WO2021044873A1 - Vehicle air conditioner - Google Patents

Vehicle air conditioner Download PDF

Info

Publication number
WO2021044873A1
WO2021044873A1 PCT/JP2020/031569 JP2020031569W WO2021044873A1 WO 2021044873 A1 WO2021044873 A1 WO 2021044873A1 JP 2020031569 W JP2020031569 W JP 2020031569W WO 2021044873 A1 WO2021044873 A1 WO 2021044873A1
Authority
WO
WIPO (PCT)
Prior art keywords
refrigerant
expansion valve
outdoor
radiator
heat exchanger
Prior art date
Application number
PCT/JP2020/031569
Other languages
French (fr)
Japanese (ja)
Inventor
雄満 山崎
Original Assignee
サンデン・オートモーティブクライメイトシステム株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by サンデン・オートモーティブクライメイトシステム株式会社 filed Critical サンデン・オートモーティブクライメイトシステム株式会社
Publication of WO2021044873A1 publication Critical patent/WO2021044873A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60HARRANGEMENTS OF HEATING, COOLING, VENTILATING OR OTHER AIR-TREATING DEVICES SPECIALLY ADAPTED FOR PASSENGER OR GOODS SPACES OF VEHICLES
    • B60H1/00Heating, cooling or ventilating [HVAC] devices
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60HARRANGEMENTS OF HEATING, COOLING, VENTILATING OR OTHER AIR-TREATING DEVICES SPECIALLY ADAPTED FOR PASSENGER OR GOODS SPACES OF VEHICLES
    • B60H1/00Heating, cooling or ventilating [HVAC] devices
    • B60H1/22Heating, cooling or ventilating [HVAC] devices the heat being derived otherwise than from the propulsion plant
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60HARRANGEMENTS OF HEATING, COOLING, VENTILATING OR OTHER AIR-TREATING DEVICES SPECIALLY ADAPTED FOR PASSENGER OR GOODS SPACES OF VEHICLES
    • B60H1/00Heating, cooling or ventilating [HVAC] devices
    • B60H1/32Cooling devices
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B1/00Compression machines, plants or systems with non-reversible cycle
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/80Technologies aiming to reduce greenhouse gasses emissions common to all road transportation technologies
    • Y02T10/88Optimized components or subsystems, e.g. lighting, actively controlled glasses

Definitions

  • the present invention relates to a heat pump type air conditioner for air-conditioning the interior of a vehicle.
  • a compressor that compresses and discharges the refrigerant
  • a radiator that is provided on the vehicle interior side to dissipate the refrigerant
  • a radiator that is provided on the vehicle interior side
  • a heat absorber that absorbs the refrigerant and an outdoor heat exchanger that is installed outside the vehicle interior to dissipate the refrigerant
  • an outdoor heat exchanger that absorbs the refrigerant and dissipates the heat
  • the refrigerant radiated in the radiator is decompressed by the outdoor expansion valve and then absorbed in the outdoor heat exchanger, and the refrigerant discharged from the compressor is radiated in the radiator and radiated in the radiator.
  • a dehumidifying heating mode in which the refrigerant is decompressed by the outdoor expansion valve and the indoor expansion valve and then absorbed by the heat absorber and the outdoor heat exchanger, and the refrigerant discharged from the compressor is dissipated by the radiator and the outdoor heat exchanger to expand the room.
  • the cooling (dehumidifying) capacity of the heat absorber is controlled by controlling the rotation speed of the compressor based on the temperature of the heat absorber. Further, the heating capacity of the radiator is controlled by controlling the valve opening degree of the outdoor expansion valve that reduces the pressure of the refrigerant flowing into the outdoor heat exchanger based on the temperature or pressure of the radiator (for example, patent). Reference 1).
  • the temperature of the radiator can be raised by reducing the valve opening of the outdoor expansion valve, but when the valve opening of the outdoor expansion valve is reduced, the amount of refrigerant circulating in the heat absorber decreases. Therefore, the temperature distribution of the endothermic device (the temperature varies depending on the part of the endothermic device) becomes large, the dehumidifying performance deteriorates, and it becomes difficult to establish the target blowing temperature. Therefore, in Patent Document 1, the temperature distribution of the heat absorber is prevented from occurring by changing the minimum valve opening degree in the control of the outdoor expansion valve in the dehumidifying / cooling mode based on the amount of ventilation to the heat absorber. It was.
  • the valve opening of the outdoor expansion valve is reduced (throttled)
  • the degree of supercooling of the refrigerant at the outlet of the radiator increases, and the heating capacity of the radiator also increases.
  • the valve opening of the outdoor expansion valve is reduced too much (if it is throttled too much)
  • the refrigerant will condense too much in the radiator, and the outdoor heat exchanger will exhibit the endothermic function instead of the heat dissipation function.
  • the endothermic capacity of the heat absorber is reduced, and the dehumidifying capacity of the dehumidifying / cooling mode is reduced.
  • the minimum control valve opening degree to be changed as described above also tends to increase in consideration of the individual variation of the outdoor expansion valve.
  • the setting with a predetermined margin will be made. Therefore, the heating capacity of the radiator (heat dissipation of the refrigerant) in the dehumidifying / cooling mode cannot be fully exerted, and an auxiliary heating device such as an electric heater must be heated to establish the target blowing temperature. It was.
  • the dehumidifying / cooling mode will be established even if the valve opening of the outdoor expansion valve is reduced. Since the valve opening was set, there was a problem that the heating capacity of the radiator could not be fully exerted.
  • the present invention has been made to solve the conventional technical problems, and to provide an air conditioner for a vehicle that can improve the air conditioning performance in the dehumidifying / cooling mode and contribute to energy saving.
  • the purpose is to provide an air conditioner for a vehicle that can improve the air conditioning performance in the dehumidifying / cooling mode and contribute to energy saving.
  • the vehicle air conditioner according to claim 1 is provided from a compressor that compresses the refrigerant, a radiator for radiating the refrigerant and heating the air supplied to the vehicle interior, and a radiator provided outside the vehicle interior.
  • An indoor expansion valve for controlling the inflow of the refrigerant into the heat absorber and a control device are provided, and at least the refrigerant discharged from the compressor is dissipated by the radiator and the outdoor heat exchanger by this control device.
  • the dehumidifying / cooling mode in which the radiated refrigerant is decompressed by the indoor expansion valve and then absorbed by the heat absorber is executed.
  • the control device determines the degree of overcooling of the refrigerant at the outlet of the radiator. It is characterized in that the valve opening degree of the outdoor expansion valve is controlled based on the SC and a predetermined target supercooling degree TGSC which is the target value thereof.
  • the valve opening degree of the outdoor expansion valve is reduced and the supercooling degree SC is increased.
  • the target supercooling degree TGSC is reached, the reduction of the valve opening degree of the outdoor expansion valve is stopped.
  • the control device sets predetermined upper limit values TGSCHiLim and lower limit value TGSCLoLim above and below the target supercooling degree TGSC, and the supercooling degree SC sets the target supercooling degree SC.
  • the vehicle air conditioner according to the fourth aspect is provided from a compressor for compressing the refrigerant, a radiator for radiating the refrigerant and heating the air supplied to the vehicle interior, and a radiator provided outside the vehicle interior.
  • An indoor expansion valve for controlling the inflow of the refrigerant into the heat absorber and a control device are provided, and at least the refrigerant discharged from the compressor is dissipated by the radiator and the outdoor heat exchanger by this control device.
  • the dehumidifying / cooling mode in which the radiated refrigerant is decompressed by the indoor expansion valve and then absorbed by the heat absorber is executed.
  • the control device uses the temperature TXO of the outdoor heat exchanger and the outside air. It is characterized in that the valve opening degree of the outdoor expansion valve is controlled based on the temperature Tam.
  • the control device opens the outdoor expansion valve when the temperature TXO of the outdoor heat exchanger is higher than the outside air temperature Tam or the outside air temperature Tam + a predetermined value ⁇ .
  • the temperature of the outdoor heat exchanger is reduced to the outside air temperature Tam or the outside air temperature Tam + a predetermined value ⁇ , the reduction of the valve opening degree of the outdoor expansion valve is stopped.
  • the control device sets a predetermined upper limit value TamHiLim and a lower limit value TamMoLim above and below the outside air temperature Tam or the outside air temperature Tam + the predetermined value ⁇ , and outdoors.
  • TamHiLim a predetermined upper limit value
  • TamMoLim a lower limit value
  • the temperature TXO of the outdoor heat exchanger is lowered to the outside air temperature Tam or the outside air temperature Tam + a predetermined value ⁇ .
  • the degree of supercooling SC of the refrigerant at the outlet of the radiator rises to the predetermined target degree of overcooling TGSC, which is the target value, the reduction of the valve opening degree of the outdoor expansion valve is stopped. ..
  • the control device sets predetermined upper limit values TGSCHiLim and lower limit value TGSCLoLim above and below the target supercooling degree TGSC, and the supercooling degree SC sets the target supercooling degree SC.
  • the vehicle air conditioner according to claim 9 is characterized in that, in each of the above inventions, the control device controls the valve opening degree of the indoor expansion valve in a direction in which the refrigerant discharged from the heat absorber is not superheated SH. To do.
  • the control device changes the valve opening degree of the indoor expansion valve in the opening direction when the refrigerant discharged from the heat absorber has a superheat degree SH. It is characterized by.
  • the control device adjusts the valve opening degree of the indoor expansion valve when the degree of superheat SH of the refrigerant discharged from the heat absorber becomes larger than the predetermined threshold value SH1.
  • the feature is to change in the opening direction.
  • the vehicle air conditioner according to the twelfth aspect of the present invention is characterized in that, in the ninth to eleventh aspects of the invention, the accumulator provided in the refrigerant circuit from the refrigerant outlet of the heat absorber to the refrigerant suction side of the compressor is provided. And.
  • a compressor for compressing the refrigerant a radiator for radiating the refrigerant and heating the air supplied to the vehicle interior, and a refrigerant provided outside the vehicle interior and emitted from the radiator are used.
  • An indoor expansion valve for controlling the inflow of the refrigerant into the vessel and a control device are provided, and at least the refrigerant discharged from the compressor is radiated by the radiator and the outdoor heat exchanger to dissipate the heat.
  • the control device determines the degree of supercooling SC of the refrigerant at the outlet of the radiator in the dehumidifying / cooling mode. Since the valve opening of the outdoor expansion valve is controlled based on the predetermined target supercooling degree TGSC, which is the target value, the target supercooling degree TGSC is set to an appropriate value so that the refrigerant does not condense too much in the radiator. By setting it, the valve opening of the outdoor expansion valve can be reduced and the heating capacity of the radiator can be maximized without considering the individual variation of the outdoor expansion valve while establishing the dehumidifying / cooling mode. It will be possible.
  • the need to generate heat in the auxiliary heating device is eliminated or suppressed, so that it is possible to contribute to energy saving while improving the air conditioning performance in the dehumidifying / cooling mode.
  • the valve opening degree of the outdoor expansion valve is reduced, and the supercooling degree SC is the target supercooling degree TGSC.
  • the reduction of the valve opening of the outdoor expansion valve is stopped.
  • a predetermined upper limit value TGSCHiLim and a lower limit value TGSCLoLim are set above and below the target supercooling degree TGSC, and after the supercooling degree SC becomes the target supercooling degree TGSC, the upper limit value TGSCHiLim
  • the valve opening of the outdoor expansion valve is increased to, the valve opening of the outdoor expansion valve is expanded, and when the supercooling degree SC is lowered to the lower limit value TGSCLoLim, the expansion of the valve opening of the outdoor expansion valve is stopped.
  • TGSCLoLim the expansion of the valve opening of the outdoor expansion valve
  • a compressor for compressing the refrigerant
  • a radiator for radiating the refrigerant and heating the air supplied to the vehicle interior
  • a radiator provided outside the vehicle interior and exiting the radiator.
  • An indoor expansion valve for controlling the inflow of the refrigerant into the heat absorber and a control device are provided, and at least the refrigerant discharged from the compressor is dissipated by the radiator and the outdoor heat exchanger to dissipate heat.
  • the control device controls the temperature TXO of the outdoor heat exchanger and the outside air in the dehumidifying / cooling mode. Since the valve opening degree of the outdoor expansion valve is controlled based on the temperature Tam, for example, as in the invention of claim 5, the temperature TXO of the outdoor heat exchanger is the outside air temperature Tam or the outside air temperature Tam +.
  • the valve opening of the outdoor expansion valve is reduced, and if the temperature TXO of the outdoor heat exchanger drops to the outside air temperature Tam or the outside air temperature Tam + the predetermined value ⁇ , the valve opening of the outdoor expansion valve.
  • the heat dissipation function of the outdoor heat exchanger in the dehumidifying and cooling mode is secured, and while the dehumidifying and cooling mode is established, the heating capacity of the radiator can be increased without considering the individual variation of the outdoor expansion valve. It will be possible to maximize it.
  • the need to generate heat in the auxiliary heating device is also eliminated or suppressed, so that it is possible to contribute to energy saving while improving the air conditioning performance in the dehumidifying / cooling mode.
  • the control device sets a predetermined upper limit value TamHiLim and a lower limit value TamMoLim above and below the outside air temperature Tam or the outside air temperature Tam + the predetermined value ⁇ , and the temperature of the outdoor heat exchanger.
  • TamHiLim a predetermined upper limit value
  • TamMoLim a lower limit value
  • control device supercools the refrigerant at the outlet of the radiator before the temperature TXO of the outdoor heat exchanger drops to the outside air temperature Tam or the outside air temperature Tam + a predetermined value ⁇ .
  • the cooling degree SC rises to a predetermined target supercooling degree TGSC, which is the target value, the reduction of the valve opening degree of the outdoor expansion valve is stopped.
  • a predetermined upper limit value TGSCHiLim and a lower limit value TGSCLoLim are set above and below the target supercooling degree TGSC, and after the supercooling degree SC becomes the target supercooling degree TGSC, the upper limit value TGSCHiLim If it rises to, the valve opening of the outdoor expansion valve is expanded, and if the supercooling degree SC drops to the lower limit value TGSCLoLim, the expansion of the valve opening of the outdoor expansion valve is stopped.
  • the supercooling degree TGSC By setting the supercooling degree TGSC to an appropriate value so that the refrigerant does not condense too much in the radiator, before the temperature TXO of the outdoor heat exchanger drops to the outside air temperature Tam or the outside air temperature Tam + the predetermined value ⁇ . , Stops the reduction of the valve opening of the outdoor expansion valve based on the refrigerant supercooling degree SC and the target supercooling degree TGSC at the outlet of the radiator, and then dehumidifies based on the supercooling degree SC and the target supercooling degree TGSC. It is possible to smoothly and accurately control the outdoor expansion valve that maximizes the heating capacity of the radiator in the cooling mode.
  • the dehumidifying and cooling mode is surely established based on the temperature TXO of the outdoor heat exchanger and the outside air temperature Tam, and the heating capacity of the radiator is maximized based on the supercooling degree SC and the target supercooling degree TGSC.
  • the outdoor expansion valve By controlling the outdoor expansion valve, it becomes possible to realize comfortable vehicle interior air conditioning.
  • the control device controls the valve opening degree of the indoor expansion valve in a direction in which the superheat degree SH is not attached to the refrigerant discharged from the heat absorber as in the invention of claim 9, the refrigerant discharged from the heat absorber can be used. Does not have the degree of superheat SH, or even if it does, it is extremely small. As a result, the refrigerant evaporates in the entire or substantially the entire heat absorber, and heat can be absorbed from the air supplied to the passenger compartment. Therefore, the inconvenience of temperature distribution in the heat absorber can be eliminated or suppressed. , It will be possible to effectively cool the passenger compartment. In addition, since the oil return is improved, the seizure of the compressor can be avoided in advance.
  • the control device has a degree of superheat SH attached to the refrigerant discharged from the heat absorber as in the invention of claim 2, the temperature distribution of the heat absorber is obtained by changing the valve opening degree of the indoor expansion valve in the opening direction. It becomes possible to effectively eliminate or suppress the occurrence of the occurrence of oil and the deterioration of oil return.
  • FIG. 1 It is a block diagram of one Example of the air conditioner for a vehicle to which this invention is applied (heating mode). It is a block diagram of the air-conditioning controller as a control device of the air conditioner for a vehicle of FIG. It is a figure explaining the dehumidifying heating mode by the air-conditioning controller of FIG. It is a figure explaining the dehumidifying cooling mode and the cooling mode by the air-conditioning controller of FIG. It is a figure explaining the vehicle cooling system cooling mode by the air-conditioning controller of FIG. It is a figure explaining the relationship between the valve opening degree of the outdoor expansion valve in a dehumidifying cooling mode, the heat dissipation amount of an outdoor heat exchanger, and the temperature distribution of a heat absorber.
  • FIG. 1 shows a configuration diagram of an air conditioner 1 for a vehicle according to an embodiment to which the present invention is applied.
  • the vehicle of the embodiment to which the present invention is applied is an electric vehicle (EV) without an engine (internal combustion engine), and the vehicle is equipped with a battery (for example, a lithium ion battery) to charge the battery from an external power source. It is driven and traveled by supplying the generated electric power to a traveling motor (electric motor).
  • the vehicle air conditioner 1 is also driven by being supplied with power from a battery.
  • the vehicle air conditioner 1 of the embodiment performs the heating mode by the heat pump device HP having the refrigerant circuit R in the electric vehicle that cannot be heated by the waste heat of the engine, and further, the dehumidifying heating mode, the dehumidifying cooling mode, and the cooling mode.
  • the interior of the vehicle is air-conditioned.
  • a vehicle cooling system cooling mode for cooling the vehicle cooling system 61 including the battery using a refrigerant is also executed as described later.
  • the present invention is effective not only for the electric vehicle as a vehicle but also for a so-called hybrid vehicle that uses an engine and an electric motor for traveling.
  • the vehicle air conditioner 1 of the embodiment air-conditions (heats, cools, dehumidifies, and ventilates) the interior of the electric vehicle, and is an electric compressor (powered from a battery to compress the refrigerant).
  • the electric compressor) 2 and the high-temperature and high-pressure refrigerant discharged from the compressor 2 are provided in the air flow passage 3 of the HVAC unit 10 through which the air inside the vehicle is ventilated and circulated, and flow in through the refrigerant pipe 13G and the strainer 55. It functions as a radiator 4 for radiating the refrigerant and heating the air supplied to the vehicle interior, an outdoor expansion valve 6 composed of an electric expansion valve, and a radiator (radiation function) for radiating the refrigerant during cooling.
  • Indoor expansion consisting of an outdoor heat exchanger 7 for exchanging heat between the refrigerant and the outside air so as to function as a heat absorber (heat absorption function) for absorbing the refrigerant during heating, and an electric expansion valve for decompressing and expanding the refrigerant.
  • the valve 8, the heat exchanger 9 provided in the air flow passage 3 for cooling the air supplied to the vehicle interior by absorbing heat from the outside of the vehicle interior to the refrigerant during cooling (during dehumidification), the accumulator 12 and the like are the refrigerants.
  • the refrigerant circuit R of the heat pump device HP is sequentially connected by the pipe 13.
  • the outdoor expansion valve 6 controls the inflow of the refrigerant into the outdoor heat exchanger 7, and the indoor expansion valve 8 controls the inflow of the refrigerant into the heat absorber 9.
  • the refrigerant is decompressed and expanded, and can be fully opened or fully closed. It is possible.
  • the outdoor heat exchanger 7 is provided with an outdoor blower 15.
  • the outdoor blower 15 forcibly ventilates the outdoor air to the outdoor heat exchanger 7 to exchange heat between the outside air and the refrigerant, whereby the outdoor air is outdoors even when the vehicle is stopped (that is, the vehicle speed is 0 km / h).
  • the heat exchanger 7 is configured to ventilate outside air.
  • the refrigerant pipe 13A connected to the refrigerant outlet side of the outdoor heat exchanger 7 is connected to the refrigerant pipe 13B via the check valve 18.
  • the check valve 18 has a forward direction on the refrigerant pipe 13B side, and the refrigerant pipe 13B is connected to the indoor expansion valve 8.
  • the refrigerant pipe 13E on the refrigerant outlet side of the radiator 4 is branched into the refrigerant pipe 13J and the refrigerant pipe 13F in front of the outdoor expansion valve 6 (on the refrigerant outlet side of the radiator 4 on the upstream side of the refrigerant), and one of the branches.
  • the refrigerant pipe 13J of the above is connected to the refrigerant inlet side of the outdoor heat exchanger 7 via the outdoor expansion valve 6.
  • the refrigerant pipe 13F is connected in parallel to the series circuit of the outdoor expansion valve 6, the outdoor heat exchanger 7, and the check valve 18, and the outdoor expansion valve 6, the outdoor heat exchanger 7, and the check valve are connected in parallel. It is a bypass circuit that bypasses 18.
  • each suction port of the outside air suction port and the inside air suction port is formed (represented by the suction port 25 in FIG. 1), and this suction port is formed.
  • the suction switching damper 26 for switching the air introduced into the air flow passage 3 into the inside air (inside air circulation), which is the air inside the vehicle interior, and the outside air (outside air introduction), which is the air outside the vehicle interior, is provided.
  • an indoor blower fan 27 for supplying the introduced inside air and outside air to the air flow passage 3 is provided on the air downstream side of the suction switching damper 26.
  • auxiliary heater 23 is an auxiliary heater as an auxiliary heating device.
  • the auxiliary heater 23 is composed of an electric heater such as a PTC heater, and is provided in the air flow passage 3 on the leeward side of the radiator 4 with respect to the air flow in the air flow passage 3 in the embodiment. .. Then, by energizing the auxiliary heater 23, the heating of the vehicle interior can be assisted.
  • the air (inside air or outside air) in the air flow passage 3 after flowing into the air flow passage 3 and passing through the heat absorber 9 is radiated.
  • An air mix damper 28 for adjusting the ratio of ventilation to the vessel 4 and the auxiliary heater 23 is provided.
  • FOOT (foot), VENT (vent), and DEF (diff) outlets are formed in the air flow passage 3 on the air downstream side of the radiator 4.
  • the outlet 29 is provided with an outlet switching damper 31 that switches and controls the blowing of air from each of the outlets.
  • the vehicle cooling system 61 includes vehicle-mounted equipment that requires cooling, such as a battery and a traveling motor, and is a system for cooling these vehicle-mounted equipment using a refrigerant.
  • the refrigerant pipe 13B located at the outlet of the refrigerant pipe 13F of the refrigerant circuit R, that is, the refrigerant downstream side of the connection portion between the refrigerant pipe 13F and the refrigerant pipe 13B and on the refrigerant upstream side of the indoor expansion valve 8.
  • One end of the branch pipe 72 is connected to.
  • the branch pipe 72 is provided with an auxiliary expansion valve 73 composed of an electric expansion valve.
  • the auxiliary expansion valve 73 decompresses and expands the refrigerant flowing from the branch pipe 72 into the vehicle cooling system 61, and can be fully closed.
  • one end of the refrigerant pipe 74 is connected to the vehicle cooling system 61, and the other end of the refrigerant pipe 74 is on the downstream side of the refrigerant of the check valve 20 and is connected to the refrigerant pipe 13C in front of the accumulator 12 (upstream side of the refrigerant). It is connected.
  • the auxiliary expansion valve 73 When the auxiliary expansion valve 73 is open, the refrigerant (part or all of the refrigerant) flowing through the refrigerant pipe 13B flows into the branch pipe 72, is depressurized by the auxiliary expansion valve 73, and then flows into the vehicle cooling system 61. , Evaporates there.
  • the refrigerant absorbs heat from the battery and the traveling motor in the process of flowing through the vehicle cooling system 61, cools them, and then is sucked into the compressor 2 through the refrigerant pipe 74 and the accumulator 12.
  • reference numeral 32 denotes an air conditioning controller 32 as a control device that controls the vehicle air conditioner 1.
  • the air conditioning controller 32 is composed of a microcomputer as an example of a computer including a processor.
  • the input of the air conditioning controller 32 (control device) is sucked into the air flow passage 3 from the outside air temperature sensor 33 that detects the outside air temperature (Tam) of the vehicle, the outside air humidity sensor 34 that detects the outside air humidity, and the suction port 25.
  • the HVAC suction temperature sensor 36 that detects the temperature of the air
  • the inside air temperature sensor 37 that detects the temperature of the air (inside air) in the vehicle interior
  • the inside air humidity sensor 38 that detects the humidity of the air inside the vehicle interior
  • the dioxide in the vehicle interior The HVAC suction temperature sensor 36 that detects the temperature of the air
  • inside air temperature sensor 37 that detects the temperature of the air (inside air) in the vehicle interior
  • the inside air humidity sensor 38 that detects the humidity of the air inside the vehicle interior
  • the indoor CO 2 concentration sensor 39 that detects the carbon concentration, the blowout temperature sensor 41 that detects the temperature of the air blown into the vehicle interior from the blowout port 29, and the discharge refrigerant pressure (discharge pressure Pd) of the compressor 2 are detected.
  • the heat absorber temperature sensor 48 that detects the temperature of the heat absorber 9 (heat absorber temperature Te), and the temperature (heat absorber outlet temperature Teout) and pressure (heat absorber pressure Pe) of the refrigerant emitted from the heat absorber 9 are detected.
  • a heat absorber outlet sensor 49 for example, a photosensor type solar radiation sensor 51 for detecting the amount of solar radiation into the vehicle interior, a vehicle speed sensor 52 for detecting the moving speed (vehicle speed) of the vehicle, a set temperature and air conditioning operation.
  • the air conditioning operation unit 53 for setting the switching, the outdoor heat exchanger outlet sensor 54 for detecting the temperature (outdoor heat exchanger temperature TXO) and pressure of the refrigerant emitted from the outdoor heat exchanger 7, and the auxiliary heater 23.
  • Each output of the auxiliary heater temperature sensor 76 that detects the temperature is connected.
  • the output of the air conditioning controller 32 includes the compressor 2, the outdoor blower 15, the indoor blower (blower fan) 27, the suction switching damper 26, the air mix damper 28, the air outlet switching damper 31, and the outdoor.
  • the expansion valve 6, the indoor expansion valve 8, the dehumidifying valve 22, the heating valve 21, each solenoid valve, the auxiliary expansion valve 73, and the auxiliary heater 23 are connected.
  • the air conditioning controller 32 controls these based on the output of each sensor and the settings input by the air conditioning operation unit 53.
  • the air conditioning controller 32 switches and executes each operation mode of the heating mode, the dehumidifying heating mode, the dehumidifying cooling mode, and the cooling mode, and cools the vehicle cooling system 61.
  • Execute the cooling mode operation mode.
  • an operation mode for air-conditioning the interior of the vehicle will be described.
  • FIG. 1 shows the flow of the refrigerant (solid arrow) in the refrigerant circuit R in the heating mode.
  • the air conditioning controller 32 auto mode
  • the air conditioning controller 32 has the heating valve 21 and the dehumidifying valve 22. Is opened, and the indoor expansion valve 8 is fully closed.
  • the outdoor expansion valve 6 and the auxiliary expansion valve 73 are opened to reduce the pressure and expand the refrigerant.
  • the compressor 2 and the blowers 15 and 27 are operated, and the air mix damper 28 is in a state of adjusting the ratio of the air blown from the indoor blower 27 to the radiator 4 and the auxiliary heater 23.
  • the high-temperature and high-pressure gas refrigerant discharged from the compressor 2 flows into the radiator 4. Since the air in the air flow passage 3 is ventilated through the radiator 4, the air in the air flow passage 3 is heated by the high temperature refrigerant in the radiator 4, while the refrigerant in the radiator 4 heats the air. It is deprived, cooled, and condensed.
  • the low-temperature refrigerant leaving the outdoor heat exchanger 7 reaches the refrigerant pipe 13C via the refrigerant pipe 13A, the refrigerant pipe 13D, and the heating valve 21, and enters the accumulator 12 via the check valve 20 of the refrigerant pipe 13C.
  • the circulation in which the gas refrigerant is sucked into the compressor 2 is repeated.
  • the other refrigerant that has been split reaches the auxiliary expansion valve 73 via the dehumidifying valve 22, the refrigerant pipe 13F, and the refrigerant pipe 13B.
  • the refrigerant is depressurized, it flows into the vehicle cooling system 61 and evaporates there.
  • the refrigerant evaporated in the vehicle cooling system 61 repeats circulation that is sucked into the compressor 2 in sequence through the refrigerant pipes 74 and 13C and the accumulator 12. Since the air heated by the radiator 4 is blown out from the air outlet 29, the interior of the vehicle is heated by the heat pumped from the outside air and the waste heat of the battery and the traveling motor.
  • the air conditioning controller 32 calculates the target radiator pressure PCO (target value of the radiator pressure PCI) from the target heater temperature TCO (target value of the air temperature on the leeward side of the radiator 4) calculated from the target blowout temperature TAO described later. Then, the rotation speed of the compressor 2 is controlled based on the target radiator pressure PCO and the refrigerant pressure of the radiator 4 (radiator pressure PCI; high pressure side pressure of the refrigerant circuit R) detected by the radiator outlet sensor 47. ..
  • the air conditioning controller 32 controls the valve opening degree of the indoor expansion valve 8 so as to maintain the superheat degree SH of the refrigerant at the outlet of the heat absorber 9 at a predetermined value at the time of dehumidification and heating. Moisture in the air blown out from the indoor blower 27 by the endothermic action condenses and adheres to the heat absorber 9, so that the air is cooled and dehumidified. The remaining refrigerant that has been split and flows into the refrigerant pipe 13J is decompressed by the outdoor expansion valve 6 and then evaporated by the outdoor heat exchanger 7 to absorb heat from the outside air.
  • the refrigerant evaporated in the heat absorber 9 goes out to the refrigerant pipe 13C, merges with the refrigerant from the refrigerant pipe 13D (refrigerant from the outdoor heat exchanger 7), and then is sucked into the compressor 2 via the check valve 20 and the accumulator 12. Repeat the cycle.
  • the air dehumidified by the heat absorber 9 is reheated in the process of passing through the radiator 4, so that the dehumidifying and heating of the vehicle interior is performed.
  • the air conditioning controller 32 controls the rotation speed of the compressor 2 based on the target radiator pressure PCO calculated from the target heater temperature TCO and the radiator pressure PCI (high pressure of the refrigerant circuit R) detected by the radiator outlet sensor 47. At the same time, the valve opening degree of the outdoor expansion valve 6 is controlled based on the heat absorber temperature Te detected by the heat absorber temperature sensor 48.
  • the air conditioning controller 32 controls the valve opening degree of the outdoor expansion valve 6 as described later, so that the outdoor heat exchanger 7 dissipates heat (condensing function). Further, the indoor expansion valve 8 is opened to reduce the pressure and expand the refrigerant, and the heating valve 21 and the dehumidifying valve 22 are closed. Then, the compressor 2 and the blowers 15 and 27 are operated, and the air mix damper 28 adjusts the ratio of the air blown from the indoor blower 27 to the radiator 4 and the auxiliary heater 23.
  • the refrigerant leaving the radiator 4 reaches the outdoor expansion valve 6 via the refrigerant pipe 13E, and flows into the outdoor heat exchanger 7 via the outdoor expansion valve 6 controlled as described later.
  • the refrigerant flowing into the outdoor heat exchanger 7 is air-cooled by traveling there or by the outside air ventilated by the outdoor blower 15, and the refrigerant dissipates heat and condenses.
  • the refrigerant leaving the outdoor heat exchanger 7 enters the refrigerant pipe 13B via the refrigerant pipe 13A and the check valve 18, and reaches the indoor expansion valve 8.
  • the refrigerant is depressurized by controlling the valve opening degree as described later, and then flows into the heat absorber 9 and evaporates. Due to the endothermic action at this time, the moisture in the air blown out from the indoor blower 27 condenses and adheres to the heat absorber 9, and the air is cooled and dehumidified.
  • the refrigerant evaporated in the heat absorber 9 reaches the accumulator 12 via the refrigerant pipe 13C and the check valve 20, and is repeatedly sucked into the compressor 2 through the accumulator 12.
  • the air cooled by the heat absorber 9 and dehumidified is reheated in the process of passing through the radiator 4. As a result, the interior of the vehicle is dehumidified and cooled.
  • the air conditioning controller 32 controls the rotation speed of the compressor 2 based on the endothermic temperature Te detected by the endothermic temperature sensor 48, and as described in detail later, the outdoor expansion valve 6 and the indoor expansion valve.
  • the valve opening degree of 8 is controlled.
  • Cooling mode Next, the cooling mode will be described.
  • the air conditioning controller 32 has the same flow of refrigerant as the dehumidifying cooling mode (FIG. 4) described above, while the valve opening degree of the outdoor expansion valve 6 is fully opened.
  • the high-temperature and high-pressure gas refrigerant discharged from the compressor 2 flows into the radiator 4.
  • the air in the air flow passage 3 is hardly ventilated to the radiator 4 and the auxiliary heater 23, or even when the air is ventilated, the ratio is small (because of only reheating during cooling).
  • the refrigerant that has dissipated heat for the reheat during cooling by the radiator 4 reaches the outdoor expansion valve 6 via the refrigerant pipe 13E.
  • the refrigerant passes through the outdoor expansion valve 6 as it is, passes through the refrigerant pipe 13J, flows into the outdoor heat exchanger 7, and travels there or by the outdoor blower 15. It is air-cooled by the ventilated outside air, and the refrigerant dissipates heat and becomes a condensed liquid.
  • the refrigerant evaporated in the heat absorber 9 reaches the accumulator 12 via the refrigerant pipe 13C and the check valve 20, and is repeatedly sucked into the compressor 2 through the accumulator 12.
  • the air cooled by the heat absorber 9 and dehumidified is blown out into the vehicle interior from the air outlet 29, so that the vehicle interior is cooled.
  • the air conditioning controller 32 controls the rotation speed of the compressor 2 based on the endothermic temperature Te detected by the endothermic temperature sensor 48.
  • the air conditioning controller 32 calculates the target blowout temperature TAO described above from the following formula (I).
  • This target outlet temperature TAO is a target value of the temperature of the air blown into the vehicle interior from the outlet 29.
  • TAO (Tset-Tin) x K + Tbal (f (Tset, SUN, Tam)) ⁇ ⁇ (I)
  • Tset is the set temperature in the vehicle interior set by the air conditioning operation unit 53
  • Tin is the temperature of the vehicle interior air detected by the inside air temperature sensor 37
  • K is a coefficient
  • Tbal is the set temperature Tset
  • the solar radiation sensor 51 detects it. It is a balance value calculated from the amount of solar radiation SUN and the outside air temperature Tam detected by the outside air temperature sensor 33.
  • the target blowing temperature TAO increases as the outside air temperature Tam decreases, and decreases as the outside air temperature Tam increases.
  • the air conditioning controller 32 selects one of the above operation modes based on the outside air temperature Tam detected by the outside air temperature sensor 33 and the target outlet temperature TAO at the time of activation. Further, after the start-up, each of the operation modes is selected and switched according to changes in the environment and setting conditions such as the outside air temperature Tam and the target blowout temperature TAO.
  • the air conditioning controller 32 executes the vehicle cooling system cooling mode when charging the battery with, for example, a quick charger or the like.
  • FIG. 5 shows how the refrigerant flows in the refrigerant circuit R (solid arrow) in this vehicle cooling system cooling mode.
  • the air conditioning controller 32 opens the auxiliary expansion valve 73 to reduce the pressure and expand the refrigerant, and the outdoor expansion valve 6 is set to all times. Further, the dehumidifying valve 22 and the heating valve 21 are closed, and the indoor expansion valve 8 is fully closed. Then, the compressor 2 is operated.
  • the air conditioning controller 32 cools the battery and the traveling motor of the vehicle cooling system 61 by controlling the rotation speed of the compressor 2 in response to a cooling request from the vehicle cooling system 61, for example. ..
  • the air-conditioning controller 32 of the embodiment basically controls the valve opening degree of the indoor expansion valve 8 in a direction in which the refrigerant discharged from the heat absorber 9 is not superheated SH, so that the temperature distribution does not occur in the heat absorber 9. To. In this case, for example, when the refrigerant discharged from the heat absorber 9 has a superheat degree SH, the air conditioning controller 32 changes the valve opening degree of the indoor expansion valve 8 in a predetermined pulse [PLS] in the opening direction.
  • PLS predetermined pulse
  • the degree of superheat SH is calculated. This method of calculating the degree of superheat SH is a well-known technique and will not be described here. Then, the valve opening degree of the indoor expansion valve 8 is controlled based on the superheat degree SH and the predetermined threshold value SH1.
  • the air conditioning controller 32 obtains, for example, information on the degree of superheat of the refrigerant discharged from the compressor 2 (calculated from the above-mentioned sensor information), and when the degree of superheat drops to a predetermined value, the valve of the indoor expansion valve 8 The opening shall be changed in a predetermined pulse and closing direction.
  • the air conditioning controller 32 controls the valve opening degree of the indoor expansion valve 8 in a direction in which the refrigerant discharged from the heat absorber 9 is not superheated SH, so that the refrigerant discharged from the heat absorber 9 is superheated SH. Is not attached, or even if it is attached, it will be extremely small. As a result, the refrigerant evaporates in the entire or substantially the entire heat absorber 9, and heat can be absorbed from the air supplied to the vehicle interior. Therefore, the inconvenience that the temperature distribution occurs in the heat absorber 9 is eliminated, or It will be possible to suppress and effectively cool the passenger compartment. Further, since the oil return is improved, the seizure of the compressor 2 can be avoided in advance.
  • the valve opening degree of the indoor expansion valve 8 can be changed in the opening direction. It becomes possible to effectively eliminate or suppress the occurrence of the temperature distribution and the deterioration of the oil return.
  • the air conditioning controller 32 opens the valve opening degree of the indoor expansion valve 8 when the superheat degree SH of the refrigerant discharged from the endothermic device 9 becomes larger than the predetermined threshold value SH1. Since the direction is changed, by setting this threshold value SH1 to an extremely small value, it is possible to appropriately eliminate or suppress the occurrence of the temperature distribution of the heat absorber 9 and the deterioration of the oil return. Will be.
  • the accumulator 12 is provided in the refrigerant circuit R from the refrigerant outlet of the heat absorber 9 to the refrigerant suction side of the compressor 2, the liquid back to the compressor 2 can be effectively eliminated. become.
  • FIG. 6 shows the valve opening ECCVohx [PLS] of the outdoor expansion valve 6 in the dehumidifying / cooling mode and the heat dissipation amount of the outdoor heat exchanger 7. And the relationship with the temperature distribution of the heat exchanger 9.
  • the valve opening ECCVohx of the outdoor expansion valve 6 is large, the outdoor heat exchanger 7 is in the heat dissipation function region where the refrigerant dissipates heat, and the larger the valve opening ECCVohx as shown by L4 in FIG.
  • the amount of heat radiated from the outdoor heat exchanger 7 also increases (on the right side when facing FIG. 6).
  • the valve opening ECCVohx of the outdoor expansion valve 6 becomes smaller, the amount of refrigerant circulating in the endothermic device 9 decreases by that amount, so that the refrigerant completely evaporates at an early stage when it flows into the endothermic device 9. Therefore, in the endothermic device 9, the temperature is low and high depending on the part, and the temperature distribution (temperature variation) is generated. As shown by L1 to L3 in FIG. 6, the valve opening ECCVohx of the outdoor expansion valve 6 is increased. The smaller the temperature, the larger the temperature distribution.
  • the broken lines L1 to L3 show the temperature distribution when the indoor expansion valve is used as a conventional mechanical expansion valve and the refrigerant discharged from the heat absorber 9 is superheated SH, and the solid lines L1 to L3 are the above-mentioned (7).
  • the temperature distribution when the refrigerant discharged from the endothermic device 9 is controlled without the superheat degree SH depending on the valve opening degree of the indoor expansion valve 8 is shown.
  • the superheat degree SH is large
  • the refrigerant evaporates faster, and therefore, regardless of the amount of ventilation, it is outdoors. From the stage where the valve opening degree ECCVohx of the expansion valve 6 is large, the temperature distribution of the heat absorber 9 becomes larger than the permissible value (permissible value of the heat absorber temperature distribution).
  • valve opening degree of the indoor expansion valve 8 is controlled by the air conditioning controller 32 in a direction in which the superheat degree SH is not attached to the refrigerant discharged from the heat exchanger 9, the valve opening degree ECCVohx of the outdoor expansion valve 6 is set. Even if it is reduced, as long as the outdoor heat exchanger 7 exerts the heat dissipation function (as long as it is in the outdoor heat exchanger heat dissipation function region), the temperature distribution of the heat exchanger 9 is hardly large, and the temperature distribution of the endothermic absorber 9 is not large. It can be seen that the value is smaller than the permissible value (solid lines L1 to L3 in FIG. 6).
  • the air conditioning controller 32 has a radiator outlet temperature TCIout detected by the radiator outlet sensor 47, a supercooling degree SC [K] of the refrigerant emitted from the radiator 4 obtained from the radiator pressure PCI, and a dehumidifying / cooling mode.
  • the valve opening degree ECCVohx [PLS] of the outdoor expansion valve 6 is controlled based on the target supercooling degree TGSC, which is the target value of the supercooling degree SC.
  • the target supercooling degree TGSC is set in the air conditioning controller 32.
  • This target supercooling degree TGSC is, for example, a value of a limit (the limit of the outdoor heat exchanger heat dissipation function region of FIG. 6) in which the refrigerant does not condense too much in the radiator 4 and the outdoor heat exchanger 7 can exert the heat dissipation function. It shall be obtained by experiment in advance.
  • the air conditioning controller 32 of the embodiment sets a predetermined upper limit value TGSCHiLim and a lower limit value TGSCLoLim above and below the target supercooling degree TGSC. Then, as shown at the left end of FIG. 7, when the supercooling degree SC of the refrigerant at the outlet of the radiator 4 is lower than the target supercooling degree TGSC, the valve opening degree ECCVohx of the outdoor expansion valve 6 is set to a predetermined pulse per predetermined time. Reduce at a rate.
  • the refrigerant stops for a longer time in the radiator 4, and as described above, the refrigerant eventually condenses and becomes supercooled in the radiator 4.
  • the degree of supercooling SC of the refrigerant at the outlet of the radiator 4 begins to increase.
  • the air conditioning controller 32 stops the reduction of the valve opening degree ECCVohx of the outdoor expansion valve 6.
  • the air conditioning controller 32 expands the valve opening ECCVohx of the outdoor expansion valve 6 at a predetermined pulse rate per predetermined time. As a result, the refrigerant flows out from the radiator 4 faster, so that the supercooling degree SC starts to decrease. Then, when the supercooling degree SC drops to the lower limit value TGSCLoLim at time t3, the air conditioning controller 32 stops the expansion of the valve opening degree ECCVohx of the outdoor expansion valve 6.
  • the valve opening ECCVohx at this point is the minimum valve opening of the outdoor expansion valve 6.
  • the valve opening degree of the outdoor expansion valve 6 is based on the supercooling degree SC of the refrigerant at the outlet of the radiator 4 and the predetermined target supercooling degree TGSC which is the target value thereof. Since the ECCVohx is controlled, the target supercooling degree TGSC is set to an appropriate value in the radiator 4 so that the refrigerant does not condense too much as in the embodiment, so that the dehumidifying and cooling mode can be established while outdoors. It is possible to reduce the valve opening degree ECCVohx of the outdoor expansion valve 5 and maximize the heating capacity of the radiator 4 without considering the individual variation of the expansion valve 6.
  • the need to generate heat of the auxiliary heater 23 is eliminated or suppressed, so that it is possible to contribute to energy saving while improving the air conditioning performance in the dehumidifying / cooling mode.
  • the valve opening ECCVohx of the outdoor expansion valve 6 is reduced, and the supercooling degree SC rises to the target supercooling degree TGSC. , Stops the reduction of the valve opening ECCVohx of the outdoor expansion valve 6. Then, when the supercooling degree SC reaches the target supercooling degree TGSC and then rises to the upper limit value TGSCHiLim, the valve opening ECCVohx of the outdoor expansion valve 6 is expanded, and the supercooling degree SC decreases to the lower limit value TGSCLoLim.
  • the radiator 4 Since the expansion of the valve opening ECCVohx of the outdoor expansion valve 6 is stopped, the radiator 4 is heated in the dehumidifying cooling mode based on the supercooling degree SC of the refrigerant at the outlet of the radiator 4 and the target supercooling degree TGSC. It is possible to smoothly and accurately control the outdoor expansion valve 6 that maximizes the capacity (heating capacity).
  • Control of the outdoor expansion valve 6 in the dehumidifying / cooling mode Part 2
  • the air conditioning controller 32 uses the temperature of the refrigerant emitted from the outdoor heat exchanger 7 detected by the outdoor heat exchanger outlet sensor 54 (outdoor heat exchanger temperature TXO [° C.]) and the outside air detected by the outdoor air temperature sensor 33.
  • the valve opening degree ECCVohx [PLS] of the outdoor expansion valve 6 is controlled based on the temperature Tam [° C.].
  • the air conditioning controller 32 determines the valve opening ECCVohx of the outdoor expansion valve 6 per predetermined time. It is reduced at the rate of the pulse. Since the predetermined value ⁇ is either a positive or negative value including zero, when the predetermined value ⁇ is zero, the outside air temperature Tam itself is obtained. That is, it is assumed that the outside air temperature Tam + the predetermined value ⁇ is any temperature near the outside air temperature Tam.
  • the refrigerant stops for a longer time in the radiator 4, and as described above, the refrigerant eventually condenses and becomes supercooled in the radiator 4.
  • the degree of supercooling SC of the refrigerant at the outlet of the radiator 4 begins to increase. Further, since the amount of the high-temperature refrigerant flowing into the outdoor heat exchanger 7 decreases, the outdoor heat exchanger temperature TXO also decreases.
  • the air conditioning controller 32 stops the reduction of the valve opening ECCVohx of the outdoor expansion valve 6. Further, in the air conditioning controller 32, a predetermined upper limit value TamHiLim and a predetermined lower limit value TamMoLim are set above and below the outside air temperature Tam + predetermined value ⁇ , and after the outdoor heat exchanger temperature TXO becomes the outside air temperature Tam + predetermined value ⁇ , the figure is shown in FIG. When the temperature drops to the lower limit TamMoLim at time t5 at 8, the air conditioning controller 32 expands the valve opening ECCVohx of the outdoor expansion valve 6 at a predetermined pulse rate per predetermined time.
  • the air conditioning controller 32 stops the expansion of the valve opening ECCVohx of the outdoor expansion valve 6.
  • the valve opening ECCVohx at this point is the minimum valve opening of the outdoor expansion valve 6.
  • the outdoor heat exchanger temperature TXO is maintained within the upper and lower limit values TamHiLim and TamMoLim of the outside air temperature Tam + the predetermined value ⁇ , so that the outdoor heat exchanger 7 reliably exhibits the heat dissipation function (FIG. 6).
  • the outdoor heat exchanger heat dissipation function region is maintained), and the valve opening degree ECCVohx of the outdoor expansion valve 6 is reduced as much as possible.
  • the air conditioning controller 32 controls the valve opening ECCVohx of the outdoor expansion valve 6 based on the outdoor heat exchanger temperature TXO and the outside air temperature Tam in the dehumidifying / cooling mode.
  • the valve opening ECCVohx of the outdoor expansion valve 6 is reduced to reduce the outdoor heat exchanger temperature.
  • the need to generate heat of the auxiliary heater 23 is also eliminated or suppressed, so that it is possible to contribute to energy saving while improving the air conditioning performance in the dehumidifying / cooling mode.
  • the air conditioning controller 32 sets the predetermined upper limit value TamHiLim and the lower limit value TamMoLim above and below the outside air temperature Tam + predetermined value ⁇ , and after the outdoor heat exchanger temperature TXO becomes the outside air temperature Tam + predetermined value ⁇ ,
  • the valve opening ECCVohx of the outdoor expansion valve 6 is expanded, and when the outdoor heat exchanger temperature TXO rises to the upper limit TamHiLim, the expansion of the valve opening ECCVohx of the outdoor expansion valve 6 is stopped.
  • the control of the outdoor expansion valve 6 that maximizes the heating capacity (heating capacity) of the radiator 4 in the dehumidifying / cooling mode can be smoothly and smoothly performed. It will be possible to realize it accurately.
  • the supercooling degree SC of the refrigerant at the outlet of the radiator 4 is set to the above-mentioned target supercooling degree TGSC (
  • the air conditioning controller 32 stops the reduction of the valve opening degree ECCVohx of the outdoor expansion valve 6 in the same manner as in the control of (9) described above.
  • the air conditioning controller 32 controls the outdoor expansion valve 6 in the same manner as in the above-mentioned control (9).
  • the supercooling degree SC drops to the lower limit value TGSCLoLim, the expansion of the valve opening degree ECCVohx of the outdoor expansion valve 6 is stopped.
  • the valve opening degree of the outdoor expansion valve 6 is based on the supercooling degree SC of the refrigerant at the outlet of the radiator 4 and the target supercooling degree TGSC.
  • the outdoor expansion valve 6 is controlled to maximize the heating capacity (heating capacity) of the radiator 4 in the dehumidifying / cooling mode based on the supercooling degree SC and the target supercooling degree TGSC. Let's go.
  • the dehumidifying and cooling mode is surely established based on the outdoor heat exchanger temperature TXO and the outside air temperature Tam, and the radiator 4 is based on the supercooling degree SC and the target supercooling degree TGSC.
  • the outdoor expansion valve 6 that maximizes the heating capacity (heating capacity), it becomes possible to realize comfortable vehicle interior air conditioning.
  • valve opening ECCVohx of the outdoor expansion valve 6 is reduced / expanded by the upper limit value TGSCiLim and the lower limit value TGSCLoLim of the supercooling degree SC and the target supercooling degree TGSC, but the target is not limited to this.
  • the valve opening degree ECCVohx of the outdoor expansion valve 6 may be controlled by so-called PID control based on the deviation e between the supercooling degree TGSC and the supercooling degree SC.
  • the configuration of the air conditioning controller 32 described in the examples, the configuration of the heat pump device HP of the vehicle air conditioner 1 and the configuration of the heat medium circulation circuit 61 are not limited to this, and are changed within a range that does not deviate from the gist of the present invention. It goes without saying that it is possible.

Abstract

The purpose of the present invention is to provide a vehicle air conditioner that improves air conditioning performance while in a dehumidifying/cooling mode and that can contribute to saving energy. An air conditioning controller (32) causes a refrigerant discharged from a compressor (2) to dissipate heat in a radiator (4) and an outdoor heat exchanger (7) and, after the refrigerant from which heat has been dissipated is depressurized by an indoor expansion valve (8), executes a dehumidifying/cooling mode in which said refrigerant is made to absorb heat in a heat absorber (9). The air conditioning controller (32) controls the opening degree of an outdoor expansion valve (6) in the dehumidifying/cooling mode on the basis of the supercooling degree SC of the refrigerant in a discharge port of the radiator (4) and a target supercooling degree TGSC that is a target value for the supercooling degree SC.

Description

車両用空気調和装置Vehicle air conditioner
 本発明は、車両の車室内を空調するヒートポンプ方式の空気調和装置に関するものである。 The present invention relates to a heat pump type air conditioner for air-conditioning the interior of a vehicle.
 近年の環境問題の顕在化から、ハイブリッド自動車や電気自動車が普及するに至っている。そして、このような車両に適用することができる空気調和装置として、冷媒を圧縮して吐出する圧縮機と、車室内側に設けられて冷媒を放熱させる放熱器と、車室内側に設けられて冷媒を吸熱させる吸熱器と、車室外側に設けられて冷媒を放熱させる放熱機能、又は、冷媒を吸熱させる吸熱機能を発揮する室外熱交換器を備え、圧縮機から吐出された冷媒を放熱器において放熱させ、この放熱器において放熱した冷媒を室外膨張弁で減圧した後、室外熱交換器において吸熱させる暖房モードと、圧縮機から吐出された冷媒を放熱器において放熱させ、放熱器において放熱した冷媒を室外膨張弁と室内膨張弁で減圧した後、吸熱器と室外熱交換器において吸熱させる除湿暖房モードと、圧縮機から吐出された冷媒を放熱器及び室外熱交換器において放熱させ、室内膨張弁で減圧した後、吸熱器において吸熱させる除湿冷房モードと、圧縮機から吐出された冷媒を室外熱交換器において放熱させ、室内膨張弁で減圧した後、吸熱器において吸熱させる冷房モードとを切り換えて実行するものが開発されている。 Due to the emergence of environmental problems in recent years, hybrid vehicles and electric vehicles have become widespread. As an air conditioner that can be applied to such a vehicle, a compressor that compresses and discharges the refrigerant, a radiator that is provided on the vehicle interior side to dissipate the refrigerant, and a radiator that is provided on the vehicle interior side are provided. Equipped with a heat absorber that absorbs the refrigerant and an outdoor heat exchanger that is installed outside the vehicle interior to dissipate the refrigerant, or an outdoor heat exchanger that absorbs the refrigerant and dissipates the heat, and dissipates the refrigerant discharged from the compressor. In the heating mode, the refrigerant radiated in the radiator is decompressed by the outdoor expansion valve and then absorbed in the outdoor heat exchanger, and the refrigerant discharged from the compressor is radiated in the radiator and radiated in the radiator. A dehumidifying heating mode in which the refrigerant is decompressed by the outdoor expansion valve and the indoor expansion valve and then absorbed by the heat absorber and the outdoor heat exchanger, and the refrigerant discharged from the compressor is dissipated by the radiator and the outdoor heat exchanger to expand the room. Switching between the dehumidifying and cooling mode in which the heat is absorbed by the heat absorber after decompressing with the valve and the cooling mode in which the refrigerant discharged from the compressor is dissipated by the outdoor heat exchanger and decompressed by the indoor expansion valve and then absorbed by the heat exchanger. Is being developed to run.
 そして、除湿冷房モードでは、吸熱器の温度に基づいて圧縮機の回転数を制御することで、吸熱器の冷却(除湿)能力を制御する。また、室外熱交換器に流入する冷媒を減圧させる室外膨張弁の弁開度を、放熱器の温度又は圧力に基づいて制御することで、放熱器の加熱能力を制御していた(例えば、特許文献1参照)。 Then, in the dehumidifying / cooling mode, the cooling (dehumidifying) capacity of the heat absorber is controlled by controlling the rotation speed of the compressor based on the temperature of the heat absorber. Further, the heating capacity of the radiator is controlled by controlling the valve opening degree of the outdoor expansion valve that reduces the pressure of the refrigerant flowing into the outdoor heat exchanger based on the temperature or pressure of the radiator (for example, patent). Reference 1).
 即ち、除湿冷房モードにおいては室外膨張弁の弁開度を小さくすることで放熱器の温度を上げることができるが、室外膨張弁の弁開度が小さくなると、吸熱器の冷媒循環量が減少するため、吸熱器の温度分布(吸熱器の部分によって温度にバラツキが生じること)が大きくなり、除湿性能が低下すると共に、目標吹出温度も成立し難くなる。そこで、前記特許文献1では、吸熱器への通風量等に基づいて除湿冷房モードにおける室外膨張弁の制御上の最小弁開度を変更することで、吸熱器の温度分布が生じないようにしていた。 That is, in the dehumidifying / cooling mode, the temperature of the radiator can be raised by reducing the valve opening of the outdoor expansion valve, but when the valve opening of the outdoor expansion valve is reduced, the amount of refrigerant circulating in the heat absorber decreases. Therefore, the temperature distribution of the endothermic device (the temperature varies depending on the part of the endothermic device) becomes large, the dehumidifying performance deteriorates, and it becomes difficult to establish the target blowing temperature. Therefore, in Patent Document 1, the temperature distribution of the heat absorber is prevented from occurring by changing the minimum valve opening degree in the control of the outdoor expansion valve in the dehumidifying / cooling mode based on the amount of ventilation to the heat absorber. It was.
特開2018-95098号公報JP-A-2018-95098
 ここで、室外膨張弁の弁開度を縮小(絞る)させれば、放熱器の出口での冷媒の過冷却度が高くなり、放熱器における加熱能力も増大する。しかしながら、室外膨張弁の弁開度を縮小し過ぎると(絞り過ぎると)、冷媒が放熱器において凝縮し過ぎてしまい、室外熱交換器が放熱機能では無く吸熱機能を発揮するようになって、吸熱器における吸熱能力が低下し、除湿冷房モードにおける除湿能力が低下してしまう。 Here, if the valve opening of the outdoor expansion valve is reduced (throttled), the degree of supercooling of the refrigerant at the outlet of the radiator increases, and the heating capacity of the radiator also increases. However, if the valve opening of the outdoor expansion valve is reduced too much (if it is throttled too much), the refrigerant will condense too much in the radiator, and the outdoor heat exchanger will exhibit the endothermic function instead of the heat dissipation function. The endothermic capacity of the heat absorber is reduced, and the dehumidifying capacity of the dehumidifying / cooling mode is reduced.
 一方で、室外膨張弁には個体バラツキがあるため、前述したように変更される制御上の最小弁開度も、係る室外膨張弁の個体バラツキを考慮して、弁開度が大きくなる方向に所定の余裕をもった設定が行われることになる。そのため、除湿冷房モードにおける放熱器の加熱能力(冷媒の放熱)を十分に発揮させることができなくなり、電気ヒータ等の補助的な加熱装置を発熱させて、目標吹出温度を成立させなければならなかった。 On the other hand, since the outdoor expansion valve has individual variations, the minimum control valve opening degree to be changed as described above also tends to increase in consideration of the individual variation of the outdoor expansion valve. The setting with a predetermined margin will be made. Therefore, the heating capacity of the radiator (heat dissipation of the refrigerant) in the dehumidifying / cooling mode cannot be fully exerted, and an auxiliary heating device such as an electric heater must be heated to establish the target blowing temperature. It was.
 また、室外熱交換器が放熱機能を発揮していれば、室外膨張弁の弁開度を縮小させても除湿冷房モードは成立することになるが、上述した理由で従来では室外膨張弁の最小弁開度が設定されていたため、放熱器における加熱能力を十分に発揮させることができないと云う問題があった。 Further, if the outdoor heat exchanger exerts a heat dissipation function, the dehumidifying / cooling mode will be established even if the valve opening of the outdoor expansion valve is reduced. Since the valve opening was set, there was a problem that the heating capacity of the radiator could not be fully exerted.
 本発明は、係る従来の技術的課題を解決するために成されたものであり、除湿冷房モードにおける空調性能を改善し、省エネルギーにも寄与することができる車両用空気調和装置を提供することを目的とする。 The present invention has been made to solve the conventional technical problems, and to provide an air conditioner for a vehicle that can improve the air conditioning performance in the dehumidifying / cooling mode and contribute to energy saving. The purpose.
 請求項1の発明の車両用空気調和装置は、冷媒を圧縮する圧縮機と、冷媒を放熱させて車室内に供給する空気を加熱するための放熱器と、車室外に設けられ、放熱器から出た冷媒が流入する室外熱交換器と、この室外熱交換器への冷媒の流入を制御するための室外膨張弁と、冷媒を吸熱させて車室内に供給する空気を冷却するための吸熱器と、この吸熱器への冷媒の流入を制御するための室内膨張弁と、制御装置を備え、この制御装置により少なくとも、圧縮機から吐出された冷媒を放熱器及び室外熱交換器にて放熱させ、放熱した当該冷媒を室内膨張弁により減圧した後、吸熱器にて吸熱させる除湿冷房モードを実行するものであって、制御装置は、除湿冷房モードにおいて、放熱器の出口における冷媒の過冷却度SCと、その目標値である所定の目標過冷却度TGSCに基づいて室外膨張弁の弁開度を制御することを特徴とする。 The vehicle air conditioner according to claim 1 is provided from a compressor that compresses the refrigerant, a radiator for radiating the refrigerant and heating the air supplied to the vehicle interior, and a radiator provided outside the vehicle interior. An outdoor heat exchanger into which the discharged refrigerant flows, an outdoor expansion valve for controlling the inflow of the refrigerant into the outdoor heat exchanger, and a heat absorber for absorbing the refrigerant and cooling the air supplied to the vehicle interior. An indoor expansion valve for controlling the inflow of the refrigerant into the heat absorber and a control device are provided, and at least the refrigerant discharged from the compressor is dissipated by the radiator and the outdoor heat exchanger by this control device. The dehumidifying / cooling mode in which the radiated refrigerant is decompressed by the indoor expansion valve and then absorbed by the heat absorber is executed. In the dehumidifying / cooling mode, the control device determines the degree of overcooling of the refrigerant at the outlet of the radiator. It is characterized in that the valve opening degree of the outdoor expansion valve is controlled based on the SC and a predetermined target supercooling degree TGSC which is the target value thereof.
 請求項2の発明の車両用空気調和装置は、上記発明において制御装置は、過冷却度SCが目標過冷却度TGSCより低い場合、室外膨張弁の弁開度を縮小させ、過冷却度SCが目標過冷却度TGSCまで上昇した場合、室外膨張弁の弁開度の縮小を停止することを特徴とする。 In the vehicle air conditioner according to the second aspect of the present invention, in the above invention, when the supercooling degree SC is lower than the target supercooling degree TGSC, the valve opening degree of the outdoor expansion valve is reduced and the supercooling degree SC is increased. When the target supercooling degree TGSC is reached, the reduction of the valve opening degree of the outdoor expansion valve is stopped.
 請求項3の発明の車両用空気調和装置は、上記発明において制御装置は、目標過冷却度TGSCの上下に所定の上限値TGSCHiLimと下限値TGSCLoLimを設定すると共に、過冷却度SCが目標過冷却度TGSCとなった後、上限値TGSCHiLimまで上昇した場合、室外膨張弁の弁開度を拡大させ、過冷却度SCが下限値TGSCLoLimまで低下した場合、室外膨張弁の弁開度の拡大を停止することを特徴とする。 In the vehicle air conditioner according to the third aspect of the present invention, in the above invention, the control device sets predetermined upper limit values TGSCHiLim and lower limit value TGSCLoLim above and below the target supercooling degree TGSC, and the supercooling degree SC sets the target supercooling degree SC. When the temperature rises to the upper limit TGSCHiLim after reaching the degree TGSC, the valve opening of the outdoor expansion valve is expanded, and when the supercooling degree SC decreases to the lower limit TGSCLoLim, the expansion of the valve opening of the outdoor expansion valve is stopped. It is characterized by doing.
 請求項4の発明の車両用空気調和装置は、冷媒を圧縮する圧縮機と、冷媒を放熱させて車室内に供給する空気を加熱するための放熱器と、車室外に設けられ、放熱器から出た冷媒が流入する室外熱交換器と、この室外熱交換器への冷媒の流入を制御するための室外膨張弁と、冷媒を吸熱させて車室内に供給する空気を冷却するための吸熱器と、この吸熱器への冷媒の流入を制御するための室内膨張弁と、制御装置を備え、この制御装置により少なくとも、圧縮機から吐出された冷媒を放熱器及び室外熱交換器にて放熱させ、放熱した当該冷媒を室内膨張弁により減圧した後、吸熱器にて吸熱させる除湿冷房モードを実行するものであって、制御装置は、除湿冷房モードにおいて、室外熱交換器の温度TXOと、外気温度Tamに基づいて室外膨張弁の弁開度を制御することを特徴とする。 The vehicle air conditioner according to the fourth aspect is provided from a compressor for compressing the refrigerant, a radiator for radiating the refrigerant and heating the air supplied to the vehicle interior, and a radiator provided outside the vehicle interior. An outdoor heat exchanger into which the discharged refrigerant flows, an outdoor expansion valve for controlling the inflow of the refrigerant into the outdoor heat exchanger, and a heat absorber for absorbing the refrigerant and cooling the air supplied to the vehicle interior. An indoor expansion valve for controlling the inflow of the refrigerant into the heat absorber and a control device are provided, and at least the refrigerant discharged from the compressor is dissipated by the radiator and the outdoor heat exchanger by this control device. The dehumidifying / cooling mode in which the radiated refrigerant is decompressed by the indoor expansion valve and then absorbed by the heat absorber is executed. In the dehumidifying / cooling mode, the control device uses the temperature TXO of the outdoor heat exchanger and the outside air. It is characterized in that the valve opening degree of the outdoor expansion valve is controlled based on the temperature Tam.
 請求項5の発明の車両用空気調和装置は、上記発明において制御装置は、室外熱交換器の温度TXOが外気温度Tam、又は、外気温度Tam+所定値αより高い場合、室外膨張弁の弁開度を縮小させ、室外熱交換器の温度TXOが外気温度Tam、又は、外気温度Tam+所定値αまで低下した場合、室外膨張弁の弁開度の縮小を停止することを特徴とする。 In the vehicle air conditioner according to claim 5, in the above invention, the control device opens the outdoor expansion valve when the temperature TXO of the outdoor heat exchanger is higher than the outside air temperature Tam or the outside air temperature Tam + a predetermined value α. When the temperature of the outdoor heat exchanger is reduced to the outside air temperature Tam or the outside air temperature Tam + a predetermined value α, the reduction of the valve opening degree of the outdoor expansion valve is stopped.
 請求項6の発明の車両用空気調和装置は、上記発明において制御装置は、外気温度Tam、又は、外気温度Tam+所定値αの上下に所定の上限値TamHiLimと下限値TamLoLimを設定すると共に、室外熱交換器の温度TXOが外気温度Tam、又は、外気温度Tam+所定値αとなった後、下限値TamLoLimまで低下した場合、室外膨張弁の弁開度を拡大させ、室外熱交換器の温度TXOが上限値TamHiLimまで上昇した場合、室外膨張弁の弁開度の拡大を停止することを特徴とする。 In the vehicle air conditioner according to claim 6, in the above invention, the control device sets a predetermined upper limit value TamHiLim and a lower limit value TamMoLim above and below the outside air temperature Tam or the outside air temperature Tam + the predetermined value α, and outdoors. When the temperature TXO of the heat exchanger reaches the outside air temperature Tam or the outside air temperature Tam + the predetermined value α and then drops to the lower limit value TamMoLim, the valve opening of the outdoor expansion valve is expanded and the temperature TXO of the outdoor heat exchanger is increased. When the temperature rises to the upper limit value TamHiLim, the expansion of the valve opening degree of the outdoor expansion valve is stopped.
 請求項7の発明の車両用空気調和装置は、請求項5又は請求項6の発明において制御装置は、室外熱交換器の温度TXOが外気温度Tam、又は、外気温度Tam+所定値αまで低下する前に、放熱器の出口における冷媒の過冷却度SCが、その目標値である所定の目標過冷却度TGSCまで上昇した場合、室外膨張弁の弁開度の縮小を停止することを特徴とする。 In the vehicle air conditioner according to the invention of claim 7, in the invention of claim 5 or 6, the temperature TXO of the outdoor heat exchanger is lowered to the outside air temperature Tam or the outside air temperature Tam + a predetermined value α. Previously, when the degree of supercooling SC of the refrigerant at the outlet of the radiator rises to the predetermined target degree of overcooling TGSC, which is the target value, the reduction of the valve opening degree of the outdoor expansion valve is stopped. ..
 請求項8の発明の車両用空気調和装置は、上記発明において制御装置は、目標過冷却度TGSCの上下に所定の上限値TGSCHiLimと下限値TGSCLoLimを設定すると共に、過冷却度SCが目標過冷却度TGSCとなった後、上限値TGSCHiLimまで上昇した場合、室外膨張弁の弁開度を拡大させ、過冷却度SCが下限値TGSCLoLimまで低下した場合、室外膨張弁の弁開度の拡大を停止することを特徴とする。 In the vehicle air conditioner according to the eighth aspect of the present invention, in the above invention, the control device sets predetermined upper limit values TGSCHiLim and lower limit value TGSCLoLim above and below the target supercooling degree TGSC, and the supercooling degree SC sets the target supercooling degree SC. When the temperature rises to the upper limit TGSCHiLim after reaching the degree TGSC, the valve opening of the outdoor expansion valve is expanded, and when the supercooling degree SC decreases to the lower limit TGSCLoLim, the expansion of the valve opening of the outdoor expansion valve is stopped. It is characterized by doing.
 請求項9の発明の車両用空気調和装置は、上記各発明において制御装置は、吸熱器から出た冷媒に過熱度SHを付けない方向で室内膨張弁の弁開度を制御することを特徴とする。 The vehicle air conditioner according to claim 9 is characterized in that, in each of the above inventions, the control device controls the valve opening degree of the indoor expansion valve in a direction in which the refrigerant discharged from the heat absorber is not superheated SH. To do.
 請求項10の発明の車両用空気調和装置は、上記発明において制御装置は、吸熱器から出た冷媒に過熱度SHが付いた場合、室内膨張弁の弁開度を、開く方向で変更することを特徴とする。 In the vehicle air conditioner according to the tenth aspect of the present invention, in the above invention, the control device changes the valve opening degree of the indoor expansion valve in the opening direction when the refrigerant discharged from the heat absorber has a superheat degree SH. It is characterized by.
 請求項11の発明の車両用空気調和装置は、上記発明において制御装置は、吸熱器から出た冷媒の過熱度SHが、所定の閾値SH1より大きくなった場合、室内膨張弁の弁開度を、開く方向で変更することを特徴とする。 In the vehicle air conditioner according to the eleventh aspect of the present invention, in the above invention, the control device adjusts the valve opening degree of the indoor expansion valve when the degree of superheat SH of the refrigerant discharged from the heat absorber becomes larger than the predetermined threshold value SH1. , The feature is to change in the opening direction.
 請求項12の発明の車両用空気調和装置は、請求項9乃至請求項11の発明において吸熱器の冷媒出口から圧縮機の冷媒吸込側に至る冷媒回路に設けられたアキュムレータを備えたことを特徴とする。 The vehicle air conditioner according to the twelfth aspect of the present invention is characterized in that, in the ninth to eleventh aspects of the invention, the accumulator provided in the refrigerant circuit from the refrigerant outlet of the heat absorber to the refrigerant suction side of the compressor is provided. And.
 請求項1の発明によれば、冷媒を圧縮する圧縮機と、冷媒を放熱させて車室内に供給する空気を加熱するための放熱器と、車室外に設けられ、放熱器から出た冷媒が流入する室外熱交換器と、この室外熱交換器への冷媒の流入を制御するための室外膨張弁と、冷媒を吸熱させて車室内に供給する空気を冷却するための吸熱器と、この吸熱器への冷媒の流入を制御するための室内膨張弁と、制御装置を備え、この制御装置により少なくとも、圧縮機から吐出された冷媒を放熱器及び室外熱交換器にて放熱させ、放熱した当該冷媒を室内膨張弁により減圧した後、吸熱器にて吸熱させる除湿冷房モードを実行する車両用空気調和装置において、制御装置が、除湿冷房モードにおいて、放熱器の出口における冷媒の過冷却度SCと、その目標値である所定の目標過冷却度TGSCに基づいて室外膨張弁の弁開度を制御するようにしたので、目標過冷却度TGSCを放熱器において冷媒が凝縮し過ぎない適切な値に設定しておくことで、除湿冷房モードを成立させながら、室外膨張弁の個体バラツキを考慮すること無く当該室外膨張弁の弁開度を縮小させ、放熱器の加熱能力を最大限発揮させることが可能となる。 According to the invention of claim 1, a compressor for compressing the refrigerant, a radiator for radiating the refrigerant and heating the air supplied to the vehicle interior, and a refrigerant provided outside the vehicle interior and emitted from the radiator are used. The inflowing outdoor heat exchanger, the outdoor expansion valve for controlling the inflow of the refrigerant into the outdoor heat exchanger, the heat absorber for absorbing the refrigerant and cooling the air supplied to the vehicle interior, and the heat absorber. An indoor expansion valve for controlling the inflow of the refrigerant into the vessel and a control device are provided, and at least the refrigerant discharged from the compressor is radiated by the radiator and the outdoor heat exchanger to dissipate the heat. In the vehicle air conditioner that executes the dehumidifying / cooling mode in which the refrigerant is decompressed by the indoor expansion valve and then absorbed by the heat absorber, the control device determines the degree of supercooling SC of the refrigerant at the outlet of the radiator in the dehumidifying / cooling mode. Since the valve opening of the outdoor expansion valve is controlled based on the predetermined target supercooling degree TGSC, which is the target value, the target supercooling degree TGSC is set to an appropriate value so that the refrigerant does not condense too much in the radiator. By setting it, the valve opening of the outdoor expansion valve can be reduced and the heating capacity of the radiator can be maximized without considering the individual variation of the outdoor expansion valve while establishing the dehumidifying / cooling mode. It will be possible.
 これにより、補助的な加熱装置を発熱させる必要性も解消、若しくは、抑制されるため、除湿冷房モードにおける空調性能を改善しながら、省エネルギーにも寄与することができるようになる。 As a result, the need to generate heat in the auxiliary heating device is eliminated or suppressed, so that it is possible to contribute to energy saving while improving the air conditioning performance in the dehumidifying / cooling mode.
 この場合、例えば請求項2の発明の如く制御装置が、過冷却度SCが目標過冷却度TGSCより低い場合、室外膨張弁の弁開度を縮小させ、過冷却度SCが目標過冷却度TGSCまで上昇した場合、室外膨張弁の弁開度の縮小を停止する。更には、請求項3の発明の如く目標過冷却度TGSCの上下に所定の上限値TGSCHiLimと下限値TGSCLoLimを設定すると共に、過冷却度SCが目標過冷却度TGSCとなった後、上限値TGSCHiLimまで上昇した場合、室外膨張弁の弁開度を拡大させ、過冷却度SCが下限値TGSCLoLimまで低下した場合、室外膨張弁の弁開度の拡大を停止するようにすることで、放熱器の出口における冷媒の過冷却度SCと目標過冷却度TGSCに基づき、除湿冷房モードにおいて放熱器の加熱能力を最大限発揮させる室外膨張弁の制御を、円滑、且つ、的確に実現することが可能となる。 In this case, for example, when the supercooling degree SC is lower than the target supercooling degree TGSC as in the invention of claim 2, the valve opening degree of the outdoor expansion valve is reduced, and the supercooling degree SC is the target supercooling degree TGSC. When it rises to, the reduction of the valve opening of the outdoor expansion valve is stopped. Further, as in the invention of claim 3, a predetermined upper limit value TGSCHiLim and a lower limit value TGSCLoLim are set above and below the target supercooling degree TGSC, and after the supercooling degree SC becomes the target supercooling degree TGSC, the upper limit value TGSCHiLim When the valve opening of the outdoor expansion valve is increased to, the valve opening of the outdoor expansion valve is expanded, and when the supercooling degree SC is lowered to the lower limit value TGSCLoLim, the expansion of the valve opening of the outdoor expansion valve is stopped. Based on the supercooling degree SC of the refrigerant at the outlet and the target supercooling degree TGSC, it is possible to smoothly and accurately control the outdoor expansion valve that maximizes the heating capacity of the radiator in the dehumidifying and cooling mode. Become.
 請求項4の発明の発明によれば、冷媒を圧縮する圧縮機と、冷媒を放熱させて車室内に供給する空気を加熱するための放熱器と、車室外に設けられ、放熱器から出た冷媒が流入する室外熱交換器と、この室外熱交換器への冷媒の流入を制御するための室外膨張弁と、冷媒を吸熱させて車室内に供給する空気を冷却するための吸熱器と、この吸熱器への冷媒の流入を制御するための室内膨張弁と、制御装置を備え、この制御装置により少なくとも、圧縮機から吐出された冷媒を放熱器及び室外熱交換器にて放熱させ、放熱した当該冷媒を室内膨張弁により減圧した後、吸熱器にて吸熱させる除湿冷房モードを実行する車両用空気調和装置において、制御装置が、除湿冷房モードにおいて、室外熱交換器の温度TXOと、外気温度Tamに基づいて室外膨張弁の弁開度を制御するようにしたので、例えば、請求項5の発明の如く制御装置が、室外熱交換器の温度TXOが外気温度Tam、又は、外気温度Tam+所定値αより高い場合、室外膨張弁の弁開度を縮小させ、室外熱交換器の温度TXOが外気温度Tam、又は、外気温度Tam+所定値αまで低下した場合、室外膨張弁の弁開度の縮小を停止することで、除湿冷房モードでの室外熱交換器における放熱機能を確保し、除湿冷房モードを成立させながら、室外膨張弁の個体バラツキを考慮すること無く、放熱器の加熱能力を最大限発揮させることが可能となる。 According to the invention of the fourth aspect, a compressor for compressing the refrigerant, a radiator for radiating the refrigerant and heating the air supplied to the vehicle interior, and a radiator provided outside the vehicle interior and exiting the radiator. An outdoor heat exchanger into which the refrigerant flows, an outdoor expansion valve for controlling the inflow of the refrigerant into the outdoor heat exchanger, and a heat absorber for absorbing the refrigerant and cooling the air supplied to the vehicle interior. An indoor expansion valve for controlling the inflow of the refrigerant into the heat absorber and a control device are provided, and at least the refrigerant discharged from the compressor is dissipated by the radiator and the outdoor heat exchanger to dissipate heat. In the vehicle air conditioner that executes the dehumidifying / cooling mode in which the refrigerant is decompressed by the indoor expansion valve and then absorbed by the heat absorber, the control device controls the temperature TXO of the outdoor heat exchanger and the outside air in the dehumidifying / cooling mode. Since the valve opening degree of the outdoor expansion valve is controlled based on the temperature Tam, for example, as in the invention of claim 5, the temperature TXO of the outdoor heat exchanger is the outside air temperature Tam or the outside air temperature Tam +. If it is higher than the predetermined value α, the valve opening of the outdoor expansion valve is reduced, and if the temperature TXO of the outdoor heat exchanger drops to the outside air temperature Tam or the outside air temperature Tam + the predetermined value α, the valve opening of the outdoor expansion valve. By stopping the reduction of the air, the heat dissipation function of the outdoor heat exchanger in the dehumidifying and cooling mode is secured, and while the dehumidifying and cooling mode is established, the heating capacity of the radiator can be increased without considering the individual variation of the outdoor expansion valve. It will be possible to maximize it.
 これにより、同様に補助的な加熱装置を発熱させる必要性も解消、若しくは、抑制されるため、除湿冷房モードにおける空調性能を改善しながら、省エネルギーにも寄与することができるようになる。 As a result, the need to generate heat in the auxiliary heating device is also eliminated or suppressed, so that it is possible to contribute to energy saving while improving the air conditioning performance in the dehumidifying / cooling mode.
 この場合、例えば請求項6の発明の如く制御装置が、外気温度Tam、又は、外気温度Tam+所定値αの上下に所定の上限値TamHiLimと下限値TamLoLimを設定すると共に、室外熱交換器の温度TXOが外気温度Tam、又は、外気温度Tam+所定値αとなった後、下限値TamLoLimまで低下した場合、室外膨張弁の弁開度を拡大させ、室外熱交換器の温度TXOが上限値TamHiLimまで上昇した場合、室外膨張弁の弁開度の拡大を停止するようにすることで、室外熱交換器の温度TXOと外気温度Tamに基づき、除湿冷房モードにおいて放熱器の加熱能力を最大限発揮させる室外膨張弁の制御を、円滑、且つ、的確に実現することが可能となる。 In this case, for example, as in the invention of claim 6, the control device sets a predetermined upper limit value TamHiLim and a lower limit value TamMoLim above and below the outside air temperature Tam or the outside air temperature Tam + the predetermined value α, and the temperature of the outdoor heat exchanger. When the TXO reaches the outside air temperature Tam or the outside air temperature Tam + the predetermined value α and then drops to the lower limit value TamMoLim, the valve opening of the outdoor expansion valve is expanded and the temperature TXO of the outdoor heat exchanger reaches the upper limit value TamHiLim. When the temperature rises, the expansion of the valve opening of the outdoor expansion valve is stopped, so that the heating capacity of the radiator is maximized in the dehumidifying / cooling mode based on the temperature TXO of the outdoor heat exchanger and the outside air temperature Tam. It is possible to smoothly and accurately control the outdoor expansion valve.
 また、この場合も請求項7の発明の如く制御装置が、室外熱交換器の温度TXOが外気温度Tam、又は、外気温度Tam+所定値αまで低下する前に、放熱器の出口における冷媒の過冷却度SCが、その目標値である所定の目標過冷却度TGSCまで上昇した場合、室外膨張弁の弁開度の縮小を停止する。更には、請求項8の発明の如く目標過冷却度TGSCの上下に所定の上限値TGSCHiLimと下限値TGSCLoLimを設定すると共に、過冷却度SCが目標過冷却度TGSCとなった後、上限値TGSCHiLimまで上昇した場合、室外膨張弁の弁開度を拡大させ、過冷却度SCが下限値TGSCLoLimまで低下した場合、室外膨張弁の弁開度の拡大を停止するようにするようにすれば、目標過冷却度TGSCを放熱器において冷媒が凝縮し過ぎない適切な値に設定しておくことで、室外熱交換器の温度TXOが外気温度Tam、又は、外気温度Tam+所定値αまで低下する以前に、放熱器の出口における冷媒の過冷却度SCと目標過冷却度TGSCに基づいて室外膨張弁の弁開度の縮小を停止させ、以後は過冷却度SCと目標過冷却度TGSCに基づき、除湿冷房モードにおいて放熱器の加熱能力を最大限発揮させる室外膨張弁の制御を、円滑、且つ、的確に実現していくことが可能となる。 Further, also in this case, as in the invention of claim 7, the control device supercools the refrigerant at the outlet of the radiator before the temperature TXO of the outdoor heat exchanger drops to the outside air temperature Tam or the outside air temperature Tam + a predetermined value α. When the cooling degree SC rises to a predetermined target supercooling degree TGSC, which is the target value, the reduction of the valve opening degree of the outdoor expansion valve is stopped. Further, as in the invention of claim 8, a predetermined upper limit value TGSCHiLim and a lower limit value TGSCLoLim are set above and below the target supercooling degree TGSC, and after the supercooling degree SC becomes the target supercooling degree TGSC, the upper limit value TGSCHiLim If it rises to, the valve opening of the outdoor expansion valve is expanded, and if the supercooling degree SC drops to the lower limit value TGSCLoLim, the expansion of the valve opening of the outdoor expansion valve is stopped. By setting the supercooling degree TGSC to an appropriate value so that the refrigerant does not condense too much in the radiator, before the temperature TXO of the outdoor heat exchanger drops to the outside air temperature Tam or the outside air temperature Tam + the predetermined value α. , Stops the reduction of the valve opening of the outdoor expansion valve based on the refrigerant supercooling degree SC and the target supercooling degree TGSC at the outlet of the radiator, and then dehumidifies based on the supercooling degree SC and the target supercooling degree TGSC. It is possible to smoothly and accurately control the outdoor expansion valve that maximizes the heating capacity of the radiator in the cooling mode.
 これにより、室外熱交換器の温度TXOと外気温度Tamに基づいて除湿冷房モードを確実に成立させながら、過冷却度SCと目標過冷却度TGSCに基づいて放熱器の加熱能力を最大限発揮させる室外膨張弁の制御を行い、快適な車室内空調を実現することができるようになる。 As a result, the dehumidifying and cooling mode is surely established based on the temperature TXO of the outdoor heat exchanger and the outside air temperature Tam, and the heating capacity of the radiator is maximized based on the supercooling degree SC and the target supercooling degree TGSC. By controlling the outdoor expansion valve, it becomes possible to realize comfortable vehicle interior air conditioning.
 また、請求項9の発明の如く制御装置が、吸熱器から出た冷媒に過熱度SHを付けない方向で室内膨張弁の弁開度を制御するようにすれば、吸熱器から出た冷媒には過熱度SHが付かないか、付いても極めて小さいものなる。これにより、吸熱器の全体、若しくは、略全体で冷媒が蒸発し、車室内に供給する空気から吸熱することができるようになるので、吸熱器に温度分布が生じる不都合を解消、若しくは、抑制し、車室内を効果的に冷房することができるようになる。また、オイル戻りも良くなるので、圧縮機の焼き付きも未然に回避することができるようになる。 Further, if the control device controls the valve opening degree of the indoor expansion valve in a direction in which the superheat degree SH is not attached to the refrigerant discharged from the heat absorber as in the invention of claim 9, the refrigerant discharged from the heat absorber can be used. Does not have the degree of superheat SH, or even if it does, it is extremely small. As a result, the refrigerant evaporates in the entire or substantially the entire heat absorber, and heat can be absorbed from the air supplied to the passenger compartment. Therefore, the inconvenience of temperature distribution in the heat absorber can be eliminated or suppressed. , It will be possible to effectively cool the passenger compartment. In addition, since the oil return is improved, the seizure of the compressor can be avoided in advance.
 特に、請求項2の発明の如く制御装置が、吸熱器から出た冷媒に過熱度SHが付いた場合、室内膨張弁の弁開度を、開く方向で変更することで、吸熱器の温度分布の発生やオイル戻りの悪化を効果的に解消、若しくは、抑制することができるようになる。 In particular, when the control device has a degree of superheat SH attached to the refrigerant discharged from the heat absorber as in the invention of claim 2, the temperature distribution of the heat absorber is obtained by changing the valve opening degree of the indoor expansion valve in the opening direction. It becomes possible to effectively eliminate or suppress the occurrence of the occurrence of oil and the deterioration of oil return.
 この場合、具体的には請求項11の発明の如く制御装置が、吸熱器から出た冷媒の過熱度SHが、所定の閾値SH1より大きくなった場合、室内膨張弁の弁開度を、開く方向で変更するようにすれば、閾値SH1を極めて小さい値に設定しておくことで、吸熱器の温度分布の発生やオイル戻りの悪化を適切に解消、若しくは、抑制することができるようになる。 In this case, specifically, as in the invention of claim 11, when the superheat degree SH of the refrigerant discharged from the endothermic absorber becomes larger than the predetermined threshold value SH1, the valve opening degree of the indoor expansion valve is opened. By changing the direction, by setting the threshold value SH1 to an extremely small value, it becomes possible to appropriately eliminate or suppress the occurrence of the temperature distribution of the heat absorber and the deterioration of the oil return. ..
 また、請求項12の発明の如く吸熱器の冷媒出口から圧縮機の冷媒吸込側に至る冷媒回路にアキュムレータを設けることで、圧縮機への液バックを効果的に解消することができるようになる。 Further, by providing an accumulator in the refrigerant circuit from the refrigerant outlet of the heat absorber to the refrigerant suction side of the compressor as in the invention of claim 12, it becomes possible to effectively eliminate the liquid back to the compressor. ..
本発明を適用した車両用空気調和装置の一実施例の構成図である(暖房モード)。It is a block diagram of one Example of the air conditioner for a vehicle to which this invention is applied (heating mode). 図1の車両用空気調和装置の制御装置としての空調コントローラのブロック図である。It is a block diagram of the air-conditioning controller as a control device of the air conditioner for a vehicle of FIG. 図2の空調コントローラによる除湿暖房モードを説明する図である。It is a figure explaining the dehumidifying heating mode by the air-conditioning controller of FIG. 図2の空調コントローラによる除湿冷房モード及び冷房モードを説明する図である。It is a figure explaining the dehumidifying cooling mode and the cooling mode by the air-conditioning controller of FIG. 図2の空調コントローラによる車両冷却系統冷却モードを説明する図である。It is a figure explaining the vehicle cooling system cooling mode by the air-conditioning controller of FIG. 除湿冷房モードにおける室外膨張弁の弁開度と、室外熱交換器の放熱量及び吸熱器の温度分布との関係を説明する図である。It is a figure explaining the relationship between the valve opening degree of the outdoor expansion valve in a dehumidifying cooling mode, the heat dissipation amount of an outdoor heat exchanger, and the temperature distribution of a heat absorber. 図2の空調コントローラが実行する除湿冷房モードにおける室外膨張弁の弁開度制御の一例を説明する図である(実施例1)。It is a figure explaining an example of valve opening degree control of the outdoor expansion valve in the dehumidifying cooling mode executed by the air conditioning controller of FIG. 2 (Example 1). 図2の空調コントローラが実行する除湿冷房モードにおける室外膨張弁の弁開度制御の他の例を説明する図である(実施例2)。It is a figure explaining another example of valve opening degree control of the outdoor expansion valve in the dehumidifying cooling mode executed by the air conditioning controller of FIG. 2 (Example 2).
 以下、本発明の実施の形態について、図面に基づき詳細に説明する。 Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings.
 図1は本発明を適用した一実施例の車両用空気調和装置1の構成図を示している。本発明を適用する実施例の車両は、エンジン(内燃機関)が搭載されていない電気自動車(EV)であって、車両にバッテリ(例えば、リチウムイオンバッテリ)が搭載され、外部電源からバッテリに充電された電力を走行用モータ(電動モータ)に供給することで駆動し、走行するものである。そして、車両用空気調和装置1も、バッテリから給電されて駆動されるものである。 FIG. 1 shows a configuration diagram of an air conditioner 1 for a vehicle according to an embodiment to which the present invention is applied. The vehicle of the embodiment to which the present invention is applied is an electric vehicle (EV) without an engine (internal combustion engine), and the vehicle is equipped with a battery (for example, a lithium ion battery) to charge the battery from an external power source. It is driven and traveled by supplying the generated electric power to a traveling motor (electric motor). The vehicle air conditioner 1 is also driven by being supplied with power from a battery.
 即ち、実施例の車両用空気調和装置1は、エンジン廃熱による暖房ができない電気自動車において、冷媒回路Rを有するヒートポンプ装置HPにより暖房モードを行い、更に、除湿暖房モードや除湿冷房モード、冷房モードの各運転モードを選択的に実行することで、車室内の空調を行うものである。更にまた、冷媒を用いて後述する如くバッテリを含む車両冷却系統61を冷却する車両冷却系統冷却モードも実行する。尚、車両として係る電気自動車に限らず、エンジンと走行用の電動モータを供用する所謂ハイブリッド自動車にも本発明が有効であることは云うまでもない。 That is, the vehicle air conditioner 1 of the embodiment performs the heating mode by the heat pump device HP having the refrigerant circuit R in the electric vehicle that cannot be heated by the waste heat of the engine, and further, the dehumidifying heating mode, the dehumidifying cooling mode, and the cooling mode. By selectively executing each of the above operation modes, the interior of the vehicle is air-conditioned. Furthermore, a vehicle cooling system cooling mode for cooling the vehicle cooling system 61 including the battery using a refrigerant is also executed as described later. Needless to say, the present invention is effective not only for the electric vehicle as a vehicle but also for a so-called hybrid vehicle that uses an engine and an electric motor for traveling.
 実施例の車両用空気調和装置1は、電気自動車の車室内の空調(暖房、冷房、除湿、及び、換気)を行うものであり、バッテリから給電されて冷媒を圧縮する電動式の圧縮機(電動圧縮機)2と、車室内空気が通気循環されるHVACユニット10の空気流通路3内に設けられ、圧縮機2から吐出された高温高圧の冷媒が冷媒配管13G及びストレーナ55を介して流入し、この冷媒を放熱させて車室内に供給する空気を加熱するための放熱器4と、電動膨張弁から成る室外膨張弁6と、冷房時には冷媒を放熱させる放熱器(放熱機能)として機能し、暖房時には冷媒を吸熱させる吸熱器(吸熱機能)として機能すべく冷媒と外気との間で熱交換を行わせるための室外熱交換器7と、冷媒を減圧膨張させる電動膨張弁から成る室内膨張弁8と、空気流通路3内に設けられて冷房時(除湿時)に車室内外から冷媒に吸熱させて車室内に供給する空気を冷却するための吸熱器9と、アキュムレータ12等が冷媒配管13により順次接続され、ヒートポンプ装置HPの冷媒回路Rが構成されている。室外膨張弁6は室外熱交換器7への冷媒の流入を制御し、室内膨張弁8は吸熱器9への冷媒の流入を制御するもので、冷媒を減圧膨張させると共に、全開や全閉も可能とされている。 The vehicle air conditioner 1 of the embodiment air-conditions (heats, cools, dehumidifies, and ventilates) the interior of the electric vehicle, and is an electric compressor (powered from a battery to compress the refrigerant). The electric compressor) 2 and the high-temperature and high-pressure refrigerant discharged from the compressor 2 are provided in the air flow passage 3 of the HVAC unit 10 through which the air inside the vehicle is ventilated and circulated, and flow in through the refrigerant pipe 13G and the strainer 55. It functions as a radiator 4 for radiating the refrigerant and heating the air supplied to the vehicle interior, an outdoor expansion valve 6 composed of an electric expansion valve, and a radiator (radiation function) for radiating the refrigerant during cooling. Indoor expansion consisting of an outdoor heat exchanger 7 for exchanging heat between the refrigerant and the outside air so as to function as a heat absorber (heat absorption function) for absorbing the refrigerant during heating, and an electric expansion valve for decompressing and expanding the refrigerant. The valve 8, the heat exchanger 9 provided in the air flow passage 3 for cooling the air supplied to the vehicle interior by absorbing heat from the outside of the vehicle interior to the refrigerant during cooling (during dehumidification), the accumulator 12 and the like are the refrigerants. The refrigerant circuit R of the heat pump device HP is sequentially connected by the pipe 13. The outdoor expansion valve 6 controls the inflow of the refrigerant into the outdoor heat exchanger 7, and the indoor expansion valve 8 controls the inflow of the refrigerant into the heat absorber 9. The refrigerant is decompressed and expanded, and can be fully opened or fully closed. It is possible.
 尚、室外熱交換器7には、室外送風機15が設けられている。この室外送風機15は、室外熱交換器7に外気を強制的に通風することにより、外気と冷媒とを熱交換させるものであり、これにより停車中(即ち、車速が0km/h)にも室外熱交換器7に外気が通風されるよう構成されている。 The outdoor heat exchanger 7 is provided with an outdoor blower 15. The outdoor blower 15 forcibly ventilates the outdoor air to the outdoor heat exchanger 7 to exchange heat between the outside air and the refrigerant, whereby the outdoor air is outdoors even when the vehicle is stopped (that is, the vehicle speed is 0 km / h). The heat exchanger 7 is configured to ventilate outside air.
 また、室外熱交換器7の冷媒出口側に接続された冷媒配管13Aは、逆止弁18を介して冷媒配管13Bに接続されている。尚、逆止弁18は冷媒配管13B側が順方向とされ、この冷媒配管13Bは室内膨張弁8に接続されている。 Further, the refrigerant pipe 13A connected to the refrigerant outlet side of the outdoor heat exchanger 7 is connected to the refrigerant pipe 13B via the check valve 18. The check valve 18 has a forward direction on the refrigerant pipe 13B side, and the refrigerant pipe 13B is connected to the indoor expansion valve 8.
 また、室外熱交換器7から出た冷媒配管13Aは分岐しており、この分岐した冷媒配管13Dは、暖房時に開放される電磁弁から成る暖房弁21を介して吸熱器9の出口側に位置する冷媒配管13Cに連通接続されている。そして、この冷媒配管13Dの接続点より下流側の冷媒配管13Cに逆止弁20が接続され、この逆止弁20より下流側の冷媒配管13Cがアキュムレータ12に接続され、アキュムレータ12は圧縮機2の冷媒吸込側に接続されている。尚、逆止弁20はアキュムレータ12側が順方向とされている。 Further, the refrigerant pipe 13A coming out of the outdoor heat exchanger 7 is branched, and the branched refrigerant pipe 13D is located on the outlet side of the heat absorber 9 via a heating valve 21 composed of a solenoid valve opened at the time of heating. It is connected to the refrigerant pipe 13C to be connected. Then, the check valve 20 is connected to the refrigerant pipe 13C downstream from the connection point of the refrigerant pipe 13D, the refrigerant pipe 13C downstream from the check valve 20 is connected to the accumulator 12, and the accumulator 12 is the compressor 2. It is connected to the refrigerant suction side of. The check valve 20 has the accumulator 12 side in the forward direction.
 更に、放熱器4の冷媒出口側の冷媒配管13Eは室外膨張弁6の手前(冷媒上流側の放熱器4の冷媒出口側)で冷媒配管13Jと冷媒配管13Fに分岐しており、分岐した一方の冷媒配管13Jが室外膨張弁6を介して室外熱交換器7の冷媒入口側に接続されている。また、分岐した他方の冷媒配管13Fは除湿時に開放される電磁弁から成る除湿弁22を介して逆止弁18の冷媒下流側であって、室内膨張弁8の冷媒上流側に位置する冷媒配管13Bに連通接続されている。 Further, the refrigerant pipe 13E on the refrigerant outlet side of the radiator 4 is branched into the refrigerant pipe 13J and the refrigerant pipe 13F in front of the outdoor expansion valve 6 (on the refrigerant outlet side of the radiator 4 on the upstream side of the refrigerant), and one of the branches. The refrigerant pipe 13J of the above is connected to the refrigerant inlet side of the outdoor heat exchanger 7 via the outdoor expansion valve 6. Further, the other branched refrigerant pipe 13F is a refrigerant pipe located on the downstream side of the refrigerant of the check valve 18 via a dehumidifying valve 22 composed of a solenoid valve opened at the time of dehumidification, and on the upstream side of the refrigerant of the indoor expansion valve 8. It is connected to 13B in communication.
 これにより、冷媒配管13Fは室外膨張弁6、室外熱交換器7及び逆止弁18の直列回路に対して並列に接続されたかたちとなり、室外膨張弁6、室外熱交換器7及び逆止弁18をバイパスするバイパス回路となる。 As a result, the refrigerant pipe 13F is connected in parallel to the series circuit of the outdoor expansion valve 6, the outdoor heat exchanger 7, and the check valve 18, and the outdoor expansion valve 6, the outdoor heat exchanger 7, and the check valve are connected in parallel. It is a bypass circuit that bypasses 18.
 また、吸熱器9の空気上流側における空気流通路3には、外気吸込口と内気吸込口の各吸込口が形成されており(図1では吸込口25で代表して示す)、この吸込口25には空気流通路3内に導入する空気を車室内の空気である内気(内気循環)と、車室外の空気である外気(外気導入)とに切り換える吸込切換ダンパ26が設けられている。更に、この吸込切換ダンパ26の空気下流側には、導入した内気や外気を空気流通路3に送給するための室内送風機(ブロワファン)27が設けられている。 Further, in the air flow passage 3 on the air upstream side of the heat absorber 9, each suction port of the outside air suction port and the inside air suction port is formed (represented by the suction port 25 in FIG. 1), and this suction port is formed. The suction switching damper 26 for switching the air introduced into the air flow passage 3 into the inside air (inside air circulation), which is the air inside the vehicle interior, and the outside air (outside air introduction), which is the air outside the vehicle interior, is provided. Further, an indoor blower fan 27 for supplying the introduced inside air and outside air to the air flow passage 3 is provided on the air downstream side of the suction switching damper 26.
 また、図1において23は補助加熱装置としての補助ヒータである。この補助ヒータ23はPTCヒータ等の電気ヒータから構成されており、実施例では空気流通路3の空気の流れに対して、放熱器4の風下側となる空気流通路3内に設けられている。そして、補助ヒータ23に通電することで、車室内の暖房補助を行うことができるように構成されている。 Further, in FIG. 1, 23 is an auxiliary heater as an auxiliary heating device. The auxiliary heater 23 is composed of an electric heater such as a PTC heater, and is provided in the air flow passage 3 on the leeward side of the radiator 4 with respect to the air flow in the air flow passage 3 in the embodiment. .. Then, by energizing the auxiliary heater 23, the heating of the vehicle interior can be assisted.
 また、放熱器4の空気上流側における空気流通路3内には、当該空気流通路3内に流入し、吸熱器9を通過した後の空気流通路3内の空気(内気や外気)を放熱器4及び補助ヒータ23に通風する割合を調整するエアミックスダンパ28が設けられている。更に、放熱器4の空気下流側における空気流通路3には、FOOT(フット)、VENT(ベント)、DEF(デフ)の各吹出口(図1では代表して吹出口29で示す)が形成されており、この吹出口29には上記各吹出口から空気の吹き出しを切換制御する吹出口切換ダンパ31が設けられている。 Further, in the air flow passage 3 on the air upstream side of the radiator 4, the air (inside air or outside air) in the air flow passage 3 after flowing into the air flow passage 3 and passing through the heat absorber 9 is radiated. An air mix damper 28 for adjusting the ratio of ventilation to the vessel 4 and the auxiliary heater 23 is provided. Further, FOOT (foot), VENT (vent), and DEF (diff) outlets (represented by outlet 29 in FIG. 1) are formed in the air flow passage 3 on the air downstream side of the radiator 4. The outlet 29 is provided with an outlet switching damper 31 that switches and controls the blowing of air from each of the outlets.
 更に、図1において61は前述した車両冷却系統である。この車両冷却系統61とは、バッテリや走行用モータ等の冷却が必要な車両搭載機器を含み、冷媒を用いてこれら車両搭載機器を冷却するための系統である。実施例の場合、冷媒回路Rの冷媒配管13Fの出口、即ち、冷媒配管13Fと冷媒配管13Bとの接続部の冷媒下流側であって、室内膨張弁8の冷媒上流側に位置する冷媒配管13Bには分岐配管72の一端が接続されている。この分岐配管72には電動膨張弁から構成された補助膨張弁73が設けられている。この補助膨張弁73は分岐配管72から車両冷却系統61に流入する冷媒を減圧膨張させると共に、全閉も可能とされている。 Further, in FIG. 1, 61 is the vehicle cooling system described above. The vehicle cooling system 61 includes vehicle-mounted equipment that requires cooling, such as a battery and a traveling motor, and is a system for cooling these vehicle-mounted equipment using a refrigerant. In the case of the embodiment, the refrigerant pipe 13B located at the outlet of the refrigerant pipe 13F of the refrigerant circuit R, that is, the refrigerant downstream side of the connection portion between the refrigerant pipe 13F and the refrigerant pipe 13B and on the refrigerant upstream side of the indoor expansion valve 8. One end of the branch pipe 72 is connected to. The branch pipe 72 is provided with an auxiliary expansion valve 73 composed of an electric expansion valve. The auxiliary expansion valve 73 decompresses and expands the refrigerant flowing from the branch pipe 72 into the vehicle cooling system 61, and can be fully closed.
 そして、車両冷却系統61には冷媒配管74の一端が接続され、冷媒配管74の他端は逆止弁20の冷媒下流側であって、アキュムレータ12の手前(冷媒上流側)の冷媒配管13Cに接続されている。補助膨張弁73が開いている場合、冷媒配管13Bを流れる冷媒(一部又は全ての冷媒)は分岐配管72に流入し、補助膨張弁73で減圧された後、車両冷却系統61に流入して、そこで蒸発する。冷媒は車両冷却系統61を流れる過程でバッテリや走行用モータから吸熱し、それらを冷却した後、冷媒配管74及びアキュムレータ12を経て圧縮機2に吸い込まれることになる。 Then, one end of the refrigerant pipe 74 is connected to the vehicle cooling system 61, and the other end of the refrigerant pipe 74 is on the downstream side of the refrigerant of the check valve 20 and is connected to the refrigerant pipe 13C in front of the accumulator 12 (upstream side of the refrigerant). It is connected. When the auxiliary expansion valve 73 is open, the refrigerant (part or all of the refrigerant) flowing through the refrigerant pipe 13B flows into the branch pipe 72, is depressurized by the auxiliary expansion valve 73, and then flows into the vehicle cooling system 61. , Evaporates there. The refrigerant absorbs heat from the battery and the traveling motor in the process of flowing through the vehicle cooling system 61, cools them, and then is sucked into the compressor 2 through the refrigerant pipe 74 and the accumulator 12.
 次に、図2において32は車両用空気調和装置1の制御を司る制御装置としての空調コントローラ32である。この空調コントローラ32は、プロセッサを備えたコンピュータの一例としてのマイクロコンピュータから構成されている。 Next, in FIG. 2, reference numeral 32 denotes an air conditioning controller 32 as a control device that controls the vehicle air conditioner 1. The air conditioning controller 32 is composed of a microcomputer as an example of a computer including a processor.
 空調コントローラ32(制御装置)の入力には、車両の外気温度(Tam)を検出する外気温度センサ33と、外気湿度を検出する外気湿度センサ34と、吸込口25から空気流通路3に吸い込まれる空気の温度を検出するHVAC吸込温度センサ36と、車室内の空気(内気)の温度を検出する内気温度センサ37と、車室内の空気の湿度を検出する内気湿度センサ38と、車室内の二酸化炭素濃度を検出する室内CO2濃度センサ39と、吹出口29から車室内に吹き出される空気の温度を検出する吹出温度センサ41と、圧縮機2の吐出冷媒圧力(吐出圧力Pd)を検出する吐出圧力センサ42と、圧縮機2の吐出冷媒温度を検出する吐出温度センサ43と、圧縮機2に吸い込まれる冷媒の温度と圧力を検出する吸込センサ44と、放熱器4に流入する冷媒の温度(放熱器入口温度TCIin)を検出する放熱器入口温度センサ46と、放熱器4から出た冷媒の温度(放熱器出口温度TCIout)と圧力(放熱器圧力PCI)を検出する放熱器出口センサ47と、吸熱器9の温度(吸熱器温度Te)を検出する吸熱器温度センサ48と、吸熱器9から出た冷媒の温度(吸熱器出口温度Teout)と圧力(吸熱器圧力Pe)を検出する吸熱器出口センサ49と、車室内への日射量を検出するための例えばフォトセンサ式の日射センサ51と、車両の移動速度(車速)を検出するための車速センサ52と、設定温度や空調運転の切り換えを設定するための空調操作部53と、室外熱交換器7から出た冷媒の温度(室外熱交換器温度TXO)と圧力を検出する室外熱交換器出口センサ54と、補助ヒータ23の温度を検出する補助ヒータ温度センサ76の各出力が接続されている。 The input of the air conditioning controller 32 (control device) is sucked into the air flow passage 3 from the outside air temperature sensor 33 that detects the outside air temperature (Tam) of the vehicle, the outside air humidity sensor 34 that detects the outside air humidity, and the suction port 25. The HVAC suction temperature sensor 36 that detects the temperature of the air, the inside air temperature sensor 37 that detects the temperature of the air (inside air) in the vehicle interior, the inside air humidity sensor 38 that detects the humidity of the air inside the vehicle interior, and the dioxide in the vehicle interior. The indoor CO 2 concentration sensor 39 that detects the carbon concentration, the blowout temperature sensor 41 that detects the temperature of the air blown into the vehicle interior from the blowout port 29, and the discharge refrigerant pressure (discharge pressure Pd) of the compressor 2 are detected. The discharge pressure sensor 42, the discharge temperature sensor 43 that detects the discharge refrigerant temperature of the compressor 2, the suction sensor 44 that detects the temperature and pressure of the refrigerant sucked into the compressor 2, and the temperature of the refrigerant that flows into the radiator 4. A radiator inlet temperature sensor 46 that detects (radiator inlet temperature TCIin), and a radiator outlet sensor 47 that detects the temperature (radiator outlet temperature TCIout) and pressure (radiator pressure PCI) of the refrigerant emitted from the radiator 4. The heat absorber temperature sensor 48 that detects the temperature of the heat absorber 9 (heat absorber temperature Te), and the temperature (heat absorber outlet temperature Teout) and pressure (heat absorber pressure Pe) of the refrigerant emitted from the heat absorber 9 are detected. A heat absorber outlet sensor 49, for example, a photosensor type solar radiation sensor 51 for detecting the amount of solar radiation into the vehicle interior, a vehicle speed sensor 52 for detecting the moving speed (vehicle speed) of the vehicle, a set temperature and air conditioning operation. The air conditioning operation unit 53 for setting the switching, the outdoor heat exchanger outlet sensor 54 for detecting the temperature (outdoor heat exchanger temperature TXO) and pressure of the refrigerant emitted from the outdoor heat exchanger 7, and the auxiliary heater 23. Each output of the auxiliary heater temperature sensor 76 that detects the temperature is connected.
 一方、空調コントローラ32の出力には、前記圧縮機2と、室外送風機15と、室内送風機(ブロワファン)27と、吸込切換ダンパ26と、エアミックスダンパ28と、吹出口切換ダンパ31と、室外膨張弁6、室内膨張弁8と、除湿弁22、暖房弁21の各電磁弁と、補助膨張弁73、補助ヒータ23が接続されている。そして、空調コントローラ32は各センサの出力と空調操作部53にて入力された設定に基づいてこれらを制御するものである。 On the other hand, the output of the air conditioning controller 32 includes the compressor 2, the outdoor blower 15, the indoor blower (blower fan) 27, the suction switching damper 26, the air mix damper 28, the air outlet switching damper 31, and the outdoor. The expansion valve 6, the indoor expansion valve 8, the dehumidifying valve 22, the heating valve 21, each solenoid valve, the auxiliary expansion valve 73, and the auxiliary heater 23 are connected. The air conditioning controller 32 controls these based on the output of each sensor and the settings input by the air conditioning operation unit 53.
 以上の構成で、次に実施例の車両用空気調和装置1の動作について説明する。空調コントローラ32(制御装置)は、この実施例では暖房モードと、除湿暖房モードと、除湿冷房モードと、冷房モードの各運転モードを切り換えて実行すると共に、車両冷却系統61を冷却する車両冷却系統冷却モード(運転モード)を実行する。先ず、車室内の空調を行う運転モードについて説明する。 With the above configuration, the operation of the vehicle air conditioner 1 of the embodiment will be described next. In this embodiment, the air conditioning controller 32 (control device) switches and executes each operation mode of the heating mode, the dehumidifying heating mode, the dehumidifying cooling mode, and the cooling mode, and cools the vehicle cooling system 61. Execute the cooling mode (operation mode). First, an operation mode for air-conditioning the interior of the vehicle will be described.
 (1)暖房モード
 最初に、図1を参照しながら暖房モードについて説明する。図1には暖房モードにおける冷媒回路Rの冷媒の流れ(実線矢印)を示している。冬場等の低外気温時に空調コントローラ32により(オートモード)、或いは、空調操作部53へのマニュアル操作(マニュアルモード)により暖房モードが選択されると、空調コントローラ32は暖房弁21と除湿弁22を開放し、室内膨張弁8を全閉とする。室外膨張弁6と補助膨張弁73は開いて冷媒を減圧膨張させる状態とする。
(1) Heating mode First, the heating mode will be described with reference to FIG. FIG. 1 shows the flow of the refrigerant (solid arrow) in the refrigerant circuit R in the heating mode. When the heating mode is selected by the air conditioning controller 32 (auto mode) or by manual operation to the air conditioning operation unit 53 (manual mode) at low outside temperature such as in winter, the air conditioning controller 32 has the heating valve 21 and the dehumidifying valve 22. Is opened, and the indoor expansion valve 8 is fully closed. The outdoor expansion valve 6 and the auxiliary expansion valve 73 are opened to reduce the pressure and expand the refrigerant.
 そして、圧縮機2、及び、各送風機15、27を運転し、エアミックスダンパ28は室内送風機27から吹き出された空気が放熱器4及び補助ヒータ23に通風される割合を調整する状態とする。これにより、圧縮機2から吐出された高温高圧のガス冷媒は放熱器4に流入する。放熱器4には空気流通路3内の空気が通風されるので、空気流通路3内の空気は放熱器4内の高温冷媒により加熱され、一方、放熱器4内の冷媒は空気に熱を奪われて冷却され、凝縮液化する。 Then, the compressor 2 and the blowers 15 and 27 are operated, and the air mix damper 28 is in a state of adjusting the ratio of the air blown from the indoor blower 27 to the radiator 4 and the auxiliary heater 23. As a result, the high-temperature and high-pressure gas refrigerant discharged from the compressor 2 flows into the radiator 4. Since the air in the air flow passage 3 is ventilated through the radiator 4, the air in the air flow passage 3 is heated by the high temperature refrigerant in the radiator 4, while the refrigerant in the radiator 4 heats the air. It is deprived, cooled, and condensed.
 放熱器4内で液化した冷媒は放熱器4を出た後、冷媒配管13Eを経て室外膨張弁6と除湿弁22の手前で分流され、一方の冷媒は冷媒配管13Jを経て室外膨張弁6に至る。室外膨張弁6に流入した冷媒はそこで減圧された後、室外熱交換器7に流入する。室外熱交換器7に流入した冷媒は蒸発し、走行により、或いは、室外送風機15にて通風される外気中から熱を汲み上げる(吸熱機能)。そして、室外熱交換器7を出た低温の冷媒は冷媒配管13A及び冷媒配管13D、暖房弁21を経て冷媒配管13Cに至り、当該冷媒配管13Cの逆止弁20を経てアキュムレータ12に入り、そこで気液分離された後、ガス冷媒が圧縮機2に吸い込まれる循環を繰り返す。分流された他方の冷媒は除湿弁22と冷媒配管13F、冷媒配管13Bを経て補助膨張弁73に至る。ここで冷媒は減圧された後、車両冷却系統61に流入し、そこで蒸発する。このときに吸熱作用を発揮してバッテリや走行用モータを冷却すると共に、それらから廃熱を回収する。この車両冷却系統61で蒸発した冷媒は、冷媒配管74、13C及びアキュムレータ12を順次経て圧縮機2に吸い込まれる循環を繰り返す。放熱器4にて加熱された空気は吹出口29から吹き出されるので、外気から汲み上げられた熱とバッテリや走行用モータの廃熱により車室内の暖房が行われることになる。 After leaving the radiator 4, the refrigerant liquefied in the radiator 4 is divided into the outdoor expansion valve 6 and the dehumidifying valve 22 via the refrigerant pipe 13E, and one of the refrigerants passes through the refrigerant pipe 13J to the outdoor expansion valve 6. To reach. The refrigerant that has flowed into the outdoor expansion valve 6 is decompressed there, and then flows into the outdoor heat exchanger 7. The refrigerant that has flowed into the outdoor heat exchanger 7 evaporates and draws heat from the outside air that is ventilated by the outdoor blower 15 (heat absorption function). Then, the low-temperature refrigerant leaving the outdoor heat exchanger 7 reaches the refrigerant pipe 13C via the refrigerant pipe 13A, the refrigerant pipe 13D, and the heating valve 21, and enters the accumulator 12 via the check valve 20 of the refrigerant pipe 13C. After the gas-liquid separation, the circulation in which the gas refrigerant is sucked into the compressor 2 is repeated. The other refrigerant that has been split reaches the auxiliary expansion valve 73 via the dehumidifying valve 22, the refrigerant pipe 13F, and the refrigerant pipe 13B. Here, after the refrigerant is depressurized, it flows into the vehicle cooling system 61 and evaporates there. At this time, it exerts an endothermic action to cool the battery and the traveling motor, and recovers waste heat from them. The refrigerant evaporated in the vehicle cooling system 61 repeats circulation that is sucked into the compressor 2 in sequence through the refrigerant pipes 74 and 13C and the accumulator 12. Since the air heated by the radiator 4 is blown out from the air outlet 29, the interior of the vehicle is heated by the heat pumped from the outside air and the waste heat of the battery and the traveling motor.
 空調コントローラ32は、後述する目標吹出温度TAOから算出される目標ヒータ温度TCO(放熱器4の風下側の空気温度の目標値)から目標放熱器圧力PCO(放熱器圧力PCIの目標値)を算出し、この目標放熱器圧力PCOと、放熱器出口センサ47が検出する放熱器4の冷媒圧力(放熱器圧力PCI。冷媒回路Rの高圧側圧力)に基づいて圧縮機2の回転数を制御する。 The air conditioning controller 32 calculates the target radiator pressure PCO (target value of the radiator pressure PCI) from the target heater temperature TCO (target value of the air temperature on the leeward side of the radiator 4) calculated from the target blowout temperature TAO described later. Then, the rotation speed of the compressor 2 is controlled based on the target radiator pressure PCO and the refrigerant pressure of the radiator 4 (radiator pressure PCI; high pressure side pressure of the refrigerant circuit R) detected by the radiator outlet sensor 47. ..
 また、放熱器出口センサ47が検出する放熱器4の温度(放熱器出口温度TCIout)及び放熱器圧力PCIから求められる放熱器4から出た冷媒の過冷却度SCと暖房時の所定の目標過冷却度TGSCに基づいて室外膨張弁6の弁開度を制御し、放熱器4の出口における冷媒の過冷却度SCを目標過冷却度TGSCに制御する。前記目標ヒータ温度TCOは基本的にはTCO=TAOとされるが、制御上の所定の制限が設けられる。また、放熱器4による暖房能力(加熱能力)が不足する場合には補助ヒータ23に通電して発熱させ、暖房能力を補完する。 Further, the supercooling degree SC of the refrigerant emitted from the radiator 4 obtained from the temperature of the radiator 4 (radiator outlet temperature TCIout) detected by the radiator outlet sensor 47 and the radiator pressure PCI, and a predetermined target excess during heating. The valve opening degree of the outdoor expansion valve 6 is controlled based on the cooling degree TGSC, and the supercooling degree SC of the refrigerant at the outlet of the radiator 4 is controlled to the target supercooling degree TGSC. The target heater temperature TCO is basically TCO = TAO, but a predetermined control limit is provided. When the heating capacity (heating capacity) of the radiator 4 is insufficient, the auxiliary heater 23 is energized to generate heat to supplement the heating capacity.
 (2)除湿暖房モード
 次に、図3を参照しながら除湿暖房モードについて説明する。図3には除湿暖房モードにおける冷媒回路Rの冷媒の流れ(実線矢印)を示している。除湿暖房モードでは、空調コントローラ32は上記暖房モードの状態において補助膨張弁73を全閉とし、室内膨張弁8を開いて冷媒を減圧膨張させる状態とする。これにより、除湿弁22を経て冷媒配管13Fに流入し、冷媒配管13Bに流入した冷媒は室内膨張弁8に流れ、この室内膨張弁8にて減圧された後、吸熱器9に流入して蒸発するようになる。
(2) Dehumidifying / heating mode Next, the dehumidifying / heating mode will be described with reference to FIG. FIG. 3 shows the flow of the refrigerant (solid arrow) in the refrigerant circuit R in the dehumidifying / heating mode. In the dehumidifying and heating mode, the air conditioning controller 32 fully closes the auxiliary expansion valve 73 and opens the indoor expansion valve 8 to decompress and expand the refrigerant in the heating mode. As a result, the refrigerant flows into the refrigerant pipe 13F via the dehumidifying valve 22, and the refrigerant flowing into the refrigerant pipe 13B flows into the indoor expansion valve 8, is decompressed by the indoor expansion valve 8, and then flows into the heat absorber 9 and evaporates. Will come to do.
 空調コントローラ32は吸熱器9の出口における冷媒の過熱度SHを除湿暖房時の所定値に維持するように室内膨張弁8の弁開度を制御するが、このときに吸熱器9で生じる冷媒の吸熱作用で室内送風機27から吹き出された空気中の水分が吸熱器9に凝結して付着するので、空気は冷却され、且つ、除湿される。分流されて冷媒配管13Jに流入した残りの冷媒は、室外膨張弁6で減圧された後、室外熱交換器7で蒸発し、外気から吸熱することになる。 The air conditioning controller 32 controls the valve opening degree of the indoor expansion valve 8 so as to maintain the superheat degree SH of the refrigerant at the outlet of the heat absorber 9 at a predetermined value at the time of dehumidification and heating. Moisture in the air blown out from the indoor blower 27 by the endothermic action condenses and adheres to the heat absorber 9, so that the air is cooled and dehumidified. The remaining refrigerant that has been split and flows into the refrigerant pipe 13J is decompressed by the outdoor expansion valve 6 and then evaporated by the outdoor heat exchanger 7 to absorb heat from the outside air.
 吸熱器9で蒸発した冷媒は、冷媒配管13Cに出て冷媒配管13Dからの冷媒(室外熱交換器7からの冷媒)と合流した後、逆止弁20及びアキュムレータ12を経て圧縮機2に吸い込まれる循環を繰り返す。吸熱器9にて除湿された空気は放熱器4を通過する過程で再加熱されるので、これにより車室内の除湿暖房が行われることになる。 The refrigerant evaporated in the heat absorber 9 goes out to the refrigerant pipe 13C, merges with the refrigerant from the refrigerant pipe 13D (refrigerant from the outdoor heat exchanger 7), and then is sucked into the compressor 2 via the check valve 20 and the accumulator 12. Repeat the cycle. The air dehumidified by the heat absorber 9 is reheated in the process of passing through the radiator 4, so that the dehumidifying and heating of the vehicle interior is performed.
 空調コントローラ32は目標ヒータ温度TCOから算出される目標放熱器圧力PCOと放熱器出口センサ47が検出する放熱器圧力PCI(冷媒回路Rの高圧圧力)に基づいて圧縮機2の回転数を制御すると共に、吸熱器温度センサ48が検出する吸熱器温度Teに基づいて室外膨張弁6の弁開度を制御する。 The air conditioning controller 32 controls the rotation speed of the compressor 2 based on the target radiator pressure PCO calculated from the target heater temperature TCO and the radiator pressure PCI (high pressure of the refrigerant circuit R) detected by the radiator outlet sensor 47. At the same time, the valve opening degree of the outdoor expansion valve 6 is controlled based on the heat absorber temperature Te detected by the heat absorber temperature sensor 48.
 (3)除湿冷房モード
 次に、図4を用いて除湿冷房モードについて説明する。この除湿冷房モードでは、空調コントローラ32は室外膨張弁6の弁開度を後述する如く制御することで室外熱交換器7において冷媒を放熱(凝縮機能)させる状態とする。また、室内膨張弁8を開いて冷媒を減圧膨張させる状態とし、暖房弁21と除湿弁22を閉じる。そして、圧縮機2、及び、各送風機15、27を運転し、エアミックスダンパ28は室内送風機27から吹き出された空気が放熱器4及び補助ヒータ23に通風される割合を調整する状態とする。
(3) Dehumidifying / cooling mode Next, the dehumidifying / cooling mode will be described with reference to FIG. In this dehumidifying / cooling mode, the air conditioning controller 32 controls the valve opening degree of the outdoor expansion valve 6 as described later, so that the outdoor heat exchanger 7 dissipates heat (condensing function). Further, the indoor expansion valve 8 is opened to reduce the pressure and expand the refrigerant, and the heating valve 21 and the dehumidifying valve 22 are closed. Then, the compressor 2 and the blowers 15 and 27 are operated, and the air mix damper 28 adjusts the ratio of the air blown from the indoor blower 27 to the radiator 4 and the auxiliary heater 23.
 これにより、図4に実線矢印で示す如く圧縮機2から吐出された高温高圧のガス冷媒は放熱器4に流入する。放熱器4には空気流通路3内の空気が通風されるので、空気流通路3内の空気は放熱器4内の高温冷媒により加熱され、一方、放熱器4内の冷媒は空気に熱を奪われて冷却され、凝縮液化していく。 As a result, the high-temperature and high-pressure gas refrigerant discharged from the compressor 2 flows into the radiator 4 as shown by the solid arrow in FIG. Since the air in the air flow passage 3 is ventilated through the radiator 4, the air in the air flow passage 3 is heated by the high temperature refrigerant in the radiator 4, while the refrigerant in the radiator 4 heats the air. It is deprived, cooled, and condensed.
 放熱器4を出た冷媒は、冷媒配管13Eを経て室外膨張弁6に至り、後述する如く制御される室外膨張弁6を経て室外熱交換器7に流入する。室外熱交換器7に流入した冷媒はそこで走行により、或いは、室外送風機15にて通風される外気により空冷され、冷媒は放熱して凝縮する。 The refrigerant leaving the radiator 4 reaches the outdoor expansion valve 6 via the refrigerant pipe 13E, and flows into the outdoor heat exchanger 7 via the outdoor expansion valve 6 controlled as described later. The refrigerant flowing into the outdoor heat exchanger 7 is air-cooled by traveling there or by the outside air ventilated by the outdoor blower 15, and the refrigerant dissipates heat and condenses.
 室外熱交換器7を出た冷媒は冷媒配管13A、逆止弁18を経て冷媒配管13Bに入り、室内膨張弁8に至る。室内膨張弁8では後述する如き弁開度制御により冷媒は減圧された後、吸熱器9に流入して蒸発する。このときの吸熱作用で室内送風機27から吹き出された空気中の水分が吸熱器9に凝結して付着し、空気は冷却され、且つ、除湿される。 The refrigerant leaving the outdoor heat exchanger 7 enters the refrigerant pipe 13B via the refrigerant pipe 13A and the check valve 18, and reaches the indoor expansion valve 8. In the indoor expansion valve 8, the refrigerant is depressurized by controlling the valve opening degree as described later, and then flows into the heat absorber 9 and evaporates. Due to the endothermic action at this time, the moisture in the air blown out from the indoor blower 27 condenses and adheres to the heat absorber 9, and the air is cooled and dehumidified.
 吸熱器9で蒸発した冷媒は冷媒配管13C及び逆止弁20を経てアキュムレータ12に至り、そこを経て圧縮機2に吸い込まれる循環を繰り返す。吸熱器9にて冷却され、除湿された空気は放熱器4を通過する過程で再加熱される。これにより車室内の除湿冷房が行われることになる。 The refrigerant evaporated in the heat absorber 9 reaches the accumulator 12 via the refrigerant pipe 13C and the check valve 20, and is repeatedly sucked into the compressor 2 through the accumulator 12. The air cooled by the heat absorber 9 and dehumidified is reheated in the process of passing through the radiator 4. As a result, the interior of the vehicle is dehumidified and cooled.
 この除湿冷房モードにおいては、空調コントローラ32は吸熱器温度センサ48が検出する吸熱器温度Teに基づいて圧縮機2の回転数を制御すると共に、後に詳述する如く室外膨張弁6や室内膨張弁8の弁開度を制御する。 In this dehumidifying / cooling mode, the air conditioning controller 32 controls the rotation speed of the compressor 2 based on the endothermic temperature Te detected by the endothermic temperature sensor 48, and as described in detail later, the outdoor expansion valve 6 and the indoor expansion valve. The valve opening degree of 8 is controlled.
 (4)冷房モード
 次に、冷房モードについて説明する。夏場等の高外気温時に実行されるこの冷房モードでは、空調コントローラ32は上述した除湿冷房モード(図4)と同じ冷媒の流れとしながら、室外膨張弁6の弁開度は全開とする。これにより、圧縮機2から吐出された高温高圧のガス冷媒は放熱器4に流入する。冷房モードでは、放熱器4や補助ヒータ23には空気流通路3内の空気は殆ど通風されず、或いは、通風される場合にもその割合は小さくなる(冷房時のリヒートのみのため)。この放熱器4で冷房時のリヒート分の放熱を行った冷媒は、冷媒配管13Eを経て室外膨張弁6に至る。このとき室外膨張弁6は全開とされているので、冷媒はそのまま室外膨張弁6を経て冷媒配管13Jを通過し、室外熱交換器7に流入し、そこで走行により、或いは、室外送風機15にて通風される外気により空冷され、冷媒は放熱して凝縮液化する。
(4) Cooling mode Next, the cooling mode will be described. In this cooling mode, which is executed at a high outside temperature such as in summer, the air conditioning controller 32 has the same flow of refrigerant as the dehumidifying cooling mode (FIG. 4) described above, while the valve opening degree of the outdoor expansion valve 6 is fully opened. As a result, the high-temperature and high-pressure gas refrigerant discharged from the compressor 2 flows into the radiator 4. In the cooling mode, the air in the air flow passage 3 is hardly ventilated to the radiator 4 and the auxiliary heater 23, or even when the air is ventilated, the ratio is small (because of only reheating during cooling). The refrigerant that has dissipated heat for the reheat during cooling by the radiator 4 reaches the outdoor expansion valve 6 via the refrigerant pipe 13E. At this time, since the outdoor expansion valve 6 is fully opened, the refrigerant passes through the outdoor expansion valve 6 as it is, passes through the refrigerant pipe 13J, flows into the outdoor heat exchanger 7, and travels there or by the outdoor blower 15. It is air-cooled by the ventilated outside air, and the refrigerant dissipates heat and becomes a condensed liquid.
 室外熱交換器7を出た冷媒は冷媒配管13A、逆止弁18を経て冷媒配管13Bに入り、室内膨張弁8に至る。室内膨張弁8にて冷媒は減圧された後、吸熱器9に流入して蒸発する。このときの吸熱作用で室内送風機27から吹き出された空気中の水分が吸熱器9に凝結して付着し、空気は冷却される。 The refrigerant leaving the outdoor heat exchanger 7 enters the refrigerant pipe 13B via the refrigerant pipe 13A and the check valve 18, and reaches the indoor expansion valve 8. After the refrigerant is depressurized by the indoor expansion valve 8, it flows into the heat absorber 9 and evaporates. Due to the endothermic action at this time, the moisture in the air blown out from the indoor blower 27 condenses and adheres to the endothermic device 9, and the air is cooled.
 吸熱器9で蒸発した冷媒は冷媒配管13C及び逆止弁20を経てアキュムレータ12に至り、そこを経て圧縮機2に吸い込まれる循環を繰り返す。吸熱器9にて冷却され、除湿された空気は吹出口29から車室内に吹き出されるので、これにより車室内の冷房が行われることになる。この冷房モードにおいては、空調コントローラ32は吸熱器温度センサ48が検出する吸熱器温度Teに基づいて圧縮機2の回転数を制御する。 The refrigerant evaporated in the heat absorber 9 reaches the accumulator 12 via the refrigerant pipe 13C and the check valve 20, and is repeatedly sucked into the compressor 2 through the accumulator 12. The air cooled by the heat absorber 9 and dehumidified is blown out into the vehicle interior from the air outlet 29, so that the vehicle interior is cooled. In this cooling mode, the air conditioning controller 32 controls the rotation speed of the compressor 2 based on the endothermic temperature Te detected by the endothermic temperature sensor 48.
 (5)空調運転の切換制御
 空調コントローラ32は下記式(I)から前述した目標吹出温度TAOを算出する。この目標吹出温度TAOは、吹出口29から車室内に吹き出される空気の温度の目標値である。
 TAO=(Tset-Tin)×K+Tbal(f(Tset、SUN、Tam))
                                   ・・(I)
 ここで、Tsetは空調操作部53で設定された車室内の設定温度、Tinは内気温度センサ37が検出する車室内空気の温度、Kは係数、Tbalは設定温度Tsetや、日射センサ51が検出する日射量SUN、外気温度センサ33が検出する外気温度Tamから算出されるバランス値である。そして、一般的に、この目標吹出温度TAOは外気温度Tamが低い程高く、外気温度Tamが上昇するに伴って低下する。
(5) Switching control of air conditioning operation The air conditioning controller 32 calculates the target blowout temperature TAO described above from the following formula (I). This target outlet temperature TAO is a target value of the temperature of the air blown into the vehicle interior from the outlet 29.
TAO = (Tset-Tin) x K + Tbal (f (Tset, SUN, Tam))
・ ・ (I)
Here, Tset is the set temperature in the vehicle interior set by the air conditioning operation unit 53, Tin is the temperature of the vehicle interior air detected by the inside air temperature sensor 37, K is a coefficient, Tbal is the set temperature Tset, and the solar radiation sensor 51 detects it. It is a balance value calculated from the amount of solar radiation SUN and the outside air temperature Tam detected by the outside air temperature sensor 33. In general, the target blowing temperature TAO increases as the outside air temperature Tam decreases, and decreases as the outside air temperature Tam increases.
 そして、空調コントローラ32は起動時には外気温度センサ33が検出する外気温度Tamと目標吹出温度TAOとに基づいて上記各運転モードのうちの何れかの運転モードを選択する。また、起動後は外気温度Tamや目標吹出温度TAO等の環境や設定条件の変化に応じて前記各運転モードを選択し、切り換えていくものである。 Then, the air conditioning controller 32 selects one of the above operation modes based on the outside air temperature Tam detected by the outside air temperature sensor 33 and the target outlet temperature TAO at the time of activation. Further, after the start-up, each of the operation modes is selected and switched according to changes in the environment and setting conditions such as the outside air temperature Tam and the target blowout temperature TAO.
 (6)車両冷却系統冷却モード
 また、空調コントローラ32は例えば急速充電器等によりバッテリの充電を行う際、車両冷却系統冷却モードを実行する。図5はこの車両冷却系統冷却モードにおける冷媒回路Rの冷媒の流れ方(実線矢印)を示している。車両冷却系統冷却モードでは、空調コントローラ32は補助膨張弁73を開いて冷媒を減圧膨張させる状態とし、室外膨張弁6を全回とする。また、除湿弁22と暖房弁21を閉じ、室内膨張弁8は全閉とする。そして、圧縮機2を運転する。
(6) Vehicle Cooling System Cooling Mode The air conditioning controller 32 executes the vehicle cooling system cooling mode when charging the battery with, for example, a quick charger or the like. FIG. 5 shows how the refrigerant flows in the refrigerant circuit R (solid arrow) in this vehicle cooling system cooling mode. In the vehicle cooling system cooling mode, the air conditioning controller 32 opens the auxiliary expansion valve 73 to reduce the pressure and expand the refrigerant, and the outdoor expansion valve 6 is set to all times. Further, the dehumidifying valve 22 and the heating valve 21 are closed, and the indoor expansion valve 8 is fully closed. Then, the compressor 2 is operated.
 これにより、圧縮機2から吐出された高温高圧のガス冷媒は放熱器4に流入する。放熱器4で放熱した冷媒は冷媒配管13Eを経て冷媒配管13Jに流入し、室外膨張弁6を通過した後、室外熱交換器7、冷媒配管13Aを経て冷媒配管13Bに入る。この冷媒配管13Bに流入した冷媒は、分岐配管72に流入して補助膨張弁73に至る。ここで冷媒は減圧された後、車両冷却系統61に流入し、そこで蒸発する。このときに吸熱作用を発揮してバッテリや走行用モータを冷却する。この車両冷却系統61で蒸発した冷媒は、冷媒配管74、13C及びアキュムレータ12を順次経て圧縮機2に吸い込まれる循環を繰り返す。 As a result, the high-temperature and high-pressure gas refrigerant discharged from the compressor 2 flows into the radiator 4. The refrigerant radiated by the radiator 4 flows into the refrigerant pipe 13J via the refrigerant pipe 13E, passes through the outdoor expansion valve 6, and then enters the refrigerant pipe 13B via the outdoor heat exchanger 7 and the refrigerant pipe 13A. The refrigerant that has flowed into the refrigerant pipe 13B flows into the branch pipe 72 and reaches the auxiliary expansion valve 73. Here, after the refrigerant is depressurized, it flows into the vehicle cooling system 61 and evaporates there. At this time, it exerts an endothermic action to cool the battery and the traveling motor. The refrigerant evaporated in the vehicle cooling system 61 repeats circulation that is sucked into the compressor 2 in sequence through the refrigerant pipes 74 and 13C and the accumulator 12.
 この車両冷却系統冷却モードにおいては、空調コントローラ32は例えば車両冷却系統61からの冷却要求に応じて圧縮機2の回転数を制御することにより、車両冷却系統61のバッテリや走行用モータを冷却する。 In this vehicle cooling system cooling mode, the air conditioning controller 32 cools the battery and the traveling motor of the vehicle cooling system 61 by controlling the rotation speed of the compressor 2 in response to a cooling request from the vehicle cooling system 61, for example. ..
 (7)除湿冷房モードにおける室内膨張弁8の制御
 次に、前述した除湿冷房モードにおいて空調コントローラ32が実行する室内膨張弁8の弁開度の制御について詳述する。実施例の空調コントローラ32は基本的に吸熱器9から出た冷媒に過熱度SHを付けない方向で室内膨張弁8の弁開度を制御することで、吸熱器9に温度分布が生じないようにする。この場合、空調コントローラ32は例えば吸熱器9から出た冷媒に過熱度SHが付いた場合、室内膨張弁8の弁開度を所定パルス[PLS]、開く方向で変更する。
(7) Control of Indoor Expansion Valve 8 in Dehumidifying and Cooling Mode Next, control of the valve opening degree of the indoor expansion valve 8 executed by the air conditioning controller 32 in the above-mentioned dehumidifying and cooling mode will be described in detail. The air-conditioning controller 32 of the embodiment basically controls the valve opening degree of the indoor expansion valve 8 in a direction in which the refrigerant discharged from the heat absorber 9 is not superheated SH, so that the temperature distribution does not occur in the heat absorber 9. To. In this case, for example, when the refrigerant discharged from the heat absorber 9 has a superheat degree SH, the air conditioning controller 32 changes the valve opening degree of the indoor expansion valve 8 in a predetermined pulse [PLS] in the opening direction.
 更に具体的には空調コントローラ32は、吸熱器出口センサ49が検出する吸熱器9から出た冷媒の温度(吸熱器出口温度Teout)と圧力(吸熱器圧力Pe)により吸熱器9から出た冷媒の過熱度SHを算出する。この過熱度SHの算出方法については周知の技術であるのでここでは説明しない。そして、この過熱度SHと所定の閾値SH1に基づいて室内膨張弁8の弁開度を制御する。 More specifically, in the air conditioning controller 32, the refrigerant discharged from the heat absorber 9 by the temperature (heat absorber outlet temperature Teout) and pressure (heat absorber pressure Pe) of the refrigerant emitted from the heat absorber 9 detected by the heat absorber outlet sensor 49. The degree of superheat SH is calculated. This method of calculating the degree of superheat SH is a well-known technique and will not be described here. Then, the valve opening degree of the indoor expansion valve 8 is controlled based on the superheat degree SH and the predetermined threshold value SH1.
 実施例では、空調コントローラ32は吸熱器9から出た冷媒の過熱度SHが閾値SH1より大きくなったか否か判断する。この閾値SH1は、極めて小さい所定の値であり、予め実験により決定して空調コントローラ32に設定しておくものとする。空調コントローラ32は、吸熱器9から出た冷媒に過熱度SHが付き、その値が閾値SH1より大きくなった場合、室内膨張弁8の弁開度を所定パルス、開く方向で変更する。これにより、吸熱器9に流入する冷媒量が増えるので、過熱度SHは低下、又は、無くなる方向に変化することになる。 In the embodiment, the air conditioning controller 32 determines whether or not the superheat degree SH of the refrigerant discharged from the heat absorber 9 is larger than the threshold value SH1. This threshold value SH1 is an extremely small predetermined value, and is determined in advance by an experiment and set in the air conditioning controller 32. When the refrigerant discharged from the heat absorber 9 has a superheat degree SH and the value becomes larger than the threshold value SH1, the air conditioning controller 32 changes the valve opening degree of the indoor expansion valve 8 in a predetermined pulse and opening direction. As a result, the amount of refrigerant flowing into the heat absorber 9 increases, so that the degree of superheat SH changes in the direction of decreasing or disappearing.
 尚、空調コントローラ32は例えば圧縮機2から吐出された冷媒の過熱度に関する情報を入手し(前述した各センサ情報から算出)、この過熱度が所定値まで低下した場合に室内膨張弁8の弁開度を所定パルス、閉じる方向で変更するものとする。 The air conditioning controller 32 obtains, for example, information on the degree of superheat of the refrigerant discharged from the compressor 2 (calculated from the above-mentioned sensor information), and when the degree of superheat drops to a predetermined value, the valve of the indoor expansion valve 8 The opening shall be changed in a predetermined pulse and closing direction.
 このように、空調コントローラ32が吸熱器9から出た冷媒に過熱度SHを付けない方向で室内膨張弁8の弁開度を制御することにより、吸熱器9から出た冷媒には過熱度SHが付かないか、付いても極めて小さいものなる。これにより、吸熱器9の全体、若しくは、略全体で冷媒が蒸発し、車室内に供給する空気から吸熱することができるようになるので、吸熱器9に温度分布が生じる不都合を解消、若しくは、抑制し、車室内を効果的に冷房することができるようになる。また、オイル戻りも良くなるので、圧縮機2の焼き付きも未然に回避することができるようになる。 In this way, the air conditioning controller 32 controls the valve opening degree of the indoor expansion valve 8 in a direction in which the refrigerant discharged from the heat absorber 9 is not superheated SH, so that the refrigerant discharged from the heat absorber 9 is superheated SH. Is not attached, or even if it is attached, it will be extremely small. As a result, the refrigerant evaporates in the entire or substantially the entire heat absorber 9, and heat can be absorbed from the air supplied to the vehicle interior. Therefore, the inconvenience that the temperature distribution occurs in the heat absorber 9 is eliminated, or It will be possible to suppress and effectively cool the passenger compartment. Further, since the oil return is improved, the seizure of the compressor 2 can be avoided in advance.
 特に、実施例の如く空調コントローラ32が、吸熱器9から出た冷媒に過熱度SHが付いた場合、室内膨張弁8の弁開度を、開く方向で変更するようにすれば、吸熱器9の温度分布の発生やオイル戻りの悪化を効果的に解消、若しくは、抑制することができるようになる。この場合、具体的には実施例の如く空調コントローラ32が、吸熱器9から出た冷媒の過熱度SHが、所定の閾値SH1より大きくなった場合、室内膨張弁8の弁開度を、開く方向で変更するようにしているので、この閾値SH1を極めて小さい値に設定しておくことで、吸熱器9の温度分布の発生やオイル戻りの悪化を適切に解消、若しくは、抑制することができるようになる。 In particular, when the air conditioning controller 32 has a degree of superheat SH attached to the refrigerant discharged from the heat absorber 9 as in the embodiment, the valve opening degree of the indoor expansion valve 8 can be changed in the opening direction. It becomes possible to effectively eliminate or suppress the occurrence of the temperature distribution and the deterioration of the oil return. In this case, specifically, as in the embodiment, the air conditioning controller 32 opens the valve opening degree of the indoor expansion valve 8 when the superheat degree SH of the refrigerant discharged from the endothermic device 9 becomes larger than the predetermined threshold value SH1. Since the direction is changed, by setting this threshold value SH1 to an extremely small value, it is possible to appropriately eliminate or suppress the occurrence of the temperature distribution of the heat absorber 9 and the deterioration of the oil return. Will be.
 また、実施例では吸熱器9の冷媒出口から圧縮機2の冷媒吸込側に至る冷媒回路Rにアキュムレータ12を設けているので、圧縮機2への液バックを効果的に解消することができるようになる。 Further, in the embodiment, since the accumulator 12 is provided in the refrigerant circuit R from the refrigerant outlet of the heat absorber 9 to the refrigerant suction side of the compressor 2, the liquid back to the compressor 2 can be effectively eliminated. become.
 (8)室外熱交換器7の放熱量と吸熱器9の温度分布
 ここで、図6に除湿冷房モードにおける室外膨張弁6の弁開度ECCVohx[PLS]と、室外熱交換器7の放熱量及び吸熱器9の温度分布との関係を示す。除湿冷房モードにおいて、室外膨張弁6の弁開度ECCVohxが大きい場合には、室外熱交換器7は冷媒が放熱する放熱機能領域にあり、図6にL4で示す如く弁開度ECCVohxが大きい程、室外熱交換器7の放熱量も大きくなる(図6の向かって右側)。
(8) Heat Dissipation Amount of Outdoor Heat Exchanger 7 and Temperature Distribution of Heat Absorber 9 Here, FIG. 6 shows the valve opening ECCVohx [PLS] of the outdoor expansion valve 6 in the dehumidifying / cooling mode and the heat dissipation amount of the outdoor heat exchanger 7. And the relationship with the temperature distribution of the heat exchanger 9. In the dehumidifying / cooling mode, when the valve opening ECCVohx of the outdoor expansion valve 6 is large, the outdoor heat exchanger 7 is in the heat dissipation function region where the refrigerant dissipates heat, and the larger the valve opening ECCVohx as shown by L4 in FIG. The amount of heat radiated from the outdoor heat exchanger 7 also increases (on the right side when facing FIG. 6).
 その状態で、室外膨張弁6の弁開度ECCVohxを縮小していくと(室外膨張弁6を絞っていくと)、室外熱交換器7での冷媒の放熱量は減少し、逆に放熱器4の加熱能力(暖房能力)は増大し、放熱器出口センサ47が検出する放熱器出口温度TCIoutと放熱器圧力PCIから求められる放熱器4から出た冷媒の過冷却度SCも上昇していく。そして、或る小さい弁開度ECCVohxからは室外熱交換器7で冷媒が吸熱するようになり、室外熱交換器7は吸熱機能領域に入る(図6の向かって左側)。それにより、室外熱交換器7の温度(室外熱交換器温度TXO)も低下していく。 In that state, if the valve opening ECCVohx of the outdoor expansion valve 6 is reduced (when the outdoor expansion valve 6 is throttled), the amount of heat radiation of the refrigerant in the outdoor heat exchanger 7 decreases, and conversely, the radiator The heating capacity (heating capacity) of No. 4 increases, and the degree of supercooling SC of the refrigerant emitted from the radiator 4 obtained from the radiator outlet temperature TCIout and the radiator pressure PCI detected by the radiator outlet sensor 47 also increases. .. Then, from a certain small valve opening ECCVohx, the refrigerant absorbs heat in the outdoor heat exchanger 7, and the outdoor heat exchanger 7 enters the endothermic functional region (on the left side when facing FIG. 6). As a result, the temperature of the outdoor heat exchanger 7 (outdoor heat exchanger temperature TXO) also decreases.
 一方、室外膨張弁6の弁開度ECCVohxが小さくなると、その分、吸熱器9の冷媒循環量が減少するため、冷媒は吸熱器9に流入した早い段階で蒸発し切ってしまうようになる。そのため、吸熱器9では部分によって温度が低いところと高いところが生じ、温度分布(温度のバラツキ)が生じるようになって、図6にL1~L3で示す如く室外膨張弁6の弁開度ECCVohxが小さくなる程、この温度分布は大きくなる。 On the other hand, when the valve opening ECCVohx of the outdoor expansion valve 6 becomes smaller, the amount of refrigerant circulating in the endothermic device 9 decreases by that amount, so that the refrigerant completely evaporates at an early stage when it flows into the endothermic device 9. Therefore, in the endothermic device 9, the temperature is low and high depending on the part, and the temperature distribution (temperature variation) is generated. As shown by L1 to L3 in FIG. 6, the valve opening ECCVohx of the outdoor expansion valve 6 is increased. The smaller the temperature, the larger the temperature distribution.
 吸熱器9に温度分布が生じ、それが大きくなると、除湿性能が低下すると共に、部分によっては通風された空気を冷やし難くなり、目標吹出温度TAOを成立させることが難しくなって車室内の空調性能が悪化することになる。 When a temperature distribution is generated in the endothermic device 9 and becomes large, the dehumidifying performance deteriorates, and it becomes difficult to cool the ventilated air in some parts, making it difficult to establish the target blowout temperature TAO, and the air conditioning performance in the vehicle interior. Will get worse.
 尚、室内送風機27による吸熱器9への通風量と温度分布には相関関係があり、通風量が高い程(多い程)、温度分布は生じ易くなる。この様子が図6中のL1~L3であり、図6中のL1は通風量が高風量のときの吸熱器9の温度分布、L2は中風量のときの温度分布、L3は低風量のときの温度分布をそれぞれ示している。 There is a correlation between the amount of ventilation to the heat absorber 9 by the indoor blower 27 and the temperature distribution, and the higher the amount of ventilation (the larger the amount), the more likely the temperature distribution will occur. This is L1 to L3 in FIG. 6, where L1 in FIG. 6 is the temperature distribution of the heat absorber 9 when the ventilation volume is high, L2 is the temperature distribution when the air volume is medium, and L3 is the temperature distribution when the air volume is low. The temperature distribution of each is shown.
 また、破線L1~L3は室内膨張弁を従来の機械式膨張弁として吸熱器9から出た冷媒に過熱度SHを付ける場合の温度分布をそれぞれ示し、実線L1~L3は前述した(7)の如く、室内膨張弁8の弁開度によって吸熱器9から出た冷媒に過熱度SHを付けない制御を行った場合の温度分布を示す。この図から明らかな如く、吸熱器9から出た冷媒に過熱度SHを付ける(過熱度SHが大きい)場合には、冷媒はより早く蒸発し切ってしまうため、何れの通風量においても、室外膨張弁6の弁開度ECCVohxが大きい段階から吸熱器9の温度分布は許容値(吸熱器温度分布許容値)より大きくなってしまう。 Further, the broken lines L1 to L3 show the temperature distribution when the indoor expansion valve is used as a conventional mechanical expansion valve and the refrigerant discharged from the heat absorber 9 is superheated SH, and the solid lines L1 to L3 are the above-mentioned (7). As described above, the temperature distribution when the refrigerant discharged from the endothermic device 9 is controlled without the superheat degree SH depending on the valve opening degree of the indoor expansion valve 8 is shown. As is clear from this figure, when a superheat degree SH is added to the refrigerant discharged from the endothermic device 9 (the superheat degree SH is large), the refrigerant evaporates faster, and therefore, regardless of the amount of ventilation, it is outdoors. From the stage where the valve opening degree ECCVohx of the expansion valve 6 is large, the temperature distribution of the heat absorber 9 becomes larger than the permissible value (permissible value of the heat absorber temperature distribution).
 他方、前述した如く空調コントローラ32により吸熱器9から出た冷媒に過熱度SHを付けない方向で室内膨張弁8の弁開度を制御した場合には、室外膨張弁6の弁開度ECCVohxを縮小させていっても、室外熱交換器7が放熱機能を発揮している限り(室外熱交換器放熱機能領域にある限り)、吸熱器9の温度分布は殆ど大きくならず、吸熱器温度分布許容値よりも小さくなることが分かる(図6中の実線L1~L3)。 On the other hand, when the valve opening degree of the indoor expansion valve 8 is controlled by the air conditioning controller 32 in a direction in which the superheat degree SH is not attached to the refrigerant discharged from the heat exchanger 9, the valve opening degree ECCVohx of the outdoor expansion valve 6 is set. Even if it is reduced, as long as the outdoor heat exchanger 7 exerts the heat dissipation function (as long as it is in the outdoor heat exchanger heat dissipation function region), the temperature distribution of the heat exchanger 9 is hardly large, and the temperature distribution of the endothermic absorber 9 is not large. It can be seen that the value is smaller than the permissible value (solid lines L1 to L3 in FIG. 6).
 (9)除湿冷房モードにおける室外膨張弁6の制御(その1)
 そこで、空調コントローラ32は除湿冷房モードにおいて、例えば前述した如く吸熱器9から出た冷媒に過熱度SHを付けない方向で室内膨張弁8の弁開度を制御しながら、室外熱交換器7が放熱機能を発揮している状態で可能な限り室外膨張弁6の弁開度を縮小(絞る)し、放熱器4における加熱能力を増大させるような制御を実行する。次に、図7を参照しながら除湿冷房モードにおける係る室外膨張弁6の弁開度の制御の一例を詳細に説明する。
(9) Control of the outdoor expansion valve 6 in the dehumidifying / cooling mode (No. 1)
Therefore, in the dehumidifying / cooling mode, the air conditioning controller 32 controls the valve opening degree of the indoor expansion valve 8 in a direction in which the refrigerant discharged from the heat absorber 9 is not superheated SH as described above, and the outdoor heat exchanger 7 moves. While the heat radiating function is exhibited, the valve opening degree of the outdoor expansion valve 6 is reduced (squeezed) as much as possible, and control is performed so as to increase the heating capacity of the heat radiator 4. Next, an example of controlling the valve opening degree of the outdoor expansion valve 6 in the dehumidifying / cooling mode will be described in detail with reference to FIG. 7.
 この例で空調コントローラ32は、放熱器出口センサ47が検出する放熱器出口温度TCIoutと放熱器圧力PCIから求められる放熱器4から出た冷媒の過冷却度SC[K]と、除湿冷房モードでの当該過冷却度SCの目標値である目標過冷却度TGSCに基づいて室外膨張弁6の弁開度ECCVohx[PLS]を制御する。具体的には、先ず空調コントローラ32には、目標過冷却度TGSCが設定される。この目標過冷却度TGSCは、例えば、放熱器4において冷媒が凝縮し過ぎず、室外熱交換器7が放熱機能を発揮できる限界(図6の室外熱交換器放熱機能領域の限界)の値を予め実験により求めておくものとする。 In this example, the air conditioning controller 32 has a radiator outlet temperature TCIout detected by the radiator outlet sensor 47, a supercooling degree SC [K] of the refrigerant emitted from the radiator 4 obtained from the radiator pressure PCI, and a dehumidifying / cooling mode. The valve opening degree ECCVohx [PLS] of the outdoor expansion valve 6 is controlled based on the target supercooling degree TGSC, which is the target value of the supercooling degree SC. Specifically, first, the target supercooling degree TGSC is set in the air conditioning controller 32. This target supercooling degree TGSC is, for example, a value of a limit (the limit of the outdoor heat exchanger heat dissipation function region of FIG. 6) in which the refrigerant does not condense too much in the radiator 4 and the outdoor heat exchanger 7 can exert the heat dissipation function. It shall be obtained by experiment in advance.
 また、実施例の空調コントローラ32は、この目標過冷却度TGSCの上下に所定の上限値TGSCHiLimと下限値TGSCLoLimを設定する。そして、図7の向かって左端に示すように放熱器4の出口における冷媒の過冷却度SCが目標過冷却度TGSCより低い場合、室外膨張弁6の弁開度ECCVohxを所定時間当たり所定パルスの割合で縮小させていく。 Further, the air conditioning controller 32 of the embodiment sets a predetermined upper limit value TGSCHiLim and a lower limit value TGSCLoLim above and below the target supercooling degree TGSC. Then, as shown at the left end of FIG. 7, when the supercooling degree SC of the refrigerant at the outlet of the radiator 4 is lower than the target supercooling degree TGSC, the valve opening degree ECCVohx of the outdoor expansion valve 6 is set to a predetermined pulse per predetermined time. Reduce at a rate.
 室外膨張弁6の弁開度ECCVohxが縮小することで、放熱器4では冷媒がより長く止まるようになるので、前述した如くやがて放熱器4では冷媒が凝縮し、過冷却されるようになり、放熱器4の出口における冷媒の過冷却度SCが上昇し始める。そして、図7の時刻t1で過冷却度SCが目標過冷却度TGSCまで上昇した場合、空調コントローラ32は室外膨張弁6の弁開度ECCVohxの縮小を停止する。 As the valve opening ECCVohx of the outdoor expansion valve 6 is reduced, the refrigerant stops for a longer time in the radiator 4, and as described above, the refrigerant eventually condenses and becomes supercooled in the radiator 4. The degree of supercooling SC of the refrigerant at the outlet of the radiator 4 begins to increase. Then, when the supercooling degree SC rises to the target supercooling degree TGSC at the time t1 in FIG. 7, the air conditioning controller 32 stops the reduction of the valve opening degree ECCVohx of the outdoor expansion valve 6.
 その後も過冷却度SCが上昇し、時刻t2で上限値TGSCHiLimまで上昇した場合、空調コントローラ32は室外膨張弁6の弁開度ECCVohxを所定時間当たり所定パルスの割合で拡大させる。これにより、放熱器4からは冷媒がより早く流出するようになるので、過冷却度SCは低下し始める。そして、時刻t3で過冷却度SCが下限値TGSCLoLimまで低下した場合、空調コントローラ32は室外膨張弁6の弁開度ECCVohxの拡大を停止する。この時点の弁開度ECCVohxが室外膨張弁6の最小弁開度となる。 After that, when the supercooling degree SC rises and rises to the upper limit value TGSCHiLim at time t2, the air conditioning controller 32 expands the valve opening ECCVohx of the outdoor expansion valve 6 at a predetermined pulse rate per predetermined time. As a result, the refrigerant flows out from the radiator 4 faster, so that the supercooling degree SC starts to decrease. Then, when the supercooling degree SC drops to the lower limit value TGSCLoLim at time t3, the air conditioning controller 32 stops the expansion of the valve opening degree ECCVohx of the outdoor expansion valve 6. The valve opening ECCVohx at this point is the minimum valve opening of the outdoor expansion valve 6.
 このように、空調コントローラ32が除湿冷房モードにおいて、放熱器4の出口における冷媒の過冷却度SCと、その目標値である所定の目標過冷却度TGSCに基づいて室外膨張弁6の弁開度ECCVohxを制御するようにしたので、実施例のように目標過冷却度TGSCを放熱器4において冷媒が凝縮し過ぎない適切な値に設定しておくことで、除湿冷房モードを成立させながら、室外膨張弁6の個体バラツキを考慮すること無く、当該室外膨張弁5の弁開度ECCVohxを縮小させ、放熱器4の加熱能力を最大限発揮させることが可能となる。 As described above, in the dehumidifying / cooling mode of the air conditioning controller 32, the valve opening degree of the outdoor expansion valve 6 is based on the supercooling degree SC of the refrigerant at the outlet of the radiator 4 and the predetermined target supercooling degree TGSC which is the target value thereof. Since the ECCVohx is controlled, the target supercooling degree TGSC is set to an appropriate value in the radiator 4 so that the refrigerant does not condense too much as in the embodiment, so that the dehumidifying and cooling mode can be established while outdoors. It is possible to reduce the valve opening degree ECCVohx of the outdoor expansion valve 5 and maximize the heating capacity of the radiator 4 without considering the individual variation of the expansion valve 6.
 これにより、補助ヒータ23を発熱させる必要性も解消、若しくは、抑制されるため、除湿冷房モードにおける空調性能を改善しながら、省エネルギーにも寄与することができるようになる。 As a result, the need to generate heat of the auxiliary heater 23 is eliminated or suppressed, so that it is possible to contribute to energy saving while improving the air conditioning performance in the dehumidifying / cooling mode.
 特に実施例では空調コントローラ32が、過冷却度SCが目標過冷却度TGSCより低い場合、室外膨張弁6の弁開度ECCVohxを縮小させ、過冷却度SCが目標過冷却度TGSCまで上昇した場合、室外膨張弁6の弁開度ECCVohxの縮小を停止する。そして、過冷却度SCが目標過冷却度TGSCとなった後、上限値TGSCHiLimまで上昇した場合、室外膨張弁6の弁開度ECCVohxを拡大させ、過冷却度SCが下限値TGSCLoLimまで低下した場合、室外膨張弁6の弁開度ECCVohxの拡大を停止するようにしたので、放熱器4の出口における冷媒の過冷却度SCと目標過冷却度TGSCに基づき、除湿冷房モードにおいて放熱器4の加熱能力(暖房能力)を最大限発揮させる室外膨張弁6の制御を、円滑、且つ、的確に実現することが可能となる。 In particular, in the embodiment, when the supercooling degree SC is lower than the target supercooling degree TGSC, the valve opening ECCVohx of the outdoor expansion valve 6 is reduced, and the supercooling degree SC rises to the target supercooling degree TGSC. , Stops the reduction of the valve opening ECCVohx of the outdoor expansion valve 6. Then, when the supercooling degree SC reaches the target supercooling degree TGSC and then rises to the upper limit value TGSCHiLim, the valve opening ECCVohx of the outdoor expansion valve 6 is expanded, and the supercooling degree SC decreases to the lower limit value TGSCLoLim. Since the expansion of the valve opening ECCVohx of the outdoor expansion valve 6 is stopped, the radiator 4 is heated in the dehumidifying cooling mode based on the supercooling degree SC of the refrigerant at the outlet of the radiator 4 and the target supercooling degree TGSC. It is possible to smoothly and accurately control the outdoor expansion valve 6 that maximizes the capacity (heating capacity).
 (10)除湿冷房モードにおける室外膨張弁6の制御(その2)
 次に、図8を参照しながら除湿冷房モードにおける係る室外膨張弁6の弁開度の制御の他の例を説明する。この例で空調コントローラ32は、室外熱交換器出口センサ54が検出する室外熱交換器7から出た冷媒の温度(室外熱交換器温度TXO[℃])と、外気温度センサ33が検出する外気温度Tam[℃]に基づいて室外膨張弁6の弁開度ECCVohx[PLS]を制御する。
(10) Control of the outdoor expansion valve 6 in the dehumidifying / cooling mode (Part 2)
Next, another example of controlling the valve opening degree of the outdoor expansion valve 6 in the dehumidifying / cooling mode will be described with reference to FIG. In this example, the air conditioning controller 32 uses the temperature of the refrigerant emitted from the outdoor heat exchanger 7 detected by the outdoor heat exchanger outlet sensor 54 (outdoor heat exchanger temperature TXO [° C.]) and the outside air detected by the outdoor air temperature sensor 33. The valve opening degree ECCVohx [PLS] of the outdoor expansion valve 6 is controlled based on the temperature Tam [° C.].
 具体的には、図8の向かって左端に示すように室外熱交換器温度TXOが外気温度Tam+所定値αより高い場合、空調コントローラ32は室外膨張弁6の弁開度ECCVohxを所定時間当たり所定パルスの割合で縮小させていく。尚、上記所定値αは零を含む正負何れかの値であるため、所定値αが零の場合には、外気温度Tamそのものとなる。即ち、外気温度Tam+所定値αは、外気温度Tam付近の何れかの温度であるものとする。 Specifically, when the outdoor heat exchanger temperature TXO is higher than the outside air temperature Tam + the predetermined value α as shown at the left end of FIG. 8, the air conditioning controller 32 determines the valve opening ECCVohx of the outdoor expansion valve 6 per predetermined time. It is reduced at the rate of the pulse. Since the predetermined value α is either a positive or negative value including zero, when the predetermined value α is zero, the outside air temperature Tam itself is obtained. That is, it is assumed that the outside air temperature Tam + the predetermined value α is any temperature near the outside air temperature Tam.
 室外膨張弁6の弁開度ECCVohxが縮小することで、放熱器4では冷媒がより長く止まるようになるので、前述した如くやがて放熱器4では冷媒が凝縮し、過冷却されるようになり、放熱器4の出口における冷媒の過冷却度SCが上昇し始める。また、室外熱交換器7に流入する高温の冷媒の量が減少するため、室外熱交換器温度TXOも低下していく。 As the valve opening ECCVohx of the outdoor expansion valve 6 is reduced, the refrigerant stops for a longer time in the radiator 4, and as described above, the refrigerant eventually condenses and becomes supercooled in the radiator 4. The degree of supercooling SC of the refrigerant at the outlet of the radiator 4 begins to increase. Further, since the amount of the high-temperature refrigerant flowing into the outdoor heat exchanger 7 decreases, the outdoor heat exchanger temperature TXO also decreases.
 そして、図8の時刻t4で室外熱交換器温度TXOが外気温度Tam+所定値αまで低下した場合、空調コントローラ32は室外膨張弁6の弁開度ECCVohxの縮小を停止する。また、空調コントローラ32には、この外気温度Tam+所定値αの上下に所定の上限値TamHiLimと下限値TamLoLimを設定され、室外熱交換器温度TXOが外気温度Tam+所定値αとなった後、図8の時刻t5で下限値TamLoLimまで低下した場合、空調コントローラ32は室外膨張弁6の弁開度ECCVohxを所定時間当たり所定パルスの割合で拡大させる。 Then, when the outdoor heat exchanger temperature TXO drops to the outside air temperature Tam + a predetermined value α at the time t4 in FIG. 8, the air conditioning controller 32 stops the reduction of the valve opening ECCVohx of the outdoor expansion valve 6. Further, in the air conditioning controller 32, a predetermined upper limit value TamHiLim and a predetermined lower limit value TamMoLim are set above and below the outside air temperature Tam + predetermined value α, and after the outdoor heat exchanger temperature TXO becomes the outside air temperature Tam + predetermined value α, the figure is shown in FIG. When the temperature drops to the lower limit TamMoLim at time t5 at 8, the air conditioning controller 32 expands the valve opening ECCVohx of the outdoor expansion valve 6 at a predetermined pulse rate per predetermined time.
 これにより、室外熱交換器7には高温の冷媒がより多く流入するようになるので、室外熱交換器温度TXOは上昇し始める。そして、時刻t6で室外熱交換器温度TXOが上限値TamHiLimまで上昇した場合、空調コントローラ32は室外膨張弁6の弁開度ECCVohxの拡大を停止する。この時点の弁開度ECCVohxが室外膨張弁6の最小弁開度となる。そして、これにより室外熱交換器温度TXOは外気温度Tam+所定値αの上下限値TamHiLim、TamLoLim以内に維持されるようになるので、室外熱交換器7は確実に放熱機能を発揮(図6の室外熱交換器放熱機能領域を維持)することになると共に、室外膨張弁6の弁開度ECCVohxは可能な限り縮小されることになる。 As a result, a larger amount of high-temperature refrigerant flows into the outdoor heat exchanger 7, so that the outdoor heat exchanger temperature TXO begins to rise. Then, when the outdoor heat exchanger temperature TXO rises to the upper limit value TamHiLim at time t6, the air conditioning controller 32 stops the expansion of the valve opening ECCVohx of the outdoor expansion valve 6. The valve opening ECCVohx at this point is the minimum valve opening of the outdoor expansion valve 6. As a result, the outdoor heat exchanger temperature TXO is maintained within the upper and lower limit values TamHiLim and TamMoLim of the outside air temperature Tam + the predetermined value α, so that the outdoor heat exchanger 7 reliably exhibits the heat dissipation function (FIG. 6). The outdoor heat exchanger heat dissipation function region is maintained), and the valve opening degree ECCVohx of the outdoor expansion valve 6 is reduced as much as possible.
 このように、この実施例では空調コントローラ32が除湿冷房モードにおいて、室外熱交換器温度TXOと、外気温度Tamに基づいて室外膨張弁6の弁開度ECCVohxを制御するようにしたので、例えば、実施例の如く室外熱交換器温度TXOが外気温度Tam+所定値α(外気温度Tamを含む。以下、同じ)より高い場合、室外膨張弁6の弁開度ECCVohxを縮小させ、室外熱交換器温度TXOが外気温度Tam+所定値αまで低下した場合、室外膨張弁6の弁開度ECCVohxの縮小を停止することで、除湿冷房モードでの室外熱交換器7における放熱機能を確保し、除湿冷房モードを成立させながら、室外膨張弁6の個体バラツキを考慮すること無く、放熱器4の加熱能力(暖房能力)を最大限発揮させることが可能となる。 As described above, in this embodiment, the air conditioning controller 32 controls the valve opening ECCVohx of the outdoor expansion valve 6 based on the outdoor heat exchanger temperature TXO and the outside air temperature Tam in the dehumidifying / cooling mode. When the outdoor heat exchanger temperature TXO is higher than the outside air temperature Tam + the predetermined value α (including the outside air temperature Tam; the same applies hereinafter) as in the embodiment, the valve opening ECCVohx of the outdoor expansion valve 6 is reduced to reduce the outdoor heat exchanger temperature. When TXO drops to the outside air temperature Tam + predetermined value α, by stopping the reduction of the valve opening ECCVohx of the outdoor expansion valve 6, the heat dissipation function in the outdoor heat exchanger 7 in the dehumidifying / cooling mode is secured, and the dehumidifying / cooling mode is secured. It is possible to maximize the heating capacity (heating capacity) of the radiator 4 without considering the individual variation of the outdoor expansion valve 6 while establishing the above.
 これにより、同様に補助ヒータ23を発熱させる必要性も解消、若しくは、抑制されるため、除湿冷房モードにおける空調性能を改善しながら、省エネルギーにも寄与することができるようになる。 As a result, the need to generate heat of the auxiliary heater 23 is also eliminated or suppressed, so that it is possible to contribute to energy saving while improving the air conditioning performance in the dehumidifying / cooling mode.
 また、実施例では空調コントローラ32が外気温度Tam+所定値αの上下に所定の上限値TamHiLimと下限値TamLoLimを設定すると共に、室外熱交換器温度TXOが外気温度Tam+所定値αとなった後、下限値TamLoLimまで低下した場合、室外膨張弁6の弁開度ECCVohxを拡大させ、室外熱交換器温度TXOが上限値TamHiLimまで上昇した場合、室外膨張弁6の弁開度ECCVohxの拡大を停止するようにしているので、室外熱交換器温度TXOと外気温度Tamに基づき、除湿冷房モードにおいて放熱器4の加熱能力(暖房能力)を最大限発揮させる室外膨張弁6の制御を、円滑、且つ、的確に実現することが可能となる。 Further, in the embodiment, after the air conditioning controller 32 sets the predetermined upper limit value TamHiLim and the lower limit value TamMoLim above and below the outside air temperature Tam + predetermined value α, and after the outdoor heat exchanger temperature TXO becomes the outside air temperature Tam + predetermined value α, When the temperature drops to the lower limit TamLoLim, the valve opening ECCVohx of the outdoor expansion valve 6 is expanded, and when the outdoor heat exchanger temperature TXO rises to the upper limit TamHiLim, the expansion of the valve opening ECCVohx of the outdoor expansion valve 6 is stopped. Therefore, based on the outdoor heat exchanger temperature TXO and the outside air temperature Tam, the control of the outdoor expansion valve 6 that maximizes the heating capacity (heating capacity) of the radiator 4 in the dehumidifying / cooling mode can be smoothly and smoothly performed. It will be possible to realize it accurately.
 尚、この実施例の場合も、室外熱交換器温度TXOが外気温度Tam+所定値αまで低下する前に、放熱器4の出口における冷媒の過冷却度SCが、前述した目標過冷却度TGSC(図7)まで上昇した場合、空調コントローラ32は前述した(9)の制御と同様に室外膨張弁6の弁開度ECCVohxの縮小を停止する。そして、過冷却度SCが目標過冷却度TGSCとなった後、前述した上限値TGSCHiLimまで上昇した場合、空調コントローラ32は前述した(9)の制御と同様に室外膨張弁6の弁開度ECCVohxを拡大させ、過冷却度SCが下限値TGSCLoLimまで低下した場合、室外膨張弁6の弁開度ECCVohxの拡大を停止する。 In the case of this embodiment as well, before the outdoor heat exchanger temperature TXO drops to the outside air temperature Tam + predetermined value α, the supercooling degree SC of the refrigerant at the outlet of the radiator 4 is set to the above-mentioned target supercooling degree TGSC ( When the temperature rises to FIG. 7), the air conditioning controller 32 stops the reduction of the valve opening degree ECCVohx of the outdoor expansion valve 6 in the same manner as in the control of (9) described above. Then, when the supercooling degree SC reaches the target supercooling degree TGSC and then rises to the above-mentioned upper limit value TGSCHiLim, the air conditioning controller 32 controls the outdoor expansion valve 6 in the same manner as in the above-mentioned control (9). When the supercooling degree SC drops to the lower limit value TGSCLoLim, the expansion of the valve opening degree ECCVohx of the outdoor expansion valve 6 is stopped.
 即ち、室外熱交換器温度TXOが外気温度Tam+所定値αまで低下する以前に、放熱器4の出口における冷媒の過冷却度SCと目標過冷却度TGSCに基づいて室外膨張弁6の弁開度ECCVohxの縮小を停止させ、以後は過冷却度SCと目標過冷却度TGSCに基づき、除湿冷房モードにおいて放熱器4の加熱能力(暖房能力)を最大限発揮させる室外膨張弁6の制御を実施していくものとする。 That is, before the outdoor heat exchanger temperature TXO drops to the outside air temperature Tam + predetermined value α, the valve opening degree of the outdoor expansion valve 6 is based on the supercooling degree SC of the refrigerant at the outlet of the radiator 4 and the target supercooling degree TGSC. After stopping the reduction of ECCVohx, the outdoor expansion valve 6 is controlled to maximize the heating capacity (heating capacity) of the radiator 4 in the dehumidifying / cooling mode based on the supercooling degree SC and the target supercooling degree TGSC. Let's go.
 これにより、この実施例の場合には室外熱交換器温度TXOと外気温度Tamに基づいて除湿冷房モードを確実に成立させながら、過冷却度SCと目標過冷却度TGSCに基づいて放熱器4の加熱能力(暖房能力)を最大限発揮させる室外膨張弁6の制御を行い、快適な車室内空調を実現することができるようになる。 As a result, in the case of this embodiment, the dehumidifying and cooling mode is surely established based on the outdoor heat exchanger temperature TXO and the outside air temperature Tam, and the radiator 4 is based on the supercooling degree SC and the target supercooling degree TGSC. By controlling the outdoor expansion valve 6 that maximizes the heating capacity (heating capacity), it becomes possible to realize comfortable vehicle interior air conditioning.
 尚、前述した実施例では過冷却度SCと目標過冷却度TGSCの上限値TGSCHiLim及び下限値TGSCLoLimで室外膨張弁6の弁開度ECCVohxを縮小/拡大するようにしたが、それに限らず、目標過冷却度TGSCと過冷却度SCの偏差eに基づく所謂PID制御で室外膨張弁6の弁開度ECCVohxを制御するようにしてもよい。 In the above-described embodiment, the valve opening ECCVohx of the outdoor expansion valve 6 is reduced / expanded by the upper limit value TGSCiLim and the lower limit value TGSCLoLim of the supercooling degree SC and the target supercooling degree TGSC, but the target is not limited to this. The valve opening degree ECCVohx of the outdoor expansion valve 6 may be controlled by so-called PID control based on the deviation e between the supercooling degree TGSC and the supercooling degree SC.
 また、実施例で説明した空調コントローラ32の構成、車両用空気調和装置1のヒートポンプ装置HPや熱媒体循環回路61の構成はそれに限定されるものでは無く、本発明の趣旨を逸脱しない範囲で変更可能であることは云うまでもない。 Further, the configuration of the air conditioning controller 32 described in the examples, the configuration of the heat pump device HP of the vehicle air conditioner 1 and the configuration of the heat medium circulation circuit 61 are not limited to this, and are changed within a range that does not deviate from the gist of the present invention. It goes without saying that it is possible.
 1 車両用空気調和装置
 2 圧縮機
 4 放熱器
 6 室外膨張弁
 7 室外熱交換器
 8 室内膨張弁
 9 吸熱器
 12 アキュムレータ
 32 空調コントローラ(制御装置)
 47 放熱器出口センサ
 49 吸熱器出口センサ
 54 室外熱交換器出口センサ
 R 冷媒回路
1 Vehicle air conditioner 2 Compressor 4 Heater 6 Outdoor expansion valve 7 Outdoor heat exchanger 8 Indoor expansion valve 9 Heat absorber 12 Accumulator 32 Air conditioning controller (control device)
47 Heat Dissipator Outlet Sensor 49 Heat Absorber Outlet Sensor 54 Outdoor Heat Exchanger Outlet Sensor R Refrigerant Circuit

Claims (12)

  1.  冷媒を圧縮する圧縮機と、
     冷媒を放熱させて車室内に供給する空気を加熱するための放熱器と、
     車室外に設けられ、前記放熱器から出た冷媒が流入する室外熱交換器と、
     該室外熱交換器への冷媒の流入を制御するための室外膨張弁と、
     冷媒を吸熱させて前記車室内に供給する空気を冷却するための吸熱器と、
     該吸熱器への冷媒の流入を制御するための室内膨張弁と、
     制御装置を備え、
     該制御装置により少なくとも、前記圧縮機から吐出された冷媒を前記放熱器及び前記室外熱交換器にて放熱させ、放熱した当該冷媒を前記室内膨張弁により減圧した後、前記吸熱器にて吸熱させる除湿冷房モードを実行する車両用空気調和装置において、
     前記制御装置は、前記除湿冷房モードにおいて、前記放熱器の出口における冷媒の過冷却度SCと、その目標値である所定の目標過冷却度TGSCに基づいて前記室外膨張弁の弁開度を制御することを特徴とする車両用空気調和装置。
    A compressor that compresses the refrigerant and
    A radiator for radiating the refrigerant and heating the air supplied to the passenger compartment,
    An outdoor heat exchanger that is installed outside the vehicle interior and into which the refrigerant emitted from the radiator flows in,
    An outdoor expansion valve for controlling the inflow of refrigerant into the outdoor heat exchanger,
    An endothermic absorber for absorbing heat from the refrigerant and cooling the air supplied to the passenger compartment.
    An indoor expansion valve for controlling the inflow of refrigerant into the heat absorber,
    Equipped with a control device
    At least the refrigerant discharged from the compressor is dissipated by the control device by the radiator and the outdoor heat exchanger, the radiated refrigerant is depressurized by the indoor expansion valve, and then heat is absorbed by the heat absorber. In a vehicle air conditioner that executes a dehumidifying / cooling mode
    In the dehumidifying / cooling mode, the control device controls the valve opening degree of the outdoor expansion valve based on the supercooling degree SC of the refrigerant at the outlet of the radiator and the predetermined target supercooling degree TGSC which is the target value thereof. An air conditioner for vehicles characterized by
  2.  前記制御装置は、前記過冷却度SCが前記目標過冷却度TGSCより低い場合、前記室外膨張弁の弁開度を縮小させ、前記過冷却度SCが前記目標過冷却度TGSCまで上昇した場合、前記室外膨張弁の弁開度の縮小を停止することを特徴とする請求項1に記載の車両用空気調和装置。 When the supercooling degree SC is lower than the target supercooling degree TGSC, the control device reduces the valve opening degree of the outdoor expansion valve, and when the supercooling degree SC rises to the target supercooling degree TGSC. The vehicle air conditioner according to claim 1, wherein the reduction of the valve opening degree of the outdoor expansion valve is stopped.
  3.  前記制御装置は、前記目標過冷却度TGSCの上下に所定の上限値TGSCHiLimと下限値TGSCLoLimを設定すると共に、
     前記過冷却度SCが前記目標過冷却度TGSCとなった後、前記上限値TGSCHiLimまで上昇した場合、前記室外膨張弁の弁開度を拡大させ、前記過冷却度SCが前記下限値TGSCLoLimまで低下した場合、前記室外膨張弁の弁開度の拡大を停止することを特徴とする請求項2に記載の車両用空気調和装置。
    The control device sets predetermined upper limit values TGSCHiLim and lower limit value TGSCLoLim above and below the target supercooling degree TGSC, and at the same time,
    When the supercooling degree SC reaches the target supercooling degree TGSC and then rises to the upper limit value TGSCHiLim, the valve opening of the outdoor expansion valve is expanded and the supercooling degree SC decreases to the lower limit value TGSCLoLim. The vehicle air conditioner according to claim 2, further comprising stopping the expansion of the valve opening degree of the outdoor expansion valve.
  4.  冷媒を圧縮する圧縮機と、
     冷媒を放熱させて車室内に供給する空気を加熱するための放熱器と、
     車室外に設けられ、前記放熱器から出た冷媒が流入する室外熱交換器と、
     該室外熱交換器への冷媒の流入を制御するための室外膨張弁と、
     冷媒を吸熱させて前記車室内に供給する空気を冷却するための吸熱器と、
     該吸熱器への冷媒の流入を制御するための室内膨張弁と、
     制御装置を備え、
     該制御装置により少なくとも、前記圧縮機から吐出された冷媒を前記放熱器及び前記室外熱交換器にて放熱させ、放熱した当該冷媒を前記室内膨張弁により減圧した後、前記吸熱器にて吸熱させる除湿冷房モードを実行する車両用空気調和装置において、
     前記制御装置は、前記除湿冷房モードにおいて、前記室外熱交換器の温度TXOと、外気温度Tamに基づいて前記室外膨張弁の弁開度を制御することを特徴とする車両用空気調和装置。
    A compressor that compresses the refrigerant and
    A radiator for radiating the refrigerant and heating the air supplied to the passenger compartment,
    An outdoor heat exchanger that is installed outside the vehicle interior and into which the refrigerant emitted from the radiator flows in,
    An outdoor expansion valve for controlling the inflow of refrigerant into the outdoor heat exchanger,
    An endothermic absorber for absorbing heat from the refrigerant and cooling the air supplied to the passenger compartment.
    An indoor expansion valve for controlling the inflow of refrigerant into the heat absorber,
    Equipped with a control device
    At least the refrigerant discharged from the compressor is dissipated by the control device by the radiator and the outdoor heat exchanger, the radiated refrigerant is depressurized by the indoor expansion valve, and then heat is absorbed by the heat absorber. In a vehicle air conditioner that executes a dehumidifying / cooling mode
    The control device is a vehicle air conditioner that controls the valve opening degree of the outdoor expansion valve based on the temperature TXO of the outdoor heat exchanger and the outside air temperature Tam in the dehumidifying / cooling mode.
  5.  前記制御装置は、前記室外熱交換器の温度TXOが外気温度Tam、又は、外気温度Tam+所定値αより高い場合、前記室外膨張弁の弁開度を縮小させ、前記室外熱交換器の温度TXOが外気温度Tam、又は、外気温度Tam+所定値αまで低下した場合、前記室外膨張弁の弁開度の縮小を停止することを特徴とする請求項4に記載の車両用空気調和装置。 When the temperature TXO of the outdoor heat exchanger is higher than the outside air temperature Tam or the outside air temperature Tam + a predetermined value α, the control device reduces the valve opening degree of the outdoor expansion valve and reduces the temperature TXO of the outdoor heat exchanger. The vehicle air conditioner according to claim 4, wherein when the outside air temperature Tam or the outside air temperature Tam + a predetermined value α is lowered, the reduction of the valve opening degree of the outdoor expansion valve is stopped.
  6.  前記制御装置は、外気温度Tam、又は、外気温度Tam+所定値αの上下に所定の上限値TamHiLimと下限値TamLoLimを設定すると共に、
     前記室外熱交換器の温度TXOが前記外気温度Tam、又は、外気温度Tam+所定値αとなった後、前記下限値TamLoLimまで低下した場合、前記室外膨張弁の弁開度を拡大させ、前記室外熱交換器の温度TXOが前記上限値TamHiLimまで上昇した場合、前記室外膨張弁の弁開度の拡大を停止することを特徴とする請求項5に記載の車両用空気調和装置。
    The control device sets a predetermined upper limit value TamHiLim and a predetermined lower limit value TamLoLim above and below the outside air temperature Tam or the outside air temperature Tam + the predetermined value α, and at the same time,
    When the temperature TXO of the outdoor heat exchanger reaches the outside air temperature Tam or the outside air temperature Tam + a predetermined value α and then drops to the lower limit value TamLoLim, the valve opening of the outdoor expansion valve is expanded and the outdoor The vehicle air conditioner according to claim 5, wherein when the temperature TXO of the heat exchanger rises to the upper limit value TamHiLim, the expansion of the valve opening degree of the outdoor expansion valve is stopped.
  7.  前記制御装置は、前記室外熱交換器の温度TXOが外気温度Tam、又は、外気温度Tam+所定値αまで低下する前に、前記放熱器の出口における冷媒の過冷却度SCが、その目標値である所定の目標過冷却度TGSCまで上昇した場合、前記室外膨張弁の弁開度の縮小を停止することを特徴とする請求項5又は請求項6に記載の車両用空気調和装置。 In the control device, the degree of supercooling SC of the refrigerant at the outlet of the radiator is set to the target value before the temperature TXO of the outdoor heat exchanger drops to the outside air temperature Tam or the outside air temperature Tam + a predetermined value α. The vehicle air conditioner according to claim 5 or 6, wherein when the temperature rises to a predetermined target supercooling degree TGSC, the reduction of the valve opening degree of the outdoor expansion valve is stopped.
  8.  前記制御装置は、前記目標過冷却度TGSCの上下に所定の上限値TGSCHiLimと下限値TGSCLoLimを設定すると共に、
     前記過冷却度SCが前記目標過冷却度TGSCとなった後、前記上限値TGSCHiLimまで上昇した場合、前記室外膨張弁の弁開度を拡大させ、前記過冷却度SCが前記下限値TGSCLoLimまで低下した場合、前記室外膨張弁の弁開度の拡大を停止することを特徴とする請求項7に記載の車両用空気調和装置。
    The control device sets predetermined upper limit values TGSCHiLim and lower limit value TGSCLoLim above and below the target supercooling degree TGSC, and at the same time,
    When the supercooling degree SC reaches the target supercooling degree TGSC and then rises to the upper limit value TGSCHiLim, the valve opening of the outdoor expansion valve is expanded and the supercooling degree SC decreases to the lower limit value TGSCLoLim. The vehicle air conditioner according to claim 7, further comprising stopping the expansion of the valve opening degree of the outdoor expansion valve.
  9.  前記制御装置は、前記吸熱器から出た冷媒に過熱度SHを付けない方向で前記室内膨張弁の弁開度を制御することを特徴とする請求項1乃至請求項8のうちの何れかに記載の車両用空気調和装置。 The control device according to any one of claims 1 to 8, wherein the control device controls the valve opening degree of the indoor expansion valve in a direction in which the refrigerant discharged from the heat absorber is not superheated SH. The vehicle air conditioner described.
  10.  前記制御装置は、前記吸熱器から出た冷媒に過熱度SHが付いた場合、前記室内膨張弁の弁開度を、開く方向で変更することを特徴とする請求項9に記載の車両用空気調和装置。 The vehicle air according to claim 9, wherein the control device changes the valve opening degree of the indoor expansion valve in the opening direction when the refrigerant discharged from the heat absorber has a superheat degree SH. Harmonizer.
  11.  前記制御装置は、前記吸熱器から出た冷媒の過熱度SHが、所定の閾値SH1より大きくなった場合、前記室内膨張弁の弁開度を、開く方向で変更することを特徴とする請求項10に記載の車両の車両用空気調和装置。 The control device is characterized in that when the superheat degree SH of the refrigerant discharged from the heat absorber becomes larger than a predetermined threshold value SH1, the valve opening degree of the indoor expansion valve is changed in the opening direction. 10. The vehicle air conditioner for a vehicle.
  12.  前記吸熱器の冷媒出口から前記圧縮機の冷媒吸込側に至る冷媒回路に設けられたアキュムレータを備えたことを特徴とする請求項9乃至請求項11のうちの何れかに記載の車両用空気調和装置。 The vehicle air conditioning according to any one of claims 9 to 11, wherein an accumulator provided in a refrigerant circuit extending from the refrigerant outlet of the heat absorber to the refrigerant suction side of the compressor is provided. apparatus.
PCT/JP2020/031569 2019-09-04 2020-08-21 Vehicle air conditioner WO2021044873A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2019161131A JP2021037876A (en) 2019-09-04 2019-09-04 Vehicle air conditioner
JP2019-161131 2019-09-04

Publications (1)

Publication Number Publication Date
WO2021044873A1 true WO2021044873A1 (en) 2021-03-11

Family

ID=74848847

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/031569 WO2021044873A1 (en) 2019-09-04 2020-08-21 Vehicle air conditioner

Country Status (2)

Country Link
JP (1) JP2021037876A (en)
WO (1) WO2021044873A1 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012118198A1 (en) * 2011-03-03 2012-09-07 サンデン株式会社 Vehicle-use air conditioner
JP2014094677A (en) * 2012-11-09 2014-05-22 Sanden Corp Air conditioning unit for vehicle
JP2018077020A (en) * 2016-11-11 2018-05-17 株式会社デンソー Refrigeration cycle device
JP2019043423A (en) * 2017-09-05 2019-03-22 サンデン・オートモーティブクライメイトシステム株式会社 Vehicular air conditioner

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012118198A1 (en) * 2011-03-03 2012-09-07 サンデン株式会社 Vehicle-use air conditioner
JP2014094677A (en) * 2012-11-09 2014-05-22 Sanden Corp Air conditioning unit for vehicle
JP2018077020A (en) * 2016-11-11 2018-05-17 株式会社デンソー Refrigeration cycle device
JP2019043423A (en) * 2017-09-05 2019-03-22 サンデン・オートモーティブクライメイトシステム株式会社 Vehicular air conditioner

Also Published As

Publication number Publication date
JP2021037876A (en) 2021-03-11

Similar Documents

Publication Publication Date Title
JP7095848B2 (en) Vehicle air conditioner
JP6855281B2 (en) Vehicle air conditioner
CN110505968B (en) Air conditioner for vehicle
CN111615464B (en) Air conditioner for vehicle
CN107735626B (en) Air conditioner for vehicle
JP6963405B2 (en) Vehicle air conditioner
WO2020031569A1 (en) Vehicle air conditioning device
JP6607638B2 (en) Air conditioner for vehicles
WO2019039153A1 (en) Vehicle air-conditioning device
JP2019023023A (en) Vehicle air conditioner
JP2017190075A (en) Air conditioner for vehicle
WO2018116962A1 (en) Air conditioning device for vehicle
WO2019058826A1 (en) Vehicle air conditioner
WO2019181312A1 (en) Vehicle air conditioner
CN112384392A (en) Air conditioner for vehicle
WO2021039614A1 (en) Vehicle battery cooling device and vehicle air conditioner equipped therewith
WO2020235262A1 (en) Vehicle air conditioner
WO2021044873A1 (en) Vehicle air conditioner
CN114126900B (en) Air conditioning equipment for vehicle
WO2020262125A1 (en) Vehicle air-conditioner
WO2021054042A1 (en) Vehicle air conditioner
WO2021192760A1 (en) Vehicle air conditioner
WO2020179492A1 (en) Vehicle air conditioner

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20861023

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20861023

Country of ref document: EP

Kind code of ref document: A1