, 2 or more R 1b may be the same or different.
k1 and k2 are independently integers of 0 or more and 4 or less, preferably 0 or 1, and preferably 0.
k1 and k2 may be the same or different.
 上記式(1)中、R2a及びR2bとしてのアルキル基は、直鎖状であっても、分岐鎖状であってもよく、例えば、メチル基、エチル基、プロピル基、イソプロピル基、ブチル基、tert-ブチル基、n-ペンチル基、イソペンチル基、sec-ペンチル基、tert-ペンチル基、n-ヘキシル基、イソヘキシル基、sec-ヘキシル基、及びtert-ヘキシル基等の炭素原子数1以上18以下のアルキル基が挙げられ、炭素原子数1以上8以下のアルキル基が好ましく、炭素原子数1以上6以下のアルキル基が好ましい。
 R2a及びR2bは、同一でも異なっていてもよい。
 m1が2である場合、2つのR2aは同一でも異なっていてもよく、m2が2である場合、2つのR2bは同一でも異なっていてもよい。
 m1及びm2は、それぞれ独立に、0以上2以下の整数であり、0又は1であることが好ましい。
 m1及びm2は、同一でも異なっていてもよい。
In the above formula (1), the alkyl group as R 2a and R 2b may be linear or branched, and may be, for example, a methyl group, an ethyl group, a propyl group, an isopropyl group, or butyl. Group, tert-butyl group, n-pentyl group, isopentyl group, sec-pentyl group, tert-pentyl group, n-hexyl group, isohexyl group, sec-hexyl group, tert-hexyl group, etc. Examples thereof include an alkyl group having 18 or less, preferably an alkyl group having 1 or more and 8 or less carbon atoms, and preferably an alkyl group having 1 or more and 6 or less carbon atoms.
R 2a and R 2b may be the same or different.
When m1 is 2, the two R 2a may be the same or different, and when m2 is 2, the two R 2b may be the same or different.
m1 and m2 are independently integers of 0 or more and 2 or less, and are preferably 0 or 1.
m1 and m2 may be the same or different.
 上記式(1)中、R3a及びR3bとしてのアルキレン基は、エチレン基、トリメチレン基、プロピレン基、ブタン-1,2-ジイル基、ヘキシレン基等の炭素原子数2以上10以下のアルキレン基が挙げられ、炭素原子数2以上6以下のアルキレン基が好ましく、炭素原子数2以上4以下のアルキレン基がより好ましく、炭素原子数2又は3のアルキレン基がさらに好ましい。
 R3a及びR3bは、同一でも異なっていてもよい。
In the above formula (1), the alkylene group as R 3a and R 3b is an alkylene group having 2 or more and 10 or less carbon atoms such as an ethylene group, a trimethylene group, a propylene group, a butane-1,2-diyl group and a hexylene group. The alkylene group having 2 or more and 6 or less carbon atoms is preferable, the alkylene group having 2 or more and 4 or less carbon atoms is more preferable, and the alkylene group having 2 or 3 carbon atoms is further preferable.
R 3a and R 3b may be the same or different.
 上記式(1)中、Rとしてのアルキル基としては、メチル基、エチル基、プロピル基、イソプロピル基、ブチル基、tert-ブチル基、n-ペンチル基、イソペンチル基、sec-ペンチル基、tert-ペンチル基、n-ヘキシル基、イソヘキシル基、sec-ヘキシル基、及びtert-ヘキシル基等の炭素原子数1以上10以下のアルキル基が挙げられ、炭素原子数1以上6以下のアルキル基が好ましく、炭素原子数1以上4以下のアルキル基がより好ましく、炭素原子数1又は2のアルキル基がさらに好ましい。
 Rが複数ある場合、複数のRは同一でも異なっていてもよい。
In the above formula (1), the alkyl group as R 4 includes a methyl group, an ethyl group, a propyl group, an isopropyl group, a butyl group, a tert-butyl group, an n-pentyl group, an isopentyl group, a sec-pentyl group and a tert. -Alkyl groups having 1 to 10 carbon atoms such as pentyl group, n-hexyl group, isohexyl group, sec-hexyl group, and tert-hexyl group can be mentioned, and alkyl groups having 1 to 6 carbon atoms are preferable. , An alkyl group having 1 or more and 4 or less carbon atoms is more preferable, and an alkyl group having 1 or 2 carbon atoms is further preferable.
If R 4 is plural, R 4 may be the same or different.
 上記式(1)中、Rとしての炭化水素基としては、アルキル基や、アリール基等の不飽和炭化水素基が挙げられる。
 アルキル基としては、メチル基、エチル基、プロピル基、イソプロピル基、ブチル基、tert-ブチル基、n-ペンチル基、イソペンチル基、sec-ペンチル基、tert-ペンチル基、n-ヘキシル基、イソヘキシル基、sec-ヘキシル基、及びtert-ヘキシル基等の炭素原子数1以上10以下のアルキル基が挙げられ、炭素原子数1以上6以下のアルキル基が好ましく、炭素原子数1以上4以下のアルキル基がより好ましい。
 アリール基としては、フェニル基、トリル基等の炭素原子数6以上10以下のアリール基等が挙げられる。
 Rが複数ある場合、複数のRは同一でも異なっていてもよい。
In the above formula (1), the hydrocarbon group as R 5, or alkyl group, and an unsaturated hydrocarbon group such as an aryl group.
Alkyl groups include methyl group, ethyl group, propyl group, isopropyl group, butyl group, tert-butyl group, n-pentyl group, isopentyl group, sec-pentyl group, tert-pentyl group, n-hexyl group and isohexyl group. , Se-hexyl group, tert-hexyl group and other alkyl groups having 1 to 10 carbon atoms are preferable, and alkyl groups having 1 to 6 carbon atoms are preferable, and alkyl groups having 1 to 4 carbon atoms are preferable. Is more preferable.
Examples of the aryl group include an aryl group having 6 to 10 carbon atoms such as a phenyl group and a tolyl group.
If R 5 is more, the plurality of R 5 may be the same or different.
 上記式(1)中、Rとしてのアルキレン基は、R3a及びR3bについて説明したアルキレン基と同様である。
 Rが複数ある場合、複数のRは同一でも異なっていてもよい。
In the above formula (1), the alkylene group as R 6 is the same as the alkylene group described for R 3a and R 3b .
If R 6 is plural, R 6 may be the same or different.
 上記式(1)中、Rとしてのアルキル基は、Rについて説明したアルキル基と同様である。
 Rが複数ある場合、複数のRは同一でも異なっていてもよい。
In the above formula (1), the alkyl group as R 7 is the same as the alkyl group described for R 4.
If R 7 is plural, R 7 may be the same or different.
 上記式(1)中、pは1以上3以下の整数であり、加水分解縮合性の観点から、2又は3であるのが好ましく、特に3であるのが好ましい。
 qは、1以上の整数であり、例えば、1以上10以下、好ましくは1以上6以下、より好ましくは1以上4以下、さらに好ましくは1又は2、特に好ましくは1である。
In the above formula (1), p is an integer of 1 or more and 3 or less, preferably 2 or 3, and particularly preferably 3 from the viewpoint of hydrolysis condensability.
q is an integer of 1 or more, and is, for example, 1 or more and 10 or less, preferably 1 or more and 6 or less, more preferably 1 or more and 4 or less, still more preferably 1 or 2, and particularly preferably 1.
 X及びXは、同一でも異なっていてもよい。
 X及X、すなわち-Si(OR(R3-pの具体例としては、トリメトキシシリル基、トリエトキシシリル基、メチルジメトキシシリル基、エチルジメトキシシリル基、メチルジエトキシシリル基、又はエチルジエトキシシリル基が挙げられる。
X a and X b may be the same or different.
Specific examples of X a and X b , that is, -Si (OR 4 ) p (R 5 ) 3-p , include a trimethoxysilyl group, a triethoxysilyl group, a methyldimethoxysilyl group, an ethyldimethoxysilyl group, and a methyldiethoxy. Examples thereof include a silyl group and an ethyldiethoxysilyl group.
 式(1)で表されるシリル基変性フルオレン化合物が、下記式(1-1)で表されるシリル基変性フルオレン化合物であることが好ましい。
 なお、式(1-1)において、ナフタレン環に結合しているR2a、R2b、-O-CH-CH-CH-S-R3a-Xや-O-CH-CH-CH-S-R3b-Xは、ナフタレン環を構成する六員環のうちフルオレン環に結合していない六員環に結合している。
Figure JPOXMLDOC01-appb-C000008
(式(1-1)中、R1a、R1b、R2a、R2b、R3a、R3b、X、X、R、R、R、R、k1、k2、m1、m2、p及びqは、それぞれ式(1)中のこれらと同様である。)
The silyl group-modified fluorene compound represented by the formula (1) is preferably a silyl group-modified fluorene compound represented by the following formula (1-1).
In the equation (1-1), R 2a attached to the naphthalene ring, R 2b, -O-CH 2 -CH 2 -CH 2 -S-R 3a -X a or -O-CH 2 -CH 2- CH 2- SR 3b- Xb is bonded to a 6-membered ring which is not bonded to a fluorene ring among the 6-membered rings constituting the naphthalene ring.
Figure JPOXMLDOC01-appb-C000008
(In equation (1-1), R 1a , R 1b , R 2a , R 2b , R 3a , R 3b , X a , X b , R 4 , R 5 , R 6 , R 7 , k1, k2, m1 , M2, p and q are the same as those in the formula (1), respectively.)
 式(1)で表されるシリル基変性フルオレン化合物の具体例を以下に例示するが、本発明はこれらに限定されるものではない。
Figure JPOXMLDOC01-appb-C000009
Figure JPOXMLDOC01-appb-C000010
Specific examples of the silyl group-modified fluorene compound represented by the formula (1) are illustrated below, but the present invention is not limited thereto.
Figure JPOXMLDOC01-appb-C000009
Figure JPOXMLDOC01-appb-C000010
 上記式(1)で表されるシリル基変性フルオレン化合物は、任意の有機合成反応を用いて製造することができる。
 例えば、室温で、下記式(i)で表されるアリルオキシ基を有するフルオレン化合物と、(3-メルカプトプロピル)トリメトキシシラン(MPTMS)等の下記式(ii)で表される化合物とを、ラジカル重合開始剤の存在下、テトラヒドロ(THF)等の溶媒中で光反応させることにより、合成することができる。なお、トリフェニルホスフィン トリフェニルボランをラジカル重合開始剤とともに用いてもよい。反応させる際の露光波長は、例えば、i線(365nm)を含むブロードバンド光である。
 下記式(i)で表されるアリルオキシ基を有するフルオレン化合物と、下記式(ii)で表される化合物とは、例えば、質量基準で、下記式(i)で表されるアリルオキシ基を有するフルオレン化合物:下記式(ii)で表される化合物=1:3~5となる量を用いることが好ましい。
Figure JPOXMLDOC01-appb-C000011
The silyl group-modified fluorene compound represented by the above formula (1) can be produced by using an arbitrary organic synthesis reaction.
For example, at room temperature, a fluorene compound having an allyloxy group represented by the following formula (i) and a compound represented by the following formula (ii) such as (3-mercaptopropyl) trimethoxysilane (MPTMS) are radically divided. It can be synthesized by photoreacting in a solvent such as tetrahydro (THF) in the presence of a polymerization initiator. In addition, triphenylphosphine triphenylborane may be used together with a radical polymerization initiator. The exposure wavelength at the time of reaction is, for example, broadband light including i-line (365 nm).
The fluorene compound having an allyloxy group represented by the following formula (i) and the compound represented by the following formula (ii) are, for example, fluorene having an allyloxy group represented by the following formula (i) on a mass basis. Compound: It is preferable to use an amount of the compound represented by the following formula (ii) = 1: 3 to 5.
Figure JPOXMLDOC01-appb-C000011
 なお、上記式(i)で表されるアリルオキシ基を有するフルオレン化合物は、下記式(iii)で表されるヒドロキシ基を有するフルオレン化合物を、アリル化することにより合成することができる。例えば、下記式(iii)で表されるヒドロキシ基を有するフルオレン化合物を、水酸化ナトリウムや水酸化カリウム等の塩基の存在下、アリルブロマイド等のアリルハライドと反応させることで、上記式(i)で表されるアリルオキシ基を有するフルオレン化合物を合成することができる。下記式(iii)で表されるヒドロキシ基を有するフルオレン化合物としては、9,9-ビス(6-ヒドロキシナフチル)フルオレン等が挙げられる。
Figure JPOXMLDOC01-appb-C000012
The fluorene compound having an allyloxy group represented by the above formula (i) can be synthesized by allylating the fluorene compound having a hydroxy group represented by the following formula (iii). For example, by reacting a fluorene compound having a hydroxy group represented by the following formula (iii) with an allyl halide such as allyl bromide in the presence of a base such as sodium hydroxide or potassium hydroxide, the above formula (i) A fluorene compound having an allyloxy group represented by is capable of being synthesized. Examples of the fluorene compound having a hydroxy group represented by the following formula (iii) include 9,9-bis (6-hydroxynaphthyl) fluorene.
Figure JPOXMLDOC01-appb-C000012
 上記金属酸化物粒子分散用組成物は、式(1)で表されるシリル基変性フルオレン化合物を1種類単独又は2種以上混合して含んでいてもよい。
 上記金属酸化物粒子分散用組成物において、式(1)で表されるシリル基変性フルオレン化合物の含有量は本発明の効果を達成し得る限り特に制限はないが、式(1)で表されるシリル基変性フルオレン化合物の質量及び式(2)で表される(メタ)アクリレート化合物の質量の合計に対する、式(1)で表されるシリル基変性フルオレン化合物の質量の割合が1質量%以上であることが好ましく、式(1)で表されるシリル基変性フルオレン化合物の質量の割合が5質量%以上であることがより好ましく、式(1)で表されるシリル基変性フルオレン化合物の質量の割合が10質量%以上であることがさらに好ましい。式(1)で表されるシリル基変性フルオレン化合物の質量の割合の上限としては特に制限はないが、高屈折率性の観点から、式(1)で表されるシリル基変性フルオレン化合物の質量及び式(2)で表される(メタ)アクリレート化合物の質量の合計に対する、式(1)で表されるシリル基変性フルオレン化合物の質量の割合は50質量%以下であることが好ましく、30質量%以下であることがより好ましく、25質量%以下であることがさらに好ましい。
The composition for dispersing metal oxide particles may contain one kind of silyl group-modified fluorene compound represented by the formula (1) alone or a mixture of two or more kinds.
In the above composition for dispersing metal oxide particles, the content of the silyl group-modified fluorene compound represented by the formula (1) is not particularly limited as long as the effects of the present invention can be achieved, but is represented by the formula (1). The ratio of the mass of the silyl group-modified fluorene compound represented by the formula (1) to the total mass of the silyl group-modified fluorene compound and the mass of the (meth) acrylate compound represented by the formula (2) is 1% by mass or more. The mass ratio of the silyl group-modified fluorene compound represented by the formula (1) is more preferably 5% by mass or more, and the mass of the silyl group-modified fluorene compound represented by the formula (1). Is more preferably 10% by mass or more. The upper limit of the mass ratio of the silyl group-modified fluorene compound represented by the formula (1) is not particularly limited, but from the viewpoint of high refractive index, the mass of the silyl group-modified fluorene compound represented by the formula (1). The ratio of the mass of the silyl group-modified fluorene compound represented by the formula (1) to the total mass of the (meth) acrylate compound represented by the formula (2) is preferably 50% by mass or less, preferably 30 mass. It is more preferably% or less, and further preferably 25% by mass or less.
<式(2)で表される(メタ)アクリレート化合物>
 上記金属酸化物粒子分散用組成物は、上記式(1)で表されるシリル基変性フルオレン化合物とともに、上記式(2)で表される(メタ)アクリレート化合物を含有する。なお、本明細書において、「(メタ)アクリレート」とは、「アクリレート」及び「メタクリレート」の両者を意味する。
<(Meta) acrylate compound represented by the formula (2)>
The composition for dispersing metal oxide particles contains a (meth) acrylate compound represented by the above formula (2) together with a silyl group-modified fluorene compound represented by the above formula (1). In addition, in this specification, "(meth) acrylate" means both "acrylate" and "methacrylate".
 式(2)において、Zとしての2個以上の芳香環を含む芳香族基は、置換基を有していてもよく、Zが有する芳香環の個数は5以下であることが好ましく、3以下であることがより好ましい。なお、芳香環の個数は、ベンゼン環を1個と数え、例えば縮合環であるナフタレン環は、環の個数を2とする。
 Zが有する芳香環としては、ベンゼン環、ナフタレン環が挙げられる。
 Zとしての芳香族基が有していてもよい置換基としては、炭素原子数1以上12以下のアルキル基、炭素原子数1以上12以下のアルコキシ基、炭素原子数2以上12以下のアルコキシカルボニル基、炭素原子数1以上12以下のアシル基、炭素原子数1以上12以下のアシルオキシ基、水酸基、ハロゲン原子、シアノ基又はニトロ基が挙げられる。
 Zとしての2個以上の芳香環を含む芳香族基を以下に例示するが、本発明はこれらに限定されるものではなく、Zは、上記置換基を有していてもよいビフェニル基又はナフチル基であることが好ましく、ビフェニル基であることがより好ましい。下記式中、*は結合手を表す。
Figure JPOXMLDOC01-appb-C000013
In the formula (2), the aromatic group containing two or more aromatic rings as Z 2 may have a substituent, preferably the number of aromatic ring within Z 2 is 5 or less, It is more preferably 3 or less. As for the number of aromatic rings, the number of benzene rings is counted as one, and for the naphthalene ring, which is a condensed ring, the number of rings is 2.
Examples of the aromatic ring contained in Z 2 include a benzene ring and a naphthalene ring.
The substituents that the aromatic group as Z 2 may have include an alkyl group having 1 to 12 carbon atoms, an alkoxy group having 1 to 12 carbon atoms, and an alkoxy group having 2 to 12 carbon atoms. Examples thereof include a carbonyl group, an acyl group having 1 to 12 carbon atoms, an acyloxy group having 1 to 12 carbon atoms, a hydroxyl group, a halogen atom, a cyano group or a nitro group.
An aromatic group containing two or more aromatic rings as Z 2 is exemplified below, but the present invention is not limited thereto, and Z 2 is a biphenyl group which may have the above-mentioned substituent. Alternatively, it is preferably a naphthyl group, more preferably a biphenyl group. In the following formula, * represents a bond.
Figure JPOXMLDOC01-appb-C000013
 式(2)において、Rとしての直鎖状又は分岐状アルキレン基としては、炭素原子数1以上4以下(好ましくは炭素原子数2又は3)の直鎖状又は分岐状アルキレン基が挙げられ、例えば、メチレン基、エチレン基、トリメチレン基、プロピレン基、ブタン-1,2-ジイル基等が挙げられる。 In the formula (2), examples of the linear or branched alkylene group as R 8 include a linear or branched alkylene group having 1 or more and 4 or less carbon atoms (preferably 2 or 3 carbon atoms). For example, a methylene group, an ethylene group, a trimethylene group, a propylene group, a butane-1,2-diyl group and the like can be mentioned.
 rは、より高い耐熱性の観点から、0以上3以下が好ましく、0以上2以下がより好ましく、0又は1がさらに好ましく、0が特に好ましい。 From the viewpoint of higher heat resistance, r is preferably 0 or more and 3 or less, more preferably 0 or more and 2 or less, further preferably 0 or 1, and particularly preferably 0.
 上記金属酸化物粒子分散用組成物は、式(2)で表される(メタ)アクリレート化合物を1種類単独又は2種以上混合して含んでいてもよい。
 上記金属酸化物粒子分散用組成物において、式(2)で表される(メタ)アクリレート化合物の含有量は本発明の効果を達成し得る限り特に制限はないが、式(1)で表されるシリル基変性フルオレン化合物の質量及び式(2)で表される(メタ)アクリレート化合物の質量の合計に対する、式(2)で表される(メタ)アクリレート化合物の質量の割合が50質量%以上であることが好ましく、式(2)で表される(メタ)アクリレート化合物の質量の割合が70質量%以上であることがより好ましく、式(2)で表される(メタ)アクリレート化合物の質量の割合が75質量%以上であることがさらに好ましい。式(2)で表される(メタ)アクリレート化合物の質量の割合の上限としては特に制限はないが、分散性の観点から、式(1)で表されるシリル基変性フルオレン化合物の質量及び式(2)で表される(メタ)アクリレート化合物の質量の合計に対する、式(2)で表される(メタ)アクリレート化合物の質量の割合は99質量%以下が好ましく、95質量%以下がより好ましく、90質量%以下がさらに好ましい。
The composition for dispersing metal oxide particles may contain one kind of (meth) acrylate compound represented by the formula (2) alone or a mixture of two or more kinds.
In the above composition for dispersing metal oxide particles, the content of the (meth) acrylate compound represented by the formula (2) is not particularly limited as long as the effects of the present invention can be achieved, but is represented by the formula (1). The ratio of the mass of the (meth) acrylate compound represented by the formula (2) to the total mass of the silyl group-modified fluorene compound and the mass of the (meth) acrylate compound represented by the formula (2) is 50% by mass or more. The mass ratio of the (meth) acrylate compound represented by the formula (2) is more preferably 70% by mass or more, and the mass of the (meth) acrylate compound represented by the formula (2). Is more preferably 75% by mass or more. The upper limit of the mass ratio of the (meth) acrylate compound represented by the formula (2) is not particularly limited, but from the viewpoint of dispersibility, the mass and the formula of the silyl group-modified fluorene compound represented by the formula (1). The ratio of the mass of the (meth) acrylate compound represented by the formula (2) to the total mass of the (meth) acrylate compound represented by (2) is preferably 99% by mass or less, more preferably 95% by mass or less. , 90% by mass or less is more preferable.
<ラジカル重合開始剤>
 上記金属酸化物粒子分散用組成物は、ラジカル重合開始剤をさらに含んでいてもいなくてもよいが、ラジカル重合開始剤を含むことが好ましい。ラジカル重合開始剤は、光ラジカル重合開始剤でも熱ラジカル重合開始剤でもよく、光ラジカル重合開始剤及び熱ラジカル重合開始剤を併用してもよい。
<Radical polymerization initiator>
The composition for dispersing metal oxide particles may or may not further contain a radical polymerization initiator, but preferably contains a radical polymerization initiator. The radical polymerization initiator may be either a photoradical polymerization initiator or a thermal radical polymerization initiator, and a photoradical polymerization initiator and a thermal radical polymerization initiator may be used in combination.
 光ラジカル重合開始剤としては、Omnirad 651、Omnirad 184(1-ヒドロキシシクロヘキシル-フェニルケトン)、Omnirad 1173、Omnirad 2959、Omnirad 127、Omnirad 907、Omnirad 369、Omnirad 369E、Omnirad 379EG(いずれもIGM Resins B.V.製)等のアルキルフェノン系重合開始剤、Omnirad TPO H、Omnirad 819(いずれもIGM Resins B.V.製)等のアシルフォスフィンオキサイド系重合開始剤や、Irgacure OXE01、Irgacure OXE02(いずれもBASF社製)等のオキシムエステル系重合開始剤が挙げられる。 Examples of the photoradical polymerization initiator include Omnirad 651, Omnirad 184 (1-hydroxycyclohexyl-phenylketone), Omnirad 1173, Omnirad 2959, Omnirad 127, Omnirad 907, Omnirad 397, Omnirad 369, Omnirad 369, Omnirad 369, and Omnirad 369. Alkylphenyl polymerization initiators such as V.), acylphosphine oxide-based polymerization initiators such as Omnirad TPO H and Omnirad 819 (all manufactured by IGM Resins VV), Irgacure OXE01, and Irgacure OXE02 (all). Examples thereof include an oxime ester-based polymerization initiator (manufactured by BASF).
 光ラジカル重合開始剤の具体例としては、1-ヒドロキシシクロヘキシルフェニルケトン、2-ヒドロキシ-2-メチル-1-フェニルプロパン-1-オン、1-〔4-(2-ヒドロキシエトキシ)フェニル〕-2-ヒドロキシ-2-メチル-1-プロパン-1-オン、1-(4-イソプロピルフェニル)-2-ヒドロキシ-2-メチルプロパン-1-オン、1-(4-ドデシルフェニル)-2-ヒドロキシ-2-メチルプロパン-1-オン、2,2-ジメトキシ-1,2-ジフェニルエタン-1-オン、ビス(4-ジメチルアミノフェニル)ケトン、2-メチル-1-〔4-(メチルチオ)フェニル〕-2-モルフォリノプロパン-1-オン、2-ベンジル-2-ジメチルアミノ-1-(4-モルフォリノフェニル)-ブタン-1-オン、1,2-オクタンジオン,1-[4-(フェニルチオ)フェニル]-,2-(O-ベンゾイルオキシム)(Irgacure OXE01)、エタノン-1-[9-エチル-6-(2-メチルベンゾイル)-9H-カルバゾル-3-イル]-1-(O-アセチルオキシム)(Irgacure OXE02)、2,4,6-トリメチルベンゾイルジフェニルホスフィンオキシド(Omnirad TPO H)、ビス(2,4,6-トリメチルベンゾイル)フェニルフォスフィンオキシド(Omnirad 819)、4-ベンゾイル-4’-メチルジメチルスルフィド、4-ジメチルアミノ安息香酸、4-ジメチルアミノ安息香酸メチル、4-ジメチルアミノ安息香酸エチル、4-ジメチルアミノ安息香酸ブチル、4-ジメチルアミノ-2-エチルヘキシル安息香酸、4-ジメチルアミノ-2-イソアミル安息香酸、ベンジル-β-メトキシエチルアセタール、ベンジルジメチルケタール、1-フェニル-1,2-プロパンジオン-2-(O-エトキシカルボニル)オキシム、O-ベンゾイル安息香酸メチル、2,4-ジエチルチオキサントン、2-クロロチオキサントン、2,4-ジメチルチオキサントン、1-クロロ-4-プロポキシチオキサントン、チオキサンテン、2-クロロチオキサンテン、2,4-ジエチルチオキサンテン、2-メチルチオキサンテン、2-イソプロピルチオキサンテン、2-エチルアントラキノン、オクタメチルアントラキノン、1,2-ベンズアントラキノン、2,3-ジフェニルアントラキノン、アゾビスイソブチロニトリル、ベンゾイルパーオキシド、クメンヒドロパーオキシド、2-メルカプトベンゾイミダール、2-メルカプトベンゾオキサゾール、2-メルカプトベンゾチアゾール、2-(O-クロロフェニル)-4,5-ジ(m-メトキシフェニル)-イミダゾリル二量体、ベンゾフェノン、2-クロロベンゾフェノン、p,p’-ビスジメチルアミノベンゾフェノン、4,4’-ビスジエチルアミノベンゾフェノン、4,4’-ジクロロベンゾフェノン、3,3-ジメチル-4-メトキシベンゾフェノン、ベンジル、ベンゾイン、ベンゾインメチルエーテル、ベンゾインエチルエーテル、ベンゾインイソプロピルエーテル、ベンゾイン-n-ブチルエーテル、ベンゾインイソブチルエーテル、ベンゾインブチルエーテル、アセトフェノン、2,2-ジエトキシアセトフェノン、p-ジメチルアセトフェノン、p-ジメチルアミノプロピオフェノン、ジクロロアセトフェノン、トリクロロアセトフェノン、p-tert-ブチルアセトフェノン、p-ジメチルアミノアセトフェノン、p-tert-ブチルトリクロロアセトフェノン、p-tert-ブチルジクロロアセトフェノン、α,α-ジクロロ-4-フェノキシアセトフェノン、チオキサントン、2-メチルチオキサントン、2-イソプロピルチオキサントン、ジベンゾスベロン、ペンチル-4-ジメチルアミノベンゾエート、9-フェニルアクリジン、1,7-ビス-(9-アクリジニル)ヘプタン、1,5-ビス-(9-アクリジニル)ペンタン、1,3-ビス-(9-アクリジニル)プロパン、p-メトキシトリアジン、2,4,6-トリス(トリクロロメチル)-s-トリアジン、2-メチル-4,6-ビス(トリクロロメチル)-s-トリアジン、2-[2-(5-メチルフラン-2-イル)エテニル]-4,6-ビス(トリクロロメチル)-s-トリアジン、2-[2-(フラン-2-イル)エテニル]-4,6-ビス(トリクロロメチル)-s-トリアジン、2-[2-(4-ジエチルアミノ-2-メチルフェニル)エテニル]-4,6-ビス(トリクロロメチル)-s-トリアジン、2-[2-(3,4-ジメトキシフェニル)エテニル]-4,6-ビス(トリクロロメチル)-s-トリアジン、2-(4-メトキシフェニル)-4,6-ビス(トリクロロメチル)-s-トリアジン、2-(4-エトキシスチリル)-4,6-ビス(トリクロロメチル)-s-トリアジン、2-(4-n-ブトキシフェニル)-4,6-ビス(トリクロロメチル)-s-トリアジン、2,4-ビス-トリクロロメチル-6-(3-ブロモ-4-メトキシ)フェニル-s-トリアジン、2,4-ビス-トリクロロメチル-6-(2-ブロモ-4-メトキシ)フェニル-s-トリアジン、2,4-ビス-トリクロロメチル-6-(3-ブロモ-4-メトキシ)スチリルフェニル-s-トリアジン、2,4-ビス-トリクロロメチル-6-(2-ブロモ-4-メトキシ)スチリルフェニル-s-トリアジン等が挙げられる。これらの光ラジカル重合開始剤は、単独又は2種以上を組み合わせて用いることができる。中でも、オキシム系の重合開始剤を用いることが感度の面で特に好ましい。 Specific examples of the photoradical polymerization initiator include 1-hydroxycyclohexylphenylketone, 2-hydroxy-2-methyl-1-phenylpropan-1-one, 1- [4- (2-hydroxyethoxy) phenyl] -2. -Hydroxy-2-methyl-1-propane-1-one, 1- (4-isopropylphenyl) -2-hydroxy-2-methylpropan-1-one, 1- (4-dodecylphenyl) -2-hydroxy- 2-Methylpropan-1-one, 2,2-dimethoxy-1,2-diphenylethane-1-one, bis (4-dimethylaminophenyl) ketone, 2-methyl-1- [4- (methylthio) phenyl] -2-morpholinopropane-1-one, 2-benzyl-2-dimethylamino-1- (4-morpholinophenyl) -butane-1-one, 1,2-octanedione, 1- [4- (phenylthio) ) Phenyl]-, 2- (O-benzoyloxime) (Irgacure OXE01), Etanone-1- [9-ethyl-6- (2-methylbenzoyl) -9H-carbazol-3-yl] -1- (O-) Acetyloxym) (Irgacure OXE02), 2,4,6-trimethylbenzoyldiphenylphosphine oxide (Omnirad TPO H), bis (2,4,6-trimethylbenzoyl) phenylphosphine oxide (Omnirad 819), 4-benzoyl-4 '-Methyldimethylsulfide, 4-dimethylaminobenzoic acid, methyl 4-dimethylaminobenzoate, ethyl 4-dimethylaminobenzoate, butyl 4-dimethylaminobenzoate, 4-dimethylamino-2-ethylhexyl benzoic acid, 4- Dimethylamino-2-isoamyl benzoic acid, benzyl-β-methoxyethyl acetal, benzyl dimethyl ketal, 1-phenyl-1,2-propandion-2- (O-ethoxycarbonyl) oxime, methyl O-benzoyl benzoate, 2 , 4-diethylthioxanthone, 2-chlorothioxanthone, 2,4-dimethylthioxanthone, 1-chloro-4-propoxythioxanthone, thioxanthene, 2-chlorothioxanthene, 2,4-diethylthioxanthene, 2-methylthioxanthene, 2, -Isopropylthioxanthene, 2-ethylanthraquinone, octamethylanthraquinone, 1,2-benzanthraquinone, 2,3-diphenylanthraquinone, azobisisobutyronitrile, benzoylpa -Oxide, cumenehydroperoxide, 2-mercaptobenzoimider, 2-mercaptobenzoxazole, 2-mercaptobenzothiazole, 2- (O-chlorophenyl) -4,5-di (m-methoxyphenyl) -imidazolyl dimer , Benzophenone, 2-chlorobenzophenone, p, p'-bisdimethylaminobenzophenone, 4,4'-bisdiethylaminobenzophenone, 4,4'-dichlorobenzophenone, 3,3-dimethyl-4-methoxybenzophenone, benzyl, benzoin, Benzoin methyl ether, benzoin ethyl ether, benzoin isopropyl ether, benzoin-n-butyl ether, benzoin isobutyl ether, benzoin butyl ether, acetophenone, 2,2-diethoxyacetophenone, p-dimethylacetophenone, p-dimethylaminopropiophenone, dichloroacetophenone , Trichloroacetophenone, p-tert-butylacetophenone, p-dimethylaminoacetophenone, p-tert-butyltrichloroacetophenone, p-tert-butyldichloroacetophenone, α, α-dichloro-4-phenoxyacetophenone, thioxanthone, 2-methylthioxanthone , 2-Isopropylthioxanthone, dibenzosverone, pentyl-4-dimethylaminobenzoate, 9-phenylacrine, 1,7-bis- (9-acrydinyl) heptane, 1,5-bis- (9-acrydinyl) pentane, 1, , 3-Bis- (9-acrydinyl) propane, p-methoxytriazine, 2,4,6-tris (trichloromethyl) -s-triazine, 2-methyl-4,6-bis (trichloromethyl) -s-triazine , 2- [2- (5-methylfuran-2-yl) ethenyl] -4,6-bis (trichloromethyl) -s-triazine, 2- [2- (fran-2-yl) ethenyl] -4, 6-bis (trichloromethyl) -s-triazine, 2- [2- (4-diethylamino-2-methylphenyl) ethenyl] -4,6-bis (trichloromethyl) -s-triazine, 2- [2- ( 3,4-Dimethoxyphenyl) ethenyl] -4,6-bis (trichloromethyl) -s-triazine, 2- (4-methoxyphenyl) -4,6-bis (trichloromethyl) -s-triazine, 2-( 4-Acetophenone) -4,6-bis (trichloromethyl) -s-triazine, 2 -(4-N-Butoxyphenyl) -4,6-bis (trichloromethyl) -s-triazine, 2,4-bis-trichloromethyl-6- (3-bromo-4-methoxy) phenyl-s-triazine, 2,4-Bis-trichloromethyl-6- (2-bromo-4-methoxy) phenyl-s-triazine, 2,4-bis-trichloromethyl-6- (3-bromo-4-methoxy) styrylphenyl-s -Triazine, 2,4-bis-trichloromethyl-6- (2-bromo-4-methoxy) styrylphenyl-s-triazine and the like can be mentioned. These photoradical polymerization initiators can be used alone or in combination of two or more. Above all, it is particularly preferable to use an oxime-based polymerization initiator in terms of sensitivity.
 熱ラジカル重合開始剤としては、ケトンパーオキシド(メチルエチルケトンパーオキシド及びシクロヘキサノンパーオキシド等)、パーオキシケタール(2,2-ビス(tert-ブチルパーオキシ)ブタン及び1,1-ビス(tert-ブチルパーオキシ)シクロヘキサン等)、ヒドロパーオキシド(tert-ブチルヒドロパーオキシド及びクメンヒドロパーオキシド等)、ジアルキルパーオキシド(ジ-tert-ブチルパーオキシド(パーブチル(登録商標)D(日油株式会社製)、及びジ-tert-ヘキシルパーオキサイド(パーヘキシル(登録商標)D(日油株式会社製))等)、ジアシルパーオキシド(イソブチリルパーオキシド、ラウロイルパーオキシド及びベンゾイルパーオキシド等)、パーオキシジカーボネート(ジイソプロピルパーオキシジカーボネート等)、パーオキシエステル(tert-ブチルパーオキシイソブチレート及び2,5-ジメチル-2,5-ジ(ベンゾイルパーオキシ)ヘキサン等)等}の有機過酸化物や、1,1’-アゾビス(シクロヘキサン-1-カルボニトリル)、2,2’-アゾビスイソブチロニトリル、2,2’-アゾビス(2,4-ジメチル-4-メトキシバレロニトリル)、2,2’-アゾビス(2-メチルプロピオンアミジン)ジヒドロクロリド、2,2’-アゾビス[2-メチル-N-(2-プロペニル)プロピオンアミジン]ジヒドロクロリド、2,2’-アゾビス(2-メチルプロピオンアミド)、2,2’-アゾビス[2-メチル-N-(2-ヒドロキシエチル)プロピオンアミド]、2,2’-アゾビス(2-メチルプロパン)、2,2’-アゾビス(2,4,4-トリメチルペンタン)及びジメチル2,2’-アゾビス(2-メチルプロピオネート)等}等のアゾ化合物が挙げられる。 Examples of the thermal radical polymerization initiator include ketone peroxide (methyl ethyl ketone peroxide and cyclohexanone peroxide, etc.), peroxyketal (2,2-bis (tert-butylperoxy) butane and 1,1-bis (tert-butylper). Oxy) cyclohexane, etc.), hydroperoxide (tert-butyl hydroperoxide, cumene hydroperoxide, etc.), dialkyl peroxide (di-tert-butyl peroxide (perbutyl (registered trademark) D (manufactured by Nichiyu Co., Ltd.)), And di-tert-hexyl peroxide (perhexyl (registered trademark) D (manufactured by Nichiyu Co., Ltd.), etc.), diacyl peroxide (isobutyryl peroxide, lauroyl peroxide, benzoyl peroxide, etc.), peroxydicarbonate ( Diisopropyl peroxydicarbonate, etc.), peroxy ester (tert-butylperoxyisobutyrate and 2,5-dimethyl-2,5-di (benzoylperoxy) hexane, etc.)} organic peroxides, 1 , 1'-azobis (cyclohexane-1-carbonitrile), 2,2'-azobisisobutyronitrile, 2,2'-azobis (2,4-dimethyl-4-methoxyvaleronitrile), 2,2' -Azobis (2-methylpropion amidine) dihydrochloride, 2,2'-azobis [2-methyl-N- (2-propenyl) propion amidine] dihydrochloride, 2,2'-azobis (2-methylpropionamide), 2,2'-azobis [2-methyl-N- (2-hydroxyethyl) propionamide], 2,2'-azobis (2-methylpropane), 2,2'-azobis (2,4,4-trimethyl) Pentan) and azo compounds such as dimethyl 2,2'-azobis (2-methylpropionate)} can be mentioned.
 上記金属酸化物粒子分散用組成物が、ラジカル重合開始剤を含有する場合、ラジカル重合開始剤の含有量は、本発明の目的を阻害しない範囲で特に限定されず、ラジカル重合開始剤の含有量は、上記式(1)で表されるシリル基変性フルオレン化合物の質量及び式(2)で表される(メタ)アクリレート化合物の質量の合計に対して0.01質量%以上30質量%以下が好ましく、0.05質量%以上15質量%以下がより好ましく、0.08質量%以上10質量%以下がさらに好ましい。 When the composition for dispersing metal oxide particles contains a radical polymerization initiator, the content of the radical polymerization initiator is not particularly limited as long as the object of the present invention is not impaired, and the content of the radical polymerization initiator is not particularly limited. Is 0.01% by mass or more and 30% by mass or less with respect to the total mass of the silyl group-modified fluorene compound represented by the above formula (1) and the mass of the (meth) acrylate compound represented by the formula (2). Preferably, it is more preferably 0.05% by mass or more and 15% by mass or less, and further preferably 0.08% by mass or more and 10% by mass or less.
<有機溶媒>
 上記金属酸化物粒子分散用組成物は、有機溶媒を含有していてもよいが、有機溶媒の含有量は、10質量%以下が好ましく、5質量%以下がより好ましく、有機溶媒を含有しないことがさらに好ましい。
 金属酸化物粒子分散用組成物が有機溶媒を含有すると、インクジェット法を適用すると、有機溶媒の揮発による含有成分の濃度変化や吐出不良、硬化感度の劣化のおそれがあるという問題があるが、有機溶媒の含有量が10質量%以下、5質量%以下、さらには有機溶媒を含有しない金属酸化物粒子分散用組成物とすることにより、これらの問題を抑制することができる。
<Organic solvent>
The composition for dispersing metal oxide particles may contain an organic solvent, but the content of the organic solvent is preferably 10% by mass or less, more preferably 5% by mass or less, and does not contain an organic solvent. Is even more preferable.
When the composition for dispersing metal oxide particles contains an organic solvent, when the inkjet method is applied, there is a problem that the concentration of the contained components may change due to the volatilization of the organic solvent, the ejection may be poor, and the curing sensitivity may be deteriorated. These problems can be suppressed by using a composition for dispersing metal oxide particles having a solvent content of 10% by mass or less, 5% by mass or less, and further containing no organic solvent.
 有機溶媒を含む場合、有機溶媒としては、例えば、エチレングリコールモノメチルエーテル、エチレングリコールモノエチルエーテル、エチレングリコール-n-プロピルエーテル、エチレングリコールモノ-n-ブチルエーテル、ジエチレングリコールモノメチルエーテル、ジエチレングリコールモノエチルエーテル、ジエチレングリコールモノ-n-プロピルエーテル、ジエチレングリコールモノ-n-ブチルエーテル、トリエチレングリコールモノメチルエーテル、トリエチレングリコールモノエチルエーテル、プロピレングリコールモノメチルエーテル、プロピレングリコールモノエチルエーテル、プロピレングリコールモノ-n-プロピルエーテル、プロピレングリコールモノ-n-ブチルエーテル、ジプロピレングリコールモノメチルエーテル、ジプロピレングリコールモノエチルエーテル、ジプロピレングリコールモノ-n-プロピルエーテル、ジプロピレングリコールモノ-n-ブチルエーテル、トリプロピレングリコールモノメチルエーテル、トリプロピレングリコールモノエチルエーテル等の(ポリ)アルキレングリコールモノアルキルエーテル類;エチレングリコールモノメチルエーテルアセテート、エチレングリコールモノエチルエーテルアセテート、ジエチレングリコールモノメチルエーテルアセテート、ジエチレングリコールモノエチルエーテルアセテート、プロピレングリコールモノメチルエーテルアセテート、プロピレングリコールモノエチルエーテルアセテート等の(ポリ)アルキレングリコールモノアルキルエーテルアセテート類;ジエチレングリコールジメチルエーテル、ジエチレングリコールメチルエチルエーテル、ジエチレングリコールジエチルエーテル、テトラヒドロフラン等の他のエーテル類;メチルエチルケトン、シクロヘキサノン、2-ヘプタノン、3-ヘプタノン等のケトン類;2-ヒドロキシプロピオン酸メチル、2-ヒドロキシプロピオン酸エチル等の乳酸アルキルエステル類;2-ヒドロキシ-2-メチルプロピオン酸エチル、3-メトキシプロピオン酸メチル、3-メトキシプロピオン酸エチル、3-エトキシプロピオン酸メチル、3-エトキシプロピオン酸エチル、エトキシ酢酸エチル、ヒドロキシ酢酸エチル、2-ヒドロキシ-3-メチルブタン酸メチル、3-メチル-3-メトキシブチルアセテート、3-メチル-3-メトキシブチルプロピオネート、酢酸エチル、酢酸n-プロピル、酢酸イソプロピル、酢酸n-ブチル、酢酸イソブチル、蟻酸n-ペンチル、酢酸イソペンチル、プロピオン酸n-ブチル、酪酸エチル、酪酸n-プロピル、酪酸イソプロピル、酪酸n-ブチル、ピルビン酸メチル、ピルビン酸エチル、ピルビン酸n-プロピル、アセト酢酸メチル、アセト酢酸エチル、2-オキソブタン酸エチル等の他のエステル類;トルエン、キシレン等の芳香族炭化水素類;N-メチルピロリドン、N,N-ジメチルホルムアミド、N,N-ジメチルアセトアミド等のアミド類等が挙げられる。これらの溶媒は、単独で用いてもよく、2種以上を組み合わせて用いてもよい。 When an organic solvent is contained, examples of the organic solvent include ethylene glycol monomethyl ether, ethylene glycol monoethyl ether, ethylene glycol-n-propyl ether, ethylene glycol mono-n-butyl ether, diethylene glycol monomethyl ether, diethylene glycol monoethyl ether, and diethylene glycol. Mono-n-propyl ether, diethylene glycol mono-n-butyl ether, triethylene glycol monomethyl ether, triethylene glycol monoethyl ether, propylene glycol monomethyl ether, propylene glycol monoethyl ether, propylene glycol mono-n-propyl ether, propylene glycol mono -N-butyl ether, dipropylene glycol monomethyl ether, dipropylene glycol monoethyl ether, dipropylene glycol mono-n-propyl ether, dipropylene glycol mono-n-butyl ether, tripropylene glycol monomethyl ether, tripropylene glycol monoethyl ether, etc. (Poly) alkylene glycol monoalkyl ethers; ethylene glycol monomethyl ether acetate, ethylene glycol monoethyl ether acetate, diethylene glycol monomethyl ether acetate, diethylene glycol monoethyl ether acetate, propylene glycol monomethyl ether acetate, propylene glycol monoethyl ether acetate, etc. Poly) alkylene glycol monoalkyl ether acetates; other ethers such as diethylene glycol dimethyl ether, diethylene glycol methyl ethyl ether, diethylene glycol diethyl ether, tetrahydrofuran; ketones such as methyl ethyl ketone, cyclohexanone, 2-heptanone, 3-heptanone; 2-hydroxypropion Lactate alkyl esters such as methyl 2-hydroxy-2-methylpropionate; ethyl 2-hydroxy-2-methylpropionate, methyl 3-methoxypropionate, ethyl 3-methoxypropionate, methyl 3-ethoxypropionate, 3- Ethyl ethoxypropionate, ethyl ethoxyacetate, ethyl hydroxyacetate, methyl 2-hydroxy-3-methylbutanoate, 3-methyl-3-methoxybutyl acetate, 3-methyl-3-methoxybutyl propione G, ethyl acetate, n-propyl acetate, isopropyl acetate, n-butyl acetate, isobutyl acetate, n-pentyl formate, isopentyl acetate, n-butyl propionate, ethyl butyrate, n-propyl butyrate, isopropyl butyrate, n-butyl butyrate. , Methyl pyruvate, ethyl pyruvate, n-propyl pyruvate, methyl acetate, ethyl acetate, ethyl 2-oxobutanoate and other esters; aromatic hydrocarbons such as toluene and xylene; N-methylpyrrolidone , N, N-dimethylformamide, N, N-dimethylacetamide and other amides. These solvents may be used alone or in combination of two or more.
 上記金属酸化物粒子分散用組成物は、式(1)で表されるシリル基変性フルオレン化合物と式(2)で表される(メタ)アクリレート化合物とを含有するため、後述する実施例に示すように、耐熱性に優れる。
 また、式(1)で表されるシリル基変性フルオレン化合物は高屈折率を有するため、上記金属酸化物粒子分散用組成物は、高屈折率を有する。
 そして、金属酸化物粒子分散用組成物は、有機溶媒の含有量を10質量%以下や5質量%以下と少なくすることができ、有機溶媒を含有しないようにすることもできる。したがって、有機溶媒の揮発による含有成分の濃度変化や吐出不良、硬化感度の劣化を抑制することができるため、インクジェット法を適用することができる。
 また、上記金属酸化物粒子分散用組成物は、金属酸化物粒子の分散性もよい。
 したがって、上記金属酸化物粒子分散用組成物を、高屈折率の金属酸化物粒子と混合して金属酸化物粒子を分散させることにより、耐熱性に優れ、インクジェット法を適用することができる高屈折材料を調製可能である。
 このように、高屈折率であり、且つ、耐熱性に優れるためアウトガスの発生が抑制されるので、上記高屈折材料は、ディスプレイ用途又はOLED照明用途での高屈層として適用することができる。例えば、OLEDの高屈折層にも適用することができる。また、上記高屈折材料はインクジェット法を適用することができるため、例えば、高屈折材料からなる塗布膜を容易に形成することができる。
Since the composition for dispersing metal oxide particles contains a silyl group-modified fluorene compound represented by the formula (1) and a (meth) acrylate compound represented by the formula (2), it will be shown in Examples described later. As such, it has excellent heat resistance.
Further, since the silyl group-modified fluorene compound represented by the formula (1) has a high refractive index, the composition for dispersing metal oxide particles has a high refractive index.
The composition for dispersing metal oxide particles can reduce the content of the organic solvent to 10% by mass or less or 5% by mass or less, and can also prevent the composition from containing the organic solvent. Therefore, the inkjet method can be applied because it is possible to suppress changes in the concentration of contained components due to volatilization of the organic solvent, poor ejection, and deterioration of curing sensitivity.
Further, the composition for dispersing metal oxide particles has good dispersibility of metal oxide particles.
Therefore, by mixing the above composition for dispersing metal oxide particles with metal oxide particles having a high refractive index to disperse the metal oxide particles, the heat resistance is excellent and the inkjet method can be applied. The material can be prepared.
As described above, since the high refractive index and the excellent heat resistance suppress the generation of outgas, the high refractive index material can be applied as a high bending layer in display applications or OLED lighting applications. For example, it can be applied to the high refraction layer of OLED. Further, since the inkjet method can be applied to the high-refraction material, for example, a coating film made of the high-refraction material can be easily formed.
<その他の重合性化合物>
 上記金属酸化物粒子分散用組成物は、上記式(1)で表されるシリル基変性フルオレン化合物及び上記式(2)で表される(メタ)アクリレート化合物以外の任意の重合性化合物(「その他の重合性化合物」とも記載する。)を含んでいてもいなくてもよく、その他の重合性化合物としては、例えば、上記式(1)で表されるシリル基変性フルオレン化合物及び上記式(2)で表される(メタ)アクリレート化合物以外の、エチレン性不飽和基を有する樹脂、エチレン性不飽和基を有するモノマー又はこれらの組み合わせが挙げられる。
<Other polymerizable compounds>
The composition for dispersing metal oxide particles is any polymerizable compound other than the silyl group-modified fluorene compound represented by the above formula (1) and the (meth) acrylate compound represented by the above formula (2) (“Other”. The polymerizable compound of the above formula (1) may or may not be contained, and examples of the other polymerizable compounds include a silyl group-modified fluorene compound represented by the above formula (1) and the above formula (2). Examples thereof include a resin having an ethylenically unsaturated group, a monomer having an ethylenically unsaturated group, or a combination thereof other than the (meth) acrylate compound represented by.
(エチレン性不飽和基を有するモノマー)
 エチレン性不飽和基を有するモノマーには、単官能モノマーと多官能モノマーとがある。以下、単官能モノマー、及び多官能モノマーについて順に説明する。
(Monomer having an ethylenically unsaturated group)
Monomers having an ethylenically unsaturated group include monofunctional monomers and polyfunctional monomers. Hereinafter, the monofunctional monomer and the polyfunctional monomer will be described in order.
 単官能モノマーとしては、(メタ)アクリルアミド、メチロール(メタ)アクリルアミド、メトキシメチル(メタ)アクリルアミド、エトキシメチル(メタ)アクリルアミド、プロポキシメチル(メタ)アクリルアミド、ブトキシメトキシメチル(メタ)アクリルアミド、N-メチロール(メタ)アクリルアミド、N-ヒドロキシメチル(メタ)アクリルアミド、(メタ)アクリル酸、フマル酸、マレイン酸、無水マレイン酸、イタコン酸、無水イタコン酸、シトラコン酸、無水シトラコン酸、クロトン酸、2-アクリルアミド-2-メチルプロパンスルホン酸、tert-ブチルアクリルアミドスルホン酸、メチル(メタ)アクリレート、エチル(メタ)アクリレート、ブチル(メタ)アクリレート、2-エチルヘキシル(メタ)アクリレート、シクロヘキシル(メタ)アクリレート、2-ヒドロキシエチル(メタ)アクリレート、2-ヒドロキシプロピル(メタ)アクリレート、2-ヒドロキシブチ(メタ)アクリレート、2-フェノキシ-2-ヒドロキシプロピル(メタ)アクリレート、2-(メタ)アクリロイルオキシ-2-ヒドロキシプロピルフタレート、グリセリンモノ(メタ)アクリレート、テトラヒドロフルフリル(メタ)アクリレート、ジメチルアミノエチル(メタ)アクリレート、グリシジル(メタ)アクリレート、2,2,2-トリフルオロエチル(メタ)アクリレート、2,2,3,3-テトラフルオロプロピル(メタ)アクリレート、フタル酸誘導体のハーフ(メタ)アクリレート等が挙げられる。これらの単官能モノマーは、単独で用いてもよく、2種以上を組み合わせて用いてもよい。 Examples of the monofunctional monomer include (meth) acrylamide, methylol (meth) acrylamide, methoxymethyl (meth) acrylamide, ethoxymethyl (meth) acrylamide, propoxymethyl (meth) acrylamide, butoxymethoxymethyl (meth) acrylamide, and N-methylol ( Meta) acrylamide, N-hydroxymethyl (meth) acrylamide, (meth) acrylic acid, fumaric acid, maleic acid, maleic anhydride, itaconic acid, itaconic anhydride, citraconic acid, citraconic anhydride, crotonic acid, 2-acrylamide- 2-Methylpropanesulfonic acid, tert-butylacrylamide sulfonic acid, methyl (meth) acrylate, ethyl (meth) acrylate, butyl (meth) acrylate, 2-ethylhexyl (meth) acrylate, cyclohexyl (meth) acrylate, 2-hydroxyethyl (Meta) acrylate, 2-hydroxypropyl (meth) acrylate, 2-hydroxybuty (meth) acrylate, 2-phenoxy-2-hydroxypropyl (meth) acrylate, 2- (meth) acryloyloxy-2-hydroxypropyl phthalate, Glycerin mono (meth) acrylate, tetrahydrofurfuryl (meth) acrylate, dimethylaminoethyl (meth) acrylate, glycidyl (meth) acrylate, 2,2,2-trifluoroethyl (meth) acrylate, 2,2,3,3 -Tetrafluoropropyl (meth) acrylate, half (meth) acrylate of phthalic acid derivative and the like can be mentioned. These monofunctional monomers may be used alone or in combination of two or more.
 多官能モノマーとしては、エチレングリコールジ(メタ)アクリレート、ジエチレングリコールジ(メタ)アクリレート、テトラエチレングリコールジ(メタ)アクリレート、プロピレングリコールジ(メタ)アクリレート、ポリプロピレングリコールジ(メタ)アクリレート、ブチレングリコールジ(メタ)アクリレート、ネオペンチルグリコールジ(メタ)アクリレート、炭素原子数1以上5以下のアルキレンオキシド変性ネオペンチルグリコールジアクリレート(中でも、プロピレンオキシド変性ネオペンチルグリコールジアクリレート)1,6-ヘキサングリコールジ(メタ)アクリレート、トリメチロールプロパントリ(メタ)アクリレート、グリセリンジ(メタ)アクリレート、ペンタエリスリトールトリアクリレート、ペンタエリスリトールテトラアクリレート、ジペンタエリスリトールペンタアクリレート、ジペンタエリスリトールヘキサアクリレート、ペンタエリスリトールジ(メタ)アクリレート、ペンタエリスリトールトリ(メタ)アクリレート、ペンタエリスリトールテトラ(メタ)アクリレート、ジペンタエリスリトールペンタ(メタ)アクリレート、ジペンタエリスリトールヘキサ(メタ)アクリレート、2,2-ビス(4-(メタ)アクリロキシジエトキシフェニル)プロパン、2,2-ビス(4-(メタ)アクリロキシポリエトキシフェニル)プロパン、2-ヒドロキシ-3-(メタ)アクリロイルオキシプロピル(メタ)アクリレート、エチレングリコールジグリシジルエーテルジ(メタ)アクリレート、ジエチレングリコールジグリシジルエーテルジ(メタ)アクリレート、フタル酸ジグリシジルエステルジ(メタ)アクリレート、グリセリントリアクリレート、グリセリンポリグリシジルエーテルポリ(メタ)アクリレート、ウレタン(メタ)アクリレート(すなわち、トリレンジイソシアネート)、トリメチルヘキサメチレンジイソシアネートとヘキサメチレンジイソシアネートと2-ヒドロキシエチル(メタ)アクリレートとの反応物、メチレンビス(メタ)アクリルアミド、(メタ)アクリルアミドメチレンエーテル、多価アルコールとN-メチロール(メタ)アクリルアミドとの縮合物等の多官能モノマーや、トリアクリルホルマール等が挙げられる。これらの多官能モノマーは、単独で用いてもよく、2種以上を組み合わせて用いてもよい。 Examples of the polyfunctional monomer include ethylene glycol di (meth) acrylate, diethylene glycol di (meth) acrylate, tetraethylene glycol di (meth) acrylate, propylene glycol di (meth) acrylate, polypropylene glycol di (meth) acrylate, and butylene glycol di ( Meta) acrylate, neopentyl glycol di (meth) acrylate, alkylene oxide-modified neopentyl glycol diacrylate with 1 to 5 carbon atoms (among others, propylene oxide-modified neopentyl glycol diacrylate) 1,6-hexane glycol di (meth) ) Acrylate, Trimethylol Propanetri (meth) Acrylate, Glycerindi (Meta) Acrylate, Pentaerythritol Triacrylate, Pentaerythritol Tetraacrylate, Dipentaerythritol Pentaacrylate, Dipentaerythritol Hexaacrylate, Pentaerythritol di (meth) Acrylate, Penta Elythritol tri (meth) acrylate, pentaerythritol tetra (meth) acrylate, dipentaerythritol penta (meth) acrylate, dipentaerythritol hexa (meth) acrylate, 2,2-bis (4- (meth) acryloxidiethoxyphenyl) Propane, 2,2-bis (4- (meth) acryloxypolyethoxyphenyl) propane, 2-hydroxy-3- (meth) acryloyloxypropyl (meth) acrylate, ethylene glycol diglycidyl ether di (meth) acrylate, diethylene glycol Diglycidyl ether di (meth) acrylate, diglycidyl phthalate di (meth) acrylate, glycerin triacrylate, glycerin polyglycidyl ether poly (meth) acrylate, urethane (meth) acrylate (ie, tolylene diisocyanate), trimethylhexamethylene Diisocyanate, hexamethylene Diisocyanate and 2-hydroxyethyl (meth) acrylate reaction product, methylenebis (meth) acrylamide, (meth) acrylamide methylene ether, polyhydric alcohol and N-methylol (meth) acrylamide condensate, etc. Examples include functional monomers and triacrylic formal. These polyfunctional monomers may be used alone or in combination of two or more.
 上記金属酸化物粒子分散用組成物は、上記その他の重合性化合物として使用される樹脂以外の、他の樹脂を含んでいてもいなくてもよい。上記他の樹脂としては、アルカリ可溶性樹脂、酸の作用により現像液に対する溶解性が変化する樹脂等が挙げられる。 The composition for dispersing metal oxide particles may or may not contain a resin other than the resin used as the other polymerizable compound. Examples of the other resins include alkali-soluble resins and resins whose solubility in a developing solution changes due to the action of an acid.
 本明細書においてアルカリ可溶性樹脂とは、樹脂濃度20質量%の樹脂溶液(溶媒:プロピレングリコールモノメチルエーテルアセテート)により、膜厚1μmの樹脂膜を基板上に形成し、濃度0.05質量%のKOH水溶液に1分間浸漬した際に、膜厚0.01μm以上溶解するものをいう。 In the present specification, the alkali-soluble resin refers to KOH having a concentration of 0.05% by mass by forming a resin film having a thickness of 1 μm on a substrate with a resin solution (solvent: propylene glycol monomethyl ether acetate) having a resin concentration of 20% by mass. A solvent that dissolves in a film thickness of 0.01 μm or more when immersed in an aqueous solution for 1 minute.
<その他の成分>
 上記金属酸化物粒子分散用組成物は、必要に応じて、各種の添加剤を含んでいてもよい。具体的には、増感剤、硬化促進剤、光架橋剤、分散助剤、充填剤、密着促進剤、シランカップリング剤、帯電防止剤、酸化防止剤、紫外線吸収剤、凝集防止剤、熱重合禁止剤、可塑剤、難燃剤、消泡剤、レべリング剤、増粘剤、チキソ性付与剤、界面活性剤等が例示される。
<Other ingredients>
The composition for dispersing metal oxide particles may contain various additives, if necessary. Specifically, sensitizers, curing accelerators, photocrosslinkers, dispersion aids, fillers, adhesion promoters, silane coupling agents, antistatic agents, antioxidants, UV absorbers, anti-aggregation agents, heat. Examples thereof include polymerization inhibitors, plasticizers, flame retardants, defoamers, leveling agents, thickeners, thixophilic imparting agents, and surfactants.
 上記金属酸化物粒子分散用組成物に使用される熱重合禁止剤としては、例えば、ヒドロキノン、ヒドロキノンモノエチルエーテル等を挙げることができる。また、消泡剤としては、シリコーン系、フッ素系等の化合物を、界面活性剤としては、アニオン系、カチオン系、ノニオン等の化合物を、それぞれ例示できる。 Examples of the thermal polymerization inhibitor used in the composition for dispersing metal oxide particles include hydroquinone and hydroquinone monoethyl ether. Further, examples of the defoaming agent include silicone-based and fluorine-based compounds, and examples of the surfactant include anion-based, cationic and nonionic compounds.
(上記金属酸化物粒子分散用組成物の調製方法)
 上記金属酸化物粒子分散用組成物は、上記各成分を均一に撹拌、混合し、分散させた後に、必要に応じて0.2μm以下のメンブランフィルタ、0.5μm以上1μm以下のメンブランフィルタ等のフィルタで濾過して調製することができる。
(Method for preparing the above composition for dispersing metal oxide particles)
The composition for dispersing metal oxide particles includes a membrane filter of 0.2 μm or less, a membrane filter of 0.5 μm or more and 1 μm or less, and the like, if necessary, after the above components are uniformly stirred, mixed, and dispersed. It can be prepared by filtering with a filter.
<<高屈折材料>>
 上記金属酸化物粒子分散用組成物は、金属酸化物粒子を混合して分散させることにより、ディスプレイ用途等又はOLED照明等での高屈層の形成に好ましく使用できる高屈折材料となる。
 この高屈折材料は、上述のように、耐熱性に優れ、インクジェット法を適用することができる。また、金属酸化物粒子の分散性も優れている。
<< High refraction material >>
By mixing and dispersing the metal oxide particles, the composition for dispersing the metal oxide particles becomes a highly refracting material that can be preferably used for forming a high bending layer in a display application or the like or in OLED lighting or the like.
As described above, this highly refracting material has excellent heat resistance, and an inkjet method can be applied. In addition, the dispersibility of the metal oxide particles is also excellent.
<金属酸化物粒子>
 金属酸化物粒子において、金属酸化物は、用途に応じて適宜選択でき、金属酸化物の金属としては、例えば、遷移金属[例えば、周期表第3族金属(例えば、イットリウム、セリウムなど)、周期第4族金属(例えば、チタン、ジルコニウム、ハフニウムなど)、周期第4族金属(例えば、ニオブ、タンタルなど)、周期表第6族金属(例えば、タングステンなど)、周期表第8族金属(例えば、鉄など)など]、周期表第10族金属(例えば、亜鉛など)、周期表第13族金属(例えば、アルミニウム、インジウムなど)、周期表第14族金属(例えば、ゲルマニウム、スズなど)などが挙げられる。なお、ケイ素は金属に含まれない。金属酸化物は、単一の金属を含む酸化物であってもよく、2種以上の金属を含む酸化物(又は複酸化物)であってもよい。
<Metal oxide particles>
In the metal oxide particles, the metal oxide can be appropriately selected depending on the application, and the metal of the metal oxide includes, for example, a transition metal [for example, a Group 3 metal in the periodic table (for example, yttrium, cerium, etc.), a period. Group 4 metals (eg, titanium, zirconium, hafnium, etc.), Periodic Group 4 metals (eg, niobium, tantalum, etc.), Periodic Table Group 6 metals (eg, tungsten), Periodic Table Group 8 metals (eg, Tungsten). , Iron, etc.], Periodic Table Group 10 metals (eg, zinc, etc.), Periodic Table Group 13 metals (eg, aluminum, indium, etc.), Periodic Table Group 14 metals (eg, germanium, tin, etc.), etc. Can be mentioned. Silicon is not included in the metal. The metal oxide may be an oxide containing a single metal or an oxide (or a compound oxide) containing two or more kinds of metals.
 代表的な金属酸化物(粒子)には、例えば、チタン、ジルコニウム、アルミニウム、及び亜鉛から選択された少なくとも1種の非ケイ素系金属を含む金属酸化物(粒子)などが含まれる。 Representative metal oxides (particles) include, for example, metal oxides (particles) containing at least one non-silicon-based metal selected from titanium, zirconium, aluminum, and zinc.
 特に、高屈折率の観点から、金属酸化物は、ジルコニウム及びチタンから選択された少なくとも1種を含む金属酸化物であってもよい。 In particular, from the viewpoint of high refractive index, the metal oxide may be a metal oxide containing at least one selected from zirconium and titanium.
 金属酸化物は、天然物(又は鉱物)などであってもよく、金属酸化物の金属に対応する加水分解縮合性化合物(すなわち、加水分解縮合性金属化合物、例えば、金属アルコキシド)の加水分解により得られた加水分解縮合物(いわゆる、ゾルゲル法により得られた金属酸化物)であってもよい。すなわち、金属酸化物粒子(金属酸化物)は、加水分解縮合性金属化合物で構成された縮合成分(加水分解縮合性成分)の加水分解縮合物であってもよい。 The metal oxide may be a natural product (or mineral) or the like, and is obtained by hydrolysis of a hydrolyzable condensable compound (that is, a hydrolyzable condensable metal compound, for example, a metal alkoxide) corresponding to the metal of the metal oxide. It may be the obtained hydrolyzed condensate (so-called metal oxide obtained by the sol-gel method). That is, the metal oxide particles (metal oxide) may be a hydrolyzed condensate of a condensing component (hydrolyzed condensable component) composed of a hydrolyzable condensable metal compound.
 なお、金属酸化物粒子の表面は、通常、官能基(金属原子に直接結合したヒドロキシル基、アルコキシ基などの加水分解縮合性基などのゾルゲル反応の原料由来の官能基など)を有している場合が多い。そして、このような官能基は、上記式(1)で表されるシリル基変性フルオレン化合物のシリル基と反応(加水分解縮合反応)し、金属酸化物粒子を安定化しやすい。なお、このような官能基は、金属酸化物粒子自体に存在する官能基であってもよく、金属酸化物粒子を表面処理することによりさらに導入してもよく、ゾルゲル法の原料由来の官能基であってもよい。 The surface of the metal oxide particles usually has a functional group (a functional group derived from a solgel reaction raw material such as a hydroxyl group directly bonded to a metal atom or a hydrolyzable condensable group such as an alkoxy group). In many cases. Then, such a functional group easily reacts with the silyl group of the silyl group-modified fluorene compound represented by the above formula (1) (hydrolysis condensation reaction) to stabilize the metal oxide particles. Such a functional group may be a functional group existing in the metal oxide particles themselves, or may be further introduced by surface-treating the metal oxide particles, and is a functional group derived from the raw material of the sol-gel method. It may be.
 加水分解縮合により得られた金属酸化物粒子において、加水分解縮合性化合物としては、金属原子(例えば、ジルコニウム、チタンなど)に直接結合した加水分解縮合性基(例えば、アルコキシ基、アリールオキシ基、塩素原子などのハロゲン原子、ヒドロキシル基など)を少なくとも1つ有する化合物が挙げられる。 In the metal oxide particles obtained by hydrolysis condensation, the hydrolysis-condensable compound includes a hydrolysis-condensable group (for example, an alkoxy group, an aryloxy group, etc.) directly bonded to a metal atom (for example, zirconium, titanium, etc.). Examples thereof include compounds having at least one halogen atom (such as a halogen atom such as a chlorine atom and a hydroxyl group).
 代表的な加水分解縮合性金属化合物(又は加水分解縮合性有機金属化合物)としては、金属アルコキシド(前記例示の金属のアルコキシド)、例えば、ジルコニウムアルコキシド[例えば、テトラアルコキシジルコニウム(例えば、テトラメトキシジルコニウム、テトラエトキシジルコニウム、テトライソプロポキシジルコニウム、テトライソブトキシジルコニウム、テトラn-ブトキシジルコニウム、テトラキス(2-エチルヘキシルオキシ)ジルコニウム、テトラキス(2-メチル-2-ブトキシ)ジルコニウムなどのテトラC1-18アルコキシジルコニウム、好ましくはテトラC1-12アルコキシジルコニウム、さらに好ましくはテトラC1-6アルコキシジルコニウムなど)、これらのオリゴマーなど]、チタンアルコキシド[例えば、テトラアルコキシチタン(例えば、テトラメトキシチタン、テトラエトキシチタン、テトラプロポキシチタン、テトライソプロポキシチタン、テトラn-ブトキシチタンなどのテトラC1-18アルコキシチタン、好ましくはテトラC1-12アルコキシチタン、さらに好ましくはテトラC1-6アルコキシチタンなど)、これらのオリゴマーなど]、これらのアルコキシドに対応し、金属が前記例示の金属(アルミニウム、亜鉛などのチタン、ジルコニウム以外の金属)である金属アルコキシドなどが挙げられる。これらの加水分解縮合性金属化合物は、単独で又は2種以上組み合わせてもよい。 Representative examples of hydrolyzable and condensable metal compounds (or hydrolyzable and condensable organic metal compounds) include metal alkoxides (alkoxides of the above-exemplified metals), such as zirconium alkoxides [eg, tetraalkoxide zirconium (eg, tetramethoxyzirconium, etc.). Tetra C 1-18 alkoxide zirconium, such as tetraethoxyzinczyl, tetraisopropoxyzirconium, tetraisobutoxyzirconium, tetran-butoxyzaldehyde, tetrakis (2-ethylhexyloxy) zirconium, tetrakis (2-methyl-2-butoxy) zirconium, Tetra C 1-12 alkoxyzincyl, more preferably tetra C 1-6 alkoxyzincyl, etc.], titanium alkoxides [eg, tetramethoxytitanium, tetraethoxytitanium, tetrapropoxy, etc.], Titanium alkoxides [eg, tetramethoxytitanium, tetraethoxytitanium, tetrapropoxy, etc.] Tetra C 1-18 alkoxide titanium such as titanium, tetraisopropoxy titanium, tetra n-butoxy titanium, preferably tetra C 1-12 alkoxide titanium, more preferably tetra C 1-6 alkoxide titanium, etc.), these oligomers, etc.] , Metal alkoxides in which the metal corresponds to these alkoxides and the metal is the above-exemplified metal (metal other than titanium such as aluminum and zinc and zirconium). These hydrolyzable and condensable metal compounds may be used alone or in combination of two or more.
 なお、金属酸化物粒子は、前記のように、必要に応じて、表面処理(又は表面修飾)されていてもよい。表面処理剤としては、加水分解縮合性ケイ素化合物などが挙げられる。また、加水分解縮合により得られた金属酸化物粒子においては、加水分解縮合性ケイ素化合物と加水分解縮合性金属化合物とを組み合わせて加水分解縮合してもよい。加水分解縮合性ケイ素化合物としては、例えば、ジアルキルジアルコキシシラン(例えば、ジメチルジメトキシシランなどのジC1-4アルキルジC1-4アルコキシシラン)、アルキルアリールジアルコキシシラン(例えば、メチルフェニルジメトキシシランなどのC1-4アルキル-C6-10アリール-ジC1-4アルコキシシラン)、ジアリールジアルコキシシラン(例えば、ジフェニルジメトキシシランなどのジC6-10アリールジC1-4アルコキシシランなど)、アルキルトリアルコキシシラン(例えば、メチルトリメトキシシランなどのC1-4アルキルトリC1-4アルコキシシランなど)、アリールトリアルコキシシラン(例えば、フェニルトリメトキシシランなどのC6-10アリールトリC1-4アルコキシシランなど)などのアルコキシシラン(又はケイ素アルコキシド、例えば、ジ又はトリアルコキシシランなど)などが挙げられる。 The metal oxide particles may be surface-treated (or surface-modified), if necessary, as described above. Examples of the surface treatment agent include hydrolyzable and condensable silicon compounds. Further, in the metal oxide particles obtained by hydrolysis condensation, a hydrolysis-condensable silicon compound and a hydrolysis-condensation metal compound may be combined and hydrolyzed and condensed. The hydrolyzable condensable silicon compounds, for example, dialkyl dialkoxy silanes (e.g., di-C 1-4 alkyl di C 1-4 alkoxysilane such as dimethyldimethoxysilane), alkylaryl dialkoxysilane (e.g., methyl phenyl dimethoxy silane C 1-4 alkyl -C 6-10 aryldi C 1-4 alkoxysilane) of diaryl dialkoxy silanes (e.g., di-C 6-10 aryldi C 1-4 alkoxysilane such as diphenyldimethoxysilane), alkyl Trialkoxysilane (eg C 1-4 alkyltri C 1-4 alkoxysilane such as methyltrimethoxysilane), aryltrialkoxysilane (eg C 6-10 aryltri C 1-4 alkoxy such as phenyltrimethoxysilane) Alkoxysilanes (or silicon alkoxys, such as di or trialkoxysilanes) such as silane) and the like can be mentioned.
 これらのケイ素化合物は単独で又は2種以上組み合わせてもよい。 These silicon compounds may be used alone or in combination of two or more.
 なお、金属酸化物粒子又は加水分解縮合性金属化合物と加水分解縮合性ケイ素化合物とを組み合わせる場合、これらの割合は、金属原子(例えば、ジルコニウム原子)及びケイ素原子換算で、前者/後者(モル比)=1/0.1~1/2程度の範囲から選択でき、例えば、1/0.15~1/1.5、好ましくは1/0.2~1/1、さらに好ましくは1/0.25~1/0.8程度であってもよい。 When the metal oxide particles or the hydrolyzable condensable metal compound and the hydrolyzable condensable silicon compound are combined, the ratios thereof are the former / the latter (molar ratio) in terms of metal atoms (for example, zirconium atoms) and silicon atoms. ) = 1 / 0.1 to 1/2, for example, 1 / 0.15 to 1 / 1.5, preferably 1 / 0.2 to 1/1, and more preferably 1/0. It may be about .25 to 1 / 0.8.
 金属酸化物粒子の平均粒径(平均一次粒子径)は、特に限定されないが、通常、ナノメータサイズであってもよい。例えば、金属酸化物粒子の平均体積粒子径(累積50%体積粒子径)は、1000nm以下(例えば、1nm以上800nm以下)の範囲から選択でき、700nm以下(例えば、1nm以上600nm以下)、好ましくは500nm以下(例えば、2nm以上400nm以下)、さらに好ましくは300nm以下(例えば、3nm以上200nm以下)、特に100nm以下(例えば、5nm以上70nm以下)程度であってもよく、特に十分な透明性を担保するためには、通常50nm以下[例えば、1nm以上40nm以下、好ましくは3nm以上35nm以下、さらに好ましくは30nm以下(例えば、5nm以上25nm以下)]程度であってもよい。 The average particle size (average primary particle size) of the metal oxide particles is not particularly limited, but may be usually nanometer size. For example, the average volume particle size (cumulative 50% volume particle size) of the metal oxide particles can be selected from the range of 1000 nm or less (for example, 1 nm or more and 800 nm or less), and is 700 nm or less (for example, 1 nm or more and 600 nm or less), preferably. It may be 500 nm or less (for example, 2 nm or more and 400 nm or less), more preferably 300 nm or less (for example, 3 nm or more and 200 nm or less), particularly 100 nm or less (for example, 5 nm or more and 70 nm or less), and particularly sufficient transparency is ensured. In order to do so, it may be usually about 50 nm or less [for example, 1 nm or more and 40 nm or less, preferably 3 nm or more and 35 nm or less, and more preferably 30 nm or less (for example, 5 nm or more and 25 nm or less)].
 なお、上記金属酸化物粒子分散用組成物は、下記式(1)で表されるシリル基変性フルオレン化合物を含有するため、通常、このようなナノメータサイズを保持したまま(又は反映して)、有機成分(式(1)で表されるシリル基変性フルオレン化合物、及び、式(2)で表される(メタ)アクリレート化合物)中に金属酸化物粒子を分散可能である。 Since the composition for dispersing metal oxide particles contains a silyl group-modified fluorene compound represented by the following formula (1), it usually keeps (or reflects) such a nanometer size. The metal oxide particles can be dispersed in the organic component (silyl group-modified fluorene compound represented by the formula (1) and the (meth) acrylate compound represented by the formula (2)).
 金属酸化物粒子分散用組成物に金属酸化物粒子を分散させる方法は特に限定されず、例えば、金属酸化物粒子分散用組成物と金属酸化物粒子とを混合して、金属酸化物粒子を金属酸化物粒子分散用組成物中に分散させればよい。 The method for dispersing the metal oxide particles in the composition for dispersing the metal oxide particles is not particularly limited. For example, the composition for dispersing the metal oxide particles and the metal oxide particles are mixed to obtain the metal oxide particles into a metal. It may be dispersed in the composition for dispersing oxide particles.
 金属酸化物粒子の配合量は特に限定されないが、例えば、金属酸化物粒子100質量部に対する上記式(1)で表されるシリル基変性フルオレン化合物の質量が、0.5質量部以上100質量部以下であることが好ましく、1質量部以上50質量部以下であることがより好ましく、2質量部以上10質量部以下であることがさらに好ましい。 The blending amount of the metal oxide particles is not particularly limited, but for example, the mass of the silyl group-modified fluorene compound represented by the above formula (1) with respect to 100 parts by mass of the metal oxide particles is 0.5 parts by mass or more and 100 parts by mass. It is preferably 1 part by mass or more and 50 parts by mass or less, and further preferably 2 parts by mass or more and 10 parts by mass or less.
 高屈折材料は、有機溶媒が配合されていてもよい。但し、インクジェット法を適用するためには、有機溶媒の含有量は少ないことが好ましい。
 高屈折材料が含んでいてもよい有機溶媒の具体例については、上記金属酸化物粒子分散用組成物が有機溶媒を含む場合の有機溶媒として例示したものと同様である。
The high refraction material may contain an organic solvent. However, in order to apply the inkjet method, it is preferable that the content of the organic solvent is small.
Specific examples of the organic solvent that the highly refracting material may contain are the same as those exemplified as the organic solvent when the composition for dispersing metal oxide particles contains an organic solvent.
(高屈折材料の屈折率)
 金属酸化物粒子分散用組成物に金属酸化物粒子を混合して分散させた高屈折材料は、屈折率が1.6以上であることが好ましく、1.63以上であることがより好ましく、1.65以上であることがさらに好ましく、1.70以上であることが特に好ましく、1.75以上であることが最も好ましい。
 屈折率の上限としては特に制限はないが、例えば、3以下であり、2.5以下とすることもできる。
 本発明において、屈折率とは波長656nmの光線に対する屈折率であることが好ましく、屈折率は特に断らない限り、後記の実施例で測定した条件によるものとする。
 また、高屈折材料の粘度は特に制限はないが、後述のインクジェット法に適用し得る観点から、300cP(mPa・s)以下の範囲が好ましい。高屈折材料の粘度は、60mPa・s以下がより好ましく、30mPa・s以下が特に好ましい。下限は特にないが、0.1mPa・s以上である。
 なお、上記の粘度は、E型粘度計を用いて25℃で測定される粘度である。
(Refractive index of highly refracting material)
A highly refracting material obtained by mixing and dispersing metal oxide particles in a composition for dispersing metal oxide particles preferably has a refractive index of 1.6 or more, more preferably 1.63 or more. It is more preferably .65 or more, particularly preferably 1.70 or more, and most preferably 1.75 or more.
The upper limit of the refractive index is not particularly limited, but may be, for example, 3 or less and 2.5 or less.
In the present invention, the refractive index is preferably the refractive index for light rays having a wavelength of 656 nm, and the refractive index is based on the conditions measured in the examples described later unless otherwise specified.
The viscosity of the highly refracting material is not particularly limited, but is preferably in the range of 300 cP (mPa · s) or less from the viewpoint of being applicable to the inkjet method described later. The viscosity of the highly refracting material is more preferably 60 mPa · s or less, and particularly preferably 30 mPa · s or less. There is no particular lower limit, but it is 0.1 mPa · s or more.
The above viscosity is a viscosity measured at 25 ° C. using an E-type viscometer.
<<硬化膜形成方法>>
 上記高屈折材料(上記金属酸化物粒子分散用組成物と金属酸化物粒子を混合して分散させたもの)を、基材上に適用して塗布膜を形成する工程(以下単に「塗布膜形成工程」ともいう。)、及び上記塗布膜を硬化する工程を有する硬化膜形成方法により、硬化膜を形成することができる。
 上記硬化膜形成方法は、パターン形成工程をさらに含むことが好ましく、具体的には、
(1)上記塗布膜表面にモールドを圧接して上記塗布膜にパターン形成する工程をさらに含む(インプリント法)、又は
(2)上記塗布膜を硬化させる工程が位置選択的な露光により行われ、位置選択的に露光された前記塗布膜に対して現像を行いパターン形成する工程をさらに含むこと(現像法)が好ましい。
 上記(2)の現像法において、上記現像はアルカリ現像液又は有機溶剤を含む現像液を用いて行うことができるが、上記現像は有機溶剤を含む現像液を用いて行われることがより好ましい。
<< Cured film forming method >>
A step of applying the high-refractive-index material (a mixture of the composition for dispersing metal oxide particles and metal oxide particles) onto a substrate to form a coating film (hereinafter, simply "coating film formation"). A cured film can be formed by a cured film forming method including a step of curing the coating film.
The cured film forming method preferably further includes a pattern forming step, specifically,
(1) The step of pressing the mold against the surface of the coating film to form a pattern on the coating film is further included (imprint method), or (2) the step of curing the coating film is performed by position-selective exposure. It is preferable that the coating film exposed in a position-selective manner is further developed to form a pattern (development method).
In the development method (2), the development can be carried out using an alkaline developer or a developer containing an organic solvent, but the development is more preferably carried out using a developer containing an organic solvent.
 基材(基板又は支持体)は、種々の用途によって選択可能であり、例えば、石英、ガラス、光学フィルム、セラミック材料、蒸着膜、磁性膜、反射膜、Ni,Cu,Cr,Feなどの金属基板、紙、SOG(Spin On Glass)、ポリエステルフイルム、ポリカーボネートフィルム、ポリイミドフィルム等のポリマー基板、TFTアレイ基板、PDPの電極板、ガラスや透明プラスチック基板、ITOや金属などの導電性基材、絶縁性基材、シリコン、窒化シリコン、ポリシリコン、酸化シリコン、アモルファスシリコンなどの半導体作製基板など特に制約されない。また、基材の形状も特に限定されるものではなく、板状でもよいし、ロール状でもよい。また、上記基材としては、モールドとの組み合わせ等に応じて、光透過性、又は、非光透過性のものを選択することができる。 The base material (substrate or support) can be selected according to various applications, and for example, metals such as quartz, glass, optical film, ceramic material, vapor-deposited film, magnetic film, reflective film, Ni, Cu, Cr, and Fe. Substrate, paper, polymer substrate such as SOG (Spin On Glass), polyester film, polycarbonate film, polyimide film, TFT array substrate, PDP electrode plate, glass or transparent plastic substrate, conductive substrate such as ITO or metal, insulation There are no particular restrictions on the base material, silicon, silicon nitride, polysilicon, silicon oxide, semiconductor-made substrates such as amorphous silicon, and the like. Further, the shape of the base material is not particularly limited, and may be a plate shape or a roll shape. Further, as the base material, a light-transmitting or non-light-transmitting material can be selected depending on the combination with the mold and the like.
 まず、塗布膜形成工程では、例えば、硬化膜が形成されるべき基板上に、インクジェット、ロールコーター、リバースコーター、バーコーター等の接触転写型塗布装置やスピンナー(回転式塗布装置)、ディスペンサー、スプレー、スクリーン印刷、カーテンフローコーター等の非接触型塗布装置を用いて高屈折材料を適用し、必要に応じて、乾燥(プリベーク)により溶媒を除去して塗布膜を形成することができる。
 塗布膜の厚さとしては、特に制限はないが、10nm以上50μm以下であることが好ましく、50nm以上30μm以下であることがより好ましく、100nm以上10μm以下であることがさらに好ましく、150nm以上5μm以下であることが特に好ましい。
 なお、基板上に盛られた液滴や、凹凸を有する基板の凹部に埋め込めまれた高屈折材料や、モールドの凹部に充填された高屈折材料等についても、便宜上「塗布膜」と称する。
 上記高屈折材料はインクジェット法に好適に用い得るため、上記(1)のように、インプリント法によるパターン形成を行う場合、インクジェット法を適用することができる。
First, in the coating film forming step, for example, a contact transfer type coating device such as an inkjet, a roll coater, a reverse coater, or a bar coater, a spinner (rotary coating device), a dispenser, or a spray is placed on a substrate on which a cured film is to be formed. , Screen printing, a non-contact coating device such as a curtain flow coater can be used to apply a highly refractory material, and if necessary, the solvent can be removed by drying (prebaking) to form a coating film.
The thickness of the coating film is not particularly limited, but is preferably 10 nm or more and 50 μm or less, more preferably 50 nm or more and 30 μm or less, further preferably 100 nm or more and 10 μm or less, and 150 nm or more and 5 μm or less. Is particularly preferable.
The droplets piled up on the substrate, the highly refracting material embedded in the recesses of the substrate having irregularities, the highly refracting material filled in the recesses of the mold, and the like are also referred to as "coating film" for convenience.
Since the high refraction material can be suitably used for the inkjet method, the inkjet method can be applied when pattern formation is performed by the imprint method as described in (1) above.
 上記(1)のように、インプリント法によるパターン形成を行う場合、上記塗布膜にパターンを転写するために、パターン形成層表面にモールドを押接する。これにより、モールドの押圧表面にあらかじめ形成された微細なパターンを、上記塗布膜に転写することができる。また、パターンを有するモールドに高屈折材料を塗布し、基板を押接してもよい。
 塗布膜表面に光透過性のモールドを押接し、モールドの裏面から露光し、上記塗布膜を硬化することができる。また、光透過性基材上に高屈折材料を塗布し、モールドを押し当て、基材の裏面から露光し、高屈折材料を硬化させることもできる。
When pattern formation is performed by the imprint method as in (1) above, a mold is pressed against the surface of the pattern forming layer in order to transfer the pattern to the coating film. As a result, a fine pattern previously formed on the pressing surface of the mold can be transferred to the coating film. Further, a high refraction material may be applied to a mold having a pattern and the substrate may be pressed against the substrate.
A light-transmitting mold can be pressed against the surface of the coating film and exposed from the back surface of the mold to cure the coating film. It is also possible to apply a highly refracting material on a light-transmitting substrate, press a mold against it, expose it from the back surface of the substrate, and cure the highly refracting material.
 モールド材としては、特に限定されないが、所定の強度、耐久性を有するものであればよい。光透過性のモールド材としては、具体的には、ガラス、石英、PMMA、ポリカーボネート樹脂、ポリエチレンテレフタレート(PET)などの光透明性樹脂、透明金属蒸着膜、ポリジメチルシロキサンなどの柔軟膜、光硬化膜、金属膜等が例示される。 The mold material is not particularly limited, but may be any material having predetermined strength and durability. Specific examples of the light-transmitting molding material include glass, quartz, PMMA, polycarbonate resin, light-transparent resin such as polyethylene terephthalate (PET), transparent metal vapor deposition film, flexible film such as polydimethylsiloxane, and photocuring. Examples include a film and a metal film.
 また、非光透過型モールド材としては、特に限定されないが、所定の強度を有するものであればよい。具体的には、セラミック材料、蒸着膜、磁性膜、反射膜、Ni、Cu、Cr、Feなどの金属基板、SiC、シリコン、窒化シリコン、ポリシリコン、酸化シリコン、アモルファスシリコンなどの基板などが例示され、特に制約されない。また、モールドの形状も特に制約されるものではなく、板状モールド、ロール状モールドのどちらでもよい。ロール状モールドは、特に転写の連続生産性が必要な場合に適用される。 The non-light transmitting mold material is not particularly limited, but may be any material having a predetermined strength. Specific examples include ceramic materials, vapor-deposited films, magnetic films, reflective films, metal substrates such as Ni, Cu, Cr, and Fe, and substrates such as SiC, silicon, silicon nitride, polysilicon, silicon oxide, and amorphous silicon. It is not particularly restricted. Further, the shape of the mold is not particularly limited, and either a plate mold or a roll mold may be used. Roll molds are especially applied when continuous transfer productivity is required.
 上記(1)のように、インプリント法によるパターン形成を行う場合、モールド圧力を10気圧以下で行うことが好ましい。モールド圧力を10気圧以下とすることにより、モールドや基板が変形しにくくパターン精度が向上する傾向にある。また、加圧が低いため装置を縮小できる傾向にある点からも好ましい。モールド圧力は、モールド凸部の高屈折材料の残膜が少なくなる範囲で、モールド転写の均一性が確保できる領域を選択することが好ましい。
 下記露光の前段階として、真空状態にしておくと、気泡混入防止、酸素混入による反応性低下の抑制、モールドと高屈折材料との密着性向上に効果があるため、真空状態で露光してもよい。露光時における好ましい真空度としては、10-1Paから常圧の範囲である。
When pattern formation is performed by the imprint method as in (1) above, it is preferable that the mold pressure is 10 atm or less. By setting the mold pressure to 10 atm or less, the mold and the substrate are less likely to be deformed, and the pattern accuracy tends to be improved. It is also preferable because the pressurization is low and the device tends to be reduced. For the mold pressure, it is preferable to select a region where the uniformity of mold transfer can be ensured within a range where the residual film of the highly refracting material on the convex portion of the mold is reduced.
If a vacuum state is used as a pre-stage of the following exposure, it is effective in preventing air bubbles from being mixed in, suppressing a decrease in reactivity due to oxygen mixing, and improving the adhesion between the mold and the highly refracting material. Good. The preferred degree of vacuum during exposure is in the range of 10 -1 Pa to normal pressure.
 次いで、形成された塗布膜を硬化することができる。硬化方法は、高屈折材料を硬化させることができる方法であれば特に限定されず、露光及び/又は加熱を含み、露光を含むことが好ましい。
 露光では光源は特に限定されず、例えば、高圧水銀灯、超高圧水銀灯、キセノンランプ、カーボンアーク灯、LED等が挙げられる。このような光源を用い、塗膜にArFエキシマレーザー、KrFエキシマレーザー、Fエキシマレーザー、極紫外線(EUV)、真空紫外線(VUV)、電子線、X線、軟X線、g線、i線、h線、j線、k線等の放射線ないし電磁波を照射して塗布膜を露光し得る。塗布膜に対する露光は、ネガ型のマスクを介して位置選択的に行われてもよい。露光量は、高屈折材料の組成によっても異なるが、例えば10mJ/cm以上2000mJ/cm以下が好ましく、100mJ/cm以上1500mJ/cm以下がより好ましく、200mJ/cm以上1200mJ/cm以下がさらに好ましい。露光照度は高屈折材料の組成によっても異なるが、1mW/cm以上50mW/cm以下の範囲にすることが好ましい。
 加熱を行う際の温度は特に限定されず、180℃以上280℃以下が好ましく、200℃以上260℃以下がより好ましく、220℃以上250℃以下が特に好ましい。加熱時間は、典型的には、1分以上60分以下が好ましく、10分以上50分以下がより好ましく、20分以上40分以下が特に好ましい。
Then, the formed coating film can be cured. The curing method is not particularly limited as long as it can cure the highly refracting material, and preferably includes exposure and / or heating, and includes exposure.
The light source is not particularly limited in the exposure, and examples thereof include a high-pressure mercury lamp, an ultra-high pressure mercury lamp, a xenon lamp, a carbon arc lamp, and an LED. Using such a light source, ArF excimer laser coating, KrF excimer laser, F 2 excimer laser, extreme ultraviolet (EUV), vacuum ultraviolet (VUV), electron beams, X-rays, soft X-ray, g-line, i-line The coating film can be exposed by irradiating with radiation or an electromagnetic wave such as h-ray, j-ray, or k-ray. The exposure to the coating film may be regioselective via a negative mask. Exposure dose varies depending on the composition of the high-refractive materials, for example preferably 10 mJ / cm 2 or more 2000 mJ / cm 2 or less, 100 mJ / cm 2 or more 1500 mJ / cm 2 and more preferably less, 200 mJ / cm 2 or more 1200 mJ / cm 2 or less is more preferable. The exposure illuminance varies depending on the composition of the highly refracting material, but is preferably in the range of 1 mW / cm 2 or more and 50 mW / cm 2 or less.
The temperature at the time of heating is not particularly limited, and is preferably 180 ° C. or higher and 280 ° C. or lower, more preferably 200 ° C. or higher and 260 ° C. or lower, and particularly preferably 220 ° C. or higher and 250 ° C. or lower. The heating time is typically preferably 1 minute or more and 60 minutes or less, more preferably 10 minutes or more and 50 minutes or less, and particularly preferably 20 minutes or more and 40 minutes or less.
 上記(2)の現像法のように、上記塗布膜を硬化させる工程が位置選択的な露光により行われ、位置選択的に露光された上記塗布膜に対して現像して、パターン化された硬化膜を得ることができる。 As in the development method of (2) above, the step of curing the coating film is performed by regioselective exposure, and the coating film exposed in a regioselective manner is developed and patterned. A membrane can be obtained.
 現像工程では、露光された塗膜を現像液で現像することにより、所望する形状にパターン化された硬化物が形成される。現像方法は特に限定されず、浸漬法、スプレー法、パドル法、ダイナミックディスペンス法等を用いることができる。
 有機溶剤を含む現像液の具体例としては、PE(プロピレングリコールモノメチルエーテル)等のアルコール系溶剤ないしグリコールエーテル系溶剤、テトラヒドロフラン等のエーテル系溶剤、酢酸ブチル等のエステル系溶剤、アセトン、メチルアミルケトン等のケトン系溶剤等が挙げられる。
 アルカリ現像液の具体例としては、モノエタノールアミン、ジエタノールアミン、トリエタノールアミン等の有機系のものや、水酸化ナトリウム、水酸化カリウム、炭酸ナトリウム、アンモニア、4級アンモニウム塩等の水溶液が挙げられる。
In the developing step, the exposed coating film is developed with a developing solution to form a cured product patterned into a desired shape. The developing method is not particularly limited, and a dipping method, a spray method, a paddle method, a dynamic dispensing method and the like can be used.
Specific examples of the developing solution containing an organic solvent include alcohol solvents such as PE (propylene glycol monomethyl ether) or glycol ether solvents, ether solvents such as tetrahydrofuran, ester solvents such as butyl acetate, acetone, and methyl amyl ketone. Examples thereof include ketone solvents such as.
Specific examples of the alkaline developing solution include organic ones such as monoethanolamine, diethanolamine and triethanolamine, and aqueous solutions such as sodium hydroxide, potassium hydroxide, sodium carbonate, ammonia and quaternary ammonium salts.
 そして、必要に応じ、露光後の硬化物、又は現像後のパターン化された硬化物にポストベークを施してさらに加熱硬化を進めてもよい。ポストベークの温度は150℃以上270℃以下が好ましい。 Then, if necessary, the cured product after exposure or the patterned cured product after development may be post-baked to further heat cure. The post-baking temperature is preferably 150 ° C. or higher and 270 ° C. or lower.
<<硬化物>>
 上記高屈折材料(上記金属酸化物粒子分散用組成物と金属酸化物粒子を混合して分散させたもの)を硬化して得られる硬化物は、耐熱性に優れ、高屈折率を有する。高屈折率で、且つ、耐熱性に優れるためアウトガスの発生が抑制されるので、上記硬化物は、ディスプレイ用途等又はOLED照明等での高屈折層等のアウトガスの影響が大きい用途に適している。
 硬化物の屈折率としては1.6以上であることが好ましく、1.63以上であることがより好ましく、1.65以上であることがさらに好ましく、1.7以上であることが特に好ましく、1.75以上であることが最も好ましい。
 屈折率の上限としては特に制限はないが、例えば、3以下であり、2.5以下とすることもできる。
 硬化物が硬化膜である場合、硬化膜の厚さとしては、特に制限はないが、10nm以上50μm以下であることが好ましく、50nm以上30μm以下であることがより好ましく、100nm以上10μm以下であることがさらに好ましく、150nm以上5μm以下であることが特に好ましい。
<< Hardened product >>
The cured product obtained by curing the high-refractive-index material (the composition for dispersing the metal oxide particles and the metal oxide particles mixed and dispersed) has excellent heat resistance and a high refractive index. Since the high refractive index and excellent heat resistance suppress the generation of outgas, the cured product is suitable for display applications and applications where the influence of outgas is large, such as a high refraction layer in OLED lighting and the like. ..
The refractive index of the cured product is preferably 1.6 or more, more preferably 1.63 or more, further preferably 1.65 or more, and particularly preferably 1.7 or more. Most preferably, it is 1.75 or more.
The upper limit of the refractive index is not particularly limited, but may be, for example, 3 or less and 2.5 or less.
When the cured product is a cured film, the thickness of the cured film is not particularly limited, but is preferably 10 nm or more and 50 μm or less, more preferably 50 nm or more and 30 μm or less, and 100 nm or more and 10 μm or less. It is more preferable, and it is particularly preferable that it is 150 nm or more and 5 μm or less.
<<硬化物の用途>>
 上記硬化物は、以下説明する各種の高屈折率で透明な光学部材として好適である。
 例えば、上記硬化物は、屈折率に優れ、且つ、耐熱性に優れアウトガスの発生が抑制されるため、ディスプレイ用途又はOLED照明等での高屈層として好適である。例えば、OLEDの高屈折層として好適である。
 また、上記硬化物は屈折率に優れることから、ヘッドアップディスプレイないしヘッドマウントディスプレイ装置、プロジェクター等における透過型透明スクリーン、反射型透明スクリーン等として好適である。
 また、透明光学部材(レンズ、マイクロレンズ、ウェハレベルレンズ、光ファイバー、光導波路、プリズムシート、ホログラム、高屈折フィルム、再帰反射フィルム)、光配線部材、回折格子などの光学部材等の種々の用途に好適である。
 また、該硬化物は、例えば、OLED表示素子用封止材、OLED照明、ハードコート、絶縁膜、反射防止膜、層間絶縁膜、カーボンハードマスク、ディスプレイパネル材料(平坦化膜、カラーフィルタの画素、有機EL用隔壁、スペーサ)等の種々の用途に好適である。
 また、硬化物は、タッチパネル等の表示素子において、金属配線等を被覆する透明被膜として好ましく使用される。
<< Applications of cured products >>
The cured product is suitable as a transparent optical member having various high refractive indexes, which will be described below.
For example, the cured product has an excellent refractive index, excellent heat resistance, and suppresses the generation of outgas, and is therefore suitable as a high bending layer for display applications, OLED lighting, and the like. For example, it is suitable as a high refraction layer of OLED.
Further, since the cured product has an excellent refractive index, it is suitable as a transmissive transparent screen, a reflective transparent screen, or the like in a head-up display, a head-mounted display device, a projector, or the like.
Also, for various applications such as transparent optical members (lenses, microlenses, wafer level lenses, optical fibers, optical waveguides, prism sheets, holograms, high refraction films, retroreflective films), optical wiring members, optical members such as diffraction gratings, etc. Suitable.
Further, the cured product is, for example, a sealing material for an OLED display element, an OLED lighting, a hard coat, an insulating film, an antireflection film, an interlayer insulating film, a carbon hard mask, a display panel material (flattening film, pixels of a color filter). , Organic EL partition, spacer) and the like.
Further, the cured product is preferably used as a transparent film for covering metal wiring or the like in a display element such as a touch panel.
 以下、実施例を示して本発明をさらに具体的に説明するが、本発明の範囲は、これらの実施例に限定されるものではない。 Hereinafter, the present invention will be described in more detail with reference to Examples, but the scope of the present invention is not limited to these Examples.
(合成例1)式(1)で表されるシリル基変性フルオレン化合物の合成
 下記式(a)で表されるアリルオキシ基を有するフルオレン化合物4.0gと、(3-メルカプトプロピル)トリメトキシシラン(MPTMS)3.4gとを、TPPS(トリフェニルホスフィン トリフェニルボラン)0.075g及び重合開始剤(Omnirad 184、IGM Resins B.V.製、1-ヒドロキシシクロヘキシル-フェニルケトン)0.15gの存在下、テトラヒドロフラン(THF)中において室温で光反応(365nmブロードバンド光により反応)させることにより、下記式(a1)で表されるシリル基変性フルオレン化合物を4.2g得た(収率61.7%)。得られた結晶のNMRを測定し、目的物であることを確認した。
Figure JPOXMLDOC01-appb-C000014
(Synthesis Example 1) Synthesis of silyl group-modified fluorene compound represented by formula (1) 4.0 g of fluorene compound having an allyloxy group represented by the following formula (a) and (3-mercaptopropyl) trimethoxysilane ( In the presence of 3.4 g of MPTMS), 0.075 g of TPPS (triphenylphosphine triphenylborane) and 0.15 g of polymerization initiator (Omnirad 184, manufactured by IGM Resins BV, 1-hydroxycyclohexyl-phenylketone) By photoreacting in tetrahydrofuran (THF) at room temperature (reacting with 365 nm broadband light), 4.2 g of a silyl group-modified fluorene compound represented by the following formula (a1) was obtained (yield 61.7%). .. The NMR of the obtained crystal was measured to confirm that it was the desired product.
Figure JPOXMLDOC01-appb-C000014
(合成比較例1)下記式(a2)で表されるシリル基変性フルオレン化合物の合成
 9,9-ビス(4-ヒドロキシ-3-メチルフェニル)フルオレンを9,9-ビス(4-ヒドロキシフェニル)フルオレンに代え、特許文献1の合成例1にしたがって、下記式(a2)で表されるシリル基変性フルオレン化合物を合成した。
Figure JPOXMLDOC01-appb-C000015
(Synthetic Comparative Example 1) Synthesis of silyl group-modified fluorene compound represented by the following formula (a2) 9,9-bis (4-hydroxy-3-methylphenyl) fluorene is 9,9-bis (4-hydroxyphenyl). Instead of fluorene, a silyl group-modified fluorene compound represented by the following formula (a2) was synthesized according to Synthesis Example 1 of Patent Document 1.
Figure JPOXMLDOC01-appb-C000015
[耐熱性評価1]
 合成例1で得られた式(a1)で表されるシリル基変性フルオレン化合物及び合成比較例1で得られた上記式(a2)で表されるシリル基変性フルオレン化合物について、それぞれ、ヘキサンで抽出し乾燥させたものを、試料として用いた。
 試料を、TG-DSC-MS法によりHe雰囲気中、昇温速度10℃/分で40℃から500℃まで昇温しアウトガス測定を行い(MS装置中の温度300℃)、アウトガス量のピーク値の温度を算出した。なお、測定には、ネッチ(NETZSCH)社製のTG-DSC装置と日本電子社製のMS装置とを用いた。
 この結果、合成例1で得られた式(a1)で表されるシリル基変性フルオレン化合物のピーク値の温度は390.5℃であった。また、合成比較例1で得られた上記式(a2)で表されるシリル基変性フルオレン化合物のピーク値の温度は380.0℃であった。
[Heat resistance evaluation 1]
The silyl group-modified fluorene compound represented by the formula (a1) obtained in Synthesis Example 1 and the silyl group-modified fluorene compound represented by the above formula (a2) obtained in Synthesis Comparative Example 1 were each extracted with hexane. The dried product was used as a sample.
The sample was heated from 40 ° C. to 500 ° C. at a heating rate of 10 ° C./min in a He atmosphere by the TG-DSC-MS method and outgas measurement was performed (temperature in the MS device was 300 ° C.), and the peak value of the outgas amount was measured. The temperature of was calculated. For the measurement, a TG-DSC device manufactured by NETZSCH and an MS device manufactured by JEOL Ltd. were used.
As a result, the temperature of the peak value of the silyl group-modified fluorene compound represented by the formula (a1) obtained in Synthesis Example 1 was 390.5 ° C. The peak temperature of the silyl group-modified fluorene compound represented by the above formula (a2) obtained in Synthesis Comparative Example 1 was 380.0 ° C.
(実施例1)
 式(1)で表されるシリル基変性フルオレン化合物としての上記式(a1)で表されるシリル基変性フルオレン化合物2gと、式(2)で表される(メタ)アクリレート化合物としてのフェニルフェニルアクリレート8gとを混合して、金属酸化物粒子分散用組成物を得た。
(Example 1)
2 g of the silyl group-modified fluorene compound represented by the above formula (a1) as the silyl group-modified fluorene compound represented by the formula (1) and phenylphenyl acrylate as the (meth) acrylate compound represented by the formula (2). 8 g was mixed to obtain a composition for dispersing metal oxide particles.
(比較例1)
 上記式(a1)で表されるシリル基変性フルオレン化合物を、上記式(a2)で表されるシリル基変性フルオレン化合物に代えたこと以外は、実施例1と同様にして、金属酸化物粒子分散用組成物を得た。
(Comparative Example 1)
Metal oxide particle dispersion in the same manner as in Example 1 except that the silyl group-modified fluorene compound represented by the above formula (a1) was replaced with the silyl group-modified fluorene compound represented by the above formula (a2). The composition for use was obtained.
[屈折率評価]
 実施例1及び比較例1で得られた金属酸化物粒子分散用組成物について、プリズムカプラ(メトリコン社製)用いて、温度25℃、656nmでの屈折率を測定した。結果を表1に示す。
[Refractive index evaluation]
The refractive index of the metal oxide particle dispersion compositions obtained in Example 1 and Comparative Example 1 was measured at a temperature of 25 ° C. and 656 nm using a prism coupler (manufactured by Metricon). The results are shown in Table 1.
[耐熱性評価2]
 実施例1及び比較例1で得られた金属酸化物粒子分散用組成物について、以下の方法で耐熱性を評価した。
 まず、実施例1及び比較例1で得られた金属酸化物粒子分散用組成物を、それぞれシリコン基板に厚さ1μmになるように、インクジェット法により塗布した。その後、温度85℃湿度85%の環境下で24時間放置することで吸湿させた。
 吸湿前後の各基板を試料とし、TDS法(昇温脱離ガス分光法)により、昇温脱離ガス分析装置(ESCO社製)を用いて、各基板を真空条件下で40~100℃まで加熱した際に観測されるアウトガス量を測定した。吸湿後と吸湿前の100℃のアウトガス量が、吸湿前のアウトガス量を100としたときに、吸湿後のアウトガス量が100以上105以下の場合を〇、吸湿後のアウトガス量が105超の場合を×として、耐熱性を評価した。結果を表1に示す。
[Heat resistance evaluation 2]
The heat resistance of the metal oxide particle dispersion compositions obtained in Example 1 and Comparative Example 1 was evaluated by the following method.
First, the metal oxide particle dispersion compositions obtained in Example 1 and Comparative Example 1 were each applied to a silicon substrate by an inkjet method so as to have a thickness of 1 μm. Then, it was allowed to absorb moisture by leaving it for 24 hours in an environment of a temperature of 85 ° C. and a humidity of 85%.
Using each substrate before and after moisture absorption as a sample, use the TDS method (heat temperature desorption gas spectroscopy) to heat each substrate to 40 to 100 ° C. under vacuum conditions using a temperature desorption gas analyzer (manufactured by ESCO). The amount of outgas observed when heated was measured. When the amount of outgas at 100 ° C. after moisture absorption and before moisture absorption is 100, the amount of outgas after moisture absorption is 100 or more and 105 or less, and the amount of outgas after moisture absorption is more than 105. Was set to x, and the heat resistance was evaluated. The results are shown in Table 1.
[分散性評価]
 実施例1及び比較例1の金属酸化物粒子分散用組成物1gと、金属酸化物粒子としての、平均粒径が10nmのZrOナノ粒子10gを、混合、撹拌して、高屈折材料を得た。
 得られた高屈折材料を、目視で観察して、分散性を評価した。実施例1及び比較例1いずれも、ZrO粒子が均一に分散されており、分散状態が良好であった。
[Dispersibility evaluation]
Obtained and 1g metal oxide particle dispersion compositions of Examples 1 and Comparative Example 1, as the metal oxide particles, the average particle diameter of 10 nm ZrO 2 nanoparticles 10g of mixed and stirred, a high refractive material It was.
The obtained highly refracting material was visually observed to evaluate the dispersibility. Any Example 1 and Comparative Example 1, ZrO 2 grains are uniformly dispersed, the dispersion state was good.
Figure JPOXMLDOC01-appb-T000016
Figure JPOXMLDOC01-appb-T000016
 式(1)で表されるシリル基変性フルオレン化合物と式(2)で表される(メタ)アクリレート化合物とを含有する実施例1の金属酸化物粒子分散用組成物は、耐熱性に優れ、インクジェット法を適用することができる高屈折材料を調製可能であった。一方、式(1)で表されるシリル基変性フルオレン化合物を含有しない比較例1の金属酸化物粒子分散用組成物は、実施例1の金属酸化物粒子分散用組成物と比べて、耐熱性が悪かった。
 詳述すると、実施例1の金属酸化物粒子分散用組成物が含有する式(1)で表されるシリル基変性フルオレン化合物は、耐熱性に優れるため、上記金属酸化物粒子分散用組成物も、耐熱性に優れ、アウトガスの発生が少なかった。
 また、実施例1の金属酸化物粒子分散用組成物は、有機溶媒を含有しないため、有機溶媒の揮発による含有成分の濃度変化や吐出不良、硬化感度の劣化が抑制され、インクジェット法を適用することができた。
 また、上記金属酸化物粒子分散用組成物は、金属酸化物粒子の分散性がよく、屈折率も高かった。
The composition for dispersing metal oxide particles of Example 1 containing the silyl group-modified fluorene compound represented by the formula (1) and the (meth) acrylate compound represented by the formula (2) has excellent heat resistance. It was possible to prepare a highly refracting material to which the inkjet method can be applied. On the other hand, the composition for dispersing metal oxide particles of Comparative Example 1 containing no silyl group-modified fluorene compound represented by the formula (1) has heat resistance as compared with the composition for dispersing metal oxide particles of Example 1. Was bad.
More specifically, since the silyl group-modified fluorene compound represented by the formula (1) contained in the composition for dispersing metal oxide particles of Example 1 has excellent heat resistance, the composition for dispersing metal oxide particles also described above. , Excellent heat resistance and less outgassing.
Further, since the composition for dispersing metal oxide particles of Example 1 does not contain an organic solvent, changes in the concentration of the contained components due to volatilization of the organic solvent, poor ejection, and deterioration of curing sensitivity are suppressed, and the inkjet method is applied. I was able to.
In addition, the composition for dispersing metal oxide particles had good dispersibility of metal oxide particles and a high refractive index.

Claims (9)

  1.  下記式(1)で表されるシリル基変性フルオレン化合物と、下記式(2)で表される(メタ)アクリレート化合物とを含有する、金属酸化物粒子分散用組成物。
    Figure JPOXMLDOC01-appb-C000001
    (式(1)中、環Zは、ナフタレン環を表し、
    1a及びR1bは、それぞれ独立に、ハロゲン原子、シアノ基又はアルキル基を表し、
    2a及びR2bは、それぞれ独立に、アルキル基を表し、
    3a及びR3bは、それぞれ独立に、アルキレン基を表し、
    及びXは、それぞれ独立に、-Si(OR(R3-pで表される基を表し、
    は、水素原子、アルキル基又は-(RO)-Rで表される基を表し、
    は、水素原子又は炭化水素基を表し、
    は、アルキレン基を表し、
    は、アルキル基を表し、
    k1及びk2は、それぞれ独立に、0以上4以下の整数を表し、
    m1及びm2は、それぞれ独立に、0以上2以下の整数を表し、
    pは1以上3以下の整数を表し、
    qは1以上の整数を表す。)
    Figure JPOXMLDOC01-appb-C000002
    (式(2)中、Zは2個以上の芳香環を含む芳香族基を表し、Rは直鎖状又は分岐状アルキレン基を表し、Rは水素原子又はメチル基を表し、rは0以上の整数を表す。)
    A composition for dispersing metal oxide particles, which comprises a silyl group-modified fluorene compound represented by the following formula (1) and a (meth) acrylate compound represented by the following formula (2).
    Figure JPOXMLDOC01-appb-C000001
    (In the formula (1), the ring Z 1 represents a naphthalene ring and represents a naphthalene ring.
    R 1a and R 1b independently represent a halogen atom, a cyano group or an alkyl group, respectively.
    R 2a and R 2b each independently represent an alkyl group and represent an alkyl group.
    R 3a and R 3b each independently represent an alkylene group and represent an alkylene group.
    X a and X b each independently represent a group represented by -Si (OR 4 ) p (R 5 ) 3-p.
    R 4 represents a hydrogen atom, an alkyl group or a group represented by- (R 6 O) q- R 7.
    R 5 represents a hydrogen atom or a hydrocarbon group.
    R 6 represents an alkylene group
    R 7 represents an alkyl group
    k1 and k2 independently represent integers of 0 or more and 4 or less, respectively.
    m1 and m2 independently represent integers of 0 or more and 2 or less, respectively.
    p represents an integer of 1 or more and 3 or less,
    q represents an integer of 1 or more. )
    Figure JPOXMLDOC01-appb-C000002
    (In formula (2), Z 2 represents an aromatic group containing two or more aromatic rings, R 8 represents a linear or branched alkylene group, R 9 represents a hydrogen atom or a methyl group, and r Represents an integer greater than or equal to 0.)
  2.  前記式(1)で表されるシリル基変性フルオレン化合物が、下記式(1-1)で表されるシリル基変性フルオレン化合物である、請求項1に記載の金属酸化物粒子分散用組成物。
    Figure JPOXMLDOC01-appb-C000003
    (式(1-1)中、R1a、R1b、R2a、R2b、R3a、R3b、X、X、R、R、R、R、k1、k2、m1、m2、p及びqは、それぞれ式(1)中のこれらと同様である。)
    The composition for dispersing metal oxide particles according to claim 1, wherein the silyl group-modified fluorene compound represented by the formula (1) is a silyl group-modified fluorene compound represented by the following formula (1-1).
    Figure JPOXMLDOC01-appb-C000003
    (In equation (1-1), R 1a , R 1b , R 2a , R 2b , R 3a , R 3b , X a , X b , R 4 , R 5 , R 6 , R 7 , k1, k2, m1 , M2, p and q are the same as those in the formula (1), respectively.)
  3.  前記X及Xが、それぞれ独立に、トリメトキシシリル基、トリエトキシシリル基、メチルジメトキシシリル基、エチルジメトキシシリル基、メチルジエトキシシリル基、又はエチルジエトキシシリル基である、請求項1又は2に記載の金属酸化物粒子分散用組成物。 Claim 1 in which the X a and X b are independently a trimethoxysilyl group, a triethoxysilyl group, a methyldimethoxysilyl group, an ethyldimethoxysilyl group, a methyldiethoxysilyl group, or an ethyldiethoxysilyl group. Or the composition for dispersing metal oxide particles according to 2.
  4.  前記rが0である、請求項1~3のいずれか1項に記載の金属酸化物粒子分散用組成物。 The composition for dispersing metal oxide particles according to any one of claims 1 to 3, wherein r is 0.
  5.  前記Zが、ビフェニル基である、請求項1~4のいずれか1項に記載の金属酸化物粒子分散用組成物。 The composition for dispersing metal oxide particles according to any one of claims 1 to 4, wherein Z 2 is a biphenyl group.
  6.  有機溶媒を含有しない、請求項1~5のいずれか1項に記載の金属酸化物粒子分散用組成物。 The composition for dispersing metal oxide particles according to any one of claims 1 to 5, which does not contain an organic solvent.
  7.  ラジカル重合開始剤を含む、請求項1~6に記載の金属酸化物粒子分散用組成物。 The composition for dispersing metal oxide particles according to claims 1 to 6, which contains a radical polymerization initiator.
  8.  請求項1~7のいずれか1項に記載の金属酸化物粒子分散用組成物と金属酸化物粒子とを混合して、前記金属酸化物粒子を前記金属酸化物粒子分散用組成物中に分散させる、金属酸化物粒子の分散方法。 The composition for dispersing metal oxide particles according to any one of claims 1 to 7 and the metal oxide particles are mixed, and the metal oxide particles are dispersed in the composition for dispersing metal oxide particles. A method of dispersing metal oxide particles.
  9.  前記金属酸化物粒子100質量部に対する前記シリル基変性フルオレン化合物の質量が0.5質量部以上100質量部以下であるように、前記金属酸化物粒子分散用組成物と前記金属酸化物粒子とを混合する、請求項8に記載の金属酸化物粒子の分散方法。 The composition for dispersing the metal oxide particles and the metal oxide particles are mixed so that the mass of the silyl group-modified fluorene compound is 0.5 parts by mass or more and 100 parts by mass or less with respect to 100 parts by mass of the metal oxide particles. The method for dispersing metal oxide particles according to claim 8, wherein the metal oxide particles are mixed.
PCT/JP2020/032717 2019-09-02 2020-08-28 Metal oxide particle dispersion composition and dispersion method for metal oxide particles WO2021044985A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
KR1020227010786A KR20220057567A (en) 2019-09-02 2020-08-28 Composition for dispersing metal oxide particles and method of dispersing metal oxide particles
CN202080059990.XA CN114302923B (en) 2019-09-02 2020-08-28 Composition for dispersing metal oxide particles and method for dispersing metal oxide particles

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2019159911A JP7356846B2 (en) 2019-09-02 2019-09-02 Composition for dispersing metal oxide particles
JP2019-159911 2019-09-02

Publications (1)

Publication Number Publication Date
WO2021044985A1 true WO2021044985A1 (en) 2021-03-11

Family

ID=74847921

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/032717 WO2021044985A1 (en) 2019-09-02 2020-08-28 Metal oxide particle dispersion composition and dispersion method for metal oxide particles

Country Status (4)

Country Link
JP (1) JP7356846B2 (en)
KR (1) KR20220057567A (en)
CN (1) CN114302923B (en)
WO (1) WO2021044985A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP4239409A1 (en) * 2022-03-03 2023-09-06 Shin-Etsu Chemical Co., Ltd. Composition for forming metal oxide film, patterning process, and method for forming metal oxide film

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011225644A (en) * 2010-04-15 2011-11-10 Osaka Gas Chem Kk Thermoplastic resin and method for producing the same
WO2016031415A1 (en) * 2014-08-27 2016-03-03 富士フイルム株式会社 Composition, film, optical device and compound
JP2016069411A (en) * 2014-09-26 2016-05-09 東京応化工業株式会社 Curable composition and optical component
JP2019123806A (en) * 2018-01-17 2019-07-25 公立大学法人大阪府立大学 Curable composition and cured product thereof and method for producing cured product

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5782281B2 (en) 2011-03-29 2015-09-24 大阪ガスケミカル株式会社 (Meth) acrylate with fluorene skeleton
JP5922341B2 (en) 2011-05-09 2016-05-24 大阪ガスケミカル株式会社 Composition comprising fluorene compound and metal oxide
JP6117623B2 (en) 2012-06-07 2017-04-19 大阪ガスケミカル株式会社 Curable composition and cured product thereof
JP6507683B2 (en) 2015-02-02 2019-05-08 日立化成株式会社 Resin composition and optical member
JP6939799B2 (en) 2016-08-30 2021-09-22 ソニーグループ株式会社 Photosensitive composition for hologram recording, hologram recording medium and hologram

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011225644A (en) * 2010-04-15 2011-11-10 Osaka Gas Chem Kk Thermoplastic resin and method for producing the same
WO2016031415A1 (en) * 2014-08-27 2016-03-03 富士フイルム株式会社 Composition, film, optical device and compound
JP2016069411A (en) * 2014-09-26 2016-05-09 東京応化工業株式会社 Curable composition and optical component
JP2019123806A (en) * 2018-01-17 2019-07-25 公立大学法人大阪府立大学 Curable composition and cured product thereof and method for producing cured product

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP4239409A1 (en) * 2022-03-03 2023-09-06 Shin-Etsu Chemical Co., Ltd. Composition for forming metal oxide film, patterning process, and method for forming metal oxide film

Also Published As

Publication number Publication date
JP2021037463A (en) 2021-03-11
CN114302923A (en) 2022-04-08
CN114302923B (en) 2023-10-03
KR20220057567A (en) 2022-05-09
JP7356846B2 (en) 2023-10-05

Similar Documents

Publication Publication Date Title
JP5922341B2 (en) Composition comprising fluorene compound and metal oxide
KR101408573B1 (en) Photosensitive resin composition
JP5423004B2 (en) Negative photosensitive resin composition and touch panel material using the same
JP5504689B2 (en) Negative photosensitive resin composition and touch panel material using the same
JP5576622B2 (en) Photosensitive resin composition
KR102203303B1 (en) Negative-type photosensitive composition curable at low temperature
US20210087429A1 (en) Flexible and foldable abrasion resistant photopatternable siloxane hard coat
JP2020501176A (en) Metal oxide photosensitive resin composition, color filter and image display device manufactured using the same
WO2013018705A1 (en) Photosensitive resin composition, cured product and spacer
TW201339247A (en) Glass fiber composite resin substrate
KR20180124138A (en) A negative-type photosensitive composition capable of being cured at a low temperature
TW202116938A (en) Curable ink composition, cured material and nanocomposite
JP2011202127A (en) Light sensitive resin composition and cured product
JP5607898B2 (en) Photosensitive resin composition
WO2012050201A1 (en) Photosensitive resin composition and method for producing same
WO2021044985A1 (en) Metal oxide particle dispersion composition and dispersion method for metal oxide particles
JP2015152726A (en) photosensitive resin composition
WO2012176816A1 (en) Negative photosensitive resin composition, partition wall, black matrix, color filter, and liquid crystal display element
JP7028612B2 (en) Curable composition, cured film forming method, cured product, patterned cured film, and transparent optical member
JP4987521B2 (en) Photosensitive resin composition
TWI765978B (en) Photosensitive siloxane resin composition, cured film, member for touch panel, laminated body, and manufacturing method thereof
TW202111010A (en) Resin composition for imprinting
CN117148676A (en) Negative photoresist composition for organic insulating film of liquid crystal display element
JP2011002655A (en) Photosensitive resin composition, photosensitive element and method for producing microlens array
JP2023111348A (en) Coat-forming composition

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20860444

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 20227010786

Country of ref document: KR

Kind code of ref document: A

122 Ep: pct application non-entry in european phase

Ref document number: 20860444

Country of ref document: EP

Kind code of ref document: A1