WO2021044815A1 - Torque sensor - Google Patents

Torque sensor Download PDF

Info

Publication number
WO2021044815A1
WO2021044815A1 PCT/JP2020/030650 JP2020030650W WO2021044815A1 WO 2021044815 A1 WO2021044815 A1 WO 2021044815A1 JP 2020030650 W JP2020030650 W JP 2020030650W WO 2021044815 A1 WO2021044815 A1 WO 2021044815A1
Authority
WO
WIPO (PCT)
Prior art keywords
torque sensor
rotating shaft
heat radiating
heat
strain
Prior art date
Application number
PCT/JP2020/030650
Other languages
French (fr)
Japanese (ja)
Inventor
秀信 共田
Original Assignee
ミネベアミツミ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ミネベアミツミ株式会社 filed Critical ミネベアミツミ株式会社
Publication of WO2021044815A1 publication Critical patent/WO2021044815A1/en

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01LMEASURING FORCE, STRESS, TORQUE, WORK, MECHANICAL POWER, MECHANICAL EFFICIENCY, OR FLUID PRESSURE
    • G01L1/00Measuring force or stress, in general
    • G01L1/26Auxiliary measures taken, or devices used, in connection with the measurement of force, e.g. for preventing influence of transverse components of force, for preventing overload
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01LMEASURING FORCE, STRESS, TORQUE, WORK, MECHANICAL POWER, MECHANICAL EFFICIENCY, OR FLUID PRESSURE
    • G01L3/00Measuring torque, work, mechanical power, or mechanical efficiency, in general
    • G01L3/02Rotary-transmission dynamometers
    • G01L3/04Rotary-transmission dynamometers wherein the torque-transmitting element comprises a torsionally-flexible shaft
    • G01L3/10Rotary-transmission dynamometers wherein the torque-transmitting element comprises a torsionally-flexible shaft involving electric or magnetic means for indicating

Definitions

  • the present invention relates to a torque sensor.
  • a torque sensor in which a part of the rotating shaft is used as a strain-causing portion, the strain amount generated in the strain-causing portion is measured by a strain sensor, and the torque is measured based on the strain amount (see Patent Document 1). ..
  • torque sensors that measure torque using a strain sensor including the torque sensor of Patent Document 1 have a strain amount measured by transmitting heat generated by a bearing that supports a rotating shaft to a strain generating portion.
  • an error occurred in the torque In particular, in a torque sensor in which the rotating shaft rotates at a high speed, the influence of the heat generated by the bearing described above being transferred to the strain generating portion has become large. Therefore, in the torque sensor, it has been required to suppress the heat generated by the bearing from being transferred to the strain generating portion.
  • the present invention is an example of the above-mentioned problems, and an object of the present invention is to provide a torque sensor that suppresses heat transfer from a bearing to a strain-causing portion.
  • the torque sensor according to the present invention is provided between a rotating shaft, a pair of bearing portions supporting the rotating shaft, and a pair of bearing portions in the axial direction of the rotating shaft.
  • a strain sensor mounted on the strain-causing portion and outputting an electric signal according to the amount of strain generated in the strain-causing portion, a signal processing unit for processing the electrical signal output by the strain sensor, and a bearing portion. It is provided with a heat radiating unit that dissipates heat.
  • the heat radiating portion is provided on the side opposite to the strain generating portion in the axial direction of the rotating shaft, and is connected to the pair of bearing portions so as to receive heat. ing.
  • the bearing portion is arranged between an inner ring that can rotate together with the rotating shaft, an outer ring provided on the outer peripheral side of the inner ring, the inner ring, and the outer ring. It has a rolling element, and the heat radiating portion is connected to the outer ring so as to receive heat.
  • the rotating shaft is formed of a material having desired thermal conductivity
  • the heat radiating portion is formed by the bearing portion and the strain generating portion in the axial direction of the rotating shaft. It is provided between and.
  • the bearing portion is arranged between an inner ring that can rotate together with the rotating shaft, an outer ring provided on the outer peripheral side of the inner ring, the inner ring, and the outer ring. It has a rolling element, and the heat radiating portion is connected to the inner ring via the rotating shaft so as to receive heat.
  • the signal processing unit is provided between the pair of bearing units in the axial direction of the rotating shaft, and is a substrate unit on which an electronic component that processes the electric signal is mounted.
  • the heat radiating portion is composed of the substrate portion.
  • the torque sensor according to one aspect of the present invention includes an external heat radiating portion that is provided on the outer peripheral side of the rotating shaft and receives heat from the heat radiating portion and dissipates heat to the outside.
  • a circuit board provided on the outer peripheral side of the rotating shaft for processing a signal output from the signal processing unit is provided, and the external heat radiating unit is provided on the outer peripheral side of the circuit board. It is provided on the side.
  • FIG. 5 is an enlarged cross-sectional view showing the vicinity of a heat radiating portion in the torque sensor shown in FIG. It is a top view seen from one side which shows roughly the structure of the heat radiation part of the torque sensor shown in FIG. It is sectional drawing which shows schematic the structure of the torque sensor which concerns on 2nd Embodiment of this invention.
  • FIG. 5 is a perspective view schematically showing a configuration of a signal processing unit of the torque sensor shown in FIG. It is a figure seen from one side of the signal processing part shown in FIG. It is a figure seen from the outer peripheral side of the signal processing part shown in FIG.
  • FIG. 6 is a cross-sectional view schematically showing the configuration of the torque sensor shown in FIG. It is sectional drawing which shows roughly the structure of the modification of the torque sensor which concerns on 1st Embodiment of this invention.
  • FIG. 1 is a cross-sectional view schematically showing the configuration of the torque sensor 1 according to the first embodiment of the present invention.
  • the arrow a direction is defined as one side a and the arrow b direction is defined as the other side b in the axis x direction.
  • the direction away from the axis x is defined as the outer peripheral side c
  • the direction toward the axis x is defined as the inner peripheral side d. ..
  • the direction shown in FIG. 1 is referred to as the side surface of the torque sensor 1.
  • the direction in which the torque sensor 1 is viewed from one side a toward the other side b along the axis x direction is defined as the front surface
  • the direction in which the torque sensor 1 is viewed from the other side b toward one side a is defined as the bottom surface. ..
  • the torque sensor 1 includes a rotating shaft 11, a pair of bearing portions 12a and 12b supporting the rotating shaft 11, and a pair of bearing portions in the axis x direction of the rotating shaft 11.
  • a strain sensor 13 mounted on a strain generating portion 112 provided between 12a and 12b and outputting an electric signal according to the amount of strain generated in the strain generating portion 112 and processing an electrical signal output by the strain sensor 13.
  • the signal processing unit 14 and the heat radiating units 15a and 15b that dissipate heat generated from the bearing units 12a and 12b are provided.
  • the configuration and operation of the torque sensor 1 will be specifically described.
  • the torque sensor 1 includes a housing portion 16 and bearings in addition to the above-mentioned rotating shaft 11, bearing portions 12a and 12b, strain sensor 13, signal processing portion 14 and heat radiating portions 15a and 15b.
  • the support portions 17a and 17b, the shaft coil 181, the fixed coil 182, and the circuit boards 191 and 192 are provided.
  • the rotating shaft 11 is a rod-shaped or substantially rod-shaped member arranged with the axis x direction as the longitudinal direction.
  • the rotating shaft 11 is formed of a material having desired thermal conductivity, such as metal, so that the heat generated by the bearing portions 12a and 12b, which will be described later, can be received.
  • the rotating shaft 11 is provided with a strain generating portion 112 near the central portion in the axis x direction of the shaft main body 111 formed in a rod shape or a substantially rod shape.
  • a strain sensor 13 is attached to the strain generating portion 112 at an appropriate position. That is, the strain generating portion 112 is a portion for measuring the strain generated by the rotational torque transmitted to the rotating shaft 11 by the strain sensor 13.
  • the bearing portions 12a and 12b are supported by the bearing support portions 17a and 17b supported by the bearing support holes 164 formed on one side a and the other side b of the housing body 161 in the housing portion 16 in the axis x direction.
  • the bearing portions 12a and 12b are, for example, ball bearings.
  • the type of bearing is not particularly limited.
  • the bearing portions 12a and 12b are located between the inner rings 122a and 122b and the outer rings 121a and 121b, which are arranged so that the axis x direction is the central axis and can rotate together with the rotating shaft 11, and the inner rings 122a and 122b and the outer rings 121a and 121b, respectively. It is composed of rolling elements 123a and 123b provided in the above.
  • the bearing portions 12a and 12b support the rotating shaft 11 by the inner peripheral surfaces of the inner rings 122a and 122b.
  • the strain sensor 13 is a measuring device for measuring the strain generated in the strain generating portion 112 such as the strain gauge.
  • the strain sensor 13 is not particularly limited in configuration, strain measuring method, and the like as long as it can output an electric signal according to the amount of strain generated in the strain generating portion 112.
  • the signal processing unit 14 processes the electric signal output by the strain sensor 13.
  • the signal processing unit 14 is provided between the pair of bearing units 12a and 12b in the axis x direction of the rotating shaft 11, for example.
  • the signal processing unit 14 converts, for example, a resistor connected to the distortion sensor 13 to form a Wheatston bridge circuit, and an analog output obtained by converting a change in the resistance value of the distortion sensor 13 into a minute voltage signal, and converts the analog output into a digital signal. It constitutes a / D conversion circuit, a signal processing circuit such as a CPU that processes a digital signal, and a transmission circuit that transmits the processed digital signal.
  • the heat radiating portions 15a and 15b are connected to the pair of bearing portions 12a and 12b so as to be able to receive heat in order to dissipate the heat generated from the bearing portions 12a and 12b.
  • the heat radiating portions 15a and 15b are generated between the rolling elements 123a and 123b and the outer rings 121a and 121b when the rotating shaft 11 supported by the bearing portions 12a and 12b and the inner rings 122a and 122b rotate integrally. It is provided to dissipate frictional heat. Therefore, the heat radiating portions 15a and 15b are in thermal contact with the bearing support portions 17a and 17b or the rotating shaft 11 which have desired thermal conductivity and can receive heat from the bearing portions 12a and 12b.
  • the heat radiating portions 15a and 15b are formed of a material having high thermal conductivity such as copper or an aluminum alloy.
  • FIG. 2 is an enlarged cross-sectional view showing the vicinity of the heat radiating portion 15a in the torque sensor 1.
  • FIG. 3 is a plan view seen from one side a schematically showing the configuration of the heat radiating portion 15a of the torque sensor 1.
  • FIG. 2 shows the heat radiating portion 15a provided at the end of one side a of the heat radiating portions 15a and 15b included in the torque sensor 1.
  • the heat radiating portion 15a is attached to the outside of the bearing supporting portion 17a supporting the bearing portion 12a in the x-axis direction, for example.
  • the heat radiating portions 15a and 15b are provided with fins 152a, for example, on the side opposite to the strain generating portion 112 in the axis x direction of the rotating shaft 11, that is, on the side away from the central portion in the axis x direction.
  • the heat radiating portions 15a and 15b have flat heat radiating portions main bodies 151a and 151b, fins 152a and 152b, and rotary shaft insertion holes 153a and 153b.
  • the fins 152a and 152b are formed so as to extend in the axis x direction from the heat radiating portion main bodies 151a and 151b.
  • the individual fins 152a and 152b are formed in a cylindrical shape.
  • the individual fins 252a and 252b formed in a cylindrical shape are arranged concentrically around the axis x.
  • the shapes of the heat radiating parts main bodies 151a and 151b and the fins 152a and 152b are not limited to the above examples. Further, a member having thermal conductivity such as a heat conductive gel member or a heat conductive grease may be interposed between the heat radiating parts 15a and 15b and the bearing parts 12a and 12b or the bearing support parts 17a and 17b.
  • the housing portion 16 is formed in a cubic shape, for example, by the housing main body 161.
  • the housing portion 16 has an accommodating portion 163 inside the housing main body 161 which is a space capable of accommodating components of the torque sensor 1 such as the strain generating portion 112 of the rotating shaft 11. At least a part of the housing body 161 of the housing portion 16 is opened so that the outside and the accommodating portion 163 can communicate with each other. Further, the housing portion 16 is provided with a lid portion 162 at a portion where the lid is opened so that the accommodating portion 163 can be closed. Further, the housing portion 16 is provided with bearing support holes 164 at both ends of the housing body 161 in the axis x direction so that both ends of the rotating shaft 11 can be projected.
  • the bearing support portions 17a and 17b are attached to the bearing support holes 164 of the housing portion 16.
  • the bearing support portions 17a and 17b have the bearing portions 12a and 12b supported by the housing portion 16.
  • circuit boards 191, 192 constitute an output circuit that processes the digital signal output by the signal processing unit 14 and outputs it to the outside as information on the torque applied to the rotating shaft 11.
  • the operation of the torque sensor 1 having the configuration described above will be described.
  • the rotating shaft 11 rotates.
  • the strain-causing portion 112 is distorted according to the magnitude of the torque, and the strain causes distortion in the strain sensor 13 attached to the strain-causing portion 112.
  • the resistance value of the strain sensor 13 changes due to the strain.
  • the signal processing unit 14 and the output circuit output information on torque to the outside according to a change in the resistance value.
  • the torque sensor 1 includes the rolling elements 123a, 123b and the outer rings 121a, 121b as shown in FIG. 2 when the rotating shaft 11 and the inner rings 122a, 122b of the bearing portions 12a, 12b rotate integrally. Friction heat H1 is generated between them. The frictional heat H1 is transmitted from the bearing supports 17a and 17b, which have desired thermal conductivity and can receive heat from the bearings 12a and 12b, to the heat radiating portions 15a and 15b as shown by arrows H2.
  • the frictional heat H2 transmitted to the heat radiating portions 15a and 15b is radiated to the side opposite to the strain generating portion 112, that is, to the outside in the axis x direction via the fins 152a and 152b as shown by arrows H3.
  • the frictional heat generated by the rotation of the rotating shaft 11 in the torque sensor 1 is efficiently generated from the heat radiating portions 15a and 15b provided on the side opposite to the strain generating portion 112. Heat is dissipated.
  • FIG. 4 is a cross-sectional view schematically showing the configuration of the torque sensor 2 according to the second embodiment of the present invention.
  • the torque sensor 2 includes a signal processing unit 24 that processes an electric signal output by the strain sensor 13 and a heat radiating unit 25 that dissipates heat generated from bearing units 12a and 12b. However, it is different from the torque sensor 1 described above. Hereinafter, the configuration and operation of the torque sensor 2 will be specifically described.
  • FIG. 5 is a perspective view schematically showing the configuration of the signal processing unit 24 of the torque sensor 2.
  • FIG. 6 is a view seen from one side a of the signal processing unit 24.
  • FIG. 7 is a view seen from the outer peripheral side c of the signal processing unit 24.
  • the signal processing unit 24 is common to the signal processing unit 14 described above in that it processes the electric signal output by the distortion sensor 13, but the signal The substrate unit 241 constituting the processing unit 24 and the support substrate 242 are different.
  • the signal processing unit 24 is provided between the bearing portion 12a and the strain generating portion 112 of the pair of bearing portions 12a and 12b in the axis x direction of the rotating shaft 11, and is not shown as an electron for processing an electric signal. It has a board portion 241 on which components are mounted. Specifically, in the signal processing unit 24, the substrate unit 241 is fixed to the rotating shaft 11 via the support substrate 242.
  • the support substrate 242 is, for example, a quadrangular plate-shaped member provided with a through hole 243 capable of penetrating the rotating shaft 11. The length of one side of the support substrate 242 is larger than the diameter of the rotating shaft 11.
  • the length of the substrate portion 241 in the longitudinal direction corresponds to the length of one side of the support substrate 242, the length of the substrate portion 241 in the longitudinal direction is also larger than the diameter of the rotating shaft 11.
  • a substrate portion 241 is joined to the support substrate 242 at the end of each side of the quadrangular shape in a substantially T-shaped cross section. Both the substrate portion 241 and the support substrate 242 are made of a material having desired thermal conductivity.
  • the signal processing unit 24 is in thermal contact with a rotating shaft 11 made of a material having a desired thermal conductivity.
  • the through hole 243 provided in the support substrate 242 has an inner peripheral surface corresponding to the shape (circular shape) in the circumferential direction of the rotating shaft 11.
  • the support substrate 242 is thermally joined to the end portions of each side as described above. Therefore, the signal processing unit 24 functions as a heat radiating unit that receives and dissipates the heat generated by the bearing portion 12b on the other side b of the pair of bearing portions 12a and 12b via the rotating shaft 11.
  • the support substrate 242 may have an opening 244 formed in order to improve air permeability. Further, the signal processing unit 24 may be provided between the bearing unit 12a and the strain generating unit 112 in the axis x direction of the rotating shaft 11.
  • a heat conductive gel member or heat is formed between a thermal joint, for example, between the rotating shaft 11 and the through hole 243, or between the support substrate 242 and the substrate portion 241.
  • a member having thermal conductivity such as conductive grease may be used.
  • the signal processing unit 24 adds a heat radiating member such as fins to a portion other than a portion where electronic components related to the signal processing circuit are mounted in the signal processing unit 24, such as the back surface of the substrate unit 241 and the front surface of the support substrate 242. May be good.
  • the shapes of the substrate unit 241 and the support substrate 242 constituting the signal processing unit 24 are not limited to the above examples.
  • the heat radiating portion 25 is connected to, for example, the bearing portion 12a of the pair of bearing portions 12a and 12b so as to receive heat in order to dissipate the heat generated from the bearing portions 12a and 12b.
  • the heat radiating portion 25 is provided between the bearing portion 12a and the strain generating portion 112 in the axis x direction of the rotating shaft 11.
  • the heat radiating portion 25 is, for example, a quadrangular plate-shaped member provided with a through hole (not shown) capable of penetrating the rotating shaft 11.
  • a plurality of (for example, three) heat radiating portions 25 may be attached to the rotating shaft 11 or one may be attached as shown in FIG.
  • the heat radiating portion 25 is in thermal contact with the rotating shaft 11 formed of a material having a desired thermal conductivity. Therefore, the heat radiating portion 25 receives the heat generated by the bearing portion 12a on one side a of the pair of bearing portions 12a and 12b via the rotating shaft 11 and dissipates the heat.
  • the heat radiating portion 25 may be provided between the bearing portion 12b and the strain generating portion 112 in the axis x direction of the rotating shaft 11. Further, the shape of the heat radiating portion 25 is not limited to the above-mentioned example.
  • the torque sensor 2 is between the rolling elements 123a, 123b and the outer rings 121a, 121b when the rotating shaft 11 and the inner rings 122a, 122b of the bearing portions 12a, 12b rotate integrally. Friction heat is generated at.
  • the frictional heat H1 has desired thermal conductivity and is transmitted from the bearing portions 12a and 12b to the rotating shaft 11 as shown by an arrow H2.
  • the frictional heat H2 transmitted to the rotating shaft 11 is transmitted to the support substrate 242, the substrate portion 241 and the heat radiating portion 25 of the signal processing unit 24 as shown by the arrow H3.
  • the signal processing unit 24 is composed of a plurality of (for example, four) plate-shaped members of the substrate unit 241 on which the electronic components constituting the signal processing circuit are mounted.
  • the signal processing unit 24 supports the substrate unit 241 by a support substrate 242 joined to the radial outer peripheral side of the outer peripheral surface of the rotating shaft 11.
  • the length of one side of the support substrate 242 and the length of the substrate portion 241 in the longitudinal direction are both larger than the diameter of the rotating shaft 11. Therefore, according to the signal processing unit 24, the surface area of the portion having the heat dissipation function can be increased by the substrate unit 241 and the support substrate 242. Further, the substrate portion 241 and the support substrate 242 constituting the signal processing portion 24 are both formed of a material having desired thermal conductivity.
  • the support substrate 242 is thermally joined to the outer peripheral surface of the rotating shaft 11. Therefore, the signal processing unit 24 can receive heat from the bearing units 12a and 12b and efficiently dissipate the heat before transmitting the heat to the strain generating unit 112.
  • the torque sensor 2 since the signal processing unit 24 can increase the surface area of the substrate unit 241 as described above, the electronic components (electronic circuits) that can be mounted can be freely mounted by utilizing the surface area. The degree is increased, and it is possible to realize a circuit design with a high degree of freedom.
  • FIG. 8 is a cross-sectional view schematically showing the configuration of the torque sensor 3 according to the third embodiment of the present invention.
  • the torque sensor 3 according to the present embodiment differs from the torque sensor 2 described above in the shape of the heat radiating portion 35 that dissipates heat generated from the bearing portion 12a.
  • the configuration and operation of the torque sensor 3 will be specifically described.
  • the heat radiating unit 35 is different from the heat radiating unit 25 which is a square plate-shaped member included in the torque sensor 2 described above, and the heat radiating unit main body 351 is formed in a substantially cylindrical shape.
  • the heat radiating unit 35 is formed with a plurality of recesses 352 having a radial direction as a depth direction in the heat radiating unit main body 351.
  • the heat radiating portion 35 is in thermal contact with the rotating shaft 11 formed of a material having a desired thermal conductivity. Therefore, the heat radiating portion 35 receives the heat generated by the bearing portion 12a on one side a of the pair of bearing portions 12a and 12b via the rotating shaft 11 and dissipates the heat.
  • FIG. 9 is a cross-sectional view schematically showing the configuration of the torque sensor 4 according to the fourth embodiment of the present invention.
  • the rotating shaft 11 and the heat radiating portions 45a and 45b that dissipate heat generated from the bearing portion 12a are different from the torque sensor 1 described above. ..
  • the configuration and operation of the torque sensor 4 will be specifically described.
  • the heat radiating parts 45a and 45b are different from the heat radiating parts 15a and 15b attached to the outside of the bearing support parts 17a and 17b supporting the bearing parts 12a and 12b included in the torque sensor 1 described above in the x-axis direction. It is formed on the shaft body 411 of the rotating shaft 41.
  • the heat radiating portions 45a and 45b are formed in a hole shape penetrating in the radial direction in the region between the contact portion with the bearing portions 12a and 12b and the strain generating portion 412 in the axis x direction of the rotating shaft 41. That is, the heat radiating portions 45a and 45b can receive and dissipate the heat generated by the pair of bearing portions 12a and 12b by circulating air through the holes penetrating in the radial direction.
  • FIG. 10 is a cross-sectional view schematically showing the configuration of the torque sensor 5 according to the fifth embodiment of the present invention.
  • the torque sensor 5 differs from the torque sensor 2 described above in the shape of the signal processing unit 54 that functions as a heat radiating unit that dissipates heat generated from the bearing unit 12b. ..
  • the configuration and operation of the torque sensor 5 will be specifically described.
  • FIG. 11 is a view seen from one side a of the signal processing unit 54 of the torque sensor 5.
  • FIG. 12 is a view seen from the outer peripheral side c of the signal processing unit 54.
  • the signal processing unit 54 is common to the signal processing unit 24 described above in that it processes the electric signal output by the distortion sensor 13, but the signal The difference is that the balance members 545 are provided at both ends of the substrate portion 241 and the support substrate 242 forming the processing portion 54 in the axial x direction.
  • the balance member 545 is a disk-shaped plate joined to both ends of the substrate unit 241 fixed to the rotating shaft 11 via the support substrate 242 in the axis x direction. It is a shaped member.
  • the balance member 545 is provided to balance the rotation of the signal processing unit 54 that rotates together with the rotation shaft 11 by being attached to the rotation shaft 11.
  • the balance member 545 may be formed of a material having a desired thermal conductivity together with the substrate portion 241 and the support substrate 242.
  • the shape of the balance member 545 is not limited to the disk shape as described above as long as the rotation balance of the signal processing unit 54 can be achieved. Further, the balance member 545 is not limited to the one attached to both ends of the signal processing unit 54 in the axis x direction, and is attached only to, for example, either one side a or the other side b. May be good.
  • FIG. 13 is a perspective view schematically showing the configuration of the torque sensor 6 according to the sixth embodiment of the present invention.
  • FIG. 14 is a cross-sectional view schematically showing the configuration of the torque sensor 6.
  • the external heat radiating portion 665 receives the frictional heat H3 radiated from the heat radiating portions 15a and 15b of the torque sensor 1 described above in the accommodating portion 663 of the housing portion 66, and receives the frictional heat H3 radiated from the housing portion 66 as shown by the arrow H4. Heat is dissipated to the outside.
  • the heat received by the support members 666 that support the circuit boards 191 and 192 provided on the inner peripheral side d of the lid portion is also transmitted to the external heat radiating portion 665 and radiated to the outside of the housing portion 66.
  • the torque sensor 6 in addition to being able to suppress heat transfer from the bearing portions 12a and 12b to the strain generating portion 112, it is possible to improve the heat dissipation efficiency of the torque sensor 6 as a whole.
  • FIG. 15 is a cross-sectional view schematically showing the configuration of a modified example of the torque sensor 1 according to the first embodiment of the present invention.
  • the torque sensor 1 includes a lid portion 162 included in the housing portion 16 and circuit boards 191 and 192 provided on the inner peripheral side d of the lid portion 162.
  • the lid portion 762 and the circuit board 791,792,793,794,795 can be interchangeably configured together with the unit.
  • the torque sensor 1 can easily expand the functions mounted on the various circuits configured on the circuit boards 191 and 192. Can be done.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Force Measurement Appropriate To Specific Purposes (AREA)

Abstract

The present invention inhibits the conduction of heat from a bearing to a strain-exhibiting area. A torque sensor (1) comprises: a rotating shaft (11); a pair of bearings (12a, 12b) that support the rotating shaft (11); a strain sensor (13), installed on a strain-exhibiting part (112) provided between the pair of bearings (12a, 12b) in the x-axis direction of the rotating shaft (11), that outputs an electrical signal according to the amount of strain occurring in the strain-exhibiting part (112); a signal processor (14) for processing the electrical signal outputted by the strain sensor (13); and heat-dissipating parts (15a, 15b) for dissipating heat emitted by the bearings (12a, 12b).

Description

トルクセンサTorque sensor
 本発明は、トルクセンサに関する。 The present invention relates to a torque sensor.
 一般に、回転軸の一部を起歪部として、この起歪部に生じる歪み量を歪みセンサによって測定し、歪み量に基づいてトルクを測定するトルクセンサが知られている(特許文献1参照)。 Generally, a torque sensor is known in which a part of the rotating shaft is used as a strain-causing portion, the strain amount generated in the strain-causing portion is measured by a strain sensor, and the torque is measured based on the strain amount (see Patent Document 1). ..
特開2014-98718号公報Japanese Unexamined Patent Publication No. 2014-98718
 ところで、特許文献1のトルクセンサを含めて、歪みセンサを用いてトルクを測定するトルクセンサは、回転軸を支持する軸受が生じる熱が起歪部に伝達することにより、測定される歪み量及びトルクに誤差が生じてしまう場合があった。特に、回転軸が高速で回転するトルクセンサにおいては、上述した軸受が生じる熱が起歪部に伝達することによる影響が大きくなっていた。このため、トルクセンサにおいて、軸受が生じる熱が起歪部に伝達することを抑制することが求められていた。 By the way, torque sensors that measure torque using a strain sensor, including the torque sensor of Patent Document 1, have a strain amount measured by transmitting heat generated by a bearing that supports a rotating shaft to a strain generating portion. There was a case where an error occurred in the torque. In particular, in a torque sensor in which the rotating shaft rotates at a high speed, the influence of the heat generated by the bearing described above being transferred to the strain generating portion has become large. Therefore, in the torque sensor, it has been required to suppress the heat generated by the bearing from being transferred to the strain generating portion.
 本発明は、上述の課題を一例とするものであり、軸受から起歪部への熱伝達を抑制するトルクセンサを提供することを目的とする。 The present invention is an example of the above-mentioned problems, and an object of the present invention is to provide a torque sensor that suppresses heat transfer from a bearing to a strain-causing portion.
 上記目的を達成するために、本発明に係るトルクセンサは、回転軸と、前記回転軸を支持する一対の軸受部と、前記回転軸の軸線方向において一対の前記軸受部の間に設けられている起歪部に搭載され、前記起歪部に生じる歪み量に応じて電気信号を出力する歪みセンサと、前記歪みセンサが出力する前記電気信号を処理する信号処理部と、前記軸受部から発する熱を放熱する放熱部と、を備える。 In order to achieve the above object, the torque sensor according to the present invention is provided between a rotating shaft, a pair of bearing portions supporting the rotating shaft, and a pair of bearing portions in the axial direction of the rotating shaft. A strain sensor mounted on the strain-causing portion and outputting an electric signal according to the amount of strain generated in the strain-causing portion, a signal processing unit for processing the electrical signal output by the strain sensor, and a bearing portion. It is provided with a heat radiating unit that dissipates heat.
 本発明の一態様に係るトルクセンサにおいて、前記放熱部は、前記回転軸の軸線方向において前記起歪部とは反対側に設けられていて、一対の前記軸受部に対して受熱可能に接続している。 In the torque sensor according to one aspect of the present invention, the heat radiating portion is provided on the side opposite to the strain generating portion in the axial direction of the rotating shaft, and is connected to the pair of bearing portions so as to receive heat. ing.
 本発明の一態様に係るトルクセンサにおいて、前記軸受部は、前記回転軸とともに回転可能な内輪と、前記内輪の外周側に設けられている外輪と前記内輪及び前記外輪の間に配置されている転動体とを有し、前記放熱部は、前記外輪に対して受熱可能に接続している。 In the torque sensor according to one aspect of the present invention, the bearing portion is arranged between an inner ring that can rotate together with the rotating shaft, an outer ring provided on the outer peripheral side of the inner ring, the inner ring, and the outer ring. It has a rolling element, and the heat radiating portion is connected to the outer ring so as to receive heat.
 本発明の一態様に係るトルクセンサにおいて、前記回転軸は、所望の熱伝導性を有する材料により形成されていて、前記放熱部は、前記回転軸の軸線方向において前記軸受部と前記起歪部との間に設けられている。 In the torque sensor according to one aspect of the present invention, the rotating shaft is formed of a material having desired thermal conductivity, and the heat radiating portion is formed by the bearing portion and the strain generating portion in the axial direction of the rotating shaft. It is provided between and.
 本発明の一態様に係るトルクセンサにおいて、前記軸受部は、前記回転軸とともに回転可能な内輪と、前記内輪の外周側に設けられている外輪と前記内輪及び前記外輪の間に配置されている転動体とを有し、前記放熱部は、前記回転軸を介して前記内輪に対して受熱可能に接続している。 In the torque sensor according to one aspect of the present invention, the bearing portion is arranged between an inner ring that can rotate together with the rotating shaft, an outer ring provided on the outer peripheral side of the inner ring, the inner ring, and the outer ring. It has a rolling element, and the heat radiating portion is connected to the inner ring via the rotating shaft so as to receive heat.
 本発明の一態様に係るトルクセンサにおいて、前記信号処理部は、前記回転軸の軸線方向において一対の前記軸受部の間に設けられていて、前記電気信号を処理する電子部品を搭載する基板部を有し、前記放熱部は、前記基板部によって構成されている。 In the torque sensor according to one aspect of the present invention, the signal processing unit is provided between the pair of bearing units in the axial direction of the rotating shaft, and is a substrate unit on which an electronic component that processes the electric signal is mounted. The heat radiating portion is composed of the substrate portion.
 本発明の一態様に係るトルクセンサにおいて、前記回転軸の外周側に設けられていて前記放熱部からの熱を受熱して外部に放熱する外部放熱部を備える。 The torque sensor according to one aspect of the present invention includes an external heat radiating portion that is provided on the outer peripheral side of the rotating shaft and receives heat from the heat radiating portion and dissipates heat to the outside.
 本発明の一態様に係るトルクセンサにおいて、前記回転軸の外周側に設けられていて前記信号処理部から出力される信号を処理する回路基板を備え、前記外部放熱部は、前記回路基板の外周側に設けられている。 In the torque sensor according to one aspect of the present invention, a circuit board provided on the outer peripheral side of the rotating shaft for processing a signal output from the signal processing unit is provided, and the external heat radiating unit is provided on the outer peripheral side of the circuit board. It is provided on the side.
 本発明に係るトルクセンサによれば、軸受から起歪部への熱伝達を抑制することができる。 According to the torque sensor according to the present invention, heat transfer from the bearing to the strain generating portion can be suppressed.
本発明の第1の実施の形態に係るトルクセンサの構成を概略的に示す断面図である。It is sectional drawing which shows schematic the structure of the torque sensor which concerns on 1st Embodiment of this invention. 図1に示すトルクセンサにおける放熱部付近を拡大して示す断面図である。FIG. 5 is an enlarged cross-sectional view showing the vicinity of a heat radiating portion in the torque sensor shown in FIG. 図1に示すトルクセンサの放熱部の構成を概略的に示す一方側から見た平面図である。It is a top view seen from one side which shows roughly the structure of the heat radiation part of the torque sensor shown in FIG. 本発明の第2の実施の形態に係るトルクセンサの構成を概略的に示す断面図である。It is sectional drawing which shows schematic the structure of the torque sensor which concerns on 2nd Embodiment of this invention. 図4に示すトルクセンサの信号処理部の構成を概略的に示す斜視図である。FIG. 5 is a perspective view schematically showing a configuration of a signal processing unit of the torque sensor shown in FIG. 図5に示す信号処理部の一方側から見た図である。It is a figure seen from one side of the signal processing part shown in FIG. 図5に示す信号処理部の外周側から見た図である。It is a figure seen from the outer peripheral side of the signal processing part shown in FIG. 本発明の第3の実施の形態に係るトルクセンサの構成を概略的に示す断面図である。It is sectional drawing which shows schematic the structure of the torque sensor which concerns on 3rd Embodiment of this invention. 本発明の第4の実施の形態に係るトルクセンサの構成を概略的に示す断面図である。It is sectional drawing which shows schematic the structure of the torque sensor which concerns on 4th Embodiment of this invention. 本発明の第5の実施の形態に係るトルクセンサの構成を概略的に示す断面図である。It is sectional drawing which shows schematic the structure of the torque sensor which concerns on 5th Embodiment of this invention. 図10に示す信号処理部の一方側から見た図である。It is a figure seen from one side of the signal processing part shown in FIG. 図10に示す信号処理部の外周側から見た図である。It is a figure seen from the outer peripheral side of the signal processing part shown in FIG. 本発明の第6の実施の形態に係るトルクセンサの構成を概略的に示す斜視図である。It is a perspective view which shows schematic structure of the torque sensor which concerns on 6th Embodiment of this invention. 図14に示すトルクセンサの構成を概略的に示す断面図である。FIG. 6 is a cross-sectional view schematically showing the configuration of the torque sensor shown in FIG. 本発明の第1の実施の形態に係るトルクセンサの変形例の構成を概略的に示す断面図である。It is sectional drawing which shows roughly the structure of the modification of the torque sensor which concerns on 1st Embodiment of this invention.
[第1の実施の形態]
 以下、本発明の第1の実施の形態に係るトルクセンサ1について図面を参照しながら説明する。
[First Embodiment]
Hereinafter, the torque sensor 1 according to the first embodiment of the present invention will be described with reference to the drawings.
 図1は、本発明の第1の実施の形態に係るトルクセンサ1の構成を概略的に示す断面図である。 FIG. 1 is a cross-sectional view schematically showing the configuration of the torque sensor 1 according to the first embodiment of the present invention.
 以下の説明では、便宜上、軸線x方向において矢印a方向を一方側aとし、矢印b方向を他方側bとする。また、軸線xに垂直な径方向において、軸線xから遠ざかる方向(図1の矢印c方向)を外周側cとし、軸線xに向かう方向(図1の矢印d方向)を内周側dとする。以下の説明では、便宜上、図1に示す方向をトルクセンサ1の側面とする。また、以下の説明では、便宜上、トルクセンサ1を軸線x方向に沿って一方側aから他方側bに向かって見る方向を正面、他方側bから一方側aに向かって見る方向を底面とする。 In the following description, for convenience, the arrow a direction is defined as one side a and the arrow b direction is defined as the other side b in the axis x direction. Further, in the radial direction perpendicular to the axis x, the direction away from the axis x (direction of arrow c in FIG. 1) is defined as the outer peripheral side c, and the direction toward the axis x (direction of arrow d in FIG. 1) is defined as the inner peripheral side d. .. In the following description, for convenience, the direction shown in FIG. 1 is referred to as the side surface of the torque sensor 1. Further, in the following description, for convenience, the direction in which the torque sensor 1 is viewed from one side a toward the other side b along the axis x direction is defined as the front surface, and the direction in which the torque sensor 1 is viewed from the other side b toward one side a is defined as the bottom surface. ..
 図1に示すように、本実施の形態に係るトルクセンサ1は、回転軸11と、回転軸11を支持する一対の軸受部12a,12bと、回転軸11の軸線x方向において一対の軸受部12a,12bの間に設けられている起歪部112に搭載され、起歪部112に生じる歪み量に応じて電気信号を出力する歪みセンサ13と、歪みセンサ13が出力する電気信号を処理する信号処理部14と、軸受部12a,12bから発する熱を放熱する放熱部15a,15bと、を備える。以下、トルクセンサ1の構成及び動作を具体的に説明する。 As shown in FIG. 1, the torque sensor 1 according to the present embodiment includes a rotating shaft 11, a pair of bearing portions 12a and 12b supporting the rotating shaft 11, and a pair of bearing portions in the axis x direction of the rotating shaft 11. A strain sensor 13 mounted on a strain generating portion 112 provided between 12a and 12b and outputting an electric signal according to the amount of strain generated in the strain generating portion 112 and processing an electrical signal output by the strain sensor 13. The signal processing unit 14 and the heat radiating units 15a and 15b that dissipate heat generated from the bearing units 12a and 12b are provided. Hereinafter, the configuration and operation of the torque sensor 1 will be specifically described.
 図1に示すように、トルクセンサ1は、上述した回転軸11、軸受部12a,12b、歪みセンサ13、信号処理部14、及び、放熱部15a,15bに加えて、筐体部16、軸受支持部17a,17b、軸コイル181、固定コイル182、及び、回路基板191,192を備える。 As shown in FIG. 1, the torque sensor 1 includes a housing portion 16 and bearings in addition to the above-mentioned rotating shaft 11, bearing portions 12a and 12b, strain sensor 13, signal processing portion 14 and heat radiating portions 15a and 15b. The support portions 17a and 17b, the shaft coil 181, the fixed coil 182, and the circuit boards 191 and 192 are provided.
 回転軸11は、軸線x方向を長手方向として配置されている棒状または略棒状の部材である。回転軸11は、後述する軸受部12a,12bが発する熱を受熱することができるように、例えば金属などの所望の熱伝導性を有する材料により形成されている。回転軸11は、棒状または略棒状に形成されている軸本体111の軸線x方向の中央部付近に起歪部112が設けられている。起歪部112には、適宜な位置に歪みセンサ13が取り付けられている。つまり、起歪部112は、回転軸11に伝達される回転トルクにより生じる歪みを歪みセンサ13により計測するための部位である。 The rotating shaft 11 is a rod-shaped or substantially rod-shaped member arranged with the axis x direction as the longitudinal direction. The rotating shaft 11 is formed of a material having desired thermal conductivity, such as metal, so that the heat generated by the bearing portions 12a and 12b, which will be described later, can be received. The rotating shaft 11 is provided with a strain generating portion 112 near the central portion in the axis x direction of the shaft main body 111 formed in a rod shape or a substantially rod shape. A strain sensor 13 is attached to the strain generating portion 112 at an appropriate position. That is, the strain generating portion 112 is a portion for measuring the strain generated by the rotational torque transmitted to the rotating shaft 11 by the strain sensor 13.
 軸受部12a,12bは、筐体部16における筐体本体161の軸線x方向における一方側a及び他方側bに形成されている軸受支持孔164に支持されている軸受支持部17a,17bに支持されている。軸受部12a,12bは、例えば玉軸受である。本実施の形態において、軸受の種類は特に限定されない。軸受部12a,12bは、例えばそれぞれ軸線x方向が中心軸となるように配置され回転軸11とともに回転可能な内輪122a,122b及び外輪121a,121bと、内輪122a,122b及び外輪121a,121bの間に設けられる転動体123a,123bとにより構成される。軸受部12a,12bは、内輪122a,122bの内周面により回転軸11を支持する。 The bearing portions 12a and 12b are supported by the bearing support portions 17a and 17b supported by the bearing support holes 164 formed on one side a and the other side b of the housing body 161 in the housing portion 16 in the axis x direction. Has been done. The bearing portions 12a and 12b are, for example, ball bearings. In the present embodiment, the type of bearing is not particularly limited. The bearing portions 12a and 12b are located between the inner rings 122a and 122b and the outer rings 121a and 121b, which are arranged so that the axis x direction is the central axis and can rotate together with the rotating shaft 11, and the inner rings 122a and 122b and the outer rings 121a and 121b, respectively. It is composed of rolling elements 123a and 123b provided in the above. The bearing portions 12a and 12b support the rotating shaft 11 by the inner peripheral surfaces of the inner rings 122a and 122b.
 歪みセンサ13は、歪みゲージなどの起歪部112に発生する歪みを計測するための測定デバイスである。本実施の形態において、歪みセンサ13は、起歪部112に生じる歪み量に応じて電気信号を出力することが可能であれば、構成、歪みの測定手法などは特に限定されない。 The strain sensor 13 is a measuring device for measuring the strain generated in the strain generating portion 112 such as the strain gauge. In the present embodiment, the strain sensor 13 is not particularly limited in configuration, strain measuring method, and the like as long as it can output an electric signal according to the amount of strain generated in the strain generating portion 112.
 信号処理部14は、歪みセンサ13が出力する電気信号を処理する。信号処理部14は、例えば、回転軸11の軸線x方向において一対の軸受部12a,12bの間に設けられている。信号処理部14は、例えば、歪みセンサ13に結線されてこれとともにホイートストンブリッジ回路を形成する抵抗、歪みセンサ13の抵抗値変化を微小な電圧信号に変換したアナログ出力を、デジタル信号に変換するA/D変換回路、デジタル信号を処理するCPUなどの信号処理回路、及び、処理したデジタル信号を送信する送信回路などを構成している。 The signal processing unit 14 processes the electric signal output by the strain sensor 13. The signal processing unit 14 is provided between the pair of bearing units 12a and 12b in the axis x direction of the rotating shaft 11, for example. The signal processing unit 14 converts, for example, a resistor connected to the distortion sensor 13 to form a Wheatston bridge circuit, and an analog output obtained by converting a change in the resistance value of the distortion sensor 13 into a minute voltage signal, and converts the analog output into a digital signal. It constitutes a / D conversion circuit, a signal processing circuit such as a CPU that processes a digital signal, and a transmission circuit that transmits the processed digital signal.
 放熱部15a,15bは、軸受部12a,12bから発する熱を放熱するために、一対の軸受部12a,12bのそれぞれに対して受熱可能に接続している。放熱部15a,15bは、軸受部12a,12bが支持している回転軸11と内輪122a,122bとが一体となって回転する際に転動体123a,123b及び外輪121a,121bとの間で生じる摩擦熱を放熱するために設けられている。このため、放熱部15a,15bは、いずれも所望の熱伝導性を有し軸受部12a,12bから受熱可能な軸受支持部17a,17bまたは回転軸11と熱的に接触している。放熱部15a,15bは、銅やアルミニウム合金など、熱伝導性の高い材料により形成されている。 The heat radiating portions 15a and 15b are connected to the pair of bearing portions 12a and 12b so as to be able to receive heat in order to dissipate the heat generated from the bearing portions 12a and 12b. The heat radiating portions 15a and 15b are generated between the rolling elements 123a and 123b and the outer rings 121a and 121b when the rotating shaft 11 supported by the bearing portions 12a and 12b and the inner rings 122a and 122b rotate integrally. It is provided to dissipate frictional heat. Therefore, the heat radiating portions 15a and 15b are in thermal contact with the bearing support portions 17a and 17b or the rotating shaft 11 which have desired thermal conductivity and can receive heat from the bearing portions 12a and 12b. The heat radiating portions 15a and 15b are formed of a material having high thermal conductivity such as copper or an aluminum alloy.
 図2は、トルクセンサ1における放熱部15a付近を拡大して示す断面図である。また、図3は、トルクセンサ1の放熱部15aの構成を概略的に示す一方側aから見た平面図である。図2は、トルクセンサ1が備える放熱部15a,15bのうち、一方側aの端部に設けられている放熱部15aを示している。 FIG. 2 is an enlarged cross-sectional view showing the vicinity of the heat radiating portion 15a in the torque sensor 1. Further, FIG. 3 is a plan view seen from one side a schematically showing the configuration of the heat radiating portion 15a of the torque sensor 1. FIG. 2 shows the heat radiating portion 15a provided at the end of one side a of the heat radiating portions 15a and 15b included in the torque sensor 1.
 放熱部15aは、例えば、軸受部12aを支持している軸受支持部17aの軸線x方向外側に取り付けられている。放熱部15a,15bは、例えば、回転軸11の軸線x方向において起歪部112とは反対側、つまり、軸線x方向において中央部から離れる側にフィン152aが設けられている。 The heat radiating portion 15a is attached to the outside of the bearing supporting portion 17a supporting the bearing portion 12a in the x-axis direction, for example. The heat radiating portions 15a and 15b are provided with fins 152a, for example, on the side opposite to the strain generating portion 112 in the axis x direction of the rotating shaft 11, that is, on the side away from the central portion in the axis x direction.
 図2及び図3に示すように、放熱部15a,15bは、平板状の放熱部本体151a,151bと、フィン152a,152bと、回転軸挿通孔153a,153bとを有する。放熱部15a,15bにおいて、フィン152a,152bは、放熱部本体151a,151bから軸線x方向に延出して形成されている。個々のフィン152a,152bは、円筒形状に形成されている。そして、円筒形状に形成されている個々のフィン252a,252bは、軸線xを中心とした同心円状に配置されている。なお、放熱部15a,15bにおいて、放熱部本体151a,151b及びフィン152a,152bの形状は上述の例には限定されない。また、放熱部15a,15bと軸受部12a,12b、あるいは軸受支持部17a,17bとの間に、熱伝導性ゲル部材や熱伝導性グリースなどの熱伝導性を有する部材を介してもよい。 As shown in FIGS. 2 and 3, the heat radiating portions 15a and 15b have flat heat radiating portions main bodies 151a and 151b, fins 152a and 152b, and rotary shaft insertion holes 153a and 153b. In the heat radiating portions 15a and 15b, the fins 152a and 152b are formed so as to extend in the axis x direction from the heat radiating portion main bodies 151a and 151b. The individual fins 152a and 152b are formed in a cylindrical shape. The individual fins 252a and 252b formed in a cylindrical shape are arranged concentrically around the axis x. In the heat radiating parts 15a and 15b, the shapes of the heat radiating parts main bodies 151a and 151b and the fins 152a and 152b are not limited to the above examples. Further, a member having thermal conductivity such as a heat conductive gel member or a heat conductive grease may be interposed between the heat radiating parts 15a and 15b and the bearing parts 12a and 12b or the bearing support parts 17a and 17b.
 筐体部16は、筐体本体161により例えば立方体状に形成されている。筐体部16は、筐体本体161の内部に、回転軸11の起歪部112などのトルクセンサ1の構成要素を収容可能な空間である収容部163を有する。筐体部16は、筐体本体161の少なくとも一部が開蓋して外部と収容部163とが連通可能である。また、筐体部16は、開蓋している部分に蓋部162が設けられていて、収容部163を閉塞可能である。さらに、筐体部16は、筐体本体161の軸線x方向の両端部に、回転軸11の両端部を突出させることができるように軸受支持孔164が設けられている。 The housing portion 16 is formed in a cubic shape, for example, by the housing main body 161. The housing portion 16 has an accommodating portion 163 inside the housing main body 161 which is a space capable of accommodating components of the torque sensor 1 such as the strain generating portion 112 of the rotating shaft 11. At least a part of the housing body 161 of the housing portion 16 is opened so that the outside and the accommodating portion 163 can communicate with each other. Further, the housing portion 16 is provided with a lid portion 162 at a portion where the lid is opened so that the accommodating portion 163 can be closed. Further, the housing portion 16 is provided with bearing support holes 164 at both ends of the housing body 161 in the axis x direction so that both ends of the rotating shaft 11 can be projected.
 軸受支持部17a,17bは、筐体部16の軸受支持孔164に取り付けられている。軸受支持部17a,17bは、軸受部12a,12bを筐体部16に支持させている。 The bearing support portions 17a and 17b are attached to the bearing support holes 164 of the housing portion 16. The bearing support portions 17a and 17b have the bearing portions 12a and 12b supported by the housing portion 16.
 軸コイル181と固定コイル182は、回路基板191,192に構成されている電源回路に供給された交流電圧が固定コイル182に通電されると、交流磁界が発生し、この交流磁界により軸コイル181に電流が誘起される。これによって、信号処理部14及び歪みセンサ13に給電される。 In the shaft coil 181 and the fixed coil 182, when the AC voltage supplied to the power supply circuit configured on the circuit boards 191 and 192 is applied to the fixed coil 182, an AC magnetic field is generated, and the AC magnetic field causes the shaft coil 181. A current is induced in. As a result, power is supplied to the signal processing unit 14 and the strain sensor 13.
 回路基板191,192は、上述の電源回路のほかに信号処理部14が出力したデジタル信号を処理して回転軸11に加わるトルクに関する情報として外部に出力する出力回路などを構成している。 In addition to the power supply circuit described above, the circuit boards 191, 192 constitute an output circuit that processes the digital signal output by the signal processing unit 14 and outputs it to the outside as information on the torque applied to the rotating shaft 11.
 次に、以上説明した構成を備えるトルクセンサ1の動作について説明する。
 図1に示すように、トルクセンサ1は、回転軸11に不図示の動力源からのトルクが加わると、回転軸11が回転する。回転軸11は、回転に伴い起歪部112が上記トルクの大きさに応じて歪み、この歪みによって起歪部112に取り付けられている歪みセンサ13にも歪みが生じる。歪みセンサ13は、上記歪みにより抵抗値が変化する。信号処理部14及び上記出力回路は、その抵抗値の変化に応じてトルクに関する情報を外部に出力する。
Next, the operation of the torque sensor 1 having the configuration described above will be described.
As shown in FIG. 1, in the torque sensor 1, when torque from a power source (not shown) is applied to the rotating shaft 11, the rotating shaft 11 rotates. As the rotating shaft 11 rotates, the strain-causing portion 112 is distorted according to the magnitude of the torque, and the strain causes distortion in the strain sensor 13 attached to the strain-causing portion 112. The resistance value of the strain sensor 13 changes due to the strain. The signal processing unit 14 and the output circuit output information on torque to the outside according to a change in the resistance value.
 ここで、トルクセンサ1は、回転軸11と軸受部12a,12bの内輪122a,122bとが一体となって回転する際に、図2に示すように転動体123a,123b及び外輪121a,121bとの間で摩擦熱H1が生じる。この摩擦熱H1は、いずれも所望の熱伝導性を有し軸受部12a、12bから受熱可能な軸受支持部17a,17bから放熱部15a,15bに、矢印H2で示すように伝達される。放熱部15a,15bに伝達された摩擦熱H2は、矢印H3に示すようにフィン152a,152bを経て起歪部112とは反対側、つまり軸線x方向の外側に放熱される。 Here, the torque sensor 1 includes the rolling elements 123a, 123b and the outer rings 121a, 121b as shown in FIG. 2 when the rotating shaft 11 and the inner rings 122a, 122b of the bearing portions 12a, 12b rotate integrally. Friction heat H1 is generated between them. The frictional heat H1 is transmitted from the bearing supports 17a and 17b, which have desired thermal conductivity and can receive heat from the bearings 12a and 12b, to the heat radiating portions 15a and 15b as shown by arrows H2. The frictional heat H2 transmitted to the heat radiating portions 15a and 15b is radiated to the side opposite to the strain generating portion 112, that is, to the outside in the axis x direction via the fins 152a and 152b as shown by arrows H3.
 以上のように構成されているトルクセンサ1は、トルクセンサ1において回転軸11の回転に伴い発生する摩擦熱が起歪部112とは反対側に設けられている放熱部15a,15bから効率よく放熱される。 In the torque sensor 1 configured as described above, the frictional heat generated by the rotation of the rotating shaft 11 in the torque sensor 1 is efficiently generated from the heat radiating portions 15a and 15b provided on the side opposite to the strain generating portion 112. Heat is dissipated.
 従って、トルクセンサ1によれば、軸受部12a,12bから起歪部112への熱伝達を抑制することができる。 Therefore, according to the torque sensor 1, heat transfer from the bearing portions 12a and 12b to the strain generating portion 112 can be suppressed.
[第2の実施の形態]
 次に、本発明の第2の実施の形態に係るトルクセンサ2について図面を参照しながら説明する。以下、上述の第1の実施の形態に係るトルクセンサ1と同一の又は類似する機能を有する構成に対しては同一の符号を付してその説明を省略し、異なる構成についてのみ説明する。
[Second Embodiment]
Next, the torque sensor 2 according to the second embodiment of the present invention will be described with reference to the drawings. Hereinafter, the configurations having the same or similar functions as those of the torque sensor 1 according to the first embodiment described above are designated by the same reference numerals, the description thereof will be omitted, and only the different configurations will be described.
 図4は、本発明の第2の実施の形態に係るトルクセンサ2の構成を概略的に示す断面図である。 FIG. 4 is a cross-sectional view schematically showing the configuration of the torque sensor 2 according to the second embodiment of the present invention.
 図4に示すように、本実施の形態に係るトルクセンサ2は、歪みセンサ13が出力する電気信号を処理する信号処理部24と、軸受部12a,12bから発する熱を放熱する放熱部25とが、先に説明したトルクセンサ1と相違する。以下、トルクセンサ2の構成及び動作を具体的に説明する。 As shown in FIG. 4, the torque sensor 2 according to the present embodiment includes a signal processing unit 24 that processes an electric signal output by the strain sensor 13 and a heat radiating unit 25 that dissipates heat generated from bearing units 12a and 12b. However, it is different from the torque sensor 1 described above. Hereinafter, the configuration and operation of the torque sensor 2 will be specifically described.
 図5は、トルクセンサ2の信号処理部24の構成を概略的に示す斜視図である。図6は、信号処理部24の一方側aから見た図である。図7は、信号処理部24の外周側cから見た図である。図5乃至図7に示すように、トルクセンサ2において、信号処理部24は、歪みセンサ13が出力する電気信号を処理する点で先に説明した信号処理部14と共通しているが、信号処理部24を構成している基板部241と支持基板242が相違している。 FIG. 5 is a perspective view schematically showing the configuration of the signal processing unit 24 of the torque sensor 2. FIG. 6 is a view seen from one side a of the signal processing unit 24. FIG. 7 is a view seen from the outer peripheral side c of the signal processing unit 24. As shown in FIGS. 5 to 7, in the torque sensor 2, the signal processing unit 24 is common to the signal processing unit 14 described above in that it processes the electric signal output by the distortion sensor 13, but the signal The substrate unit 241 constituting the processing unit 24 and the support substrate 242 are different.
 信号処理部24は、回転軸11の軸線x方向において一対の軸受部12a,12bのうち、軸受部12aと起歪部112との間に設けられていて、電気信号を処理する不図示の電子部品を搭載する基板部241を有する。具体的には、信号処理部24において、基板部241は、支持基板242を介して回転軸11に固定されている。支持基板242は、回転軸11を貫通可能な貫通孔243が設けられている、例えば四角形状の板状の部材である。支持基板242は、一辺の長さが回転軸11の直径よりも大きい。また、基板部241は、長手方向の長さが支持基板242に一辺の長さに対応しているため、この基板部241の長手方向の長さも回転軸11の直径よりも大きい。支持基板242には、その四角形状の各辺の端部に、基板部241が断面略T字状に接合されている。基板部241及び支持基板242は、いずれも所望の熱伝導性を有する材料により形成されている。信号処理部24は、所望の熱伝導性を有する材料により形成されている回転軸11と熱的に接触している。具体的には、信号処理部24において、支持基板242に設けられている貫通孔243が、回転軸11の周方向の形状(円形状)に対応した内周面を有していることで、回転軸11の外周面と熱的に接合している。また、信号処理部24において、支持基板242は、上述のように各辺の端部に基板部241が熱的に接合されている。このため、信号処理部24は、回転軸11を介して一対の軸受部12a,12bのうち他方側bの軸受部12bが発する熱を受熱して放熱する放熱部として機能する。なお、支持基板242は、通気性を向上させるために開口部244が形成されていてもよい。また、信号処理部24は、回転軸11の軸線x方向において軸受部12aと起歪部112との間に設けられていてもよい。また、ここで、信号処理部24における、熱的な接合箇所、例えば、回転軸11と貫通孔243との間、あるいは支持基板242と基板部241との間に、熱伝導性ゲル部材や熱伝導性グリースなどの熱伝導性を有する部材を介してもよい。さらに、信号処理部24は、基板部241の裏面、支持基板242の表面など、信号処理部24において信号処理回路に関する電子部品を搭載する箇所以外の部位に、フィンなどの放熱部材を付加してもよい。加えて、信号処理部24を構成する基板部241及び支持基板242は、その形状が上述の例に限定されない。 The signal processing unit 24 is provided between the bearing portion 12a and the strain generating portion 112 of the pair of bearing portions 12a and 12b in the axis x direction of the rotating shaft 11, and is not shown as an electron for processing an electric signal. It has a board portion 241 on which components are mounted. Specifically, in the signal processing unit 24, the substrate unit 241 is fixed to the rotating shaft 11 via the support substrate 242. The support substrate 242 is, for example, a quadrangular plate-shaped member provided with a through hole 243 capable of penetrating the rotating shaft 11. The length of one side of the support substrate 242 is larger than the diameter of the rotating shaft 11. Further, since the length of the substrate portion 241 in the longitudinal direction corresponds to the length of one side of the support substrate 242, the length of the substrate portion 241 in the longitudinal direction is also larger than the diameter of the rotating shaft 11. A substrate portion 241 is joined to the support substrate 242 at the end of each side of the quadrangular shape in a substantially T-shaped cross section. Both the substrate portion 241 and the support substrate 242 are made of a material having desired thermal conductivity. The signal processing unit 24 is in thermal contact with a rotating shaft 11 made of a material having a desired thermal conductivity. Specifically, in the signal processing unit 24, the through hole 243 provided in the support substrate 242 has an inner peripheral surface corresponding to the shape (circular shape) in the circumferential direction of the rotating shaft 11. It is thermally joined to the outer peripheral surface of the rotating shaft 11. Further, in the signal processing unit 24, the support substrate 242 is thermally joined to the end portions of each side as described above. Therefore, the signal processing unit 24 functions as a heat radiating unit that receives and dissipates the heat generated by the bearing portion 12b on the other side b of the pair of bearing portions 12a and 12b via the rotating shaft 11. The support substrate 242 may have an opening 244 formed in order to improve air permeability. Further, the signal processing unit 24 may be provided between the bearing unit 12a and the strain generating unit 112 in the axis x direction of the rotating shaft 11. Further, here, in the signal processing unit 24, a heat conductive gel member or heat is formed between a thermal joint, for example, between the rotating shaft 11 and the through hole 243, or between the support substrate 242 and the substrate portion 241. A member having thermal conductivity such as conductive grease may be used. Further, the signal processing unit 24 adds a heat radiating member such as fins to a portion other than a portion where electronic components related to the signal processing circuit are mounted in the signal processing unit 24, such as the back surface of the substrate unit 241 and the front surface of the support substrate 242. May be good. In addition, the shapes of the substrate unit 241 and the support substrate 242 constituting the signal processing unit 24 are not limited to the above examples.
 放熱部25は、軸受部12a,12bから発する熱を放熱するために、一対の軸受部12a,12bのうち、例えば軸受部12aに対して受熱可能に接続している。放熱部25は、回転軸11の軸線x方向において軸受部12aと起歪部112との間に設けられている。放熱部25は、回転軸11を貫通可能な不図示の貫通孔が設けられている例えば四角形状の板状の部材である。トルクセンサ2において、放熱部25は、図4に示すように複数枚(例えば、3枚)が回転軸11に取り付けられていても、あるいは1枚取り付けられていてもよい。放熱部25は、所望の熱伝導性を有する材料により形成されている回転軸11と熱的に接触している。このため、放熱部25は、回転軸11を介して一対の軸受部12a,12bのうち一方側aの軸受部12aが発する熱を受熱して放熱する。なお、放熱部25は、回転軸11の軸線x方向において軸受部12bと起歪部112との間に設けられていてもよい。また、放熱部25は、その形状が上述の例に限定されない。 The heat radiating portion 25 is connected to, for example, the bearing portion 12a of the pair of bearing portions 12a and 12b so as to receive heat in order to dissipate the heat generated from the bearing portions 12a and 12b. The heat radiating portion 25 is provided between the bearing portion 12a and the strain generating portion 112 in the axis x direction of the rotating shaft 11. The heat radiating portion 25 is, for example, a quadrangular plate-shaped member provided with a through hole (not shown) capable of penetrating the rotating shaft 11. In the torque sensor 2, a plurality of (for example, three) heat radiating portions 25 may be attached to the rotating shaft 11 or one may be attached as shown in FIG. The heat radiating portion 25 is in thermal contact with the rotating shaft 11 formed of a material having a desired thermal conductivity. Therefore, the heat radiating portion 25 receives the heat generated by the bearing portion 12a on one side a of the pair of bearing portions 12a and 12b via the rotating shaft 11 and dissipates the heat. The heat radiating portion 25 may be provided between the bearing portion 12b and the strain generating portion 112 in the axis x direction of the rotating shaft 11. Further, the shape of the heat radiating portion 25 is not limited to the above-mentioned example.
 次に、以上説明した構成を備えるトルクセンサ2の動作について説明する。
 図4に示すように、トルクセンサ2は、回転軸11と軸受部12a,12bの内輪122a,122bとが一体となって回転する際に、転動体123a,123b及び外輪121a,121bとの間で摩擦熱が生じる。この摩擦熱H1は、いずれも所望の熱伝導性を有し軸受部12a,12bから回転軸11に、矢印H2で示すように伝達される。回転軸11に伝達された摩擦熱H2は、矢印H3に示すように信号処理部24の支持基板242及び基板部241と放熱部25に伝達される。信号処理部24の支持基板242及び基板部241と放熱部25に伝達された摩擦熱は、矢印H3で示すように、起歪部112に伝達されることを抑制しつつ軸線x方向の外周側cに放熱される。
 トルクセンサ2において、信号処理部24は、信号処理回路を構成する電子部品が搭載されている基板部241が複数枚(例えば、4枚)の板状部材により構成されている。信号処理部24は、回転軸11の外周面の径方向外周側に接合されている支持基板242により、基板部241を支持している。そして、支持基板242の一辺の長さ、及び、基板部241の長手方向の長さは、ともに回転軸11の直径よりも大きい。このため、信号処理部24によれば、基板部241及び支持基板242により放熱機能を有する部位の表面積を拡大することができる。また、信号処理部24を構成する基板部241及び支持基板242は、いずれも所望の熱伝導性を有する材料により形成されている。支持基板242は、回転軸11の外周面と熱的に接合されている。このため、信号処理部24は、軸受部12a,12bからの発熱を受熱し、その発熱が起歪部112に伝達する前に効率よく放熱することができる。
Next, the operation of the torque sensor 2 having the configuration described above will be described.
As shown in FIG. 4, the torque sensor 2 is between the rolling elements 123a, 123b and the outer rings 121a, 121b when the rotating shaft 11 and the inner rings 122a, 122b of the bearing portions 12a, 12b rotate integrally. Friction heat is generated at. The frictional heat H1 has desired thermal conductivity and is transmitted from the bearing portions 12a and 12b to the rotating shaft 11 as shown by an arrow H2. The frictional heat H2 transmitted to the rotating shaft 11 is transmitted to the support substrate 242, the substrate portion 241 and the heat radiating portion 25 of the signal processing unit 24 as shown by the arrow H3. As shown by the arrow H3, the frictional heat transmitted to the support substrate 242 and the substrate portion 241 of the signal processing unit 24 and the heat radiating unit 25 is suppressed from being transmitted to the strain generating portion 112, and the outer peripheral side in the axis x direction. Heat is dissipated to c.
In the torque sensor 2, the signal processing unit 24 is composed of a plurality of (for example, four) plate-shaped members of the substrate unit 241 on which the electronic components constituting the signal processing circuit are mounted. The signal processing unit 24 supports the substrate unit 241 by a support substrate 242 joined to the radial outer peripheral side of the outer peripheral surface of the rotating shaft 11. The length of one side of the support substrate 242 and the length of the substrate portion 241 in the longitudinal direction are both larger than the diameter of the rotating shaft 11. Therefore, according to the signal processing unit 24, the surface area of the portion having the heat dissipation function can be increased by the substrate unit 241 and the support substrate 242. Further, the substrate portion 241 and the support substrate 242 constituting the signal processing portion 24 are both formed of a material having desired thermal conductivity. The support substrate 242 is thermally joined to the outer peripheral surface of the rotating shaft 11. Therefore, the signal processing unit 24 can receive heat from the bearing units 12a and 12b and efficiently dissipate the heat before transmitting the heat to the strain generating unit 112.
 従って、トルクセンサ2によれば、軸受部12a,12bから起歪部112への熱伝達を抑制することができる。なお、トルクセンサ2によれば、信号処理部24が、上述のように基板部241の表面積を拡大することができるため、その表面積を活用することで搭載可能な電子部品(電子回路)の自由度も高まり、自由度の高い回路設計をも実現することができる。 Therefore, according to the torque sensor 2, heat transfer from the bearing portions 12a and 12b to the strain generating portion 112 can be suppressed. According to the torque sensor 2, since the signal processing unit 24 can increase the surface area of the substrate unit 241 as described above, the electronic components (electronic circuits) that can be mounted can be freely mounted by utilizing the surface area. The degree is increased, and it is possible to realize a circuit design with a high degree of freedom.
[第3の実施の形態]
 次に、本発明の第3の実施の形態に係るトルクセンサ3について図面を参照しながら説明する。以下、上述の第1,2の実施の形態に係るトルクセンサ1,2と同一の又は類似する機能を有する構成に対しては同一の符号を付してその説明を省略し、異なる構成についてのみ説明する。
[Third Embodiment]
Next, the torque sensor 3 according to the third embodiment of the present invention will be described with reference to the drawings. Hereinafter, the configurations having the same or similar functions as the torque sensors 1 and 2 according to the first and second embodiments described above are designated by the same reference numerals and the description thereof will be omitted, and only the different configurations will be omitted. explain.
 図8は、本発明の第3の実施の形態に係るトルクセンサ3の構成を概略的に示す断面図である。 FIG. 8 is a cross-sectional view schematically showing the configuration of the torque sensor 3 according to the third embodiment of the present invention.
 図8に示すように、本実施の形態に係るトルクセンサ3は、軸受部12aから発する熱を放熱する放熱部35の形状が、先に説明したトルクセンサ2と相違する。以下、トルクセンサ3の構成及び動作を具体的に説明する。 As shown in FIG. 8, the torque sensor 3 according to the present embodiment differs from the torque sensor 2 described above in the shape of the heat radiating portion 35 that dissipates heat generated from the bearing portion 12a. Hereinafter, the configuration and operation of the torque sensor 3 will be specifically described.
 放熱部35は、先に説明したトルクセンサ2が備える四角形状の板状の部材である放熱部25と異なり、放熱部本体351が略円筒形状に形成されている。放熱部35は、放熱部本体351に径方向を深さ方向とする複数の凹部352が形成されている。放熱部35は、所望の熱伝導性を有する材料により形成されている回転軸11と熱的に接触している。このため、放熱部35は、回転軸11を介して一対の軸受部12a,12bのうち一方側aの軸受部12aが発する熱を受熱して放熱する。 The heat radiating unit 35 is different from the heat radiating unit 25 which is a square plate-shaped member included in the torque sensor 2 described above, and the heat radiating unit main body 351 is formed in a substantially cylindrical shape. The heat radiating unit 35 is formed with a plurality of recesses 352 having a radial direction as a depth direction in the heat radiating unit main body 351. The heat radiating portion 35 is in thermal contact with the rotating shaft 11 formed of a material having a desired thermal conductivity. Therefore, the heat radiating portion 35 receives the heat generated by the bearing portion 12a on one side a of the pair of bearing portions 12a and 12b via the rotating shaft 11 and dissipates the heat.
 従って、トルクセンサ3によれば、先に説明したトルクセンサ1,2と同様に、軸受部12a,12bから起歪部112への熱伝達を抑制することができる。 Therefore, according to the torque sensor 3, heat transfer from the bearing portions 12a and 12b to the strain generating portion 112 can be suppressed as in the torque sensors 1 and 2 described above.
[第4の実施の形態]
 次に、本発明の第4の実施の形態に係るトルクセンサ4について図面を参照しながら説明する。以下、上述の第1の実施の形態に係るトルクセンサ1と同一の又は類似する機能を有する構成に対しては同一の符号を付してその説明を省略し、異なる構成についてのみ説明する。
[Fourth Embodiment]
Next, the torque sensor 4 according to the fourth embodiment of the present invention will be described with reference to the drawings. Hereinafter, the configurations having the same or similar functions as those of the torque sensor 1 according to the first embodiment described above are designated by the same reference numerals, the description thereof will be omitted, and only the different configurations will be described.
 図9は、本発明の第4の実施の形態に係るトルクセンサ4の構成を概略的に示す断面図である。 FIG. 9 is a cross-sectional view schematically showing the configuration of the torque sensor 4 according to the fourth embodiment of the present invention.
 図9に示すように、本実施の形態に係るトルクセンサ4は、回転軸11、及び、軸受部12aから発する熱を放熱する放熱部45a,45bが、先に説明したトルクセンサ1と相違する。以下、トルクセンサ4の構成及び動作を具体的に説明する。 As shown in FIG. 9, in the torque sensor 4 according to the present embodiment, the rotating shaft 11 and the heat radiating portions 45a and 45b that dissipate heat generated from the bearing portion 12a are different from the torque sensor 1 described above. .. Hereinafter, the configuration and operation of the torque sensor 4 will be specifically described.
 放熱部45a,45bは、先に説明したトルクセンサ1が備える軸受部12a,12bを支持している軸受支持部17a,17bの軸線x方向外側に取り付けられている放熱部15a,15bと異なり、回転軸41の軸本体411に形成されている。放熱部45a,45bは、回転軸41の軸線x方向における軸受部12a,12bとの接触部分と起歪部412との間の領域に、径方向に貫通した孔形状に形成されている。つまり、放熱部45a,45bは、この径方向に貫通した孔に空気が流通することにより、一対の軸受部12a,12bが発する熱を受熱して放熱することができる。 The heat radiating parts 45a and 45b are different from the heat radiating parts 15a and 15b attached to the outside of the bearing support parts 17a and 17b supporting the bearing parts 12a and 12b included in the torque sensor 1 described above in the x-axis direction. It is formed on the shaft body 411 of the rotating shaft 41. The heat radiating portions 45a and 45b are formed in a hole shape penetrating in the radial direction in the region between the contact portion with the bearing portions 12a and 12b and the strain generating portion 412 in the axis x direction of the rotating shaft 41. That is, the heat radiating portions 45a and 45b can receive and dissipate the heat generated by the pair of bearing portions 12a and 12b by circulating air through the holes penetrating in the radial direction.
 従って、トルクセンサ4によれば、先に説明したトルクセンサ1,2,3と同様に、軸受部12a,12bから起歪部412への熱伝達を抑制することができる。 Therefore, according to the torque sensor 4, heat transfer from the bearing portions 12a and 12b to the strain generating portion 412 can be suppressed in the same manner as the torque sensors 1, 2 and 3 described above.
[第5の実施の形態]
 次に、本発明の第5の実施の形態に係るトルクセンサ5について図面を参照しながら説明する。以下、上述の第2の実施の形態に係るトルクセンサ2と同一の又は類似する機能を有する構成に対しては同一の符号を付してその説明を省略し、異なる構成についてのみ説明する。
[Fifth Embodiment]
Next, the torque sensor 5 according to the fifth embodiment of the present invention will be described with reference to the drawings. Hereinafter, the configurations having the same or similar functions as those of the torque sensor 2 according to the second embodiment described above are designated by the same reference numerals, the description thereof will be omitted, and only the different configurations will be described.
 図10は、本発明の第5の実施の形態に係るトルクセンサ5の構成を概略的に示す断面図である。 FIG. 10 is a cross-sectional view schematically showing the configuration of the torque sensor 5 according to the fifth embodiment of the present invention.
 図10に示すように、本実施の形態に係るトルクセンサ5は、軸受部12bから発する熱を放熱する放熱部として機能する信号処理部54の形状が、先に説明したトルクセンサ2と相違する。以下、トルクセンサ5の構成及び動作を具体的に説明する。 As shown in FIG. 10, the torque sensor 5 according to the present embodiment differs from the torque sensor 2 described above in the shape of the signal processing unit 54 that functions as a heat radiating unit that dissipates heat generated from the bearing unit 12b. .. Hereinafter, the configuration and operation of the torque sensor 5 will be specifically described.
 図11は、トルクセンサ5の信号処理部54の一方側aから見た図である。図12は、信号処理部54の外周側cから見た図である。図10乃至図12に示すように、トルクセンサ5において、信号処理部54は、歪みセンサ13が出力する電気信号を処理する点で先に説明した信号処理部24と共通しているが、信号処理部54を構成している基板部241と支持基板242の軸線x方向の両端部にバランス部材545が設けられている点が相違している。 FIG. 11 is a view seen from one side a of the signal processing unit 54 of the torque sensor 5. FIG. 12 is a view seen from the outer peripheral side c of the signal processing unit 54. As shown in FIGS. 10 to 12, in the torque sensor 5, the signal processing unit 54 is common to the signal processing unit 24 described above in that it processes the electric signal output by the distortion sensor 13, but the signal The difference is that the balance members 545 are provided at both ends of the substrate portion 241 and the support substrate 242 forming the processing portion 54 in the axial x direction.
 具体的には、信号処理部54において、バランス部材545は、支持基板242を介して回転軸11に固定されている基板部241の軸線x方向の両端部にそれぞれ接合されている円盤状の板状部材である。バランス部材545は、回転軸11に取り付けられることで回転軸11とともに回転する信号処理部54の回転バランスを取るために設けられている。バランス部材545は、基板部241及び支持基板242とともに、所望の熱伝導性を有する材料により形成されていてもよい。バランス部材545の形状は、信号処理部54の回転バランスを取ることができれば、上述のように円盤状であるものには限定されない。また、バランス部材545は、信号処理部54の軸線x方向の両端部に取り付けられているものに限定されず、例えば一方側aまたは他方側bのいずれかにのみ取り付けられているものであってもよい。 Specifically, in the signal processing unit 54, the balance member 545 is a disk-shaped plate joined to both ends of the substrate unit 241 fixed to the rotating shaft 11 via the support substrate 242 in the axis x direction. It is a shaped member. The balance member 545 is provided to balance the rotation of the signal processing unit 54 that rotates together with the rotation shaft 11 by being attached to the rotation shaft 11. The balance member 545 may be formed of a material having a desired thermal conductivity together with the substrate portion 241 and the support substrate 242. The shape of the balance member 545 is not limited to the disk shape as described above as long as the rotation balance of the signal processing unit 54 can be achieved. Further, the balance member 545 is not limited to the one attached to both ends of the signal processing unit 54 in the axis x direction, and is attached only to, for example, either one side a or the other side b. May be good.
 従って、トルクセンサ5によれば、先に説明したトルクセンサ2と同様に、軸受部12a,12bから起歪部412への熱伝達を抑制することができる。 Therefore, according to the torque sensor 5, heat transfer from the bearing portions 12a and 12b to the strain generating portion 412 can be suppressed as in the torque sensor 2 described above.
[第6の実施の形態]
 次に、本発明の第6の実施の形態に係るトルクセンサ6について図面を参照しながら説明する。以下、上述の第1の実施の形態に係るトルクセンサ1と同一の又は類似する機能を有する構成に対しては同一の符号を付してその説明を省略し、異なる構成についてのみ説明する。
[Sixth Embodiment]
Next, the torque sensor 6 according to the sixth embodiment of the present invention will be described with reference to the drawings. Hereinafter, the configurations having the same or similar functions as those of the torque sensor 1 according to the first embodiment described above are designated by the same reference numerals, the description thereof will be omitted, and only the different configurations will be described.
 図13は、本発明の第6の実施の形態に係るトルクセンサ6の構成を概略的に示す斜視図である。図14は、トルクセンサ6の構成を概略的に示す断面図である。 FIG. 13 is a perspective view schematically showing the configuration of the torque sensor 6 according to the sixth embodiment of the present invention. FIG. 14 is a cross-sectional view schematically showing the configuration of the torque sensor 6.
 図13及び図14に示すように、本実施の形態に係るトルクセンサ6は、筐体部66が有する蓋部662の外周側cに外部放熱部665が設けられている点のみが先に説明したトルクセンサ1と相違する。以下、トルクセンサ6の構成及び動作を具体的に説明する。 As shown in FIGS. 13 and 14, only the point that the torque sensor 6 according to the present embodiment is provided with the external heat radiating portion 665 on the outer peripheral side c of the lid portion 662 of the housing portion 66 will be described above. It is different from the torque sensor 1. Hereinafter, the configuration and operation of the torque sensor 6 will be specifically described.
 外部放熱部665は、先に説明したトルクセンサ1における放熱部15a,15bから筐体部66の収容部663において放熱された摩擦熱H3を受熱し、矢印H4で示すように筐体部66の外部に放熱する。外部放熱部665には、蓋部の内周側dに設けられている回路基板191,192を支持する支持部材666が受熱した熱も伝達されて筐体部66の外部に放熱される。 The external heat radiating portion 665 receives the frictional heat H3 radiated from the heat radiating portions 15a and 15b of the torque sensor 1 described above in the accommodating portion 663 of the housing portion 66, and receives the frictional heat H3 radiated from the housing portion 66 as shown by the arrow H4. Heat is dissipated to the outside. The heat received by the support members 666 that support the circuit boards 191 and 192 provided on the inner peripheral side d of the lid portion is also transmitted to the external heat radiating portion 665 and radiated to the outside of the housing portion 66.
 従って、トルクセンサ6によれば、軸受部12a,12bから起歪部112への熱伝達を抑制することができるのに加えて、トルクセンサ6全体としての放熱の効率を向上させることができる。 Therefore, according to the torque sensor 6, in addition to being able to suppress heat transfer from the bearing portions 12a and 12b to the strain generating portion 112, it is possible to improve the heat dissipation efficiency of the torque sensor 6 as a whole.
[第1の実施の形態の変形例]
 次に、本発明の第1の実施の形態に係るトルクセンサ1の変形例について図面を参照しながら説明する。以下、上述の第1の実施の形態に係るトルクセンサ1と同一の又は類似する機能を有する構成に対しては同一の符号を付してその説明を省略し、異なる構成についてのみ説明する。
[Modified example of the first embodiment]
Next, a modified example of the torque sensor 1 according to the first embodiment of the present invention will be described with reference to the drawings. Hereinafter, the configurations having the same or similar functions as those of the torque sensor 1 according to the first embodiment described above are designated by the same reference numerals, the description thereof will be omitted, and only the different configurations will be described.
 図15は、本発明の第1の実施の形態に係るトルクセンサ1の変形例の構成を概略的に示す断面図である。 FIG. 15 is a cross-sectional view schematically showing the configuration of a modified example of the torque sensor 1 according to the first embodiment of the present invention.
 図15に示すように、本実施の形態に係るトルクセンサ1は、筐体部16が有する蓋部162、及び、蓋部162の内周側dに設けられている回路基板191,192を、蓋部762、及び、回路基板791,792,793,794,795とユニットごと交換可能に構成することができる。このように蓋部162と蓋部762とをユニット交換可能に構成することにより、トルクセンサ1は、回路基板191,192に構成されている各種回路に実装されている機能拡張を容易に行うことができる。 As shown in FIG. 15, the torque sensor 1 according to the present embodiment includes a lid portion 162 included in the housing portion 16 and circuit boards 191 and 192 provided on the inner peripheral side d of the lid portion 162. The lid portion 762 and the circuit board 791,792,793,794,795 can be interchangeably configured together with the unit. By configuring the lid portion 162 and the lid portion 762 so that the units can be exchanged in this way, the torque sensor 1 can easily expand the functions mounted on the various circuits configured on the circuit boards 191 and 192. Can be done.
 従って、トルクセンサ6によれば、軸受部12a,12bから起歪部112への熱伝達を抑制することができるのに加えて、機能拡張を容易に行うことができる。 Therefore, according to the torque sensor 6, in addition to being able to suppress heat transfer from the bearing portions 12a and 12b to the strain generating portion 112, it is possible to easily expand the function.
 その他、当業者は、従来公知の知見に従い、本発明のトルクセンサを適宜改変することができる。かかる改変によってもなお本発明の構成を具備する限り、勿論、本発明の範疇に含まれるものである。 In addition, those skilled in the art can appropriately modify the torque sensor of the present invention according to conventionally known knowledge. As long as the modification still has the constitution of the present invention, it is, of course, included in the category of the present invention.
1,2,3,4,5,6…トルクセンサ、11,41…回転軸、12a,12b…軸受部、13…歪みセンサ、14,24,54…信号処理部、15a,15b,25,35,45a,45b…放熱部、16,66…筐体部、17a,17b…軸受支持部、111,411…軸本体、112,412…起歪部、121a,121b…外輪、122a,122b…内輪、123a,123b…転動体、151a,151b,351…放熱部本体、152a,152b,252a,252b…フィン、153a,153b…回転軸挿通孔、161…筐体本体、162,662,762…蓋部、163,663…収容部、164…軸受支持孔、181…軸コイル、182…固定コイル、191,192,791,792,793,794,795…回路基板、241…基板部、242…支持基板、243…貫通孔、244…開口部、352…凹部、545…バランス部材、665…外部放熱部、666…支持部材 1,2,3,4,5,6 ... Torque sensor, 11,41 ... Rotating shaft, 12a, 12b ... Bearing part, 13 ... Distortion sensor, 14,24,54 ... Signal processing part, 15a, 15b, 25, 35, 45a, 45b ... Heat dissipation part, 16, 66 ... Housing part, 17a, 17b ... Bearing support part, 111, 411 ... Shaft body, 112, 412 ... Distortion part, 121a, 121b ... Outer ring, 122a, 122b ... Inner ring, 123a, 123b ... Rolling body, 151a, 151b, 351 ... Heat dissipation part main body, 152a, 152b, 252a, 252b ... Fin, 153a, 153b ... Rotating shaft insertion hole, 161 ... Housing body, 162,662,762 ... Lid, 163,663 ... Accommodating, 164 ... Bearing support hole, 181 ... Shaft coil, 182 ... Fixed coil, 191,192,791,792,793,794,795 ... Circuit board, 241 ... Board part, 242 ... Support substrate, 243 ... through hole, 244 ... opening, 352 ... recess, 545 ... balance member, 665 ... external heat dissipation part, 666 ... support member

Claims (8)

  1.  回転軸と、
     前記回転軸を支持する一対の軸受部と、
     前記回転軸の軸線方向において一対の前記軸受部の間に設けられている起歪部に搭載され、前記起歪部に生じる歪み量に応じて電気信号を出力する歪みセンサと、
     前記歪みセンサが出力する前記電気信号を処理する信号処理部と、
     前記軸受部から発する熱を放熱する放熱部と、
     を備える、トルクセンサ。
    Rotation axis and
    A pair of bearings that support the rotating shaft,
    A strain sensor mounted on a strain generating portion provided between a pair of bearing portions in the axial direction of the rotating shaft and outputting an electric signal according to the amount of strain generated in the strain generating portion.
    A signal processing unit that processes the electrical signal output by the strain sensor, and
    A heat radiating part that dissipates heat generated from the bearing part and
    A torque sensor.
  2.  前記放熱部は、前記回転軸の軸線方向において前記起歪部とは反対側に設けられていて、一対の前記軸受部に対して受熱可能に接続している、
     請求項1に記載のトルクセンサ。
    The heat radiating portion is provided on the side opposite to the strain generating portion in the axial direction of the rotating shaft, and is connected to the pair of bearing portions so as to receive heat.
    The torque sensor according to claim 1.
  3.  前記軸受部は、前記回転軸とともに回転可能な内輪と、前記内輪の外周側に設けられている外輪と前記内輪及び前記外輪の間に配置されている転動体とを有し、
     前記放熱部は、前記外輪に対して受熱可能に接続している、
     請求項2に記載のトルクセンサ。
    The bearing portion has an inner ring that can rotate together with the rotating shaft, and a rolling element arranged between the outer ring provided on the outer peripheral side of the inner ring and the inner ring and the outer ring.
    The heat radiating portion is connected to the outer ring so as to receive heat.
    The torque sensor according to claim 2.
  4.  前記回転軸は、所望の熱伝導性を有する材料により形成されていて、
     前記放熱部は、前記回転軸の軸線方向において前記軸受部と前記起歪部との間に設けられている、
     請求項1に記載のトルクセンサ。
    The axis of rotation is made of a material having the desired thermal conductivity.
    The heat radiating portion is provided between the bearing portion and the strain generating portion in the axial direction of the rotating shaft.
    The torque sensor according to claim 1.
  5.  前記軸受部は、前記回転軸とともに回転可能な内輪と、前記内輪の外周側に設けられている外輪と前記内輪及び前記外輪の間に配置されている転動体とを有し、
     前記放熱部は、前記回転軸を介して前記内輪に対して受熱可能に接続している、
     請求項2に記載のトルクセンサ。
    The bearing portion has an inner ring that can rotate together with the rotating shaft, and a rolling element arranged between the outer ring provided on the outer peripheral side of the inner ring and the inner ring and the outer ring.
    The heat radiating portion is connected to the inner ring via the rotating shaft so as to receive heat.
    The torque sensor according to claim 2.
  6.  前記信号処理部は、前記回転軸の軸線方向において一対の前記軸受部の間に設けられていて、前記電気信号を処理する電子部品を搭載する基板部を有し、
     前記放熱部は、前記基板部によって構成されている、
     請求項4または5に記載のトルクセンサ。
    The signal processing unit is provided between the pair of bearing units in the axial direction of the rotating shaft, and has a substrate unit on which an electronic component that processes the electric signal is mounted.
    The heat radiating portion is composed of the substrate portion.
    The torque sensor according to claim 4 or 5.
  7.  前記回転軸の外周側に設けられていて前記放熱部からの熱を受熱して外部に放熱する外部放熱部を備える、
     請求項1乃至6のいずれか1項に記載のトルクセンサ。
    An external heat radiating unit provided on the outer peripheral side of the rotating shaft is provided to receive heat from the heat radiating unit and dissipate heat to the outside.
    The torque sensor according to any one of claims 1 to 6.
  8.  前記回転軸の外周側に設けられていて前記信号処理部から出力される信号を処理する回路基板を備え、
     前記外部放熱部は、前記回路基板の外周側に設けられている、
     請求項7に記載のトルクセンサ。
    A circuit board provided on the outer peripheral side of the rotating shaft and processing a signal output from the signal processing unit is provided.
    The external heat radiating portion is provided on the outer peripheral side of the circuit board.
    The torque sensor according to claim 7.
PCT/JP2020/030650 2019-09-04 2020-08-12 Torque sensor WO2021044815A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2019-161531 2019-09-04
JP2019161531A JP2021039038A (en) 2019-09-04 2019-09-04 Torque sensor

Publications (1)

Publication Number Publication Date
WO2021044815A1 true WO2021044815A1 (en) 2021-03-11

Family

ID=74849204

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/030650 WO2021044815A1 (en) 2019-09-04 2020-08-12 Torque sensor

Country Status (2)

Country Link
JP (1) JP2021039038A (en)
WO (1) WO2021044815A1 (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009053005A (en) * 2007-08-27 2009-03-12 Hitachi Metals Ltd Semiconductor strain sensor, and mounting method of semiconductor strain sensor
JP5790205B2 (en) * 2011-06-29 2015-10-07 シンフォニアテクノロジー株式会社 Torque sensor

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009053005A (en) * 2007-08-27 2009-03-12 Hitachi Metals Ltd Semiconductor strain sensor, and mounting method of semiconductor strain sensor
JP5790205B2 (en) * 2011-06-29 2015-10-07 シンフォニアテクノロジー株式会社 Torque sensor

Also Published As

Publication number Publication date
JP2021039038A (en) 2021-03-11

Similar Documents

Publication Publication Date Title
AU2012377797B2 (en) Module for determining an operating characteristic of a bearing
US10895306B2 (en) Eccentrically oscillating type reduction gear
GB2442289A (en) Motor having Heat-Dissipating Structure for Circuit Component and Fan Unit including the Motor
WO2021044815A1 (en) Torque sensor
JP6863465B2 (en) Eddy current damper
JP2008198967A (en) Heat sink, its manufacturing method, and heat sink fan
EP1069669B1 (en) Bearing structure for flat motor
JP6541897B2 (en) Drive unit and robot
JP2019100438A (en) Eddy current damper
JP6017823B2 (en) Driver integrated motor
JP6947224B2 (en) Eddy current damper
JPWO2018062005A1 (en) Motor and electric power steering apparatus
JP2006037993A (en) Disc rotor
WO2021106603A1 (en) Torque sensor
JP6637518B2 (en) Integrated mechanical and electric motor
US3294458A (en) Ball bearing assemblies
JP2019163958A (en) Torque sensor
JP2014212695A (en) Dynamo-electric machine
US10916993B2 (en) Method for heat transfer across rotary joint
JP2007014069A (en) Motor with rotation speed detector
JP7325946B2 (en) Motors and rotating equipment
JP2014212582A (en) Dynamo-electric machine
JP6741993B2 (en) Heat dissipation device
JP3411608B2 (en) Eddy current brake
JP2005341653A (en) Electric motor

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20860434

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20860434

Country of ref document: EP

Kind code of ref document: A1