WO2021044610A1 - 学習装置、学習方法、学習データ生成装置、学習データ生成方法、推論装置、及び、推論方法 - Google Patents

学習装置、学習方法、学習データ生成装置、学習データ生成方法、推論装置、及び、推論方法 Download PDF

Info

Publication number
WO2021044610A1
WO2021044610A1 PCT/JP2019/035133 JP2019035133W WO2021044610A1 WO 2021044610 A1 WO2021044610 A1 WO 2021044610A1 JP 2019035133 W JP2019035133 W JP 2019035133W WO 2021044610 A1 WO2021044610 A1 WO 2021044610A1
Authority
WO
WIPO (PCT)
Prior art keywords
information
inference
time
learning
data
Prior art date
Application number
PCT/JP2019/035133
Other languages
English (en)
French (fr)
Inventor
玄太 吉村
Original Assignee
三菱電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱電機株式会社 filed Critical 三菱電機株式会社
Priority to CN201980099906.4A priority Critical patent/CN114303161A/zh
Priority to KR1020227005682A priority patent/KR102485542B1/ko
Priority to DE112019007601.9T priority patent/DE112019007601T5/de
Priority to PCT/JP2019/035133 priority patent/WO2021044610A1/ja
Priority to JP2019571765A priority patent/JP6765555B1/ja
Priority to TW109106218A priority patent/TWI764101B/zh
Publication of WO2021044610A1 publication Critical patent/WO2021044610A1/ja
Priority to US17/581,043 priority patent/US20220147851A1/en

Links

Images

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06NCOMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
    • G06N5/00Computing arrangements using knowledge-based models
    • G06N5/04Inference or reasoning models
    • G06N5/048Fuzzy inferencing
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06NCOMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
    • G06N20/00Machine learning
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06NCOMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
    • G06N3/00Computing arrangements based on biological models
    • G06N3/02Neural networks
    • G06N3/04Architecture, e.g. interconnection topology
    • G06N3/045Combinations of networks
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06NCOMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
    • G06N3/00Computing arrangements based on biological models
    • G06N3/02Neural networks
    • G06N3/08Learning methods

Definitions

  • the present invention relates to a learning device, a learning method, a learning data generation device, a learning data generation method, an inference device, and an inference method.
  • time-series data including time-series observations
  • AR Autoregressive model
  • MA Moving Average
  • ARMA Autoregressive Moving Age
  • ARIMA Autoregressive Moving Average
  • ARIMA Automatic Integrated MA
  • AGRA AGRA
  • a time-series model such as a model, a state space model such as a dynamic linear model, a Kalman filter, or a particle filter, or an RNN (Gated Recurrent Unit) such as an LSTM (Long short-term memory) or GRU (Gated Recurrent Unit).
  • a model such as a Recurrent neural network) model is used.
  • Patent Document 1 discloses a method of inferring an observation value at an arbitrary future time point by repeating inference of an observation value after a lapse of a predetermined period according to a recurrence formula.
  • the conventional method of inferring the observed value at an arbitrary future time point based on the time series data is a method of repeating the inference of the future observed value a plurality of times for a predetermined period. Therefore, the conventional method has a problem that the inference accuracy of the observed value at a time in the distant future is lowered by accumulating the inference error generated for each inference of the observed value in the future for a predetermined period.
  • the present invention is for solving the above-mentioned problems, and provides a learning device that enables inference of an observation value having a high inference accuracy with a small inference error in inference of an arbitrary future observation value.
  • the purpose is.
  • one learning data is at least two predictions different from the first information based on the time-series data of one or a plurality of time-series data including the observation values of the time-series.
  • Learning data for acquiring a plurality of learning data which is a combination of the second information based on one prediction period of a plurality of prediction periods including the period and the third information based on the observed value after the prediction period elapses.
  • a plurality of learning data acquired by the learning data acquisition unit are used. It is provided with a learning unit that generates a trained model that can infer inferred observation values after a specified prediction period elapses.
  • FIG. 1 is a block diagram showing an example of the configuration of a main part of the inference system according to the first embodiment.
  • FIG. 2 is a block diagram showing an example of the configuration of a main part of the learning device according to the first embodiment.
  • 3A and 3B are diagrams showing an example of the hardware configuration of the main part of the learning device according to the first embodiment.
  • FIG. 4 is a diagram showing an example of the original time series data, the prediction period, the first information, the second information, the third information, and the learning data according to the first embodiment.
  • FIG. 5 is a block diagram showing an example of the configuration of the main part of the learning data generation unit according to the first embodiment.
  • FIG. 6 is a flowchart illustrating an example of processing of the learning data generation unit according to the first embodiment.
  • FIG. 7 is a diagram showing another example of the original time series data, the prediction period, the first information, the second information, the third information, and the learning data according to the first embodiment.
  • FIG. 8 is a flowchart illustrating an example of processing of the learning device according to the first embodiment.
  • FIG. 9 is a block diagram showing an example of the configuration of the main part of the inference device according to the first embodiment.
  • FIG. 10A is a diagram showing an example of inference time series data, designated prediction period, fourth information, fifth information, and explanatory variables according to the first embodiment.
  • FIG. 10B is a diagram showing an example of an image displayed on the display device when the result output unit according to the first embodiment outputs the inference observation value acquired by the result acquisition unit via the display control unit. .. FIG.
  • FIG. 11 is a flowchart illustrating an example of processing of the inference device according to the first embodiment.
  • FIG. 12 is a block diagram showing an example of a main part of the inference system according to the second embodiment.
  • FIG. 13 is a block diagram showing an example of the configuration of the main part of the learning device according to the second embodiment.
  • FIG. 14 is a flowchart illustrating an example of processing of the learning device according to the second embodiment.
  • FIG. 15 is a block diagram showing an example of the configuration of the main part of the inference device according to the second embodiment.
  • FIG. 16 is an example of an image displayed on the display device when the result output unit according to the second embodiment outputs the inference observation value and the quantile information acquired by the result acquisition unit via the display control unit. It is a figure which shows.
  • FIG. 16 is an example of an image displayed on the display device when the result output unit according to the second embodiment outputs the inference observation value and the quantile information acquired by the result acquisition unit via the display control unit. It is
  • FIG. 17 is a flowchart illustrating an example of processing of the inference device according to the second embodiment.
  • FIG. 18 is a block diagram showing an example of a main part of the inference system according to the third embodiment.
  • FIG. 19 is a block diagram showing an example of the configuration of the main part of the learning device according to the third embodiment.
  • FIG. 20 is a flowchart illustrating an example of processing of the learning device according to the third embodiment.
  • FIG. 21 is a block diagram showing an example of the configuration of the main part of the inference device according to the third embodiment.
  • FIG. 22 is an example of an image displayed on the display device when the result output unit according to the third embodiment outputs the inference observation value and the predicted distribution information acquired by the result acquisition unit via the display control unit. It is a figure which shows.
  • FIG. 22 is an example of an image displayed on the display device when the result output unit according to the third embodiment outputs the inference observation value and the predicted distribution information acquired by the result acquisition unit via the display control unit. It is
  • FIG. 23 is a flowchart illustrating an example of processing of the inference device according to the third embodiment.
  • FIG. 24 is a block diagram showing an example of a main part of the inference system according to the fourth embodiment.
  • FIG. 25 is a block diagram showing an example of the configuration of the main part of the inference device according to the fourth embodiment.
  • FIG. 26 shows a display device when the result output unit according to the fourth embodiment outputs one or more inference observation values within the prediction range, which is the prediction target acquired by the result acquisition unit, via the display control unit. It is a figure which shows an example of the displayed image.
  • FIG. 27 is a flowchart illustrating an example of processing of the inference device according to the fourth embodiment. In FIG.
  • the result output unit according to the fourth embodiment outputs the quantiles of one or more inference observation values within the prediction range, which is the prediction target acquired by the result acquisition unit, via the display control unit. It is a figure which shows an example of the image displayed on the display device at the time of this.
  • FIG. 29 shows a case where the result output unit according to the fourth embodiment outputs a predicted distribution of one or more inferred observation values within the prediction range of the prediction target acquired by the result acquisition unit via the display control unit. It is a figure which shows an example of the image displayed on the display device.
  • the storage device 10 is a device for storing information necessary for the inference system 1 such as time series data.
  • the storage device 10 includes a storage medium such as an SSD (Solid State Drive) or an HDD (Hard Disk Drive) for storing the information.
  • the storage device 10 receives a read request from the learning device 100 or the inference device 200, reads information such as time series data from the storage medium, and reads the information to the learning device 100 or the inference device 200 that made the read request. Is output. Further, the storage device 10 receives a write request from the learning device 100 or the inference device 200, and stores the information output from the learning device 100 or the inference device 200 in the storage medium.
  • the display devices 11 and 12 are devices for displaying an image such as a display.
  • the display device 11 receives the image signal output by the learning device 100 and displays an image corresponding to the image signal.
  • the display device 12 receives the image signal output by the inference device 200 and displays an image corresponding to the image signal.
  • the input devices 13 and 14 are devices for a user such as a keyboard or a mouse to perform operation input.
  • the input device 13 receives an operation input from the user and outputs an operation signal corresponding to the user's input operation to the learning device 100.
  • the input device 14 receives an operation input from the user and outputs an operation signal corresponding to the user's input operation to the inference device 200.
  • the learning device 100 is a device that generates a learned model by performing machine learning based on time series data and outputs the generated learned model as model information.
  • the inference device 200 is a device that inputs explanatory variables to the trained model corresponding to the learning result by machine learning, acquires the observation value output by the trained model as the inference result, and outputs the acquired observation value.
  • the observation value output by the trained model as an inference result is referred to as an inference observation value.
  • FIG. 2 is a block diagram showing an example of the configuration of the main part of the learning device 100 according to the first embodiment.
  • the learning device 100 includes a display control unit 101, an operation reception unit 102, an original time series data acquisition unit 103, a virtual current date and time determination unit 104, a time series data extraction unit 105, a prediction period determination unit 106, and an observation value acquisition unit 107. It includes a learning data generation unit 108, a learning data acquisition unit 109, a learning unit 110, and a model output unit 111.
  • the learning device 100 is composed of a computer, which has a processor 301 and a memory 302.
  • the computer is displayed, the display control unit 101, the operation reception unit 102, the original time series data acquisition unit 103, the virtual current date and time determination unit 104, the time series data extraction unit 105, the prediction period determination unit 106, and the observed value.
  • a program for functioning as the acquisition unit 107, the learning data generation unit 108, the learning data acquisition unit 109, the learning unit 110, and the model output unit 111 is stored.
  • the display control unit 101 When the processor 301 reads and executes the program stored in the memory 302, the display control unit 101, the operation reception unit 102, the original time series data acquisition unit 103, the virtual current date and time determination unit 104, and the time series data extraction unit 105, a prediction period determination unit 106, an observation value acquisition unit 107, a learning data generation unit 108, a learning data acquisition unit 109, a learning unit 110, and a model output unit 111 are realized.
  • the learning device 100 may be configured by the processing circuit 303.
  • the functions of the data generation unit 108, the learning data acquisition unit 109, the learning unit 110, and the model output unit 111 may be realized by the processing circuit 303.
  • the learning device 100 may be composed of a processor 301, a memory 302, and a processing circuit 303 (not shown).
  • Some of the functions of the data generation unit 108, the learning data acquisition unit 109, the learning unit 110, and the model output unit 111 are realized by the processor 301 and the memory 302, and the remaining functions are realized by the processing circuit 303. It may be something that is done.
  • the processor 301 uses, for example, a CPU (Central Processing Unit), a GPU (Graphics Processing Unit), a microprocessor, a microcontroller, or a DSP (Digital Signal Processor).
  • a CPU Central Processing Unit
  • GPU Graphics Processing Unit
  • microprocessor a microcontroller
  • DSP Digital Signal Processor
  • the memory 302 uses, for example, a semiconductor memory or a magnetic disk. More specifically, the memory 302 includes a RAM (Random Access Memory), a ROM (Read Only Memory), a flash memory, an EPROM (Erasable Programmable Read Only Memory), an EEPROM (Electrically Memory), and an EEPROM (Electrically Memory). It uses an HDD or the like.
  • the processing circuit 303 may be, for example, an ASIC (Application Specific Integrated Circuit), a PLD (Programmable Logic Device), an FPGA (Field-Programmable Gate Array), or an FPGA (Field-Programmable Gate Array), or a System-System (System) System. Is used.
  • ASIC Application Specific Integrated Circuit
  • PLD Programmable Logic Device
  • FPGA Field-Programmable Gate Array
  • FPGA Field-Programmable Gate Array
  • System-System System-System
  • the display control unit 101 generates an image signal corresponding to the image to be displayed on the display device 11, and outputs the generated image signal to the display device 11.
  • the image displayed on the display device 11 is an image showing a list of time-series data stored in the storage device 10.
  • the operation reception unit 102 receives the operation signal output by the input device 13 and outputs the operation information indicating the user's input operation corresponding to the operation signal to the original time series data acquisition unit 103 or the like.
  • the operation information output by the operation reception unit 102 is, for example, information indicating time-series data designated by a user's input operation among the time-series data stored in the storage device 10.
  • the learning data acquisition unit 109 acquires a plurality of learning data.
  • One learning data is a combination of the first information, the second information, and the third information.
  • the first information is information based on one time series data of one or a plurality of time series data including time series observation values.
  • the second information is information based on one of a plurality of forecast periods including at least two different forecast periods.
  • the third information is information based on the observed value after the elapse of the prediction period.
  • the learning data acquisition unit 109 is, for example, the original time series data acquisition unit 103, the virtual current date / time determination unit 104, the time series data extraction unit 105, the prediction period determination unit 106, the observation value acquisition unit 107, and the learning data generation unit. Acquire a plurality of learning data generated by the unit 108.
  • the learning data acquisition unit 109 may acquire a plurality of learning data by reading out a plurality of learning data from the storage device 10.
  • FIG. 4 is a diagram showing an example of original time series data, prediction period, first information, second information, third information, and learning data.
  • the original time-series data shown in FIG. 4 is, for example, a time-series showing the number of visitors for 365 days from September 1, 2018 to August 31, 2019 of a certain theme park as daily observation values. It is a figure which shows a part of data.
  • the original time series data acquisition unit 103 acquires time series data.
  • the time series data acquired by the original time series data acquisition unit 103 is referred to as the original time series data.
  • the original time-series data acquisition unit 103 receives the operation information output by the operation reception unit 102 and reads the time-series data indicated by the operation information from the storage device 10 to read the time-series data. Is acquired as the original time series data.
  • the original time series data includes time series observations.
  • the original time series data includes date and time information indicating a time point such as the time, date, week, month, or year at which the observed value was obtained, and time, date, week, month, or time indicated by the date and time information. It has a plurality of information sets associated with the observed values at the time of the year and the like.
  • the original time series data acquisition unit 103 acquires, for example, the original time series data shown in FIG. 4 from the storage device 10.
  • the virtual current date / time determination unit 104 determines one or a plurality of virtual current date / time, which is a virtually determined current date / time, from the period corresponding to the original time series data acquired by the original time series data acquisition unit 103.
  • the period corresponding to the original time series data is the period from the oldest time point to the time point closest to the actual current date and time at the time point indicated by the date and time information included in the original time series data.
  • the period corresponding to the original time series data is a part of the period included in the period from the oldest time point to the point closest to the actual current date and time at the time point indicated by the date and time information included in the original time series data. It may be.
  • the virtual current date / time determination unit 104 automatically determines the virtual current date / time according to, for example, a predetermined algorithm.
  • the virtual current date and time determination unit 104 may receive the operation information output by the operation reception unit 102 and determine the virtual current date and time based on the information indicating the time point indicated by the operation information. For example, the virtual current date / time determination unit 104 sets the virtual current date / time to any one or more of the dates from September 10, 2018 to August 29, 2019 based on the original time series data shown in FIG. Determine the date of as the virtual current date and time. In the following description, the virtual current date / time determination unit 104 sets the virtual current date / time to the virtual current date from September 10, 2018 to August 29, 2019 based on the original time series data shown in FIG. It will be described as being determined as the date and time.
  • the time-series data cutting unit 105 uses the original time-series data acquired by the original time-series data acquisition unit 103 before the virtual current date and time for each of one or a plurality of virtual current dates and times determined by the virtual current date and time determination unit 104.
  • the original time-series data corresponding to the period of is cut out as the time-series data that is the basis of the first information.
  • the time-series data cutting unit 105 uses the original time-series data acquired by the original time-series data acquisition unit 103 for each of the one or a plurality of virtual current dates and times determined by the virtual current date and time determination unit 104.
  • the original time series data corresponding to the period from the oldest time point to the virtual current date and time at the time point indicated by the date and time information included in the series data is cut out as time series data.
  • the period for the time-series data cutting unit 105 to cut out the time-series data from the original time-series data is limited to the period from the oldest time point to the virtual current date and time at the time point indicated by the date and time information included in the time-series data. It's not a thing.
  • the time-series data cutting unit 105 sets the virtual current date and time from the oldest time point at the time indicated by the date and time information included in the time-series data for each of one or a plurality of virtual current date and time determined by the virtual current date and time determination unit 104.
  • the original time-series data corresponding to a part of the period may be cut out as time-series data.
  • the time-series data cutting unit 105 determines the period from the time before the virtual current date and time to the virtual current date and time for each of the one or a plurality of virtual current dates and times determined by the virtual current date and time determination unit 104.
  • the original time series data corresponding to is cut out as time series data.
  • the time-series data cutting unit 105 sets the most virtual current date and time among the original time-series data before the virtual current date and time for each of one or a plurality of virtual current dates and times determined by the virtual current date and time determination unit 104.
  • Original time-series data corresponding to a predetermined number of observation values that are close to each other may be cut out as time-series data.
  • the method by which the time-series data cutting unit 105 cuts out the time-series data from the original time-series data is not limited to the above-mentioned method.
  • the time-series data cutting unit 105 is, for example, from September 10, 2018 to August 29, 2019, which is the virtual current date and time determined by the virtual current date and time determination unit 104 based on the original time-series data shown in FIG. Of the original time series data up to, the original time series data before the virtual current date and time is cut out as the time series data that is the basis of the first information. More specifically, for example, when the time-series data cutout unit 105 is the virtual current date and time of August 29, 2019, the original time-series data from September 1, 2018 to August 29, 2019 The original time series data up to the day is cut out as the time series data that is the basis of the first information.
  • the time-series data cutting unit 105 is the source of the original time-series data from September 1, 2018 to September 10, 2018.
  • the time-series data is cut out as the time-series data that is the basis of the first information.
  • the prediction period determination unit 106 is of the second information that the time point after the prediction period elapses is included in the period corresponding to the original time series data for each of the one or a plurality of virtual current dates and times determined by the virtual current date and time determination unit 104. Determine at least two underlying forecast periods that are different from each other.
  • the prediction period is a period from the time closest to the current date and time in the period corresponding to the time series data cut out by the time series data cutting unit 105. More specifically, for example, the prediction period is the present in the period corresponding to the time series data cut out by the time series data cutting unit 105, in which the time point after the prediction period elapses is included in the period corresponding to the original time series data.
  • the prediction period is, for example, a predetermined event in the period corresponding to the time series data cut out by the time series data cutting unit 105, in which the time point after the prediction period elapses is included in the period corresponding to the original time series data. It may be a period from the time of occurrence of.
  • the prediction period determination unit 106 dates from September 10, 2018 to August 29, 2019, which is the virtual current date and time determined by the virtual current date and time determination unit 104 based on the original time series data shown in FIG. Each time, at least two different forecast periods are determined so that the time point after the forecast period elapses is included in the period corresponding to the original time series data. More specifically, for example, when the virtual current date and time is August 29, 2019, the prediction period determination unit 106 determines two periods, one day later and two days later, as the prediction period. Further, for example, when the virtual current date and time is September 10, 2018, the prediction period determination unit 106 determines 355 periods after 1 day, 2 days, ..., And 355 days as the prediction period.
  • the observation value acquisition unit 107 acquires the observation value after the lapse of the prediction period from the original time series data for each of at least two different prediction periods determined by the prediction period determination unit 106. Specifically, for example, when the prediction period is the period from the time closest to the current date and time in the period corresponding to the time series data cut out by the time series data cutting unit 105, the observation value acquisition unit 107 is concerned. The observation value after the lapse of the prediction period from the time point is acquired from the original time series data. Further, for example, when the prediction period is a period from the virtual current date and time, the observation value acquisition unit 107 acquires the observation value after the prediction period elapses from the virtual current date and time from the original time series data.
  • the prediction period of the observation value acquisition unit 107 is a period from the occurrence time of a predetermined event in the period corresponding to the time series data cut out by the time series data extraction unit 105
  • the event The observation value after the lapse of the prediction period from the time of occurrence of is acquired from the original time series data.
  • the observation value acquisition unit 107 observes after the lapse of at least two different prediction periods determined by the prediction period determination unit 106 from the virtual current date and time for each one or a plurality of virtual current dates and times determined by the virtual current date and time determination unit 104.
  • the value is acquired from the original time series data as an observation value that is the basis of the third information.
  • the observation value acquisition unit 107 is an observation value one day later corresponding to the prediction period.
  • the number of visitors on the 30th of the month and the number of visitors on August 31, 2019, which is the observed value two days later, are acquired from the original time-series data.
  • the observation value acquisition unit 107 shows the number of visitors on September 11, 2018, which is the observation value one day after the prediction period, and two days later.
  • the number of visitors on September 12, 2018, which is the observation value of, and the number of visitors on August 31, 2019, which is the observation value after 355 days, are acquired from the original time series data.
  • the learning data generation unit 108 includes first information based on one or more time-series data including one or a plurality of time-series observation values cut out by the time-series data extraction unit 105, and a prediction period. Second information based on one of a plurality of prediction periods including at least two different prediction periods determined by the determination unit 106, and an observation value acquired by the observation value acquisition unit 107 after the prediction period has elapsed. By combining with the third information based on, a plurality of learning data are generated. Specifically, the learning data generation unit 108 has first information and second information corresponding to a combination of the virtual current date and time determined by the virtual current date and time determination unit 104 and the prediction period determined by the prediction period determination unit 106, respectively. , And the third information are combined to generate the learning data, thereby generating a plurality of learning data.
  • the learning data generation unit 108 cuts out the time series data as shown in FIG.
  • the first information is the time-series data corresponding to the period from the predetermined time before the MM month DD date of YYYY to the DD date of MM month of YYYY, which is cut out from the original time-series data, and is the prediction period.
  • the information indicating X days later is used as the second information, and the observed value observed X days after the DD day of the MM month of YYYY is used as the third information.
  • the learning data generation unit 108 generates a plurality of learning data by generating learning data in which the first information, the second information, and the third information are combined.
  • FIG. 5 is a block diagram showing an example of the configuration of the main part of the learning data generation unit 108 according to the first embodiment.
  • the learning data generation unit 108 includes a first information generation unit 181, a second information generation unit 182, a third information generation unit 183, and an information association unit 184.
  • the first information generation unit 181 generates the first information based on the time series data of one or a plurality of time series data including the time series observation values cut out by the time series data extraction unit 105. To do. Specifically, the first information generation unit 181 selects one time-series data from the plurality of time-series data cut out by the time-series data cutting-out unit 105, and the first information generation unit 181 selects the time-series data based on the selected time-series data. 1 Generate information. More specifically, for example, the first information generation unit 181 is a time series corresponding to a predetermined number of observation values among the time series data cut out from the original time series data by the time series data cutting unit 105.
  • the first information is generated by cutting out the data and using the cut out time series data as the first information.
  • the learning data generation unit 108 has 10 days of time-series data cut out from the original time-series data by the time-series data extraction unit 105, which is the closest to the virtual current date and time, that is, 10 observation values.
  • the first information is generated by cutting out the time series data and using the cut out time series data as the first information.
  • the first information generation unit 181 is for 10 days closest to the virtual current date and time, that is, for 10 observation values.
  • the case where the time-series data is cut out and the cut-out time-series data is used as the first information will be described as an example.
  • the first information generation unit 181 is based on the original time series data shown in FIG. 4, and when the virtual current date and time is August 29, 2019, the time series data extraction unit 105 cuts out September 2018.
  • the first information is generated by using the series data as the first information.
  • the first information generation unit 181 cuts out the time series data cutting unit 105 based on the original time series data shown in FIG. 4 when the virtual current date and time is September 10, 2018.
  • the time-series data corresponding to the period from September 1, 2018 to September 10, 2018 is the first.
  • the first information is generated by using the information.
  • the second information generation unit 182 generates the second information based on one of a plurality of prediction periods including at least two different prediction periods determined by the prediction period determination unit 106. Specifically, for example, the second information generation unit 182 selects and selects the forecast period information indicating the forecast period of at least one of two different forecast periods determined by the forecast period determination unit 106. The second information is generated by using the expected period information as the second information. For example, when the virtual current date and time is August 29, 2019, the second information generation unit 182 is one day after the prediction period determined by the prediction period determination unit 106 based on the original time series data shown in FIG. The second information is generated by using the prediction period information indicating the above as the second information.
  • the second information generation unit 182 is a prediction period determined by the prediction period determination unit 106 when the virtual current date and time is August 29, 2019 based on the original time series data shown in FIG.
  • the second information is generated by using the forecast period information indicating two days later as the second information.
  • the second information generation unit 182 provides information indicating that the prediction period is one day later when the virtual current date and time is September 10, 2018, based on the original time series data shown in FIG. The second information is generated by using the information. Further, the second information generation unit 182 provides information indicating that the prediction period is two days later when the virtual current date and time is September 10, 2018, based on the original time series data shown in FIG. The second information is generated by using the information. Further, the second information generation unit 182 provides information indicating that the prediction period is 355 days later when the virtual current date and time is September 10, 2018, based on the original time series data shown in FIG. The second information is generated by using the information.
  • the second information generation unit 182 has a prediction period of N (N is a natural number of 1 or more and 355 or less) when the virtual current date and time is September 10, 2018, based on the original time series data shown in FIG.
  • the second information is generated by using the information indicating that it is after a day as the second information.
  • the third information generation unit 183 generates the third information based on the observation value acquired by the observation value acquisition unit 107 after the elapse of the prediction period. Specifically, for example, the third information generation unit 183 generates the third information by using the observation value acquired by the observation value acquisition unit 107 after the elapse of the prediction period as the third information. For example, when the virtual current date and time is August 29, 2019 and the prediction period is one day later, the third information generation unit 183 uses the virtual current date and time based on the original time series data shown in FIG. From a certain August 29, 2019, the third information is generated by setting the number of visitors on August 30, 2019, which is one day after the forecast period information, which is the second information, as the third information.
  • the virtual current is based on the original time series data shown in FIG.
  • the third information is generated by setting the number of visitors on August 31, 2019, which is two days after the forecast period information, which is the second information, from August 29, 2019, which is the date and time, as the third information.
  • the information association unit 184 combines the first information generated by the first information generation unit 181 with the second information generated by the second information generation unit 182 and the third information generated by the third information generation unit 183. By doing so, learning data is generated.
  • the first information generation unit 181 is based on the original time series data shown in FIG.
  • the first information which is the time-series data corresponding to the period from August 20, 2019 to August 29, 2019, generated by the second information generation unit 182, and one day after the prediction period, which is generated by the second information generation unit 182.
  • One learning data is generated by combining the second information, which is the predicted period information shown, and the third information, which is the number of visitors on August 30, 2019, generated by the third information generation unit 183. To do.
  • the first information generation unit 181 is based on the original time series data shown in FIG.
  • the first information which is the time-series data corresponding to the period from August 20, 2019 to August 29, 2019, and the prediction period, which is two days later, generated by the second information generation unit 182.
  • One learning data is generated by combining the second information, which is the predicted period information shown, and the third information, which is the number of visitors on August 31, 2019, generated by the third information generation unit 183. To do. That is, the learning data generation unit 108 can generate two learning data whose prediction period is one day later and two days later when the virtual current date and time is August 29, 2019.
  • the third information generation unit 183 is virtual based on the original time series data shown in FIG. From September 10, 2018, which is the current date and time, the third information is generated by setting the number of visitors corresponding to the date corresponding to N days after the forecast period information, which is the second information, as the third information.
  • the information union unit 184 is generated by the first information generation unit 181 based on the original time series data shown in FIG. The first information, which is the time-series data corresponding to the period from September 1, 2018 to September 10, 2018, and the prediction indicating N days after the prediction period generated by the second information generation unit 182.
  • the learning data generation unit 108 can generate 355 learning data corresponding to each prediction period from 1 day to 355 days later. it can.
  • the virtual current date / time determination unit 104 determines the virtual current date / time as the virtual current date / time from September 10, 2018 to August 29, 2019 based on the original time series data shown in FIG. However, the virtual current date and time determination unit 104 may also determine August 30, 2019 as the virtual current date and time. When the virtual current date and time determination unit 104 determines August 30, 2019 as the virtual current date and time, the prediction period determined by the prediction period determination unit 106 is one day later. In this case, the observation value acquisition unit 107 acquires the number of visitors on August 31, 2019, which is one day after August 30, 2019, as the observation value.
  • the first information generation unit 181 is out of the time series data corresponding to the period from September 1, 2018 to August 30, 2019, which was cut out by the time series data cutting unit 105, in 2019.
  • the first information is generated by using the time-series data corresponding to the period from August 21 to August 30, 2019 as the first information.
  • the second information generation unit 182 generates the second information by using the information indicating that the prediction period is one day later as the second information.
  • the third information generation unit 183 uses the number of visitors on August 31, 2019, which is one day after the expected period from August 30, 2019, which is the virtual current date and time, as the third information. Generate information.
  • the information union unit 184 generates one learning data by combining the first information, the second information, and the third information.
  • the information union department 184 repeatedly generates learning data in all the combinatorial patterns in which the first information, the second information, and the third information can be combined, until the learning data is completely generated.
  • the learning data generation unit 108 repeats the learning data until the information association unit 184 finishes generating the learning data in all the combinable combination patterns of the first information, the second information, and the third information. By generating, a plurality of learning data are generated.
  • FIG. 6 is a flowchart illustrating an example of processing of the learning data generation unit 108 according to the first embodiment.
  • step ST601 the first information generation unit 181 generates the first information.
  • step ST602 the second information generation unit 182 generates the second information.
  • step ST603 the third information generation unit 183 generates the third information.
  • step ST604 the information union unit 184 generates learning data.
  • step ST605 the information union unit 184 determines whether or not the learning data has been generated in all the combinatorial patterns in which the first information, the second information, and the third information can be combined.
  • step ST605 When the information association unit 184 determines in step ST605 that the learning data has not been generated in all the combination patterns that can be combined, the information association unit 184 is for learning in all the combination patterns that can be combined.
  • the learning data generation unit 108 repeatedly executes the process of step ST604 until the data has been generated.
  • the learning data generation unit 108 ends the processing of the flowchart.
  • the processing order from step ST601 to step ST603 does not matter as long as it is before the processing of step ST604.
  • the learning device 100 can generate a plurality of learning data based on one original time series data. Further, the learning device 100 learns by using the plurality of learning data generated in this way, for example, for an arbitrary prediction period from 1 day to 355 days after the designation, after the prediction period has elapsed. It is possible to generate a trained model that can infer an observation value that is an inference observation value.
  • the learning device 100 generates a trained model that can infer an arbitrary prediction period from 1 day to 355 days in the generation of a trained model that can infer an observation value that is an inferred observation value after the elapse of the prediction period. You don't have to do anything.
  • the learning device 100 determines in advance a trained model that can be inferred for an arbitrary prediction period from 1 day to 30 days, or a trained model that can be inferred for an arbitrary prediction period from 8 days to 355 days. It may generate a trained model that can be inferred for any prediction period in a given period.
  • FIG. 7 is a diagram showing another example of the original time series data prediction period, the first information, the second information, the third information, and the learning data.
  • the original time-series data shown in FIG. 7 is similar to the original time-series data shown in FIG. 4, and as an example, visitors for 365 days from September 1, 2018 to August 31, 2019 of a certain theme park. It is a figure which shows a part of the time series data which showed the number as the observation value for every day.
  • the learning data generation unit 108 cuts out the time series data corresponding to a predetermined number of observation values among the time series data cut out from the original time series data by the time series data cutting unit 105. Therefore, the first information is generated by using the cut out time series data as the first information. Further, in the first method, the learning data generation unit 108 generates the second information by using the prediction period information indicating the prediction period determined by the prediction period determination unit 106 as the second information. Further, in the first method, the learning data generation unit 108 generates the third information by using the observation value acquired by the observation value acquisition unit 107 after the elapse of the prediction period as the third information.
  • the learning data generation unit 108 converts the time series data cut out from the original time series data by the time series data cutting unit 105 into a vector representation having the same predetermined number of dimensions.
  • the first information is generated by encoding.
  • the learning data generation unit 108 encodes the prediction period information indicating the prediction period determined by the prediction period determination unit 106 into a vector representation having a predetermined number of dimensions. 2 Generates information.
  • the time series data extraction unit 105 is the original time series.
  • the time series data cut out from the data and corresponding to the period from September 1, 2018 to MM month DD day of YYYY is encoded into a vector representation having the same predetermined number of dimensions and used as the first information for prediction.
  • the information indicating the period X days later is encoded into a vector representation having the same predetermined number of dimensions to be used as the second information, and the observed value observed X days after the MM month DD day of YYYY is referred to as the third information. To do.
  • the processing of the original time series data acquisition unit 103, the virtual current date / time determination unit 104, the time series data extraction unit 105, the prediction period determination unit 106, and the observation value acquisition unit 107 in the second method is the first method. Since the processing is the same as that of the original time series data acquisition unit 103, the virtual current date / time determination unit 104, the time series data extraction unit 105, the prediction period determination unit 106, and the observation value acquisition unit 107 in the above, the description thereof will be omitted. ..
  • the learning data generation unit 108 in the second method will be described as including the first information generation unit 181a, the second information generation unit 182a, the third information generation unit 183, and the information association unit 184. ..
  • the configuration of the main part of the learning data generation unit 108 in the second method is the configuration of the main part of the learning data generation unit 108 in the first method shown in FIG. 5, in which the first information generation unit 181 and the second information generation unit 181 Since 182 is merely changed to the first information generation unit 181a and the second information generation unit 182a, the block diagram showing the configuration of the main part of the learning data generation unit 108 in the second method is omitted.
  • the first information generation unit 181a generates the first information based on the time series data of one or a plurality of time series data including the time series observation values cut out by the time series data extraction unit 105. To do. Specifically, the first information generation unit 181a selects one time-series data from the plurality of time-series data cut out by the time-series data cutting-out unit 105, and the first information generation unit 181a selects the time-series data based on the selected time-series data. 1 Generate information. More specifically, for example, the first information generation unit 181a obtains the time-series data in the same predetermined dimension based on the time-series data cut out from the original time-series data by the time-series data extraction unit 105. The first information is generated by encoding into a vector representation with numbers.
  • the first information generation unit 181a has the average value, the median value, and the mode of the time series data obtained by statistically processing the time series data cut out from the original time series data by the time series data extraction unit 105.
  • First information is generated by encoding the time series data into a vector representation with the same predetermined number of dimensions using summary statistics such as values, modes, minimums, or standard deviations. ..
  • the first information generation unit 181a reduces the dimension of the time series data cut out from the original time series data by the time series data cutting unit 105 by performing low-rank approximation processing such as singular value decomposition.
  • the first information may be generated by encoding the time series data into a vector representation having the same predetermined number of dimensions.
  • the first information generation unit 181a applies a hash function to the time-series data cut out from the original time-series data by the time-series data cutting-out unit 105, and obtains the same time-series data in advance.
  • the first information may be generated by encoding into a vector representation having a number of dimensions.
  • the first information generation unit 181a inputs the time-series data cut out from the original time-series data by the time-series data cutting-out unit 105 into the digital filter, and inputs the time-series data to the same predetermined time-series data.
  • the first information may be generated by encoding into a vector representation having a number of dimensions.
  • the first information generation unit 181a inputs the time-series data cut out from the original time-series data by the time-series data cutting-out unit 105 into a neural network that performs convolution processing or the like, and inputs the time-series data in advance.
  • the first information may be generated by encoding into a vector representation having a defined number of dimensions.
  • the first information generation unit 181a first, for example, by combining the above-mentioned first information generation methods and encoding the time series data into a vector representation having the same predetermined number of dimensions. Information may be generated.
  • the number of observation values included in the time-series data cut out from the original time-series data by the time-series data cutting unit 105 will be different when the virtual current date and time determined by the virtual current date and time determination unit 104 changes.
  • the learning data generation unit 108 includes the first information generation unit 181a, the number of observation values included in the time series data cut out from the original time series data by the time series data cutting unit 105 is different.
  • the time series data can be encoded into a vector representation having the same predetermined number of dimensions.
  • the second information generation unit 182a generates the second information based on one of a plurality of prediction periods including at least two different prediction periods determined by the prediction period determination unit 106. Specifically, for example, the second information generation unit 182a selects and selects the forecast period information indicating the forecast period of at least one of two different forecast periods determined by the forecast period determination unit 106. The second information is generated by using the expected period information as the second information. More specifically, for example, the second information generation unit 182a encodes the forecast period information indicating the forecast period determined by the forecast period determination unit 106 into a vector representation having a predetermined number of dimensions. Generate second information.
  • the second information generation unit 182a predicts by an arbitrary unit such as a time difference between the time point after the elapse of the prediction period determined by the prediction period determination unit 106 and the current date and time determined by the virtual current date and time determination unit 104.
  • the second information is generated by encoding the period information into a vector representation having a predetermined number of dimensions.
  • the second information generation unit 182a has a time point after the elapse of the prediction period determined by the prediction period determination unit 106 and a period corresponding to the time series data extracted from the original time series data by the time series data extraction unit 105.
  • the second information is generated by encoding the predicted period information represented by an arbitrary unit such as the time difference from the occurrence time of the predetermined event in the vector representation having a predetermined number of dimensions. Is also good.
  • the second information generation unit 182a is represented by an arbitrary unit such as a year, a month, a week, a day of the week, a holiday, or a specific day, which is a time point after the prediction period determined by the prediction period determination unit 106 has elapsed.
  • Second information may be generated by encoding the prediction period information into a vector representation having a predetermined number of dimensions.
  • the second information generation unit 182a uses the prediction period information represented by an arbitrary unit such as hours, minutes, seconds, or time zone, which is a time point after the prediction period determined by the prediction period determination unit 106 has elapsed.
  • Second information may be generated by encoding into a vector representation having a predetermined number of dimensions.
  • the second information generation unit 182a uses, for example, information encoded in a vector representation having a predetermined number of dimensions by the above-mentioned generation method, using a predetermined function such as a logarithmic function or a trigonometric function.
  • the second information may be generated by converting and using the converted information as the second information. More specifically, for example, in the second information generation unit 182a, the time difference between the time point after the elapse of the prediction period determined by the prediction period determination unit 106 and the current date and time determined by the virtual current date and time determination unit 104 is T. By taking the logarithm of T, which is a positive real number like log (T), T is converted into a value indicating the entire real number, and the converted value is encoded to generate the second information. Is also good.
  • the second information generation unit 182a applies a trigonometric function to T like cos (2nT / P) or sin (2nT / P) by using a predetermined period P and an arbitrary natural number n.
  • the second information may be generated by converting T into a periodic value and encoding the converted value.
  • the second information generation unit 182a converts T into periodic information by obtaining the quotient and the remainder obtained by dividing T by P, and encodes the quotient and the remainder to obtain the second information. Information may be generated.
  • the learning data generation unit 108 includes the second information generation unit 182a to encode the prediction period information represented by an arbitrary unit into a vector representation having a predetermined number of dimensions. be able to. Further, the observation interval of the observation value included in the time-series data cut out from the original time-series data by the time-series data cutting unit 105 may differ depending on the original time-series data. Therefore, the second information generation unit 182a encodes the prediction period information represented by an arbitrary unit into a vector representation having a predetermined number of dimensions, so that when the second information is generated, the prediction period is generated. Regardless of the information, it is preferable to encode into a vector representation having the same number of dimensions.
  • the learning device 100 can generate a plurality of learning data based on one original time series data.
  • the inference system 1 may include a learning data generation device (not shown) that generates a plurality of learning data from the original time series data.
  • the learning data generation device includes a former time series data acquisition unit 103, a virtual current date / time determination unit 104, a time series data extraction unit 105, a prediction period determination unit 106, an observation value acquisition unit 107, and a learning data generation unit 108. It is composed of.
  • the learning data acquisition unit 109 in the learning device 100 can store a plurality of learning data generated by the learning data generation device directly from the learning data generation device or a storage device. It can be obtained via 10 mag.
  • Each function of the above may be realized by the processor 301 and the memory 302 in the hardware configuration shown as an example in FIGS. 3A and 3B, or may be realized by the processing circuit 303.
  • the learning unit 110 uses a combination of the first information and the second information in the learning data as an explanatory variable and the third information as a response variable, and a plurality of learning data acquired by the learning data acquisition unit 109. Learn using.
  • the learning unit 110 generates a learned model capable of inferring the inferred observation value after the lapse of the designated prediction period by the learning. More specifically, when the learning unit 110 learns the third information as a response variable, the learning unit 110 performs supervised machine learning using the response variable as the teacher data, so that the inference observation after the lapse of the designated prediction period elapses. Generate a trained model whose values can be inferred.
  • one learning data includes first information based on one time series data of one or a plurality of time series data including time series observation values, and at least two prediction periods different from each other.
  • Inference observation for learning using a plurality of learning data which is a combination of the second information based on one of the plurality of prediction periods and the third information based on the observation value after the elapse of the prediction period.
  • the trained model generated by the learning unit 110 elapses the specified prediction period by performing the inference only once. Later inference observation values can be inferred.
  • the learning unit 110 learns the information obtained by combining the first information and the second information in the learning data as an explanatory variable. Therefore, by using the information generated by the above-mentioned second method, which is a combination of the first information and the second information encoded in the vector representation of a predetermined number of dimensions, as the explanatory variable, the first Even if the time-series data including the time-series observation values that are the basis of the information is the time-series data that includes the number of arbitrary observation values, the prediction that indicates at least two different prediction periods that are the basis of the second information. Even if the period information is the predicted period information represented by an arbitrary unit, the learning unit 110 can perform learning.
  • the learning in the learning unit 110 is performed by an arbitrary learning algorithm according to the learned model generated by the learning unit 110.
  • the learning in the learning unit 110 is performed by a learning algorithm such as a stochastic gradient descent method.
  • a method such as cross-validation may be applied in order to appropriately set the hyperparameters used in the trained model.
  • the inference method based on the trained model generated by the learning unit 110 is an arbitrary inference method such as a neighbor method, a support vector machine, a decision tree, a random forest, a gradient boosting tree, a Gaussian process regression, or a neural network.
  • the model output unit 111 outputs the trained model generated by the learning unit 110 as model information.
  • the model output unit 111 outputs to, for example, the inference device 200 or the storage device 10.
  • FIG. 8 is a flowchart illustrating an example of processing of the learning device 100 according to the first embodiment.
  • step ST801 the original time series data acquisition unit 103 acquires the original time series data.
  • step ST802 the virtual current date / time determination unit 104 determines one or more virtual current date / time.
  • step ST803 the time-series data cutting unit 105 selects the original time-series data corresponding to the period before the virtual current date and time among the original time-series data for each of one or a plurality of virtual current dates and times. Cut out as time series data.
  • step ST804 the prediction period determination unit 106 has at least two different points for each of the one or a plurality of virtual current dates and times, in which the time point after the prediction period elapses is included in the period corresponding to the original time series data. Determine the forecast period.
  • step ST805 the observation value acquisition unit 107 obtains observation values after the lapse of the prediction period from the original time series data for at least two different prediction periods at each of the one or a plurality of virtual current dates and times. get.
  • the learning data generation unit 108 selects one of one or a plurality of time series data including the time series observation values cut out by the time series data cutting unit 105.
  • the first information is the prediction period information indicating one of a plurality of prediction periods including at least two different prediction periods, the second information is, and the observation value after the lapse of the prediction period is the third information.
  • the learning data acquisition unit 109 acquires a plurality of learning data.
  • the learning unit 110 learns using the plurality of learning data and generates a learned model.
  • the model output unit 111 outputs the trained model as model information.
  • the learning device 100 ends the processing of the flowchart after the processing of step ST809.
  • one learning data is at least different from the first information based on one time-series data of one or a plurality of time-series data including the time-series observation values.
  • Learning to acquire a plurality of learning data which is a combination of the second information based on one prediction period of a plurality of prediction periods including one prediction period and the third information based on the observed value after the prediction period elapses.
  • the learning device 100 can infer an observation value having a high-precision inference accuracy with a small inference error in the inference of an arbitrary future observation value.
  • the learning device 100 sets one or more virtual current dates and times, which are virtually determined current dates and times, from the period corresponding to one original time series data including the time series observation values. For each of the virtual current date and time determination unit 104 to be determined and one or more virtual current date and time determined by the virtual current date and time determination unit 104, the original time series data corresponding to the period before the virtual current date and time among the original time series data. With respect to each of the time-series data cutting unit 105 that cuts out as time-series data including the time-series observed value that is the basis of the first information, and one or a plurality of virtual current date and time determined by the virtual current date and time determination unit 104.
  • the prediction period determination unit 106 that determines at least two different prediction periods that are the basis of the second information, and the prediction period determination unit 106 that includes the time point after the prediction period elapses in the period corresponding to the original time series data. For each of the determined two prediction periods that are different from each other, the observation value acquisition unit 107 that acquires the observation value after the elapse of the prediction period, which is the basis of the third information, from the original time series data, and the time series data extraction unit 105.
  • the first information based on one or more time-series data including one or more time-series data extracted by the prediction period determination unit 106 and at least two different prediction periods determined by the prediction period determination unit 106.
  • a plurality of learnings are performed by combining the second information based on one of the plurality of prediction periods including the prediction period and the third information based on the observation value after the elapse of the prediction period acquired by the observation value acquisition unit 107.
  • a learning data generation unit 108 for generating data for learning is provided, and the data acquisition unit 109 for learning is configured to acquire a plurality of learning data generated by the data generation unit 108 for learning.
  • the learning device 100 can generate a plurality of learning data based on one original time series data. Further, by configuring in this way, the learning device 100 learns using the plurality of learning data generated in this way, so that the inference observation after the elapse of the prediction period is performed for the specified arbitrary prediction period. It is possible to generate a trained model in which the observed value, which is a value, can be inferred with high accuracy.
  • the learning device 100 sets the prediction period, which is the basis of the second information in the learning data, to the current date and time in the period corresponding to the time series data, which is the basis of the first information in the learning data. It is a period from the nearest time point, and the third information in the learning data is configured to be information based on the observed value after the elapse of the predicted period from the time point.
  • the learning device 100 can infer an observation value having a high-precision inference accuracy with a small inference error in the inference of an arbitrary future observation value.
  • the learning device 100 can infer arbitrary future observation values after the prediction period elapses from the time closest to the current date and time in the period corresponding to the time series data. It is possible to generate a trained model that can infer the observed value, which is an inferred observation value, with high accuracy.
  • the prediction period on which the second information in the learning data is based is predetermined in the period corresponding to the time-series data on which the first information in the learning data is based. It is a period from the time of occurrence of the event, and the third information in the learning data is configured to be information based on the observed value after the elapse of the predicted period from the time of occurrence of the event.
  • the learning device 100 can infer an observation value having a high-precision inference accuracy with a small inference error in the inference of an arbitrary future observation value.
  • the learning device 100 infers an arbitrary future observation value, and the prediction period elapses from the occurrence time of a predetermined event in the period corresponding to the time series data. It is possible to generate a trained model that can infer the observed value, which is the inferred observation value later, with high accuracy.
  • the learning device 100 is configured such that the second information is information obtained by encoding the prediction period information capable of specifying the prediction period into a vector representation having a predetermined number of dimensions.
  • the learning device 100 can encode the prediction period information represented by an arbitrary unit into a vector representation having a predetermined number of dimensions. More specifically, with this configuration, the learning device 100 has the prediction period information in which the prediction period information indicating at least two different prediction periods, which is the basis of the second information, is represented by an arbitrary unit. Even so, learning can be done.
  • the learning device 100 is configured so that all of the prediction period information represented by an arbitrary unit is coded into a vector representation having the same predetermined number of dimensions.
  • the learning device 100 can encode the prediction period information represented by an arbitrary unit into a vector representation having a predetermined number of dimensions. More specifically, with this configuration, the learning device 100 has the prediction period information in which the prediction period information indicating at least two different prediction periods, which is the basis of the second information, is represented by an arbitrary unit. Even so, learning can be done.
  • the first information is information encoded in a vector representation having the same predetermined number of dimensions in all the time series data on which the first information is based. It was configured as follows. With this configuration, the learning device 100 can use the time-series data even if the number of observation values included in the time-series data cut out from the original time-series data by the time-series data cutting unit 105 is different. Can be encoded into a vector representation with the same predetermined number of dimensions. More specifically, with this configuration, the learning device 100 uses time-series data including the number of arbitrary observation values in the time-series data including the time-series observation values that are the basis of the first information. Even if there is, you can study.
  • the learning device 100 learns the learning unit 110 using the information in the vector representation in which the first information encoded in the vector representation and the second information encoded in the vector representation are connected as explanatory variables. It was configured to do.
  • the learning device 100 has a second time-series data including the time-series observation values that are the basis of the first information, even if the time-series data includes the number of arbitrary observation values. Learning can be performed even if the prediction period information indicating at least two different prediction periods, which is the basis of the information, is the prediction period information represented by an arbitrary unit.
  • the training data generator determines one or more virtual current dates and times, which are virtually determined current dates and times, from the period corresponding to one original time series data including the time series observation values. For each of the virtual current date and time determination unit 104 and one or more virtual current date and time determined by the virtual current date and time determination unit 104, among the original time series data, the original time series data corresponding to the period before the virtual current date and time is input. For each of the time-series data cutout unit 105, which is cut out as time-series data including the time-series observed value that is the basis of the first information, and one or more virtual current date and time determined by the virtual current date and time determination unit 104.
  • the prediction period determination unit 106 and the prediction period determination unit 106 that determine at least two different prediction periods that are the basis of the second information and whose time points after the elapse of the prediction period are included in the period corresponding to the original time series data are determined.
  • the observation value acquisition unit 107 that acquires the observation value after the elapse of the prediction period, which is the basis of the third information, from the original time series data and the time series data extraction unit 105 for each of at least two different prediction periods. Includes first information based on one or more time-series data out of one or more time-series data including time-series observations, and at least two different prediction periods determined by the prediction period determination unit 106.
  • a learning data generation unit 108 for generating data is provided.
  • the learning data generator can generate a plurality of learning data based on one original time series data. Further, with this configuration, the learning data generation device can provide the learning device 100 that generates the trained model with a plurality of training data thus generated. By learning using a plurality of learning data provided by the learning data generation device, the learning device 100 accurately obtains an observation value which is an inferred observation value after the elapse of the prediction period for an arbitrary specified prediction period. It is possible to generate a trained model that can be inferred from.
  • FIG. 9 is a block diagram showing an example of the configuration of the main part of the inference device 200 according to the first embodiment.
  • the inference device 200 includes a display control unit 201, an operation reception unit 202, an inference time series data acquisition unit 203, a model acquisition unit 206, a designated prediction period acquisition unit 204, an inference data generation unit 205, an inference data acquisition unit 207, and so on. It includes an inference data input unit 208, an inference unit 209, a result acquisition unit 210, and a result output unit 211.
  • the functions of 207, inference data input unit 208, inference unit 209, result acquisition unit 210, and result output unit 211 are realized by the processor 301 and the memory 302 in the hardware configuration shown in FIGS. 3A and 3B as examples. It may be one, or it may be realized by the processing circuit 303.
  • the display control unit 201 generates an image signal corresponding to the image to be displayed on the display device 12, and outputs the generated image signal to the display device 12.
  • the image displayed on the display device 12 is an image showing a list of time-series data stored in the storage device 10, a list of model information, and the like.
  • the operation reception unit 202 receives the operation signal output by the input device 14, and obtains the operation information indicating the user's input operation corresponding to the operation signal to the inference time series data acquisition unit 203, the designated prediction period acquisition unit 204, or the operation reception unit 202. It is output to the model acquisition unit 206 and the like.
  • the operation information output by the operation reception unit 202 is, among the time-series data stored in the storage device 10, information indicating time-series data or model information designated by the user's input operation.
  • the inference data acquisition unit 207 acquires inference data by combining the fourth information based on the time series data including the time series observation values and the fifth information in which the designated prediction period of the prediction target can be specified. Specifically, for example, the inference data generated by the inference data generation unit 205 is acquired. The inference data generation unit 205 generates inference data using the information acquired by the inference time series data acquisition unit 203 and the designated prediction period acquisition unit 204. The inference data acquisition unit 207 may acquire the inference data by reading the inference data prepared in advance from the storage device 10.
  • the inference time series data acquisition unit 203, the designated prediction period acquisition unit 204, and the inference The data generation unit 205 is not an indispensable configuration.
  • the inference time series data acquisition unit 203 acquires the time series data.
  • the time series data acquired by the inference time series data acquisition unit 203 is referred to as inference time series data.
  • the inference time-series data acquisition unit 203 receives the operation information output by the operation reception unit 202 and reads the time-series data indicated by the operation information from the storage device 10 to read the time-series data. Acquire the data as time series data for inference.
  • the designated prediction period acquisition unit 204 acquires the designated prediction period information indicating the designated prediction period of the prediction target.
  • the designated prediction period that can be specified by the fifth information in the inference data is from the most current date and time in the period corresponding to the inference time series data that is the basis of the fourth information in the inference data. It is a period from a near point.
  • the designated prediction period that can be specified by the fifth information in the inference data is the time when a predetermined event occurs in the period corresponding to the inference time series data that is the basis of the fourth information in the inference data.
  • the designated prediction period acquisition unit 204 receives the operation information output by the operation reception unit 202 and converts the designated prediction period of the prediction target indicated by the operation information into the designated prediction period information, thereby converting the designated prediction period information. get.
  • the inference data generation unit 205 has a designated prediction period based on the fourth information based on the inference time series data acquired by the inference time series data acquisition unit 203 and the designated prediction period information acquired by the designated prediction period acquisition unit 204. Inference data is generated by combining with the fifth information that can specify the designated prediction period of the prediction target indicated by the information.
  • the inference data generation unit 205 corresponds to a predetermined number of observation values closest to the current date and time among the inference time series data acquired by the inference time series data acquisition unit 203.
  • the inference time series data is cut out, and the inference time series data after the cut out is used as the fourth information.
  • the inference data generation unit 205 uses the designated prediction period information acquired by the designated prediction period acquisition unit 204 as the fifth information.
  • the inference data generation unit 205 generates inference data by combining the fourth information and the fifth information.
  • the designated prediction period that can be specified by the fifth information in the inference data is the basis of the fourth information in the inference data. This is the period from the point closest to the current date and time in the period corresponding to the time series data for inference.
  • the inference data generation unit 205 has the most current date and time among the inference time series data before the occurrence of a predetermined event in the inference time series data acquired by the inference time series data acquisition unit 203.
  • the inference time series data corresponding to a predetermined number of observation values close to may be cut out, and the inference time series data after the cut out may be used as the fourth information.
  • the inference data generation unit 205 uses the designated prediction period information acquired by the designated prediction period acquisition unit 204 as the fifth information.
  • the inference data generation unit 205 generates inference data by combining the fourth information and the fifth information.
  • the designated prediction period that can be specified by the fifth information in the inference data is the basis of the fourth information in the inference data. This is the period from the time when a predetermined event occurs in the period corresponding to the time series data for inference.
  • FIG. 10A is a diagram showing an example of time series data for inference, designated prediction period, fourth information, fifth information, and explanatory variables. Similar to the original time series data shown in FIG. 4, the inference time series data shown in FIG. 10A is, as an example, admission for 365 days from September 1, 2018 to August 31, 2019 in a certain theme park. It is a figure which shows a part of the time series data for inference which showed the number of persons as the observation value for every day.
  • the inference time series data acquisition unit 203 acquires the inference time series data shown in FIG. 10A from the storage device 10.
  • the inference data generation unit 205 is based on the inference data shown in FIG. 10A, for example, among the inference time series data corresponding to the period from September 1, 2018 to August 31, 2019, the observed value.
  • the time series data for inference corresponding to the period from August 22, 2019 to August 31, 2019 is cut out so that the number of is 10 which is a predetermined number.
  • the inference data generation unit 205 uses the inference time series data corresponding to the cut-out period from August 22, 2019 to August 31, 2019 as the fourth information. Further, as shown in FIG. 10A, the inference data generation unit 205 uses, for example, the designated prediction period information indicating that the designated prediction period of the prediction target is 30 days later as the fifth information.
  • the inference data generation unit 205 converts the inference time series data acquired by the inference time series data acquisition unit 203 into a vector representation having the same predetermined number of dimensions.
  • the encoded information may be used as the fourth information.
  • the first information generation unit 181a in the learning device 100 generates the first information. Since it is the same as the method of encoding the time series data into a vector representation having the same predetermined number of dimensions, the description thereof will be omitted.
  • the inference data generation unit 205 encodes information obtained by encoding designated prediction period information capable of specifying a designated prediction period into a vector representation having a predetermined number of dimensions.
  • 5 Information may be used.
  • the method in which the inference data generation unit 205 encodes the designated prediction period information capable of specifying the designated prediction period into a vector representation having a predetermined number of dimensions is described by the second information generation unit 182a in the learning device 100. 2 Since it is the same as the method of encoding the expected period information into a vector representation having a predetermined number of dimensions when generating the information, the description thereof will be omitted.
  • the fifth information is information encoded in a vector representation having the same predetermined number of dimensions in all of the designated prediction period information represented by an arbitrary unit.
  • the model acquisition unit 206 acquires model information. Specifically, for example, the model acquisition unit 206 acquires the model information by receiving the operation information output by the operation reception unit 202 and reading the model information indicated by the operation information from the storage device 10.
  • the trained model indicated by the model information acquired by the model acquisition unit 206 is at least two different from the first information based on the time series data of one or a plurality of time series data including the observed values of the time series.
  • the first information and the second information in the training data in which the second information based on one of the plurality of prediction periods including the prediction period and the third information based on the observed value after the elapse of the prediction period are combined.
  • the model information acquired by the model acquisition unit 206 is the model information output by the learning device 100.
  • the model acquisition unit 206 acquires the model information output by the learning device 100 directly from the learning device 100 or via the storage device 10.
  • FIG. 9 shows a case where the model acquisition unit 206 directly acquires the model information output by the learning device 100 from the learning device 100.
  • the inference unit 209 infers the inference observation value after the lapse of the designated prediction period using the learned model indicated by the model information acquired by the model acquisition unit 206.
  • the inference unit 209 that infers the inference observation value after the lapse of the designated prediction period specified by using the trained model is provided in the inference device 200 but is connected to the inference device 200 by an external device (not shown). It may be provided.
  • the inference data input unit 208 inputs the inference data acquired by the inference data acquisition unit 207 into the trained model corresponding to the learning result by machine learning as an explanatory variable. More specifically, the inference data input unit 208 outputs the inference data to the inference unit 209, and causes the inference unit 209 to input the inference data into the trained model.
  • the inference data generation unit 205 expresses a vector representation of a predetermined number of dimensions.
  • the trained model has the inference time series data including the observation value of the time series that is the basis of the fourth information. , Even if it is time series data including the number of arbitrary observation values, even if the designated prediction period information indicating the designated prediction period on which the fifth information is based is the information expressed in an arbitrary unit, the fourth Inference data that combines information and fifth information can be received as explanatory variables.
  • the result acquisition unit 210 acquires the inference observation value after the lapse of the designated prediction period, which is output by the trained model as the inference result. More specifically, the result acquisition unit 210 acquires the inference observation value after the lapse of the designated prediction period, which is output by the trained model as the inference result, from the inference unit 209 or an external device including the inference unit 209.
  • the result output unit 211 outputs the inference observation value acquired by the result acquisition unit 210. Specifically, for example, the result output unit 211 outputs the inference observation value acquired by the result acquisition unit 210 via the display control unit 201.
  • the display control unit 201 receives the inference observation value from the result output unit 211, generates an image signal corresponding to the image showing the inference observation value, outputs the image signal to the display device 12, and outputs the image signal to the display device 12. An image showing the inferred observation value is displayed. Further, the result output unit 211 may output, for example, the inference observation value acquired by the result acquisition unit 210 to the storage device 10 and store the inference observation value in the storage device 10.
  • the designated prediction period indicated by the designated prediction period information acquired by the designated prediction period acquisition unit 204 is, for example, an arbitrary period from 1 day to 355 days later.
  • the inference device 200 uses the trained model. By performing the inference only once, the inferred observation value after the lapse of the designated prediction period can be inferred.
  • the designated prediction period information acquired by the designated prediction period acquisition unit 204 is, for example, a period from 1 day to 355 days after the time closest to the current date and time among the periods corresponding to the inference time series data. It is information indicating an arbitrary date among the corresponding dates from September 1, 2019 to August 20, 2020.
  • the inference data generation unit 205 uses the information indicating the date, which is the designated prediction period information acquired by the designated prediction period acquisition unit 204, as the fifth information. Further, the inference data generation unit 205 generates inference data by combining the fourth information and the fifth information.
  • the designated prediction period indicated by the designated prediction period information does not have to correspond to any of a plurality of prediction periods in which the inferred observation value after the elapse of the prediction period can be inferred by the trained model.
  • the inference device 200 uses the trained model. , The inferred observation value after the lapse of the specified prediction period is inferred by combining the inferrable prediction period with the inferred observation value so that the number of inferences is the smallest.
  • the inference device 200 combines inference observation values with inferenceable prediction periods so that the number of inferences is minimized, so that the inference included in the inference observation values after the lapse of the designated prediction period indicated by the designated prediction period information. The error can be reduced.
  • FIG. 10B shows an example of an image displayed on the display device 12 when the result output unit 211 outputs the inference observation value and the quantile information acquired by the result acquisition unit 210 via the display control unit 201. It is a figure.
  • the observed values in the inference time series data are plotted and displayed in association with the observation time point.
  • a designated prediction period of the designated prediction target is displayed.
  • the inferred observation value after the lapse of the designated prediction period is displayed.
  • FIG. 11 is a flowchart illustrating an example of processing of the inference device 200 according to the first embodiment.
  • step ST1101 the inference time series data acquisition unit 203 acquires the inference time series data.
  • step ST1102 the designated prediction period acquisition unit 204 acquires the designated prediction period information indicating the designated prediction period of the prediction target.
  • step ST1103 the inference data generation unit 205 can specify the fourth information based on the inference time series data and the designated prediction period of the prediction target indicated by the designated prediction period information based on the designated prediction period information. Inference data is generated by combining the fifth information.
  • step ST1104 the model acquisition unit 206 acquires model information.
  • step ST1105 the inference data acquisition unit 207 acquires inference data.
  • step ST1106 the inference data input unit 208 inputs the inference data as an explanatory variable into the trained model.
  • the inference unit 209 infers the inference observation value after the lapse of the designated prediction period using the trained model.
  • step ST1108 the result acquisition unit 210 acquires the inference observation value after the lapse of the designated prediction period, which is output by the trained model as the inference result.
  • step ST1109 the result output unit 211 outputs the inference observation value acquired by the result acquisition unit 210.
  • the inference device 200 ends the processing of the flowchart after the processing of step ST1109.
  • step ST1101 and step ST1102 are executed before the processing of step ST1103. Further, as long as the processing of step ST1104 is executed before the processing of step ST1106, the execution order does not matter.
  • the inference device 200 acquires inference data that combines the fourth information based on the time series data including the time series observation values and the fifth information that can specify the designated prediction period of the prediction target.
  • the result acquisition unit 210 that acquires the inference observation value after the lapse of the designated prediction period and the result output unit 211 that outputs the inference observation value acquired by the result acquisition unit 210 are provided.
  • the inference device 200 can infer an observation value having a high accuracy of inference with a small inference error in the inference of an arbitrary future observation value.
  • the trained model is at least different from the first information based on the time-series data of one or a plurality of time-series data including the observed values of the time-series.
  • the first information and the second information in the training data in which the second information based on one of the plurality of prediction periods including one prediction period and the third information based on the observed value after the elapse of the prediction period are combined.
  • the information obtained by combining the above is used as an explanatory variable, and the third information is used as a response variable, so that the trained model corresponds to the learning result by machine learning, which is learned using a plurality of learning data.
  • the inference device 200 can infer an observation value having a high accuracy of inference with a small inference error in the inference of an arbitrary future observation value.
  • the inference device 200 has a designated prediction period that can be specified by the fifth information in the inference data during a period corresponding to the inference time series data that is the basis of the fourth information in the inference data. , The period is configured to be from the point closest to the current date and time.
  • the inference device 200 can infer an observation value having a high accuracy of inference with a small inference error in the inference of an arbitrary future observation value. More specifically, with this configuration, the inference device 200 has the most current date and time in the inference of any future observation value in the period corresponding to the inference time series data on which the fourth information is based. It is possible to infer with high accuracy the inferred observation value after the lapse of the specified prediction period from a point close to.
  • the inference device 200 has a designated prediction period that can be specified by the fifth information in the inference data during a period corresponding to the inference time series data that is the basis of the fourth information in the inference data. It is configured so that the period starts from the time when a predetermined event occurs.
  • the inference device 200 can infer an observation value having a high accuracy of inference with a small inference error in the inference of an arbitrary future observation value.
  • the inference device 200 is predetermined in the inference of an arbitrary future observation value during a period corresponding to the inference time series data on which the fourth information is based. It is possible to infer the inferred observation value after the lapse of the specified prediction period from the time when the event occurs with high accuracy.
  • the inference device 200 is configured such that the fifth information is information obtained by encoding the designated prediction period information capable of specifying the designated prediction period into a vector representation having a predetermined number of dimensions. did.
  • the inference device 200 has the fourth information and the fifth information even if the designated prediction period information indicating the designated prediction period on which the fifth information is based is information expressed in an arbitrary unit. Inference data combined with information can be input to the trained model as explanatory variables.
  • the fifth information is information encoded in a vector representation having the same predetermined number of dimensions in all of the designated prediction period information represented by an arbitrary unit. It was configured to be. With this configuration, the inference device 200 has the fourth information and the fifth information even if the designated prediction period information indicating the designated prediction period on which the fifth information is based is information expressed in an arbitrary unit. Inference data combined with information can be input to the trained model as explanatory variables.
  • the fourth information is information encoded in a vector representation having the same predetermined number of dimensions in all of the inference time series data that is the basis of the fourth information. It was configured to be. With this configuration, the inference device 200 can use the inference device 200 even if the inference time series data including the time series observation values on which the fourth information is based is the time series data including the number of arbitrary observation values. Inference data that combines the fourth information and the fifth information can be input to the trained model as explanatory variables.
  • the inference device 200 explains that the inference data input unit 208 describes the information in the vector representation in which the fourth information encoded in the vector representation and the fifth information encoded in the vector representation are connected. It is configured to be input to the trained model as a variable. With this configuration, the inference device 200 can use the inference device 200 even if the inference time series data including the time series observation values that are the basis of the fourth information is the time series data including the number of arbitrary observation values. Even if the designated prediction period information indicating the designated prediction period that is the basis of the fifth information is information expressed in an arbitrary unit, the inference data that combines the fourth information and the fifth information is learned as an explanatory variable. Can be entered in a completed model.
  • FIG. 12 is a block diagram showing an example of a main part of the inference system 1a according to the second embodiment.
  • the learning device 100 and the inference device 200 are changed to the learning device 100a and the inference device 200a as compared with the inference system 1 according to the first embodiment.
  • the same reference numerals are given to the same configurations as the inference system 1 according to the first embodiment, and duplicate description will be omitted. That is, the description of the configuration of FIG. 12 having the same reference numerals as those shown in FIG. 1 will be omitted.
  • the inference system 1a includes a learning device 100a, an inference device 200a, a storage device 10, display devices 11 and 12, and input devices 13 and 14.
  • the storage device 10 is a device for storing information necessary for the inference system 1a such as time series data.
  • the display device 11 receives the image signal output by the learning device 100a and displays an image corresponding to the image signal.
  • the display device 12 receives the image signal output by the inference device 200a and displays an image corresponding to the image signal.
  • the input device 13 receives an operation input from the user and outputs an operation signal corresponding to the user's input operation to the learning device 100a.
  • the input device 14 receives an operation input from the user and outputs an operation signal corresponding to the user's input operation to the inference device 200a.
  • the learning device 100a is a device that generates a learned model by performing machine learning based on time series data and outputs the generated learned model as model information.
  • the inference device 200a inputs an explanatory variable into the learned model corresponding to the learning result by machine learning, the inference observation value output by the trained model as the inference result, and the division point indicating the division point of the inference observation value. It is a device that acquires point information and outputs the acquired inference observation value and division point information.
  • FIG. 13 is a block diagram showing an example of the configuration of the main part of the learning device 100a according to the second embodiment.
  • the learning unit 110 is changed to the learning unit 110a as compared with the learning device 100 according to the first embodiment.
  • the same components as those of the learning device 100 according to the first embodiment are designated by the same reference numerals, and duplicate description will be omitted. That is, the description of the configuration of FIG. 13 having the same reference numerals as those shown in FIG. 2 will be omitted.
  • the learning device 100a includes a display control unit 101, an operation reception unit 102, an original time series data acquisition unit 103, a virtual current date / time determination unit 104, a time series data extraction unit 105, a prediction period determination unit 106, and an observation value acquisition unit 107. It includes a learning data generation unit 108, a learning data acquisition unit 109, a learning unit 110a, and a model output unit 111.
  • the functions of 107, the learning data generation unit 108, the learning data acquisition unit 109, the learning unit 110a, and the model output unit 111 are provided by the processor 301 and the memory 302 in the hardware configuration shown in FIGS. 3A and 3B. It may be realized, or it may be realized by the processing circuit 303.
  • the learning unit 110a uses a combination of the first information and the second information in the learning data as an explanatory variable and the third information as a response variable, and a plurality of learning data acquired by the learning data acquisition unit 109. Learn using.
  • the learning unit 110a generates a learned model capable of inferring the quantile of the inferred observation value in addition to the inferred observation value after the lapse of the designated prediction period by the learning. More specifically, when the learning unit 110a learns the third information as a response variable, the learning unit 110a performs inference observation after the lapse of a designated prediction period by performing supervised machine learning using the response variable as teacher data. In addition to the value, a trained model that can infer the division point of the inferred observation value is generated.
  • the learning unit 110a can generate a learned model capable of inferring the quantile of the inferred observation value, for example, by performing machine learning by the quantile regression. More specifically, for example, the learning unit 110a uses a gradient boosting tree to perform machine learning by quantile regression for a quantile corresponding to a specified arbitrary ratio, thereby performing the quantile. Can generate a trained model that can infer. In the inference of the inference observation value quantile, the learning unit 110a, in addition to the 50% quantile corresponding to the median in the inference observation value inference, 10%, 25%, 75%, 90%, etc. You may generate a trained model that can infer the quantiles corresponding to any percentage of.
  • the trained model generated by the learning unit 110a will be described as inferring five quantiles corresponding to 10%, 25%, 50%, 75%, and 90% as an example.
  • the learning unit 110a can generate a trained model capable of inferring five quantiles corresponding to 10%, 25%, 50%, 75%, and 90%.
  • Machine learning is performed by quantile regression for each of the five quantiles corresponding to 50%, 75%, and 90%.
  • the learning unit 110a generates, for example, a trained model that outputs the mean value of the inferred inference observation value and the standard deviation of the inference observation value as the inference result by performing machine learning by Gaussian process regression.
  • the quantile corresponding to an arbitrary ratio in the inference observation value is the cumulative density in the Gaussian distribution calculated from the average value of the inference observation values output by the trained model as the inference result and the standard deviation of the inference observation value. Can be calculated using. That is, the learning unit 110a can generate a learned model capable of inferring the quantile of the inferred observation value by performing machine learning by, for example, Gaussian process regression.
  • FIG. 14 is a flowchart illustrating an example of processing of the learning device 100a according to the second embodiment.
  • step ST1401 the original time series data acquisition unit 103 acquires the original time series data.
  • step ST1402 the virtual current date / time determination unit 104 determines one or more virtual current date / time.
  • step ST1403 the time-series data cutting unit 105 selects the original time-series data corresponding to the period before the virtual current date and time among the original time-series data for each of one or a plurality of virtual current dates and times. Cut out as time series data.
  • step ST1404 the prediction period determination unit 106 has at least two different points for each of the one or a plurality of virtual current dates and times, in which the time point after the prediction period elapses is included in the period corresponding to the original time series data. Determine the forecast period.
  • step ST1405 the observation value acquisition unit 107 obtains observation values after the lapse of the prediction period from the original time series data for at least two different prediction periods at each of the one or a plurality of virtual current dates and times. get.
  • the learning data generation unit 108 selects one of one or a plurality of time series data including the time series observation values cut out by the time series data cutting unit 105.
  • the first information is the prediction period information indicating one of a plurality of prediction periods including at least two different prediction periods, the second information is, and the observation value after the lapse of the prediction period is the third information.
  • the learning data acquisition unit 109 acquires a plurality of learning data.
  • the learning unit 110a learns using the plurality of learning data and generates a learned model.
  • the model output unit 111 outputs the trained model as model information.
  • the learning device 100a ends the processing of the flowchart after the processing of step ST1409.
  • one learning data is at least different from the first information based on one time-series data of one or a plurality of time-series data including the time-series observation values.
  • Learning to acquire a plurality of learning data which is a combination of the second information based on one prediction period of a plurality of prediction periods including one prediction period and the third information based on the observed value after the prediction period elapses.
  • the learning unit 110a includes a learning unit 110a that learns using the data for the purpose and generates a trained model capable of inferring the inferred observation value after the lapse of the specified prediction period, and the learning unit 110a is provided after the lapse of the specified prediction period.
  • the learning unit 110a is configured to generate a trained model in which the division point of the inferred observation value can be inferred.
  • the learning device 100a enables inference of an observed value having a high inference accuracy with a small inference error in inference of an arbitrary future observed value, and also has a high accuracy with a small inference error. It is possible to infer the inference point of the observed value having the inference accuracy of.
  • the learning device 100a enables the inference of the division point of the observed value having a high inference accuracy with a small inference error, so that the observed value can be inferred. It is possible to grasp the certainty of inference with high accuracy.
  • FIG. 15 is a block diagram showing an example of the configuration of the main part of the inference device 200a according to the second embodiment.
  • the inference unit 209, the result acquisition unit 210, and the result output unit 211 have the inference unit 209a, the result acquisition unit 210a, as compared with the inference device 200 according to the first embodiment.
  • the result output unit 211a has been changed.
  • the same reference numerals are given to the same configurations as the inference device 200 according to the first embodiment, and duplicate description will be omitted. That is, the description of the configuration of FIG. 15 having the same reference numerals as those shown in FIG. 9 will be omitted.
  • the inference device 200a includes a display control unit 201, an operation reception unit 202, an inference time series data acquisition unit 203, a model acquisition unit 206, a designated prediction period acquisition unit 204, an inference data generation unit 205, an inference data acquisition unit 207, and so on. It includes an inference data input unit 208, an inference unit 209a, a result acquisition unit 210a, and a result output unit 211a.
  • the functions of 207, the inference data input unit 208, the inference unit 209a, the result acquisition unit 210a, and the result output unit 211a are realized by the processor 301 and the memory 302 in the hardware configuration shown in FIGS. 3A and 3B as examples. It may be one, or it may be realized by the processing circuit 303.
  • the inference unit 209a infers the inference observation value after the lapse of the designated designated prediction period and the division point of the inference observation value by using the trained model indicated by the model information acquired by the model acquisition unit 206. Even if the inference device 209a for inferring the inference observation value after the lapse of the designated prediction period specified by using the trained model and the inference point of the inference observation value is provided in the inference device 200a, the inference device 200a It may be provided in an external device (not shown) connected to the device.
  • the result acquisition unit 210a acquires the quantile information indicating the quantile of the inference observation value in addition to the inference observation value after the lapse of the designated prediction period.
  • the quantile information included in the inference result output by the trained model corresponds to an arbitrary ratio such as 10%, 25%, 50%, 75%, or 90% in the inference of the inference observation value. It indicates a point.
  • the quantile information is information indicating a plurality of quantiles corresponding to each of arbitrary ratios such as 10%, 25%, 50%, 75%, and 90% in the inference of the inference observation value. Is also good.
  • the quantile information included in the inference result output by the trained model is information indicating five quantiles corresponding to each of 10%, 25%, 50%, 75%, and 90%. It is explained as if.
  • the result output unit 211a outputs the quantile information acquired by the result acquisition unit 210a in addition to the inference observation value acquired by the result acquisition unit 210a. Specifically, for example, the result output unit 211a outputs the inference observation value and the quantile information acquired by the result acquisition unit 210a via the display control unit 201.
  • the display control unit 201 receives the inference observation value and the quantile information from the result output unit 211a, generates an image signal corresponding to the image showing the inference observation value and the quantile information, and displays the image signal. The output is output to the device 12, and the display device 12 displays an image showing the inferred observation value and the quantile information. Further, the result output unit 211a outputs, for example, the inference observation value and the quantile information acquired by the result acquisition unit 210a to the storage device 10, and stores the inference observation value and the quantile information in the storage device 10. You may.
  • FIG. 16 shows an example of an image displayed on the display device 12 when the result output unit 211a outputs the inference observation value and the quantile information acquired by the result acquisition unit 210a via the display control unit 201. It is a figure.
  • the observed values in the inference time series data are plotted and displayed in association with the observation time point.
  • the designated prediction period of the designated prediction target is displayed.
  • the quantiles of the inferred observation values after the lapse of the designated prediction period are set to 10%, 25%, 50%, 75%, and 90%, respectively.
  • horizontal line in FIG. 16 located at the upper end of the vertical line segment (hereinafter referred to as “vertical line”) in FIG. 16 is 90%.
  • the horizontal line located at the lower end of the vertical line is the 10% quantile point
  • the upper end of the box located on the perpendicular line is the 75% quantile point
  • the lower end of the box is the 25% quantile point
  • the center of the box is the horizontal lines.
  • the inference device 200a acquires the inference observation value after the lapse of the designated prediction period and the inference point information indicating the inference point of the inference observation value, which is output by the trained model as the inference result, and acquires it on the display device or the like. By outputting the inference observation value and the division point of the inference observation value, the inference accuracy of the inference observation value can be grasped with high accuracy.
  • FIG. 17 is a flowchart illustrating an example of processing of the inference device 200a according to the second embodiment.
  • step ST1701 the inference time series data acquisition unit 203 acquires the inference time series data.
  • step ST1702 the designated prediction period acquisition unit 204 acquires the designated prediction period information indicating the designated prediction period of the prediction target.
  • step ST1703 the inference data generation unit 205 can specify the fourth information based on the inference time series data and the designated prediction period of the prediction target indicated by the designated prediction period information based on the designated prediction period information. Inference data is generated by combining the fifth information.
  • step ST1704 the model acquisition unit 206 acquires model information.
  • step ST1705 the inference data acquisition unit 207 acquires inference data.
  • step ST1706 the inference data input unit 208 inputs the inference data as an explanatory variable into the trained model.
  • the inference unit 209a infers the inference observation value after the lapse of the designated designated prediction period and the quantile point of the inference observation value using the trained model.
  • the result acquisition unit 210a outputs the inference observation value after the lapse of the designated prediction period and the quantile information indicating the quantile point of the inference observation value, which is output by the trained model as the inference result. get.
  • step ST1709 the result output unit 211a outputs the inference observation value and the quantile information acquired by the result acquisition unit 210a.
  • the inference device 200a ends the processing of the flowchart after the processing of step ST1709.
  • the processing order does not matter as long as the processing of step ST1701 and step ST1702 is executed before the processing of step ST1703. Further, as long as the processing of step ST1704 is executed before the processing of step ST1706, the execution order does not matter.
  • the inference device 200a acquires inference data that combines the fourth information based on the time-series data including the time-series observation values and the fifth information that can specify the designated prediction period of the prediction target.
  • the result acquisition unit 210a outputs the inference observation value after the lapse of the designated prediction period, and the result output unit 211a outputs the inference observation value acquired by the result acquisition unit 210a.
  • the 210a acquires the inference point information indicating the inference point of the inference observation value in addition to the inference observation value after the lapse of the designated prediction period, and the result output unit 211a receives the inference point information.
  • the division point information acquired by the result acquisition unit 210a is output.
  • FIG. 18 is a block diagram showing an example of a main part of the inference system 1b according to the third embodiment.
  • the learning device 100 and the inference device 200 are changed to the learning device 100b and the inference device 200b as compared with the inference system 1 according to the first embodiment.
  • the same reference numerals are given to the same configurations as the inference system 1 according to the first embodiment, and duplicate description will be omitted. That is, the description of the configuration of FIG. 18 having the same reference numerals as those shown in FIG. 1 will be omitted.
  • the inference system 1b includes a learning device 100b, an inference device 200b, a storage device 10, display devices 11 and 12, and input devices 13 and 14.
  • the storage device 10 is a device for storing information necessary for the inference system 1b such as time series data.
  • the display device 11 receives the image signal output by the learning device 100b and displays an image corresponding to the image signal.
  • the display device 12 receives the image signal output by the inference device 200b and displays an image corresponding to the image signal.
  • the input device 13 receives an operation input from the user and outputs an operation signal corresponding to the user's input operation to the learning device 100b.
  • the input device 14 receives an operation input from the user and outputs an operation signal corresponding to the user's input operation to the inference device 200b.
  • the learning device 100b is a device that generates a learned model by performing machine learning based on time series data and outputs the generated learned model as model information.
  • the inference device 200b inputs an explanatory variable into the learned model corresponding to the learning result by machine learning, and outputs the inference observation value that the trained model outputs as the inference result, and the prediction distribution information indicating the prediction distribution of the inference observation value.
  • FIG. 19 is a block diagram showing an example of the configuration of the main part of the learning device 100b according to the third embodiment.
  • the learning unit 110 is changed to the learning unit 110b as compared with the learning device 100 according to the first embodiment.
  • the same components as those of the learning device 100 according to the first embodiment are designated by the same reference numerals, and duplicate description will be omitted. That is, the description of the configuration of FIG. 19 having the same reference numerals as those shown in FIG. 2 will be omitted.
  • the learning device 100b includes a display control unit 101, an operation reception unit 102, an original time series data acquisition unit 103, a virtual current date / time determination unit 104, a time series data extraction unit 105, a prediction period determination unit 106, and an observation value acquisition unit 107. It includes a learning data generation unit 108, a learning data acquisition unit 109, a learning unit 110b, and a model output unit 111.
  • the functions of 107, the learning data generation unit 108, the learning data acquisition unit 109, the learning unit 110b, and the model output unit 111 are provided by the processor 301 and the memory 302 in the hardware configuration shown in FIGS. 3A and 3B. It may be realized, or it may be realized by the processing circuit 303.
  • the learning unit 110b uses a combination of the first information and the second information in the learning data as an explanatory variable and the third information as a response variable, and a plurality of learning data acquired by the learning data acquisition unit 109. Learn using.
  • the learning unit 110b generates a learned model capable of inferring the predicted distribution of the inferred observation value in addition to the inferred observation value after the lapse of the designated prediction period by the learning. More specifically, when the learning unit 110b learns the third information as a response variable, the learning unit 110b performs supervised machine learning using the response variable as the teacher data, so that the inference observation after the lapse of the designated prediction period elapses. In addition to the values, a trained model that can infer the predicted distribution of the inferred observation values is generated.
  • the learning unit 110b uses, for example, machine learning using MDN (Mixture density networks) obtained by applying a mixture density model to a neural network to obtain a learned model capable of inferring a predicted distribution of inferred observation values. Can be generated.
  • MDN Matture density networks
  • the observed value may be limited to a predetermined value such as 1.0 or 3.0 among a plurality of predetermined discrete values such as 1.0 and 3.0.
  • the learning unit 110b By generating a trained model capable of inferring the predicted distribution of inferred observation values, the learning unit 110b generates two values (for example, 1.0 and) that are close to each other among a plurality of predetermined discrete values.
  • the value between (3.0) and (for example, 2.0) is an inferred observation value, it is possible to grasp that the inferred observation value is an inappropriate value.
  • FIG. 20 is a flowchart illustrating an example of processing of the learning device 100b according to the third embodiment.
  • step ST2001 the original time series data acquisition unit 103 acquires the original time series data.
  • step ST2002 the virtual current date / time determination unit 104 determines one or more virtual current date / time.
  • step ST2003 the time-series data cutting unit 105 selects the original time-series data corresponding to the period before the virtual current date and time among the original time-series data for each of one or a plurality of virtual current dates and times. Cut out as time series data.
  • step ST2004 the prediction period determination unit 106 has at least two different points for each of the one or a plurality of virtual current dates and times, in which the time point after the prediction period elapses is included in the period corresponding to the original time series data. Determine the forecast period.
  • step ST2005 the observation value acquisition unit 107 obtains observation values after the lapse of the prediction period from the original time series data for at least two different prediction periods at each of the one or a plurality of virtual current dates and times. get.
  • the learning data generation unit 108 selects one of one or a plurality of time series data including the time series observation values cut out by the time series data cutting unit 105.
  • the first information is the prediction period information indicating one of a plurality of prediction periods including at least two different prediction periods, the second information is, and the observation value after the lapse of the prediction period is the third information.
  • the learning data acquisition unit 109 acquires a plurality of learning data.
  • the learning unit 110b learns using a plurality of learning data and generates a learned model.
  • the model output unit 111 outputs the trained model as model information.
  • the learning device 100b ends the processing of the flowchart after the processing of step ST2009.
  • one learning data is at least different from the first information based on one time-series data of one or a plurality of time-series data including the time-series observation values.
  • Learning data acquisition unit 109 that acquires a plurality of learning data, which is a combination of the second information based on the period of a plurality of prediction periods including one prediction period and the third information based on the observed value after the elapse of the prediction period.
  • the information obtained by combining the first information and the second information in the learning data is used as an explanatory variable, and the third information is used as a response variable, using a plurality of learning data acquired by the learning data acquisition unit 109.
  • the learning unit 110b includes a learning unit 110b that learns and generates a learned model capable of inferring an inferred observation value after the lapse of a specified prediction period, and the learning unit 110b is in addition to the inference observation value after the lapse of a specified prediction period. Therefore, it is configured to generate a trained model in which the predicted distribution of the inferred observation value can be inferred.
  • the learning device 100b enables inference of an observed value having a high inference accuracy with a small inference error in inference of an arbitrary future observed value, and also has a high accuracy with a small inference error. It is possible to infer the predicted distribution of the observed value having the inference accuracy of.
  • the learning device 100b infers and observes a value between two values that are close to each other among a plurality of predetermined discrete values that the observed value can take. When it is a value, it is possible to grasp with high accuracy that the inferred observation value is an inappropriate value.
  • FIG. 21 is a block diagram showing an example of the configuration of the main part of the inference device 200b according to the third embodiment.
  • the inference unit 209, the result acquisition unit 210, and the result output unit 211 have the inference unit 209b, the result acquisition unit 210b, as compared with the inference device 200 according to the first embodiment.
  • the result output unit 211b has been changed.
  • the same reference numerals are given to the same configurations as the inference device 200 according to the first embodiment, and duplicate description will be omitted. That is, the description of the configuration of FIG. 21 having the same reference numerals as those shown in FIG. 9 will be omitted.
  • the inference device 200b includes a display control unit 201, an operation reception unit 202, an inference time series data acquisition unit 203, a model acquisition unit 206, a designated prediction period acquisition unit 204, an inference data generation unit 205, an inference data acquisition unit 207, and so on. It includes an inference data input unit 208, an inference unit 209b, a result acquisition unit 210b, and a result output unit 211b.
  • the functions of 207, the inference data input unit 208, the inference unit 209b, the result acquisition unit 210b, and the result output unit 211b are realized by the processor 301 and the memory 302 in the hardware configuration shown in FIGS. 3A and 3B as examples. It may be one, or it may be realized by the processing circuit 303.
  • the inference unit 209b infers the inference observation value after the lapse of the designated designated prediction period and the prediction distribution of the inference observation value by using the trained model indicated by the model information acquired by the model acquisition unit 206. In addition, even if the inference unit 209b for inferring the inference observation value after the lapse of the designated prediction period specified by using the trained model and the prediction distribution of the inference observation value is provided in the inference device 200b, the inference device 200b and the inference device 200b It may be provided in an external device (not shown) to be connected.
  • the result acquisition unit 210b acquires the prediction distribution information indicating the prediction distribution of the inference observation value in addition to the inference observation value after the lapse of the designated prediction period.
  • the predicted distribution information included in the inference result output by the trained model indicates the probability that the inference observation value can be obtained in the inference of the inference observation value for each inference observation value.
  • the result output unit 211b outputs the prediction distribution information acquired by the result acquisition unit 210b in addition to the inference observation value acquired by the result acquisition unit 210b. Specifically, for example, the result output unit 211b outputs the inference observation value and the prediction distribution information acquired by the result acquisition unit 210b via the display control unit 201.
  • the display control unit 201 receives the inferred observation value and the predicted distribution information from the result output unit 211b, generates an image signal corresponding to the image showing the inferred observation value and the predicted distribution information, and displays the image signal on the display device 12. Is output to the display device 12, and an image showing the inferred observation value and the predicted distribution information is displayed on the display device 12. Further, the result output unit 211b may output, for example, the inference observation value and the prediction distribution information acquired by the result acquisition unit 210b to the storage device 10 and store the inference observation value and the prediction distribution information in the storage device 10. good.
  • FIG. 22 is a diagram showing an example of an image displayed on the display device 12 when the result output unit 211b outputs the inference observation value and the predicted distribution information acquired by the result acquisition unit 210b via the display control unit 201. Is.
  • the observed values in the inference time series data are plotted and displayed in association with the observation time point.
  • the designated prediction period of the designated prediction target is displayed.
  • the predicted distribution of the inferred observation values after the lapse of the designated prediction period is displayed by a violin diagram.
  • the upper bulge in the vertical direction of FIG. 22 indicates the probability that the inferred observation value is in the vicinity of 3.0, and the lower bulge indicates the probability that the inferred observation value is in the vicinity of 1.0. Shows the probability.
  • the trained model has an inferred observation value.
  • An inference result indicating that it is 2.0 may be output.
  • the inference device 200b acquires the inference observation value after the lapse of the designated prediction period and the prediction distribution information indicating the prediction distribution of the inference observation value, which is output by the trained model as the inference result, and acquires the inference observation value on the display device or the like.
  • FIG. 23 is a flowchart illustrating an example of processing of the inference device 200b according to the third embodiment.
  • step ST2301 the inference time series data acquisition unit 203 acquires the inference time series data.
  • step ST2302 the designated prediction period acquisition unit 204 acquires the designated prediction period information indicating the designated prediction period of the prediction target.
  • step ST2303 the inference data generation unit 205 can specify the fourth information based on the inference time series data and the designated prediction period of the prediction target indicated by the designated prediction period information based on the designated prediction period information. Inference data is generated by combining the fifth information.
  • step ST2304 the model acquisition unit 206 acquires model information.
  • step ST2305 the inference data acquisition unit 207 acquires inference data.
  • step ST2306 the inference data input unit 208 inputs the inference data as an explanatory variable into the trained model.
  • the inference unit 209b infers the inference observation value after the lapse of the designated designated prediction period and the prediction distribution of the inference observation value using the trained model.
  • the result acquisition unit 210b acquires the inference observation value after the lapse of the designated prediction period and the prediction distribution information indicating the prediction distribution of the inference observation value, which is output by the trained model as the inference result. ..
  • step ST2309 the result output unit 211b outputs the inferred observation value and the predicted distribution information acquired by the result acquisition unit 210b.
  • the inference device 200b ends the processing of the flowchart after the processing of step ST2309.
  • step ST2301 and step ST2302 are executed before the processing of step ST2303. Further, as long as the processing of step ST2304 is executed before the processing of step ST2306, the execution order does not matter.
  • the inference device 200b acquires inference data that combines the fourth information based on the time series data including the time series observation values and the fifth information that can specify the designated prediction period of the prediction target.
  • the 210b acquires the predicted distribution information indicating the predicted distribution of the inferred observation value in addition to the inferred observation value after the lapse of the designated prediction period as the inference result output by the trained model, and the result output unit 211b acquires the result.
  • the prediction distribution information acquired by the result acquisition unit 210b is output.
  • the inference device 200b can infer an inference observation value having a high accuracy inference accuracy with a small inference error in inference of an arbitrary future observation value, and further, the inference observation. It makes it possible to grasp with high accuracy that the value is an inappropriate value. Further, the inference device 200b makes it possible to grasp an appropriate value with high accuracy when the inference observation value is an inappropriate value.
  • FIG. 24 is a block diagram showing an example of a main part of the inference system 1c according to the fourth embodiment.
  • the inference device 200 is changed to the inference device 200c as compared with the inference system 1 according to the first embodiment.
  • the same reference numerals are given to the same configurations as the inference system 1 according to the first embodiment, and duplicate description will be omitted. That is, the description of the configuration of FIG. 24 having the same reference numerals as those shown in FIG. 1 will be omitted.
  • the inference system 1c includes a learning device 100, an inference device 200c, a storage device 10, display devices 11 and 12, and input devices 13 and 14.
  • the storage device 10 is a device for storing information necessary for the inference system 1c such as time series data.
  • the display device 12 receives the image signal output by the inference device 200c and displays an image corresponding to the image signal.
  • the input device 14 receives an operation input from the user and outputs an operation signal corresponding to the user's input operation to the inference device 200c.
  • the inference device 200c is a device that inputs explanatory variables to the learned model corresponding to the learning result by machine learning and outputs the inference observation value output by the learned model as the inference result.
  • FIG. 25 is a block diagram showing an example of the configuration of the main part of the inference device 200c according to the fourth embodiment.
  • the result acquisition unit 210 and the result output unit 211 are changed to the result acquisition unit 210c and the result output unit 211c as compared with the inference device 200 according to the first embodiment. Is.
  • the same reference numerals are given to the same configurations as the inference device 200 according to the first embodiment, and duplicate description will be omitted. That is, the description of the configuration of FIG. 25 having the same reference numerals as those shown in FIG. 9 will be omitted.
  • the inference device 200c includes a display control unit 201, an operation reception unit 202, an inference time series data acquisition unit 203, a model acquisition unit 206, a designated prediction period acquisition unit 204c, an inference data generation unit 205c, and an inference data acquisition unit 207. It includes an inference data input unit 208, an inference unit 209, a result acquisition unit 210c, and a result output unit 211c.
  • the functions of 207, the inference data input unit 208, the inference unit 209, the result acquisition unit 210c, and the result output unit 211c are realized by the processor 301 and the memory 302 in the hardware configuration shown in FIGS. 3A and 3B as examples. It may be one, or it may be realized by the processing circuit 303.
  • the designated prediction period acquisition unit 204c acquires the designated prediction period information indicating the designated prediction period of the prediction target.
  • the designated prediction period acquisition unit 204c includes designated prediction period information indicating up to one time point to be predicted, designated prediction period information indicating up to a plurality of time points to be predicted, or two different points. It is possible to acquire designated prediction period information indicating the time range of the prediction target (hereinafter referred to as "prediction range") represented by the range over the time points. That is, the designated prediction period acquisition unit 204 according to the first embodiment acquires the designated prediction period information indicating one time point to be predicted as the designated prediction period information.
  • the designated prediction period acquisition unit 204c as the designated prediction period information, in addition to the designated prediction period information indicating one time point to be predicted, the designated prediction period information indicating a plurality of time points to be predicted, Alternatively, it is possible to acquire designated forecast period information indicating the forecast range that is the forecast target. For example, the user uses the input device 14 to specify a plurality of time points to input a plurality of time points to be predicted to specify a designated prediction period, or to specify two time points different from each other. By doing so, the prediction range that is the prediction target is input and the designated prediction period is specified.
  • the designated prediction period acquisition unit 204c receives the operation signal output from the input device 14 as operation information via the operation reception unit 202, and converts the designated prediction period indicated by the operation information into the designated prediction period information. Acquire the designated forecast period information.
  • the inference data generation unit 205c has a designated prediction period based on the fourth information based on the inference time series data acquired by the inference time series data acquisition unit 203 and the designated prediction period information acquired by the designated prediction period acquisition unit 204c. Inference data is generated by combining with the fifth information that can specify the designated prediction period of the prediction target indicated by the information.
  • the fifth information in the inference data generated by the inference data generation unit 205c is information capable of specifying one or more time points to be predicted or a prediction range to be predicted.
  • the inference data generation unit 205c may use, for example, information obtained by encoding the designated prediction period information capable of specifying the designated prediction period into a vector representation having a predetermined number of dimensions as the fifth information.
  • the method in which the inference data generation unit 205c encodes the designated prediction period information capable of specifying the designated prediction period into a vector representation having a predetermined number of dimensions is described by the second information generation unit 182a in the learning device 100. 2 Since it is the same as the method of encoding the expected period information into a vector representation having a predetermined number of dimensions when generating the information, the description thereof will be omitted.
  • the fifth information has the same predetermined number of dimensions in all of the designated prediction period information represented by an arbitrary unit such as one or more time points to be predicted or a prediction range to be predicted. It is preferable that the information is encoded in the vector representation to have.
  • the result acquisition unit 210c acquires the inference observation value after the lapse of the designated prediction period, which is output by the trained model as the inference result.
  • the trained model outputs, as an inference result, an inference observation value at each of the one or more time points that are the prediction target, or one or more inference observation values within the prediction range that is the prediction target. Therefore, the result acquisition unit 210c sets the inference observation value as the inference observation value after the lapse of the designated prediction period, that is, the inference observation value at each of the one or more time points that are the prediction target, or the inference observation value of one or more within the prediction range that is the prediction target. To get.
  • the result output unit 211c outputs the inference observation value acquired by the result acquisition unit 210c.
  • the result output unit 211c is an inference observation value at each of one or more time points of the prediction target acquired by the result acquisition unit 210c, or one or more inference observations within the prediction range of the prediction target. Output the value.
  • the result output unit 211c is an inference observation value at each of one or more time points that is the prediction target acquired by the result acquisition unit 210c, or one or more inferences within the prediction range that is the prediction target.
  • the observed value is output via the display control unit 201.
  • the display control unit 201 receives inference observation values at each of the one or more time points that are the prediction target, or one or more inference observation values within the prediction range that is the prediction target from the result output unit 211c, and the inference observation. Generate an image signal corresponding to the image showing the value.
  • the display control unit 201 outputs the image signal to the display device 12, and causes the display device 12 to display an image showing the inferred observation value.
  • the result output unit 211c can, for example, obtain inference observation values at one or more time points of the prediction target acquired by the result acquisition unit 210c, or one or more inference observation values within the prediction range of the prediction target. It may be output to the storage device 10 and the inferred observation value may be stored in the storage device 10.
  • FIG. 26 is displayed on the display device 12 when the result output unit 211c outputs one or more inference observation values within the prediction range of the prediction target acquired by the result acquisition unit 210c via the display control unit 201. It is a figure which shows an example of the image. On the display device 12, for example, as shown in FIG. 26, the observed values in the inference time series data are plotted and displayed in association with the observation time point. Further, on the display device 12, for example, as shown in FIG. 26, a designated prediction range to be predicted is displayed. Further, as shown in FIG. 26, for example, the display device 12 displays the inferred observation value within the prediction range which is the designated prediction target.
  • the inference device 200c has a designated inference observation value at one or more time points of the prediction target, or one or more inference observation values within the prediction range of the prediction target. Make it possible to understand how it will change.
  • FIG. 27 is a flowchart illustrating an example of processing of the inference device 200c according to the fourth embodiment.
  • step ST2701 the inference time series data acquisition unit 203 acquires the inference time series data.
  • step ST2702 the designated prediction period acquisition unit 204c uses the designated prediction period information indicating one or more time points to be predicted as the designated prediction period information, or the designated prediction period indicating the prediction range to be predicted. Get information.
  • step ST2703 the inference data generation unit 205 generates inference data that combines the fourth information based on the inference time series data and the fifth information that can specify the designated prediction period of the prediction target. To do.
  • step ST2704 acquires model information.
  • step ST2705 the inference data acquisition unit 207 acquires inference data.
  • step ST2706 the inference data input unit 208 inputs the inference data to the trained model as an explanatory variable.
  • the inference unit 209 uses the trained model to infer observation values at each of the specified one or more time points to be predicted, or 1 within the prediction range to be predicted. The above inference observation values are inferred.
  • the result acquisition unit 210c outputs the inference observation value at each of the one or more time points to be predicted, or 1 within the prediction range to be predicted, which is output as the inference result by the trained model. Obtain the above inference observation values.
  • step ST2709 the result output unit 211c receives inference observation values at one or more time points of the prediction target acquired by the result acquisition unit 210c, or one or more inferences within the prediction range of the prediction target. Output the observed value.
  • the inference device 200c ends the processing of the flowchart after the processing of step ST2709.
  • step ST2701 and step ST2702 are executed before the processing of step ST2703. Further, as long as the processing of step ST2704 is executed before the processing of step ST2706, the execution order does not matter.
  • the learning device 100 is changed to the learning device 100a according to the second embodiment, and the inference device 200c has been learned like the inference device 200a shown in the second embodiment.
  • the inference point information indicating the inference observation value may be acquired and transformed so as to output the acquired inference point information.
  • the inference device 200c grasps the inference observation value at each of the specified one or more time points of the prediction target, or one or more inference observation values within the prediction range of the prediction target. While making it possible, it is possible to grasp the division point of the inferred observation value.
  • the learning device 100 is changed to the learning device 100b according to the third embodiment, and the inference device 200c is further changed to the learning device 200b like the inference device 200b shown in the third embodiment.
  • the predicted distribution information indicating the predicted distribution of the inferred observation value may be acquired and transformed so as to output the acquired predicted distribution information.
  • the inference device 200c grasps the inference observation value at each of the specified one or more time points of the prediction target, or one or more inference observation values within the prediction range of the prediction target. While making it possible, it is possible to grasp the predicted distribution of the inferred observation value.
  • FIG. 28 shows when the result output unit 211c outputs the quantiles of one or more inference observation values within the prediction range, which is the prediction target acquired by the result acquisition unit 210c, via the display control unit 201. It is a figure which shows an example of the image displayed on the display device 12.
  • the observed values in the inference time series data are plotted and displayed in association with the observation time point.
  • a designated prediction range to be predicted is displayed.
  • each quantile of one or more inferred observation values within the prediction range which is the designated prediction target is displayed.
  • FIG. 29 shows the display device 12 when the result output unit 211c outputs the predicted distribution of one or more inferred observation values within the prediction range of the prediction target acquired by the result acquisition unit 210c via the display control unit 201. It is a figure which shows an example of the image displayed in.
  • the observed values in the inference time series data are plotted and displayed in association with the observation time point.
  • a designated prediction range to be predicted is displayed.
  • each prediction distribution of one or more inference observation values within the prediction range which is the designated prediction target is displayed.
  • the inference device 200c acquires inference data that combines the fourth information based on the time series data including the time series observation values and the fifth information that can specify the designated prediction period of the prediction target.
  • the fifth information includes a result acquisition unit 210c that acquires the inference observation value after the lapse of the designated prediction period, and a result output unit 211c that outputs the inference observation value acquired by the result acquisition unit 210c.
  • the designated prediction period of the prediction target that can be specified by is one or more time points that are the prediction target or the prediction range that is the prediction target, and the result acquisition unit 210c outputs the designated prediction that the trained model outputs as the inference result.
  • the inference observation value after the lapse of the period the inference observation value at each of the one or more time points to be predicted or the inference observation value of one or more within the prediction range to be the prediction target is acquired, and the result output unit 211c obtains the inference observation value.
  • the result acquisition unit 210c is configured to output the inference observation value at each of the one or more time points of the prediction target acquired, or one or more inference observation values within the prediction range of the prediction target.
  • the inference device 200c can infer an observation value having a high accuracy of inference with a small inference error in the inference of an arbitrary future observation value. Further, by configuring in this way, the inference device 200c has an inference observation value at each of one or more time points which is a designated prediction target, or one or more inference observation values within the prediction range which is a prediction target. , Make it possible to understand how it changes.
  • the inference device 200c has the result acquisition unit 210c as an inference result output by the trained model, as an inference observation value after the lapse of the designated prediction period, at each of one or more time points to be predicted.
  • the result acquisition unit 210a in addition to the inference observation value or one or more inference observation values within the prediction range to be predicted, one or more division point information indicating each inference observation value of the inference observation value is acquired, and the result output unit.
  • the result acquisition unit 210a in addition to the inference observation values at each of the one or more time points that are the prediction targets acquired by the result acquisition unit 210a, or the one or more inference observation values within the prediction range that is the prediction target, the result acquisition unit 210a It may be configured to output the acquired division point information.
  • the inference device 200c can infer an observation value having a high accuracy of inference with a small inference error in the inference of an arbitrary future observation value, and further, the observation value of the observation value.
  • the accuracy of inference can be grasped with high accuracy.
  • the inference device 200c has an inference observation value at each of one or more time points which is a designated prediction target, or one or more inference observation values within the prediction range which is a prediction target. , It is possible to grasp the certainty of each inference of the inference observation value with high accuracy while being able to grasp how it changes.
  • the inference device 200c has the result acquisition unit 210c as an inference result output by the trained model, as an inference observation value after the lapse of the designated prediction period, at each of one or more time points to be predicted.
  • the result acquisition unit 210c obtains one or more prediction distribution information.
  • the result acquisition unit 210a has acquired the inference observation values.
  • the inference device 200c can infer an inference observation value having high accuracy inference accuracy with little inference error in inference of any future observation value, and further, the inference observation. It makes it possible to grasp with high accuracy that the value is an inappropriate value. Further, the inference device 200c makes it possible to grasp an appropriate value with high accuracy when the inference observation value is an inappropriate value. Further, by configuring in this way, the inference device 200c has an inference observation value at each of one or more time points which is a designated prediction target, or one or more inference observation values within the prediction range which is a prediction target.
  • the inference device 200c makes it possible to grasp an appropriate value with high accuracy when the inference observation value is an inappropriate value.
  • the inference system 1 can be applied to demand forecasting or failure forecasting of products and the like.
  • the learning device according to the present invention can be applied to an inference system.
  • 1,1a, 1b, 1c inference system 10 storage device, 11,12 display device, 13,14 input device, 100, 100a, 100b learning device, 101 display control unit, 102 operation reception unit, 103 original time series data acquisition Unit, 104 Virtual current date and time determination unit, 105 Time series data extraction unit, 106 Prediction period determination unit, 107 Observation value acquisition unit, 108 Learning data generation unit, 109 Learning data acquisition unit, 110, 110a, 110b Learning unit , 111 model output unit, 181,181a first information generation unit, 182,182a second information generation unit, 183 third information generation unit, 184 information association unit, 200,200a, 200b, 200c inference device, 201 display control unit , 202 operation reception unit, 203 time series data acquisition unit for inference, 204,204c designated prediction period acquisition unit, 205,205c inference data generation unit, 206 model acquisition unit, 207 inference data acquisition unit, 208 inference data input Unit, 209,209a, 209b Inference unit, 210,

Landscapes

  • Engineering & Computer Science (AREA)
  • Theoretical Computer Science (AREA)
  • Software Systems (AREA)
  • Evolutionary Computation (AREA)
  • General Physics & Mathematics (AREA)
  • Artificial Intelligence (AREA)
  • Mathematical Physics (AREA)
  • Physics & Mathematics (AREA)
  • Computing Systems (AREA)
  • General Engineering & Computer Science (AREA)
  • Data Mining & Analysis (AREA)
  • Computer Vision & Pattern Recognition (AREA)
  • Medical Informatics (AREA)
  • Automation & Control Theory (AREA)
  • Fuzzy Systems (AREA)
  • Computational Linguistics (AREA)
  • Management, Administration, Business Operations System, And Electronic Commerce (AREA)

Abstract

学習装置(100,100a,100b)は、1つの学習用データが、時系列の観察値を含む1又は複数の時系列データのうちの1つの時系列データに基づく第1情報と、少なくとも互いに異なる2つの予測期間を含む複数の予測期間のうちの1つの予測期間に基づく第2情報と、予測期間経過後の観察値に基づく第3情報との組合せである、複数の学習用データを取得する学習用データ取得部(109)と、学習用データにおける第1情報と第2情報とを組合せた情報を説明変数とし、且つ、第3情報を応答変数として、学習用データ取得部(109)が取得した複数の学習用データを用いて学習し、指定された予測期間経過後における推論観察値を推論可能な学習済モデルを生成する学習部(110)と、を備えた。

Description

学習装置、学習方法、学習データ生成装置、学習データ生成方法、推論装置、及び、推論方法
 この発明は、学習装置、学習方法、学習データ生成装置、学習データ生成方法、推論装置、及び、推論方法に関するものである。
 時系列の観察値を含む時系列データに基づいて、現在日時より先の、任意の未来の時点における観察値を推論することが行われている。
 例えば、時系列データに基づく観察値の推論には、AR(Autoregressive)モデル、MA(Moving Average)モデル、ARMA(Autoregressive Moving Average)モデル、ARIMA(Autoregressive Integrated Moving Average)モデル、若しくは、SARIMA(Seasonal ARIMA)モデル等の時系列モデル、又は、動的線形モデル、カルマンフィルタ、若しくは、粒子フィルタ等の状態空間モデル、又は、LSTM(Long short-term memory)、若しくは、GRU(Gated Recurrent Unit)等のRNN(Recurrent neural network)モデル等のモデルが用いられる。これらのモデルは、所定期間だけ未来の観察値の推論、又は、所定期間だけ未来の潜在状態の推論等を複数回繰り返すことにより、任意の未来の時点における観察値を推論するものである。
 また、例えば、特許文献1には、漸化式に従って所定期間経過後の観察値の推論を繰り返すことにより、任意の未来の時点における観察値を推論する方法が開示されている。
特開平06―035895号公報
 しかしながら、時系列データに基づく任意の未来の時点における観察値を推論する従来の方法は、所定期間だけ未来の観察値の推論等を複数回繰り返す方法である。そのため、従来の方法は、所定期間だけ未来の観察値の推論ごとに生じる推論誤差が蓄積することにより、遠い未来の時点における観察値の推論精度が低下してしまうという問題点があった。
 この発明は、上述の問題点を解決するためのもので、任意の未来の観察値の推論において、推論誤差の少ない高精度の推論精度を有する観察値の推論を可能にする学習装置を提供することを目的としている。
 この発明に係る学習装置は、1つの学習用データが、時系列の観察値を含む1又は複数の時系列データのうちの1つの時系列データに基づく第1情報と、少なくとも互いに異なる2つの予測期間を含む複数の予測期間のうちの1つの予測期間に基づく第2情報と、予測期間経過後の観察値に基づく第3情報との組合せである、複数の学習用データを取得する学習用データ取得部と、学習用データにおける第1情報と第2情報とを組合せた情報を説明変数とし、且つ、第3情報を応答変数として、学習用データ取得部が取得した複数の学習用データを用いて学習し、指定された予測期間経過後における推論観察値を推論可能な学習済モデルを生成する学習部と、を備えた。
 この発明によれば、任意の未来の観察値の推論において、推論誤差の少ない高精度の推論精度を有する観察値の推論を可能にすることができる。
図1は、実施の形態1に係る推論システムの要部の構成の一例を示すブロック図である。 図2は、実施の形態1に係る学習装置の要部の構成の一例を示すブロック図である。 図3A及び図3Bは、実施の形態1に係る学習装置の要部のハードウェア構成の一例を示す図である。 図4は、実施の形態1に係る元時系列データ、予測期間、第1情報、第2情報、第3情報、及び学習用データの一例を示す図である。 図5は、実施の形態1に係る学習用データ生成部の要部の構成の一例を示すブロック図である。 図6は、実施の形態1に係る学習用データ生成部の処理の一例を説明するフローチャートである。 図7は、実施の形態1に係る元時系列データ、予測期間、第1情報、第2情報、第3情報、及び学習用データの他の一例を示す図である。 図8は、実施の形態1に係る学習装置の処理の一例を説明するフローチャートである。 図9は、実施の形態1に係る推論装置の要部の構成の一例を示すブロック図である。 図10Aは、実施の形態1に係る推論用時系列データ、指定予測期間、第4情報、第5情報、及び説明変数の一例を示す図である。 図10Bは、実施の形態1に係る結果出力部が、結果取得部が取得した推論観察値を、表示制御部を介して出力した際の表示装置に表示される画像の一例を示す図である。 図11は、実施の形態1に係る推論装置の処理の一例を説明するフローチャートである。 図12は、実施の形態2に係る推論システムの要部の一例を示すブロック図である。 図13は、実施の形態2に係る学習装置の要部の構成の一例を示すブロック図である。 図14は、実施の形態2に係る学習装置の処理の一例を説明するフローチャートである。 図15は、実施の形態2に係る推論装置の要部の構成の一例を示すブロック図である。 図16は、実施の形態2に係る結果出力部が、結果取得部が取得した推論観察値及び分位点情報を、表示制御部を介して出力した際の表示装置に表示される画像の一例を示す図である。 図17は、実施の形態2に係る推論装置の処理の一例を説明するフローチャートである。 図18は、実施の形態3に係る推論システムの要部の一例を示すブロック図である。 図19は、実施の形態3に係る学習装置の要部の構成の一例を示すブロック図である。 図20は、実施の形態3に係る学習装置の処理の一例を説明するフローチャートである。 図21は、実施の形態3に係る推論装置の要部の構成の一例を示すブロック図である。 図22は、実施の形態3に係る結果出力部が、結果取得部が取得した推論観察値及び予測分布情報を、表示制御部を介して出力した際の表示装置に表示される画像の一例を示す図である。 図23は、実施の形態3に係る推論装置の処理の一例を説明するフローチャートである。 図24は、実施の形態4に係る推論システムの要部の一例を示すブロック図である。 図25は、実施の形態4に係る推論装置の要部の構成の一例を示すブロック図である。 図26は、実施の形態4に係る結果出力部が、結果取得部が取得した予測対象である予測範囲内における1以上の推論観察値を、表示制御部を介して出力した際の表示装置に表示される画像の一例を示す図である。 図27は、実施の形態4に係る推論装置の処理の一例を説明するフローチャートである。 図28は、実施の形態4に係る結果出力部が、結果取得部が取得した予測対象である予測範囲内における1以上の推論観察値のそれぞれの分位点を、表示制御部を介して出力した際の表示装置に表示される画像の一例を示す図である。 図29は、実施の形態4に係る結果出力部が表示制御部を介して、結果取得部が取得した予測対象である予測範囲内における1以上の推論観察値の予測分布を出力した際の、表示装置に表示される画像の一例を示す図である。
 以下、この発明の実施の形態について、図面を参照しながら詳細に説明する。
実施の形態1.
 図1から図11を参照して、実施の形態1に係る推論システム1について説明する。
 図1は、実施の形態1に係る推論システム1の要部の構成の一例を示すブロック図である。
 実施の形態1に係る推論システム1は、学習装置100、推論装置200、記憶装置10、表示装置11,12、及び入力装置13,14を備える。
 記憶装置10は、時系列データ等の推論システム1に必要な情報を保存するための装置である。
 記憶装置10は、当該情報を保存するための、SSD(Solid State Drive)又はHDD(Hard Disk Drive)等の記憶媒体を備える。
 記憶装置10は、学習装置100又は推論装置200から読み出し要求を受けて、記憶媒体から時系列データ等の情報を読み出し、当該読み出し要求を行った学習装置100又は推論装置200に対して読み出した情報を出力する。
 また、記憶装置10は、学習装置100又は推論装置200から書き込み要求を受けて、学習装置100又は推論装置200から出力された情報を記憶媒体に保存する。
 表示装置11,12は、ディスプレイ等の画像を表示するための装置である。
 表示装置11は、学習装置100が出力する画像信号を受けて、画像信号に対応する画像表示を行う。
 表示装置12は、推論装置200が出力する画像信号を受けて、画像信号に対応する画像表示を行う。
 入力装置13,14は、キーボード又はマウス等のユーザが操作入力を行うための装置である。
 入力装置13は、ユーザからの操作入力を受けて、ユーザの入力操作に対応する操作信号を学習装置100に出力する。
 入力装置14は、ユーザからの操作入力を受けて、ユーザの入力操作に対応する操作信号を推論装置200に出力する。
 学習装置100は、時系列データに基づく機械学習を行うことにより学習済モデルを生成し、生成した学習済モデルをモデル情報として出力する装置である。
 推論装置200は、機械学習による学習結果に対応する学習済モデルに説明変数を入力して、学習済モデルが推論結果として出力する観察値を取得し、取得した観察値を出力する装置である。以下の説明において、学習済モデルが推論結果として出力する観察値を推論観察値と言う。
 図2から図8を参照して、実施の形態1に係る学習装置100について説明する。
 図2は、実施の形態1に係る学習装置100の要部の構成の一例を示すブロック図である。
 学習装置100は、表示制御部101、操作受付部102、元時系列データ取得部103、仮想現在日時決定部104、時系列データ切出部105、予測期間決定部106、観察値取得部107、学習用データ生成部108、学習用データ取得部109、学習部110、及びモデル出力部111を備える。
 図3A及び図3Bを参照して、実施の形態1に係る学習装置100の要部のハードウェア構成について説明する。
 図3A及び図3Bは、実施の形態1に係る学習装置100の要部のハードウェア構成の一例を示す図である。
 図3Aに示す如く、学習装置100はコンピュータにより構成されており、当該コンピュータはプロセッサ301及びメモリ302を有している。メモリ302には、当該コンピュータを、表示制御部101、操作受付部102、元時系列データ取得部103、仮想現在日時決定部104、時系列データ切出部105、予測期間決定部106、観察値取得部107、学習用データ生成部108、学習用データ取得部109、学習部110、及びモデル出力部111として機能させるためのプログラムが記憶されている。メモリ302に記憶されているプログラムをプロセッサ301が読み出して実行することにより、表示制御部101、操作受付部102、元時系列データ取得部103、仮想現在日時決定部104、時系列データ切出部105、予測期間決定部106、観察値取得部107、学習用データ生成部108、学習用データ取得部109、学習部110、及びモデル出力部111が実現される。
 また、図3Bに示す如く、学習装置100は処理回路303により構成されても良い。この場合、表示制御部101、操作受付部102、元時系列データ取得部103、仮想現在日時決定部104、時系列データ切出部105、予測期間決定部106、観察値取得部107、学習用データ生成部108、学習用データ取得部109、学習部110、及びモデル出力部111の機能が処理回路303により実現されても良い。
 また、学習装置100はプロセッサ301、メモリ302及び処理回路303により構成されても良い(不図示)。この場合、表示制御部101、操作受付部102、元時系列データ取得部103、仮想現在日時決定部104、時系列データ切出部105、予測期間決定部106、観察値取得部107、学習用データ生成部108、学習用データ取得部109、学習部110、及びモデル出力部111の機能のうちの一部の機能がプロセッサ301及びメモリ302により実現されて、残余の機能が処理回路303により実現されるものであっても良い。
 プロセッサ301は、例えば、CPU(Central Processing Unit)、GPU(Graphics Processing Unit)、マイクロプロセッサ、マイクロコントローラ又はDSP(Digital Signal Processor)を用いたものである。
 メモリ302は、例えば、半導体メモリ又は磁気ディスクを用いたものである。より具体的には、メモリ302は、RAM(Random Access Memory)、ROM(Read Only Memory)、フラッシュメモリ、EPROM(Erasable Programmable Read Only Memory)、EEPROM(Electrically Erasable Programmable Read-Only Memory)、SSD、又はHDDなどを用いたものである。
 処理回路303は、例えば、ASIC(Application Specific Integrated Circuit)、PLD(Programmable Logic Device)、FPGA(Field-Programmable Gate Array)、SoC(System-on-a-Chip)又はシステムLSI(Large-Scale Integration)を用いたものである。
 表示制御部101は、表示装置11に表示させる画像に対応する画像信号を生成して、生成した画像信号を表示装置11に対して出力する。表示装置11に表示させる画像は、記憶装置10に保存されている時系列データの一覧等を示す画像である。
 操作受付部102は、入力装置13が出力した操作信号を受けて、操作信号に対応するユーザの入力操作を示す操作情報を元時系列データ取得部103等に出力する。
 操作受付部102が出力する操作情報は、例えば、記憶装置10に保存されている時系列データのうち、ユーザの入力操作により指定された時系列データを示す情報である。
 学習用データ取得部109は、複数の学習用データを取得する。1つの学習用データは、第1情報と第2情報と第3情報とを組合せたものである。第1情報は、時系列の観察値を含む1又は複数の時系列データのうちの1つの時系列データに基づく情報である。第2情報は、少なくとも互いに異なる2つの予測期間を含む複数の予測期間のうちの1つの予測期間に基づく情報である。第3情報は、予測期間経過後の観察値に基づく情報である。
 学習用データ取得部109は、例えば、元時系列データ取得部103、仮想現在日時決定部104、時系列データ切出部105、予測期間決定部106、観察値取得部107、及び学習用データ生成部108により生成される複数の学習用データを取得する。
 学習用データ取得部109は、記憶装置10から複数の学習用データを読み出すこと等により、複数の学習用データを取得しても良い。
 図4を参照して、元時系列データ取得部103、仮想現在日時決定部104、時系列データ切出部105、予測期間決定部106、観察値取得部107、及び学習用データ生成部108による複数の学習用データの生成方法の一例について説明する。
 図4は、元時系列データ、予測期間、第1情報、第2情報、第3情報、及び学習用データの一例を示す図である。
 図4に示す元時系列データは、一例として、あるテーマパークの2018年9月1日から2019年8月31日までの365日分の入場者数を1日毎の観察値として示した時系列データの一部を示す図である。
 元時系列データ取得部103は、時系列データを取得する。以下の説明において、元時系列データ取得部103が取得する時系列データを、元時系列データと言う。
 具体的には、例えば、元時系列データ取得部103は、操作受付部102が出力する操作情報を受けて、当該操作情報が示す時系列データを記憶装置10から読み出すことにより、当該時系列データを元時系列データとして取得する。
 元時系列データは、時系列の観察値を含むものである。
 具体的には、例えば、元時系列データは、観察値を得た時刻、日付、週、月、又は年等の時点を示す日時情報と、日時情報が示す時刻、日付、週、月、又は年等の時点における観察値とを対応付けた情報組を複数有するものである。
 元時系列データ取得部103は、例えば、図4に示す元時系列データを記憶装置10から取得する。
 仮想現在日時決定部104は、元時系列データ取得部103が取得した元時系列データに対応する期間のうちから、仮想的に定める現在日時である仮想現在日時を1又は複数決定する。
 具体的には、例えば、元時系列データに対応する期間とは、元時系列データに含まれる日時情報が示す時点における、最も過去の時点から実際の現在日時に最も近い時点までの期間のことである。元時系列データに対応する期間は、元時系列データに含まれる日時情報が示す時点における、最も過去の時点から実際の現在日時に最も近い時点までの期間に含まれる、当該期間の一部期間であっても良い。
 仮想現在日時決定部104は、例えば、所定のアルゴリズムに従って、自動で仮想現在日時を決定する。仮想現在日時決定部104は、操作受付部102が出力する操作情報を受けて、当該操作情報が示す時点を示す情報に基づいて、仮想現在日時を決定しても良い。
 仮想現在日時決定部104は、例えば、図4に示す元時系列データに基づいて、仮想現在日時を2018年9月10日から2019年8月29日までの日付のうち、任意の1又は複数の日付を仮想現在日時として決定する。以下の説明において、仮想現在日時決定部104は、図4に示す元時系列データに基づいて、仮想現在日時を2018年9月10日から2019年8月29日までの全ての日付を仮想現在日時として決定するものとして説明する。
 時系列データ切出部105は、仮想現在日時決定部104が決定した1又は複数の仮想現在日時のそれぞれについて、元時系列データ取得部103が取得した元時系列データのうち、仮想現在日時以前の期間に対応する元時系列データを、第1情報の基となる時系列データとして切出す。
 時系列データ切出部105は、例えば、仮想現在日時決定部104が決定した1又は複数の仮想現在日時のそれぞれについて、元時系列データ取得部103が取得した元時系列データのうち、元時系列データに含まれる日時情報が示す時点における、最も過去の時点から仮想現在日時までの期間に対応する元時系列データを、時系列データとして切出す。
 時系列データ切出部105が元時系列データから時系列データを切出す期間は、時系列データに含まれる日時情報が示す時点における、最も過去の時点から仮想現在日時までの期間に限定されるものではない。時系列データ切出部105は、仮想現在日時決定部104が決定した1又は複数の仮想現在日時のそれぞれについて、時系列データに含まれる日時情報が示す時点における、最も過去の時点から仮想現在日時までの期間のうち、当該期間の一部期間に対応する元時系列データを、時系列データとして切出しても良い。
 例えば、時系列データ切出部105は、仮想現在日時決定部104が決定した1又は複数の仮想現在日時のそれぞれについて、仮想現在日時に対する予め定められた期間前の時点から仮想現在日時までの期間に対応する元時系列データを時系列データとして切出す。
 また、例えば、時系列データ切出部105は、仮想現在日時決定部104が決定した1又は複数の仮想現在日時のそれぞれについて、仮想現在日時以前の元時系列データのうち、最も仮想現在日時に近い予め定められた個数の観察値に対応する元時系列データを時系列データとして切出しても良い。
 時系列データ切出部105が元時系列データから時系列データを切出す方法は、上述の方法に限るものではない。
 時系列データ切出部105は、例えば、図4に示す元時系列データに基づいて、仮想現在日時決定部104が決定した仮想現在日時である2018年9月10日から2019年8月29日まで日付毎に、元時系列データのうち、仮想現在日時以前の元時系列データを第1情報の基となる時系列データとして切出す。
 より具体的に、例えば、時系列データ切出部105は、仮想現在日時である2019年8月29日である場合、元時系列データのうち、2018年9月1日から2019年8月29日までの元時系列データを第1情報の基となる時系列データとして切出す。また、例えば、時系列データ切出部105は、仮想現在日時が2018年9月10日である場合、元時系列データのうち、2018年9月1日から2018年9月10日までの元時系列データを第1情報の基となる時系列データとして切出す。
 予測期間決定部106は、仮想現在日時決定部104が決定した1又は複数の仮想現在日時のそれぞれについて、予測期間経過後の時点が元時系列データに対応する期間に含まれる、第2情報の基となる少なくとも互いに異なる2つの予測期間を決定する。
 具体的には、例えば、予測期間は、時系列データ切出部105が切出した時系列データに対応する期間における現在日時に最も近い時点からの期間である。
 より具体的には、例えば、予測期間は、予測期間経過後の時点が元時系列データに対応する期間に含まれる、時系列データ切出部105が切出した時系列データに対応する期間における現在日時に最も近い時点が仮想現在日時である場合、仮想現在日時からの期間である。
 また、予測期間は、例えば、予測期間経過後の時点が元時系列データに対応する期間に含まれる、時系列データ切出部105が切出した時系列データに対応する期間における予め定められたイベントの発生時点からの期間であっても良い。
 予測期間決定部106は、例えば、図4に示す元時系列データに基づいて、仮想現在日時決定部104が決定した仮想現在日時である2018年9月10日から2019年8月29日まで日付毎に、予測期間経過後の時点が元時系列データに対応する期間に含まれるように、少なくとも互いに異なる2つの予測期間を決定する。
 より具体的には、例えば、予測期間決定部106は、仮想現在日時が2019年8月29日である場合、1日後及び2日後の2つの期間を予測期間として決定する。また、予測期間決定部106は、例えば、仮想現在日時が2018年9月10日である場合、1日後、2日後、・・・、及び355日後の355個の期間を予測期間として決定する。
 観察値取得部107は、予測期間決定部106が決定した、少なくとも互いに異なる2つの予測期間のそれぞれについて、予測期間経過後の観察値を元時系列データから取得する。
 具体的には、例えば、観察値取得部107は、予測期間が、時系列データ切出部105が切出した時系列データに対応する期間における現在日時に最も近い時点からの期間である場合、当該時点からの予測期間経過後の観察値を元時系列データから取得する。
 また、例えば、観察値取得部107は、予測期間が、仮想現在日時からの期間である場合、仮想現在日時からの予測期間経過後の観察値を元時系列データから取得する。
 また、例えば、観察値取得部107は、予測期間が、時系列データ切出部105が切出した時系列データに対応する期間における予め定められたイベントの発生時点からの期間である場合、当該イベントの発生時点からの予測期間経過後の観察値を元時系列データから取得する。
 観察値取得部107は、仮想現在日時決定部104が決定した1又は複数の仮想現在日時毎に、仮想現在日時から、予測期間決定部106が決定した少なくとも互いに異なる2つの予測期間経過後の観察値を、第3情報の基となる観察値として、元時系列データから取得する。
 観察値取得部107は、例えば、図4に示す元時系列データに基づいて、仮想現在日時が2019年8月29日である場合、予測期間に対応する1日後の観察値である2019年8月30日の入場者数と、2日後の観察値である2019年8月31日の入場者数とを、元時系列データから取得する。また、例えば、観察値取得部107は、仮想現在日時が2018年9月10日である場合、予測期間に対応する1日後の観察値である2018年9月11日の入場者数、2日後の観察値である2018年9月12日の入場者数、・・・、及び、355日後の観察値である2019年8月31日の入場者数を、元時系列データから取得する。
 学習用データ生成部108は、時系列データ切出部105が切出した、時系列の観察値を含む1又は複数の時系列データのうちの1つの時系列データに基づく第1情報と、予測期間決定部106が決定した、少なくとも互いに異なる2つの予測期間を含む複数の予測期間のうちの1つの予測期間に基づく第2情報と、観察値取得部107が取得した、予測期間経過後の観察値に基づく第3情報とを組合せることにより、複数の学習用データを生成する。
 具体的には、学習用データ生成部108は、仮想現在日時決定部104が決定した仮想現在日時、及び予測期間決定部106が決定した予測期間の組合せにそれぞれ対応する第1情報、第2情報、及び第3情報を組合せて学習用データを生成することにより、複数の学習用データを生成する。
 より具体的には、例えば、学習用データ生成部108は、仮想現在日時がYYYY年MM月DD日であり、予測期間がX日後である場合、図4に示すように、時系列データ切出部105が元時系列データから切出した、YYYY年MM月DD日以前の予め定められた時点からYYYY年MM月DD日までの期間に対応する時系列データを第1情報とし、予測期間であるX日後を示す情報を第2情報とし、YYYY年MM月DD日からX日後に観察された観察値を第3情報とする。学習用データ生成部108は、当該第1情報、当該第2情報、及び当該第3情報を組合せた学習用データを生成することにより、複数の学習用データを生成する。
 図5を参照して、実施の形態1に係る学習用データ生成部108の要部の構成について説明する。
 図5は、実施の形態1に係る学習用データ生成部108の要部の構成の一例を示すブロック図である。
 学習用データ生成部108は、第1情報生成部181、第2情報生成部182、第3情報生成部183、及び情報組合部184を備える。
 第1情報生成部181は、時系列データ切出部105が切出した、時系列の観察値を含む1又は複数の時系列データのうちの1つの時系列データに基づいて、第1情報を生成する。
 具体的には、第1情報生成部181は、時系列データ切出部105が切出した複数の時系列データのうちの1つの時系列データを選択して、選択した時系列データに基づいて第1情報を生成する。
 より具体的には、例えば、第1情報生成部181は、時系列データ切出部105が元時系列データから切出した時系列データのうち、予め決められた個数の観察値に対応する時系列データを切出して、切出した時系列データを第1情報とすることにより、第1情報を生成する。例えば、学習用データ生成部108は、時系列データ切出部105が元時系列データから切出した時系列データのうち、仮想現在日時に最も近い10日分、すなわち、観察値が10個分の時系列データを切出して、切出した時系列データを第1情報とすることにより、第1情報を生成する。
 以下、第1情報生成部181が、時系列データ切出部105が元時系列データから切出した時系列データのうち、仮想現在日時に最も近い10日分、すなわち、観察値が10個分の時系列データを切出して、切出した時系列データを第1情報とする場合を例に取って説明する。
 例えば、第1情報生成部181は、図4に示す元時系列データに基づいて、仮想現在日時が2019年8月29日である場合、時系列データ切出部105が切出した2018年9月1日から2019年8月29日までの期間に対応する時系列データのうち、2019年8月20日から2019年8月29日までの期間に対応する時系列データを切出して、切出した時系列データを第1情報とすることにより、第1情報を生成する。
 また、例えば、第1情報生成部181は、図4に示す元時系列データに基づいて、仮想現在日時が2018年9月10日である場合においては、時系列データ切出部105が切出した2018年9月1日から2018年9月10日までの期間に対応する時系列データのうち、2018年9月1日から2018年9月10日までの期間に対応する時系列データを第1情報とすることにより、第1情報を生成する。
 第2情報生成部182は、予測期間決定部106が決定した、少なくとも互いに異なる2つの予測期間を含む複数の予測期間のうちの1つの予測期間に基づいて、第2情報を生成する。
 具体的には、例えば、第2情報生成部182は、予測期間決定部106が決定した、少なくとも互いに異なる2つの予測期間のうちの1つの予測期間を示す予想期間情報を選択して、選択した予想期間情報を第2情報とすることにより、第2情報を生成する。
 例えば、第2情報生成部182は、図4に示す元時系列データに基づいて、仮想現在日時が2019年8月29日である場合、予測期間決定部106が決定した予測期間である1日後を示す予測期間情報を第2情報とすることにより、第2情報を生成する。
 また、例えば、第2情報生成部182は、図4に示す元時系列データに基づいて、仮想現在日時が2019年8月29日である場合、予測期間決定部106が決定した予測期間である2日後を示す予測期間情報を第2情報とすることにより、第2情報を生成する。
 また、第2情報生成部182は、図4に示す元時系列データに基づいて、仮想現在日時が2018年9月10日である場合、予測期間が1日後であることを示す情報を第2情報とすることにより、第2情報を生成する。
 また、第2情報生成部182は、図4に示す元時系列データに基づいて、仮想現在日時が2018年9月10日である場合、予測期間が2日後であることを示す情報を第2情報とすることにより、第2情報を生成する。
 また、第2情報生成部182は、図4に示す元時系列データに基づいて、仮想現在日時が2018年9月10日である場合、予測期間が355日後であることを示す情報を第2情報とすることにより、第2情報を生成する。
 すなわち、第2情報生成部182は、図4に示す元時系列データに基づいて、仮想現在日時が2018年9月10日である場合、予測期間がN(Nは1以上355以下の自然数)日後であることを示す情報を第2情報とすることにより、第2情報を生成する。
 第3情報生成部183は、観察値取得部107が取得した予測期間経過後の観察値に基づいて第3情報を生成する。
 具体的には、例えば、第3情報生成部183は、観察値取得部107が取得した予測期間経過後の観察値を第3情報とすることにより、第3情報を生成する。
 例えば、第3情報生成部183は、仮想現在日時が2019年8月29日であり、予測期間が1日後である場合においては、図4に示す元時系列データに基づいて、仮想現在日時である2019年8月29日から、第2情報である予測期間情報が示す1日後に当たる2019年8月30日の入場者数を第3情報とすることにより、第3情報を生成する。
 また、例えば、第3情報生成部183は、図4に示す元時系列データに基づいて、仮想現在日時が2019年8月29日であり、予測期間が2日後である場合においては、仮想現在日時である2019年8月29日から、第2情報である予測期間情報が示す2日後に当たる2019年8月31日の入場者数を第3情報とすることにより、第3情報を生成する。
 情報組合部184は、第1情報生成部181が生成した第1情報と、第2情報生成部182が生成した第2情報と、第3情報生成部183が生成した第3情報とを組み合わせてることにより、学習用データを生成する。
 例えば、情報組合部184は、仮想現在日時が2019年8月29日であり、予測期間が1日後である場合においては、図4に示す元時系列データに基づいて、第1情報生成部181が生成した、2019年8月20日から2019年8月29日までの期間に対応する時系列データである第1情報と、第2情報生成部182が生成した、予測期間である1日後を示す予測期間情報である第2情報と、第3情報生成部183が生成した、2019年8月30日の入場者数である第3情報とを組み合わせてることにより、1つの学習用データを生成する。
 例えば、情報組合部184は、仮想現在日時が2019年8月29日であり、予測期間が2日後である場合においては、図4に示す元時系列データに基づいて、第1情報生成部181が生成した、2019年8月20日から2019年8月29日までの期間に対応する時系列データである第1情報と、第2情報生成部182が生成した、予測期間である2日後を示す予測期間情報である第2情報と、第3情報生成部183が生成した、2019年8月31日の入場者数である第3情報とを組み合わせてることにより、1つの学習用データを生成する。
 すなわち、学習用データ生成部108は、仮想現在日時が2019年8月29日である場合において、予測期間が1日後及び2日後である2つの学習用データを生成することができる。
 同様に、例えば、第3情報生成部183は、仮想現在日時が2018年9月10日であり、予測期間がN日後である場合においては、図4に示す元時系列データに基づいて、仮想現在日時である2018年9月10日から、第2情報である予測期間情報が示すN日後に当たる日付に対応する入場者数を第3情報とすることにより、第3情報を生成する。
 情報組合部184は、仮想現在日時が2018年9月10日であり、予測期間がN日後である場合においては、図4に示す元時系列データに基づいて、第1情報生成部181が生成した、2018年9月1日から2018年9月10日までの期間に対応する時系列データである第1情報と、第2情報生成部182が生成した、予測期間であるN日後を示す予測期間情報である第2情報と、第3情報生成部183が生成した、2018年9月10日からN日後に当たる日付に対応する入場者数である第3情報とを組み合わせてることにより、1つの学習用データを生成する。
 すなわち、学習用データ生成部108は、仮想現在日時が2018年9月10日である場合において、1日後から355日後までのそれぞれの予測期間に対応する355個の学習用データを生成することができる。
 なお、仮想現在日時決定部104は、図4に示す元時系列データに基づいて、仮想現在日時を2018年9月10日から2019年8月29日までの日付を仮想現在日時として決定するものとして説明したが、仮想現在日時決定部104は、2019年8月30日についても、仮想現在日時として決定しても良い。
 仮想現在日時決定部104が、2019年8月30日を仮想現在日時として決定する場合、予測期間決定部106が決定する予測期間は、1日後となる。
 当該場合、観察値取得部107は、2019年8月30日から1日後にあたる2019年8月31日の入場者数を観察値として取得する。
 すなわち、当該場合、第1情報生成部181は、時系列データ切出部105が切出した2018年9月1日から2019年8月30日までの期間に対応する時系列データのうち、2019年8月21日から2019年8月30日までの期間に対応する時系列データを第1情報とすることにより第1情報を生成する。また、第2情報生成部182は、予測期間が1日後であることを示す情報を第2情報とすることにより第2情報を生成する。また、第3情報生成部183は、仮想現在日時である2019年8月30日から、予想期間である1日後に当たる2019年8月31日の入場者数を第3情報とすることにより第3情報を生成する。情報組合部184は、当該第1情報、当該第2情報、及び当該第3情報を組み合わせることにより、1つの学習用データを生成する。
 情報組合部184は、第1情報、第2情報、及び第3情報の全ての組合せ可能な組合せパターンにおいて、学習用データを生成し終えるまで、学習用データを繰り返し生成する。学習用データ生成部108は、情報組合部184が、第1情報、第2情報、及び第3情報の全ての組合せ可能な組合せパターンにおいて、学習用データを生成し終えるまで、学習用データを繰り返し生成することにより、複数の学習用データを生成する。
 図6を参照して、実施の形態1に係る学習用データ生成部108の動作について説明する。
 図6は、実施の形態1に係る学習用データ生成部108の処理の一例を説明するフローチャートである。
 まず、ステップST601にて、第1情報生成部181は、第1情報を生成する。
 次に、ステップST602にて、第2情報生成部182は、第2情報を生成する。
 次に、ステップST603にて、第3情報生成部183は、第3情報を生成する。
 次に、ステップST604にて、情報組合部184は、学習用データを生成する。
 次に、ステップST605にて、情報組合部184は、第1情報、第2情報、及び第3情報の全ての組合せ可能な組合せパターンにおいて、学習用データを生成し終えたか否かを判定する。
 ステップST605にて、情報組合部184が、全ての組合せ可能な組合せパターンにおいて、学習用データを生成し終えていないと判定した場合、情報組合部184が全ての組合せ可能な組合せパターンにおいて、学習用データを生成し終えるまで、学習用データ生成部108は、ステップST604の処理を繰り返し実行する。
 ステップST605にて、情報組合部184が、全ての組合せ可能な組合せパターンにおいて、学習用データを生成し終えたと判定した場合、学習用データ生成部108は、当該フローチャートの処理を終了する。
 なお、ステップST601からステップST603までの処理は、ステップST604の処理の前であれば、処理順序は問わない。
 以上のように構成することにより、学習装置100は、1つの元時系列データに基づいて、複数の学習用データを生成することができる。
 また、学習装置100は、このように生成された複数の学習用データを用いて学習することにより、例えば、指定された、1日後から355日後までの任意の予測期間について、予測期間経過後における推論観察値である観察値を推論可能な学習済モデルを生成することができる。
 なお、学習装置100は、予測期間経過後における推論観察値である観察値を推論可能な学習済モデルの生成において、1日後から355日後までの任意の予測期間について推論可能な学習済モデルを生成するものなくても良い。例えば、学習装置100は、1日後から30日後までの任意の予測期間について推論可能な学習済モデル、又は、8日後から355日後までの任意の予測期間について推論可能な学習済モデル等、予め決められた期間における任意の予測期間について推論可能な学習済モデルを生成するものであっても良い。
 図7を参照して、元時系列データ取得部103、仮想現在日時決定部104、時系列データ切出部105、予測期間決定部106、観察値取得部107、及び学習用データ生成部108による複数の学習用データの生成方法において、上述の生成方法(以下「第1方法」という。)とは異なる生成方法(以下「第2方法」という。)について説明する。
 図7は、元時系列データ予測期間、第1情報、第2情報、第3情報、及び学習用データの他の一例を示す図である。
 図7に示す元時系列データは、図4に示す元時系列データと同様に、一例として、あるテーマパークの2018年9月1日から2019年8月31日までの365日分の入場者数を1日毎の観察値として示した時系列データの一部を示す図である。
 第1方法は、学習用データ生成部108が、時系列データ切出部105が元時系列データから切出した時系列データのうち、予め決められた個数の観察値に対応する時系列データを切出して、切出した時系列データを第1情報とすることにより、第1情報を生成するものであった。また、第1方法は、学習用データ生成部108が、予測期間決定部106が決定した予想期間を示す予想期間情報を第2情報とすることにより、第2情報を生成するものであった。また、第1方法は、学習用データ生成部108が、観察値取得部107が取得した予測期間経過後の観察値を第3情報とすることにより、第3情報を生成するものであった。
 これ対して、第2方法は、学習用データ生成部108が、時系列データ切出部105が元時系列データから切出した時系列データを、予め定められた同一の次元数を有するベクトル表現に符号化することにより、第1情報を生成するものである。また、第2方法は、学習用データ生成部108が、予測期間決定部106が決定した予想期間を示す予想期間情報を、予め定められた次元数を有するベクトル表現に符号化することにより、第2情報を生成するものである。
 例えば、学習用データ生成部108は、仮想現在日時がYYYY年MM月DD日であり、予測期間がX日後である場合、図7に示すように、時系列データ切出部105が元時系列データから切出した、2018年9月1日からYYYY年MM月DD日までの期間に対応する時系列データを予め定められた同一の次元数を有するベクトル表現に符号化して第1情報とし、予測期間であるX日後を示す情報を予め定められた同一の次元数を有するベクトル表現に符号化して第2情報とし、YYYY年MM月DD日からX日後に観察された観察値を第3情報とする。
 なお、第2方法における元時系列データ取得部103、仮想現在日時決定部104、時系列データ切出部105、予測期間決定部106、及び観察値取得部107のそれぞれの処理は、第1方法における元時系列データ取得部103、仮想現在日時決定部104、時系列データ切出部105、予測期間決定部106、及び観察値取得部107のそれぞれの処理と同様であるため、説明を省略する。
 より具体的には、第2方法における学習用データ生成部108は、第1情報生成部181a、第2情報生成部182a、第3情報生成部183、及び情報組合部184を備えるものとして説明する。
 第2方法における学習用データ生成部108の要部の構成は、図5に示す第1方法における学習用データ生成部108の要部の構成において、第1情報生成部181及び第2情報生成部182を第1情報生成部181a及び第2情報生成部182aに変更したものに過ぎないため、第2方法における学習用データ生成部108の要部の構成を示すブロック図を省略する。
 第1情報生成部181aは、時系列データ切出部105が切出した、時系列の観察値を含む1又は複数の時系列データのうちの1つの時系列データに基づいて、第1情報を生成する。
 具体的には、第1情報生成部181aは、時系列データ切出部105が切出した複数の時系列データのうちの1つの時系列データを選択して、選択した時系列データに基づいて第1情報を生成する。
 より具体的には、例えば、第1情報生成部181aは、時系列データ切出部105が元時系列データから切出した時系列データに基づいて、当該時系列データを予め定められた同一の次元数を有するベクトル表現に符号化することにより、第1情報を生成する。
 例えば、第1情報生成部181aは、時系列データ切出部105が元時系列データから切出した時系列データを、統計処理することにより得た当該時系列データの平均値、中央値、最頻値、最大値、最小値、又は標準偏差等の要約統計量を用いて、当該時系列データを予め定められた同一の次元数を有するベクトル表現に符号化することにより、第1情報を生成する。
 また、例えば、第1情報生成部181aは、時系列データ切出部105が元時系列データから切出した時系列データを、特異値分解等の低ランク近似処理することにより次元削減を行い、当該時系列データを予め定められた同一の次元数を有するベクトル表現に符号化することにより、第1情報を生成しても良い。
 また、例えば、第1情報生成部181aは、時系列データ切出部105が元時系列データから切出した時系列データに、ハッシュ関数を適用して、当該時系列データを予め定められた同一の次元数を有するベクトル表現に符号化することにより、第1情報を生成しても良い。
 また、例えば、第1情報生成部181aは、時系列データ切出部105が元時系列データから切出した時系列データを、デジタルフィルタに入力して、当該時系列データを予め定められた同一の次元数を有するベクトル表現に符号化することにより、第1情報を生成しても良い。
 また、例えば、第1情報生成部181aは、時系列データ切出部105が元時系列データから切出した時系列データを、畳み込み処理等を行うニューラルネットワークに入力して、当該時系列データを予め定められた同一の次元数を有するベクトル表現に符号化することにより、第1情報を生成しても良い。
 なお、第1情報生成部181aは、例えば、上述の第1情報の生成方法を組み合わせて、当該時系列データを予め定められた同一の次元数を有するベクトル表現に符号化することにより、第1情報を生成しても良い。
 時系列データ切出部105が元時系列データから切出した時系列データに含まれる観察値の個数は、仮想現在日時決定部104が決定する仮想現在日時が変化すると、異なる個数となってしまう。学習用データ生成部108は、第1情報生成部181aを備えることにより、時系列データ切出部105が元時系列データから切出した時系列データに含まれる観察値の個数が異なる場合であっても、当該時系列データを予め定められた同一の次元数を有するベクトル表現に符号化することができる。
 第2情報生成部182aは、予測期間決定部106が決定した、少なくとも互いに異なる2つの予測期間を含む複数の予測期間のうちの1つの予測期間に基づいて、第2情報を生成する。
 具体的には、例えば、第2情報生成部182aは、予測期間決定部106が決定した、少なくとも互いに異なる2つの予測期間のうちの1つの予測期間を示す予想期間情報を選択して、選択した予想期間情報を第2情報とすることにより、第2情報を生成する。
 より具体的には、例えば、第2情報生成部182aは、予測期間決定部106が決定した予想期間を示す予想期間情報を、予め定められた次元数を有するベクトル表現に符号化することにより、第2情報を生成する。
 例えば、第2情報生成部182aは、予測期間決定部106が決定した予想期間経過後の時点と、仮想現在日時決定部104が決定した現在日時との時間差等の任意の単位により表された予測期間情報を、予め定められた次元数を有するベクトル表現に符号化することにより、第2情報を生成する。
 また、例えば、第2情報生成部182aは、予測期間決定部106が決定した予想期間経過後の時点と、時系列データ切出部105が元時系列データから切出した時系列データに対応する期間における予め定められたイベントの発生時点との時間差等の任意の単位により表された予測期間情報を、予め定められた次元数を有するベクトル表現に符号化することにより、第2情報を生成しても良い。
 また、例えば、第2情報生成部182aは、予測期間決定部106が決定した予想期間経過後の時点である、年、月、週、曜日、祝日、又は特定日等の任意の単位により表された予測期間情報を、予め定められた次元数を有するベクトル表現に符号化することにより、第2情報を生成しても良い。
 また、例えば、第2情報生成部182aは、予測期間決定部106が決定した予想期間経過後の時点である時、分、秒、又は時間帯等の任意の単位により表された予測期間情報を、予め定められた次元数を有するベクトル表現に符号化することにより、第2情報を生成しても良い。
 なお、第2情報生成部182aは、例えば、上述の生成方法により予め定められた次元数を有するベクトル表現に符号化された情報を、対数関数又は三角関数等の予め定められた関数を用いて変換し、変換後の情報を第2情報とすることにより、第2情報を生成しても良い。
 より具体的には、例えば、第2情報生成部182aは、予測期間決定部106が決定した予想期間経過後の時点と、仮想現在日時決定部104が決定した現在日時との時間差をTとして、log(T)のように正の実数であるTの対数を取ることにより、Tを、実数全体を示す値に変換し、変換後の値を符号化することにより、第2情報を生成しても良い。
 また例えば、第2情報生成部182aは、予め定められた周期Pと任意の自然数nを用いて、cos(2nT/P)又はsin(2nT/P)のように、Tに三角関数を適用することにより、Tを周期的な値に変換して、変換後の値を符号化することにより、第2情報を生成しても良い。
 また例えば、第2情報生成部182aは、TをPで除した商と余りとを得ることにより、Tを周期的な情報に変換して、商と余りとを符号化することにより、第2情報を生成しても良い。
 以上のように、学習用データ生成部108は、第2情報生成部182aを備えることにより、任意の単位により表された予測期間情報を、予め定められた次元数を有するベクトル表現に符号化することができる。
 また、時系列データ切出部105が元時系列データから切出した時系列データに含まれる観察値の観察間隔は、元時系列データにより異なる場合がある。そのため、第2情報生成部182aは、任意の単位により表された予測期間情報を、予め定められた次元数を有するベクトル表現に符号化することにより、第2情報を生成する際に、予測期間情報によらず、同一の次元数を有するベクトル表現に符号化することが好適である。
 第2方法における学習用データ生成部108の動作は、図6に示す第1方法における学習用データ生成部108の動作と同様であるため、第2方法における学習用データ生成部108の処理の説明を省略する。
 以上のように構成することにより、学習装置100は、1つの元時系列データに基づいて、複数の学習用データを生成することができる。
 推論システム1は、元時系列データから複数の学習用データを生成する不図示の学習データ生成装置を備えるものであっても良い。
 学習データ生成装置は、元時系列データ取得部103、仮想現在日時決定部104、時系列データ切出部105、予測期間決定部106、観察値取得部107、及び学習用データ生成部108を備えることにより構成される。
 推論システム1が学習データ生成装置を備えることにより、学習装置100における学習用データ取得部109は、学習データ生成装置が生成した複数の学習用データを、学習データ生成装置から直接、又は、記憶装置10等を介して取得可能である。
 なお、学習データ生成装置が備える元時系列データ取得部103、仮想現在日時決定部104、時系列データ切出部105、予測期間決定部106、観察値取得部107、及び学習用データ生成部108の各機能は、図3A及び図3Bに一例を示したハードウェア構成におけるプロセッサ301及びメモリ302により実現されるものであっても良く、又は処理回路303により実現されるものであっても良い。
 学習部110は、学習用データにおける第1情報と第2情報とを組合せた情報を説明変数とし、且つ、第3情報を応答変数として、学習用データ取得部109が取得した複数の学習用データを用いて学習する。学習部110は、当該学習により、指定された予測期間経過後における推論観察値を推論可能な学習済モデルを生成する。
 より具体的には、学習部110は、第3情報を応答変数として学習する際に、当該応答変数を教師データとして教師付きの機械学習を行うことにより、指定された予測期間経過後における推論観察値を推論可能な学習済モデルを生成する。
 学習部110は、1つの学習用データが、時系列の観察値を含む1又は複数の時系列データのうちの1つの時系列データに基づく第1情報と、少なくとも互いに異なる2つの予測期間を含む複数の予測期間のうちの1つの予測期間に基づく第2情報と、予測期間経過後の観察値に基づく第3情報との組合せである、複数の学習用データを用いて学習するため、推論観察値の推論における指定された予測期間が第2情報の基となる予測期間に相当する場合、学習部110が生成した学習済モデルは、推論を1回だけ行うことにより、指定された予測期間経過後における推論観察値を推論できるものとなる。
 また、上述のとおり、学習部110は、学習用データにおける第1情報と第2情報とを組合せた情報を説明変数として学習するものである。そのため、上述の第2方法により生成された、いずれも予め定められた次元数のベクトル表現に符号化された第1情報と第2情報とを組合せた情報を説明変数とすることにより、第1情報の基となる時系列の観察値を含む時系列データが、任意の観察値の個数を含む時系列データであっても、第2情報の基となる少なくとも互いに異なる2つの予測期間を示す予測期間情報が、任意の単位により表された予測期間情報であっても、学習部110は、学習を行うことができる。
 なお、学習部110における学習は、学習部110が生成する学習済モデルに応じて、任意の学習アルゴリズムにより行われる。例えば、学習部110における学習は、生成する学習済モデルがニューラルネットワークにより構成される学習済モデルである場合、確率的勾配降下法等の学習アルゴリズムにより行われる。また、例えば、学習部110における学習は、学習済モデルに用いられるハイパーパラメータを適切に設定するために、交差検証等の手法が適用されても良い。
 また、学習部110が生成する学習済モデルによる推論方法は、近傍法、サポートベクトルマシン、決定木、ランダムフォレスト、勾配ブースティング木、ガウス過程回帰、又はニューラルネットワーク等の任意の推論方法である。
 モデル出力部111は、学習部110が生成した学習済モデルをモデル情報として出力する。モデル出力部111は、例えば、推論装置200又は記憶装置10に出力する。
 図8を参照して、実施の形態1に係る学習装置100の動作について説明する。
 図8は、実施の形態1に係る学習装置100の処理の一例を説明するフローチャートである。
 まず、ステップST801にて、元時系列データ取得部103は、元時系列データを取得する。
 次に、ステップST802にて、仮想現在日時決定部104は、仮想現在日時を1又は複数決定する。
 次に、ステップST803にて、時系列データ切出部105は、1又は複数の仮想現在日時のそれぞれについて、元時系列データのうち、仮想現在日時以前の期間に対応する元時系列データを、時系列データとして切出す。
 次に、ステップST804にて、予測期間決定部106は、1又は複数の仮想現在日時のそれぞれについて、予測期間経過後の時点が元時系列データに対応する期間に含まれる、少なくとも互いに異なる2つの予測期間を決定する。
 次に、ステップST805にて、観察値取得部107は、1又は複数の仮想現在日時のそれぞれにおける、少なくとも互いに異なる2つの予測期間のそれぞれについて、予測期間経過後の観察値を元時系列データから取得する。
 次に、ステップST806にて、学習用データ生成部108は、時系列データ切出部105が切出した、時系列の観察値を含む1又は複数の時系列データのうちの1つの時系列データを第1情報とし、少なくとも互いに異なる2つの予測期間を含む複数の予測期間のうちの1つの予測期間を示す予測期間情報を第2情報とし、予測期間経過後の観察値を第3情報として、第1情報、第2情報、及び第3情報を組合せることにより、複数の学習用データを生成する。
 次に、ステップST807にて、学習用データ取得部109は、複数の学習用データを取得する。
 次に、ステップST808にて、学習部110は、複数の学習用データを用いて学習し、学習済モデルを生成する。
 次に、ステップST809にて、モデル出力部111は、学習済モデルをモデル情報して出力する。
 学習装置100は、ステップST809の処理の後、当該フローチャートの処理を終了する。
 以上のように、学習装置100は、1つの学習用データが、時系列の観察値を含む1又は複数の時系列データのうちの1つの時系列データに基づく第1情報と、少なくとも互いに異なる2つの予測期間を含む複数の予測期間のうちの1つの予測期間に基づく第2情報と、予測期間経過後の観察値に基づく第3情報との組合せである、複数の学習用データを取得する学習用データ取得部109と、学習用データにおける第1情報と第2情報とを組合せた情報を説明変数とし、且つ、第3情報を応答変数として、学習用データ取得部109が取得した複数の学習用データを用いて学習し、指定された予測期間経過後における推論観察値を推論可能な学習済モデルを生成する学習部110と、を備えた。
 このように構成することで、学習装置100は、任意の未来の観察値の推論において、推論誤差の少ない高精度の推論精度を有する観察値の推論を可能にすることができる。
 また、学習装置100は、上述の構成に加えて、時系列の観察値を含む1つの元時系列データに対応する期間のうちから、仮想的に定める現在日時である仮想現在日時を1又は複数決定する仮想現在日時決定部104と、仮想現在日時決定部104が決定した1又は複数の仮想現在日時のそれぞれについて、元時系列データのうち、仮想現在日時以前の期間に対応する元時系列データを、第1情報の基となる時系列の観察値を含む時系列データとして切出す時系列データ切出部105と、仮想現在日時決定部104が決定した1又は複数の仮想現在日時のそれぞれについて、予測期間経過後の時点が元時系列データに対応する期間に含まれる、第2情報の基となる少なくとも互いに異なる2つの予測期間を決定する予測期間決定部106と、予測期間決定部106が決定した、少なくとも互いに異なる2つの予測期間のそれぞれについて、第3情報の基となる予測期間経過後の観察値を元時系列データから取得する観察値取得部107と、時系列データ切出部105が切出した、時系列の観察値を含む1又は複数の時系列データのうちの1つの時系列データに基づく第1情報と、予測期間決定部106が決定した、少なくとも互いに異なる2つの予測期間を含む複数の予測期間のうちの1つの予測期間に基づく第2情報と、観察値取得部107が取得した、予測期間経過後の観察値に基づく第3情報とを組合せることにより、複数の学習用データを生成する学習用データ生成部108と、を備え、学習用データ取得部109は、学習用データ生成部108が生成した複数の学習用データを取得するように構成した。
 このように構成することで、学習装置100は、1つの元時系列データに基づいて、複数の学習用データを生成することができる。
 また、このように構成することで、学習装置100は、このように生成された複数の学習用データを用いて学習することにより、指定された任意の予測期間について、予測期間経過後における推論観察値である観察値を、高精度に推論可能な学習済モデルを生成することができる。
 また、学習装置100は、上述の構成において、学習用データにおける第2情報の基となる予測期間は、当該学習用データにおける第1情報の基となる時系列データに対応する期間における現在日時に最も近い時点からの期間であり、当該学習用データにおける第3情報は、当該時点からの予測期間経過後の観察値に基づく情報であるように構成した。
 このように構成することで、学習装置100は、任意の未来の観察値の推論において、推論誤差の少ない高精度の推論精度を有する観察値の推論を可能にすることができる。
 より具体的には、このように構成することで、学習装置100は、任意の未来の観察値の推論において、時系列データに対応する期間における現在日時に最も近い時点からの予測期間経過後における推論観察値である観察値を、高精度に推論可能な学習済モデルを生成することができる。
 また、学習装置100は、上述の構成において、学習用データにおける第2情報の基となる予測期間は、当該学習用データにおける第1情報の基となる時系列データに対応する期間おける予め定められたイベントの発生時点からの期間であり、当該学習用データにおける第3情報は、当該イベントの発生時点からの予測期間経過後の観察値に基づく情報であるように構成した。
 このように構成することで、学習装置100は、任意の未来の観察値の推論において、推論誤差の少ない高精度の推論精度を有する観察値の推論を可能にすることができる。
 より具体的には、このように構成することで、学習装置100は、任意の未来の観察値の推論において、時系列データに対応する期間おける予め定められたイベントの発生時点からの予測期間経過後における推論観察値である観察値を、高精度に推論可能な学習済モデルを生成することができる。
 また、学習装置100は、上述の構成において、第2情報は、予測期間を特定可能な予測期間情報を、予め定められた次元数を有するベクトル表現に符号化した情報であるように構成した。
 このように構成することで、学習装置100は、任意の単位により表された予測期間情報を、予め定められた次元数を有するベクトル表現に符号化することができる。
 より具体的には、このように構成することで、学習装置100は、第2情報の基となる少なくとも互いに異なる2つの予測期間を示す予測期間情報が、任意の単位により表された予測期間情報であっても、学習を行うことができる。
 また、学習装置100は、上述の構成において、任意の単位により表された予測期間情報の全てにおいて、予め定められた同一の次元数を有するベクトル表現に符号化した情報であるように構成した。
 このように構成することで、学習装置100は、任意の単位により表された予測期間情報を、予め定められた次元数を有するベクトル表現に符号化することができる。
 より具体的には、このように構成することで、学習装置100は、第2情報の基となる少なくとも互いに異なる2つの予測期間を示す予測期間情報が、任意の単位により表された予測期間情報であっても、学習を行うことができる。
 また、学習装置100は、上述の構成において、第1情報は、第1情報の基となる時系列データの全てにおいて、予め定められた同一の次元数を有するベクトル表現に符号化した情報であるように構成した。
 このように構成することで、学習装置100は、時系列データ切出部105が元時系列データから切出した時系列データに含まれる観察値の個数が異なる場合であっても、当該時系列データを予め定められた同一の次元数を有するベクトル表現に符号化することができる。
 より具体的には、このように構成することで、学習装置100は、第1情報の基となる時系列の観察値を含む時系列データが、任意の観察値の個数を含む時系列データであっても、学習を行うことができる。
 また、学習装置100は、上述の構成において、学習部110は、ベクトル表現に符号化した第1情報と、ベクトル表現に符号化した第2情報とを連結したベクトル表現による情報を説明変数として学習するように構成した。
 このように構成することで、学習装置100は、第1情報の基となる時系列の観察値を含む時系列データが、任意の観察値の個数を含む時系列データであっても、第2情報の基となる少なくとも互いに異なる2つの予測期間を示す予測期間情報が、任意の単位により表された予測期間情報であっても、学習を行うことができる。
 また、以上のように、学習データ生成装置は、時系列の観察値を含む1つの元時系列データに対応する期間のうちから、仮想的に定める現在日時である仮想現在日時を1又は複数決定する仮想現在日時決定部104と、仮想現在日時決定部104が決定した1又は複数の仮想現在日時のそれぞれについて、元時系列データのうち、仮想現在日時以前の期間に対応する元時系列データを、第1情報の基となる時系列の観察値を含む時系列データとして切出す時系列データ切出部105と、仮想現在日時決定部104が決定した1又は複数の仮想現在日時のそれぞれについて、予測期間経過後の時点が元時系列データに対応する期間に含まれる、第2情報の基となる少なくとも互いに異なる2つの予測期間を決定する予測期間決定部106と、予測期間決定部106が決定した、少なくとも互いに異なる2つの予測期間のそれぞれについて、第3情報の基となる予測期間経過後の観察値を元時系列データから取得する観察値取得部107と、時系列データ切出部105が切出した、時系列の観察値を含む1又は複数の時系列データのうちの1つの時系列データに基づく第1情報と、予測期間決定部106が決定した、少なくとも互いに異なる2つの予測期間を含む複数の予測期間のうちの1つの予測期間に基づく第2情報と、観察値取得部107が取得した、予測期間経過後の観察値に基づく第3情報とを組合せることにより、複数の学習用データを生成する学習用データ生成部108と、を備えた。
 このように構成することで、学習データ生成装置は、1つの元時系列データに基づいて、複数の学習用データを生成することができる。
 また、このように構成することで、学習データ生成装置は、学習済モデルを生成する学習装置100に、このように生成された複数の学習用データを提供することができる。学習装置100は、学習データ生成装置から提供された複数の学習用データを用いて学習することにより、指定された任意の予測期間について、予測期間経過後における推論観察値である観察値を高精度に推論可能な学習済モデルを生成することができる。
 図9から図11を参照して、実施の形態1に係る推論装置200について説明する。
 図9は、実施の形態1に係る推論装置200の要部の構成の一例を示すブロック図である。
 推論装置200は、表示制御部201、操作受付部202、推論用時系列データ取得部203、モデル取得部206、指定予測期間取得部204、推論用データ生成部205、推論用データ取得部207、推論用データ入力部208、推論部209、結果取得部210、及び結果出力部211を備える。
 なお、推論装置200が備える表示制御部201、操作受付部202、推論用時系列データ取得部203、モデル取得部206、指定予測期間取得部204、推論用データ生成部205、推論用データ取得部207、推論用データ入力部208、推論部209、結果取得部210、及び結果出力部211の各機能は、図3A及び図3Bに一例を示したハードウェア構成におけるプロセッサ301及びメモリ302により実現されるものであっても良く、又は処理回路303により実現されるものであっても良い。
 表示制御部201は、表示装置12に表示させる画像に対応する画像信号を生成して、生成した画像信号を表示装置12に対して出力する。表示装置12に表示させる画像は、記憶装置10に保存されている時系列データの一覧、又はモデル情報の一覧等を示す画像である。
 操作受付部202は、入力装置14が出力した操作信号を受けて、操作信号に対応するユーザの入力操作を示す操作情報を、推論用時系列データ取得部203、指定予測期間取得部204、又はモデル取得部206等に出力する。
 操作受付部202が出力する操作情報は、記憶装置10に保存されている時系列データのうち、ユーザの入力操作により指定された時系列データ又はモデル情報等を示す情報等である。
 推論用データ取得部207は、時系列の観察値を含む時系列データに基づく第4情報と、予測対象の指定予測期間を特定可能な第5情報とを組合せた推論用データを取得する。
 具体的には、例えば、推論用データ生成部205が生成した推論用データを取得する。推論用データ生成部205は、推論用時系列データ取得部203及び指定予測期間取得部204が取得する情報を用いて推論用データを生成する。
 なお、推論用データ取得部207は、予め用意された推論用データを、記憶装置10から読み出すことにより、推論用データを取得するものであっても良い。推論用データ取得部207が予め用意された推論用データを、記憶装置10から読み出すことにより、推論用データを取得する場合、推論用時系列データ取得部203、指定予測期間取得部204、及び推論用データ生成部205は、必須の構成ではない。
 推論用時系列データ取得部203は、時系列データを取得する。以下の説明において、推論用時系列データ取得部203が取得する時系列データを、推論用時系列データと言う。
 具体的には、例えば、推論用時系列データ取得部203は、操作受付部202が出力する操作情報を受けて、当該操作情報が示す時系列データを記憶装置10から読み出すことにより、当該時系列データを推論用時系列データとして取得する。
 指定予測期間取得部204は、予測対象の指定予測期間を示す指定予測期間情報を取得する。
 具体的には、例えば、推論用データにおける第5情報により特定可能な指定予測期間は、当該推論用データにおける第4情報の基となる推論用時系列データに対応する期間おける、最も現在日時から近い時点からの期間である。
 また、例えば、推論用データにおける第5情報により特定可能な指定予測期間は、当該推論用データにおける第4情報の基となる推論用時系列データに対応する期間おける予め定められたイベントの発生時点からの期間である。
 指定予測期間取得部204は、例えば、操作受付部202が出力する操作情報を受けて、当該操作情報が示す予測対象の指定予測期間を指定予測期間情報に変換することにより当該指定予測期間情報を取得する。
 推論用データ生成部205は、推論用時系列データ取得部203が取得した推論用時系列データに基づく第4情報と、指定予測期間取得部204が取得した指定予測期間情報に基づく、指定予測期間情報が示す予測対象の指定予測期間を特定可能な第5情報とを組合せた推論用データを生成する。
 具体的には、例えば、推論用データ生成部205は、推論用時系列データ取得部203が取得した推論用時系列データのうち、最も現在日時に近い予め定められた個数の観察値に対応する推論用時系列データを切出し、切出し後の推論用時系列データを第4情報とする。また、推論用データ生成部205は、指定予測期間取得部204が取得した指定予測期間情報を第5情報とする。推論用データ生成部205は、当該第4情報と当該第5情報とを組合せて、推論用データを生成する。推論用データ生成部205が、このような方法により、推論用データを生成する場合、推論用データにおける第5情報により特定可能な指定予測期間は、当該推論用データにおける第4情報の基となる推論用時系列データに対応する期間おける、最も現在日時から近い時点からの期間である。
 また、例えば、推論用データ生成部205は、推論用時系列データ取得部203が取得した推論用時系列データにおける予め定められたイベントの発生時点以前の推論用時系列データのうち、最も現在日時に近い予め定められた個数の観察値に対応する推論用時系列データを切出し、切出し後の推論用時系列データを第4情報としても良い。推論用データ生成部205は、指定予測期間取得部204が取得した指定予測期間情報を第5情報とする。推論用データ生成部205は、当該第4情報と当該第5情報とを組合せて、推論用データを生成する。推論用データ生成部205が、このような方法により、推論用データを生成する場合、推論用データにおける第5情報により特定可能な指定予測期間は、当該推論用データにおける第4情報の基となる推論用時系列データに対応する期間おける予め定められたイベントの発生時点からの期間である。
 図10Aを参照して、推論用時系列データ取得部203、指定予測期間取得部204、及び推論用データ生成部205による推論用データの具体的な生成方法の一例について説明する。
 図10Aは、推論用時系列データ、指定予測期間、第4情報、第5情報、及び説明変数の一例を示す図である。
 図10Aに示す推論用時系列データは、図4に示す元時系列データと同様に、一例として、あるテーマパークの2018年9月1日から2019年8月31日までの365日分の入場者数を1日毎の観察値として示した推論用時系列データの一部を示す図である。
 推論用時系列データ取得部203は、図10Aに示す推論用時系列データを記憶装置10から取得する。
 推論用データ生成部205は、図10Aに示す推論用データに基づいて、例えば、2018年9月1日から2019年8月31日までの期間に対応する推論用時系列データのうち、観察値の数が予め定められた数である10個になるように、2019年8月22日から2019年8月31日までの期間に対応する推論用時系列データを切出す。推論用データ生成部205は、切出した2019年8月22日から2019年8月31日までの期間に対応する推論用時系列データを第4情報とする。
 また、推論用データ生成部205は、図10Aに示すように、例えば、予測対象の指定予測期間が30日後であることを示す指定予測期間情報を第5情報とする。
 推論用データ生成部205は、例えば、図10Aにおいて破線により示すように、推論用時系列データ取得部203が取得した推論用時系列データを、予め定められた同一の次元数を有するベクトル表現に符号化した情報を第4情報としても良い。推論用データ生成部205が、推論用時系列データを予め定められた同一の次元数を有するベクトル表現に符号化する方法は、学習装置100における第1情報生成部181aが第1情報を生成する際の、時系列データを予め定められた同一の次元数を有するベクトル表現に符号化する方法と同様であるため、説明を省略する。
 推論用データ生成部205は、例えば、図10Aにおいて括弧書きにより示すように、指定予測期間を特定可能な指定予測期間情報を、予め定められた次元数を有するベクトル表現に符号化した情報を第5情報としても良い。推論用データ生成部205が、指定予測期間を特定可能な指定予測期間情報を、予め定められた次元数を有するベクトル表現に符号化する方法は、学習装置100における第2情報生成部182aが第2情報を生成する際の、予想期間情報を予め定められた次元数を有するベクトル表現に符号化する方法と同様であるため、説明を省略する。
 なお、第5情報は、任意の単位により表された指定予測期間情報の全てにおいて、予め定められた同一の次元数を有するベクトル表現に符号化した情報であることが好適である。
 モデル取得部206は、モデル情報を取得する。
 具体的には、例えば、モデル取得部206は、操作受付部202が出力する操作情報を受けて、当該操作情報が示すモデル情報を記憶装置10から読み出すことにより、当該モデル情報を取得する。
 モデル取得部206が取得するモデル情報が示す学習済モデルは、時系列の観察値を含む1又は複数の時系列データのうちの1つの時系列データに基づく第1情報と、少なくとも互いに異なる2つの予測期間を含む複数の予測期間のうちの1つの予測期間に基づく第2情報と、予測期間経過後の観察値に基づく第3情報との組合せた学習用データにおける第1情報と第2情報とを組合せた情報を説明変数とし、且つ、第3情報を応答変数として、複数の学習用データを用いて学習した、機械学習による学習結果に対応する学習済モデルである。
 具体的には、例えば、モデル取得部206が取得するモデル情報は、学習装置100が出力したモデル情報である。モデル取得部206は、学習装置100が出力したモデル情報を、学習装置100から直接、又は、記憶装置10を介して取得する。
 図9は、モデル取得部206が、学習装置100が出力したモデル情報を学習装置100から直接取得する場合を示している。
 推論部209は、モデル取得部206が取得したモデル情報が示す学習済モデルを用いて、指定された指定予測期間経過後における推論観察値を推論する。
 なお、学習済モデルを用いて指定された指定予測期間経過後における推論観察値を推論する推論部209は、推論装置200に備えられても、推論装置200と接続される不図示の外部装置に備えられていても良い。
 推論用データ入力部208は、推論用データ取得部207が取得した推論用データを説明変数として、機械学習による学習結果に対応する学習済モデルに入力する。
 より具体的には、推論用データ入力部208は、推論部209に推論用データを出力し、推論部209に、当該推論用データを学習済モデルに入力させる。
 学習済モデルは、第4情報と第5情報とを組合せた推論用データが説明変数として入力されるものであるため、推論用データ生成部205が、いずれも予め定められた次元数のベクトル表現に符号化された第4情報と第5情報とを組合せた推論用データを生成することにより、学習済モデルは、第4情報の基となる時系列の観察値を含む推論用時系列データが、任意の観察値の個数を含む時系列データであっても、第5情報の基となる指定予測期間を示す指定予測期間情報が、任意の単位により表された情報であっても、第4情報と第5情報とを組合せた推論用データを説明変数として受けることができる。
 結果取得部210は、学習済モデルが推論結果として出力する、指定予測期間経過後における推論観察値を取得する。
 より具体的には、結果取得部210は、学習済モデルが推論結果として出力する、指定予測期間経過後における推論観察値を推論部209、又は、推論部209を備える外部装置から取得する。
 結果出力部211は、結果取得部210が取得した推論観察値を出力する。
 具体的には、例えば、結果出力部211は、表示制御部201を介して、結果取得部210が取得した推論観察値を出力する。表示制御部201は、結果出力部211から推論観察値を受けて、当該推論観察値を示す画像に対応する画像信号を生成し、当該画像信号を表示装置12に出力して、表示装置12に当該推論観察値を示す画像を表示させる。
 また、結果出力部211は、例えば、記憶装置10に結果取得部210が取得した推論観察値を出力し、記憶装置10に当該推論観察値を記憶させても良い。
 学習装置100が生成した学習済モデルが、図4に示す元時系列データに基づいて学習した、1日後から355日後までの任意の予測期間について、予測期間経過後における推論観察値である観察値を推論可能な学習済モデルである場合、指定予測期間取得部204が取得する指定予測期間情報が示す指定予測期間は、例えば、1日後から355日後までの任意の期間である。
 指定予測期間情報が示す指定予測期間が、学習済モデルにより予測期間経過後における推論観察値を推論可能な複数の予測期間のいずれかに相当する場合、推論装置200は、学習済モデルを用いた推論を1回だけ行うことにより、指定予測期間経過後の推論観察値を推論することができる。
 当該場合、指定予測期間取得部204が取得する指定予測期間情報は、例えば、推論時系列データに対応する期間のうち最も現在日時に近い時点を基準とする、1日後から355日後までの期間に対応する2019年9月1日から2020年8月20日までの日付のうちの任意の日付を示す情報である。
 推論用データ生成部205は、指定予測期間取得部204が取得する指定予測期間情報である当該日付を示す情報を第5情報とする。
 更に、推論用データ生成部205は、当該第4情報と当該第5情報とを組み合わせた推論用データを生成する。
 なお、指定予測期間情報が示す指定予測期間は、学習済モデルにより予測期間経過後における推論観察値を推論可能な複数の予測期間のいずれかに相当する必要はない。指定予測期間情報が示す指定予測期間が、学習済モデルにより予測期間経過後における推論観察値を推論可能な複数の予測期間のいずれにも相当しない場合、推論装置200は、学習済モデルを用いて、最も推論回数が少なくなるように、推論観察値を推論可能な予測期間を組み合わせることにより、指定予測期間経過後の推論観察値を推論する。推論装置200は、このように最も推論回数が少なくなるように、推論観察値を推論可能な予測期間を組み合わせることにより、指定予測期間情報が示す指定予測期間経過後における推論観察値に含まれる推論誤差を小さくすることができる。
 図10Bは、結果出力部211が、結果取得部210が取得した推論観察値及び分位点情報を、表示制御部201を介して出力した際の表示装置12に表示される画像の一例を示す図である。
 表示装置12には、例えば、図10Bに示すように、推論用時系列データにおける観察値が、観察時点に対応付けてプロットされて表示される。
 また、表示装置12には、例えば、図10Bに示すように、指定された予測対象の指定予測期間が表示される。
 また、表示装置12には、例えば、図10Bに示すように、指定予測期間経過後の推論観察値が表示される。
 図11を参照して、実施の形態1に係る推論装置200の動作について説明する。
 図11は、実施の形態1に係る推論装置200の処理の一例を説明するフローチャートである。
 まず、ステップST1101にて、推論用時系列データ取得部203は、推論用時系列データを取得する。
 次に、ステップST1102にて、指定予測期間取得部204は、予測対象の指定予測期間を示す指定予測期間情報を取得する。
 次に、ステップST1103にて、推論用データ生成部205は、推論用時系列データに基づく第4情報と、指定予測期間情報に基づく、指定予測期間情報が示す予測対象の指定予測期間を特定可能な第5情報とを組合せた推論用データを生成する。
 次に、ステップST1104にて、モデル取得部206は、モデル情報を取得する。
 次に、ステップST1105にて、推論用データ取得部207は、推論用データを取得する。
 次に、ステップST1106にて、推論用データ入力部208は、推論用データを説明変数として学習済モデルに入力する。
 次に、ステップST1107にて、推論部209は、学習済モデルを用いて、指定された指定予測期間経過後における推論観察値を推論する。
 次に、ステップST1108にて、結果取得部210は、学習済モデルが推論結果として出力する、指定予測期間経過後における推論観察値を取得する。
 次に、ステップST1109にて、結果出力部211は、結果取得部210が取得した推論観察値を出力する。
 推論装置200は、ステップST1109の処理の後、当該フローチャートの処理を終了する。
 なお、当該フローチャートにおいて、ステップST1101とステップST1102の処理は、ステップST1103の処理より前に実行されれば、処理順序は問わない。また、ステップST1104の処理は、ステップST1106の処理より前に実行されれば、実行される順序は問わない。
 以上のように、推論装置200は、時系列の観察値を含む時系列データに基づく第4情報と、予測対象の指定予測期間を特定可能な第5情報とを組合せた推論用データを取得する推論用データ取得部207と、推論用データ取得部207が取得した推論用データを説明変数として、機械学習による学習結果に対応する学習済モデルに入力する推論用データ入力部208と、学習済モデルが推論結果として出力する、指定予測期間経過後における推論観察値を取得する結果取得部210と、結果取得部210が取得した推論観察値を出力する結果出力部211と、を備えた。
 このように構成することで、推論装置200は、任意の未来の観察値の推論において、推論誤差の少ない高精度の推論精度を有する観察値の推論をすることができる。
 また、推論装置200は、上述の構成において、学習済モデルは、時系列の観察値を含む1又は複数の時系列データのうちの1つの時系列データに基づく第1情報と、少なくとも互いに異なる2つの予測期間を含む複数の予測期間のうちの1つの予測期間に基づく第2情報と、予測期間経過後の観察値に基づく第3情報との組合せた学習用データにおける第1情報と第2情報とを組合せた情報を説明変数とし、且つ、第3情報を応答変数として、複数の学習用データを用いて学習した、機械学習による学習結果に対応する学習済モデルであるように構成した。
 このように構成することで、推論装置200は、任意の未来の観察値の推論において、推論誤差の少ない高精度の推論精度を有する観察値の推論をすることができる。
 また、推論装置200は、上述の構成において、推論用データにおける第5情報により特定可能な指定予測期間は、当該推論用データにおける第4情報の基となる推論用時系列データに対応する期間おける、最も現在日時から近い時点からの期間であるように構成した。
 このように構成することで、推論装置200は、任意の未来の観察値の推論において、推論誤差の少ない高精度の推論精度を有する観察値の推論をすることができる。
 より具体的には、このように構成することで、推論装置200は、任意の未来の観察値の推論において、第4情報の基となる推論用時系列データに対応する期間おける、最も現在日時から近い時点からの指定予測期間経過後における推論観察値を、高精度に推論することができる。
 また、推論装置200は、上述の構成において、推論用データにおける第5情報により特定可能な指定予測期間は、当該推論用データにおける第4情報の基となる推論用時系列データに対応する期間おける予め定められたイベントの発生時点からの期間となるように構成した。
 このように構成することで、推論装置200は、任意の未来の観察値の推論において、推論誤差の少ない高精度の推論精度を有する観察値の推論をすることができる。
 より具体的には、このように構成することで、推論装置200は、任意の未来の観察値の推論において、第4情報の基となる推論用時系列データに対応する期間おける予め定められたイベントの発生時点からの指定予測期間経過後における推論観察値を、高精度に推論することができる。
 また、推論装置200は、上述の構成において、第5情報は、指定予測期間を特定可能な指定予測期間情報を、予め定められた次元数を有するベクトル表現に符号化した情報であるように構成した。
 このように構成することで、推論装置200は、第5情報の基となる指定予測期間を示す指定予測期間情報が、任意の単位により表された情報であっても、第4情報と第5情報とを組合せた推論用データを説明変数として学習済みモデルに入力することができる。
 また、推論装置200は、上述の構成において、第5情報は、任意の単位により表された指定予測期間情報の全てにおいて、予め定められた同一の次元数を有するベクトル表現に符号化した情報であるように構成した。
 このように構成することで、推論装置200は、第5情報の基となる指定予測期間を示す指定予測期間情報が、任意の単位により表された情報であっても、第4情報と第5情報とを組合せた推論用データを説明変数として学習済みモデルに入力することができる。
 また、推論装置200は、上述の構成において、第4情報は、第4情報の基となる推論用時系列データの全てにおいて、予め定められた同一の次元数を有するベクトル表現に符号化した情報であるように構成した。
 このように構成することで、推論装置200は、第4情報の基となる時系列の観察値を含む推論用時系列データが、任意の観察値の個数を含む時系列データであっても、第4情報と第5情報とを組合せた推論用データを説明変数として学習済みモデルに入力することができる。
 また、推論装置200は、上述の構成において、推論用データ入力部208は、ベクトル表現に符号化した第4情報と、ベクトル表現に符号化した第5情報とを連結したベクトル表現による情報を説明変数として学習済モデルに入力するように構成した。
 このように構成することで、推論装置200は、第4情報の基となる時系列の観察値を含む推論用時系列データが、任意の観察値の個数を含む時系列データであっても、第5情報の基となる指定予測期間を示す指定予測期間情報が、任意の単位により表された情報であっても、第4情報と第5情報とを組合せた推論用データを説明変数として学習済みモデルに入力することができる。
実施の形態2.
 図12から図17を参照して実施の形態2に係る推論システム1aについて説明する。
 図12は、実施の形態2に係る推論システム1aの要部の一例を示すブロック図である。
 実施の形態2に係る推論システム1aは、実施の形態1に係る推論システム1と比較して、学習装置100及び推論装置200が、学習装置100a及び推論装置200aに変更されたものである。
 実施の形態2に係る推論システム1aの構成において、実施の形態1に係る推論システム1と同様の構成については、同じ符号を付して重複した説明を省略する。すなわち、図1に記載した符号と同じ符号を付した図12の構成については、説明を省略する。
 実施の形態2に係る推論システム1aは、学習装置100a、推論装置200a、記憶装置10、表示装置11,12、及び入力装置13,14を備える。
 記憶装置10は、時系列データ等の推論システム1aに必要な情報を保存するための装置である。
 表示装置11は、学習装置100aが出力する画像信号を受けて、画像信号に対応する画像表示を行う。
 表示装置12は、推論装置200aが出力する画像信号を受けて、画像信号に対応する画像表示を行う。
 入力装置13は、ユーザからの操作入力を受けて、ユーザの入力操作に対応する操作信号を学習装置100aに出力する。
 入力装置14は、ユーザからの操作入力を受けて、ユーザの入力操作に対応する操作信号を推論装置200aに出力する。
 学習装置100aは、時系列データに基づく機械学習を行うことにより学習済モデルを生成し、生成した学習済モデルをモデル情報として出力する装置である。
 推論装置200aは、機械学習による学習結果に対応する学習済モデルに説明変数を入力して、学習済モデルが推論結果として出力する推論観察値、及び当該推論観察値の分位点を示す分位点情報を取得し、取得した推論観察値及び分位点情報を出力する装置である。
 図13及び図14を参照して、実施の形態2に係る学習装置100aについて説明する。
 図13は、実施の形態2に係る学習装置100aの要部の構成の一例を示すブロック図である。
 実施の形態2に係る学習装置100aは、実施の形態1に係る学習装置100と比較して、学習部110が、学習部110aに変更されたものである。
 実施の形態2に係る学習装置100aの構成において、実施の形態1に係る学習装置100と同様の構成については、同じ符号を付して重複した説明を省略する。すなわち、図2に記載した符号と同じ符号を付した図13の構成については、説明を省略する。
 学習装置100aは、表示制御部101、操作受付部102、元時系列データ取得部103、仮想現在日時決定部104、時系列データ切出部105、予測期間決定部106、観察値取得部107、学習用データ生成部108、学習用データ取得部109、学習部110a、及びモデル出力部111を備える。
 なお、学習装置100aが備える表示制御部101、操作受付部102、元時系列データ取得部103、仮想現在日時決定部104、時系列データ切出部105、予測期間決定部106、観察値取得部107、学習用データ生成部108、学習用データ取得部109、学習部110a、及びモデル出力部111の各機能は、図3A及び図3Bに一例を示したハードウェア構成におけるプロセッサ301及びメモリ302により実現されるものであっても良く、又は処理回路303により実現されるものであっても良い。
 学習部110aは、学習用データにおける第1情報と第2情報とを組合せた情報を説明変数とし、且つ、第3情報を応答変数として、学習用データ取得部109が取得した複数の学習用データを用いて学習する。学習部110aは、当該学習により、指定された予測期間経過後における推論観察値に加えて、当該推論観察値の分位点を推論可能な学習済モデルを生成する。
 より具体的には、学習部110aは、第3情報を応答変数として学習する際に、当該応答変数を教師データとして教師付きの機械学習を行うことにより、指定された予測期間経過後における推論観察値に加えて、当該推論観察値の分位点を推論可能な学習済モデルを生成する。
 学習部110aは、例えば、分位点回帰による機械学習を行うことにより、推論観察値の分位点を推論可能な学習済モデルを生成することができる。
 より具体的には、例えば、学習部110aは、勾配ブースティング木を用いて、指定された任意の割合に対応する分位点について分位点回帰による機械学習を行うことにより、当該分位点を推論可能な学習済モデルを生成することができる。
 学習部110aは、当該推論観察値の分位点の推論において、推論観察値の推論における中央値に対応する50%分位点に加えて、10%、25%、75%、又は90%等の任意の割合に対応する分位点を推論可能な学習済モデルを生成しても良い。
 以下、学習部110aが生成する学習済モデルは、一例として、10%、25%、50%、75%、及び90%に対応する5個の分位点を推論するものとして説明する。
例えば、学習部110aは、10%、25%、50%、75%、及び90%に対応する5個の分位点を推論可能な学習済モデルを生成するために、10%、25%、50%、75%、及び90%に対応する5個の分位点のそれぞれについて、分位点回帰による機械学習を行う。
 また、学習部110aは、例えば、ガウス過程回帰による機械学習を行うことにより、推論結果として、推論した推論観察値の平均値と、当該推論観察値の標準偏差を出力する学習済モデルを生成しても良い。推論観察値における任意の割合に対応する分位点は、学習済モデルが推論結果として出力する推論観察値の平均値と、当該推論観察値の標準偏差とから算出されるガウス分布における累積密度分を用いて、算出可能である。すなわち、学習部110aは、例えば、ガウス過程回帰による機械学習を行うことにより、推論観察値の分位点を推論可能な学習済モデルを生成することができる。
 図14を参照して、実施の形態2に係る学習装置100aの動作について説明する。
 図14は、実施の形態2に係る学習装置100aの処理の一例を説明するフローチャートである。
 まず、ステップST1401にて、元時系列データ取得部103は、元時系列データを取得する。
 次に、ステップST1402にて、仮想現在日時決定部104は、仮想現在日時を1又は複数決定する。
 次に、ステップST1403にて、時系列データ切出部105は、1又は複数の仮想現在日時のそれぞれについて、元時系列データのうち、仮想現在日時以前の期間に対応する元時系列データを、時系列データとして切出す。
 次に、ステップST1404にて、予測期間決定部106は、1又は複数の仮想現在日時のそれぞれについて、予測期間経過後の時点が元時系列データに対応する期間に含まれる、少なくとも互いに異なる2つの予測期間を決定する。
 次に、ステップST1405にて、観察値取得部107は、1又は複数の仮想現在日時のそれぞれにおける、少なくとも互いに異なる2つの予測期間のそれぞれについて、予測期間経過後の観察値を元時系列データから取得する。
 次に、ステップST1406にて、学習用データ生成部108は、時系列データ切出部105が切出した、時系列の観察値を含む1又は複数の時系列データのうちの1つの時系列データを第1情報とし、少なくとも互いに異なる2つの予測期間を含む複数の予測期間のうちの1つの予測期間を示す予測期間情報を第2情報とし、予測期間経過後の観察値を第3情報として、第1情報、第2情報、及び第3情報を組合せることにより、複数の学習用データを生成する。
 次に、ステップST1407にて、学習用データ取得部109は、複数の学習用データを取得する。
 次に、ステップST1408にて、学習部110aは、複数の学習用データを用いて学習し、学習済モデルを生成する。
 次に、ステップST1409にて、モデル出力部111は、学習済モデルをモデル情報して出力する。
 学習装置100aは、ステップST1409の処理の後、当該フローチャートの処理を終了する。
 以上のように、学習装置100aは、1つの学習用データが、時系列の観察値を含む1又は複数の時系列データのうちの1つの時系列データに基づく第1情報と、少なくとも互いに異なる2つの予測期間を含む複数の予測期間のうちの1つの予測期間に基づく第2情報と、予測期間経過後の観察値に基づく第3情報との組合せである、複数の学習用データを取得する学習用データ取得部109と、学習用データにおける第1情報と第2情報とを組合せた情報を説明変数とし、且つ、第3情報を応答変数として、学習用データ取得部109が取得した複数の学習用データを用いて学習し、指定された予測期間経過後における推論観察値を推論可能な学習済モデルを生成する学習部110aと、を備え、学習部110aは、指定された予測期間経過後における推論観察値に加えて、当該推論観察値の分位点を推論可能な学習済モデルを生成するように構成した。
 このように構成することで、学習装置100aは、任意の未来の観察値の推論において、推論誤差の少ない高精度の推論精度を有する観察値の推論を可能にするとともに、推論誤差の少ない高精度の推論精度を有する当該観察値の分位点の推論を可能にすることができる。
 より具体的には、このように構成することで、学習装置100aは、推論誤差の少ない高精度の推論精度を有する当該観察値の分位点の推論を可能にすることより、当該観察値の推論の確からしさを、高精度で把握することを可能にすることができる。
 図15から図17を参照して、実施の形態2に係る推論装置200aについて説明する。
 図15は、実施の形態2に係る推論装置200aの要部の構成の一例を示すブロック図である。
 実施の形態2に係る推論装置200aは、実施の形態1に係る推論装置200と比較して、推論部209、結果取得部210、及び結果出力部211が、推論部209a、結果取得部210a、及び結果出力部211aに変更されたものである。
 実施の形態2に係る推論装置200aの構成において、実施の形態1に係る推論装置200と同様の構成については、同じ符号を付して重複した説明を省略する。すなわち、図9に記載した符号と同じ符号を付した図15の構成については、説明を省略する。
 推論装置200aは、表示制御部201、操作受付部202、推論用時系列データ取得部203、モデル取得部206、指定予測期間取得部204、推論用データ生成部205、推論用データ取得部207、推論用データ入力部208、推論部209a、結果取得部210a、及び結果出力部211aを備える。
 なお、推論装置200aが備える表示制御部201、操作受付部202、推論用時系列データ取得部203、モデル取得部206、指定予測期間取得部204、推論用データ生成部205、推論用データ取得部207、推論用データ入力部208、推論部209a、結果取得部210a、及び結果出力部211aの各機能は、図3A及び図3Bに一例を示したハードウェア構成におけるプロセッサ301及びメモリ302により実現されるものであっても良く、又は処理回路303により実現されるものであっても良い。
 推論部209aは、モデル取得部206が取得したモデル情報が示す学習済モデルを用いて、指定された指定予測期間経過後における推論観察値、及び当該推論観察値の分位点を推論する。
 なお、学習済モデルを用いて指定された指定予測期間経過後における推論観察値、及び当該推論観察値の分位点を推論する推論部209aは、推論装置200aに備えられても、推論装置200aと接続される不図示の外部装置に備えられていても良い。
 結果取得部210aは、学習済モデルが出力する推論結果として、指定予測期間経過後における推論観察値に加えて、当該推論観察値の分位点を示す分位点情報を取得する。
 学習済モデルが出力する推論結果に含まれる分位点情報は、推論観察値の推論における例えば、10%、25%、50%、75%、又は90%等の任意の割合に対応する分位点を示すものである。分位点情報は、推論観察値の推論における例えば、10%、25%、50%、75%、及び90%等の任意の割合のそれぞれに対応する複数の分位点を示す情報であっても良い。以下、学習済モデルが出力する推論結果に含まれる分位点情報は、10%、25%、50%、75%、及び90%のそれぞれに割合に対応する5個の分位点を示す情報であるものとして説明する。
 結果出力部211aは、結果取得部210aが取得した推論観察値に加えて、結果取得部210aが取得した分位点情報を出力する。
 具体的には、例えば、結果出力部211aは、表示制御部201を介して、結果取得部210aが取得した推論観察値及び分位点情報を出力する。表示制御部201は、結果出力部211aから推論観察値及び分位点情報を受けて、当該推論観察値及び当該分位点情報を示す画像に対応する画像信号を生成し、当該画像信号を表示装置12に出力して、表示装置12に当該推論観察値及び当該分位点情報を示す画像を表示させる。
 また、結果出力部211aは、例えば、記憶装置10に結果取得部210aが取得した推論観察値及び分位点情報を出力し、記憶装置10に当該推論観察値及び当該分位点情報を記憶させても良い。
 図16は、結果出力部211aが、結果取得部210aが取得した推論観察値及び分位点情報を、表示制御部201を介して出力した際の表示装置12に表示される画像の一例を示す図である。
 表示装置12には、例えば、図16に示すように、推論用時系列データにおける観察値が、観察時点に対応付けてプロットされて表示される。
 また、表示装置12には、例えば、図16に示すように、指定された予測対象の指定予測期間が表示される。
 また、表示装置12には、例えば、図16に示すように、指定予測期間経過後の推論観察値の分位点として、10%、25%、50%、75%、及び90%のそれぞれに割合に対応する5個の分位点が、箱ひげ図により表示される。
 図16に示す箱ひげ図において、図16における縦方向の線分(以下「垂線」という。)の上端に位置する図16における横方向の線分(以下「水平線」という。)は90%分位点、垂線の下端に位置する水平線は10%分位点、垂線上に位置する箱の上端は75%分位点、当該箱の下端は25%分位点、及び、当該箱の中央の水平線は50%分位点をそれぞれ示している。
 推論装置200aが、学習済モデルが推論結果として出力する、指定予測期間経過後における推論観察値と、当該推論観察値の分位点を示す分位点情報とを取得し、表示装置等に取得した当該推論観察値と当該推論観察値の分位点と出力することにより、当該推論観察値の推論の確からしさを、高精度で把握できる。
 図17を参照して、実施の形態2に係る推論装置200aの動作について説明する。
 図17は、実施の形態2に係る推論装置200aの処理の一例を説明するフローチャートである。
 まず、ステップST1701にて、推論用時系列データ取得部203は、推論用時系列データを取得する。
 次に、ステップST1702にて、指定予測期間取得部204は、予測対象の指定予測期間を示す指定予測期間情報を取得する。
 次に、ステップST1703にて、推論用データ生成部205は、推論用時系列データに基づく第4情報と、指定予測期間情報に基づく、指定予測期間情報が示す予測対象の指定予測期間を特定可能な第5情報とを組合せた推論用データを生成する。
 次に、ステップST1704にて、モデル取得部206は、モデル情報を取得する。
 次に、ステップST1705にて、推論用データ取得部207は、推論用データを取得する。
 次に、ステップST1706にて、推論用データ入力部208は、推論用データを説明変数として学習済モデルに入力する。
 次に、ステップST1707にて、推論部209aは、学習済モデルを用いて、指定された指定予測期間経過後における推論観察値、及び当該推論観察値の分位点を推論する。
 次に、ステップST1708にて、結果取得部210aは、学習済モデルが推論結果として出力する、指定予測期間経過後における推論観察値、及び当該推論観察値の分位点を示す分位点情報を取得する。
 次に、ステップST1709にて、結果出力部211aは、結果取得部210aが取得した推論観察値及び分位点情報を出力する。
 推論装置200aは、ステップST1709の処理の後、当該フローチャートの処理を終了する。
 なお、当該フローチャートにおいて、ステップST1701とステップST1702の処理は、ステップST1703の処理より前に実行されれば、処理順序は問わない。また、ステップST1704の処理は、ステップST1706の処理より前に実行されれば、実行される順序は問わない。
 以上のように、推論装置200aは、時系列の観察値を含む時系列データに基づく第4情報と、予測対象の指定予測期間を特定可能な第5情報とを組合せた推論用データを取得する推論用データ取得部207と、推論用データ取得部207が取得した推論用データを説明変数として、機械学習による学習結果に対応する学習済モデルに入力する推論用データ入力部208と、学習済モデルが推論結果として出力する、指定予測期間経過後における推論観察値を取得する結果取得部210aと、結果取得部210aが取得した推論観察値を出力する結果出力部211aと、を備え、結果取得部210aは、学習済モデルが出力する推論結果として、指定予測期間経過後における推論観察値に加えて、当該推論観察値の分位点を示す分位点情報を取得し、 結果出力部211aは、結果取得部210aが取得した推論観察値に加えて、結果取得部210aが取得した分位点情報を出力する。
 このように構成することで、推論装置200aは、任意の未来の観察値の推論において、推論誤差の少ない高精度の推論精度を有する観察値の推論をすることができ、更に、当該観察値の推論の確からしさを、高精度で把握できる。
実施の形態3.
 図18から図23を参照して実施の形態3に係る推論システム1bについて説明する。
 図18は、実施の形態3に係る推論システム1bの要部の一例を示すブロック図である。
 実施の形態3に係る推論システム1bは、実施の形態1に係る推論システム1と比較して、学習装置100及び推論装置200が、学習装置100b及び推論装置200bに変更されたものである。
 実施の形態3に係る推論システム1bの構成において、実施の形態1に係る推論システム1と同様の構成については、同じ符号を付して重複した説明を省略する。すなわち、図1に記載した符号と同じ符号を付した図18の構成については、説明を省略する。
 実施の形態3に係る推論システム1bは、学習装置100b、推論装置200b、記憶装置10、表示装置11,12、及び入力装置13,14を備える。
 記憶装置10は、時系列データ等の推論システム1bに必要な情報を保存するための装置である。
 表示装置11は、学習装置100bが出力する画像信号を受けて、画像信号に対応する画像表示を行う。
 表示装置12は、推論装置200bが出力する画像信号を受けて、画像信号に対応する画像表示を行う。
 入力装置13は、ユーザからの操作入力を受けて、ユーザの入力操作に対応する操作信号を学習装置100bに出力する。
 入力装置14は、ユーザからの操作入力を受けて、ユーザの入力操作に対応する操作信号を推論装置200bに出力する。
 学習装置100bは、時系列データに基づく機械学習を行うことにより学習済モデルを生成し、生成した学習済モデルをモデル情報として出力する装置である。
 推論装置200bは、機械学習による学習結果に対応する学習済モデルに説明変数を入力して、学習済モデルが推論結果として出力する推論観察値、及び当該推論観察値の予測分布を示す予測分布情報を取得し、取得した推論観察値及び予測分布情報を出力する装置である。
 図19及び図20を参照して、実施の形態3に係る学習装置100bについて説明する。
 図19は、実施の形態3に係る学習装置100bの要部の構成の一例を示すブロック図である。
 実施の形態3に係る学習装置100bは、実施の形態1に係る学習装置100と比較して、学習部110が、学習部110bに変更されたものである。
 実施の形態3に係る学習装置100bの構成において、実施の形態1に係る学習装置100と同様の構成については、同じ符号を付して重複した説明を省略する。すなわち、図2に記載した符号と同じ符号を付した図19の構成については、説明を省略する。
 学習装置100bは、表示制御部101、操作受付部102、元時系列データ取得部103、仮想現在日時決定部104、時系列データ切出部105、予測期間決定部106、観察値取得部107、学習用データ生成部108、学習用データ取得部109、学習部110b、及びモデル出力部111を備える。
 なお、学習装置100bが備える表示制御部101、操作受付部102、元時系列データ取得部103、仮想現在日時決定部104、時系列データ切出部105、予測期間決定部106、観察値取得部107、学習用データ生成部108、学習用データ取得部109、学習部110b、及びモデル出力部111の各機能は、図3A及び図3Bに一例を示したハードウェア構成におけるプロセッサ301及びメモリ302により実現されるものであっても良く、又は処理回路303により実現されるものであっても良い。
 学習部110bは、学習用データにおける第1情報と第2情報とを組合せた情報を説明変数とし、且つ、第3情報を応答変数として、学習用データ取得部109が取得した複数の学習用データを用いて学習する。学習部110bは、当該学習により、指定された予測期間経過後における推論観察値に加えて、当該推論観察値の予測分布を推論可能な学習済モデルを生成する。
 より具体的には、学習部110bは、第3情報を応答変数として学習する際に、当該応答変数を教師データとして教師付きの機械学習を行うことにより、指定された予測期間経過後における推論観察値に加えて、当該推論観察値の予測分布を推論可能な学習済モデルを生成する。
 学習部110bは、例えば、混合密度モデルをニューラルネットワークに適用することにより得られるMDN(Mixture density networks)を用いて機械学習を行うことにより、推論観察値の予測分布を推論可能な学習済モデルを生成することができる。
 観察値は、1.0及び3.0等の予め定められた離散的な複数の値のうち、1.0又は3.0等の予め定められた値しか取り得ない場合がある。
 学習部110bは、推論観察値の予測分布を推論可能な学習済モデルを生成することにより、予め定められた離散的な複数の値のうち、互いに近接する2つの値(例えば、1.0及び3.0)の間の値(例えば、2.0)が推論観察値である場合、当該推論観察値が不適切な値であることを把握可能にすることができる。
 図20を参照して、実施の形態3に係る学習装置100bの動作について説明する。
 図20は、実施の形態3に係る学習装置100bの処理の一例を説明するフローチャートである。
 まず、ステップST2001にて、元時系列データ取得部103は、元時系列データを取得する。
 次に、ステップST2002にて、仮想現在日時決定部104は、仮想現在日時を1又は複数決定する。
 次に、ステップST2003にて、時系列データ切出部105は、1又は複数の仮想現在日時のそれぞれについて、元時系列データのうち、仮想現在日時以前の期間に対応する元時系列データを、時系列データとして切出す。
 次に、ステップST2004にて、予測期間決定部106は、1又は複数の仮想現在日時のそれぞれについて、予測期間経過後の時点が元時系列データに対応する期間に含まれる、少なくとも互いに異なる2つの予測期間を決定する。
 次に、ステップST2005にて、観察値取得部107は、1又は複数の仮想現在日時のそれぞれにおける、少なくとも互いに異なる2つの予測期間のそれぞれについて、予測期間経過後の観察値を元時系列データから取得する。
 次に、ステップST2006にて、学習用データ生成部108は、時系列データ切出部105が切出した、時系列の観察値を含む1又は複数の時系列データのうちの1つの時系列データを第1情報とし、少なくとも互いに異なる2つの予測期間を含む複数の予測期間のうちの1つの予測期間を示す予測期間情報を第2情報とし、予測期間経過後の観察値を第3情報として、第1情報、第2情報、及び第3情報を組合せることにより、複数の学習用データを生成する。
 次に、ステップST2007にて、学習用データ取得部109は、複数の学習用データを取得する。
 次に、ステップST2008にて、学習部110bは、複数の学習用データを用いて学習し、学習済モデルを生成する。
 次に、ステップST2009にて、モデル出力部111は、学習済モデルをモデル情報して出力する。
 学習装置100bは、ステップST2009の処理の後、当該フローチャートの処理を終了する。
 以上のように、学習装置100bは、1つの学習用データが、時系列の観察値を含む1又は複数の時系列データのうちの1つの時系列データに基づく第1情報と、少なくとも互いに異なる2つの予測期間を含む複数の予測期間の期間に基づく第2情報と、予測期間経過後の観察値に基づく第3情報との組合せである、複数の学習用データを取得する学習用データ取得部109と、学習用データにおける第1情報と第2情報とを組合せた情報を説明変数とし、且つ、第3情報を応答変数として、学習用データ取得部109が取得した複数の学習用データを用いて学習し、指定された予測期間経過後における推論観察値を推論可能な学習済モデルを生成する学習部110bと、を備え、学習部110bは、指定された予測期間経過後における推論観察値に加えて、当該推論観察値の予測分布を推論可能な学習済モデルを生成するように構成した。
 このように構成することで、学習装置100bは、任意の未来の観察値の推論において、推論誤差の少ない高精度の推論精度を有する観察値の推論を可能にするとともに、推論誤差の少ない高精度の推論精度を有する当該観察値の予測分布の推論を可能にすることができる。
 より具体的には、このように構成することで、学習装置100bは、観察値が取り得る予め定められた離散的な複数の値のうち、互いに近接する2つの値の間の値が推論観察値である場合、当該推論観察値が不適切な値であることを、高精度で把握可能にすることができる。
 図21から図23を参照して、実施の形態3に係る推論装置200bについて説明する。
 図21は、実施の形態3に係る推論装置200bの要部の構成の一例を示すブロック図である。
 実施の形態3に係る推論装置200bは、実施の形態1に係る推論装置200と比較して、推論部209、結果取得部210、及び結果出力部211が、推論部209b、結果取得部210b、及び結果出力部211bに変更されたものである。
 実施の形態3に係る推論装置200bの構成において、実施の形態1に係る推論装置200と同様の構成については、同じ符号を付して重複した説明を省略する。すなわち、図9に記載した符号と同じ符号を付した図21の構成については、説明を省略する。
 推論装置200bは、表示制御部201、操作受付部202、推論用時系列データ取得部203、モデル取得部206、指定予測期間取得部204、推論用データ生成部205、推論用データ取得部207、推論用データ入力部208、推論部209b、結果取得部210b、及び結果出力部211bを備える。
 なお、推論装置200bが備える表示制御部201、操作受付部202、推論用時系列データ取得部203、モデル取得部206、指定予測期間取得部204、推論用データ生成部205、推論用データ取得部207、推論用データ入力部208、推論部209b、結果取得部210b、及び結果出力部211bの各機能は、図3A及び図3Bに一例を示したハードウェア構成におけるプロセッサ301及びメモリ302により実現されるものであっても良く、又は処理回路303により実現されるものであっても良い。
 推論部209bは、モデル取得部206が取得したモデル情報が示す学習済モデルを用いて、指定された指定予測期間経過後における推論観察値、及び当該推論観察値の予測分布を推論する。
 なお、学習済モデルを用いて指定された指定予測期間経過後における推論観察値、及び当該推論観察値の予測分布を推論する推論部209bは、推論装置200bに備えられても、推論装置200bと接続される不図示の外部装置に備えられていても良い。
 結果取得部210bは、学習済モデルが出力する推論結果として、指定予測期間経過後における推論観察値に加えて、当該推論観察値の予測分布を示す予測分布情報を取得する。
 学習済モデルが出力する推論結果に含まれる予測分布情報は、推論観察値の推論における、当該推論観察値を取り得る確率を当該推論観察値毎に示すものである。
 結果出力部211bは、結果取得部210bが取得した推論観察値に加えて、結果取得部210bが取得した予測分布情報を出力する。
 具体的には、例えば、結果出力部211bは、表示制御部201を介して、結果取得部210bが取得した推論観察値及び予測分布情報を出力する。表示制御部201は、結果出力部211bから推論観察値及び予測分布情報を受けて、当該推論観察値及び当該予測分布情報を示す画像に対応する画像信号を生成し、当該画像信号を表示装置12に出力して、表示装置12に当該推論観察値及び当該予測分布情報を示す画像を表示させる。
 また、結果出力部211bは、例えば、記憶装置10に結果取得部210bが取得した推論観察値及び予測分布情報を出力し、記憶装置10に当該推論観察値及び当該予測分布情報を記憶させても良い。
 図22は、結果出力部211bが、結果取得部210bが取得した推論観察値及び予測分布情報を、表示制御部201を介して出力した際の表示装置12に表示される画像の一例を示す図である。
 表示装置12には、例えば、図22に示すように、推論用時系列データにおける観察値が、観察時点に対応付けてプロットされて表示される。
 また、表示装置12には、例えば、図22に示すように、指定された予測対象の指定予測期間が表示される。
 また、表示装置12には、例えば、図22に示すように、指定予測期間経過後の推論観察値の予測分布が、バイオリン図により表示される。
 図22に示すバイオリン図において、図22の縦方向における上側の膨らみは、推論観測値が3.0の近傍である確率を示し、下段の膨らみは、推論観測値が1.0の近傍である確率を示している。
 図22に示す予測分布において、指定予測期間経過後の観察値が、3.0である確率と、1.0である確率とが共に50%である場合、学習済モデルは、推論観察値が2.0であること示す推論結果を出力してしまうことがある。
 推論装置200bは、学習済モデルが推論結果として出力する、指定予測期間経過後における推論観察値と、当該推論観察値の予測分布を示す予測分布情報とを取得し、表示装置等に取得した当該推論観察値と当該推論観察値の予測分布と出力することにより、当該推論観察値が不適切であることを高精度で把握可能にする。また、更に、推論装置200bは、指定予測期間経過後の観察値が、1.0又は3.0となることを、高精度で把握可能にする。
 図23を参照して、実施の形態3に係る推論装置200bの動作について説明する。
 図23は、実施の形態3に係る推論装置200bの処理の一例を説明するフローチャートである。
 まず、ステップST2301にて、推論用時系列データ取得部203は、推論用時系列データを取得する。
 次に、ステップST2302にて、指定予測期間取得部204は、予測対象の指定予測期間を示す指定予測期間情報を取得する。
 次に、ステップST2303にて、推論用データ生成部205は、推論用時系列データに基づく第4情報と、指定予測期間情報に基づく、指定予測期間情報が示す予測対象の指定予測期間を特定可能な第5情報とを組合せた推論用データを生成する。
 次に、ステップST2304にて、モデル取得部206は、モデル情報を取得する。
 次に、ステップST2305にて、推論用データ取得部207は、推論用データを取得する。
 次に、ステップST2306にて、推論用データ入力部208は、推論用データを説明変数として学習済モデルに入力する。
 次に、ステップST2307にて、推論部209bは、学習済モデルを用いて、指定された指定予測期間経過後における推論観察値、及び当該推論観察値の予測分布を推論する。
 次に、ステップST2308にて、結果取得部210bは、学習済モデルが推論結果として出力する、指定予測期間経過後における推論観察値、及び当該推論観察値の予測分布を示す予測分布情報を取得する。
 次に、ステップST2309にて、結果出力部211bは、結果取得部210bが取得した推論観察値及び予測分布情報を出力する。
 推論装置200bは、ステップST2309の処理の後、当該フローチャートの処理を終了する。
 なお、当該フローチャートにおいて、ステップST2301とステップST2302の処理は、ステップST2303の処理より前に実行されれば、処理順序は問わない。また、ステップST2304の処理は、ステップST2306の処理より前に実行されれば、実行される順序は問わない。
 以上のように、推論装置200bは、時系列の観察値を含む時系列データに基づく第4情報と、予測対象の指定予測期間を特定可能な第5情報とを組合せた推論用データを取得する推論用データ取得部207と、推論用データ取得部207が取得した推論用データを説明変数として、機械学習による学習結果に対応する学習済モデルに入力する推論用データ入力部208と、学習済モデルが推論結果として出力する、指定予測期間経過後における推論観察値を取得する結果取得部210bと、結果取得部210bが取得した推論観察値を出力する結果出力部211bと、を備え、結果取得部210bは、学習済モデルが出力する推論結果として、指定予測期間経過後における推論観察値に加えて、当該推論観察値の予測分布を示す予測分布情報を取得し、結果出力部211bは、結果取得部210bが取得した推論観察値に加えて、結果取得部210bが取得した予測分布情報を出力する。
 このように構成することで、推論装置200bは、任意の未来の観察値の推論において、推論誤差の少ない高精度の推論精度を有する推論観察値の推論をすることができ、更に、当該推論観察値が不適切な値であることを高精度で把握可能にする。更に、推論装置200bは、当該推論観察値が不適切な値である場合に、適切な値を高精度で把握可能にする。
実施の形態4.
 図24から図29を参照して実施の形態4に係る推論システム1cについて説明する。
 図24は、実施の形態4に係る推論システム1cの要部の一例を示すブロック図である。
 実施の形態4に係る推論システム1cは、実施の形態1に係る推論システム1と比較して、推論装置200が、推論装置200cに変更されたものである。
 実施の形態4に係る推論システム1cの構成において、実施の形態1に係る推論システム1と同様の構成については、同じ符号を付して重複した説明を省略する。すなわち、図1に記載した符号と同じ符号を付した図24の構成については、説明を省略する。
 実施の形態4に係る推論システム1cは、学習装置100、推論装置200c、記憶装置10、表示装置11,12、及び入力装置13,14を備える。
 記憶装置10は、時系列データ等の推論システム1cに必要な情報を保存するための装置である。
 表示装置12は、推論装置200cが出力する画像信号を受けて、画像信号に対応する画像表示を行う。
 入力装置14は、ユーザからの操作入力を受けて、ユーザの入力操作に対応する操作信号を推論装置200cに出力する。
 推論装置200cは、機械学習による学習結果に対応する学習済モデルに説明変数を入力して、学習済モデルが推論結果として出力する推論観察値を出力する装置である。
 図25から図29を参照して、実施の形態4に係る推論装置200cについて説明する。
 図25は、実施の形態4に係る推論装置200cの要部の構成の一例を示すブロック図である。
 実施の形態4に係る推論装置200cは、実施の形態1に係る推論装置200と比較して、結果取得部210及び結果出力部211が、結果取得部210c及び結果出力部211cに変更されたものである。
 実施の形態4に係る推論装置200cの構成において、実施の形態1に係る推論装置200と同様の構成については、同じ符号を付して重複した説明を省略する。すなわち、図9に記載した符号と同じ符号を付した図25の構成については、説明を省略する。
 推論装置200cは、表示制御部201、操作受付部202、推論用時系列データ取得部203、モデル取得部206、指定予測期間取得部204c、推論用データ生成部205c、推論用データ取得部207、推論用データ入力部208、推論部209、結果取得部210c、及び結果出力部211cを備える。
 なお、推論装置200cが備える表示制御部201、操作受付部202、推論用時系列データ取得部203、モデル取得部206、指定予測期間取得部204c、推論用データ生成部205c、推論用データ取得部207、推論用データ入力部208、推論部209、結果取得部210c、及び結果出力部211cの各機能は、図3A及び図3Bに一例を示したハードウェア構成におけるプロセッサ301及びメモリ302により実現されるものであっても良く、又は処理回路303により実現されるものであっても良い。
 指定予測期間取得部204cは、予測対象の指定予測期間を示す指定予測期間情報を取得する。
 指定予測期間取得部204cは、指定予測期間情報として、予測対象である1つの時点までを示す指定予測期間情報、予測対象である複数の時点までを示す指定予測期間情報、又は、互いに異なる2つの時点の間に亘る範囲により表される予測対象の時間範囲(以下「予測範囲」という。)を示す指定予測期間情報を取得可能である。すなわち、実施の形態1に係る指定予測期間取得部204は、指定予測期間情報として、予測対象である1つの時点を示す指定予測期間情報を取得するものであった。これに対して、指定予測期間取得部204cは、指定予測期間情報として、予測対象である1つの時点を示す指定予測期間情報に加えて、予測対象である複数の時点を示す指定予測期間情報、又は、予測対象である予測範囲を示す指定予測期間情報を取得可能なものでる。
 例えば、ユーザは、入力装置14を用いて、複数の時点を指定することにより、予測対象である複数の時点を入力して指定予測期間を指定するか、又は、互いに異なる2つの時点を指定することにより、予測対象である予測範囲を入力して指定予測期間を指定する。
 指定予測期間取得部204cは、入力装置14から出力された操作信号を、操作受付部202を介して操作情報として受けて、当該操作情報が示す指定予測期間を指定予測期間情報に変換することにより当該指定予測期間情報を取得する。
 推論用データ生成部205cは、推論用時系列データ取得部203が取得した推論用時系列データに基づく第4情報と、指定予測期間取得部204cが取得した指定予測期間情報に基づく、指定予測期間情報が示す予測対象の指定予測期間を特定可能な第5情報とを組合せた推論用データを生成する。
 推論用データ生成部205cが生成する推論用データにおける第5情報は、予測対象である1以上の時点、又は、予測対象である予測範囲を特定可能な情報である。
 なお、推論用データ生成部205cは、例えば、指定予測期間を特定可能な指定予測期間情報を、予め定められた次元数を有するベクトル表現に符号化した情報を第5情報としても良い。推論用データ生成部205cが、指定予測期間を特定可能な指定予測期間情報を、予め定められた次元数を有するベクトル表現に符号化する方法は、学習装置100における第2情報生成部182aが第2情報を生成する際の、予想期間情報を予め定められた次元数を有するベクトル表現に符号化する方法と同様であるため、説明を省略する。
 特に、第5情報は、予測対象である1以上の時点、又は、予測対象である予測範囲等の任意の単位により表された指定予測期間情報の全てにおいて、予め定められた同一の次元数を有するベクトル表現に符号化した情報であることが好適である。
 結果取得部210cは、学習済モデルが推論結果として出力する、指定予測期間経過後における推論観察値を取得する。
 学習済モデルは、推論結果として、予測対象である1以上の時点のそれぞれにおける推論観察値、又は、予測対象である予測範囲内における1以上の推論観察値を出力する。そのため、結果取得部210cは、指定予測期間経過後における推論観察値として、予測対象である1以上の時点のそれぞれにおける推論観察値、又は、予測対象である予測範囲内における1以上の推論観察値を取得する。
 結果出力部211cは、結果取得部210cが取得した推論観察値を出力する。
 具体的には、例えば、結果出力部211cは、結果取得部210cが取得した予測対象である1以上の時点のそれぞれにおける推論観察値、又は、予測対象である予測範囲内における1以上の推論観察値を出力する。
 より具体的には、例えば、結果出力部211cは、結果取得部210cが取得した予測対象である1以上の時点のそれぞれにおける推論観察値、又は、予測対象である予測範囲内における1以上の推論観察値を、表示制御部201を介して出力する。表示制御部201は、予測対象である1以上の時点のそれぞれにおける推論観察値、又は、予測対象である予測範囲内における1以上の推論観察値を、結果出力部211cから受けて、当該推論観察値を示す画像に対応する画像信号を生成する。表示制御部201は、当該画像信号を表示装置12に出力して、表示装置12に当該推論観察値を示す画像を表示させる。
 また、結果出力部211cは、例えば、結果取得部210cが取得した予測対象である1以上の時点のそれぞれにおける推論観察値、又は、予測対象である予測範囲内における1以上の推論観察値を、記憶装置10に出力し、記憶装置10に当該推論観察値を記憶させても良い。
 図26は、結果出力部211cが、結果取得部210cが取得した予測対象である予測範囲内における1以上の推論観察値を、表示制御部201を介して出力した際の表示装置12に表示される画像の一例を示す図である。
 表示装置12には、例えば、図26に示すように、推論用時系列データにおける観察値が、観察時点に対応付けてプロットされて表示される。
 また、表示装置12には、例えば、図26に示すように、指定された予測対象である予測範囲が表示される。
 また、表示装置12には、例えば、図26に示すように、指定された予測対象である予測範囲内における推論観察値が表示される。
 このように構成することで、推論装置200cは、指定された、予測対象である1以上の時点のそれぞれにおける推論観察値、又は、予測対象である予測範囲内における1以上の推論観察値が、どのように変化するのかを把握可能にする。
 図27を参照して、実施の形態4に係る推論装置200cの動作について説明する。
 図27は、実施の形態4に係る推論装置200cの処理の一例を説明するフローチャートである。
 まず、ステップST2701にて、推論用時系列データ取得部203は、推論用時系列データを取得する。
 次に、ステップST2702にて、指定予測期間取得部204cは、指定予測期間情報として、予測対象である1以上の時点を示す指定予測期間情報、又は、予測対象である予測範囲を示す指定予測期間情報を取得する。
 次に、ステップST2703にて、推論用データ生成部205は、推論用時系列データに基づく第4情報と、予測対象の指定予測期間を特定可能な第5情報とを組合せた推論用データを生成する。
 次に、ステップST2704にて、モデル取得部206は、モデル情報を取得する。
 次に、ステップST2705にて、推論用データ取得部207は、推論用データを取得する。
 次に、ステップST2706にて、推論用データ入力部208は、推論用データを説明変数として学習済モデルに入力する。
 次に、ステップST2707にて、推論部209は、学習済モデルを用いて、指定された、予測対象である1以上の時点のそれぞれにおける推論観察値、又は、予測対象である予測範囲内における1以上の推論観察値を推論する。
 次に、ステップST2708にて、結果取得部210cは、学習済モデルが推論結果として出力する、予測対象である1以上の時点のそれぞれにおける推論観察値、又は、予測対象である予測範囲内における1以上の推論観察値を取得する。
 次に、ステップST2709にて、結果出力部211cは、結果取得部210cが取得した予測対象である1以上の時点のそれぞれにおける推論観察値、又は、予測対象である予測範囲内における1以上の推論観察値を出力する。
 推論装置200cは、ステップST2709の処理の後、当該フローチャートの処理を終了する。
 なお、当該フローチャートにおいて、ステップST2701とステップST2702の処理は、ステップST2703の処理より前に実行されれば、処理順序は問わない。また、ステップST2704の処理は、ステップST2706の処理より前に実行されれば、実行される順序は問わない。
 なお、実施の形態4に係る推論システム1cにおいて、学習装置100を実施の形態2に係る学習装置100aに変更し、更に、推論装置200cを実施の形態2に示す推論装置200aのような学習済モデルから推論結果として、推論観察値の分位点を示す分位点情報を取得し、取得した分位点情報を出力するように変形しても良い。
 このように構成することにより、推論装置200cは、指定された、予測対象である1以上の時点のそれぞれにおける推論観察値、又は、予測対象である予測範囲内における1以上の推論観察値を把握可能にしつつ、当該推論観察値の分位点を把握可能にする。
 また、実施の形態4に係る推論システム1cにおいて、学習装置100を実施の形態3に係る学習装置100bに変更し、更に、推論装置200cを実施の形態3に示す推論装置200bのような、学習済モデルから推論結果として、推論観察値の予測分布を示す予測分布情報を取得し、取得した予測分布情報を出力するように変形しても良い。
 このように構成することにより、推論装置200cは、指定された、予測対象である1以上の時点のそれぞれにおける推論観察値、又は、予測対象である予測範囲内における1以上の推論観察値を把握可能にしつつ、当該推論観察値の予測分布を把握可能にする。
 図28は、結果出力部211cが、結果取得部210cが取得した予測対象である予測範囲内における1以上の推論観察値のそれぞれの分位点を、表示制御部201を介して出力した際の表示装置12に表示される画像の一例を示す図である。
 表示装置12には、例えば、図28に示すように、推論用時系列データにおける観察値が、観察時点に対応付けてプロットされて表示される。
 また、表示装置12には、例えば、図28に示すように、指定された予測対象である予測範囲が表示される。
 また、表示装置12には、例えば、図28に示すように、指定された予測対象である予測範囲内における1以上の推論観察値のそれぞれの分位点が表示される。
 図29は、結果出力部211cが表示制御部201を介して、結果取得部210cが取得した予測対象である予測範囲内における1以上の推論観察値の予測分布を出力した際の、表示装置12に表示される画像の一例を示す図である。
 表示装置12には、例えば、図28に示すように、推論用時系列データにおける観察値が、観察時点に対応付けてプロットされて表示される。
 また、表示装置12には、例えば、図28に示すように、指定された予測対象である予測範囲が表示される。
 また、表示装置12には、例えば、図28に示すように、指定された予測対象である予測範囲内における1以上の推論観察値のそれぞれの予測分布が表示される。
 以上のように、推論装置200cは、時系列の観察値を含む時系列データに基づく第4情報と、予測対象の指定予測期間を特定可能な第5情報とを組合せた推論用データを取得する推論用データ取得部207と、推論用データ取得部207が取得した推論用データを説明変数として、機械学習による学習結果に対応する学習済モデルに入力する推論用データ入力部208と、学習済モデルが推論結果として出力する、指定予測期間経過後における推論観察値を取得する結果取得部210cと、結果取得部210cが取得した推論観察値を出力する結果出力部211cと、を備え、第5情報により特定可能な予測対象の指定予測期間は、予測対象である1以上の時点、又は、予測対象である予測範囲であり、結果取得部210cは、学習済モデルが推論結果として出力する、指定予測期間経過後における推論観察値として、予測対象である1以上の時点のそれぞれにおける推論観察値、又は、予測対象である予測範囲内における1以上の推論観察値を取得し、結果出力部211cは、結果取得部210cが取得した予測対象である1以上の時点のそれぞれにおける推論観察値、又は、予測対象である予測範囲内における1以上の推論観察値を出力するように構成した。
 このように構成することで、推論装置200cは、任意の未来の観察値の推論において、推論誤差の少ない高精度の推論精度を有する観察値の推論をすることができる。
 また、このように構成することで、推論装置200cは、指定された予測対象である1以上の時点のそれぞれにおける推論観察値、又は、予測対象である予測範囲内における1以上の推論観察値が、どのように変化するのかを把握可能にする。
 また、推論装置200cは、上述の構成において、結果取得部210cは、学習済モデルが出力する推論結果として、指定予測期間経過後における推論観察値として、予測対象である1以上の時点のそれぞれにおける推論観察値、又は、予測対象である予測範囲内における1以上の推論観察値に加えて、当該推論観察値のそれぞれの分位点を示す1以上の分位点情報を取得し、結果出力部211cは、結果取得部210aが取得した予測対象である1以上の時点のそれぞれにおける推論観察値、又は、予測対象である予測範囲内における1以上の推論観察値に加えて、結果取得部210aが取得した分位点情報を出力するように構成しても良い。
 このように構成することで、推論装置200cは、任意の未来の観察値の推論において、推論誤差の少ない高精度の推論精度を有する観察値の推論をすることができ、更に、当該観察値の推論の確からしさを、高精度で把握できる。
 また、このように構成することで、推論装置200cは、指定された予測対象である1以上の時点のそれぞれにおける推論観察値、又は、予測対象である予測範囲内における1以上の推論観察値が、どのように変化するのかを把握可能しつつ、当該推論観察値のそれぞれの推論の確からしさを、高精度で把握できる。
 また、推論装置200cは、上述の構成において、結果取得部210cは、学習済モデルが出力する推論結果として、指定予測期間経過後における推論観察値として、予測対象である1以上の時点のそれぞれにおける推論観察値、又は、予測対象である予測範囲内における1以上の推論観察値に加えて、当該推論観察値のそれぞれの予測分布を示す1以上の予測分布情報を取得し、結果出力部211cは、結果取得部210aが取得した予測対象である1以上の時点のそれぞれにおける推論観察値、又は、予測対象である予測範囲内における1以上の推論観察値に加えて、結果取得部210aが取得した予測分布情報を出力するように構成しても良い。
 このように構成することで、推論装置200cは、任意の未来の観察値の推論において、推論誤差の少ない高精度の推論精度を有する推論観察値の推論をすることができ、更に、当該推論観察値が不適切な値であることを高精度で把握可能にする。更に、推論装置200cは、当該推論観察値が不適切な値である場合に、適切な値を高精度で把握可能にする。
 また、このように構成することで、推論装置200cは、指定された予測対象である1以上の時点のそれぞれにおける推論観察値、又は、予測対象である予測範囲内における1以上の推論観察値が、どのように変化するのかを把握可能しつつ、当該推論観察値のそれぞれが不適切な値であることを高精度で把握可能にする。更に、推論装置200cは、当該推論観察値が不適切な値である場合に、適切な値を高精度で把握可能にする。
 なお、実施の形態1では、推論システム1によって入場者数を推論する例を示したがこれに限るものではない。例えば、推論システム1を、製品等の需要予測又は故障予測等に適用することもできる。
 また、この発明はその発明の範囲内において、各実施の形態の自由な組み合わせ、あるいは各実施の形態の任意の構成要素の変形、もしくは各実施の形態において任意の構成要素の省略が可能である。
 この発明に係る学習装置は推論システムに適用することができる。
 1,1a,1b,1c 推論システム、10 記憶装置、11,12 表示装置、13,14 入力装置、100,100a,100b 学習装置、101 表示制御部、102 操作受付部、103 元時系列データ取得部、104 仮想現在日時決定部、105 時系列データ切出部、106 予測期間決定部、107 観察値取得部、108 学習用データ生成部、109 学習用データ取得部、110,110a,110b 学習部、111 モデル出力部、181,181a 第1情報生成部、182,182a 第2情報生成部、183 第3情報生成部、184 情報組合部、200,200a,200b,200c 推論装置、201 表示制御部、202 操作受付部、203 推論用時系列データ取得部、204,204c 指定予測期間取得部、205,205c 推論用データ生成部、206 モデル取得部、207 推論用データ取得部、208 推論用データ入力部、209,209a,209b 推論部、210,210a,210b,210c 結果取得部、211,211a,211b,211c 結果出力部、301 プロセッサ、302 メモリ、303 処理回路。

Claims (24)

  1.  1つの学習用データが、時系列の観察値を含む1又は複数の時系列データのうちの1つの前記時系列データに基づく第1情報と、少なくとも互いに異なる2つの予測期間を含む複数の前記予測期間のうちの1つの前記予測期間に基づく第2情報と、前記予測期間経過後の前記観察値に基づく第3情報との組合せである、複数の前記学習用データを取得する学習用データ取得部と、
     前記学習用データにおける前記第1情報と前記第2情報とを組合せた情報を説明変数とし、且つ、前記第3情報を応答変数として、前記学習用データ取得部が取得した複数の前記学習用データを用いて学習し、指定された前記予測期間経過後における推論観察値を推論可能な学習済モデルを生成する学習部と、
     を備えたこと
     を特徴とする学習装置。
  2.  時系列の前記観察値を含む1つの元時系列データに対応する期間のうちから、仮想的に定める現在日時である仮想現在日時を1又は複数決定する仮想現在日時決定部と、
     前記仮想現在日時決定部が決定した1又は複数の前記仮想現在日時のそれぞれについて、前記元時系列データのうち、前記仮想現在日時以前の期間に対応する前記元時系列データを、前記第1情報の基となる時系列の前記観察値を含む前記時系列データとして切出す時系列データ切出部と、
     前記仮想現在日時決定部が決定した1又は複数の前記仮想現在日時のそれぞれについて、前記予測期間経過後の時点が前記元時系列データに対応する期間に含まれる、前記第2情報の基となる少なくとも互いに異なる2つの前記予測期間を決定する予測期間決定部と、
     前記予測期間決定部が決定した、少なくとも互いに異なる2つの前記予測期間のそれぞれについて、前記第3情報の基となる前記予測期間経過後の前記観察値を前記元時系列データから取得する観察値取得部と、
     前記時系列データ切出部が切出した、時系列の前記観察値を含む1又は複数の前記時系列データのうちの1つの前記時系列データに基づく前記第1情報と、前記予測期間決定部が決定した、少なくとも互いに異なる2つの前記予測期間を含む複数の前記予測期間のうちの1つの前記予測期間に基づく前記第2情報と、前記観察値取得部が取得した、前記予測期間経過後の前記観察値に基づく前記第3情報とを組合せることにより、複数の前記学習用データを生成する学習用データ生成部と、
     を備え、
     前記学習用データ取得部は、前記学習用データ生成部が生成した複数の前記学習用データを取得すること
     を特徴とする請求項1記載の学習装置。
  3.  前記学習用データにおける前記第2情報の基となる前記予測期間は、当該前記学習用データにおける前記第1情報の基となる前記時系列データに対応する期間における現在日時に最も近い時点からの期間であり、
     当該前記学習用データにおける前記第3情報は、当該時点からの前記予測期間経過後の前記観察値に基づく情報であること
     を特徴とする請求項1記載の学習装置。
  4.  前記学習用データにおける前記第2情報の基となる前記予測期間は、当該前記学習用データにおける前記第1情報の基となる前記時系列データに対応する期間おける予め定められたイベントの発生時点からの期間であり、
     当該前記学習用データにおける前記第3情報は、当該イベントの前記発生時点からの前記予測期間経過後の前記観察値に基づく情報であること
     を特徴とする請求項1記載の学習装置。
  5.  前記第2情報は、前記予測期間を特定可能な予測期間情報を、予め定められた次元数を有するベクトル表現に符号化した情報であること
     を特徴とする請求項1記載の学習装置。
  6.  前記第2情報は、任意の単位により表された前記予測期間情報の全てにおいて、予め定められた同一の次元数を有するベクトル表現に符号化した情報であること
     を特徴とする請求項5記載の学習装置。
  7.  前記第1情報は、前記第1情報の基となる前記時系列データの全てにおいて、予め定められた同一の次元数を有するベクトル表現に符号化した情報であること
     を特徴とする請求項6記載の学習装置。
  8.  前記学習部は、ベクトル表現に符号化した前記第1情報と、ベクトル表現に符号化した前記第2情報とを連結したベクトル表現による情報を前記説明変数として学習すること
     を特徴とする請求項7記載の学習装置。
  9.  前記学習部は、指定された前記予測期間経過後における前記推論観察値に加えて、当該前記推論観察値の分位点を推論可能な前記学習済モデルを生成すること
     を特徴とする請求項1から請求項8のいずれか1項記載の学習装置。
  10.  前記学習部は、指定された前記予測期間経過後における前記推論観察値に加えて、当該前記推論観察値の予測分布を推論可能な前記学習済モデルを生成すること
     を特徴とする請求項1から請求項8のいずれか1項記載の学習装置。
  11.  1つの学習用データが、時系列の観察値を含む1又は複数の時系列データのうちの1つの前記時系列データに基づく第1情報と、少なくとも互いに異なる2つの予測期間を含む複数の前記予測期間のうちの1つの前記予測期間に基づく第2情報と、前記予測期間経過後の前記観察値に基づく第3情報との組合せである、複数の前記学習用データを取得する学習用データ取得ステップと、
     前記学習用データにおける前記第1情報と前記第2情報とを組合せた情報を説明変数とし、且つ、前記第3情報を応答変数として、前記学習用データ取得ステップにおいて取得された複数の前記学習用データを用いて学習し、指定された前記予測期間経過後における推論観察値を推論可能な学習済モデルを生成する学習ステップと、
     を備えたこと
     を特徴とする学習方法。
  12.  時系列の観察値を含む1つの元時系列データに対応する期間のうちから、仮想的に定める現在日時である仮想現在日時を1又は複数決定する仮想現在日時決定部と、
     前記仮想現在日時決定部が決定した1又は複数の前記仮想現在日時のそれぞれについて、前記元時系列データのうち、前記仮想現在日時以前の期間に対応する前記元時系列データを、第1情報の基となる時系列の前記観察値を含む時系列データとして切出す時系列データ切出部と、
     前記仮想現在日時決定部が決定した1又は複数の前記仮想現在日時のそれぞれについて、予測期間経過後の時点が前記元時系列データに対応する期間に含まれる、第2情報の基となる少なくとも互いに異なる2つの予測期間を決定する予測期間決定部と、
     前記予測期間決定部が決定した、少なくとも互いに異なる2つの前記予測期間のそれぞれについて、第3情報の基となる前記予測期間経過後の前記観察値を前記元時系列データから取得する観察値取得部と、
     前記時系列データ切出部が切出した、時系列の前記観察値を含む1又は複数の前記時系列データのうちの1つの前記時系列データに基づく前記第1情報と、前記予測期間決定部が決定した、少なくとも互いに異なる2つの前記予測期間を含む複数の前記予測期間のうちの1つの前記予測期間に基づく前記第2情報と、前記観察値取得部が取得した、前記予測期間経過後の前記観察値に基づく前記第3情報とを組合せることにより、複数の学習用データを生成する学習用データ生成部と、
     を備えたこと
     を特徴とする学習データ生成装置。
  13.  時系列の観察値を含む1つの元時系列データに対応する期間のうちから、仮想的に定める現在日時である仮想現在日時を1又は複数決定する仮想現在日時決定ステップと、
     前記仮想現在日時決定ステップにおいて決定された1又は複数の前記仮想現在日時のそれぞれについて、前記元時系列データのうち、前記仮想現在日時以前の期間に対応する前記元時系列データを、第1情報の基となる時系列の前記観察値を含む時系列データとして切出す時系列データ切出ステップと、
     前記仮想現在日時決定ステップにおいて決定された1又は複数の前記仮想現在日時のそれぞれについて、予測期間経過後の時点が前記元時系列データに対応する期間に含まれる、第2情報の基となる少なくとも互いに異なる2つの予測期間を決定する予測期間決定ステップと、
     前記予測期間決定ステップにおいて決定された、少なくとも互いに異なる2つの前記予測期間のそれぞれについて、第3情報の基となる前記予測期間経過後の前記観察値を前記元時系列データから取得する観察値取得ステップと、
     前記時系列データ切出ステップにおいて切出された、時系列の前記観察値を含む1又は複数の前記時系列データのうちの1つの前記時系列データに基づく前記第1情報と、前記予測期間決定ステップにおいて決定された、少なくとも互いに異なる2つの前記予測期間を含む複数の前記予測期間のうちの1つの前記予測期間に基づく前記第2情報と、前記観察値取得ステップにおいて取得された、前記予測期間経過後の前記観察値に基づく前記第3情報とを組合せることにより、複数の学習用データを生成する学習用データ生成ステップと、
     を備えたこと
     を特徴とする学習データ生成方法。
  14.  時系列の観察値を含む推論用時系列データに基づく第4情報と、予測対象の指定予測期間を特定可能な第5情報とを組合せた推論用データを取得する推論用データ取得部と、
     前記推論用データ取得部が取得した前記推論用データを説明変数として、機械学習による学習結果に対応する学習済モデルに入力する推論用データ入力部と、
     前記学習済モデルが推論結果として出力する、前記指定予測期間経過後における推論観察値を取得する結果取得部と、
     前記結果取得部が取得した前記推論観察値を出力する結果出力部と、
     を備えたこと
     を特徴とする推論装置。
  15.  前記推論用データにおける前記第5情報により特定可能な前記指定予測期間は、当該前記推論用データにおける前記第4情報の基となる前記推論用時系列データに対応する期間おける、最も現在日時から近い時点からの期間であること
     を特徴とする請求項14記載の推論装置。
  16.  前記推論用データにおける前記第5情報により特定可能な前記指定予測期間は、当該前記推論用データにおける前記第4情報の基となる前記推論用時系列データに対応する期間おける予め定められたイベントの発生時点からの期間であること
     を特徴とする請求項14記載の推論装置。
  17.  前記第5情報は、前記指定予測期間を特定可能な前記指定予測期間情報を、予め定められた次元数を有するベクトル表現に符号化した情報であること
     を特徴とする請求項14記載の推論装置。
  18.  前記第5情報は、任意の単位により表された前記指定予測期間情報の全てにおいて、予め定められた同一の次元数を有するベクトル表現に符号化した情報であること
     を特徴とする請求項17記載の推論装置。
  19.  前記第4情報は、前記第4情報の基となる前記推論用時系列データの全てにおいて、予め定められた同一の次元数を有するベクトル表現に符号化した情報であること
     を特徴とする請求項18記載の推論装置。
  20.  前記推論用データ入力部は、ベクトル表現に符号化した前記第4情報と、ベクトル表現に符号化した前記第5情報とを連結したベクトル表現による情報を前記説明変数として前記学習済モデルに入力すること
     を特徴とする請求項19記載の推論装置。
  21.  前記結果取得部は、前記学習済モデルが出力する前記推論結果として、前記指定予測期間経過後における前記推論観察値に加えて、当該前記推論観察値の分位点を示す分位点情報を取得し、
     前記結果出力部は、前記結果取得部が取得した前記推論観察値に加えて、前記結果取得部が取得した前記分位点情報を出力すること
     を特徴とする請求項14から請求項20のいずれか1項記載の推論装置。
  22.  前記結果取得部は、前記学習済モデルが出力する前記推論結果として、前記指定予測期間経過後における前記推論観察値に加えて、当該前記推論観察値の予測分布を示す予測分布情報を取得し、
     前記結果出力部は、前記結果取得部が取得した前記推論観察値に加えて、前記結果取得部が取得した前記予測分布情報を出力すること
     を特徴とする請求項14から請求項20のいずれか1項記載の推論装置。
  23.  前記学習済モデルは、時系列の前記観察値を含む1又は複数の時系列データのうちの1つの前記時系列データに基づく第1情報と、少なくとも互いに異なる2つの予測期間を含む複数の前記予測期間のうちの1つの前記予測期間に基づく第2情報と、前記予測期間経過後の前記観察値に基づく第3情報との組合せた学習用データにおける前記第1情報と前記第2情報とを組合せた情報を説明変数とし、且つ、前記第3情報を応答変数として、複数の前記学習用データを用いて学習した、前記機械学習による前記学習結果に対応する前記学習済モデルであること
     を特徴とする請求項14記載の推論装置。
  24.  時系列の観察値を含む時系列データに基づく第4情報と予測対象の指定予測期間を特定可能な第5情報とを組合せた推論用データを取得する推論用データ取得ステップと、
     前記推論用データ取得ステップにおいて取得された前記推論用データを説明変数として、機械学習による学習結果に対応する学習済モデルに入力する推論用データ入力ステップと、
     前記学習済モデルが推論結果として出力する、前記指定予測期間経過後における推論観察値を取得する結果取得ステップと、
     前記結果取得ステップにおいて取得された前記推論観察値を出力する結果出力ステップと、
     を備えたこと
     を特徴とする推論方法。
PCT/JP2019/035133 2019-09-06 2019-09-06 学習装置、学習方法、学習データ生成装置、学習データ生成方法、推論装置、及び、推論方法 WO2021044610A1 (ja)

Priority Applications (7)

Application Number Priority Date Filing Date Title
CN201980099906.4A CN114303161A (zh) 2019-09-06 2019-09-06 学习装置、学习方法、学习数据生成装置、学习数据生成方法、推理装置和推理方法
KR1020227005682A KR102485542B1 (ko) 2019-09-06 2019-09-06 학습 장치, 학습 방법, 학습 데이터 생성 장치, 학습 데이터 생성 방법, 추론 장치, 및, 추론 방법
DE112019007601.9T DE112019007601T5 (de) 2019-09-06 2019-09-06 Lernvorrichtung, lernverfahren, lerndatenerzeugungsvorrichtung, lerndatenerzeugungsverfahren, inferenzvorrichtung und inferenzverfahren
PCT/JP2019/035133 WO2021044610A1 (ja) 2019-09-06 2019-09-06 学習装置、学習方法、学習データ生成装置、学習データ生成方法、推論装置、及び、推論方法
JP2019571765A JP6765555B1 (ja) 2019-09-06 2019-09-06 学習装置、学習方法、学習データ生成装置、学習データ生成方法、推論装置、及び、推論方法
TW109106218A TWI764101B (zh) 2019-09-06 2020-02-26 學習裝置、學習方法、學習資料產生裝置、學習資料產生方法、推論裝置以及推論方法
US17/581,043 US20220147851A1 (en) 2019-09-06 2022-01-21 Learning device, learning method, learning data generation device, learning data generation method, inference device, and inference method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2019/035133 WO2021044610A1 (ja) 2019-09-06 2019-09-06 学習装置、学習方法、学習データ生成装置、学習データ生成方法、推論装置、及び、推論方法

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US17/581,043 Continuation US20220147851A1 (en) 2019-09-06 2022-01-21 Learning device, learning method, learning data generation device, learning data generation method, inference device, and inference method

Publications (1)

Publication Number Publication Date
WO2021044610A1 true WO2021044610A1 (ja) 2021-03-11

Family

ID=72706642

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/035133 WO2021044610A1 (ja) 2019-09-06 2019-09-06 学習装置、学習方法、学習データ生成装置、学習データ生成方法、推論装置、及び、推論方法

Country Status (7)

Country Link
US (1) US20220147851A1 (ja)
JP (1) JP6765555B1 (ja)
KR (1) KR102485542B1 (ja)
CN (1) CN114303161A (ja)
DE (1) DE112019007601T5 (ja)
TW (1) TWI764101B (ja)
WO (1) WO2021044610A1 (ja)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2022150821A (ja) * 2021-03-26 2022-10-07 本田技研工業株式会社 情報処理装置、車両及びプログラム
DE102023200231A1 (de) 2023-01-12 2024-07-18 Robert Bosch Gesellschaft mit beschränkter Haftung Verfahren zum Evaluieren einer Steuerung einer Robotervorrichtung

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08106448A (ja) * 1994-10-04 1996-04-23 Nippon Telegr & Teleph Corp <Ntt> 気象予測装置
JP2018007312A (ja) * 2016-06-27 2018-01-11 藤崎電機株式会社 発電電力予測装置、サーバ、コンピュータプログラム及び発電電力予測方法

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0635895A (ja) 1992-07-14 1994-02-10 Hitachi Ltd 時系列データ予測方法
JP2008299644A (ja) * 2007-05-31 2008-12-11 Tokyo Institute Of Technology 連想記憶装置、連想記憶方法、及びプログラム
TWI516886B (zh) * 2013-12-10 2016-01-11 財團法人工業技術研究院 智能學習節能調控系統與方法
JP6708385B2 (ja) * 2015-09-25 2020-06-10 キヤノン株式会社 識別器作成装置、識別器作成方法、およびプログラム
WO2018193324A1 (en) * 2017-03-20 2018-10-25 Sunit Tyagi Surface modification control stations in a globally distributed array for dynamically adjusting atmospheric, terrestrial and oceanic properties
CN109800480A (zh) * 2018-12-29 2019-05-24 国网天津市电力公司电力科学研究院 多能源系统中气网和电网耦合的时序随机优化方法

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08106448A (ja) * 1994-10-04 1996-04-23 Nippon Telegr & Teleph Corp <Ntt> 気象予測装置
JP2018007312A (ja) * 2016-06-27 2018-01-11 藤崎電機株式会社 発電電力予測装置、サーバ、コンピュータプログラム及び発電電力予測方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
"Energy management for smart communities. 1st ed.", 2016, TAIGA PUBLISHING CO., LTD., ISBN: 978-4-88661-652-4, article MORI, HIROYUKI ET AL: "section 3.1.4", pages: 22 - 29 *

Also Published As

Publication number Publication date
TW202111570A (zh) 2021-03-16
JP6765555B1 (ja) 2020-10-07
US20220147851A1 (en) 2022-05-12
CN114303161A (zh) 2022-04-08
JPWO2021044610A1 (ja) 2021-09-27
TWI764101B (zh) 2022-05-11
KR102485542B1 (ko) 2023-01-06
KR20220027282A (ko) 2022-03-07
DE112019007601T5 (de) 2022-05-05

Similar Documents

Publication Publication Date Title
AU2018271417B2 (en) A system for deep abstractive summarization of long and structured documents
US20200410384A1 (en) Hybrid quantum-classical generative models for learning data distributions
CN108564326B (zh) 订单的预测方法及装置、计算机可读介质、物流系统
JP6765555B1 (ja) 学習装置、学習方法、学習データ生成装置、学習データ生成方法、推論装置、及び、推論方法
JP2006221310A (ja) 予測方法、予測装置、予測プログラムおよび記録媒体
CN112163715A (zh) 生成式对抗网络的训练方法及装置、电力负荷预测方法
Chen Probabilistic forecasting of coastal wave height during typhoon warning period using machine learning methods
EP3446258B1 (en) Model-free control for reinforcement learning agents
US11586845B2 (en) Method for automatically identifying signals or patterns in time series data by treating series as image
Pillay et al. Exploring graph neural networks for stock market prediction on the jse
Zhang et al. Uncertain accessibility estimation method for offshore wind farm based on multi‐step probabilistic wave forecasting
CN114118570A (zh) 业务数据预测方法及装置、电子设备和存储介质
Zhou et al. Carbon market risk estimation using quantum conditional generative adversarial network and amplitude estimation
van der Heijden et al. Day ahead market price scenario generation using a combined quantile regression deep neural network and a non-parametric Bayesian network
JP2021082014A (ja) 推定装置、訓練装置、推定方法、訓練方法、プログラム及び非一時的コンピュータ可読媒体
Lin et al. Feature transformation and simulation of short term price variability in reinforcement learning for portfolio management
KR20200048641A (ko) 부품 관리 장치 및 이의 동작 방법
Reddy et al. Solar Irradiance Forecasting Using Machine Learning
JP7475549B2 (ja) 学習装置、予測装置、予測システム、学習方法、予測方法、及び予測プログラム
JPWO2019026703A1 (ja) 学習済モデル統合方法、装置、プログラム、icチップ、及びシステム
Ahmad et al. Drift-Aware Dynamic Neural Network for Improving Short-Term Load Forecasting
Zhang Fusion of Movement and Naive Predictions for Point Forecasting in Univariate Random Walks
Stefanakos et al. Application of fuzzy time series techniques in wind and wave data forecasting
Li et al. Deep Learning Approach for Electricity Price Forecasting Using Stacked Autoencoders
Han Probabilistic Multivariate Time Series Forecasting and Robust Uncertainty Quantification with Applications in Electricity Price Prediction

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2019571765

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19944234

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20227005682

Country of ref document: KR

Kind code of ref document: A

122 Ep: pct application non-entry in european phase

Ref document number: 19944234

Country of ref document: EP

Kind code of ref document: A1