WO2021043306A1 - 天线装置及天线系统 - Google Patents

天线装置及天线系统 Download PDF

Info

Publication number
WO2021043306A1
WO2021043306A1 PCT/CN2020/113785 CN2020113785W WO2021043306A1 WO 2021043306 A1 WO2021043306 A1 WO 2021043306A1 CN 2020113785 W CN2020113785 W CN 2020113785W WO 2021043306 A1 WO2021043306 A1 WO 2021043306A1
Authority
WO
WIPO (PCT)
Prior art keywords
unit
filter
circulator
circuit board
filter unit
Prior art date
Application number
PCT/CN2020/113785
Other languages
English (en)
French (fr)
Inventor
周虹
赵丽娟
毛胤电
杨蓉
吴建军
Original Assignee
中兴通讯股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中兴通讯股份有限公司 filed Critical 中兴通讯股份有限公司
Publication of WO2021043306A1 publication Critical patent/WO2021043306A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q23/00Antennas with active circuits or circuit elements integrated within them or attached to them
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01PWAVEGUIDES; RESONATORS, LINES, OR OTHER DEVICES OF THE WAVEGUIDE TYPE
    • H01P1/00Auxiliary devices
    • H01P1/20Frequency-selective devices, e.g. filters
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01PWAVEGUIDES; RESONATORS, LINES, OR OTHER DEVICES OF THE WAVEGUIDE TYPE
    • H01P1/00Auxiliary devices
    • H01P1/20Frequency-selective devices, e.g. filters
    • H01P1/2002Dielectric waveguide filters
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/50Structural association of antennas with earthing switches, lead-in devices or lightning protectors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q19/00Combinations of primary active antenna elements and units with secondary devices, e.g. with quasi-optical devices, for giving the antenna a desired directional characteristic
    • H01Q19/10Combinations of primary active antenna elements and units with secondary devices, e.g. with quasi-optical devices, for giving the antenna a desired directional characteristic using reflecting surfaces
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q21/00Antenna arrays or systems

Definitions

  • the present disclosure relates to the field of communication technology.
  • the antenna integrated calibration network is connected to the filter output port through the radio frequency connector, and the filter input port is connected to the transceiver circuit module of the base station equipment through the radio frequency connector.
  • An embodiment of the present disclosure provides an antenna device, including: a first circuit board, at least one set of radiating units, and at least one filtering unit, each of the at least one set of radiating units includes at least one radiating unit, and the at least one The group of radiation units and the at least one filter unit are both arranged on the first circuit board, each group of radiation units corresponds to a filter unit, each radiation unit is connected to the first end of the corresponding filter unit, and each filter unit The second end is connected to the calibration network.
  • An embodiment of the present disclosure provides an antenna system, including a calibration network and an antenna device according to the present disclosure.
  • the calibration network includes: a power splitter and at least one coupler, and each of the at least one set of radiating elements corresponds to one coupling
  • Each coupler includes a main signal channel and a coupled signal channel coupled to the main signal channel; the second end of each filter unit is connected to the main signal channel of the corresponding coupler; and the coupled signal channel is connected to the main signal channel of the corresponding coupler.
  • the input end of the power divider is connected, and the common end of the power divider is connected to the calibration port.
  • FIG. 1 is a schematic diagram of the structure of an existing antenna device
  • Fig. 2 is a schematic structural diagram of an antenna device according to some embodiments of the present disclosure.
  • FIG. 3 is a schematic structural diagram of antenna devices according to other embodiments of the present disclosure.
  • FIG. 4 is a schematic diagram of the connection relationship between the radiation unit and the filter unit according to some embodiments of the present disclosure
  • FIG. 5 is a schematic diagram of the connection relationship between the radiating unit and the filtering unit according to other embodiments of the present disclosure.
  • FIG. 6 is a schematic diagram of the layout of some components in the antenna system according to some embodiments of the present disclosure.
  • FIG. 7 is a schematic diagram of the layout of some components in the antenna system according to other embodiments of the present disclosure.
  • FIG. 8 is an architecture diagram of an antenna system according to some embodiments of the present disclosure.
  • FIG. 9 is an architecture diagram of an antenna system according to other embodiments of the present disclosure.
  • the antenna and the radio remote unit are combined with the active antenna unit (AAU), which puts forward higher requirements for the miniaturization and weight reduction of the antenna.
  • Fig. 1 is a schematic diagram of the structure of an existing antenna device.
  • the calibration network 03 is connected to the output port of the filter 02 through the radio frequency connector, and the input port of the filter 02 is transmitted and received with the base station equipment through the radio frequency connector 01. Circuit module connection.
  • the signal of the transceiver circuit module is transmitted to the filter through the radio frequency connector 01, the filtered signal enters the calibration network 03, and the amplitude and phase of the signal are adjusted through the calibration network 03.
  • the final signal is radiated through the antenna elements 04a and 04b. Get out.
  • This architecture is assembled from antenna elements 04a and 04b, calibration network 03, filter 02, radio frequency connector 01 and other components. There are many parts and the assembly is complicated.
  • a 32-channel large-scale array antenna requires at least 2*32 radio frequency connectors.
  • the number of radio frequency connectors is large, which is not conducive to miniaturization and light weight of the antenna.
  • the embodiments of the present disclosure provide an antenna device and an antenna system.
  • the filter unit and the radiation unit are arranged on the same circuit board, the structure of the antenna device and the antenna system is more compact, which is beneficial to implementation. Miniaturization of communication base stations.
  • FIG. 2 is a schematic structural diagram of an antenna device according to some embodiments of the present disclosure.
  • the antenna device includes: a first circuit board 10, at least one set of radiating units 11 and at least one filtering unit 12, and each set of radiating units 11 includes at least one radiating unit 11.
  • the radiation unit 11 and the filter unit 12 are both arranged on the first circuit board 10, and each group of radiation units 11 corresponds to a filter unit 12.
  • Each radiating unit 11 is connected to the first end of the corresponding filter unit 12, and the second end of each filter unit 12 is used to connect to the calibration network.
  • Each radiating unit 11 can independently radiate and receive low-frequency or high-frequency signals.
  • each group of radiating units 11 includes multiple radiating units 11, the multiple radiating units 11 can be connected in parallel and then connected to the corresponding filter unit 12.
  • the filtering unit 12 can perform bidirectional filtering.
  • the filtering unit 12 filters the signal received at its first end and outputs the filtered signal from its second end; on the contrary, when the radiating unit 11 During signal transmission, the filtering unit 12 filters the signal received at its second end, and outputs the filtered signal from its first end.
  • the filtering unit 12 may include one or a plurality of filters connected in series.
  • the calibration network is used to monitor and calibrate the signal of the radiation unit 11.
  • the signal received by the radiation unit 11 is often a signal of a wide frequency band. After the filtering effect of the filter unit 12, a signal of the required frequency band can be obtained at the second end of the filter unit 12; when the calibration network is connected to the second end of the filter unit 12 , It is beneficial to optimize the parameters of the calibration network according to the signal frequency band output by the filtering unit 12, thereby improving the monitoring and calibration effects of the calibration network.
  • the radiation unit 11 may be directly arranged on the first circuit board 10, or may be arranged on an intermediate element and arranged on the first circuit board 10 through the intermediate element.
  • "connected" in the embodiments of the present disclosure may mean that two elements are directly connected, or may be indirectly connected through an intermediate element.
  • the radiation unit 11 and the filter unit 12 are integrated on the same first circuit board 10. Therefore, in the process of signal transmission and reception, no external filter is needed. Therefore, it only needs to pass on the first circuit board 10.
  • the conductive structure (such as metallized vias, metal probes, etc.) connects the filter unit 12 to the radiation unit 11 without setting too many RF connectors, thereby simplifying the overall structure of the antenna device and making the antenna device
  • the structure of the antenna system is more compact, which is conducive to the miniaturization of communication base stations.
  • the first circuit board 10 is a printed circuit board (Printed Circuit Board, PCB).
  • PCB printed Circuit Board
  • FIG. 3 is a schematic structural diagram of an antenna device according to other embodiments of the present disclosure.
  • the antenna device may further include a reflector 13 arranged on the first circuit board 10, and the radiating unit 11 is arranged on the reflector 13 Away from the surface of the first circuit board 10, the filter unit 12 is arranged on the side of the reflector 13 away from the radiation unit 11.
  • the reflector 13 may be a sheet metal structure made of a metal material, which plays a role of reflecting electromagnetic wave signals and supporting.
  • the edge of the reflector 13 is folded to improve the efficiency of signal transmission and reception.
  • the reflection plate 13 may be in a shape of a circle, a rectangle, etc., specifically, in the embodiment of the present disclosure, the reflection plate 13 is in a long strip shape.
  • the radiation unit 11 can be fixed on the reflector 13 by welding or the like. When the number of radiation units 11 is multiple, the multiple radiation units 11 can be arranged in an array on the surface of the reflector 13.
  • the first circuit board 10 functions as a carrier, and its shape can match the shape of the reflector 13.
  • a preset circuit is formed on the first circuit board 10. Specifically, a strip line or a microstrip line is formed on the first circuit board 10 so that electrical components mounted on the first circuit board 10 can be electrically connected.
  • the surface of the first circuit board 10 can perform a function similar to that of the reflector 13. Therefore, in other embodiments of the present disclosure, as shown in FIG. 2, the reflector 13 is no longer provided, and The radiation unit 11 and the filter unit 12 are respectively arranged on two opposite surfaces of the first circuit board 10.
  • FIG. 4 is a schematic diagram of the connection relationship between the radiating unit and the filtering unit according to some embodiments of the present disclosure.
  • the filtering unit 12 may be a dielectric filter 121 to filter the signals transmitted and received by the radiation unit 11.
  • the dielectric filter has the advantages of small size and light weight, so that it is easy to fix on the printed circuit board.
  • the dielectric filter 121 may also adopt a surface acoustic wave filter (Surface Acoustic Wave, SAW), a film bulk acoustic resonator (Film Bulk Acoustic Resonator, FBAR), etc.
  • SAW Surface Acoustic Wave
  • FBAR Film Bulk Acoustic Resonator
  • the radiation unit 11 can be connected to the first end of the corresponding filter unit 12 through a metal probe (PIN needle). Specifically, the radiation unit 11 can be connected to the first end of the filter unit 12 through a feeder line, wherein the feeder line It is connected to the filter unit 12 through a metal probe, that is, one end of the metal probe is inserted into the metalized via hole on the filter unit 12, and the other end is connected to the feeder circuit.
  • the filter unit 12 is a dielectric filter
  • the use of a metal probe connection is beneficial to the signal coupling between the radiation unit 11 and the filter, and can improve the stability of the connection.
  • the feeder circuit can also be connected to the filter unit 12 by means of soldering pads.
  • FIG. 5 is a schematic diagram of the connection relationship between the radiation unit and the filter unit according to other embodiments of the present disclosure.
  • the filter unit 12 may include a dielectric filter 121 and a low-pass filter 122 ,
  • the first end of the dielectric filter 121 is used as the first end of the filtering unit 12
  • the second end of the dielectric filter 121 is connected to the first end of the low-pass filter 122
  • the second end of the low-pass filter 122 is used as the filtering unit
  • the second end of 12 that is, the second end of the low-pass filter 122 is used to connect to the calibration network.
  • the low-pass filter 122 may be a microstrip filter with a simple design, which is beneficial to simplify the overall structure of the antenna device.
  • the first end of the low-pass filter 122 may be used as the first end of the filter unit 12, the second end of the low-pass filter 122 is connected to the first end of the dielectric filter 121, and the dielectric
  • the second end of the filter 121 serves as the second end of the filter unit 12, that is, the second end of the dielectric filter 121 is used to connect to the calibration network.
  • FIG. 6 is a schematic diagram of the layout of some components in the antenna system according to some embodiments of the present disclosure. As shown in FIG. 6, the antenna system includes a calibration network 20 and the antenna device in the above-mentioned embodiments.
  • the line type of the calibration network 20 is a microstrip line or a strip line.
  • the correction network 20 includes: a power divider 22 and at least one coupler 21.
  • Each group of radiating units 11 corresponds to a coupler 21.
  • Each coupler 21 includes a main signal channel 211 and a main signal channel 211 coupled to it.
  • the signal channel 212 is coupled.
  • the second end of each filter unit 12 is connected to the first end of the main signal channel 211 of the corresponding coupler 21.
  • the coupling signal channel 212 is connected to the input end of the power divider 22, and the common end of the power divider 22 is connected to the calibration port CAL.
  • the radiating unit 11 When the radiating unit 11 receives a signal, the received signal is filtered by the filter unit 12 and then sent to the signal transceiving unit through the main signal channel 211; when the radiating unit 11 transmits a signal, the signal of the signal transceiving unit passes through the main signal
  • the channel 211 is transmitted to the filtering unit 12 for filtering, and the filtered signal is transmitted to the radiation unit 11.
  • the coupled signal channel 212 transmits the coupled signal to the power divider 22, and then transmits the coupled signal to the calibration port CAL through the common end of the power divider.
  • the calibration port CAL may be connected to a digital pre-distortion unit (Digital Pre-Distortion, DPD) to transmit the coupled signal to the pre-distortion unit for pre-distortion processing.
  • DPD Digital Pre-Distortion
  • the output terminal of the coupling signal channel 212 is connected to a circuit matching load.
  • the circuit matching load is used to match the circuit and absorb the power energy transmitted to the end of the circuit, so that the circuit has a smaller standing wave.
  • the power divider 22 may be a Wilkinson power divider.
  • each channel corresponds to a group of radiation units 11, a filter unit 12, and a coupler 21.
  • the power divider 22 includes a common terminal and two input terminals, and each input terminal is electrically connected to an input terminal of a coupling signal channel 212 respectively.
  • the signal coupled to the coupling signal channel 212 is transmitted to the calibration port CAL through the power divider to realize the monitoring of the radio frequency signal of each port of the antenna (one radiating unit 11 corresponds to one antenna port).
  • FIG. 7 is a schematic diagram of the layout of some components in the antenna system according to other embodiments of the present disclosure.
  • the antenna device shown in FIG. 7 adopts an eight-channel structure, which includes eight radiating units 11, which can be installed in The printed circuit board is symmetrically distributed.
  • Each radiating unit 11 corresponds to a filter unit 12 and a coupler 21.
  • the eight couplers 21 corresponding to the eight radiating units 11 are divided into four groups, and each group includes two couplers 21.
  • the power divider can be a multi-stage Wilson power divider, including: four first-level Wilson power dividers 221, two second-level Wilson power dividers 222, and one three-level Wilson power divider 223 .
  • Each group of couplers 21 corresponds to a first-level Wilson power divider 221, and two coupling circuit channels 212 in the same group are connected to the input ends of the corresponding first-level Wilson power divider 221;
  • the common terminals of the Wilson power divider 221 are respectively connected to the two input terminals of the second-level Wilson power divider 222, and the common terminals of the two second-level Wilson power dividers 222 are respectively connected to the third-level Wilson power divider.
  • the two input ends of the amplifier 223 are connected, and the output end of the three-stage Wilson power divider 223 is connected to the calibration port CAL.
  • the antenna device may also be an antenna device with other channel numbers.
  • the calibration network 20 may be provided on the first circuit board 10 as shown in FIGS. 6 and 7.
  • the calibration network 20 and the filter unit 12 may be integrated on the first circuit board.
  • the filter unit 12 is connected to the main signal channel 211 of the correction network 20 by means of surface mounting. Since the filter unit 12 and the calibration network 20 adopt an integrated design, the matching performance of the electrical parameters of the two cascade components can be fully considered in the design. Therefore, the electrical parameter matching performance can be optimized as much as possible, so as to realize the optimal interconnection design of the filter performance and the antenna performance.
  • the calibration network 20 can also be arranged on other circuit boards.
  • the second end of the filter unit 12 can be connected to the calibration network 20 through a standard conversion interface.
  • FIG. 8 is an architecture diagram of an antenna system according to some embodiments of the present disclosure.
  • the antenna system further includes: at least one circulator 50, at least one power amplifier 40 and at least one signal transceiving unit 30.
  • the circulator 50, the power amplifier 40, and the signal transceiving unit 30 all correspond to the filtering unit 12 one-to-one.
  • the signal transceiving unit 30 is connected to the first end of the corresponding power amplifier 40, the second end of the power amplifier 40 is connected to the first end of the corresponding circulator 50, and the second end of the circulator 50 is connected to the first end of the corresponding filter unit 12. The two ends are connected.
  • the power amplifier 40 and the circulator 50 are in one-to-one correspondence with the coupler; the second end of the power amplifier 40 is connected to the first end of the corresponding circulator 50 through the main signal channel 211 of the corresponding coupler, and the filter unit 12
  • the second end is connected to the main signal channel 211 of the corresponding coupler through a circulator. That is, the second end of the power amplifier 40 is correspondingly connected to the first end of the main signal channel 211, the second end of the main signal channel 211 is correspondingly connected to the first end of the circulator 50, and the second end of the circulator 50 is connected to the filter unit.
  • the second end of 12 is connected correspondingly.
  • the signal transceiving unit 30 is used for transmitting signals to the antenna device or receiving signals from the antenna device; the power amplifier 40 is used for power amplifying the transmitted signals; the circulator 50 is used for when the signal transceiving unit 30 transmits signals to the antenna device , The signal is transmitted from the first end to the second end; when the signal transceiving unit 30 receives the signal from the antenna device, the signal is transmitted from the second end to the first end.
  • the signal transmitted by the signal transceiving unit 30 is amplified by the power amplifier 40, and then transmitted to the circulator 50 through the main signal channel 211 of the coupler, and then transmitted through the circulator 50.
  • the signal filtered by the filter unit 12 is transmitted to the radiation unit 11 for radiation.
  • the radiating unit 11 receives signals, the signal received by the radiating unit 11 is filtered by the filter unit 12, then transmitted to the main signal channel 211 through the circulator 50, and transmitted to the power amplifier 40 through the main signal channel 211, and then passed through the power amplifier 40. After the amplification effect, it is transmitted to the signal transceiving unit 30.
  • the coupled signal channel 212 transmits the coupled signal to the calibration port CAL, and then transmits it to the digital predistortion unit for predistortion processing.
  • FIG. 9 is an architecture diagram of an antenna system according to other embodiments of the present disclosure.
  • the antenna system also includes: a circulator 50, a power amplifier 40 and a signal transceiving unit 30.
  • the coupler of the calibration network is arranged between the circulator 50 and the filter unit 12, and the second end of the circulator 50 is connected to the second end of the filter unit 12 through the main signal channel 211 of the corresponding coupler.
  • the signal transceiver unit 30 is correspondingly connected to the first end of the corresponding power amplifier 40, the second end of the power amplifier 40 is connected to the first end of the corresponding circulator 50, and the second end of the circulator 50 is connected to the corresponding coupler.
  • the first end of the main signal channel 211 is connected, and the second end of the main signal channel 211 is connected to the second end of the corresponding filter unit 12.
  • the antenna system may further include a second circuit board, and the circulator 50, the power amplifier 40 and the signal transceiving unit 30 are all arranged on the second circuit board.
  • the calibration network can be integrated on the second circuit board; when the antenna system uses the architecture shown in Figure 9, the calibration network can be integrated on the first circuit board 10, or it can be integrated On the second circuit board. No matter which circuit board the calibration network is integrated on, there is only one calibration network in the entire link, which simplifies the overall structure and improves the anti-interference performance of the device.
  • the second circuit board can be omitted, and the signal transceiver unit 30, power amplifier 40, circulator 50 and filter are integrated on the same printed circuit board, for example, The signal transceiving unit 30, the power amplifier 40, the circulator 50 and the filter unit 12 can be arranged on different layers of the printed circuit board.
  • the above-mentioned antenna device is included. Since the above-mentioned antenna device can be miniaturized and light-weighted, the overall architecture of the antenna system using the antenna device is relatively simple, and the link of the entire system is relatively simple. There is only one calibration network, thereby simplifying the overall architecture of the system and increasing the anti-interference of the link.

Landscapes

  • Variable-Direction Aerials And Aerial Arrays (AREA)
  • Transceivers (AREA)

Abstract

本公开实施例提供了一种天线装置和天线系统,天线装置包括:第一电路板、至少一组辐射单元和至少一个滤波单元,其中所述至少一组辐射单元的每一组均包括至少一个辐射单元,所述至少一个辐射单元和所述至少一个滤波单元均设置在所述第一电路板上,每组所述辐射单元对应一个所述滤波单元,每个所述辐射单元均与相应的所述滤波单元的第一端相连,每个所述滤波单元的第二端均与校准网络连接。

Description

天线装置及天线系统 技术领域
本公开涉及通讯技术领域。
背景技术
随着移动通信技术从4G(4 th Generation Mobile Communication Technology)到5G(5 th Generation Mobile Communication Technology)的快速发展,大规模阵列天线得到广泛的应用。传统的大规模阵列天线中,天线集成校准网络通过射频连接器与滤波器输出端口连接,滤波器输入端口通过射频连接器与基站设备的收发电路模块连接。这种架构下的部件较多且装配复杂,不利于天线的小型化和轻量化。
发明内容
本公开实施例提供一种天线装置,包括:第一电路板、至少一组辐射单元和至少一个滤波单元,所述至少一组辐射单元的每一组均包括至少一个辐射单元,所述至少一组辐射单元和所述至少一个滤波单元均设置在所述第一电路板上,每组辐射单元对应一个滤波单元,每个辐射单元均与相应的滤波单元的第一端相连,每个滤波单元的第二端均与校准网络连接。
本公开实施例提供一种天线系统,包括校准网络和根据本公开的天线装置,所述校准网络包括:功分器和至少一个耦合器,所述至少一组辐射单元的每一组对应一个耦合器,每个耦合器均包括主信号通道和与该主信号通道耦合的耦合信号通道;每个滤波单元的第二端均与相应的耦合器的主信号通道相连;所述耦合信号通道与所述功分器的输入端相连,所述功分器的公共端与校准端口相连。
附图说明
附图是用来提供对本公开的进一步理解,并且构成说明书的一 部分,与下面的具体实施方式一起用于解释本公开,但并不构成对本公开的限制。在附图中:
图1为现有的天线装置的结构示意图;
图2为根据本公开的一些实施例的天线装置的结构示意图;
图3为根据本公开的另一些实施例的天线装置的结构示意图;
图4为根据本公开的一些实施例的辐射单元与滤波单元的连接关系示意图;
图5为根据本公开的另一些实施例的辐射单元与滤波单元的连接关系示意图;
图6为根据本公开的一些实施例的天线系统中部分器件的布局示意图;
图7为根据本公开的另一些实施例的天线系统中部分器件的布局示意图;
图8为根据本公开的一些实施例的天线系统的架构图;以及
图9为根据本公开的另一些实施例的天线系统的架构图。
具体实施方式
以下结合附图对本公开的具体实施方式进行详细说明。应当理解的是,此处所描述的具体实施方式仅用于说明和解释本公开,并不用于限制本公开。
在5G通信系统中,天线和射频拉远单元(Radio Remote Unit,RRU)合成有源天线单元(Active Antenna Unit,AAU)的形式,这就对天线的小型化和轻量化提出更高的要求。
图1为现有的天线装置的结构示意图,如图1所示,校准网络03通过射频连接器与滤波器02的输出端口连接,滤波器02的输入端口通过射频连接器01与基站设备的收发电路模块连接。在进行信号发射时,收发电路模块的信号通过射频连接器01传输至滤波器,滤波后的信号进入校准网络03,通过校准网络03调整信号的幅度和相位,最终信号通过天线阵子04a和04b辐射出去。这种架构由天线阵子04a和04b、校准网络03、滤波器02、射频连接器01等部件组 装而成,部件多且装配复杂;其中,滤波器02的输入输出均需要连接射频连接器,对于32通道的大规模阵列天线,则至少需要2*32个射频连接器,射频连接器的数量较多,从而不利于天线的小型化和轻量化。
为了解决上述技术问题,本公开的实施例提供了一种天线装置和天线系统,通过将滤波单元和辐射单元设置在同一电路板上,从而使得天线装置和天线系统的结构更紧凑,有利于实现通信基站的小型化。
作为本公开的一方面,提供一种天线装置,图2为根据本公开的一些实施例的天线装置的结构示意图。如图2所示,天线装置包括:第一电路板10、至少一组辐射单元11和至少一个滤波单元12,每组辐射单元11均包括至少一个辐射单元11。辐射单元11和滤波单元12均设置在第一电路板10上,每组辐射单元11对应一个滤波单元12。每个辐射单元11均与相应的滤波单元12的第一端相连,每个滤波单元12的第二端均用于连接校准网络。
每个辐射单元11均可单独进行低频或高频信号的辐射及接收。当每组辐射单元11包括多个辐射单元11时,该多个辐射单元11可以并联后再与相应的滤波单元12相连。滤波单元12可以进行双向滤波,当辐射单元11进行信号接收时,滤波单元12对其第一端接收到的信号进行滤波,并从其第二端输出滤波后的信号;反之,当辐射单元11进行信号发射时,滤波单元12对其第二端接收到的信号进行滤波,并从其第一端输出滤波后的信号。滤波单元12可以包括一个或串联的多个滤波器。
校准网络用于对辐射单元11的信号进行监控和校准。辐射单元11接收的信号往往是宽频段的信号,通过滤波单元12的滤波作用后,在滤波单元12的第二端可以得到所需频段的信号;校准网络与滤波单元12的第二端连接时,有利于根据滤波单元12输出的信号频段来优化校准网络的参数,从而提高校准网络的监控和校准效果。
需要说明的是,辐射单元11可以直接设置在第一电路板10上,也可以设置在中间元件上并通过该中间元件设置在第一电路板10上。 另外,本公开实施例中的“相连”可以是两个元件直接相连,也可以为通过中间元件间接相连。
在本公开实施例中,辐射单元11和滤波单元12集成在同一第一电路板10上,因此,在进行信号收发过程中,无需外置滤波器,因此,只需要通过第一电路板10上的导电结构(如,金属化过孔、金属探针等)将滤波单元12与辐射单元11连接即可,而无需设置过多的射频连接器,从而简化了天线装置的整体结构,使得天线装置和天线系统的结构更紧凑,有利于实现通信基站的小型化。
在一种实施方式中,第一电路板10为印刷电路板(Printed Circuit Board,PCB)。
图3为根据本公开的另一些实施例的天线装置的结构示意图,如图3所示,天线装置还可以包括设置在第一电路板10上的反射板13,辐射单元11设置在反射板13背离第一电路板10的表面,滤波单元12设置在反射板13背离辐射单元11的一侧。
在一种实施方式中,反射板13可以为由金属材料制成的钣金结构,起到反射电磁波信号以及支撑的作用。反射板13的边缘具有折边,从而提升信号收发的效率。反射板13可以呈圆形、矩形等形状,具体地,在本公开实施例中,反射板13呈长条形。辐射单元11可以通过焊接等方式固定在反射板13上,当辐射单元11的数量为多个时,多个辐射单元11在反射板13的表面可呈阵列排布。
第一电路板10起到载体的作用,其形状可与反射板13的形状相匹配。第一电路板10上形成有预设电路。具体的,第一电路板10上形成有带状线或微带线,从而可使安装于第一电路板10上的电气元件实现电连接。
在一种实施方式中,第一电路板10的表面可以起到与反射板13类似的功能,因此,在本公开另一些实施例中,如图2所示,不再设置反射板13,而是将辐射单元11和滤波单元12分别设置在第一电路板10的两个相对的表面上。
图4为根据本公开的一些实施例的辐射单元与滤波单元的连接关系示意图。如图4所示,滤波单元12可以为介质滤波器121,以 对辐射单元11收发的信号进行滤波。介质滤波器具有体积小、重量轻等优点,从而便于在印刷电路板上进行固定。
当然,介质滤波器121也可以采用声表面波滤波器(Surface Acoustic Wave,SAW)、薄膜腔声谐振滤波器(Film Bulk Acoustic Resonator,FBAR)等。
辐射单元11可以通过金属探针(PIN针)与相应的滤波单元12的第一端相连,具体地,辐射单元11可以通过馈电线路与滤波单元12的第一端相连,其中,馈电线路通过金属探针与滤波单元12相连,即,金属探针的一端插入滤波单元12上的金属化过孔中,另一端与馈电线路相连。当滤波单元12为介质滤波器时,采用金属探针的连接方式有利于辐射单元11与滤波器之间的信号耦合,并可以提高连接的稳固性。当然,馈电线路也可以通过焊盘焊接的方式与滤波单元12进行连接。
图5为根据本公开的另一些实施例的辐射单元与滤波单元的连接关系示意图,如图5所示,在另一些实施例中,滤波单元12可以包括介质滤波器121和低通滤波器122,介质滤波器121的第一端作为滤波单元12的第一端,介质滤波器121的第二端与低通滤波器122的第一端相连,低通滤波器122的第二端作为滤波单元12的第二端,即,低通滤波器122的第二端用于连接校准网络。通过设置低通滤波器122,可以滤除更多的噪声信号。
这种情况下,低通滤波器122可以采用设计简单的微带滤波器,从而有利于简化天线装置的整体结构。
根据本公开的另一些实施例,可以将低通滤波器122的第一端作为滤波单元12的第一端,低通滤波器122的第二端与介质滤波器121的第一端相连,介质滤波器121的第二端作为滤波单元12的第二端,即,介质滤波器121的第二端用于连接校准网络。
作为本公开的另一方面,提供一种天线系统。图6为根据本公开的一些实施例的天线系统中部分器件的布局示意图,如图6所示,天线系统包括校准网络20和上述实施例中的天线装置。
校准网络20的线路类型为微带线或带状线。具体地,校正网络 20包括:功分器22和至少一个耦合器21,每组辐射单元11对应一个耦合器21,每个耦合器21均包括主信号通道211和与该主信号通道211耦合的耦合信号通道212。每个滤波单元12的第二端均与相应的耦合器21的主信号通道211的第一端相连。耦合信号通道212与功分器22的输入端相连,功分器22的公共端与校准端口CAL相连。
当辐射单元11进行信号接收时,其接收到的信号经过滤波单元12的滤波后,通过主信号通道211输送至信号收发单元;当辐射单元11进行信号发送时,信号收发单元的信号通过主信号通道211传输至滤波单元12进行滤波,滤波后的信号传输至辐射单元11。在主信号通道211上的信号传输过程中,耦合信号通道212将耦合的信号输送至功分器22,再通过功分器的公共端输送至校准端口CAL。其中,该校准端口CAL可以与数字预失真单元(Digital Pre-Distortion,DPD)相连,以将耦合到的信号传输至预失真单元进行预失真处理。
在本公开实施例中,耦合信号通道212的输出端连接电路匹配负载。该电路匹配负载用于匹配电路,吸收传输到电路末端的功率能量,使得电路具有较小的驻波。
功分器22可以为威尔金森功分器。对于双通道天线装置,每个通道对应一组辐射单元11、一个滤波单元12和一个耦合器21。功分器22包括一个公共端和两个输入端,每个输入端分别与一个耦合信号通道212的输入端电连接。耦合信号通道212耦合到的信号通过功分器传到校准端口CAL,实现对天线各个端口(一个辐射单元11对应一个天线端口)射频信号的监控。
图7为根据本公开的另一些实施例的天线系统中部分器件的布局示意图,图7中所示的天线装置采用八通道结构,其包括八个辐射单元11,该八个辐射单元11可以在印刷电路板上呈对称分布。每个辐射单元11对应一个滤波单元12和一个耦合器21,八个辐射单元11所对应的八个耦合器21分为四组,每组包括两个耦合器21。功分器可以为多级威尔森功分器,包括:四个一级威尔森功分器221、两个二级威尔森功分器222和一个三级威尔森功分器223。每组耦合器21对应一个一级威尔森功分器221,同一组中的两个耦合线路通道 212与相应的一级威尔森功分器221的输入端相连;每两个一级威尔森功分器221的公共端分别与二级威尔森功分器222的两个输入端相连,两个二级威尔森功分器222的公共端分别与三级威尔森功分器223的两个输入端相连,三级威尔森功分器223的输出端与校准端口CAL相连。
需要说明的是,上述双通道、八通道仅为示例性说明,天线装置还可以为其他通道数量的天线装置。
在本公开实施例中,校准网络20可以如图6和图7中所示,设置在第一电路板10上,在这种情况下,校正网络20与滤波单元12可以集成在第一电路板10的同一表面,滤波单元12通过表贴的方式与校正网络20的主信号通道211相连。由于滤波单元12与校准网络20采用一体化设计,因此在设计时可充分考虑两个级联部件的电气参数的匹配性能。因此电气参数匹配性能可尽可能优化,从而实现滤波器性能与天线性能的最优互联设计。
当然,也可以将校准网络20设置在其他电路板上,在这种情况下,滤波单元12的第二端可以通过标准转接口与校准网络20相连。
图8为根据本公开的一些实施例的天线系统的架构图。如图8所示,天线系统还包括:至少一个环形器50、至少一个功率放大器40和至少一个信号收发单元30。环形器50、功率放大器40和信号收发单元30均与滤波单元12一一对应。信号收发单元30与相应的功率放大器40的第一端相连,功率放大器40的第二端与相应的环形器50的第一端相连,环形器50的第二端与相应的滤波单元12的第二端相连。
具体地,功率放大器40以及环形器50均与耦合器一一对应;功率放大器40的第二端通过相应耦合器的主信号通道211与相应的环形器50的第一端相连,滤波单元12的第二端通过环形器与相应耦合器的主信号通道211相连。即,功率放大器40的第二端与主信号通道211的第一端对应相连,主信号通道211的第二端与环形器50的第一端对应相连,环形器50的第二端与滤波单元12的第二端对应相连。
信号收发单元30用于向天线装置发射信号或接收来自于天线装置的信号;功率放大器40用于对其传输的信号进行功率放大;环形器50用于在信号收发单元30向天线装置发送信号时,将信号从其第一端传输至第二端;在信号收发单元30接收天线装置的信号时,将信号从其第二端传输至第一端。
在图8中,在辐射单元11进行信号发射时,信号收发单元30发射的信号经过功率放大器40的放大作用后,经过耦合器的主信号通道211传输给环形器50,并经过环形器50传输给滤波单元12,经过滤波单元12滤波后的信号传输至辐射单元11进行辐射。在辐射单元11进行信号接收时,辐射单元11接收的信号经过滤波单元12的滤波后,经过环形器50传输至主信号通道211,并经过主信号通道211传至功率放大器40,经过功率放大器40的放大作用后传输至信号收发单元30。在信号收发过程中,耦合信号通道212将耦合到的信号传输给校准端口CAL,进而传输至数字预失真单元进行预失真处理。
图9为根据本公开的另一些实施例的天线系统的架构图。如图9所示,天线系统同样包括:环形器50、功率放大器40和信号收发单元30。与图8不同的是,校准网络的耦合器设置在环形器50与滤波单元12之间,环形器50的第二端通过相应耦合器的主信号通道211与滤波单元12的第二端相连。具体地,信号收发单元30与相应的功率放大器40的第一端对应相连,功率放大器40的第二端与相应的环形器50的第一端相连,环形器50的第二端与相应耦合器的主信号通道211的第一端相连,主信号通道211的第二端与相应的滤波单元12的第二端相连。
进一步地,对于图8和图9的架构,天线系统还可以包括第二电路板,环形器50、功率放大器40和信号收发单元30均设置在第二电路板上。当天线系统采用图8所示的架构时,校准网络可以集成在第二电路板上;当天线系统采用图9所示的架构时,校准网络可以集成在第一电路板10上,也可以集成在第二电路板上。无论校准网络集成哪个电路板上,整个链路中均只有一个校准网络,从而简化整 体结构,并提高设备的抗干扰性。
另外,需要说明的是,在一些实施例中,还可以省去第二电路板,而将信号收发单元30、功率放大器40、环形器50与滤波器集成在同一个印刷电路板上,例如,可以将信号收发单元30、功率放大器40、环形器50与滤波单元12设置在印刷电路板的不同层。
在本公开实施例提供的天线系统中,包括上述的天线装置,由于上述天线装置可以实现小型化和轻量化,因此,采用天线装置的天线系统的整体架构较为简单,且整个系统的链路上只有一个校准网络,从而简化系统的整体架构,增加链路的抗干扰性。
可以理解的是,以上实施方式仅仅是为了说明本公开的原理而采用的示例性实施方式,然而本公开并不局限于此。对于本领域内的普通技术人员而言,在不脱离本公开的精神和实质的情况下,可以做出各种变型和改进,这些变型和改进也视为本公开的保护范围。

Claims (10)

  1. 一种天线装置,包括:第一电路板、至少一组辐射单元和至少一个滤波单元,
    其中,所述至少一组辐射单元的每一组均包括至少一个辐射单元,所述至少一组辐射单元和所述至少一个滤波单元均设置在所述第一电路板上,每组辐射单元对应一个滤波单元,每个辐射单元均与相应的滤波单元的第一端相连,每个滤波单元的第二端均与校准网络连接。
  2. 根据权利要求1所述的天线装置,其中,所述至少一个滤波单元为介质滤波器。
  3. 根据权利要求1所述的天线装置,其中,所述至少一个滤波单元的每一个包括:介质滤波器和低通滤波器,所述介质滤波器的第一端作为所述滤波单元的第一端,所述低通滤波器的第一端与所述介质滤波器的第二端相连,所述低通滤波器的第二端作为所述滤波单元的第二端。
  4. 根据权利要求1至3中任一所述的天线装置,还包括设置在所述第一电路板上的反射板,所述至少一组辐射单元设置在所述反射板的背离所述第一电路板的表面,所述至少一个滤波单元设置在所述反射板的背离所述至少一组辐射单元的一侧。
  5. 根据权利要求1至3中任一所述的天线装置,其中,每个辐射单元通过金属探针与相应的滤波单元的第一端相连。
  6. 一种天线系统,包括校准网络和权利要求1至5中任一项所述的天线装置,所述校准网络包括:功分器和至少一个耦合器,
    其中,所述至少一组辐射单元的每一组对应一个耦合器,每个 耦合器均包括主信号通道和与该主信号通道耦合的耦合信号通道;
    每个滤波单元的第二端均与相应的耦合器的主信号通道相连;
    所述耦合信号通道与所述功分器的输入端相连,所述功分器的公共端与校准端口相连。
  7. 根据权利要求6所述的天线系统,还包括:至少一个环形器、至少一个功率放大器和至少一个信号收发单元,
    所述至少一个环形器与所述至少一个滤波单元一一对应、所述至少一个功率放大器与所述至少一个滤波单元一一对应,并且所述至少一个信号收发单元与所述至少一个滤波单元一一对应;
    所述至少一个信号收发单元的每一个与相应的功率放大器的第一端相连,所述相应的功率放大器的第二端与相应的环形器的第一端相连,所述相应的环形器的第二端与相应的滤波单元的第二端相连。
  8. 根据权利要求7所述的天线系统,其中,所述至少一个功率放大器与所述至少一个耦合器一一对应并且所述至少一个环形器与所述至少一个耦合器一一对应;
    所述相应的功率放大器的第二端通过相应的耦合器的主信号通道与所述相应的环形器的第一端相连,所述相应的滤波单元的第二端通过所述相应的环形器与所述相应的耦合器的主信号通道相连;
    或者,所述相应的环形器的第二端通过所述相应的耦合器的主信号通道与所述相应的滤波单元的第二端相连。
  9. 根据权利要求7或8所述的天线系统,还包括:第二电路板,其中所述至少一个环形器、所述至少一个功率放大器、所述至少一个信号收发单元和所述校准网络均设置在所述第二电路板上。
  10. 根据权利要求6至8中任一所述的天线系统,其中,所述校准网络设置在所述第一电路板上。
PCT/CN2020/113785 2019-09-06 2020-09-07 天线装置及天线系统 WO2021043306A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201910840427.5A CN112467365A (zh) 2019-09-06 2019-09-06 天线装置及天线系统
CN201910840427.5 2019-09-06

Publications (1)

Publication Number Publication Date
WO2021043306A1 true WO2021043306A1 (zh) 2021-03-11

Family

ID=74807056

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/113785 WO2021043306A1 (zh) 2019-09-06 2020-09-07 天线装置及天线系统

Country Status (2)

Country Link
CN (1) CN112467365A (zh)
WO (1) WO2021043306A1 (zh)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113242031B (zh) * 2021-03-31 2024-05-14 西安空间无线电技术研究所 一种提高脉冲压缩能量利用效率的装置
CN116111316A (zh) * 2021-11-09 2023-05-12 中兴通讯股份有限公司 有源天线系统、基站、无线通信系统
CN116259967A (zh) * 2021-12-01 2023-06-13 中兴通讯股份有限公司 有源天线单元及基站

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20090295670A1 (en) * 2008-06-02 2009-12-03 Wistron Neweb Corp. Flat antenna and antenna device
CN108808224A (zh) * 2018-06-29 2018-11-13 京信通信系统(中国)有限公司 Massive mimo天线
CN109494489A (zh) * 2018-12-06 2019-03-19 京信通信系统(中国)有限公司 滤波集成式基站天线
CN110011072A (zh) * 2019-02-22 2019-07-12 广东通宇通讯股份有限公司 一种集成化Massive MIMO天线

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20090295670A1 (en) * 2008-06-02 2009-12-03 Wistron Neweb Corp. Flat antenna and antenna device
CN108808224A (zh) * 2018-06-29 2018-11-13 京信通信系统(中国)有限公司 Massive mimo天线
CN109494489A (zh) * 2018-12-06 2019-03-19 京信通信系统(中国)有限公司 滤波集成式基站天线
CN110011072A (zh) * 2019-02-22 2019-07-12 广东通宇通讯股份有限公司 一种集成化Massive MIMO天线

Also Published As

Publication number Publication date
CN112467365A (zh) 2021-03-09

Similar Documents

Publication Publication Date Title
CN108808224B (zh) Massive mimo天线
WO2021043306A1 (zh) 天线装置及天线系统
US10886634B2 (en) Filter feeding network and base station antenna
WO2021139205A1 (zh) Massive mimo天线
CN108449107B (zh) 一种多波束瓦片式tr组件
EP2408121B1 (en) Radio frequency unit and integrated antenna
US8433242B2 (en) Active antenna array for a mobile communications network with multiple amplifiers using separate polarisations for transmission and a combination of polarisations for reception of separate protocol signals
WO2015037033A1 (ja) 電力増幅器及び送信装置
WO2020259001A1 (zh) 一种滤波天线及基站设备
CN110596649A (zh) T/r组件
CN113437501B (zh) 一种小型化高集成天线接口模块
WO2020155872A1 (zh) 一种带间上行载波聚合射频电路、天线装置和电子设备
US9054078B2 (en) Signal processing device
CN115225114B (zh) 一种弹载跳频通信体制全向电扫描射频组件
EP4087124A1 (en) Power amplifier
CN216529290U (zh) 一种宽频合路器
CN212163328U (zh) 一种用于卫星通信的Ku频段相控阵天线收发组件
CN209183759U (zh) 滤波集成式基站天线
CN217823210U (zh) 一种650MHz Gysel多路径向功率合成器
WO2018196429A1 (zh) 分布式天线系统的接入装置
CN110994088A (zh) 一种基于ltcc的新型无反射低通滤波器
CN219123458U (zh) 一种矩形波导多路功率合成器
CN218920419U (zh) 一种芯片化半双工变频收发信道
CN217823208U (zh) 一种2.45GHz Gysel多路径功率合成器
CN210129863U (zh) 一种x波段多功能收发组件

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20860421

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20860421

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 20860421

Country of ref document: EP

Kind code of ref document: A1