WO2021043199A1 - 用于移动终端的nfc天线和nfc通信装置 - Google Patents

用于移动终端的nfc天线和nfc通信装置 Download PDF

Info

Publication number
WO2021043199A1
WO2021043199A1 PCT/CN2020/113175 CN2020113175W WO2021043199A1 WO 2021043199 A1 WO2021043199 A1 WO 2021043199A1 CN 2020113175 W CN2020113175 W CN 2020113175W WO 2021043199 A1 WO2021043199 A1 WO 2021043199A1
Authority
WO
WIPO (PCT)
Prior art keywords
nfc
antenna
end point
fpc
mobile terminal
Prior art date
Application number
PCT/CN2020/113175
Other languages
English (en)
French (fr)
Inventor
张盛强
Original Assignee
Oppo广东移动通信有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from CN201910833232.8A external-priority patent/CN110504524A/zh
Priority claimed from CN201921475237.XU external-priority patent/CN210535807U/zh
Application filed by Oppo广东移动通信有限公司 filed Critical Oppo广东移动通信有限公司
Priority to EP20859979.5A priority Critical patent/EP4007065A4/en
Publication of WO2021043199A1 publication Critical patent/WO2021043199A1/zh
Priority to US17/677,562 priority patent/US11978952B2/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B5/00Near-field transmission systems, e.g. inductive or capacitive transmission systems
    • H04B5/20Near-field transmission systems, e.g. inductive or capacitive transmission systems characterised by the transmission technique; characterised by the transmission medium
    • H04B5/24Inductive coupling
    • H04B5/26Inductive coupling using coils
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/36Structural form of radiating elements, e.g. cone, spiral, umbrella; Particular materials used therewith
    • H01Q1/38Structural form of radiating elements, e.g. cone, spiral, umbrella; Particular materials used therewith formed by a conductive layer on an insulating support
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B5/00Near-field transmission systems, e.g. inductive or capacitive transmission systems
    • H04B5/40Near-field transmission systems, e.g. inductive or capacitive transmission systems characterised by components specially adapted for near-field transmission
    • H04B5/43Antennas
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/12Supports; Mounting means
    • H01Q1/22Supports; Mounting means by structural association with other equipment or articles
    • H01Q1/24Supports; Mounting means by structural association with other equipment or articles with receiving set
    • H01Q1/241Supports; Mounting means by structural association with other equipment or articles with receiving set used in mobile communications, e.g. GSM
    • H01Q1/242Supports; Mounting means by structural association with other equipment or articles with receiving set used in mobile communications, e.g. GSM specially adapted for hand-held use
    • H01Q1/243Supports; Mounting means by structural association with other equipment or articles with receiving set used in mobile communications, e.g. GSM specially adapted for hand-held use with built-in antennas

Definitions

  • This application relates to the field of terminal technology, and in particular to an NFC antenna and NFC communication device for a mobile terminal.
  • NFC Near Field Communication
  • NFC antennas In order to meet the various needs of users for NFC and to adapt to the increasingly complex environment of mobile terminals, the form of NFC antennas is constantly changing. There are two common NFC antennas: NFC coil antennas and NFC diversity antennas.
  • This application aims to solve one of the technical problems in the related technology at least to a certain extent.
  • the present application proposes an NFC antenna and an NFC communication device for a mobile terminal, so as to effectively reduce the occupied area of the NFC antenna and reduce the impact on the performance of the main antenna.
  • An embodiment of the first aspect of the present application proposes an NFC antenna for a mobile terminal, including: a substrate, a ferrite disposed on the substrate, and a first FPC antenna disposed on the ferrite.
  • the first FPC antenna includes a first end point and a second end point.
  • the embodiment of the second aspect of the present application proposes an NFC communication device for a mobile terminal, including: the NFC antenna for the mobile terminal proposed in the embodiment of the first aspect of the present application, a matching network connected to the NFC antenna, and Match the NFC chip connected to the network.
  • the NFC communication device of the mobile terminal of the embodiment of the present application can effectively reduce the occupied area of the NFC antenna by adopting one FPC antenna for radiation, and at the same time, it has strong applicability in an increasingly complex mobile terminal antenna environment.
  • a separate FPC antenna is used for radiation and is not shared with the main antenna.
  • a certain distance can be avoided to reduce the impact on the performance of the main antenna.
  • the use of large inductance can also be avoided, which is conducive to device layout.
  • FIG. 1 is a schematic structural diagram of an NFC antenna for a mobile terminal according to Embodiment 1 of this application;
  • FIG. 2 is a schematic diagram of a top view of an NFC antenna in an embodiment of the application
  • Fig. 3 is a schematic diagram of a magnetic field generated by an NFC antenna in an embodiment of the application
  • FIG. 4 is a schematic structural diagram of an NFC antenna for a mobile terminal according to Embodiment 2 of the application;
  • FIG. 5 is a first schematic diagram of a side view of the NFC antenna in an embodiment of the application.
  • FIG. 6 is a second schematic diagram of a side view of the NFC antenna in an embodiment of the application.
  • FIG. 7 is a schematic structural diagram of an NFC communication device for a mobile terminal according to Embodiment 3 of this application.
  • FIG. 8 is a schematic diagram of the structure of the NFC communication device provided in the fourth embodiment of the application.
  • FIG. 9 is a schematic diagram of the structure of the NFC communication device provided in the fifth embodiment of the application.
  • a near field communication NFC antenna for a mobile terminal includes a substrate 10, a ferrite 20 disposed on the substrate 10, and a first flexible antenna 20 disposed on the ferrite 20.
  • Circuit board FPC antenna 30 The first FPC antenna 30 includes a first end point and a second end point.
  • the first terminal A is a feeding terminal
  • the second terminal B is a grounding point.
  • the length of the first FPC antenna 30 is greater than the length of the ferrite 20 so that the first end and the second end are suspended relative to the substrate 10.
  • the NFC communication device further includes: a second FPC antenna 40, and the second FPC antenna 40 includes a third terminal and a fourth terminal.
  • the second terminal and the fourth terminal are connected.
  • the first end point corresponds to the third end point
  • the second end point corresponds to the fourth end point
  • the first FPC antenna 30 and the second FPC antenna 40 are not overlapped.
  • the second FPC antenna 40 is located between the substrate 10 and the ferrite 20.
  • the second FPC antenna 40 and the first FPC antenna 30 are located on both sides of the substrate 10 respectively.
  • the NFC antenna may be in the shape of "one", “L”, “ ⁇ ” or “U”.
  • the NFC communication device for a mobile terminal of the present application includes: an NFC antenna 100, a matching network 200 connected to the NFC antenna 100, and an NFC chip 200 connected to the matching network.
  • the NFC antenna 100 includes a substrate 10, a ferrite 20 provided on the substrate 10, and a first flexible circuit board FPC antenna 30 provided on the ferrite 20.
  • the first FPC antenna 30 includes a first end point and a second end point;
  • the first terminal A is a feeding terminal
  • the second terminal B is a grounding point.
  • the length of the first FPC antenna 30 is greater than the length of the ferrite 20 so that the first end and the second end are suspended relative to the substrate 10.
  • the NFC communication device further includes: a second FPC antenna 40, and the second FPC antenna 40 includes a third terminal and a fourth terminal.
  • the second terminal and the fourth terminal are connected.
  • the first end point corresponds to the third end point
  • the second end point corresponds to the fourth end point
  • the first FPC antenna 30 and the second FPC antenna 40 are not overlapped.
  • the second FPC antenna 40 is located between the substrate 10 and the ferrite 20.
  • the second FPC antenna 40 and the first FPC antenna 30 are located on both sides of the substrate 10 respectively.
  • the NFC antenna may be in the shape of "one", “L”, “ ⁇ ” or “U”.
  • NFC work modes mainly include three types: reader mode, card emulation mode, and point-to-point mode.
  • NFC Research Framework A Literature Review And Future Research Directions
  • the statistical results show that in the four research fields, NFC applications and services accounted for the largest proportion, reaching 40.54%, and the most studied mode was the reader read-write mode, reaching 51.35%.
  • the results show that in the current research field of NFC technology, the research of NFC application is a mainstream trend and has a relatively broad application prospect.
  • NFC technology is inseparable from the rapid development of current mobile terminals with NFC functions.
  • mobile terminals with NFC functions such as smart phones
  • NFC-enabled mobile phones have an increasing market share.
  • NFC-enabled mobile phones accounted for more than 60%.
  • mainstream applications mainly include the following aspects:
  • NFC In terms of mobile payment, NFC started late in China, while in Japan, South Korea and other countries, NFC technology has occupied a huge market in mobile payment. In recent years, my country has also introduced a series of policies to encourage the application of NFC technology in the field of mobile payment. Using NFC-enabled mobile phones as "electronic wallets" can simplify the payment process and make payments more secure, reliable and efficient.
  • NFC technology has a wide range of applications in access control, logistics, attendance, inspection and other fields due to its two-way authentication characteristics.
  • Some building access control systems have added the NFC recognition function, and residents can use smart wearable devices such as mobile phones or bracelets with NFC functions to open the access control.
  • Another important application for identity authentication is electronic business cards. When two NFC-enabled mobile phones are close, the function of exchanging business cards can be realized, which is fast and efficient, and can also avoid problems such as loss and wear of traditional business cards.
  • NFC technology can carry out fast communication with mobile terminals, and has a shorter transmission distance and a higher security level. Therefore, NFC technology has a wide range of applications in the fields of electronic tickets, smart homes, private file transfers, games, and social networks.
  • NFC antennas In the prior art, in order to meet the various needs of users for NFC and to adapt to the increasingly complex environment of mobile terminals, the form of NFC antennas is constantly changing. There are two common NFC antennas: NFC coil antennas (such as Huawei 8, Huawei Mate 20 Pro, etc.) and NFC diversity antennas (such as Honor 9, Huawei 9, etc., Apple’s patent CN 105940550, etc.).
  • the NFC coil antenna is a single-layer coil, which has strict requirements on the size of the coil (for example, the coil area of Huawei Mate 20 Pro is 36*31.5mm2, and the coil area of Huawei Mate 20 Pro is 46.6*40mm2), and the current mobile terminal needs to add a 5G antenna , It is difficult to guarantee the required area of the NFC coil antenna; the NFC diversity antenna shares the metal frame with the main antenna of the mobile terminal. It not only needs the metal frame, but also affects the performance of the main antenna, causing its power to drop by about 1.5dB. The mutual influence between the small main antenna and the NFC diversity antenna requires a large inductor to be added to the shared feed end, which is not conducive to device layout.
  • this application mainly aims at the technical problems existing in the above-mentioned NFC coil antenna and NFC diversity antenna in the prior art, and proposes an NFC antenna for a mobile terminal.
  • the NFC antenna used in the mobile terminal of the embodiment of the present application can effectively reduce the occupied area of the NFC antenna by using one FPC antenna for radiation, and at the same time, it has strong applicability in an increasingly complex mobile terminal antenna environment.
  • a separate FPC antenna is used for radiation and is not shared with the main antenna. In the design process, a certain distance can be avoided to reduce the impact on the performance of the main antenna. In addition, the use of large inductance can also be avoided, which is conducive to device layout.
  • FPC refers to the abbreviation of Flexible Printed Circuit.
  • FIG. 1 is a schematic structural diagram of an NFC antenna for a mobile terminal provided in Embodiment 1 of this application.
  • the mobile terminal may be, for example, a mobile phone, a tablet computer, a personal digital assistant, a wearable device, a vehicle-mounted device, and other hardware devices with various operating systems, touch screens, and/or display screens.
  • the NFC antenna for a mobile terminal includes: a substrate 10, a ferrite 20 arranged on the substrate 10, and a first FPC antenna 30 arranged on the ferrite 20.
  • An FPC antenna 30 includes a first end and a second end. It should be noted that FIG. 1 only uses the side view of the NFC antenna as an example.
  • the NFC antenna includes a first FPC antenna 30, and the first FPC antenna 30 is a radiator of the NFC antenna, which produces NFC performance.
  • the two ends of the first FPC antenna 30 are respectively connected to the feeding network and the metal ground.
  • the first end of the first FPC antenna 30 may be the feeding end, and the second end may be the grounding point, or the first end
  • the first end of an FPC antenna 30 may be a grounding point, and the second end may be a feeding point.
  • the current provided by the feeder network flows into the feeder and generates a current from the feeder to the ground point, thereby generating a magnetic field.
  • FIG. 2 is a schematic diagram of a top view of an NFC antenna in an embodiment of the application.
  • the end point A is the feeding end and is connected to the feeding network
  • the end point B is the grounding point and is connected to the metal ground.
  • the NFC antenna may further include a ferrite 20, where the ferrite 20 can shield the influence of the metal environment under the substrate 10 on the NFC performance, and can ensure the normal NFC performance.
  • the NFC antenna may also include a substrate 10, where the substrate 10 may also be called a support plate, which mainly functions to support the NFC antenna.
  • the main board can be used to support the board, the battery, or the upper layer of graphite or glue.
  • the first FPC antenna 30 and the ferrite 20 are pasted on the rear case of the battery.
  • the substrate 10 may be a battery back cover.
  • the NFC antenna of the embodiment of the present application only uses one FPC antenna for radiation, which can effectively reduce the occupied area of the NFC antenna, and at the same time, it has strong applicability in an increasingly complex mobile terminal antenna environment.
  • a separate FPC antenna is used for radiation and is not shared with the main antenna. In the design process, a certain distance can be avoided to reduce the impact on the performance of the main antenna, and at the same time, the use of large inductance can be avoided, which is conducive to device layout.
  • the form of the NFC antenna in this application is a single wire, which is different from the traditional coil NFC antenna and the diversity shared NFC antenna, which can effectively reduce the area of the NFC antenna and avoid the influence of the NFC antenna on the main antenna of the mobile terminal.
  • Fig. 1 and Fig. 2 only take the NFC antenna as the "one" type as an example.
  • the NFC antenna can also be an "L” type, or the NFC antenna can also be a " ⁇ ” type.
  • the NFC antenna can also be a "U” type, etc., which is not limited in this application.
  • the NFC antenna used in the mobile terminal of the embodiment of the present application can effectively reduce the occupied area of the NFC antenna by using one FPC antenna for radiation, and at the same time, it has strong applicability in an increasingly complex mobile terminal antenna environment.
  • a separate FPC antenna is used for radiation and is not shared with the main antenna. In the design process, a certain distance can be avoided to reduce the impact on the performance of the main antenna. In addition, the use of large inductance can also be avoided, which is conducive to device layout.
  • NFC antennas there are many ways to feed NFC antennas, either single-ended feeding (or unbalanced feeding) as shown in Figure 1 and Figure 2, or differential feeding (Alternatively referred to as balanced feeding), the differential feeding will be described in detail below with reference to FIG. 4.
  • FIG. 4 is a schematic diagram of the structure of the NFC antenna for the mobile terminal provided in the second embodiment of the application.
  • the NFC antenna for the mobile terminal may further include: a second FPC antenna 40.
  • the second FPC antenna 40 plays a role of conducting current, and may include a third terminal and a fourth terminal. It should be noted that FIG. 4 only uses the side view of the NFC antenna as an example, and the second FPC antenna 40 and the first FPC antenna 30 are respectively located on both sides of the substrate 10 for example.
  • the first FPC antenna 30 is the main radiation area
  • the second FPC antenna 40 is the conduction area (mainly plays a role of conducting current).
  • the second FPC antenna 40 may be located under the substrate 10, that is, the second FPC antenna 40 and the first FPC antenna 30 may be located on both sides of the substrate 10, respectively.
  • the second FPC antenna 40 may be a wiring on the main board placed under the substrate 10 or an FPC wiring placed under the main board pressure plate support.
  • first end point may correspond to the third end point
  • second end point may correspond to the fourth end point
  • the first end point and the third end point may be connected to two output ports of the feeder network, that is, the first end point and the third end point may be feeder ends.
  • the feeder network supplies power
  • a current of the first end ⁇ the second end ⁇ the fourth end ⁇ the third end is generated, thereby generating a magnetic field.
  • the second end is connected to the fourth end, such as the second end and the fourth end.
  • the endpoints can be connected by connectors (metal shrapnel, etc.).
  • the second end point and the fourth end point may be connected to two output ports of the feeder network, that is, the second end point and the second end point may be feeder ends.
  • the feed network supplies power
  • a current of the second end ⁇ the first end ⁇ the third end ⁇ the fourth end will be generated, thereby generating a magnetic field.
  • the first end and the third end are connected, such as the first end and the third end.
  • the third end can be connected by a connector (metal shrapnel, etc.).
  • FIG. 5 is a first schematic diagram of a side view of an NFC antenna in an embodiment of the application.
  • the second FPC antenna 40 and the first FPC antenna 30 are respectively located on both sides of the substrate 10.
  • the first end is taken as the end point A
  • the second end is taken as the end point B for example
  • the end point A is used as the feeding end to connect to the feeder network
  • the end point B is the grounding point
  • the metal ground is connected
  • the third end is The end point A'is connected to the feeder network
  • the fourth end point is the end point B'for example.
  • the first FPC antenna 30 of section AB is the main radiation area
  • the second FPC antenna 40 of section A'B' is the conduction area (mainly plays a role of conducting current).
  • the terminal A and the terminal A' are connected to the two output ports of the feeding network, and the terminal B and the terminal B'are connected by connectors (metal shrapnel, etc.).
  • the second FPC antenna 40 may also be located between the substrate 10 and the ferrite 20.
  • the second FPC antenna 40 and the first FPC antenna 30 may not be overlapped, that is, they may be staggered and cannot be overlapped vertically. Therefore, by not overlapping the second FPC antenna 40 and the first FPC antenna 30, the generated magnetic field can be superimposed, which can increase the intensity of the magnetic field and improve the NFC performance.
  • the second FPC antenna 40 can also be overlapped with the first FPC antenna 30, which is not limited in this application.
  • FIG. 6 is a second schematic diagram of a side view of the NFC antenna in an embodiment of this application.
  • the second FPC antenna 40 is located between the substrate 10 and the ferrite 20.
  • Fig. 6 the same example takes the first end point as end point A, the second end point as end point B, and end point A as the feeding end to connect to the feeder network, end B as the grounding point, connecting to the metal ground, and the third end point For the end point A', connect the feeder network, and the fourth end point is the end point B'for example.
  • the first FPC antenna 30 of section AB is the main radiation area
  • the second FPC antenna 40 of section A'B' is the conduction area (mainly plays a role of conducting current).
  • a current of A ⁇ B ⁇ B' ⁇ A' will be generated, thereby generating a magnetic field.
  • the NFC antenna of the embodiment of the present application adopts a differential feeding mode.
  • the generated magnetic field can be superimposed, which can increase the magnetic field strength and improve the NFC performance.
  • there are various feeding modes either conventional differential feeding or single-ended feeding can be used, and the selectivity is diverse, which can improve the applicability of the NFC antenna.
  • the length of the first FPC antenna 30 is greater than the length of the ferrite 20 as an example.
  • the first end point and the second end point can be suspended relative to the substrate 10.
  • the present application does not limit the length of the first FPC antenna 30 and the length of the ferrite 20.
  • the length of the ferrite 20 may also be greater than the length of the first FPC antenna 30.
  • the ferrite 20 may be punched at the end of the first FPC antenna 30, so that the first FPC antenna 30 can be connected to the first FPC antenna 30.
  • the NFC chip is connected, or the first FPC antenna 30 is connected to the second FPC antenna.
  • the ferrite 20 can be punched at the second end of the first FPC antenna 30, so that the second end and the second FPC The fourth end of the antenna 40 is connected.
  • the length of the first FPC antenna 30 and the second FPC antenna 40 may be the same, or they may be different. This application does not limit this. In the above embodiment, only the first FPC antenna 30 and the second FPC antenna 40 The length of the second FPC antenna 40 is the same for example.
  • this application also proposes an NFC communication device for a mobile terminal.
  • FIG. 7 is a schematic structural diagram of an NFC communication device for a mobile terminal according to Embodiment 3 of this application.
  • the NFC communication device for a mobile terminal includes: the NFC antenna 100 for the mobile terminal proposed in any of the foregoing embodiments, the matching network 200 connected to the NFC antenna 100, and the matching network 200 connected to the matching network 200. NFC chip 300.
  • the NFC communication function can be realized.
  • FIG. 8 is a schematic structural diagram of the NFC communication device provided in the fourth embodiment of this application.
  • single-ended feeding is used as an example, and the NFC chip is an NFC integrated circuit (Integrated Circuit, IC for short).
  • the NFC IC is connected to the matching network, and the matching network is connected to the NFC antenna feed point, for example,
  • the matching network can be connected to the end point A or the end point B in FIG. 2.
  • the NFC communication function can be realized.
  • the single-ended feeding is unbalanced feeding, and the output of the NFC antenna is a balanced signal.
  • the balanced signal can be converted into an unbalanced signal by a balanced-unbalanced converter in the matching network.
  • FIG. 9 is a schematic structural diagram of the NFC communication device provided in Embodiment 5 of this application.
  • the differential feed is used as an example
  • the NFC chip is the NFC IC.
  • the NFC IC is connected to the matching network, and the matching network is connected to the NFC antenna feed point.
  • the matching network can be connected to Figure 5 or Figure 6.
  • the end point A in is connected to the end point A', or the end point B and the end point B'are connected.
  • the NFC communication function can be realized.
  • the NFC communication device for a mobile terminal can effectively reduce the occupied area of the NFC antenna by using one FPC antenna for radiation. At the same time, it has strong applicability in an increasingly complex mobile terminal antenna environment.
  • a separate FPC antenna is used for radiation and is not shared with the main antenna. In the design process, a certain distance can be avoided to reduce the impact on the performance of the main antenna. In addition, the use of large inductance can also be avoided, which is conducive to device layout.
  • first and second are only used for descriptive purposes, and cannot be understood as indicating or implying relative importance or implicitly indicating the number of indicated technical features. Therefore, the features defined with “first” and “second” may explicitly or implicitly include at least one of the features. In the description of the present application, "a plurality of” means at least two, such as two, three, etc., unless specifically defined otherwise.
  • a "computer-readable medium” can be any device that can contain, store, communicate, propagate, or transmit a program for use by an instruction execution system, device, or device or in combination with these instruction execution systems, devices, or devices.
  • computer readable media include the following: electrical connections (electronic devices) with one or more wiring, portable computer disk cases (magnetic devices), random access memory (RAM), Read only memory (ROM), erasable and editable read only memory (EPROM or flash memory), fiber optic devices, and portable compact disk read only memory (CDROM).
  • the computer-readable medium may even be paper or other suitable medium on which the program can be printed, because it can be used, for example, by optically scanning the paper or other medium, followed by editing, interpretation, or other suitable media if necessary. The program is processed in a way to obtain the program electronically and then stored in the computer memory.
  • each part of this application can be implemented by hardware, software, firmware, or a combination thereof.
  • multiple steps or methods can be implemented by software or firmware stored in a memory and executed by a suitable instruction execution system.
  • Discrete logic gate circuits with logic functions for data signals Logic circuit, application specific integrated circuit with suitable combinational logic gate circuit, programmable gate array (PGA), field programmable gate array (FPGA), etc.
  • a person of ordinary skill in the art can understand that all or part of the steps carried in the method of the foregoing embodiments can be implemented by a program instructing relevant hardware to complete.
  • the program can be stored in a computer-readable storage medium, and the program can be stored in a computer-readable storage medium. When executed, it includes one of the steps of the method embodiment or a combination thereof.
  • each functional unit in each embodiment of the present application may be integrated into one processing module, or each unit may exist alone physically, or two or more units may be integrated into one module.
  • the above-mentioned integrated modules can be implemented in the form of hardware or software function modules. If the integrated module is implemented in the form of a software function module and sold or used as an independent product, it can also be stored in a computer readable storage medium.
  • the aforementioned storage medium may be a read-only memory, a magnetic disk or an optical disk, etc.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Telephone Set Structure (AREA)

Abstract

一种用于移动终端的NFC天线(100)和NFC通信装置。其中,NFC天线100包括:基板(10)、设置在基板(10)之上的铁氧体(20)和设置在铁氧体(20)之上的第一柔性电路板FPC天线(30)。其中,第一FPC天线(30)包括第一端点和第二端点。

Description

用于移动终端的NFC天线和NFC通信装置
优先权信息
本申请请求2019年9月04日向中国国家知识产权局提交的、专利申请号为201910833232.8和201921475237.X的专利申请的优先权和权益,并且通过参照将其全文并入此处。
技术领域
本申请涉及终端技术领域,特别涉及一种用于移动终端的NFC天线和NFC通信装置。
背景技术
目前,近场通信(Near Field Communication,简称NFC)技术在移动终端(例如手机、穿戴式设备等)不断普及,促使各大移动互联网公司主动研发NFC应用,推动NFC技术的不断发展。在NFC应用领域,主要包括以下几方面的应用:移动支付方面、公共交通方面、身份识别方面以及智能通信方面。
为了满足用户对NFC的各种需求,同时适应移动终端越来越复杂的整机环境,NFC天线的形式不断变化,常见的有以下两种NFC天线:NFC线圈天线和NFC分集天线。
发明内容
本申请旨在至少在一定程度上解决相关技术中的技术问题之一。
为此,本申请提出一种用于移动终端的NFC天线和NFC通信装置,以实现有效减小NFC天线的占用面积,降低对主天线性能的影响。
本申请第一方面实施例提出了一种用于移动终端的NFC天线,包括:基板、设置在所述基板之上的铁氧体和设置在所述铁氧体之上的第一FPC天线。其中,所述第一FPC天线包括第一端点和第二端点。
本申请第二方面实施例提出了一种移动终端的NFC通信装置,包括:本申请第一方面实施例提出的用于移动终端的NFC天线、与所述NFC天线相连的匹配网络和与所述匹配网络相连的NFC芯片。
本申请实施例的移动终端的NFC通信装置,通过采用一条FPC天线进行辐射,可以有效减小NFC天线的占用面积,同时在越来越复杂的移动终端天线环境中,适用性较强。并且,采用单独的FPC天线进行辐射,没有与主天线共用,在设计过程中,可以通过避让一定距离来降低对主天线性能的影响,此外,还可以避免采用大电感,利于器件布局。
本申请附加的方面和优点将在下面的描述中部分给出,部分将从下面的描述中变得明显,或通过本申请的实践了解到。
附图说明
本申请上述的和/或附加的方面和优点从下面结合附图对实施例的描述中将变得明显和容易理解,其中:
图1为本申请实施例一所提供的用于移动终端的NFC天线的结构示意图;
图2为本申请实施例中NFC天线的俯视图示意图;
图3为本申请实施例中NFC天线产生的磁场示意图;
图4为本申请实施例二所提供的用于移动终端的NFC天线的结构示意图;
图5为本申请实施例中NFC天线的侧视图示意图一;
图6为本申请实施例中NFC天线的侧视图示意图二;
图7为本申请实施例三所提供的用于移动终端的NFC通信装置的结构示意图;
图8为本申请实施例四所提供的NFC通信装置的结构示意图;
图9为本申请实施例五所提供的NFC通信装置的结构示意图。
具体实施方式
下面详细描述本申请的实施例,所述实施例的示例在附图中示出,其中自始至终相同或类似的标号表示相同或类似的元件或具有相同或类似功能的元件。下面通过参考附图描述的实施例是示例性的,旨在用于解释本申请,而不能理解为对本申请的限制。
请参阅图1,在某些实施方式中,用于移动终端的近场通信NFC天线包括基板10、设置在基板10之上的铁氧体20和设置在铁氧体20之上的第一柔性电路板FPC天线30。其中,第一FPC天线30包括第一端点和第二端点。
请参阅图2,在某些实施方式中,第一端点A为馈电端,第二端点B为接地点。
在某些实施方式中,第一FPC天线30的长度大于铁氧体20的长度,以使第一端点和第二端点相对于基板10悬空。
请参阅图4,在某些实施方式中,NFC通信装置还包括:第二FPC天线40,第二FPC天线40包括第三端点和第四端点。
在某些实施方式中,第二端点和第四端点相连。
在某些实施方式中,第一端点与第三端点对应,第二端点与第四端点对应。
在某些实施方式中,第一FPC天线30与第二FPC天线40未重叠设置。
请参阅图6,在某些实施方式中,第二FPC天线40位于基板10和铁氧体20之间。
请参阅图5,在某些实施方式中,第二FPC天线40和第一FPC天线30分别位于基板10的两侧。
在某些实施方式中,NFC天线可以为“一”字型、“L”型、“匚”型或“U”型。
请参阅图1和图7,本申请的用于移动终端的NFC通信装置包括:NFC天线100、与NFC天线100相连的匹配网络200和与匹配网络相连的NFC芯片200。NFC天线100包括:基板10、设置在基板10 之上的铁氧体20和设置在铁氧体20之上的第一柔性电路板FPC天线30。其中,第一FPC天线30包括第一端点和第二端点;
请参阅图2,在某些实施方式中,第一端点A为馈电端,第二端点B为接地点。
在某些实施方式中,第一FPC天线30的长度大于铁氧体20的长度,以使第一端点和第二端点相对于基板10悬空。
请参阅图4,在某些实施方式中,NFC通信装置还包括:第二FPC天线40,第二FPC天线40包括第三端点和第四端点。
在某些实施方式中,第二端点和第四端点相连。
在某些实施方式中,第一端点与第三端点对应,第二端点与第四端点对应。
在某些实施方式中,第一FPC天线30与第二FPC天线40未重叠设置。
请参阅图6,在某些实施方式中,第二FPC天线40位于基板10和铁氧体20之间。
请参阅图5,在某些实施方式中,第二FPC天线40和第一FPC天线30分别位于基板10的两侧。
在某些实施方式中,NFC天线可以为“一”字型、“L”型、“匚”型或“U”型。
近年来,NFC技术的研究主要分布在四个领域内,包括NFC的理论与发展、NFC基础研究、NFC应用和服务研究、NFC应用环境研究等。NFC工作模式主要包括三种:读写器模式,卡模拟模式,以及点对点模式。
文献《NFC Research Framework:A Literature Review And Future Research Directions》统计了关于NFC技术的文章在2006年至2010年内于各大期刊和会议的发表情况,其中,统计结果显示:在四个研究领域中,占比最大的为NFC应用和服务领域,达到40.54%,而模式研究最多的为阅读器读写模式,达到51.35%。结果表明,目前在NFC技术研究领域中,NFC应用的研究呈主流趋势,有较为广阔的应用前景。
NFC技术的广泛应用离不开当前具有NFC功能的移动终端的迅速发展。目前,具有NFC功能的移动终端,例如智能手机在市场占有率不断增加,2017年统计的智能手机的总出货量中,具备NFC功能的手机的占比超过六成。随着NFC技术在移动终端的不断普及,促使各大移动互联网公司主动研发NFC应用,从而推动了NFC技术的发展。目前,在NFC应用领域,主流的应用主要有以下几方面:
移动支付方面,NFC在国内起步较晚,而在日韩等国家,NFC技术在移动支付占据了极大的市场。我国近年来也推出一系列政策鼓励NFC技术在移动支付领域的应用,将具有NFC功能的手机用作“电子钱包”,可以简化付款流程,使支付更加安全、可靠和高效。
公共交通方面,北京公交和地铁己经实现了“刷手机”功能,操作过程无需连接网络,具有NFC功能的手机在关机的情况下也可刷卡,大大方便了人们的出行。在共享单车领域,摩拜单车与ofo共享单车也先后实现了NFC开锁功能,用户可以使用手机迅速开锁,解决了条码开锁遇到的安全问题,操作更加便捷。
身份识别方面,NFC技术由于其双向鉴权的特点,在门禁、物流、考勤、巡检等领域都有广泛的应用。一些楼宇的门禁系统加入NFC识别功能,住户可以使用带有NFC功能的手机或手环等智能穿戴设备打开门禁。在身份认证方面另一个重要应用是电子名片,当两个具有NFC功能的手机靠近时,就可以实现交换名片的功能,快速高效,还可以避免传统名片丢失、磨损等问题。
智能通信方面,NFC技术可以进行移动终端的快速通信,且传输距离较短,安全等级较高。因此,在电子门票、智能家居、私密文件传输、游戏、社交网络等领域,NFC技术都有比较广泛的应用。
现有技术中,为了满足用户对NFC的各种需求,同时适应移动终端越来越负杂的整机环境,NFC天线的形式不断变化,常见的有以下两种NFC天线:NFC线圈天线(如小米8、华为mate 20 Pro等)和NFC分集天线(如荣耀9、小米9等,苹果公司的专利CN 105940550等)。
然而,NFC线圈天线为单层线圈,对线圈的尺寸要求严苛(如小米8线圈面积为36*31.5mm2,华为Mate 20 Pro线圈面积为46.6*40mm2),而现在的移动终端需要添加5G天线,很难保证NFC线圈天线的所需面积;NFC分集天线,与移动终端主天线共用金属边框,不仅需要金属边框,而且会影响主天线的性能,使其功率下降1.5dB左右,并且,为了减小主天线与NFC分集天线之间的相互影响,需要在共用馈电端添加一个大电感,不利于器件布局。
因此,本申请主要针对上述现有技术中NFC线圈天线和NFC分集天线存在的技术问题,提出一种用于移动终端的NFC天线。
本申请实施例的用于移动终端的NFC天线,通过采用一条FPC天线进行辐射,可以有效减小NFC天线的占用面积,同时在越来越复杂的移动终端天线环境中,适用性较强。并且,采用单独的FPC天线进行辐射,没有与主天线共用,在设计过程中,可以通过避让一定距离来降低对主天线性能的影响,此外,还可以避免采用大电感,利于器件布局。
下面参照附图来描述本申请实施例提出的用于移动终端的NFC天线和NFC通信装置。在具体描述本发明实施例之前,为了便于理解,首先对常用技术词进行介绍:
FPC,是指柔性电路板(Flexible Printed Circuit)的简称。
图1为本申请实施例一所提供的用于移动终端的NFC天线的结构示意图。
本申请实施例中,移动终端例如可以为手机、平板电脑、个人数字助理、穿戴式设备、车载设备等具有各种操作系统、触摸屏和/或显示屏的硬件设备。
如图1所示,该用于移动终端的NFC天线包括:基板10、设置在基板10之上的铁氧体20、以及设置在铁氧体20之上的第一FPC天线30,其中,第一FPC天线30包括第一端点和第二端点。需要说明的是,图1仅以NFC天线的侧视图进行示例。
本申请实施例中,NFC天线包括第一FPC天线30,第一FPC天线30为NFC天线的辐射体,产生NFC的性能。其中,第一FPC天线30的两个端点分别连接馈电网络和金属地,例如,第一FPC天线30中的第一端点可以为馈电端,第二端点可以为接地点,或者,第一FPC天线30中的第一端点可以为接地点,第二端点可以为馈电点。馈电网络提供的电流流入馈电端,会产生由馈电端 至接地点的电流,从而产生磁场。
作为一种示例,参见图2,图2为本申请实施例中NFC天线的俯视图示意图。以第一端点为端点A,第二端点为端点B进行示例,其中,端点A为馈电端,连接馈电网络,端点B为接地点,连接金属地。当馈电网络提供的电流流入端点A时,由于端点B接地,第一FPC天线30上会产生A→B的电流,从而产生如图3所示的磁场。
本申请实施例中,NFC天线还可以包括铁氧体20,其中,铁氧体20可以屏蔽基板10下方的金属环境对NFC性能的影响,可以保证NFC性能正常。
本申请实施例中,NFC天线还可以包括基板10,其中,基板10还可以称为支撑板,主要起到支撑NFC天线的作用,可以使主板压板支架、电池、或者采用石墨或胶将上层的第一FPC天线30和铁氧体20粘贴在电池后壳上。例如,基板10可以为电池后盖。
本申请实施例的NFC天线,仅采用一条FPC天线进行辐射,可以有效减小NFC天线的占用面积,同时在越来越复杂的移动终端天线环境中,适用性较强。并且,采用单独的FPC天线进行辐射,没有与主天线共用,在设计过程中,可以通过避让一定距离来降低对主天线性能的影响,同时还可以避免采用大电感,利于器件布局。也就是说,本申请中的NFC天线形式为单线,不同于传统的线圈NFC天线和分集共用NFC天线,既可以有效降低NFC天线的面积,又可以避免NFC天线对移动终端主天线的影响。
需要说明的是,图1和图2仅以NFC天线为“一”字型进行示例,实际应用时,该NFC天线还可以为“L”型,或者,该NFC天线还可以是“匚”型,或者该NFC天线还可以是“U”型等等,本申请对此并不做限制。
本申请实施例的用于移动终端的NFC天线,通过采用一条FPC天线进行辐射,可以有效减小NFC天线的占用面积,同时在越来越复杂的移动终端天线环境中,适用性较强。并且,采用单独的FPC天线进行辐射,没有与主天线共用,在设计过程中,可以通过避让一定距离来降低对主天线性能的影响,此外,还可以避免采用大电感,利于器件布局。
作为一种可能的实现方式,NFC天线的馈电方式具有多种,既可以采用如图1和图2所示的单端馈电(或者称为不平衡馈电),也可以采用差分馈电(或者称为平衡馈电),下面结合图4,对差分馈电进行详细说明。
图4为本申请实施例二所提供的用于移动终端的NFC天线的结构示意图。
如图4所示,在图1所示实施例的基础上,该用于移动终端的NFC天线还可以包括:第二FPC天线40。
其中,第二FPC天线40起到传导电流的作用,可以包括第三端点和第四端点。需要说明的是,图4仅以NFC天线的侧视图进行示例,并且,以第二FPC天线40和第一FPC天线30分别位于基板10的两侧进行示例。
本申请实施例中,在采用差分馈电时,第一FPC天线30为主辐射区,第二FPC天线40为传导区(主要起到传导电流的作用)。第二FPC天线40可以位于基板10下方,即第二FPC天线40 和第一FPC天线30可以分别位于基板10的两侧。例如,第二FPC天线40可以为置于基板10下方的主板上走线或者为置于主板压板支架下方的FPC走线。
其中,第一端点可以与第三端点对应,第二端点可以与第四端点对应。
作为一种可能的实现方式,第一端点与第三端点可以连接馈电网络的两个输出端口,即第一端点和第三端点可以为馈电端。当馈电网络供电时,会产生第一端点→第二端点→第四端点→第三端点的电流,从而产生磁场,其中,第二端点和第四端点相连,比如第二端点和第四端点可以采用连接器(金属弹片等)连通。
作为另一种可能的实现方式,第二端点与第四端点可以连接馈电网络的两个输出端口,即第二端点和第二端点可以为馈电端。当馈电网络供电时,会产生第二端点→第一端点→第三端点→第四端点的电流,从而产生磁场,其中,第一端点和第三端点相连,比如第一端点和第三端点可以采用连接器(金属弹片等)连通。
作为一种示例,参见图5,图5为本申请实施例中NFC天线的侧视图示意图一。其中,第二FPC天线40和第一FPC天线30分别位于基板10的两侧。
图5中,以第一端点为端点A,第二端点为端点B进行示例,并以端点A为馈电端,连接馈电网络,端点B为接地点,连接金属地,第三端点为端点A’,连接馈电网络,第四端点为端点B’进行示例。AB段的第一FPC天线30为主辐射区,A’B’段的第二FPC天线40为传导区(主要起到传导电流的作用)。端点A与端点A’连接馈电网络的两个输出端口,端点B与端点B’采用连接器(金属弹片等)连通。当馈电网络供电时,会产生A→B→B’→A’的电流,从而产生磁场。
需要说明的是,第二FPC天线40还可以位于基板10和铁氧体20之间。其中,第二FPC天线40可以与第一FPC天线30未重叠设置,即错开设置,不能上下重叠。由此,通过第二FPC天线40和第一FPC天线30未重叠设置,产生的磁场可以叠加,可以增加磁场强度,提高NFC性能。当然,第二FPC天线40也可以与第一FPC天线30重叠设置,本申请对此并不作限制。
作为另一种示例,参见图6,图6为本申请实施例中NFC天线的侧视图示意图二。其中,第二FPC天线40位于基板10和铁氧体20之间。
图6中,同样以第一端点为端点A,第二端点为端点B进行示例,并以端点A为馈电端,连接馈电网络,端点B为接地点,连接金属地,第三端点为端点A’,连接馈电网络,第四端点为端点B’进行示例。AB段的第一FPC天线30为主辐射区,A’B’段的第二FPC天线40为传导区(主要起到传导电流的作用)。端点A与端点A’连接馈电网络的两个输出端口,端点B与端点B’采用连接器(金属弹片等)连通。当馈电网络供电时,会产生A→B→B’→A’的电流,从而产生磁场。
需要说明的是,图5和图6中,仅以端点A与端点A’连接馈电网络,端点B与端点B’采用连接器(金属弹片等)连通进行示例,实际应用时,还可以将端点B与端点B’连接馈电网络,端点A与端点A’采用连接器(金属弹片等)连通,本申请对此并不作限制。
本申请实施例的NFC天线,通过采用差分馈电方式,当第二FPC天线40和第一FPC天线30 未重叠设置时,产生的磁场可以叠加,可以增加磁场强度,提高NFC性能。并且,本申请中,馈电方式多样,既可以采用常规的差分馈电,也可以采用单端馈电,选择性多样,可以提升该NFC天线的适用性。
需要说明的是,上述实施例中,为了便于理解,仅以第一FPC天线30的长度大于铁氧体20的长度进行示例,当第一FPC天线30的长度大于铁氧体20的长度时,可以使得第一端点和第二端点相对于基板10悬空。然而实际应用时,本申请对第一FPC天线30的长度与铁氧体20的长度并不做限制。例如,铁氧体20的长度还可以大于第一FPC天线30的长度,此时,可以在第一FPC天线30的端点处,将铁氧体20进行打孔,使得第一FPC天线30可以与NFC芯片相连,或者,使得第一FPC天线30与第二FPC天线相连,比如可以在第一FPC天线30的第二端点处,将铁氧体20进行打孔,使得第二端点和第二FPC天线40的第四端点连通。
作为一种可能的实现方式,第一FPC天线30与第二FPC天线40长度可以相同,或者,也可以不同,本申请对此并不做限制,上述实施例中仅以第一FPC天线30与第二FPC天线40长度相同进行示例。
为了实现上述实施例,本申请还提出一种用于移动终端的NFC通信装置。
图7为本申请实施例三所提供的用于移动终端的NFC通信装置的结构示意图。
如图7所示,该用于移动终端的NFC通信装置包括:前述任一实施例提出的用于移动终端的NFC天线100、与NFC天线100相连的匹配网络200,以及与匹配网络200相连的NFC芯片300。由此,可以实现NFC通信功能。
作为一种示例,参见图8,图8为本申请实施例四所提供的NFC通信装置的结构示意图。其中,以采用单端馈电进行示例,并且以NFC芯片为NFC集成电路(Integrated Circuit,简称IC)进行示例,该NFC IC与匹配网络进行连接,匹配网络与NFC天线馈点进行连接,例如,匹配网络可以与图2中的端点A或端点B连接。由此,可以实现NFC通信功能。需要说明的是,图8中,单端馈电为不平衡馈电,NFC天线输出的为平衡信号,可以通过匹配网络中的平衡-不平衡转换器将上述平衡信号转换为不平衡信号。
作为另一种示例,参见图9,图9为本申请实施例五所提供的NFC通信装置的结构示意图。其中,以采用差分馈电进行示例,并且以NFC芯片为NFC IC进行示例,该NFC IC与匹配网络进行连接,匹配网络与NFC天线馈点进行连接,例如,匹配网络可以与图5或图6中的端点A与端点A’连接,或者与端点B与端点B’连接。由此,可以实现NFC通信功能。
需要说明的是,前述实施例对用于移动终端的NFC天线的解释说明也适用于该实施例的用于移动终端的NFC通信装置,此处不做赘述。
本申请实施例的用于移动终端的NFC通信装置,通过采用一条FPC天线进行辐射,可以有效减小NFC天线的占用面积,同时在越来越复杂的移动终端天线环境中,适用性较强。并且,采用单独的FPC天线进行辐射,没有与主天线共用,在设计过程中,可以通过避让一定距离来降低对主天线性能的影响,此外,还可以避免采用大电感,利于器件布局。
在本说明书的描述中,参考术语“一个实施例”、“一些实施例”、“示例”、“具体示例”、或“一些示例”等的描述意指结合该实施例或示例描述的具体特征、结构、材料或者特点包含于本申请的至少一个实施例或示例中。在本说明书中,对上述术语的示意性表述不必须针对的是相同的实施例或示例。而且,描述的具体特征、结构、材料或者特点可以在任一个或多个实施例或示例中以合适的方式结合。此外,在不相互矛盾的情况下,本领域的技术人员可以将本说明书中描述的不同实施例或示例以及不同实施例或示例的特征进行结合和组合。
此外,术语“第一”、“第二”仅用于描述目的,而不能理解为指示或暗示相对重要性或者隐含指明所指示的技术特征的数量。由此,限定有“第一”、“第二”的特征可以明示或者隐含地包括至少一个该特征。在本申请的描述中,“多个”的含义是至少两个,例如两个,三个等,除非另有明确具体的限定。
流程图中或在此以其他方式描述的任何过程或方法描述可以被理解为,表示包括一个或更多个用于实现定制逻辑功能或过程的步骤的可执行指令的代码的模块、片段或部分,并且本申请的优选实施方式的范围包括另外的实现,其中可以不按所示出或讨论的顺序,包括根据所涉及的功能按基本同时的方式或按相反的顺序,来执行功能,这应被本申请的实施例所属技术领域的技术人员所理解。
在流程图中表示或在此以其他方式描述的逻辑和/或步骤,例如,可以被认为是用于实现逻辑功能的可执行指令的定序列表,可以具体实现在任何计算机可读介质中,以供指令执行系统、装置或设备(如基于计算机的系统、包括处理器的系统或其他可以从指令执行系统、装置或设备取指令并执行指令的系统)使用,或结合这些指令执行系统、装置或设备而使用。就本说明书而言,"计算机可读介质"可以是任何可以包含、存储、通信、传播或传输程序以供指令执行系统、装置或设备或结合这些指令执行系统、装置或设备而使用的装置。计算机可读介质的更具体的示例(非穷尽性列表)包括以下:具有一个或多个布线的电连接部(电子装置),便携式计算机盘盒(磁装置),随机存取存储器(RAM),只读存储器(ROM),可擦除可编辑只读存储器(EPROM或闪速存储器),光纤装置,以及便携式光盘只读存储器(CDROM)。另外,计算机可读介质甚至可以是可在其上打印所述程序的纸或其他合适的介质,因为可以例如通过对纸或其他介质进行光学扫描,接着进行编辑、解译或必要时以其他合适方式进行处理来以电子方式获得所述程序,然后将其存储在计算机存储器中。
应当理解,本申请的各部分可以用硬件、软件、固件或它们的组合来实现。在上述实施方式中,多个步骤或方法可以用存储在存储器中且由合适的指令执行系统执行的软件或固件来实现。如,如果用硬件来实现和在另一实施方式中一样,可用本领域公知的下列技术中的任一项或他们的组合来实现:具有用于对数据信号实现逻辑功能的逻辑门电路的离散逻辑电路,具有合适的组合逻辑门电路的专用集成电路,可编程门阵列(PGA),现场可编程门阵列(FPGA)等。
本技术领域的普通技术人员可以理解实现上述实施例方法携带的全部或部分步骤是可以通过程序来指令相关的硬件完成,所述的程序可以存储于一种计算机可读存储介质中,该程序在执行时, 包括方法实施例的步骤之一或其组合。
此外,在本申请各个实施例中的各功能单元可以集成在一个处理模块中,也可以是各个单元单独物理存在,也可以两个或两个以上单元集成在一个模块中。上述集成的模块既可以采用硬件的形式实现,也可以采用软件功能模块的形式实现。所述集成的模块如果以软件功能模块的形式实现并作为独立的产品销售或使用时,也可以存储在一个计算机可读取存储介质中。
上述提到的存储介质可以是只读存储器,磁盘或光盘等。尽管上面已经示出和描述了本申请的实施例,可以理解的是,上述实施例是示例性的,不能理解为对本申请的限制,本领域的普通技术人员在本申请的范围内可以对上述实施例进行变化、修改、替换和变型。

Claims (20)

  1. 一种用于移动终端的近场通信NFC天线,其特征在于,包括:
    基板;
    设置在所述基板之上的铁氧体;
    设置在所述铁氧体之上的第一柔性电路板FPC天线,其中,所述第一FPC天线包括第一端点和第二端点。
  2. 如权利要求1所述的用于移动终端的NFC天线,其特征在于,所述第一端点为馈电端,所述第二端点为接地点。
  3. 如权利要求2所述的用于移动终端的NFC天线,其特征在于,所述第一FPC天线的长度大于所述铁氧体的长度,以使所述第一端点和所述第二端点相对于所述基板悬空。
  4. 如权利要求1所述的用于移动终端的NFC天线,其特征在于,还包括:
    第二FPC天线,所述第二FPC天线包括第三端点和第四端点。
  5. 如权利要求4所述的用于移动终端的NFC天线,其特征在于,所述第二端点和所述第四端点相连。
  6. 如权利要求4所述的用于移动终端的NFC天线,其特征在于,所述第一端点与所述第三端点对应,所述第二端点与所述第四端点对应。
  7. 如权利要求4所述的用于移动终端的NFC天线,其特征在于,所述第一FPC天线与所述第二FPC天线未重叠设置。
  8. 如权利要求4所述的用于移动终端的NFC天线,其特征在于,所述第二FPC天线位于所述基板和所述铁氧体之间。
  9. 如权利要求4所述的用于移动终端的NFC天线,其特征在于,所述第二FPC天线和所述第一FPC天线分别位于基板的两侧。
  10. 如权利要求1所述的用于移动终端的NFC天线,其特征在于,所述NFC天线可以为“一”字型、“L”型、“匚”型或“U”型。
  11. 一种用于移动终端的NFC通信装置,其特征在于,包括:
    NFC天线,所述NFC天线包括:基板;设置在所述基板之上的铁氧体;设置在所述铁氧体之上的第一柔性电路板FPC天线,其中,所述第一FPC天线包括第一端点和第二端点;
    与所述NFC天线相连的匹配网络;
    与所述匹配网络相连的NFC芯片。
  12. 如权利要求11所述的NFC通信装置,其特征在于,所述第一端点为馈电端,所述第二端点为接地点。
  13. 如权利要求12所述的NFC通信装置,其特征在于,所述第一FPC天线的长度大于所述铁氧体 的长度,以使所述第一端点和所述第二端点相对于所述基板悬空。
  14. 如权利要求11所述的NFC通信装置,其特征在于,还包括:
    第二FPC天线,所述第二FPC天线包括第三端点和第四端点。
  15. 如权利要求14所述的NFC通信装置,其特征在于,所述第二端点和所述第四端点相连。
  16. 如权利要求14所述的NFC通信装置,其特征在于,所述第一端点与所述第三端点对应,所述第二端点与所述第四端点对应。
  17. 如权利要求14所述的NFC通信装置,其特征在于,所述第一FPC天线与所述第二FPC天线未重叠设置。
  18. 如权利要求14所述的NFC通信装置,其特征在于,所述第二FPC天线位于所述基板和所述铁氧体之间。
  19. 如权利要求14所述的NFC通信装置,其特征在于,所述第二FPC天线和所述第一FPC天线分别位于基板的两侧。
  20. 如权利要求11所述的NFC通信装置,其特征在于,所述NFC天线可以为“一”字型、“L”型、“匚”型或“U”型。
PCT/CN2020/113175 2019-09-04 2020-09-03 用于移动终端的nfc天线和nfc通信装置 WO2021043199A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP20859979.5A EP4007065A4 (en) 2019-09-04 2020-09-03 NFC ANTENNA FOR MOBILE TERMINAL AND NFC COMMUNICATION DEVICE
US17/677,562 US11978952B2 (en) 2019-09-04 2022-02-22 NFC antenna and NFC communication apparatus for mobile terminal

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
CN201910833232.8A CN110504524A (zh) 2019-09-04 2019-09-04 用于移动终端的nfc天线和nfc通信装置
CN201921475237.XU CN210535807U (zh) 2019-09-04 2019-09-04 用于移动终端的nfc天线和nfc通信装置
CN201910833232.8 2019-09-04
CN201921475237.X 2019-09-04

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US17/677,562 Continuation US11978952B2 (en) 2019-09-04 2022-02-22 NFC antenna and NFC communication apparatus for mobile terminal

Publications (1)

Publication Number Publication Date
WO2021043199A1 true WO2021043199A1 (zh) 2021-03-11

Family

ID=74853065

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/113175 WO2021043199A1 (zh) 2019-09-04 2020-09-03 用于移动终端的nfc天线和nfc通信装置

Country Status (3)

Country Link
US (1) US11978952B2 (zh)
EP (1) EP4007065A4 (zh)
WO (1) WO2021043199A1 (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20240055764A1 (en) * 2022-08-09 2024-02-15 Senseonics, Incorporated Layered near field communication antenna
US20240106122A1 (en) * 2022-09-23 2024-03-28 Plume Design, Inc. Compact, single near-field communication (NFC) antenna utilized for multiple functions in a smart ring

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014088635A1 (en) * 2012-12-03 2014-06-12 Intel Corporation Dual-band folded meta-inspired antenna with user equipment embedded wideband characteristics
CN104659470A (zh) * 2015-03-10 2015-05-27 上海艺时网络科技有限公司 近场通信天线组件和无线终端
CN105940550A (zh) 2014-03-03 2016-09-14 苹果公司 具有共享天线结构和平衡-不平衡转换器的电子设备
CN106410369A (zh) * 2015-07-31 2017-02-15 比亚迪股份有限公司 Nfc天线模组、移动终端和移动终端的外壳
CN207353454U (zh) * 2017-08-30 2018-05-11 惠州Tcl移动通信有限公司 复合天线装置及移动终端
CN110504524A (zh) * 2019-09-04 2019-11-26 Oppo广东移动通信有限公司 用于移动终端的nfc天线和nfc通信装置
CN210535807U (zh) * 2019-09-04 2020-05-15 Oppo广东移动通信有限公司 用于移动终端的nfc天线和nfc通信装置

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN201303054Y (zh) 2008-08-27 2009-09-02 中兴通讯股份有限公司 一种电子终端设备及其近场通信天线
CN203850432U (zh) * 2011-07-19 2014-09-24 株式会社村田制作所 天线装置以及通信终端装置
US8676116B2 (en) * 2011-10-07 2014-03-18 Blackberry Limited Electronic device with NFC antenna adjacent display and related methods
CN102709686A (zh) 2012-05-14 2012-10-03 中兴通讯股份有限公司 一种天线模块和移动终端设备
WO2013183575A1 (ja) * 2012-06-04 2013-12-12 株式会社村田製作所 アンテナ装置および無線通信装置
KR101339018B1 (ko) * 2013-04-11 2013-12-09 에이큐 주식회사 엔에프씨 안테나를 구비한 배터리팩
KR101622173B1 (ko) * 2014-10-14 2016-05-18 주식회사 이엠따블유 안테나
CN204790936U (zh) 2015-07-10 2015-11-18 上海安费诺永亿通讯电子有限公司 整合有nfc/rfid天线的触控屏和电子设备
WO2017194029A1 (zh) 2016-05-13 2017-11-16 广东欧珀移动通信有限公司 壳体、天线装置及移动终端
CN106058425A (zh) * 2016-05-30 2016-10-26 宇龙计算机通信科技(深圳)有限公司 一种nfc天线设置方法、显示屏模组及终端
KR101772871B1 (ko) * 2016-07-11 2017-08-30 주식회사 두산 안테나 모듈 형성용 복합기판 및 이의 제조방법
CN109462021A (zh) 2018-09-27 2019-03-12 深圳市信维通信股份有限公司 Nfc天线的制作方法

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014088635A1 (en) * 2012-12-03 2014-06-12 Intel Corporation Dual-band folded meta-inspired antenna with user equipment embedded wideband characteristics
CN105940550A (zh) 2014-03-03 2016-09-14 苹果公司 具有共享天线结构和平衡-不平衡转换器的电子设备
CN104659470A (zh) * 2015-03-10 2015-05-27 上海艺时网络科技有限公司 近场通信天线组件和无线终端
CN106410369A (zh) * 2015-07-31 2017-02-15 比亚迪股份有限公司 Nfc天线模组、移动终端和移动终端的外壳
CN207353454U (zh) * 2017-08-30 2018-05-11 惠州Tcl移动通信有限公司 复合天线装置及移动终端
CN110504524A (zh) * 2019-09-04 2019-11-26 Oppo广东移动通信有限公司 用于移动终端的nfc天线和nfc通信装置
CN210535807U (zh) * 2019-09-04 2020-05-15 Oppo广东移动通信有限公司 用于移动终端的nfc天线和nfc通信装置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP4007065A4

Also Published As

Publication number Publication date
US20220181772A1 (en) 2022-06-09
EP4007065A4 (en) 2022-09-14
US11978952B2 (en) 2024-05-07
EP4007065A1 (en) 2022-06-01

Similar Documents

Publication Publication Date Title
US11978952B2 (en) NFC antenna and NFC communication apparatus for mobile terminal
TWI443987B (zh) 近場通訊系統及其相關之顯示裝置
EP2439706A1 (en) Device, system and transaction method for integrating payment function and receipt function
CN201828998U (zh) 一种带wifi的多功能银联卡pos机
CN102932333A (zh) 一种移动支付的安全设备、系统和方法
CN103269326A (zh) 一种面向泛在网的安全设备、多应用系统和安全方法
CN104813564A (zh) 用于在近场通信中多表面覆盖的级联线圈
TWM459635U (zh) 用於近場通訊的接收端元件及包括該元件的接收設備
CN104102939A (zh) 一种基于hce的nfc系统
CN103761806B (zh) 一种用于移动终端的金融安全系统
CN210535807U (zh) 用于移动终端的nfc天线和nfc通信装置
WO2014000688A1 (zh) 一种多层布线式双界面ic卡天线模块
CN109214801A (zh) 一种电子支付确认方法、装置和存储介质
CN102542688A (zh) 一种电子支付装置及使用该装置的电子支付系统
CN207116694U (zh) 基于电子设备后壳辐射nfc信号的装置
CN203882333U (zh) 具有智能芯片的记忆卡
CN205944450U (zh) 天线装置及移动终端
CN107359411A (zh) 基于电子设备后壳辐射nfc信号的装置
US8649184B2 (en) Signal conversion device with dual chip
CN114612086A (zh) 数字货币的支付方法和装置
CN110504524A (zh) 用于移动终端的nfc天线和nfc通信装置
CN202838403U (zh) 一种带移动商务安全认证功能的城市一卡通系统、与其配套使用的外围处理装置及安全设备
CN105653925A (zh) 网络交易认证方法、系统和智能卡
CN101894082A (zh) 一种存储器装置及智能手机系统
CN112508546A (zh) 一种支持数字人民币交易和存储的安全装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20859979

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2020859979

Country of ref document: EP

Effective date: 20220228

NENP Non-entry into the national phase

Ref country code: DE