WO2021043238A1 - 一种基于光伏超配的主动式光伏逆变器惯量补偿控制方法 - Google Patents

一种基于光伏超配的主动式光伏逆变器惯量补偿控制方法 Download PDF

Info

Publication number
WO2021043238A1
WO2021043238A1 PCT/CN2020/113386 CN2020113386W WO2021043238A1 WO 2021043238 A1 WO2021043238 A1 WO 2021043238A1 CN 2020113386 W CN2020113386 W CN 2020113386W WO 2021043238 A1 WO2021043238 A1 WO 2021043238A1
Authority
WO
WIPO (PCT)
Prior art keywords
power
photovoltaic
inverter
inertia
control method
Prior art date
Application number
PCT/CN2020/113386
Other languages
English (en)
French (fr)
Inventor
孙耀杰
樊宏涛
马磊
李昕然
孙洁
高柳风
Original Assignee
复旦大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 复旦大学 filed Critical 复旦大学
Publication of WO2021043238A1 publication Critical patent/WO2021043238A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J3/00Circuit arrangements for ac mains or ac distribution networks
    • H02J3/38Arrangements for parallely feeding a single network by two or more generators, converters or transformers
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/56Power conversion systems, e.g. maximum power point trackers

Definitions

  • the invention belongs to the technical field of smart grid control, and specifically relates to an active photovoltaic inverter inertia compensation control method based on photovoltaic over-distribution.
  • the motor When the grid frequency changes, the motor’s rotor speed changes to release kinetic energy or absorb excess energy to keep the grid frequency stable; while for modern power systems, inverter Most of the power electronic devices are used in the inverters, which cannot provide similar moments of inertia to the system to support the grid frequency.
  • VSG virtual synchronous generator technology
  • VSG Virtual Synchronous Generator
  • the key to VSG technology is to add a first-order inertia link to the active loop so that the inverter output characteristics imitate conventional
  • the frequency and voltage regulation characteristics of the synchronous unit are mostly realized by configuring the energy storage battery for the simulated rotor kinetic energy device.
  • the purpose of the present invention is to provide an active photovoltaic inverter inertia compensation control method based on photovoltaic super configuration.
  • An active photovoltaic inverter inertia compensation control method based on photovoltaic over-configuration characterized in that the control method is applied to the case where the rated power of the photovoltaic panel is greater than the rated power of the inverter; or is applied to the photovoltaic panel
  • the control method is applied to the case where the rated power of the photovoltaic panel is greater than the rated power of the inverter; or is applied to the photovoltaic panel
  • the control method is through the inertia compensation control system
  • the inertia compensation control system includes photovoltaic panels, DC/DC modules, DC/AC inverters, LCL filters, and AC power grids that are connected to each other in sequence.
  • the DC/AC inverters and DC/DC modules are connected to each other.
  • a virtual synchronous machine power acquisition device is arranged between the circuits, and the control method includes the following steps:
  • Step S1 detecting whether the photovoltaic panel power P PV exceeds the inverter rated power P E , when the photovoltaic panel power P PV is greater than the inverter rated power P E , the inverter runs at the limited power, otherwise the inverter is Run in Maximum Power Point Tracking (MPPT) mode;
  • MPPT Maximum Power Point Tracking
  • Step S2 Detect the unstable factor of the grid frequency change.
  • the grid frequency f decreases , calculate the maximum active power change ⁇ P E,max according to the maximum power that the photovoltaic panel can output according to the current environmental conditions P PV (I,T) ,
  • the maximum active power change ⁇ P E,max satisfies the following conditions:
  • n is the ratio of the rated power of the photovoltaic panel to the rated power of the inverter
  • Step S3 according to the maximum active power change ⁇ P E,max obtained in step S2, combined with the virtual synchronous machine rotor motion equation and the inverter output active power equation:
  • J is the simulated moment of inertia
  • D is the damping
  • is the angular velocity
  • U is the grid voltage amplitude
  • ⁇ g is the grid angular frequency
  • E is the virtual synchronous electromotive force
  • is the power angle
  • is the impedance angle
  • Z is impedance
  • the small signal model about the power change ⁇ P e and the angular velocity change ⁇ g is obtained from the above equations.
  • the optimal damping D and the inertia J are determined according to the maximum active power change ⁇ P E,max with the maximum inertia J as the target;
  • step S4 the inverter is controlled in a virtual synchronous machine mode to compensate for the inertia through the optimal damping D and inertia J determined in step S3.
  • the maximum power point tracking mode operation step is that the MPPT module continuously detects and tracks the current and voltage changes of the photovoltaic array, and adjusts the equivalent resistance of the DC-DC conversion circuit to change the internal resistance of the photovoltaic cell, that is, the output voltage, and at the same time change the output current. , Until the output power is maximum, the maximum output of the photovoltaic cell can be achieved, and the MPPT of the photovoltaic cell can be realized.
  • the virtual synchronous machine in the step S3 adopts a virtual synchronous generator with feedforward compensation.
  • the virtual synchronous machine algorithm adopts a virtual synchronous machine decoupling control method or a novel on-grid and off-grid control method.
  • step S4 according to the step response obtained in step S3, namely the damping D and inertia J in the projection phasor diagram of the ⁇ PE,max plane, the maximum inertia J is determined as the target, and the optimal damping D and inertia J are determined. .
  • ⁇ P out is the power change
  • ⁇ g angular velocity change J is the simulated moment of inertia
  • D is the damping
  • s is the s in the transfer function.
  • the inertia compensation control system adopts a two-stage topology, including photovoltaic panels, DC/DC modules, DC/AC inverters, LCL filters, and AC power grids that are connected to each other in sequence.
  • a virtual synchronous machine power acquisition device is installed between the circuit connected to the DC/DC module and the DC/DC module.
  • the photovoltaic panel is connected to the DC/DC module, and then the DC/AC inverter module is connected to the grid through the LCL filter.
  • Figure 1 is a block diagram of the system structure of the present invention.
  • FIG. 2 is a flowchart of the present invention.
  • Fig. 3 is based on the rotor motion equation of the virtual synchronous machine and the inverter output active power equation, the small signal model about ⁇ Pe and ⁇ g is obtained, and the step response is further obtained.
  • FIG. 4 is a block diagram of the MPPT system.
  • FIG. 1 a system block diagram of an active photovoltaic inverter inertia compensation control method based on photovoltaic over-configuration.
  • a two-stage topology is adopted, including photovoltaic panels, DC/DC modules, DC/AC inverters, LCL filters, and AC power grids that are connected to each other in sequence.
  • the photovoltaic panels are connected to the DC/DC module, and then through the DC/AC inverse
  • the variable module is connected to the power grid through the LCL filter.
  • the DC/DC module controls the DC side voltage through the double loop of the voltage outer loop and the current inner loop.
  • the response time of the voltage loop is regarded as fast enough, and the DC side output power is regarded as the reference power; the DC/AC module adopts virtual synchronous machine control, Calculate the active power and reactive power, synthesize the reference voltage of the inverter module through the active-frequency loop and reactive-voltage loop, and use the SVPWM method to control the inverter's work.
  • System configuration parameters are shown in Table 1.
  • An active photovoltaic inverter inertia compensation control method based on photovoltaic over-configuration characterized in that the control method is applied to the case where the rated power of the photovoltaic panel is greater than the rated power of the inverter; or is applied to the photovoltaic panel
  • the control method is applied to the case where the rated power of the photovoltaic panel is greater than the rated power of the inverter; or is applied to the photovoltaic panel
  • the control method is through the inertia compensation control system
  • the inertia compensation control system includes photovoltaic panels, DC/DC modules, DC/AC inverters, LCL filters, and AC power grids that are connected to each other in sequence.
  • the DC/AC inverters and DC/DC modules are connected to each other.
  • a virtual synchronous machine power acquisition device is arranged between the circuits, and the control method includes the following steps:
  • Step S1 check whether the photovoltaic panel power P PV exceeds the inverter rated power P E.
  • the photovoltaic panel power P PV is greater than the inverter rated power P E , the inverter runs at a limited power, otherwise the inverter is Run in Maximum Power Point Tracking (MPPT) mode;
  • MPPT Maximum Power Point Tracking
  • the maximum power point tracking mode MPPT (ie Maximum Power Point Tracking) means that the inverter adjusts the output power of the photovoltaic array according to the characteristics of different external environment temperature, light intensity, etc., so that the photovoltaic array always outputs the maximum power ; Because photovoltaic panels are affected by external factors such as light intensity and the environment, their output power changes, and the light intensity emits more electricity.
  • the inverter with MPPT maximum power tracking is to make full use of photovoltaic panels to make It runs at the maximum power point. That is to say, under the condition of the same solar radiation, the output power after MPPT will be higher than that before MPPT, which is the function of MPPT.
  • the MPPT module After the MPPT module starts to track, it adjusts the resistance on the circuit through the internal circuit structure to change the output voltage of the component and at the same time change the output current until the output power is maximized. After that, it will continue to track and cyclically adjust.
  • the photovoltaic cell array is connected to the load through a DC/DC circuit, and the maximum power tracking device continuously detects the current and voltage changes of the photovoltaic array, and adjusts the duty cycle of the PWM drive signal of the DC/DC converter according to the changes. ;
  • the power supply has the maximum power output.
  • the equivalent resistance of the DC-DC conversion circuit is adjusted so that it is always equal to the internal resistance of the photovoltaic cell, the maximum output of the photovoltaic cell can be achieved, and the MPPT of the photovoltaic cell can be realized.
  • Step S2 detecting the change of the grid frequency, when the grid frequency f decreases, the maximum active power change ⁇ P E,max is obtained according to the current environmental conditions P PV (I,T), and the maximum active power change ⁇ P E,max meets the following conditions:
  • n is the ratio of the rated power of the photovoltaic panel to the rated power of the inverter
  • Step S3 according to the rotor motion equation of the virtual synchronous machine and the inverter output active power
  • J is the simulated moment of inertia
  • D is the damping
  • is the angular velocity
  • U is the grid voltage amplitude
  • ⁇ g is the grid angular frequency
  • E is the virtual synchronous electromotive force
  • is the power angle
  • is the impedance angle
  • Z is impedance
  • the small signal model about the power change ⁇ P e and the angular velocity change ⁇ g is obtained from the above equations.
  • the optimal damping D and the inertia J are determined according to the maximum active power change ⁇ P E,max with the maximum inertia J as the target;
  • step S4 the inverter is controlled in a virtual synchronous machine mode to compensate for the inertia through the optimal damping D and inertia J determined in step S3.
  • the design redundancy of the inverter itself is used for inertia compensation, which is convenient for modification; compared to the configuration of energy storage batteries, the use of The excess energy of the photovoltaic panel itself is compensated for the inertia; and the parameters of the damping D and the inertia J are optimized for different capacity ratios to simulate the maximum inertia.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Control Of Electrical Variables (AREA)

Abstract

一种基于光伏超配的主动式光伏逆变器惯量补偿控制方法,属于智能电网控制技术领域。该方法应用于光伏电池板额定功率大于逆变器额定功率的情况下;或应用于在光伏电池板功率超过逆变器额定功率采用限功率运行措施下,当电网频率发生波动,根据当前辐射下光伏电池板能够输出的最大功率进行惯量补偿。所述方法不需要配置额外的储能电池,利用逆变器本身的设计冗余进行惯量补偿,方便改装;并适用于不同容配比情况均可以模拟最大的惯量。

Description

一种基于光伏超配的主动式光伏逆变器惯量补偿控制方法 技术领域
本发明属于智能电网控制技术领域,具体涉及一种基于光伏超配的主动式光伏逆变器惯量补偿控制方法。
背景技术
随着能源枯竭、环境污染日益严重,新能源发电技术在世界范围内稳步发展,不论是商用的大型光伏电站还是民用的分布式光伏电站技术都趋于成熟,电力电子器件的大量接入将会对电网特性产生显著的影响,比如系统惯量和阻尼的降低,电网的稳定性面临挑战。在传统电力系统中,系统惯量主要来自于发电机和汽轮机,当电网频率发生变化时,通过电机的转子转速变化释放动能或者吸收多余能量来保持电网的频率稳定;而对于现代电力系统,逆变器多使用电力电子器件,无法向系统提供类似的转动惯量来支撑电网频率。
对于惯量补偿的解决方案,目前主要的解决方案是采用虚拟同步机技术(VSG,Virtual Synchronous Generator)控制,VSG技术的关键是在有功环中加入一阶惯性环节使逆变器输出特性模仿常规的同步机组的频率电压调节特性,对于模拟转子动能装置多采用配置储能电池的方式实现。
发明内容
本发明的目的在于提出一种基于光伏超配的主动式光伏逆变器惯量补偿控制方法。
为了实现上述目的,本发明采用了如下技术方案:
一种基于光伏超配的主动式光伏逆变器惯量补偿控制方法,其特征在于,所述控制方法应用于光伏电池板额定功率大于逆变器额定功率的情况下;或应用于在光伏电池板功率超过逆变器额定功率采用限功率运行措施下,当电网频率发生波动,根据当前辐射下光伏电池板能够输出的最大功率即超配的能量进行惯量补偿;所述控制方法通过惯量补偿控制系统实现,该惯量补偿控制系统包括依次相互连接的光伏电池板、DC/DC模块、DC/AC逆变器、LCL滤波器以及交流电网,所述DC/AC逆变器和DC/DC模块所连电路之间设有虚拟同步机功率采集装置,所述控制方法包括如下步骤:
步骤S1,检测光伏电池板功率P PV是否超过逆变器额定功率P E,当光伏电池板功率P PV大于逆变器额定功率P E,逆变器在限定功率下运行,否则逆变器在最大功率点追踪(MPPT)模式下运行;
步骤S2,检测电网频率变化这一不稳定因素,当电网频率f降低时,根据当前环境条件P PV(I,T)光伏电池板能够输出的最大功率,计算得到最大有功功率变化ΔP E,max,所述最大有功功率变化ΔP E,max满足以下条件:
Figure PCTCN2020113386-appb-000001
其中,n为光伏电池板额定功率与逆变器额定功率的比值;
步骤S3,根据步骤S2的获得的最大有功功率变化ΔP E,max,并结合虚拟同步机转子运动方程和逆变器输出有功功率方程:
Figure PCTCN2020113386-appb-000002
其中,J为模拟转动惯量,D为阻尼,ω为角速度,U为电网电压幅值,ω g 为电网角频率,E为虚拟同步机电势,
Figure PCTCN2020113386-appb-000003
是机械转矩,
Figure PCTCN2020113386-appb-000004
是电磁转矩,δ为功角,α为阻抗角,
Figure PCTCN2020113386-appb-000005
Z为阻抗,
Figure PCTCN2020113386-appb-000006
由上述方程得到关于功率变化ΔP e和角速度变化Δω g的小信号模型,在阶跃响应下,根据最大有功功率变化ΔP E,max以惯量J最大为目标确定最优的阻尼D和惯量J;
步骤S4,通过步骤S3确定的最优的阻尼D和惯量J对逆变器使用虚拟同步机方式进行控制以弥补惯量。
其中,最大功率点追踪模式运行步骤为,MPPT模块不断检测跟踪光伏阵列的电流电压变化,通过调节DC-DC转换电路的等效电阻,以改变光伏电池的内阻即输出电压,同时改变输出电流,一直到输出功率最大,就可以实现光伏电池的最大输出,也就实现了光伏电池的MPPT。
其中,所述步骤S3中的虚拟同步机采用具有前馈补偿的虚拟同步发电机。
其中,所述虚拟同步机算法采用虚拟同步机解耦控制方法或新型并离网控制方法。
其中,步骤S4中,根据步骤S3获得的阶跃响应即阻尼D和惯量J在ΔPE,max平面的投影相量图中,以惯量J最大为目标确定,确定的最优的阻尼D和惯量J。
其中,在所述步骤S3中,小信号模型
Figure PCTCN2020113386-appb-000007
其中,ΔP out为功率变化、Δω g角速度变化、J为模拟转动惯量、D为阻尼,s为传递函数中的s。
其中,所述该惯量补偿控制系统采用两级拓扑结构,包括依次相互连接的光伏电池板、DC/DC模块、DC/AC逆变器、LCL滤波器以及交流电网,所述DC/AC逆变器和DC/DC模块所连电路之间设有虚拟同步机功率采集装置,光伏电池板接入DC/DC模块,再通过DC/AC逆变模块经LCL滤波器接入电网。
本发明优点在于:
1)相对于配置储能电池的方式,可利用光伏电池板本身超配的能量进行惯量补偿;
2)利用逆变器本身的设计冗余进行惯量补偿,方便改装;
3)针对不同容配比情况,进行阻尼D和惯量J的参数优化,以模拟最大的惯量。
附图说明
图1是本发明的系统结构框图。
图2是本发明的流程图。
图3是根据虚拟同步机转子运动方程和逆变器输出有功方程,得到关于ΔPe和Δωg的小信号模型,进一步得到的阶跃响应。
图4是MPPT系统原理框图。
具体实施方式
以下将结合附图对本发明的构思、具体结构及产生的技术效果作进一步说明,以充分地了解本发明的一种基于光伏超配的主动式光伏逆变器惯量补偿控制方法的目的、特征和效果。
<实施例>
在本实施例中,以10kW并网逆变器为例,光伏电池板额定功率与逆变器额定功率的比值n=1.2,能根据工作环境情况进行惯量补偿,不会增加额外的储能装置,增加了电网系统的稳定性。
参见图1,一种用于基于光伏超配的主动式光伏逆变器惯量补偿控制方法的系统结构框图。采用两级式拓扑,包括依次相互连接的光伏电池板、DC/DC模块、DC/AC逆变器、LCL滤波器以及交流电网,光伏电池板接入DC/DC模块,再通过DC/AC逆变模块经LCL滤波器接入电网。其中,DC/DC模块通过电压外环和电流内环双环控制直流侧电压,电压环的响应时间视为足够快,将直流侧输出功率视为参考功率;DC/AC模块采用虚拟同步机控制,计算有功功率和无功功率,通过有功-频率环和无功-电压环合成逆变模块参考电压使用SVPWM方式控制逆变器工作。系统配置参数见表1。
表1系统参数配置
参数 数值 参数 数值
Ug 311V L 140uH
Udc_ref 700V Cbus 370uH
L1 2.3mH Cdc 1.68mF
R 2.06Ω ω0 157(p=2)
Pref 10KW Qref 0
Kpi 0.2 Kii 0.002
Kpv 10 Kiv 0.02
一种基于光伏超配的主动式光伏逆变器惯量补偿控制方法,其特征在于,所述控制方法应用于光伏电池板额定功率大于逆变器额定功率的情况下;或应用于在光伏电池板功率超过逆变器额定功率采用限功率运行措施下,当电网频率发生波动,根据当前辐射下光伏电池板能够输出的最大功率即超配的能量进行惯量补偿;所述控制方法通过惯量补偿控制系统实现,该惯量补偿控制系统包括依次相互连接的光伏电池板、DC/DC模块、DC/AC逆变器、LCL滤波器以及交流电网,所述DC/AC逆变器和DC/DC模块所连电路之间设有虚拟同步机功率采集装置,所述控制方法包括如下步骤:
步骤S1,检测光伏电池板功率P PV是否超过逆变器额定功率P E,当光伏电池板功率P PV大于逆变器额定功率P E,逆变器在限定功率下运行,否则逆变器在最大功率点追踪(MPPT)模式下运行;
其中,所述最大功率点跟踪模式MPPT(即Maximum Power Point Tracking),它是指逆变器根据外界不同的环境温度、光照强度等特性来调节光伏阵列的输出功率,使得光伏阵列始终输出最大功率;由于光伏电池板受到光强以及环境等外界因素的影响,其输出功率是变化的,光强发出的电就多,带MPPT最大功率跟踪的逆变器就是为了充分的利用光伏电池板,使之运行在最大功率点。也就是说在太阳辐射不变的情况下,有MPPT后的输出功率会比有MPPT前的要高,这就是MPPT的作用所在。MPPT模块开始跟踪之后,通过内部电路结构调节回 路上的电阻,以改变组件的输出电压,同时改变输出电流,一直到输出功率最大,此后就不断得跟踪循环调整。
如图4所示,光伏电池阵列与负载通过DC/DC电路连接,最大功率跟踪装置不断检测光伏阵列的电流电压变化,并根据其变化对DC/DC变换器的PWM驱动信号占空比进行调节;对于线性电路来说,当负载电阻等于电源的内阻时,电源即有最大功率输出,虽然光伏电池和DC/DC转换电路都是强非线性的,然而在极短的时间内,可以认为是线性电路,因此,只要调节DC-DC转换电路的等效电阻使它始终等于光伏电池的内阻,就可以实现光伏电池的最大输出,也就实现了光伏电池的MPPT。
步骤S2,检测电网频率变化,当电网频率f降低,根据当前环境条件P PV(I,T)得到最大有功功率变化ΔP E,max,最大有功功率变化ΔP E,max满足以下条件:
Figure PCTCN2020113386-appb-000008
其中,n为光伏电池板额定功率与逆变器额定功率的比值;
步骤S3,根据虚拟同步机转子运动方程和逆变器输出有功功率;
Figure PCTCN2020113386-appb-000009
其中,J为模拟转动惯量,D为阻尼,ω为角速度,U为电网电压幅值,ω g为电网角频率,E为虚拟同步机电势,
Figure PCTCN2020113386-appb-000010
是机械转矩,
Figure PCTCN2020113386-appb-000011
是电磁转矩,δ为功角,α为阻抗角,
Figure PCTCN2020113386-appb-000012
Z为阻抗,
Figure PCTCN2020113386-appb-000013
由上述方程得到关于功率变化ΔP e和角速度变化Δω g的小信号模型,在阶跃响应下,根据最大有功 功率变化ΔP E,max以惯量J最大为目标确定最优的阻尼D和惯量J;
步骤S4,通过步骤S3确定的最优的阻尼D和惯量J对逆变器使用虚拟同步机方式进行控制以弥补惯量。
实施例的作用与效果
根据本实施例所涉及的基于光伏超配的主动式光伏逆变器惯量补偿控制方法,利用逆变器本身的设计冗余进行惯量补偿,方便改装;相对于配置储能电池的方式,利用了光伏电池板本身超配的能量进行惯量补偿;并针对不同容配比情况,进行阻尼D和惯量J的参数优化,以模拟最大的惯量。
上述实施方式为本发明的优选案例,并不用来限制本发明的保护范围。

Claims (7)

  1. 一种基于光伏超配的主动式光伏逆变器惯量补偿控制方法,其特征在于,所述控制方法应用于光伏电池板额定功率大于逆变器额定功率的情况下;或应用于在光伏电池板功率超过逆变器额定功率采用限功率运行措施下,当电网频率发生波动,根据当前辐射下光伏电池板能够输出的最大功率即超配的能量进行惯量补偿;所述控制方法通过惯量补偿控制系统实现,该惯量补偿控制系统包括依次相互连接的光伏电池板、DC/DC模块、DC/AC逆变器、LCL滤波器以及交流电网,所述DC/AC逆变器和DC/DC模块所连电路之间设有虚拟同步机功率采集装置,所述控制方法包括如下步骤:
    步骤S1,检测光伏电池板功率P PV是否超过逆变器额定功率P E,当光伏电池板功率P PV大于逆变器额定功率P E,逆变器在限定功率下运行,否则逆变器在最大功率点追踪(MPPT)模式下运行;
    步骤S2,检测电网频率变化这一不稳定因素,当电网频率f降低时,根据当前环境条件P PV(I,T)光伏电池板能够输出的最大功率,此时计算得到最大有功功率变化ΔP E,max,所述最大有功功率变化ΔP E,max满足以下条件:
    Figure PCTCN2020113386-appb-100001
    其中,n为光伏电池板额定功率与逆变器额定功率的比值;
    步骤S3,根据步骤S2的获得的最大有功功率变化ΔP E,max,并结合虚拟同步机转子运动方程和逆变器输出有功功率方程:
    Figure PCTCN2020113386-appb-100002
    其中,J为模拟转动惯量,D为阻尼,ω为角速度,U为电网电压幅值,ω g 为电网角频率,E为虚拟同步机电势,
    Figure PCTCN2020113386-appb-100003
    是机械转矩,
    Figure PCTCN2020113386-appb-100004
    是电磁转矩,δ为功角,α为阻抗角,
    Figure PCTCN2020113386-appb-100005
    Z为阻抗,
    Figure PCTCN2020113386-appb-100006
    由上述方程得到关于功率变化ΔP e和角速度变化Δω g的小信号模型,在阶跃响应下,根据最大有功功率变化ΔP E,max以惯量J最大为目标确定最优的阻尼D和惯量J;
    步骤S4,通过步骤S3确定的最优的阻尼D和惯量J对逆变器使用虚拟同步机方式进行控制以弥补惯量。
  2. 根据权利要求1所述的基于光伏超配的主动式光伏逆变器惯量补偿控制方法,其特征在于:
    其中,最大功率点追踪模式运行步骤为,MPPT模块不断检测跟踪光伏阵列的电流电压变化,通过调节DC-DC转换电路的等效电阻,以改变光伏电池的内阻即输出电压,同时改变输出电流,一直到输出功率最大,就可以实现光伏电池的最大输出,也就实现了光伏电池的MPPT。
  3. 根据权利要求1所述的基于光伏超配的主动式光伏逆变器惯量补偿控制方法,其特征在于:
    其中,所述步骤S3中的虚拟同步机采用具有前馈补偿的虚拟同步发电机。
  4. 根据权利要求1或3所述的基于光伏超配的主动式光伏逆变器惯量补偿控制方法,其特征在于:
    其中,所述虚拟同步机算法采用有功功率环中加入一阶惯性环节来模拟同步 电机的外特性的逆变器控制方法。
  5. 根据权利要求1所述的基于光伏超配的主动式光伏逆变器惯量补偿控制方法,其特征在于:
    其中,步骤S4中,根据步骤S3获得的阶跃响应即阻尼D和惯量J在ΔPE,max平面的投影相量图中,以惯量J最大为目标确定,确定最优的阻尼D和惯量J。
  6. 根据权利要求1所述的基于光伏超配的主动式光伏逆变器惯量补偿控制方法,其特征在于:
    其中,在所述步骤S3中,小信号模型中功率变化和角速度关系为
    Figure PCTCN2020113386-appb-100007
    其中,ΔP out为功率变化、Δω g角速度变化、J为模拟转动惯量、D为阻尼,s为传递函数中的s。
  7. 根据权利要求1所述的基于光伏超配的主动式光伏逆变器惯量补偿控制方法,其特征在于:
    其中,所述该惯量补偿控制系统采用两级拓扑结构,包括依次相互连接的光伏电池板、DC/DC模块、DC/AC逆变器、LCL滤波器以及交流电网,所述DC/AC逆变器和DC/DC模块所连电路之间设有虚拟同步机功率采集装置,光伏电池板接入DC/DC模块,再通过DC/AC逆变模块经LCL滤波器接入电网。
PCT/CN2020/113386 2019-09-05 2020-09-04 一种基于光伏超配的主动式光伏逆变器惯量补偿控制方法 WO2021043238A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201910835977.8 2019-09-05
CN201910835977.8A CN110601257B (zh) 2019-09-05 2019-09-05 一种基于光伏超配的主动式光伏逆变器惯量补偿控制方法

Publications (1)

Publication Number Publication Date
WO2021043238A1 true WO2021043238A1 (zh) 2021-03-11

Family

ID=68857692

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/113386 WO2021043238A1 (zh) 2019-09-05 2020-09-04 一种基于光伏超配的主动式光伏逆变器惯量补偿控制方法

Country Status (2)

Country Link
CN (1) CN110601257B (zh)
WO (1) WO2021043238A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110601257B (zh) * 2019-09-05 2022-11-18 复旦大学 一种基于光伏超配的主动式光伏逆变器惯量补偿控制方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106208159A (zh) * 2016-07-27 2016-12-07 合肥工业大学 基于虚拟同步发电机的柴储混合独立微网动态功率补偿方法
CN106786795A (zh) * 2016-12-16 2017-05-31 辽宁科技学院 一种基于虚拟同步发电机的分布式光伏发电系统控制策略
CN108683213A (zh) * 2018-05-23 2018-10-19 上海电力学院 基于虚拟同步发电机转子惯性功率解耦的惯性补偿器
JP2019004571A (ja) * 2017-06-13 2019-01-10 株式会社日立製作所 新エネルギー源統合電力変換装置
US20190222026A1 (en) * 2018-01-14 2019-07-18 Qingchang ZHONG Reconfiguration of Inertia, Damping and Fault Ride-Through for a Virtual Synchronous Machine
CN110601257A (zh) * 2019-09-05 2019-12-20 复旦大学 一种基于光伏超配的主动式光伏逆变器惯量补偿控制方法

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106356884B (zh) * 2016-09-09 2019-08-09 许继集团有限公司 一种基于虚拟同步机的光伏并网控制方法、装置及系统
CN107196341B (zh) * 2017-07-10 2020-08-21 华北电力大学(保定) 变功率点跟踪的两级式无储能光伏虚拟同步机控制方法
CN109586343A (zh) * 2018-12-29 2019-04-05 国网天津市电力公司电力科学研究院 基于虚拟同步发电机控制的光伏-储能发电系统及方法
CN109861279A (zh) * 2019-01-24 2019-06-07 太原理工大学 一种适用于虚拟同步发电机的转动惯量自适应控制方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106208159A (zh) * 2016-07-27 2016-12-07 合肥工业大学 基于虚拟同步发电机的柴储混合独立微网动态功率补偿方法
CN106786795A (zh) * 2016-12-16 2017-05-31 辽宁科技学院 一种基于虚拟同步发电机的分布式光伏发电系统控制策略
JP2019004571A (ja) * 2017-06-13 2019-01-10 株式会社日立製作所 新エネルギー源統合電力変換装置
US20190222026A1 (en) * 2018-01-14 2019-07-18 Qingchang ZHONG Reconfiguration of Inertia, Damping and Fault Ride-Through for a Virtual Synchronous Machine
CN108683213A (zh) * 2018-05-23 2018-10-19 上海电力学院 基于虚拟同步发电机转子惯性功率解耦的惯性补偿器
CN110601257A (zh) * 2019-09-05 2019-12-20 复旦大学 一种基于光伏超配的主动式光伏逆变器惯量补偿控制方法

Also Published As

Publication number Publication date
CN110601257A (zh) 2019-12-20
CN110601257B (zh) 2022-11-18

Similar Documents

Publication Publication Date Title
CN110970933B (zh) 基于主动支撑控制的光储联合发电系统虚拟惯量补偿方法
Wang et al. Grid-connected wind farm power control using VRB-based energy storage system
CN108683213B (zh) 基于虚拟同步发电机转子惯性功率解耦的惯性补偿器
CN108683212B (zh) 一种基于功率解耦的混合储能型虚拟同步发电机控制方法
US11509262B2 (en) Photovoltaic power generation virtual inertia compensation system and method based on super capacitor energy storage
Wang et al. Energy storage based LVRT and stabilizing power control for direct-drive wind power system
CN110957763A (zh) 一种两级式光伏并网发电系统及其控制方法
Kollimalla et al. A new control strategy for interfacing battery supercapacitor storage systems for PV system
Changizian et al. Three-phase multistage system (DC-AC-DC-AC) for connecting solar cells to the grid
Xing et al. Research on the MPPT control simulation of wind and photovoltaic complementary power generation system
Khoucha et al. An improved MPPT interleaved boost converter for solar electric vehicle application
Korada et al. Dynamic energy management in DC microgrid using composite energy storage system
CN113890085B (zh) 一种光伏电站无通讯分散式频率支撑方法及系统
WO2021043238A1 (zh) 一种基于光伏超配的主动式光伏逆变器惯量补偿控制方法
Chuang et al. Research on photovoltaic grid-connected control of Z source inverter based on active disturbance rejection technology
CN116914791A (zh) 基于混合储能系统在微网系统的功率流动逻辑控制方法
Ou et al. A multi-input power converter for hybrid renewable energy generation system
Lan et al. Constant frequency control strategy of microgrids by coordinating energy router and energy storage system
Tian et al. Two-stage PV grid-connected control strategy based on adaptive virtual inertia and damping control for DC-link capacitor dynamics self-synchronization
Van Tan Nguyen et al. Stability analysis of an isolated microgrid with the presence of the hybrid energy storage system-based virtual synchronous generator
Osman et al. Microcontroller based solar battery charging system with MPPT features at low irradiance condition
Honghai et al. Research of super capacitor energy storage system based on DG connected to power grid
Liu et al. A compact seven switches topology and reduced DC-link capacitor size for single-phase stand-alone PV system with hybrid energy storages
Elamathy et al. Multiport DC-DC interleaved boost converter supplemented by hybrid system of different capacities PV and battery power system
Zhang et al. Design of energy storage photovoltaic power generation device and neural network method for photovoltaic power prediction

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20859690

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20859690

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 20859690

Country of ref document: EP

Kind code of ref document: A1

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 22/05/2023)

122 Ep: pct application non-entry in european phase

Ref document number: 20859690

Country of ref document: EP

Kind code of ref document: A1