WO2021043122A1 - 通信方法、装置及计算机可读存储介质 - Google Patents

通信方法、装置及计算机可读存储介质 Download PDF

Info

Publication number
WO2021043122A1
WO2021043122A1 PCT/CN2020/112778 CN2020112778W WO2021043122A1 WO 2021043122 A1 WO2021043122 A1 WO 2021043122A1 CN 2020112778 W CN2020112778 W CN 2020112778W WO 2021043122 A1 WO2021043122 A1 WO 2021043122A1
Authority
WO
WIPO (PCT)
Prior art keywords
key
ncc
terminal device
value
information
Prior art date
Application number
PCT/CN2020/112778
Other languages
English (en)
French (fr)
Inventor
严乐
曾清海
张宏平
耿婷婷
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to EP20861780.3A priority Critical patent/EP4021044A4/en
Publication of WO2021043122A1 publication Critical patent/WO2021043122A1/zh
Priority to US17/684,711 priority patent/US20220201559A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W12/00Security arrangements; Authentication; Protecting privacy or anonymity
    • H04W12/04Key management, e.g. using generic bootstrapping architecture [GBA]
    • H04W12/041Key generation or derivation
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W12/00Security arrangements; Authentication; Protecting privacy or anonymity
    • H04W12/04Key management, e.g. using generic bootstrapping architecture [GBA]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W36/00Hand-off or reselection arrangements
    • H04W36/0005Control or signalling for completing the hand-off
    • H04W36/0055Transmission or use of information for re-establishing the radio link
    • H04W36/0064Transmission or use of information for re-establishing the radio link of control information between different access points
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W36/00Hand-off or reselection arrangements
    • H04W36/0005Control or signalling for completing the hand-off
    • H04W36/0011Control or signalling for completing the hand-off for data sessions of end-to-end connection
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W36/00Hand-off or reselection arrangements
    • H04W36/0005Control or signalling for completing the hand-off
    • H04W36/0011Control or signalling for completing the hand-off for data sessions of end-to-end connection
    • H04W36/0033Control or signalling for completing the hand-off for data sessions of end-to-end connection with transfer of context information
    • H04W36/0038Control or signalling for completing the hand-off for data sessions of end-to-end connection with transfer of context information of security context information
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W36/00Hand-off or reselection arrangements
    • H04W36/0005Control or signalling for completing the hand-off
    • H04W36/0055Transmission or use of information for re-establishing the radio link
    • H04W36/0069Transmission or use of information for re-establishing the radio link in case of dual connectivity, e.g. decoupled uplink/downlink
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W36/00Hand-off or reselection arrangements
    • H04W36/08Reselecting an access point

Definitions

  • This application relates to the field of communication, and more specifically, to communication methods, devices, and computer-readable storage media.
  • the terminal device can communicate with multiple network devices at the same time through dual connectivity (DC) technology, that is, the DC technology supports different network devices to provide data transmission services for one terminal device at the same time.
  • DC dual connectivity
  • one network device can be called the master node MN, and the other network device is called the secondary node SN.
  • a terminal device When a terminal device performs signaling transmission between a master node (master node, MN) and a secondary node (secondary node, SN), the terminal device needs to determine a key between the terminal device and the secondary node SN. In the traditional technical solution, the terminal device can determine the key used between it and the secondary node SN based on the key used between it and the primary node MN, and perform communication with the secondary node SN based on the determined key. Signaling transmission.
  • master node master node
  • secondary node secondary node
  • one CU can be connected to one DU, or multiple DUs can share one CU, which saves costs and facilitates network expansion.
  • one CU and DU can be regarded as one network device.
  • the traditional technical solution is used to derive the key used between the terminal device and the secondary node SN, which will introduce implementation complexity.
  • This application provides a communication method, device, and computer-readable storage medium.
  • the terminal device determines the key for transmitting signaling between the secondary node and the terminal device and the primary node.
  • the key for transmitting signaling is the same, avoiding the complexity caused by deriving the key for transmitting signaling between the secondary node.
  • a communication method is provided.
  • the method can be executed by a terminal device or a chip for a terminal device.
  • the method includes: receiving instruction information from a master node, where the instruction information is used to instruct the terminal device to communicate with the first terminal device.
  • the key used for signaling transmission between the secondary nodes through the second signaling radio bearer SRB is the first key
  • the first key is the first key between the terminal device and the master node through the first SRB.
  • the key used for signaling transmission, the first secondary node and the primary node share a centralized unit CU; the terminal device determines to communicate with the first secondary node through a second SRB according to the indication information
  • the key used for signaling transmission is the first key.
  • the primary node and/or secondary node in this application may be composed of a centralized unit (CU) and a distributed unit (DU).
  • CU centralized unit
  • DU distributed unit
  • the terminal device can determine the key for transmitting signaling with the secondary node SN through the second SRB and the terminal device and the primary node MN.
  • the first SRB transmits signaling with the same key. Therefore, when the terminal device transmits signaling with the secondary node SN through the second SRB, it uses the key used to transmit signaling with the MN instead of It is necessary to derive the key used when transmitting signaling with the secondary node SN through the second SRB according to the key corresponding to the MN, thereby reducing implementation complexity and saving resources.
  • the indication information is carried in a radio resource control RRC reconfiguration message, and the RRC reconfiguration message is used to notify the terminal device to add the second A secondary node, or used to notify the terminal device to switch the secondary node from the second secondary node to the first secondary node.
  • the first SRB is SRB1 or SRB2
  • the second SRB is SRB3.
  • the first SRB is a bearer for signaling transmission between the terminal device and the primary node
  • the second SRB is a bearer for signaling transmission between the terminal device and the secondary node
  • the first SRB may be SRB1 or SRB2.
  • the network can be configured with SRB2, which is used to send non-access stratum (NAS) messages, using dedicated control channels (dedicated control channels). channel, DCCH).
  • SRB1 is used for sending radio resource control (Radio Resource Control, RRC) messages, or for sending NAS messages before SRB2 is established, and DCCH is used.
  • RRC Radio Resource Control
  • the priority of SRB2 is lower than the priority of SRB1.
  • the RRC reconfiguration message used to instruct the addition of a secondary node may include a secondary cell group configuration (secondary cell group configuration) information element.
  • the RRC reconfiguration message used to indicate handover can carry a reconfiguration with sync cell.
  • the RRC connection reconfiguration message used to indicate handover can carry mobile control information ( mobility control info) cell.
  • the RRC reconfiguration message further includes a first value, and when the first value is a preset value, the terminal device A value determines that the key used for signaling transmission with the first secondary node through the second SRB is the first key.
  • the first value is an sk-counter value.
  • a communication method is provided.
  • the method can be executed by a master node or a component used for the master node.
  • the method includes: sending instruction information to a terminal device, where the instruction information is used to instruct the terminal device to communicate with a first slave device.
  • the key used for signaling transmission between nodes through the second signaling radio bearer SRB is the first key
  • the first key is the signaling between the terminal device and the master node through the first SRB.
  • the first secondary node and the master node share a centralized unit CU.
  • the components used for the master node include a CU, a chip used for the CU, a DU, a chip used for the DU, or a chip used for the master node.
  • the indication information is carried in a radio resource control RRC reconfiguration message, and the RRC reconfiguration message is used to notify the terminal device to add the second A secondary node, or used to notify the terminal device to switch the secondary node from the second secondary node to the first secondary node.
  • the first SRB is SRB1 or SRB2
  • the second SRB is SRB3.
  • the RRC reconfiguration message further includes a first value, and when the first value is a preset value, the first value is used to indicate The key used for signaling transmission between the terminal device and the first secondary node through the second SRB is the first key.
  • the first value is an sk-counter value.
  • a communication method is provided.
  • the method can be executed by a terminal device or a chip used for the terminal device.
  • the method includes: receiving a radio resource control RRC reconfiguration message from a source network device, where the RRC reconfiguration message is used for Instruct the terminal device to add the network device to which the target cell belongs as the secondary node SN; the terminal device determines the second key through one or more of the following information according to the RRC reconfiguration message: The first key used for transmission between the terminal device and the source network device, the information of the target cell, the next hop NH corresponding to the next hop chain count value NCC, where the second key is The key used for transmission between the terminal device and the target network device, the information of the target cell includes the frequency point information of the target cell and/or the physical cell identity of the target cell, the target The cell belongs to the target network device, the source network device is the primary node MN before the handover and the secondary node SN after the handover, and the target network device is the secondary node SN before the handover
  • the RRC reconfiguration message includes the first NCC.
  • the terminal device determines the second key according to the NH corresponding to the first NCC and the information of the target cell, where the second key is The NCC is a value last used by the terminal device before the terminal device receives the RRC reconfiguration message, and the first NCC is different from the second NCC.
  • the method further includes: the terminal device determines that the first NCC is different from the second NCC; An NCC is different from the second NCC, and the second key is determined by the NH corresponding to the first NCC and the information of the target cell.
  • the terminal device determines the second key according to the first key and information of the target cell, and the first NCC and The second NCC is the same.
  • the method further includes: the terminal device determines that the first NCC is the same as the second NCC; An NCC is the same as the second NCC, and the second key is determined by the first key and the information of the target cell.
  • the RRC reconfiguration message includes first indication information, and the first indication information is used to indicate the first NCC and the second NCC Differently, the terminal device uses the NH corresponding to the first NCC and the information of the target cell to determine the second key according to the first indication information.
  • the RRC reconfiguration message includes second indication information, and the second indication information is used to instruct the terminal device to pass the first key And the information of the target cell determines the second key,
  • the terminal device determines the second key by using the first key and the information of the target cell according to the second indication information.
  • the second indication information may indicate that the first NCC is the same as the second NCC to instruct the terminal device to determine the second key by using the first key and the target cell information.
  • the second indication information is that the RRC reconfiguration message does not include the first NCC, to implicitly indicate that the first NCC is the same as the second NCC, and/or to instruct the terminal device to pass the first key and the first NCC.
  • the information of the target cell determines the second key.
  • the RRC reconfiguration message includes the first value.
  • the RRC reconfiguration message further includes the first value and the first NCC
  • the terminal device determines the second key according to the first value and the first key, where the first NCC is the same as the second NCC.
  • the method further includes: the terminal device determines that the first NCC is the same as the second NCC; An NCC is the same as the second NCC, and the first value included in the RRC reconfiguration message, the second key is determined by the first value and the first key.
  • the RRC reconfiguration message further includes a first value and third indication information, and the third indication information is used to indicate that according to the first value And the first key determines the second key,
  • the terminal device determines the second key by using the first value and the first key according to the third indication information and the first value included in the RRC reconfiguration message.
  • the third indication information may indicate that the second key is determined according to the first value and the first key by indicating that the first NCC is the same as the second NCC.
  • the third indication information is that the RRC reconfiguration message does not include the first NCC, to implicitly indicate that the first NCC is the same as the second NCC, and/or to indicate that the first value and the first key Determine the second key.
  • the source network device may send two radio resource control RRC reconfiguration messages to the terminal device.
  • RRC reconfiguration messages The secondary cell group configuration information element can be carried, and the RRC reconfiguration message is used to instruct the terminal device to perform the secondary node SN addition process (that is, to instruct the terminal device to add the target network device that needs to be switched to as an SN).
  • Another RRC reconfiguration message can carry a reconfiguration with sync cell.
  • the RRC reconfiguration message is used to instruct the terminal device to switch the source network device (that is, the MN before handover) to SN, and change the target network device (that is, the MN before handover) to SN.
  • SN Handover becomes MN.
  • the source network device ie, the MN before handover
  • the RRC reconfiguration The message carries secondary cell group configuration cell and reconfiguration with sync cell.
  • the terminal device can perform the secondary node SN addition process according to the secondary cell group configuration information element carried in the RRC reconfiguration message (that is, the target network device that needs to be switched to is added as an SN), and at the same time, can also be carried in the RRC reconfiguration message
  • the reconfiguration with sync cell performs a role exchange/switching process, switching the source network device (ie, the MN before switching) to SN, and the target network device (ie, SN before switching) to MN.
  • the first value is an sk-counter value.
  • a communication method is provided, which may be executed by a source network device or a component used for the source network device, including: sending a radio resource control RRC reconfiguration message to the terminal device, the RRC reconfiguration message It is used to instruct the terminal device to add the network device to which the target cell to which the handover belongs as the secondary node SN, the source network device is the primary node MN before the handover and the secondary node SN after the handover, the target network device It is the secondary node SN before the handover and the master node MN after the handover.
  • the components used for the source network device include CU, a chip used for CU, DU, a chip used for DU, or a chip used for source network device.
  • the method further includes: the source network device determines the second key through one or more of the following information: the terminal device and the The first key used for transmission between the source network devices, the information of the target cell, the next hop NH corresponding to the next hop chain count value NCC, where the second key is the terminal device and A key used for transmission between target network devices, the information of the target cell includes frequency information of the target cell and/or the physical cell identity of the target cell, and the target cell belongs to the target network device
  • the target network device is the network device that the terminal device needs to switch to; the source network device sends the second key to the target network device.
  • the source network device may send the second key to the target network device.
  • the source network device may also send related information of the second key to the terminal device.
  • the related information may be, for example, the indication information and/or the first NCC obtained by the source network device, or it may also be the first value, or it may also be the first value and indication information, or it may also be the first value and the first value.
  • the source network device determines the second key according to the NH corresponding to the first NCC and the information of the target cell, where the second NCC For the last used value before the terminal device sends the RRC reconfiguration message, the first NCC is different from the second NCC.
  • the source network device determines the second key according to the first key and information of the target cell, and the first NCC Same as the second NCC.
  • the source network device determines the second key according to the first value and the first key, where the first NCC and The second NCC is the same.
  • the first value is an sk-counter value.
  • a communication device including a module, component or circuit for implementing the method of the first aspect.
  • the communication device of the fifth aspect may be a terminal device, or a component (such as a chip or a circuit) that can be used in a terminal device.
  • a communication device including a module, component or circuit for implementing the method of the second aspect.
  • the communication device of the sixth aspect may be a master node, or a component (such as a chip or a circuit) that can be used for the master node.
  • a communication device including a module, component or circuit for implementing the method of the third aspect.
  • the communication device of the seventh aspect may be a terminal device, or a component (such as a chip or a circuit) that can be used in a terminal device.
  • a communication device including a module, component or circuit for implementing the method of the fourth aspect.
  • the communication apparatus of the eighth aspect may be a source network device, or a component (such as a chip or a circuit) that can be used for the source network device.
  • a communication device including: the communication device provided by the present application has the function of realizing the behavior of the terminal device in the foregoing method aspect, and includes a component for executing the steps or functions described in the foregoing method. ).
  • the steps or functions can be realized by software, or by hardware (such as a circuit), or by a combination of hardware and software.
  • the communication device may be a chip or the like.
  • the aforementioned communication device includes one or more processors.
  • the one or more processors are configured to support the communication device to perform the corresponding functions of the terminal device in the foregoing method.
  • the communication device may further include one or more memories, where the memory is configured to be coupled with the processor and stores program instructions and/or data necessary for the communication device.
  • the one or more memories may be integrated with the processor, or may be provided separately from the processor. This application is not limited.
  • the memory may be a storage unit inside the processor, or an external storage unit independent of the processor, or a component including a storage unit inside the processor and an external storage unit independent of the processor.
  • the processor may be a general-purpose processor, which may be implemented by hardware or software.
  • the processor may be a logic circuit, integrated circuit, etc.; when implemented by software, the processor may be a general-purpose processor, which is implemented by reading the software code stored in the memory, and the memory may Integrated in the processor, can be located outside the processor, and exist independently.
  • the communication device may further include one or more communication units, and the communication unit may be a transceiver or a transceiver circuit.
  • the transceiver may also be an input/output circuit or interface.
  • the aforementioned communication device includes a transceiver, a processor, and a memory.
  • the processor is used to control the transceiver or the input/output circuit to send and receive signals
  • the memory is used to store a computer program
  • the processor is used to run the computer program in the memory so that the device executes the first aspect or any one of the first aspect It is possible to implement the method completed by the terminal device in the manner.
  • a communication device in a tenth aspect, has the function of realizing the behavior of the master node in the foregoing method aspect, and includes a means for executing the steps or functions described in the foregoing method.
  • the steps or functions can be realized by software, or by hardware (such as a circuit), or by a combination of hardware and software.
  • the communication device may be a chip or the like.
  • the aforementioned communication device includes one or more processors.
  • the one or more processors are configured to support the communication device to perform corresponding functions of the master node in the above method.
  • the communication device may further include one or more memories, where the memory is configured to be coupled with the processor and stores program instructions and/or data necessary for the communication device.
  • the one or more memories may be integrated with the processor, or may be provided separately from the processor. This application is not limited.
  • the memory may be a storage unit inside the processor, or an external storage unit independent of the processor, or a component including a storage unit inside the processor and an external storage unit independent of the processor.
  • the processor may be a general-purpose processor, which may be implemented by hardware or software.
  • the processor may be a logic circuit, integrated circuit, etc.; when implemented by software, the processor may be a general-purpose processor, which is implemented by reading the software code stored in the memory, and the memory may Integrated in the processor, can be located outside the processor, and exist independently.
  • the communication device may further include one or more communication units, and the communication unit may be a transceiver or a transceiver circuit.
  • the transceiver may also be an input/output circuit or interface.
  • the aforementioned communication device includes a transceiver, a processor, and a memory.
  • the processor is used to control the transceiver or the input/output circuit to send and receive signals
  • the memory is used to store a computer program
  • the processor is used to run the computer program in the memory, so that the device executes any of the second aspect or the second aspect The method completed by the master node in the possible implementation mode.
  • a communication device in an eleventh aspect, has the function of realizing the behavior of the terminal device in the above-mentioned method, and includes means for performing the steps or functions described in the above-mentioned method. .
  • the steps or functions can be realized by software, or by hardware (such as a circuit), or by a combination of hardware and software.
  • the communication device may be a chip or the like.
  • the aforementioned communication device includes one or more processors.
  • the one or more processors are configured to support the communication device to perform the corresponding functions of the terminal device in the foregoing method.
  • the communication device may further include one or more memories, where the memory is configured to be coupled with the processor and stores program instructions and/or data necessary for the communication device.
  • the one or more memories may be integrated with the processor, or may be provided separately from the processor. This application is not limited.
  • the memory may be a storage unit inside the processor, or an external storage unit independent of the processor, or a component including a storage unit inside the processor and an external storage unit independent of the processor.
  • the processor may be a general-purpose processor, which may be implemented by hardware or software.
  • the processor may be a logic circuit, integrated circuit, etc.; when implemented by software, the processor may be a general-purpose processor, which is implemented by reading the software code stored in the memory, and the memory may Integrated in the processor, can be located outside the processor, and exist independently.
  • the communication device may further include one or more communication units, and the communication unit may be a transceiver or a transceiver circuit.
  • the transceiver may also be an input/output circuit or interface.
  • the aforementioned communication device includes a transceiver, a processor, and a memory.
  • the processor is used to control the transceiver or the input/output circuit to send and receive signals
  • the memory is used to store a computer program
  • the processor is used to run the computer program in the memory so that the device executes the third aspect or any one of the third aspect It is possible to implement the method completed by the terminal device in the manner.
  • a communication device in a twelfth aspect, has the function of realizing the behavior of the source network device in the above method, and it includes means for executing the steps or functions described in the above method. ).
  • the steps or functions can be realized by software, or by hardware (such as a circuit), or by a combination of hardware and software.
  • the communication device may be a chip or the like.
  • the aforementioned communication device includes one or more processors.
  • the one or more processors are configured to support the communication device to perform corresponding functions of the source network device in the above method.
  • the communication device may further include one or more memories, where the memory is configured to be coupled with the processor and stores program instructions and/or data necessary for the communication device.
  • the one or more memories may be integrated with the processor, or may be provided separately from the processor. This application is not limited.
  • the memory may be a storage unit inside the processor, or an external storage unit independent of the processor, or a component including a storage unit inside the processor and an external storage unit independent of the processor.
  • the processor may be a general-purpose processor, which may be implemented by hardware or software.
  • the processor may be a logic circuit, integrated circuit, etc.; when implemented by software, the processor may be a general-purpose processor, which is implemented by reading the software code stored in the memory, and the memory may Integrated in the processor, can be located outside the processor, and exist independently.
  • the communication device may further include one or more communication units, and the communication unit may be a transceiver or a transceiver circuit.
  • the transceiver may also be an input/output circuit or interface.
  • the aforementioned communication device includes a transceiver, a processor, and a memory.
  • the processor is used to control the transceiver or the input/output circuit to send and receive signals
  • the memory is used to store a computer program
  • the processor is used to run the computer program in the memory so that the device executes any one of the fourth aspect or the fourth aspect The method that the source network device completes in the possible implementation mode.
  • a computer-readable storage medium including a computer program, which when the computer program is run on a terminal device, causes the communication device to execute as in the first aspect or any one of the implementation manners of the first aspect The method described.
  • a computer-readable storage medium including a computer program, which when the computer program runs on a communication device, causes the communication device to execute the second aspect or any one of the implementation manners of the second aspect Methods.
  • a computer-readable storage medium including a computer program, which when the computer program runs on a communication device, causes the communication device to execute the third aspect or any one of the implementation manners of the third aspect Methods.
  • a computer-readable storage medium including a computer program, which when the computer program runs on a communication device, causes the communication device to execute the fourth aspect or any one of the implementation manners of the fourth aspect Methods.
  • a computer program product is provided.
  • the computer program product runs on a computer, the computer executes the method described in the first aspect or any one of the first aspects.
  • a computer program product which when the computer program product runs on a computer, causes the computer to execute the method described in the second aspect or any one of the implementation manners of the second aspect.
  • a computer program product is provided.
  • the computer program product runs on a computer, the computer executes the method described in the third aspect or any one of the implementation manners of the third aspect.
  • a twentieth aspect provides a computer program product, which when the computer program product runs on a computer, causes the computer to execute the method described in the fourth aspect or any one of the implementation manners of the fourth aspect.
  • FIG. 1 is a schematic diagram of a scene of a communication system 100 applicable to an embodiment of the present application.
  • FIG. 2 is a schematic diagram of a communication system 200 applicable to the present application.
  • Fig. 3 is a schematic diagram of a DC architecture suitable for the present application.
  • Fig. 4 is a schematic diagram of another DC architecture applicable to the present application.
  • Fig. 5 is a schematic diagram of another DC architecture applicable to the present application.
  • Fig. 6 is a schematic diagram of another DC architecture applicable to the present application.
  • FIG. 7 is a schematic diagram of another DC architecture applicable to the present application.
  • (B) in FIG. 7 is a schematic diagram of a possible scenario applicable to the present application.
  • FIG. 8 is a schematic flowchart of a communication method provided by an embodiment of the present application.
  • FIG. 9 is a schematic flowchart of another communication method provided by an embodiment of the present application.
  • FIG. 10 is a schematic flowchart of another communication method provided by an embodiment of the present application.
  • FIG. 10 is a schematic flowchart of another communication method provided by an embodiment of the present application.
  • FIG. 11 is a schematic flowchart of a 0ms handover based on a DC architecture provided by an embodiment of the present application.
  • FIG. 12 is a schematic block diagram of a communication device 1200 according to an embodiment of the present application.
  • FIG. 13 is a schematic block diagram of a communication device 1300 according to an embodiment of the present application.
  • FIG. 14 is a schematic block diagram of a communication device 1400 according to an embodiment of the present application.
  • FIG. 15 is a schematic block diagram of a communication device 1500 according to an embodiment of the present application.
  • FIG. 16 is a schematic structural diagram of a terminal device 50 provided by an embodiment of the present application.
  • FIG. 17 is a schematic structural diagram of another terminal device 60 provided by an embodiment of the present application.
  • FIG. 18 is a schematic structural diagram of a network device provided by an embodiment of the present application.
  • FIG. 19 is a schematic structural diagram of a communication device 80 provided by an embodiment of the present application.
  • LTE Long Term Evolution
  • FDD frequency division duplex
  • TDD Time Division Duplex
  • WiMAX worldwide interoperability for microwave access
  • 5G future 5th generation
  • NR new radio
  • the type of terminal equipment is not specifically limited.
  • it may be user equipment (UE), access terminal, user unit, user station, mobile station, mobile station, remote station, remote terminal, mobile Equipment, user terminal, wireless network equipment, user agent or user device.
  • UE user equipment
  • access terminal user unit
  • user station mobile station
  • mobile station mobile station
  • remote station remote terminal
  • mobile Equipment user terminal
  • wireless network equipment user agent or user device.
  • Terminals may include, but are not limited to, mobile stations (MS), mobile phones (mobile phones), user equipment (UE), mobile phones (handset), portable equipment (portable equipment), cellular phones, cordless phones, conversations Initiation protocol (session initiation protocol, SIP) phones, wireless local loop (wireless local loop, WLL) stations, personal digital processing (personal digital assistant, PDA), and logistics use radio frequency identification (RFID) terminal equipment, Handheld devices with wireless communication functions, computing devices or other devices connected to wireless modems, in-vehicle devices, wearable devices, Internet of Things, terminal devices in vehicle networks, and terminal devices in future 5G networks or future evolution of public land mobile The terminal equipment in the network (public land mobile network, PLMN) network, etc.
  • MS mobile stations
  • UE user equipment
  • WLL wireless local loop
  • PDA personal digital assistant
  • RFID radio frequency identification
  • wearable devices can also be referred to as wearable smart devices. It is a general term for using wearable technology to intelligently design daily wear and develop wearable devices, such as glasses, Gloves, watches, clothing and shoes, etc.
  • a wearable device is a portable device that is directly worn on the body or integrated into the user's clothes or accessories. Wearable devices are not only a kind of hardware device, but also realize powerful functions through software support, data interaction, and cloud interaction.
  • wearable smart devices include full-featured, large-sized, complete or partial functions that can be realized without relying on smart phones, such as smart watches or smart glasses, and only focus on a certain type of application function, and need to cooperate with other devices such as smart phones.
  • the type of network equipment is not specifically limited. It may be any equipment used to communicate with terminal equipment.
  • the network equipment may be, for example, an evolved base station (evolutional base station) in a long term evolution (LTE) system.
  • Node B, eNB or eNodeB it can also be a wireless controller in a cloud radio access network (CRAN) scenario, or the network device can be, for example, a relay station, an access point, a vehicle-mounted device, or a wearable device And the network equipment in the future 5G network or the network equipment in the future evolved PLMN network, etc.
  • CRAN cloud radio access network
  • the network device provides services for the cell, and the terminal device communicates with the network device through the transmission resources (for example, frequency domain resources, or spectrum resources) used by the cell.
  • the cell can be a cell corresponding to a network device (e.g. a base station).
  • the cell can belong to a macro base station or a base station corresponding to a small cell.
  • the small cell here can include: Metro cell, micro cell ( Micro cell, pico cell, femto cell, etc. These small cells have the characteristics of small coverage and low transmit power, and are suitable for providing high-rate data transmission services.
  • the method provided in the embodiments of the present application can be applied to a terminal device or a network device.
  • the terminal device or network device can include a hardware layer, an operating system layer running on the hardware layer, and an application layer running on the operating system layer.
  • the hardware layer includes hardware such as a central processing unit (CPU), a memory management unit (MMU), and memory (also referred to as main memory).
  • the operating system can be any one or more computer operating systems that implement business processing through processes, for example, Linux operating systems, Unix operating systems, Android operating systems, iOS operating systems, or windows operating systems.
  • the application layer includes applications such as browsers, address books, word processing software, and instant messaging software.
  • the specific structure of the execution body of the communication method is not particularly limited in the embodiments of the present application, as long as the program recorded with the code of the signal transmission method of the embodiment of the present application can be executed according to the present application.
  • the signal transmission method of the application embodiment can be used for communication.
  • the execution subject of the communication method of the embodiment of the application may be a terminal device or a network device, or a terminal device or a network device that can call and execute the program. Module.
  • various aspects or features of the embodiments of the present application can be implemented as methods, devices, or products using standard programming and/or engineering techniques.
  • article of manufacture used in this application encompasses a computer program accessible from any computer-readable device, carrier, or medium.
  • computer-readable media may include, but are not limited to: magnetic storage devices (for example, hard disks, floppy disks, or tapes, etc.), optical disks (for example, compact discs (CD), digital versatile discs (DVD)) Etc.), smart cards and flash memory devices (for example, erasable programmable read-only memory (EPROM), cards, sticks or key drives, etc.).
  • various storage media described herein may represent one or more devices and/or other machine-readable media for storing information.
  • the term "machine-readable medium” may include, but is not limited to, wireless channels and various other media capable of storing, containing, and/or carrying instructions and/or data.
  • FIG. 1 is a schematic diagram of a scene of a communication system 100 applicable to an embodiment of the present application.
  • the communication system 100 includes a network device 102, and the network device 102 may include multiple antenna groups.
  • Each antenna group may include multiple antennas.
  • one antenna group may include antennas 104 and 106, another antenna group may include antennas 106 and 110, and an additional group may include antennas 112 and 114.
  • Each antenna group in Fig. 1 shows 2 antennas, however, more or fewer antennas can be used for each group.
  • the network device 102 may additionally include a transmitter chain and a receiver chain. Those of ordinary skill in the art can understand that they can each include multiple components related to signal transmission and reception (such as processors, modulators, multiplexers, and decoders). Tuner, demultiplexer or antenna, etc.).
  • the network device 102 may communicate with multiple terminal devices (for example, the terminal device 116 and the terminal device 122). However, it is understood that the network device 102 can communicate with any number of terminal devices similar to the terminal device 116 or 122.
  • the terminal devices 116 and 122 may be, for example, cellular phones, smart phones, portable computers, handheld communication devices, handheld computing devices, satellite radios, global positioning systems, PDAs, and/or any other suitable devices for communicating on the wireless communication system 100. equipment.
  • the terminal device 116 communicates with antennas 112 and 114, where the antennas 112 and 114 send information to the terminal device 116 through the link 116 and receive information from the terminal device 116 through the link 120.
  • the terminal device 122 communicates with the antennas 104 and 106, wherein the antennas 104 and 106 transmit information to the terminal device 122 through the link 124, and receive information from the terminal device 122 through the link 126.
  • link 116 may use a different frequency band from that used by link 120, and link 124 may use a different frequency band from that used by link 126.
  • FDD frequency division duplex
  • link 116 and link 120 may use a common frequency band
  • link 124 and link 126 may use a common frequency band.
  • Each set of antennas and/or areas designed for communication is referred to as a sector of the network device 102.
  • the antenna group may be designed to communicate with terminal devices in a sector of the area covered by the network device 102.
  • the transmitting antenna of the network device 102 can use beamforming to improve the signal-to-noise ratio of the links 116 and 124.
  • the Mobile devices will experience less interference.
  • the network device 102, the terminal device 116, or the terminal device 122 may be a wireless communication sending device and/or a wireless communication receiving device.
  • the wireless communication sending device can encode the data for transmission.
  • the wireless communication sending device may obtain (for example, generate, receive from other communication devices, or store in a memory, etc.) a certain number of data bits to be sent to the wireless communication receiving device through a channel.
  • Such data bits can be included in a transmission block (or multiple transmission blocks) of data, and the transmission block can be segmented to generate multiple code blocks.
  • the communication system 100 may be a public land mobile network PLMN network or a device-to-device (D2D) network or a machine-to-machine (M2M) network or other networks.
  • PLMN public land mobile network
  • D2D device-to-device
  • M2M machine-to-machine
  • Figure 1 is only an example for ease of understanding
  • the simplified schematic diagram of the network can also include other network equipment, which is not shown in Figure 1.
  • FIG. 2 is a schematic diagram of a communication system 200 applicable to the present application.
  • the communication system 200 may include at least two network devices, such as a network device 210 and a network device 220, and the communication system 200 may also include at least one terminal device, such as a terminal device 230.
  • the communication system 200 may also include at least one core network device, such as a core network device 240.
  • FIG. 2 is only a schematic diagram, and the communication system may also include other network devices, such as wireless relay devices and wireless backhaul devices.
  • the embodiment of the present application does not limit the number of network devices and terminal devices included in the mobile communication system.
  • the terminal device 230 can connect the network device 210 and the network device 220 through an air interface.
  • the network device 210 and the network device 220 can be connected in a wired or wireless manner.
  • the network device 210 and the network device 220 can be connected through a wired connection.
  • the core network device 240 may be a 4G core network device or a 5G core network device.
  • the network device 210 may be an LTE base station or an NR base station, and the network device 220 may be an LTE base station or an NR base station.
  • the terminal device 230 may communicate with the network device 210 and the network device 220 by adopting dual connectivity (DC) technology.
  • DC dual connectivity
  • the DC technology supports two different network devices (for example, the network device 210 and the network device 220) to provide data transmission services for one terminal device 230 at the same time.
  • one network device may be called a primary base station or a master node (master node, MN), and the other network device is called a secondary base station or a secondary node (secondary node, SN).
  • master node master node
  • secondary node secondary node
  • the primary base station can be a master base station (master gNB, MgNB) of the NR standard or a master base station (master eNB, MeNB) of the LTE standard;
  • the secondary base station can be a secondary base station (gNB, SgNB) of the NR standard or an LTE standard Secondary base station (secondary eNB, SeNB).
  • DCs There are many combinations of DCs. The following describes several possible DC combinations with reference to Figure 3 to Figure 6.
  • the core network device 240 is a packet core network (evolved packet core, EPC), the LTE base station serves as the MN, and the NR base station serves as the SN, which may also be referred to as EN-DC (E-UTRA NR DC).
  • EPC packet core network
  • the LTE base station and the NR base station can be connected through an X2 interface, at least there is a control plane connection, and there may be a user plane connection.
  • the LTE base station and the EPC can be connected through the S1 interface, at least there is a control plane connection, and there may be a user plane connection.
  • the NR base station and the EPC can be connected through the S1-U interface, that is, there can only be a user plane connection.
  • the LTE base station may provide air interface resources for the terminal device 230 through at least one LTE cell.
  • the at least one LTE cell is referred to as a master cell group (MCG).
  • the NR base station may also provide air interface resources for the terminal device 230 through at least one NR cell.
  • the at least one NR cell is called a secondary cell group (SCG).
  • the core network equipment 240 is a 5G core network (5G core, 5GC), the LTE base station serves as the MN, and the NR base station serves as the SN, which may also be called NGEN-DC (NG-RAN E-UTRA-NR dual connectivity).
  • 5G core 5G core, 5GC
  • the LTE base station and the NR base station can be connected through an Xn interface, at least there is a control plane connection, and there may be a user plane connection.
  • the LTE base station and 5GC can be connected through an NG interface, at least a control plane connection, and possibly a user plane connection.
  • the NR base station and the 5GC can be connected through the NG-U interface, that is, there can only be a user plane connection.
  • the LTE base station may provide air interface resources for the terminal device 230 through at least one LTE cell, and at this time, the at least one LTE cell is called MCG.
  • the NR base station can also provide air interface resources for the terminal device 230 through at least one NR cell, and at this time, the at least one NR cell is called an SCG.
  • the NR base station serves as MN
  • the LTE base station serves as SN, which can also be called NE-DC (NR-E-UTRA dual connectivity).
  • the NR base station and the LTE base station can be connected through an Xn interface, at least a control plane connection, and possibly a user plane connection.
  • the NR base station and the 5GC can be connected through an NG interface, at least a control plane connection, and possibly a user plane connection.
  • the NR base station can provide air interface resources for the terminal device 230 through at least one NR cell, and at this time, the at least one NR cell is called an MCG.
  • the LTE base station may also provide air interface resources for the terminal device 230 through at least one LTE cell, and in this case, the at least one LTE cell is called an SCG.
  • both MN and SN are NR base stations, which can also be called NR-NR DC.
  • both the primary base station and the secondary base station are NR base stations.
  • the NR primary base station and the NR secondary base station can be connected through an Xn interface, at least with a control plane connection and possibly a user plane connection.
  • the NR primary base station may provide air interface resources for the terminal device 230 through at least one NR cell, and at this time, the at least one NR cell is called an MCG.
  • the NR secondary base station may also provide air interface resources for the terminal device 230 through at least one NR cell, and in this case, the at least one NR cell is called an SCG.
  • the LTE base station is an eNB and the NR base station is a gNB as an example for description, but this should not constitute any limitation to this application. It should also be understood that the above-mentioned several DC combinations are only described as examples, and the embodiments of the present application should not be limited to the above-mentioned several DC combinations.
  • the secondary node SN and the primary node MN can provide data transmission services for terminal devices at the same time.
  • the terminal device can determine the key with the secondary node SN based on the key with the master node MN. Specifically, taking a signaling radio bearer (SRB) as an example, the master node MN may calculate the key of the secondary node SN (for example, S-KgNB) based on its own key (for example, KgNB) and the sk-counter value. The sk-counter value may be included in the radio resource control (radio resource control, RRC) reconfiguration message sent by the master node MN to the terminal device.
  • the terminal device determines the key for signaling signaling through the SRB between the primary node MN (such as KgNB) and the value of sk-counter to determine the key for signaling signaling between the secondary node SN and through the SRB.
  • the sk-counter value is one of the parameters used in the key derivation process, and the sk-counter value can be a value specified in the protocol, such as an integer greater than or equal to 0 and less than or equal to 65535.
  • the master node MN may transmit signaling, for example, an RRC reconfiguration message, to the terminal device through the first SRB.
  • the secondary node SN may transmit signaling to the terminal device through the second SRB.
  • the first SRB is a bearer for signaling transmission between the terminal device and the primary node
  • the second SRB is a bearer for signaling transmission between the terminal device and the secondary node.
  • the first SRB may be SRB1 or SRB2.
  • the network can be configured with SRB2, which is used to send non-access stratum (NAS) messages, using dedicated control channels (dedicated control channels). channel, DCCH).
  • SRB1 is used for sending radio resource control (Radio Resource Control, RRC) messages, or for sending NAS messages before SRB2 is established, and DCCH is used.
  • RRC Radio Resource Control
  • the priority of SRB2 is lower than the priority of SRB1.
  • the terminal device is configured with EN-DC or NR-DC or NGEN-DC or NE-DC or MR-DC, and the second SRB may be SRB3, which is used to send specific RRC messages and uses DCCH.
  • the specific RRC message may be, for example, an RRC reconfiguration message containing measurement configuration information or may be a measurement report.
  • the RRC reconfiguration message used to instruct the addition of a secondary node may include a secondary cell group configuration (secondary cell group configuration) information element.
  • the RRC reconfiguration message used to indicate the handover may carry a reconfiguration (reconfiguration with sync) cell or a mobility control (mobility controlinfo) cell.
  • the base station is called gNB, and it can include radio resource control (RRC), service data adaptation protocol stack (service data adaptation protocol, SDAP), and packet data convergence protocol (PDCP) One or more of the) layer, the radio link control (RLC) layer, the media access control (MAC) layer, and the physical (PHY) layer.
  • RRC radio resource control
  • SDAP service data adaptation protocol
  • PDCP packet data convergence protocol
  • RLC radio link control
  • MAC media access control
  • PHY physical
  • the base station may be composed of a centralized unit (CU) and a distributed unit (DU).
  • One CU can be connected to one DU, or multiple DUs can share one CU, which saves costs and facilitates network expansion.
  • the segmentation of the CU and the DU can be segmented according to the protocol stack.
  • One possible way is to deploy the RRC, SDAP, and PDCP layers in the CU, and deploy the remaining RLC, MAC, and physical layers in the DU.
  • the CU and DU are connected through an F1 interface.
  • CU stands for gNB to connect to the core network through the Ng interface.
  • two DUs share one CU as an example for description.
  • multiple DUs may share one CU, which is not specifically limited.
  • FIG. 7 shows a scenario to which the embodiment of the present application is applicable.
  • one DU and one CU together form a node.
  • DU1 and CU1 can be regarded as one node
  • DU2 and CU1 can be regarded as another node.
  • DU1 and CU1 are the master nodes MN
  • DU2 and CU1 are the slave nodes SN.
  • the terminal device can be connected to DU1 and CU1 as the master node, and DU2 and CU1 as the slave node SN.
  • the slave node SN and the master node MN can At the same time, it provides data transmission services for terminal equipment.
  • the CU (or PDCP) is the person responsible for key generation/key processing.
  • the secondary node SN of the primary node MN to which the terminal device is connected at the same time since DU1 and CU1 are the primary nodes, and DU2 and CU1 are the secondary nodes, these two nodes have a common CU (ie CU1), therefore, DU1 and CU1 are used as the key for transmitting signaling between the primary node and the terminal device through the first SRB (such as KgNB), and DU2 and CU1 are used as the key for transmitting signaling between the secondary node and the terminal device through the second SRB (such as , S-KgNB) are the same.
  • first SRB such as KgNB
  • DU2 and CU1 are used as the key for transmitting signaling between the secondary node and the terminal device through the second SRB (such as , S-KgNB) are the same.
  • the terminal equipment and the secondary node transmit signaling through the second SRB, it needs to be determined according to the key (such as KgNB) and the sk-counter value of the signaling transmitted through the first SRB with the primary node MN.
  • the signaling key (for example, S-KgNB) is transmitted between it and the secondary node SN through the second SRB, which introduces implementation complexity.
  • the terminal device can determine the key for transmitting signaling with the secondary node SN through the second SRB and the terminal device and the primary node SN.
  • the key for transmitting signaling through the first SRB between nodes MN is the same.
  • the terminal device can use the key (for example, KgNB) corresponding to MN when transmitting signaling through the second SRB with the secondary node SN, and There is no need to derive the key (for example, S-KgNB) used when transmitting signaling with the secondary node SN through the second SRB according to the key corresponding to the MN (that is, KgNB), thereby reducing implementation complexity and saving resources.
  • KgNB key corresponding to MN
  • FIG. 8 is a schematic flowchart of a communication method provided by an embodiment of the present application. As shown in FIG. 8, the method may include steps 810-820, and steps 810-820 will be described in detail below.
  • Step 810 The terminal device receives the indication information from the primary node, the indication information is used to indicate that the key used for signaling transmission between the terminal device and the first secondary node through the second SRB is the first key, and the first secondary node
  • the node and the master node share a CU.
  • DU1 and CU1 may be used as the master node MN, and DU2 and CU1 shown in (b) in FIG. 7 may be used as the first secondary node SN.
  • the above-mentioned first key is a key used for signaling transmission between the terminal device and the master node through the first SRB, or the above-mentioned first key is a key corresponding to the master node (for example, KgNB ).
  • the master node for example, KgNB
  • the indication information in the embodiments of the present application may be carried in an RRC reconfiguration message.
  • the RRC reconfiguration message may be used to notify the terminal device to add the first secondary node SN as a secondary node in the DC architecture, or the RRC reconfiguration message may be used for Notify the terminal device to switch the secondary node (or change the secondary node), for example, the RRC reconfiguration message notifies the terminal device to switch the secondary node from the second secondary node to (or change to) the first secondary node, after the handover (or After the secondary node is changed, the first secondary node and the primary node share a centralized unit CU.
  • the RRC reconfiguration message may carry a secondary cell group configuration information element to include adding a secondary node Relevant configuration information required at the time.
  • the RRC reconfiguration message can carry a reconfiguration with sync cell to contain Relevant configuration information required for secondary node handover (or secondary node change); in the LTE system, the RRC connection reconfiguration message carries the mobility control info cell, which is used to contain the relevant information required for secondary node handover (or secondary node change) Configuration information.
  • Step 820 The terminal device determines, according to the instruction information, that the key used for signaling transmission with the first secondary node through the second SRB is the first key.
  • the RRC reconfiguration message may include first information, and the first information is used to indicate the key used for signaling transmission between the terminal device and the first secondary node SN through the second SRB. Is the first key.
  • the first information can be represented by a binary value. For example, "0" means that the key used for signaling transmission between the terminal device and the first secondary node SN through the second SRB is different from the first key.
  • the key used for signaling transmission between the terminal device and the first secondary node SN through the second SRB is the same as the first key; or, the first information can be represented by a Boolean value, for example, "FALSE” It means that the key used for signaling transmission between the terminal equipment and the first secondary node SN through the second SRB is different from the first key, and "TRUE” means that the terminal equipment and the first secondary node SN conduct the signaling through the second SRB.
  • the key used for signaling transmission is the same as the first key; or, the first information can be represented by a certain information element, for example, if the information element is "master key", if the RRC reconfiguration message does not include the Information element means that the key used for signaling transmission between the terminal equipment and the first secondary node SN through the second SRB is different from the first key. If the information element is included in the RRC reconfiguration message, it means that the terminal equipment and the The key used for signaling transmission between the first secondary nodes SN through the second SRB is the same as the first key; or, the first information has other manifestations, which is not limited in this embodiment.
  • the terminal device may determine the key used for signaling transmission with the first secondary node through the second SRB according to the first information contained in the RRC reconfiguration message.
  • the first information is the Boolean value "TRUE"
  • the terminal device determines that the key used for signaling transmission with the first secondary node through the second SRB is the first key.
  • the instruction information in step 820 includes the first information.
  • the network configures the sk-counter value
  • the RRC reconfiguration message contains the sk-counter value
  • the sk-counter value is a preset value (for example, the sk-counter value is infinite or infinitesimal) Or other special values (for example, the special value is not within the value range of sk-counter defined by the existing agreement), and it is not limited).
  • the sk-counter value is a preset value, it can implicitly indicate that the key used for signaling transmission between the terminal device and the first secondary node through the second SRB is the first key.
  • the indication information in step 820 is an sk-counter value belonging to a preset range or taking a preset value.
  • the terminal device may determine that the key used for signaling transmission with the first secondary node through the second SRB is the first key according to the preset sk-counter value included in the RRC reconfiguration message.
  • the RRC reconfiguration message includes the first information and the sk-counter value, and the sk-counter value may be within the value range of the sk-counter defined by the existing protocol, or the sk-counter -counter value is a preset value (for example, the sk-counter value is infinity or infinitesimal or other special values (for example, the special value is not within the value range of sk-counter defined by the existing agreement)), Not limited.
  • the first information is used to indicate that the key used for signaling transmission between the terminal device and the first secondary node SN through the second SRB is the first key. Specifically, the expression of the first information can be referred to above The corresponding description of the first information will not be repeated.
  • the terminal device may determine, according to the first information and/or the sk-counter value included in the RRC reconfiguration message, that the key used for signaling transmission with the first secondary node through the second SRB is the first key.
  • the indication information in step 820 may include the first information and/or the sk-counter value belonging to a preset range or taking a preset value.
  • the network does not configure the sk-counter value, that is, the RRC reconfiguration message does not include the sk-counter value, which can implicitly instruct the terminal device to pass the first secondary node
  • the key used by the second SRB for signaling transmission is the first key.
  • the terminal device may determine that the key used for signaling transmission with the first secondary node through the second SRB is the first key according to the fact that the sk-counter value is not included in the RRC reconfiguration message.
  • the indication information in step 820 may be that the RRC reconfiguration message does not include the sk-counter value.
  • the terminal device determines the key used to transmit signaling with the first secondary node and transmits signaling between the terminal device and the primary node
  • the keys used are the same, which avoids the complexity caused by deriving the key used for signaling transmission with the first secondary node.
  • the terminal device or the network device can perform some or all of the steps in the above-mentioned embodiments, and these steps or operations are only examples, and the embodiments of the present application can also perform other operations or variations of various operations.
  • each step may be executed in a different order presented in the foregoing embodiment, and it may not be necessary to perform all operations in the foregoing embodiment.
  • FIG. 9 is a schematic flowchart of another communication method provided by an embodiment of the present application. As shown in FIG. 9, the method may include steps 910-960, and steps 910-960 will be described in detail below.
  • DU1 and CU1 shown in (b) in FIG. 7 may be used as the master node MN, and DU2 and CU1 shown in (b) in FIG. 7 may be used as the secondary node SN.
  • Step 910 The primary node MN sends a first request message to the secondary node SN, where the first request message is used to request to add the opposite end as a secondary node.
  • the first request message is a secondary node addition request message.
  • Step 920 The secondary node SN replies a first confirmation message to the primary node MN.
  • the first confirmation message is used to notify the opposite end that the secondary node addition request is allowed/accepted.
  • the first confirmation message is the secondary node addition request confirmation. news.
  • the secondary node SN after the secondary node SN receives the first request message sent by the primary node MN, for example, the secondary node add request message, it can perform the corresponding secondary node configuration and reply the first confirmation to the primary node MN.
  • the first confirmation message is used to indicate that the secondary node SN has successfully received the secondary node addition request message.
  • the first confirmation message may be, for example, a secondary node SN addition request confirmation (SN addition request acknowledgement, SN addition request ACK) message.
  • Step 930 The master node MN sends a radio resource control (radio resource control, RRC) reconfiguration message to the terminal device, and the RRC reconfiguration message carries a secondary cell group configuration information element.
  • RRC radio resource control
  • the primary node MN Upon receiving the secondary node addition request confirmation message from the secondary node SN, the primary node MN can send an RRC reconfiguration message to the terminal device.
  • the RRC reconfiguration message carries a secondary cell group configuration information element, which is used to instruct the terminal device to add a secondary node. Node SN.
  • the terminal device configures the secondary node according to the secondary cell group configuration information element, and adds the node indicated in the RRC reconfiguration message as the secondary node.
  • the RRC reconfiguration message is also used to indicate that the key used for signaling transmission between the terminal device and the secondary node SN through the second SRB is the first key, where the first key is the terminal device
  • the key for example, KgNB
  • the RRC reconfiguration message may include indication information, which is used to indicate that the key used for signaling transmission between the terminal device and the secondary node SN through the second SRB is the first secret key. key.
  • the RRC reconfiguration message may include the sk-counter value, and the sk-counter value is a preset value (for example, the sk-counter value is infinity or infinitesimal or other special values (For example, the special value is not within the value range of the sk-counter value defined in the existing protocol, and is not limited).
  • the sk-counter value is the preset value, it can implicitly indicate the terminal device and The key used for signaling transmission between the secondary nodes through the second SRB is the first key.
  • the RRC reconfiguration message may include both the indication information and the sk-counter value.
  • the RRC reconfiguration message does not include the sk-counter value, which can implicitly indicate that the key used for signaling transmission between the terminal device and the secondary node through the second SRB is the first One key.
  • the master node MN may also send first key information to the terminal device, and the terminal device may derive a communication with the master node MN through the first SRB based on the first key information.
  • Make the first key used for transmission (eg KgNB).
  • Step 940 The terminal device determines, according to the RRC reconfiguration message, that the key used for signaling transmission with the secondary node through the second SRB is the first key.
  • the terminal device determines that the key used for signaling transmission with the secondary node through the second SRB is the first key according to the RRC reconfiguration message, which is not specifically limited in this application .
  • the RRC reconfiguration message may include first information, and the first information is used to indicate that the key used for signaling transmission between the terminal device and the secondary node SN through the second SRB is the first One key.
  • the terminal device may determine, according to the first information contained in the RRC reconfiguration message, that the key used for signaling transmission with the first secondary node through the second SRB is the first key. Specifically, for the presentation form of the first information, refer to the corresponding description of the first information in step 820, which is not repeated here.
  • the network configures the sk-counter value
  • the RRC reconfiguration message contains the sk-counter value
  • the sk-counter value is a preset value (for example, the sk-counter value is infinite or infinitesimal) Or other special values (for example, the special value is not within the value range of sk-counter defined by the existing agreement), and it is not limited).
  • the indication information is an sk-counter value belonging to a preset range or taking a preset value.
  • the sk-counter value is a preset value, it can implicitly indicate that the key used for signaling transmission between the terminal device and the secondary node through the second SRB is the first key.
  • the terminal device may determine that the key used for signaling transmission with the first secondary node through the second SRB is the first key according to the preset sk-counter value included in the RRC reconfiguration message.
  • the RRC reconfiguration message includes the first information and the sk-counter value
  • the sk-counter value may be within the value range of the sk-counter defined by the existing protocol, or the sk-counter -counter value is a preset value (for example, the sk-counter value is infinity or infinitesimal or other special values (for example, the special value is not within the value range of sk-counter defined by the existing agreement)), Not limited.
  • the first information is used to indicate that the key used for signaling transmission between the terminal device and the secondary node SN through the second SRB is the first key. Specifically, the form of the first information can be referred to in step 820 for The corresponding description of the first information will not be repeated.
  • the terminal device may determine, according to the first information and/or the sk-counter value included in the RRC reconfiguration message, that the key used for signaling transmission with the first secondary node through the second SRB is the first key.
  • the network does not configure the sk-counter value, that is, the RRC reconfiguration message does not include the sk-counter value, which can implicitly indicate that the terminal device and the secondary node pass through the second SRB
  • the key used for signaling transmission is the first key.
  • the terminal device may determine that the key used for signaling transmission with the first secondary node through the second SRB is the first key according to the fact that the sk-counter value is not included in the RRC reconfiguration message.
  • Step 950 The terminal device sends an RRC message to the master node MN.
  • the RRC message is used to indicate that the RRC reconfiguration has been completed.
  • the RRC message is an RRC reconfiguration complete message.
  • Step 960 The primary node MN sends a first message to the secondary node SN.
  • the first message is used to indicate that the terminal device has completed the process of adding the secondary node.
  • the first message is a secondary node reconfiguration complete message.
  • the terminal device can perform random access with the secondary node SN through a random access channel (RACH) process.
  • RACH random access channel
  • the terminal device or the network device can perform some or all of the steps in the above-mentioned embodiments, and these steps or operations are only examples, and the embodiments of the present application can also perform other operations or variations of various operations.
  • each step may be executed in a different order presented in the foregoing embodiment, and it may not be necessary to perform all operations in the foregoing embodiment.
  • the terminal device can determine according to the RRC reconfiguration message when transmitting signaling with the secondary node SN through the second SRB
  • the key corresponding to the MN ie, KgNB
  • KgNB the key corresponding to the MN
  • FIG. 10 is a schematic flowchart of another communication method provided by an embodiment of the present application, which is used for the change/handover of the secondary node initiated by the primary node. As shown in (a) in FIG. 10, the method may include steps 1010-1080, and steps 1010-1080 will be described in detail below.
  • the primary nodes in (a) in FIG. 10 are DU1 and CU1 as shown in (b) in FIG. 7 and the first secondary nodes are DU2 and CU1 as shown in (b) in FIG. 7
  • the second secondary node may be composed of DU3 and CU2, for example.
  • Step 1010 The primary node MN sends a second request message to the first secondary node, where the second request message is used to request that the opposite end is added as a secondary node.
  • the second request message is a secondary node addition request message.
  • Step 1020 The first secondary node replies to the MN with a second confirmation message, the second confirmation message is used to notify the opposite end that the secondary node addition request is allowed/accepted, optionally, the second confirmation message is the secondary node addition request confirmation message .
  • the first secondary node after the first secondary node receives the second request message sent by the primary node MN, for example, the secondary node add request message, it can perform the corresponding secondary node configuration and reply the second request message to the primary node MN.
  • a confirmation message the second confirmation message is used to indicate that the secondary node SN has successfully received the secondary node addition request message.
  • the second confirmation message may be an SN addition request ACK message, for example.
  • Step 1030 The MN sends a third request message to the second secondary node.
  • the third request message is used to request the release of the secondary node.
  • the third request message is a secondary node release request message.
  • Step 1040 The second secondary node sends a secondary node third confirmation message to the MN.
  • the third confirmation message is a secondary node SN release request confirmation message.
  • the second secondary node After the second secondary node receives the third request message sent by the MN, for example, the secondary node release request message, it can release related resources and reply to the MN a third confirmation confirmation message, which is used to indicate The second secondary node has released related resources, and the third confirmation message may be, for example, a secondary node SN release request acknowledgement (SN release request acknowledgement, SN release request ACK) message.
  • SN release request acknowledgement SN release request acknowledgement, SN release request ACK
  • Step 1050 The MN sends an RRC reconfiguration message to the terminal device, and the RRC reconfiguration message instructs the terminal device to switch/change the secondary node.
  • the secondary node is switched/changed from the second secondary node to the first secondary node. That is, before the secondary node is switched/changed, the MN and the second secondary node can provide services for the terminal device, and after the secondary node is switched/changed, the MN and the first secondary node can provide services for the terminal device.
  • the primary node MN may send an RRC reconfiguration message to the terminal device.
  • the MN is a gNB
  • the RRC reconfiguration message sent by the MN to the UE may carry a reconfiguration with sync cell, which is used to instruct the terminal device to switch/change the secondary node from the second secondary node to the first secondary node.
  • the MN is an eNB
  • the RRC connection reconfiguration message sent by the MN to the UE may carry the mobility control info information element, which is used to notify the terminal device to switch/change the secondary node from the second secondary node to the first secondary node.
  • the primary node MN determines that the first secondary nodes after secondary node handover/change are DU2 and CU1, and share CU1 with DU1 and CU1 as the primary node MN. Therefore, the RRC reconfiguration message is also used to instruct the terminal device
  • the key used for signaling transmission with the first secondary node through the second SRB is the first key, where the first key is the signaling transmission between the terminal device and the master node MN through the first SRB
  • the key used e.g. KgNB.
  • the RRC reconfiguration message may include indication information, which is used to instruct the terminal device and the first secondary node to perform signaling transmission through the second SRB.
  • the key used is the first key.
  • the RRC reconfiguration message may include the sk-counter value, and the sk-counter value is a preset value (for example, the sk-counter value is infinity or infinitesimal or other special values (For example, the special value is not within the value range of sk-counter defined in the existing protocol, and is not limited).
  • the sk-counter value is a preset value, it can implicitly indicate the terminal device and the first The key used for signaling transmission between a secondary node through the second SRB is the first key.
  • the RRC reconfiguration message may include both the indication information and the sk-counter value.
  • the RRC reconfiguration message does not contain the sk-counter value, which can implicitly indicate that the key used for signaling transmission between the terminal device and the first secondary node through the second SRB is the same. Mentioned first key.
  • the master node MN may also send first key information to the terminal device, and the terminal device may derive communication with the master node MN through the first SRB based on the first key information.
  • Make the first key used for transmission (eg KgNB).
  • Step 1060 The terminal device determines, according to the RRC reconfiguration message, that the key used for signaling transmission with the first secondary node through the second SRB is the first key.
  • the terminal device determines that the key used for signaling transmission with the first secondary node through the second SRB is the first key.
  • the specific implementation method corresponds to step 940.
  • step 940 The description in, I won’t repeat it here.
  • Step 1070 The terminal device sends an RRC message to the primary node MN.
  • the RRC message is used to indicate that the secondary node handover/change has been completed.
  • the RRC message is an RRC reconfiguration complete message.
  • Step 1080 The primary node MN sends a second message to the first secondary node, the second message is used to indicate that the terminal device has completed the secondary node handover/change process, optionally, the second message is a secondary node reconfiguration complete message .
  • the terminal device or the network device can perform some or all of the steps in the above-mentioned embodiments, and these steps or operations are only examples, and the embodiments of the present application can also perform other operations or variations of various operations.
  • each step may be executed in a different order presented in the foregoing embodiment, and it may not be necessary to perform all operations in the foregoing embodiment.
  • FIG. 10 is a schematic flowchart of another communication method provided by an embodiment of the present application, which is used for the change/handover of the secondary node actively initiated by the secondary node. As shown in (b) in FIG. 10, the method may include steps 1001-1008, and steps 1001-1008 will be described in detail below.
  • the primary nodes in (b) in FIG. 10 are DU1 and CU1 as shown in (b) in FIG. 7, and the first secondary nodes are DU2 and CU1 as shown in (b) in FIG. 7,
  • the second secondary node may be composed of DU3 and CU2, for example.
  • Step 1001 The second secondary node sends a fourth request message to the MN, where the fourth request message is used to request to change the secondary node.
  • the fourth request message may be, for example, a secondary node change request message.
  • Step 1002 The primary node MN sends a fifth request message to the first secondary node.
  • the fifth request message is used to request that the first secondary node be added as a secondary node.
  • the fifth request message may be, for example, secondary node addition. Request message.
  • Step 1003 The first secondary node replies to the MN with a fifth confirmation message.
  • the fifth confirmation message is used to indicate that the first secondary node SN has allowed/accepted the secondary node addition request message.
  • the fifth confirmation message may be, for example, It is the SN addition request ACK message.
  • the first secondary node may perform corresponding secondary node configuration, and reply an SN addition request ACK message to the primary node MN.
  • Step 1004 The MN sends an RRC reconfiguration message to the terminal device, and the RRC reconfiguration message instructs the terminal device to switch/change the secondary node.
  • the secondary node is switched/changed from the second secondary node to the first secondary node. That is, before the secondary node is switched/changed, the MN and the second secondary node can provide services for the terminal device, and after the secondary node is switched/changed, the MN and the first secondary node can provide services for the terminal device.
  • the master node MN may send an RRC reconfiguration message to the terminal device.
  • the MN is a gNB
  • the RRC reconfiguration message sent by the MN to the UE may carry a reconfiguration with sync cell, which is used to instruct the terminal device to switch/change the secondary node from the second secondary node to the first secondary node.
  • the MN is an eNB
  • the RRC connection reconfiguration message sent by the MN to the UE may carry the mobility control info information element, which is used to notify the terminal device to switch/change the secondary node from the second secondary node to the first secondary node.
  • the primary node MN determines that the first secondary nodes after secondary node handover/change are DU2 and CU1, and share CU1 with DU1 and CU1 as the primary node MN. Therefore, the RRC reconfiguration message is also used to instruct the terminal device
  • the key used for signaling transmission with the first secondary node through the second SRB is the first key, where the first key is the signaling transmission between the terminal device and the master node MN through the first SRB
  • the key used e.g. KgNB.
  • the RRC reconfiguration message may include indication information, which is used to instruct the terminal device and the first secondary node to perform signaling transmission through the second SRB.
  • the key used is the first key.
  • the RRC reconfiguration message may include the sk-counter value, and the sk-counter value is a preset value (for example, the sk-counter value is infinity or infinitesimal or other special values (For example, the special value is not within the value range of the sk-counter value defined in the existing protocol, and is not limited).
  • the sk-counter value is the preset value, it can implicitly indicate the terminal device and The key used for signaling transmission between the first secondary nodes through the second SRB is the first key.
  • the RRC reconfiguration message may include both the indication information and the sk-counter value.
  • the RRC reconfiguration message does not include the sk-counter value, which can implicitly indicate that the key used for signaling transmission between the terminal device and the secondary node through the second SRB is the first One key.
  • the master node MN may also send first key information to the terminal device, and the terminal device may derive a communication with the master node MN through the first SRB based on the first key information.
  • Make the first key used for transmission (eg KgNB).
  • Step 1005 The terminal device determines, according to the RRC reconfiguration message, that the key used for signaling transmission with the first secondary node through the second SRB is the first key.
  • the terminal device determines that the key used for signaling transmission with the first secondary node through the second SRB is the first key.
  • the specific implementation method corresponds to step 940.
  • step 940 The description in, I won’t repeat it here.
  • Step 1006 The terminal device sends an RRC message to the master node MN.
  • the RRC message is used to indicate that the secondary node handover/change reconfiguration has been completed.
  • the RRC message is an RRC reconfiguration complete message.
  • Step 1007 The primary node MN sends a fourth confirmation message to the second secondary node, where the fourth confirmation message is used to confirm whether the secondary node has changed, for example, the fourth confirmation message is a secondary node change confirmation message.
  • Step 1008 The primary node MN sends a third message to the first secondary node, the third message is used to indicate that the terminal device has completed the secondary node handover/change process, optionally, the third message is a secondary node reconfiguration complete message .
  • the data transmission between the terminal device and the source base station will be interrupted, until the terminal device successfully switches to the target base station, the terminal device can perform data transmission with the target base station . In other words, data transmission will only resume after the terminal device is successfully switched.
  • a switching scheme based on the DC architecture is provided.
  • the target base station is added, and the target base station is added as the secondary node SN.
  • the target base station (ie, the secondary node SN) and the source base station (ie, the master node MN) provide data transmission services for the terminal equipment at the same time.
  • the link quality of the source cell i.e. the cell belonging to the MN before handover
  • the link quality of the target cell i.e. the cell belonging to the SN before handover
  • the source base station can perform handover/role exchange judgment. That is, the MN before handover (that is, the source base station) can be changed to the SN after the handover, and the SN before the handover (that is, the target base station) can be changed to the MN after the handover.
  • the source base station before handover, the source base station is used as MN, the key used by the source base station is KgNB, the target base station is used as SN, and the key used by the target base station is S-KgNB (S-KgNB is based on KgNB and sk-counter value is determined).
  • S-KgNB is based on KgNB and sk-counter value is determined.
  • the source base station (that is, the target base station handed over in the previous round of handover as the source base station in this round of handover) needs to be based on its own secrets.
  • the key (ie S-KgNB) and the sk-counter value are derived from the key of the target base station serving as the secondary node SN in the second round of handover. Therefore, in the handover scheme based on the DC architecture, the key of the target base station to be switched to (the target base station that needs to be switched to is always first added as the secondary node SN) is always determined based on the sk-counter value, which is safe Sex is not high.
  • the terminal device or the network device can perform some or all of the steps in the above-mentioned embodiments, and these steps or operations are only examples, and the embodiments of the present application can also perform other operations or variations of various operations.
  • each step may be executed in a different order presented in the foregoing embodiment, and it may not be necessary to perform all operations in the foregoing embodiment.
  • the technical solutions provided by the embodiments of the present application can be used to determine the key corresponding to the target base station of the secondary node SN before the handover (role exchange) according to various information in the handover scheme based on the DC architecture, so as to avoid each round of handover In the process, the security problem caused by the key determined based on the sk-counter value is not high.
  • the technical solution provided by the embodiment of the present application will be described in detail below in conjunction with FIG. 11.
  • FIG. 11 is a schematic flowchart of a 0ms handover interruption delay based on a DC architecture provided by an embodiment of the present application.
  • the method shown in FIG. 11 may include steps 1110-1155, and steps 1110-1155 will be described in detail below.
  • steps 1110-1155 will be described in detail below.
  • FIG. 11 is only to help those skilled in the art understand the embodiments of the present application, and is not intended to limit the embodiments of the application to the specific numerical values or specific scenarios illustrated.
  • Those skilled in the art can obviously make various equivalent modifications or changes based on the example given in the example of FIG. 11, and such modifications and changes also fall within the scope of the embodiments of the present application.
  • Step 1110 The source base station sends a sixth request message to the target base station, where the sixth request message is used to request the target base station to be added as a secondary node.
  • the sixth request message may be a secondary node addition request message.
  • the source base station as the master node MN before handover may send a secondary node addition request message to the target base station, where the secondary node addition request message is used to instruct to add the target base station as a secondary node SN.
  • the source base station (MN before handover) can determine the key (such as S-KgNB) used by the target base station (SN before handover), and can send the key used by the target base station (such as S-KgNB) to the target base station (SN before handover).
  • S-KgNB as an example and not a limitation, the source base station may carry the key (such as S-KgNB) of the target base station (SN before handover) in the secondary node addition request message and send it to the target base station.
  • the source base station may receive the first next hop chaining counter (NCC) from the core network equipment, such as access and mobile management functions (AMF).
  • NCC next hop chaining counter
  • AMF access and mobile management functions
  • the first NCC is different from the second NCC.
  • the source base station (the MN before handover) can determine the next hop (next hop, NH) corresponding to the first NCC according to the first NCC, and derive the target base station (handover) according to the NH corresponding to the first NCC and the information of the target cell to be handed over to.
  • the former SN used the key S-KgNB.
  • the second NCC may be the last value used by the terminal device before receiving the first NCC.
  • the source base station (the MN before handover) can determine the NH corresponding to the first NCC according to the first NCC and the mapping relationship, where the mapping relationship represents the relationship between the first NCC and the NH The corresponding relationship.
  • the source base station (the MN before handover) can derive the key S-KgNB used by the target base station (the SN before handover) according to at least one of the following: the NH corresponding to the first NCC, the physical cell identity of the target cell (physical cell identification, PCI), frequency information of the target cell.
  • the NH corresponding to the first NCC the physical cell identity of the target cell (physical cell identification, PCI), frequency information of the target cell.
  • PCI physical cell identification
  • the first NCC is the same as the second NCC.
  • the source base station can derive the key used by the target base station (the SN before handover), which is not specifically limited in the embodiment of the present application.
  • the source base station can derive the key S-KgNB corresponding to the target base station according to the key KgNB used by itself and the information of the target cell to be handed over to.
  • the source base station may also derive the key S-KgNB corresponding to the target base station according to the key KgNB and the value of sk-counter used by the source base station.
  • the source base station can derive the key S-KgNB used by the target base station (the SN before handover) based on the key KgNB used by itself and the information of the target cell to be handed over.
  • the key S-KgNB used by the target base station is carried in the secondary node addition request message and sent to the target base station.
  • the source base station can derive the key S-KgNB used by the target base station (the SN before handover) according to at least one of the following: its own key KgNB, the physical cell of the target cell Identification (physical cell identification, PCI), frequency point information of the target cell.
  • the frequency information of the target cell may include the frequency corresponding to the target cell.
  • the frequency information may include the frequency of a synchronization signal block (synchronization signal block, SSB), for example, the absolute frequency of the SSB (absolute frequency). frequency SSB) and/or the absolute frequency position of the reference resource module (for example, absolute frequency pointA), this application is not limited to this.
  • SSB synchronization signal block
  • the absolute frequency of the SSB absolute frequency
  • frequency SSB absolute frequency position of the reference resource module
  • the source base station (the MN before handover) can derive the key S-KgNB used by the target base station according to its own key KgNB and sk-counter value, and the key used by the target base station (SN before handover)
  • the S-KgNB is carried in the secondary node addition request message and sent to the target base station.
  • Step 1115 The target base station sends a sixth confirmation message to the source base station.
  • the sixth confirmation message is used to indicate that the secondary node SN has accepted/allowed the secondary node addition request message.
  • the sixth confirmation message may be, for example, SN addition. request ACK message.
  • the target base station After receiving the secondary node addition request message sent by the source base station, the target base station can perform corresponding secondary node configuration, and after completing the secondary node configuration, reply to the source base station a secondary node addition request confirmation message.
  • Step 1120 The source base station sends a reconfiguration message to the terminal device.
  • the reconfiguration message is used to instruct the terminal device to add a secondary node.
  • the reconfiguration message is an RRC reconfiguration message.
  • the source base station after receiving the SN addition request confirmation message, the source base station sends an RRC reconfiguration message carrying a secondary cell group configuration information element to the terminal device to instruct the terminal device to add a secondary node.
  • the source base station can also indicate the security key S-KgNB of the target base station (the SN before handover) to the terminal device through the RRC reconfiguration message.
  • S-KgNB security key of the target base station
  • the RRC reconfiguration message may include the first NCC, and the terminal device may change the last NCC used before receiving the first NCC (that is, the second NCC). NCC) is compared with the first NCC. If the first NCC is different from the second NCC, the terminal device can derive the key S-KgNB used by the target base station (SN before handover) according to at least one of the following: The NH corresponding to the NCC, the physical cell identifier PCI of the target cell, and the frequency point information of the target cell.
  • the RRC reconfiguration message may include first indication information and a first NCC, and the first indication information is used to indicate that the first NCC is different from the second NCC.
  • the terminal device can derive the key S-KgNB used by the target base station (SN before handover) according to the first indication information through at least one of the following: the NH corresponding to the first NCC, the physical cell identifier PCI of the target cell, and the target Frequency information of the cell.
  • the second NCC is the NCC last used by the terminal device before receiving the RRC reconfiguration message, or it can be understood as the NCC last used by the terminal device at the source base station.
  • the source base station derives the key S-KgNB corresponding to the target base station according to the key KgNB used by itself and the information of the target cell to be handed over.
  • the RRC reconfiguration message may include second indication information, which is used to instruct the terminal device to derive information based on the key KgNB of the source base station (the MN before handover) and the target cell to be handed over.
  • the key S-KgNB corresponding to the target base station is obtained.
  • the second indication information is used to instruct the terminal device to derive the key S-KgNB used by the target base station (SN before handover) according to at least one of the following: source base station The key KgNB of (the MN before handover), the physical cell identity PCI of the target cell, and the frequency information of the target cell.
  • the RRC reconfiguration message may include the first NCC
  • the terminal device may compare the last used NCC (that is, the second NCC) before receiving the first NCC with the first NCC, if the first NCC Same as the second NCC, the terminal device can derive the key S-KgNB corresponding to the target base station based on the key KgNB corresponding to the source base station (the MN before handover) and the information of the target cell to be handed over to, for example, the terminal The device can derive the key S-KgNB used by the target base station (SN before handover) according to at least one of the following: the key KgNB of the source base station (MN before handover), the physical cell identity PCI of the target cell, and the target cell Frequency information.
  • the source base station derives the key S-KgNB corresponding to the target base station according to the key KgNB and the sk-counter value used by the source base station as an example.
  • the RRC reconfiguration message contains the sk-counter value
  • the terminal device can determine according to the sk-counter value contained in the RRC reconfiguration message to derive the corresponding key KgNB and the sk-counter value for the target base station.
  • the key S-KgNB is a configurable value
  • the RRC reconfiguration message may include the sk-counter value and third indication information, and the third indication information is used to instruct the terminal device to reconfigure according to the key KgNB and RRC of the source base station (the MN before handover)
  • the sk-counter value in the message derives the key S-KgNB used by the target base station.
  • the RRC reconfiguration message may include the sk-counter value and the first NCC, and the terminal device may compare the last used NCC (ie, the second NCC) before receiving the first NCC with the first NCC If the first NCC is the same as the second NCC, the terminal device can derive the key S-KgNB used by the target base station according to the key KgNB of the source base station (the MN before handover) and the sk-counter value in the RRC reconfiguration message .
  • the last used NCC ie, the second NCC
  • the terminal device can derive the key S-KgNB used by the target base station according to the key KgNB of the source base station (the MN before handover) and the sk-counter value in the RRC reconfiguration message .
  • Step 1125 The terminal device sends a fourth message to the source base station (the MN before handover), where the fourth message is used to indicate the completion of the RRC reconfiguration.
  • the fourth message is an RRC reconfiguration complete message.
  • Step 1130 The source base station (the MN before handover) sends a fifth message to the target base station (the SN before handover).
  • the fifth message is used to indicate that the terminal device has completed the reconfiguration process.
  • the fifth message is a secondary Node reconfiguration complete message.
  • the terminal equipment and the target base station perform RACH process.
  • the target base station is configured as a secondary node in the DC architecture, and the terminal device can perform data transmission with the source base station (the MN before the handover) and the target base station (the SN before the handover).
  • Step 1135 The source base station (the MN before the handover) makes a handover/role swap decision.
  • the terminal device can perform data transmission with the source base station (the MN before the handover) and the target base station (the SN before the handover).
  • the source base station can switch roles /Handover decision, for example, the source base station can make a role swap/handover decision based on the measurement report reported by the terminal device. That is, the MN before the handover can be changed to the SN after the handover, and the SN before the handover can be changed to the MN after the handover.
  • Step 1140 The source base station (ie, the MN before the handover) sends a role swap request/handover request to the target base station (ie, the SN before the handover).
  • the role swap/switch request can be performed through an existing message, such as a handover request message; or, a newly introduced message can be used, which is not limited in this application.
  • Step 1145 The target base station (ie, the SN before the handover) sends a role swap response/handover request response to the source base station (ie, the MN before the handover).
  • an existing message such as a handover request confirmation message
  • a role exchange response/handover request response can be used, without limitation.
  • Step 1150 The source base station (ie, the MN before handover) sends a reconfiguration message to the terminal device.
  • the reconfiguration message is used to instruct the terminal device to perform role exchange/switching.
  • the reconfiguration message is an RRC reconfiguration message.
  • the RRC reconfiguration message is used to instruct the terminal equipment to perform role exchange/switching, that is, to instruct the terminal equipment to switch the source base station (ie, the MN before handover) to SN, and to switch the target base station (ie, the SN before handover) Change to MN.
  • the RRC reconfiguration message may be an RRC reconfiguration message carrying a reconfiguration with sync cell.
  • the RRC reconfiguration message may be an RRC connection reconfiguration message carrying a mobility control info cell.
  • the source base station ie, the MN before handover
  • the source base station can send two RRC reconfiguration messages to the terminal device respectively, for example, the RRC carrying the secondary cell group configuration information element in step 1120
  • the reconfiguration message and the RRC reconfiguration message carrying the reconfiguration with sync cell in step 1150 are completed separately.
  • secondary nodes can be added through steps 1110 and 1115, and through steps 1140 and 1145. Prepare for role swap/switch.
  • the source base station ie, the MN before the handover
  • the RRC reconfiguration message carries a secondary cell group configuration information element. And reconfiguration with sync cells.
  • the terminal device can perform the secondary node SN addition process according to the secondary cell group configuration information element carried in the RRC reconfiguration message, and at the same time, can perform the role exchange/switching process according to the reconfiguration with sync information element carried in the RRC reconfiguration message ,
  • the source base station that is, the MN before handover
  • the target base station that is, the SN before handover
  • the messages in step 1120 and step 1150 can be combined into one message, which is used to instruct the terminal device to add a secondary node and perform role exchange/switching. That is, in the second method, adding auxiliary nodes and role exchange/switching can be performed at the same time.
  • the source base station and the target base station can use an Xn message to make a secondary node addition request, a role exchange request/handover request, and use an Xn message to respond to the secondary node addition request, Response to role swap request/switch request.
  • step 1110 and step 1140 can be combined into one message for auxiliary node addition request, role exchange request/switching request, and the messages in step 1115 and step 1145 can be combined into one message for auxiliary node addition.
  • the source base station that is, the MN before the handover
  • the target base station that is, the SN before the handover
  • the terminal device can simultaneously perform data transmission with the source base station (that is, the SN after the handover) and the target base station (that is, the MN after the handover).
  • the RRC reconfiguration message carrying the secondary cell group configuration information element may include the relevant parameters required to obtain the key S-KgNB corresponding to the target base station, and the specific parameters As described in step S1120.
  • the RRC reconfiguration message carrying the secondary cell group configuration information element and the reconfiguration with sync information element may include related parameters required to obtain the key S-KgNB corresponding to the target base station, specifically The parameters are as described in step S1120.
  • Step 1153 The terminal device sends a sixth message to the target base station (ie, the MN after the handover).
  • the sixth message is used to indicate that the role exchange/handover has been completed.
  • the sixth message is an RRC reconfiguration complete message. .
  • Step 1155 Release the source base station (ie, the MN before handover).
  • the process can be released through the secondary node (ie source base station, the source base station becomes SN after the role exchange/handover is completed) , Release the source base station (ie MN before handover, SN after handover).
  • the terminal device or the network device can perform some or all of the steps in the above-mentioned embodiments, and these steps or operations are only examples, and the embodiments of the present application can also perform other operations or variations of various operations.
  • each step may be executed in a different order presented in the foregoing embodiment, and it may not be necessary to perform all operations in the foregoing embodiment.
  • the key of the secondary node SN (that is, the target base station to which the terminal device is about to be handed over) is determined according to various information, so as to avoid problems such as low key security.
  • the steps implemented by the terminal device may also be implemented by components (for example, a chip or a circuit) that can be used for the terminal device.
  • the steps implemented by the network device can also be implemented by components (for example, a chip or a circuit) that can be used for the network device.
  • FIG. 12 is a schematic block diagram of a communication device 1200 according to an embodiment of the present application. It can be understood that the communication apparatus 1200 may be a terminal device, or a component that can be used for a terminal device, and the component may include a chip for the terminal device.
  • the communication device 1200 may include: a receiving module 1210 and a determining module 1220.
  • Receiving module 1210 used to receive indication information from the primary node, where the indication information is used to indicate that the key used for signaling transmission between the terminal device and the first secondary node through the second signaling radio bearer SRB is The first key, the first key is the key used for signaling transmission between the terminal device and the master node through the first SRB, and the first secondary node and the master node share one Centralized unit CU
  • Determining module 1220 The indication information determines that the key used for signaling transmission with the first secondary node through the second SRB is the first key.
  • the indication information is carried in a radio resource control RRC reconfiguration message, and the RRC reconfiguration message is used to notify the terminal device to add the first secondary node, or to notify the terminal device to add the first secondary node.
  • the node is switched from the second secondary node to the first secondary node.
  • the first SRB is SRB1 or SRB2, and the second SRB is SRB3.
  • the RRC reconfiguration message further includes a first value
  • the determining module 1020 is specifically configured to: when the first value is a preset value, the terminal device determines and The key used for signaling transmission between the first secondary nodes through the second SRB is the first key.
  • the first value is an sk-counter value.
  • FIG. 13 is a schematic block diagram of a communication device 1300 according to an embodiment of the present application. It is understandable that the communication device 1300 may be a master node or a component that can be used for the master node.
  • the component may include a CU, a chip for the CU, a DU, a chip for the DU, or, for the master node. Chip.
  • the communication device 1300 may include: a sending module 1310, configured to send indication information to a terminal device, where the indication information is used to instruct the terminal device and the first secondary node to perform signaling transmission through a second signaling radio bearer SRB
  • the key used is the first key
  • the first key is the key used for signaling transmission between the terminal device and the primary node through the first SRB
  • the master node shares a centralized unit CU.
  • the indication information is carried in a radio resource control RRC reconfiguration message, and the RRC reconfiguration message is used to notify the terminal device to add the first secondary node, or to notify the terminal device to add the first secondary node.
  • the node is switched from the second secondary node to the first secondary node.
  • the first SRB is SRB1 or SRB2, and the second SRB is SRB3.
  • the RRC reconfiguration message further includes a first value, and when the first value is a preset value, the first value is used to indicate the communication between the terminal device and the first secondary node
  • the key used for signaling transmission through the second SRB is the first key.
  • the first value is an sk-counter value.
  • FIG. 14 is a schematic block diagram of a communication device 1400 according to an embodiment of the present application. It can be understood that the communication device 1400 may be a terminal device, or a component that can be used in a terminal device, and the component may include a chip used in the terminal device.
  • the communication device 1400 may include: a receiving module 1410 and a determining module 1420.
  • the receiving module 1410 is configured to receive a radio resource control RRC reconfiguration message from a source network device, where the RRC reconfiguration message is used to instruct the terminal device to add the network device belonging to the target cell to be handed over as the secondary node SN .
  • the determining module 1420 is configured to: according to the RRC reconfiguration message, determine the second key through one or more of the following information: the first key used for transmission between the terminal device and the source network device The key, the information of the target cell, the next hop NH corresponding to the next hop chain count value NCC, where the second key is the key used for transmission between the terminal device and the target network device
  • the information of the target cell includes the frequency information of the target cell and/or the physical cell identity of the target cell, the target cell belongs to the target network device, and the source network device is the master node before handover MN is the secondary node SN after the handover, and the target network device is the secondary node SN before the handover and the master node MN after the handover.
  • the RRC reconfiguration message includes the first NCC.
  • the determining module 1420 is specifically configured to determine the second key according to the NH corresponding to the first NCC and the information of the target cell, where the second NCC is the terminal device receiving all the keys. Before the RRC reconfiguration message, the last used value of the terminal device is different from the first NCC and the second NCC.
  • the determining module 1420 is further configured to: determine that the first NCC is different from the second NCC; the terminal device according to the difference between the first NCC and the second NCC, pass the first NCC The NH corresponding to the NCC and the information of the target cell determine the second key.
  • the determining module 1420 is specifically configured to determine the second key according to the first key and information of the target cell, and the first NCC is the same as the second NCC.
  • the determining module 1420 is further configured to: determine that the first NCC is the same as the second NCC; the terminal device according to the first NCC and the second NCC is the same, and pass the first NCC The key and the information of the target cell determine the second key.
  • the RRC reconfiguration message includes first indication information
  • the first indication information is used to indicate that the first NCC is different from the second NCC
  • the determining module 1420 is specifically configured to:
  • the first indication information uses the NH corresponding to the first NCC and the information of the target cell to determine the second key.
  • the RRC reconfiguration message includes second indication information
  • the second indication information is used to instruct the terminal device to determine the second key by using the first key and the target cell information
  • the determining module 1420 is specifically configured to determine the second key according to the second indication information by using the first key and the information of the target cell.
  • the RRC reconfiguration message includes the first value.
  • the RRC reconfiguration message further includes a first value and a first NCC
  • the determining module 1420 is specifically configured to: determine the second key according to the first value and the first key, Wherein, the first NCC is the same as the second NCC.
  • the determining module 1420 is further configured to: determine that the first NCC is the same as the second NCC; according to the first NCC and the second NCC being the same and the information contained in the RRC reconfiguration message The first value, the second key is determined by the first value and the first key.
  • the RRC reconfiguration message further includes a first value and third indication information
  • the third indication information is used to indicate that the second key is determined according to the first value and the first key
  • the determining module 1420 is specifically configured to: determine the second password according to the third indication information and the first value included in the RRC reconfiguration message according to the first value and the first key key.
  • the RRC reconfiguration message is also used to instruct the terminal device to perform handover.
  • the source network device becomes an SN
  • the target network device becomes an MN.
  • the first value is an sk-counter value.
  • FIG. 15 is a schematic block diagram of a communication device 1500 according to an embodiment of the present application. It can be understood that the communication device 1500 may be a source network device, or a component that can be used in a source network device.
  • the component may include a CU, a chip for CU, a DU, a chip for DU, or Chip from the source network device.
  • the communication apparatus 1500 may include: a sending module 1510, configured to send a radio resource control RRC reconfiguration message to the terminal device, where the RRC reconfiguration message is used to instruct the terminal device to be handed over to the network to which the target cell belongs
  • the device is added as a secondary node SN
  • the source network device is the primary node MN before the handover of the terminal device and the secondary node SN after the handover
  • the target network device is the secondary node SN before the handover and the primary node after the handover. Node MN.
  • the communication device 1500 further includes: a determining module 1520, configured to determine the second key through one or more of the following information: the terminal device and the source network device used for transmission The first key, the information of the target cell, the next hop NH corresponding to the next hop chain count value NCC, where the second key is the key used for transmission between the terminal device and the target network device ,
  • the information of the target cell includes the frequency information of the target cell and/or the physical cell identity of the target cell, the target cell belongs to the target network device, and the target network device is required by the terminal device The network device to switch to; the source network device sends the second key to the target network device.
  • the sending module 1510 is further configured to send the second key to the target network device.
  • the determining module 1520 is specifically configured to determine the second key according to the NH corresponding to the first NCC and the information of the target cell, where the second NCC sends the RRC re-key for the terminal device.
  • the last used value before the configuration message, and the first NCC is different from the second NCC.
  • the determining module 1520 is specifically configured to determine the second key according to the first key and information of the target cell, and the first NCC is the same as the second NCC.
  • the determining module 1520 is specifically configured to determine the second key according to the first value and the first key, where the first NCC is the same as the second NCC.
  • the first value is an sk-counter value.
  • FIG. 16 is a schematic structural diagram of a terminal device 50 provided by an embodiment of the present application.
  • the terminal device 50 may be applicable to the system shown in one or more of (a) in Fig. 1, Fig. 2 or Fig. 7 to perform the functions of the terminal device in the foregoing method embodiment.
  • FIG. 16 only shows the main components of the terminal device 50.
  • the terminal device 50 includes a processor, a memory, a control circuit, an antenna, and an input and output device.
  • the processor is mainly used to process the communication protocol and communication data, and to control the entire terminal device 50, execute the software program, and process the data of the software program, for example, to support the terminal device 50 to perform the actions described in the above method embodiment .
  • the memory is mainly used to store software programs and data.
  • the control circuit is mainly used for the conversion of baseband signals and radio frequency signals and the processing of radio frequency signals.
  • the control circuit and the antenna together can also be called a transceiver, which is mainly used to send and receive radio frequency signals in the form of electromagnetic waves.
  • Input and output devices such as touch screens, display screens, keyboards, etc., are mainly used to receive data input by users and output data to users.
  • the processor can read the software program in the memory, interpret and execute the instructions of the software program, and process the data of the software program.
  • the processor performs baseband processing on the data to be sent, and outputs the baseband signal to the radio frequency circuit.
  • the radio frequency circuit performs radio frequency processing on the baseband signal and sends the radio frequency signal to the outside in the form of electromagnetic waves through the antenna.
  • the radio frequency circuit receives the radio frequency signal through the antenna, converts the radio frequency signal into a baseband signal, and outputs the baseband signal to the processor, and the processor converts the baseband signal into data and processes the data .
  • FIG. 16 only shows one memory and one processor.
  • the memory may also be referred to as a storage medium or storage device.
  • the memory may be a storage element on the same chip as the processor, that is, an on-chip storage element, or an independent storage element, which is not limited in the embodiment of the present application.
  • the terminal device 50 may include a baseband processor and a central processing unit.
  • the baseband processor is mainly used to process communication protocols and communication data
  • the central processing unit is mainly used to perform processing on the entire terminal device. Control, execute the software program, and process the data of the software program.
  • the processor in FIG. 16 can integrate the functions of the baseband processor and the central processing unit.
  • the baseband processor and the central processing unit can also be independent processors and are interconnected by technologies such as a bus.
  • the terminal device 50 may include multiple baseband processors to adapt to different network standards, the terminal device 50 may include multiple central processors to enhance its processing capabilities, and the various components of the terminal device 50 may use various Bus connection.
  • the baseband processor can also be expressed as a baseband processing circuit or a baseband processing chip.
  • the central processing unit can also be expressed as a central processing circuit or a central processing chip.
  • the function of processing the communication protocol and the communication data can be built in the processor, or can be stored in the memory in the form of a software program, and the processor executes the software program to realize the baseband processing function.
  • the antenna and the control circuit with the transceiving function can be regarded as the transceiving unit 501 of the terminal device 50, for example, to support the terminal device 50 to perform the receiving function and the transmitting function.
  • the processor 502 with processing functions is regarded as the processing unit 502 of the terminal device 50.
  • the terminal device 50 includes a transceiver unit 501 and a processing unit 502.
  • the transceiving unit may also be referred to as a transceiver, a transceiver, a transceiving device, and so on.
  • the device for implementing the receiving function in the transceiver unit 501 can be regarded as the receiving unit, and the device for implementing the sending function in the transceiver unit 501 can be regarded as the sending unit, that is, the transceiver unit 501 includes a receiving unit and a sending unit.
  • the receiving unit may also be called a receiver, an input port, a receiving circuit, etc.
  • the sending unit may be called a transmitter, a transmitter, or a transmitting circuit, etc.
  • the processor 502 may be used to execute instructions stored in the memory to control the transceiver unit 501 to receive signals and/or send signals, so as to complete the functions of the terminal device in the foregoing method embodiment.
  • the processor 502 also includes an interface for realizing signal input/output functions.
  • the function of the transceiver unit 501 may be implemented by a transceiver circuit or a dedicated chip for transceiver.
  • FIG. 17 is a schematic structural diagram of another terminal device 60 provided by an embodiment of the present application.
  • the terminal device 60 includes a processor 601 and a transceiver 602.
  • the terminal device 600 further includes a memory 603.
  • the processor 601, the transceiver 602, and the memory 603 can communicate with each other through internal connection paths to transfer control and/or data signals.
  • the memory 603 is used for storing computer programs, and the processor 601 is used for downloading from the memory 603. Call and run the computer program to control the transceiver 602 to send and receive signals.
  • the terminal device 600 may further include an antenna 604 for transmitting the uplink data or uplink control signaling output by the transceiver 602 through a wireless signal.
  • the foregoing processor 601 and the memory 603 may be combined into one processing device, and the processor 601 is configured to execute the program code stored in the memory 603 to implement the foregoing functions.
  • the memory 603 may also be integrated in the processor 601 or independent of the processor 601.
  • the terminal device 60 may correspond to each embodiment of the method according to the embodiment of the present application.
  • the units in the terminal device 60 and the other operations and/or functions described above are used to implement the corresponding procedures in the various embodiments of the method.
  • the above-mentioned processor 601 may be used to perform the actions implemented by the terminal device described in the foregoing method embodiments, and the transceiver 602 may be used to perform the actions of sending or receiving by the terminal device described in the foregoing method embodiments.
  • the transceiver 602 may be used to perform the actions of sending or receiving by the terminal device described in the foregoing method embodiments.
  • the aforementioned terminal device 60 may further include a power supply 605 for providing power to various devices or circuits in the terminal device.
  • the terminal device 60 may also include one or more of the input unit 606, the display unit 607, the audio circuit 608, the camera 609, and the sensor 66.
  • the audio circuit also It may include a speaker 6082, a microphone 6084, and so on.
  • FIG. 18 is a schematic structural diagram of a network device provided by an embodiment of the present application, for example, it may be a schematic structural diagram of a base station.
  • the base station can be applied to the system shown in one or more of Figures 1 to 7 to execute the master node or components used for the master node in the above method embodiment, or source network equipment Or the function performed by the component of the source network device.
  • the base station 70 may include one or more DU 701 and one or more CU 702. CU702 can communicate with NGcore (Next Generation Core Network, NC)).
  • the DU 701 may include at least one radio frequency unit 7012, at least one processor 7013, and at least one memory 7014.
  • the DU701 may further include at least one antenna 7011.
  • the DU 701 part is mainly used for the transmission and reception of radio frequency signals, the conversion of radio frequency signals and baseband signals, and part of baseband processing.
  • the CU702 may include at least one processor 7022 and at least one memory 7021.
  • CU702 and DU701 can communicate through interfaces, where the control plan interface can be Fs-C, such as F1-C, and the user plan interface can be Fs-U, such as F1-U.
  • the CU 702 part is mainly used for baseband processing, control of the base station, and so on.
  • the DU 701 and the CU 702 may be physically set together, or may be physically separated, that is, a distributed base station.
  • the CU 702 is the control center of the base station, which may also be referred to as a processing unit, and is mainly used to complete the baseband processing function.
  • the CU 702 may be used to control the base station to execute the operation flow of the master node or the component used for the master node, or the source network device or the component used for the source network device in the foregoing method embodiment.
  • the baseband processing on the CU and DU can be divided according to the protocol layer of the wireless network, for example, the packet data convergence protocol (PDCP) layer and the functions of the above protocol layers are set in the CU, the protocol layer below PDCP, For example, functions such as the radio link control (RLC) layer and the media access control (media access control, MAC) layer are set in the DU.
  • PDCP packet data convergence protocol
  • RLC radio link control
  • MAC media access control
  • CU implements radio resource control (radio resource control, RRC), packet data convergence protocol (packet data convergence protocol, PDCP) layer functions
  • DU implements radio link control (radio link control, RLC), medium access Control (medium access control, MAC) and physical (physical, PHY) layer functions.
  • the base station 70 may include one or more antennas, one or more radio frequency units, one or more DUs, and one or more CUs.
  • the DU may include at least one processor and at least one memory, at least one antenna and at least one radio frequency unit may be integrated in one antenna device, and the CU may include at least one processor and at least one memory.
  • the CU702 can be composed of one or more single boards, and multiple single boards can jointly support a wireless access network (such as a 5G network) with a single access indication, or can respectively support wireless access networks of different access standards.
  • Access network (such as LTE network, 5G network or other networks).
  • the memory 7021 and the processor 7022 may serve one or more single boards. In other words, the memory and the processor can be set separately on each board. It can also be that multiple boards share the same memory and processor. In addition, necessary circuits can be provided on each board.
  • the DU701 can be composed of one or more single boards.
  • Multiple single boards can jointly support a wireless access network with a single access indication (such as a 5G network), and can also support wireless access networks with different access standards (such as LTE network, 5G network or other network).
  • the memory 7014 and the processor 7013 may serve one or more boards. In other words, the memory and the processor can be set separately on each board. It can also be that multiple boards share the same memory and processor. In addition, necessary circuits can be provided on each board.
  • FIG. 19 is a schematic structural diagram of a communication device 80 provided by an embodiment of the present application.
  • the communication device 80 may be used to implement the method described in the foregoing method embodiment, and reference may be made to the description in the foregoing method embodiment.
  • the communication device 80 may be a chip, a network device (such as a base station), or a terminal device.
  • the communication device 80 includes one or more processors 801.
  • the processor 801 may be a general-purpose processor or a special-purpose processor. For example, it can be a baseband processor or a central processing unit.
  • the baseband processor can be used to process communication protocols and communication data
  • the central processor can be used to control devices (such as base stations, terminals, or chips, etc.), execute software programs, and process data in the software programs.
  • the device may include a transceiving unit to implement signal input (reception) and output (transmission).
  • the device may be a chip, and the transceiver unit may be an input and/or output circuit of the chip, or a communication interface.
  • the chip can be used in terminal equipment or network equipment (such as a base station).
  • the device may be a terminal device or a network device (such as a base station), and the transceiver unit may be a transceiver, a radio frequency chip, or the like.
  • the communication device 80 includes one or more of the processors 801, and the one or more processors 801 can implement FIG. 8, FIG. 9, (a) in FIG. 10, (b) in FIG. 10, and FIG. In the embodiment shown in 11, the method of the master node, or source network device or terminal device.
  • the communication device 80 includes a means for receiving scheduling information from a source network device, and a means for sending sideline data according to the scheduling information.
  • the scheduling information can be received or the side row data can be sent through a transceiver, or an input/output circuit, or an interface of a chip.
  • the scheduling information reference may be made to related descriptions in the foregoing method embodiments.
  • the communication device 80 includes a means for determining scheduling information of a terminal device, and a means for sending the scheduling information to the terminal device.
  • the scheduling information can be sent through the transceiver, or the input/output circuit, or the interface of the chip, and the scheduling information of the terminal device can be determined by one or more processors.
  • the communication device 80 includes means for receiving scheduling information from the master node, and means for receiving side line data according to the scheduling information.
  • scheduling information and the side line data can be received through the transceiver, or the input/output circuit, or the interface of the chip.
  • the processor 801 in addition to implementing the method of one or more of the embodiments shown in FIG. 8, FIG. 9, (a) in FIG. 10, (b) b in FIG. 10, and FIG. 11, the processor 801 also Other functions can be realized.
  • the processor 801 may also include an instruction 803, which may be executed on the processor, so that the communication device 80 executes the method described in the foregoing method embodiment.
  • the communication device 80 may also include a circuit, which may implement the master node or the component used for the master node in the foregoing method embodiment, or the source network device or the component used for the source network device or The function of the terminal device.
  • the communication device 80 may include one or more memories 802, on which instructions 804 are stored, and the instructions may be executed on the processor to enable the communication device 80 to execute The method described in the above method embodiment.
  • data may also be stored in the memory.
  • the optional processor may also store instructions and/or data.
  • the one or more memories 802 may store the mobile effective area described in the foregoing embodiment, or related parameters or tables involved in the foregoing embodiment.
  • the processor and the memory can be provided separately or integrated together.
  • the communication device 80 may further include a transceiver unit 805 and an antenna 806, or include a communication interface.
  • the transceiving unit 805 may be called a transceiver, a transceiving circuit, or a transceiver, etc., and is used to implement the transceiving function of the device through the antenna 806.
  • the communication interface (not shown in the figure) may be used for communication between the core network device and the network device, or between the network device and the network device.
  • the communication interface may be a wired communication interface, such as an optical fiber communication interface.
  • the processor 801 may be referred to as a processing unit, which controls a device (such as a terminal or a base station).
  • the sending or receiving performed by the transceiver unit 805 described in the embodiment of the present application is under the control of the processing unit (processor 801), the sending or receiving action may also be described as processing in the embodiment of the present application.
  • the execution by the unit (processor 801) does not affect the understanding of the solution by those skilled in the art.
  • the terminal device, master node, and source network device in the above apparatus embodiments may completely correspond to the terminal device, master node, and source network device in the method embodiment, and the corresponding module or unit executes the corresponding steps, for example, when the device is implemented in the form of a chip, the receiving unit may be an interface circuit used by the chip to receive signals from other chips or devices.
  • the above sending unit is an interface circuit of the device for sending signals to other devices.
  • the sending unit is the chip for sending signals to other chips or devices.
  • the interface circuit is the interface circuit.
  • processors in the embodiments of the present application may be a CPU, and the processor may also be other general-purpose processors, digital signal processors (digital signal processors, DSP), application specific integrated circuits (ASICs), Ready-made programmable gate array (FPGA) or other programmable logic devices, discrete gates or transistor logic devices, discrete hardware components, etc.
  • DSP digital signal processors
  • ASICs application specific integrated circuits
  • FPGA Ready-made programmable gate array
  • the memory in the embodiments of the present application may be volatile memory or non-volatile memory, or may include both volatile and non-volatile memory.
  • the non-volatile memory can be read-only memory (ROM), programmable read-only memory (programmable ROM, PROM), erasable programmable read-only memory (erasable PROM, EPROM), and electrically available Erase programmable read-only memory (electrically EPROM, EEPROM) or flash memory.
  • the volatile memory may be random access memory (RAM), which is used as an external cache.
  • RAM random access memory
  • static random access memory static random access memory
  • DRAM dynamic random access memory
  • DRAM synchronous dynamic random access memory
  • Access memory synchronous DRAM, SDRAM
  • double data rate synchronous dynamic random access memory double data rate SDRAM, DDR SDRAM
  • enhanced synchronous dynamic random access memory enhanced SDRAM, ESDRAM
  • synchronous connection dynamic random access memory Take memory (synchlink DRAM, SLDRAM) and direct memory bus random access memory (direct rambus RAM, DR RAM).
  • the embodiment of the present application also provides a communication system, which includes one or more of the following:
  • Source network equipment or components used for source network equipment or,
  • Terminal equipment or components that can be used in terminal equipment.
  • the embodiment of the present application also provides a computer-readable medium for storing computer program code, the computer program including the main node or components used for the main node in the above method, or the source network device or the source network A component of a device, or an instruction for a method performed by a terminal device or a component for a terminal device.
  • the readable medium may be a read-only memory (ROM) or a random access memory (RAM), which is not limited in the embodiment of the present application.
  • This application also provides a computer program product, the computer program product includes instructions, when the instructions are executed, so that the master node or components for the master node, or source network equipment or components for the source network equipment , Or the terminal device or the component for the terminal device respectively perform the operations of the master node, the source network device, and the terminal device corresponding to the above method.
  • An embodiment of the present application also provides a system chip, which includes a processing unit and a communication unit.
  • the processing unit may be, for example, a processor, and the communication unit may be, for example, an input/output interface, a pin, or a circuit.
  • the processing unit can execute computer instructions so that the communication device applied to the chip executes the method provided in the foregoing embodiment of the present application.
  • any communication device provided in the foregoing embodiments of the present application may include the system chip.
  • the computer instructions are stored in a storage unit.
  • the storage unit is a storage unit in the chip, such as a register, a cache, etc.
  • the storage unit can also be a storage unit located outside the chip in the communication device, such as a ROM or a storage unit that can store static information and instructions.
  • ROM read-only memory
  • RAM random access memory
  • the processor mentioned in any one of the foregoing may be a CPU, a microprocessor, an ASIC, or one or more integrated circuits used to control the execution of the programs of the foregoing communication method.
  • the processing unit and the storage unit can be decoupled, respectively set on different physical devices, and connected in a wired or wireless manner to realize the respective functions of the processing unit and the storage unit, so as to support the system chip to implement the above-mentioned embodiments Various functions in.
  • the processing unit and the memory may also be coupled to the same device.
  • the processor in the embodiments of the present application may be a CPU, and the processor may also be other general-purpose processors, DSP, ASIC, FPGA or other programmable logic devices, discrete gates or transistor logic devices, discrete hardware components, etc.
  • the general-purpose processor may be a microprocessor or the processor may also be any conventional processor or the like.
  • the foregoing embodiments may be implemented in whole or in part by software, hardware (such as circuits), firmware, or any other combination.
  • the above-mentioned embodiments may be implemented in the form of a computer program product in whole or in part.
  • the computer program product includes one or more computer instructions or computer programs.
  • the computer may be a general-purpose computer, a special-purpose computer, a computer network, or other programmable devices.
  • the computer instructions may be stored in a computer-readable storage medium or transmitted from one computer-readable storage medium to another computer-readable storage medium.
  • the computer instructions may be transmitted from a website, computer, server, or data center. Transmission to another website, computer, server or data center via wired (such as infrared, wireless, microwave, etc.).
  • the computer-readable storage medium may be any available medium that can be accessed by a computer or a data storage device such as a server or a data center that includes one or more sets of available media.
  • the usable medium may be a magnetic medium (for example, a floppy disk, a hard disk, and a magnetic tape), an optical medium (for example, a DVD), or a semiconductor medium.
  • the semiconductor medium may be a solid state drive.
  • B corresponding to A means that B is associated with A, and B can be determined according to A.
  • determining B based on A does not mean that B is determined only based on A, and B can also be determined based on A and/or other information.
  • At least one refers to one or more, and “multiple” refers to two or more.
  • the following at least one item (a)” or similar expressions refers to any combination of these items, including any combination of a single item (a) or a plurality of items (a).
  • at least one of a, b, or c can mean: a, b, c, ab, ac, bc, or abc, where a, b, and c can be single or multiple .
  • the size of the sequence number of the above-mentioned processes does not mean the order of execution, and the execution order of each process should be determined by its function and internal logic, and should not correspond to the embodiments of this application.
  • the implementation process constitutes any limitation.
  • the disclosed system, communication device, and method may be implemented in other ways.
  • the device embodiments described above are merely illustrative, for example, the division of the units is only a logical function division, and there may be other divisions in actual implementation, for example, multiple units or components may be combined or It can be integrated into another system, or some features can be ignored or not implemented.
  • the displayed or discussed mutual coupling or direct coupling or communication connection may be indirect coupling or communication connection through some interfaces, devices or units, and may be in electrical, mechanical or other forms.
  • the units described as separate components may or may not be physically separated, and the components displayed as units may or may not be physical units, that is, they may be located in one place, or they may be distributed on multiple network units. Some or all of the units may be selected according to actual needs to achieve the objectives of the solutions of the embodiments.
  • the functional units in the various embodiments of the present application may be integrated into one processing unit, or each unit may exist alone physically, or two or more units may be integrated into one unit.
  • the function is implemented in the form of a software functional unit and sold or used as an independent product, it can be stored in a computer readable storage medium.
  • the technical solution of the present application essentially or the part that contributes to the existing technology or the part of the technical solution can be embodied in the form of a software product, and the computer software product is stored in a storage medium, including Several instructions are used to make a computer device (which may be a personal computer, a server, or a network device, etc.) execute all or part of the steps of the methods described in the various embodiments of the present application.
  • the aforementioned storage media include: U disk, mobile hard disk, read-only memory (Read-Only Memory, ROM), random access memory (Random Access Memory, RAM), magnetic disk or optical disk and other media that can store program code .

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Computer Security & Cryptography (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本申请提供了一种通信方法、装置。所述方法包括:终端设备接收来自主节点的指示信息,该指示信息用于指示终端设备与第一辅节点之间通过第二SRB进行信令传输所使用的密钥为第一密钥,第一密钥为终端设备与主节点之间通过第一SRB进行信令传输所使用的密钥,第一辅节点与主节点共用一个CU;终端设备根据指示信息确定与第一辅节点之间通过第二SRB进行信令传输所使用的密钥为第一密钥。上述技术方案可以在主节点与辅节点共用一个CU的场景中,终端设备确定与辅节点之间传输信令的密钥和终端设备与主节点之间传输信令的密钥相同,避免衍生与辅节点之间传输信令的密钥所造成的复杂度。

Description

通信方法、装置及计算机可读存储介质
本申请要求于2019年09月04日提交中国专利局、申请号为201910830355.6、申请名称为“通信方法、装置及计算机可读存储介质”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及通信领域,并且更具体地,涉及通信方法、装置及计算机可读存储介质。
背景技术
终端设备可以通过双连接(dual connectivity,DC)技术,同时与多个网络设备进行通信,即DC技术支持不同的网络设备同时为一个终端设备提供数据传输服务。其中,一个网络设备可以称为主节点MN,另外一个网络设备称为辅节点SN。
在终端设备与主节点(master node,MN)以及辅节点(secondary node,SN)之间进行信令传输时,该终端设备需要确定与辅节点SN之间的密钥。传统的技术方案中,终端设备可以基于其与主节点MN之间所使用的密钥确定其与辅节点SN之间所使用的密钥,并根据确定的该密钥与辅节点SN之间进行信令传输。
在5G系统中,一个CU可以连接一个DU,或者也可以多个DU共用一个CU,从而节省成本,以及易于网络扩展,其中,一个CU和DU可以看做一个网络设备。在主节点和辅节点共用一个集中式单元CU的场景下,通过传统的技术方案衍生终端设备与辅节点SN之间所使用的密钥,会引入实现复杂度。
发明内容
本申请提供通信方法、装置及计算机可读存储介质,可以在主节点与辅节点共用一个CU的场景中,终端设备确定与辅节点之间传输信令的密钥和终端设备与主节点之间传输信令的密钥相同,避免衍生与辅节点之间传输信令的密钥所造成的复杂度。
第一方面,提供了一种通信方法,该方法可以由终端设备或用于终端设备的芯片执行,包括:接收来自主节点的指示信息,所述指示信息用于指示所述终端设备与第一辅节点之间通过第二信令无线承载SRB进行信令传输所使用的密钥为第一密钥,所述第一密钥为所述终端设备与所述主节点之间通过第一SRB进行信令传输所使用的密钥,所述第一辅节点与所述主节点共用一个集中式单元CU;所述终端设备根据所述指示信息确定与所述第一辅节点之间通过第二SRB进行信令传输所使用的密钥为所述第一密钥。
应理解,本申请中主节点和/或辅节点可以由集中式单元(centralized unit,CU)和分布式单元(distributed unit,DU)构成。
上述技术方案中,在主节点MN与辅节点SN共用一个CU的场景中,终端设备可以确定与辅节点SN之间通过第二SRB传输信令的密钥和终端设备与主节点MN之间通过 第一SRB传输信令的密钥相同,因此,该终端设备可以在与辅节点SN之间通过第二SRB传输信令时,使用其与MN之间传输信令所使用的密钥,而不需要根据MN所对应的密钥来衍生与辅节点SN之间通过第二SRB传输信令时使用的密钥,从而降低实现复杂度,节约资源。
结合第一方面,在第一方面的某些可能的实现方式中,所述指示信息携带在无线资源控制RRC重配置消息中,所述RRC重配置消息用于通知所述终端设备添加所述第一辅节点,或者用于通知所述终端设备将辅节点由第二辅节点切换至所述第一辅节点。
结合第一方面,在第一方面的某些可能的实现方式中,所述第一SRB为SRB1或SRB2,所述第二SRB为SRB3。
本申请中第一SRB为终端设备与主节点之间进行信令传输的承载,第二SRB为终端设备与辅节点之间进行信令传输的承载。
第一SRB可以是SRB1或SRB2。其中,在接入层(access stratum,AS)层安全激活之后,网络可配置SRB2,SRB2用于非接入层(non-access stratum,NAS)消息的发送,使用的是专用控制信道(dedlicated control channel,DCCH)。SRB1用于无线资源控制(radio resource control,RRC)消息的发送,或者用于在SRB2建立之前NAS消息的发送,使用的是DCCH。需要说明的是,RRC消息中可能包含NAS消息。SRB2的优先级低于SRB1的优先级。
具体的,用于指示添加辅节点的RRC重配置消息中可以包括辅小区组配置(secondary cell group configuration)信元。在NR系统中,用于指示切换的RRC重配置消息中可以携带同步重配置(reconfiguration with sync)信元,在LTE系统中,用于指示切换的RRC连接重配置消息中可以携带移动控制信息(mobility control info)信元。
结合第一方面,在第一方面的某些可能的实现方式中,所述RRC重配置消息还包括第一数值,当所述第一数值为预设值时,所述终端设备根据所述第一数值确定与所述第一辅节点之间通过第二SRB进行信令传输所使用的密钥为所述第一密钥。
结合第一方面,在第一方面的某些可能的实现方式中,所述第一数值为sk-counter值。
第二方面,提供了一种通信方法,该方法可以由主节点或用于主节点的部件执行,包括:向终端设备发送指示信息,所述指示信息用于指示所述终端设备与第一辅节点之间通过第二信令无线承载SRB进行信令传输所使用的密钥为第一密钥,所述第一密钥为所述终端设备与所述主节点之间通过第一SRB进行信令传输所使用的密钥,所述第一辅节点与所述主节点共用一个集中式单元CU。其中,用于主节点的部件包括CU,用于CU的芯片,DU,用于DU的芯片,或,用于主节点的芯片。
结合第二方面,在第二方面的某些可能的实现方式中,所述指示信息携带在无线资源控制RRC重配置消息中,所述RRC重配置消息用于通知所述终端设备添加所述第一辅节点,或者用于通知所述终端设备将辅节点由第二辅节点切换至所述第一辅节点。
结合第二方面,在第二方面的某些可能的实现方式中,所述第一SRB为SRB1或SRB2,所述第二SRB为SRB3。
结合第二方面,在第二方面的某些可能的实现方式中,所述RRC重配置消息还包括第一数值,当所述第一数值为预设值时,所述第一数值用于指示所述终端设备与所述第一辅节点之间通过第二SRB进行信令传输所使用的密钥为所述第一密钥。
结合第二方面,在第二方面的某些可能的实现方式中,所述第一数值为sk-counter值。
第三方面,提供了一种通信方法,该方法可以由终端设备或用于终端设备的芯片执行,包括:接收来自源网络设备的无线资源控制RRC重配置消息,所述RRC重配置消息用于指示所述终端设备将需要切换至的目标小区所属的网络设备添加为辅节点SN;所述终端设备根据所述RRC重配置消息,通过以下信息中的一种或多种确定第二密钥:所述终端设备与所述源网络设备之间进行传输所使用的第一密钥,目标小区的信息,下一跳链计数值NCC对应的下一跳NH,其中,所述第二密钥为所述终端设备与所述目标网络设备之间进行传输所使用的密钥,所述目标小区的信息包括所述目标小区的频点信息和/或所述目标小区的物理小区标识,所述目标小区属于所述目标网络设备,所述源网络设备为切换之前的主节点MN且为切换之后的辅节点SN,所述目标网络设备为切换之前的辅节点SN且为切换之后的主节点MN。
结合第三方面,在第三方面的某些可能的实现方式中,所述RRC重配置消息包含第一NCC。
结合第三方面,在第三方面的某些可能的实现方式中,所述终端设备根据所述第一NCC对应的NH以及所述目标小区的信息确定所述第二密钥,其中,第二NCC为所述终端设备接收到所述RRC重配置消息之前,所述终端设备最近一次使用的数值,所述第一NCC与所述第二NCC不同。
结合第三方面,在第三方面的某些可能的实现方式中,所述方法还包括:所述终端设备确定所述第一NCC与所述第二NCC不同;所述终端设备根据所述第一NCC与所述第二NCC不同,通过所述第一NCC对应的NH以及所述目标小区的信息确定所述第二密钥。
结合第三方面,在第三方面的某些可能的实现方式中,所述终端设备根据所述第一密钥以及所述目标小区的信息确定所述第二密钥,所述第一NCC与所述第二NCC相同。
结合第三方面,在第三方面的某些可能的实现方式中,所述方法还包括:所述终端设备确定所述第一NCC与所述第二NCC相同;所述终端设备根据所述第一NCC与所述第二NCC相同,通过所述第一密钥以及所述目标小区的信息确定所述第二密钥。
结合第三方面,在第三方面的某些可能的实现方式中,所述RRC重配置消息包含第一指示信息,所述第一指示信息用于指示所述第一NCC与所述第二NCC不同,所述终端设备根据所述第一指示信息,使用所述第一NCC对应的NH以及所述目标小区的信息确定所述第二密钥。
结合第三方面,在第三方面的某些可能的实现方式中,所述RRC重配置消息包含第二指示信息,所述第二指示信息用于指示所述终端设备通过所述第一密钥以及所述目标小区的信息确定所述第二密钥,
所述终端设备根据所述第二指示信息,通过所述第一密钥以及所述目标小区的信息确定所述第二密钥。
可选的,所述第二指示信息可以通过指示第一NCC与第二NCC相同来指示所述终端设备通过所述第一密钥以及所述目标小区的信息确定所述第二密钥。或者,通过第二指示信息为RRC重配置消息不包括第一NCC,来隐含指示第一NCC与第二NCC相同,和/或,来指示所述终端设备通过所述第一密钥以及所述目标小区的信息确定所述第二密钥。
结合第三方面,在第三方面的某些可能的实现方式中,所述RRC重配置消息包含第 一数值。
结合第三方面,在第三方面的某些可能的实现方式中,所述RRC重配置消息还包含第一数值和第一NCC,
所述终端设备根据所述第一数值以及所述第一密钥确定所述第二密钥,其中,所述第一NCC与所述第二NCC相同。
结合第三方面,在第三方面的某些可能的实现方式中,所述方法还包括:所述终端设备确定所述第一NCC与所述第二NCC相同;所述终端设备根据所述第一NCC与所述第二NCC相同,以及所述RRC重配置消息中包含的第一数值,通过所述第一数值以及所述第一密钥确定所述第二密钥。
结合第三方面,在第三方面的某些可能的实现方式中,所述RRC重配置消息还包含第一数值和第三指示信息,所述第三指示信息用于指示根据所述第一数值以及所述第一密钥确定所述第二密钥,
所述终端设备根据所述第三指示信息以及所述RRC重配置消息中包含的第一数值,通过所述第一数值以及所述第一密钥确定所述第二密钥。
可选的,所述第三指示信息可以通过指示第一NCC与第二NCC相同来指示根据所述第一数值以及所述第一密钥确定所述第二密钥。或者,通过第三指示信息为RRC重配置消息不包括第一NCC,来隐含指示第一NCC与第二NCC相同,和/或,来指示根据所述第一数值以及所述第一密钥确定所述第二密钥。
结合第三方面,在第三方面的某些可能的实现方式中,源网络设备可以向终端设备发送两条无线资源控制RRC重配置消息,以NR系统为例,其中,一条RRC重配置消息中可以携带secondary cell group configuration信元,该RRC重配置消息用于指示终端设备进行辅节点SN添加流程(即指示终端设备将需要切换至的目标网络设备添加为SN)。另一条RRC重配置消息中可以携带reconfiguration with sync信元,该RRC重配置消息用于指示终端设备将源网络设备(即切换前的MN)切换变为SN,将目标网络设备(即切换前的SN)切换变为MN。
结合第三方面,在第三方面的某些可能的实现方式中,源网络设备(即切换前的MN)可以向终端设备仅发送一条RRC重配置消息,以NR系统为例,该RRC重配置消息携带secondary cell group configuration信元和reconfiguration with sync信元。终端设备可以根据该RRC重配置消息中携带的secondary cell group configuration信元进行辅节点SN添加流程(即将需要切换至的目标网络设备添加为SN),同时,还可以根据该RRC重配置消息中携带的reconfiguration with sync信元进行角色互换/切换流程,将源网络设备(即切换前的MN)切换变为SN,目标网络设备(即切换前的SN)切换变为MN。
结合第三方面,在第三方面的某些可能的实现方式中,所述第一数值为sk-counter值。
第四方面,提供了一种通信方法,该方法可以由源网络设备或用于源网络设备的部件执行,包括:向所述终端设备发送无线资源控制RRC重配置消息,所述RRC重配置消息用于指示所述终端设备将需要切换至的目标小区所属的网络设备添加为辅节点SN,所述源网络设备为切换之前的主节点MN且为切换之后的辅节点SN,所述目标网络设备为切换之前的辅节点SN且为切换之后的主节点MN。其中,用于源网络设备的部件包括CU,用于CU的芯片,DU,用于DU的芯片,或,用于源网络设备的芯片。
结合第四方面,在第四方面的某些可能的实现方式中,所述方法还包括:所述源网络设备通过以下信息中的一种或多种确定第二密钥:所述终端设备与所述源网络设备之间进行传输所使用的第一密钥,目标小区的信息,下一跳链计数值NCC对应的下一跳NH,其中,所述第二密钥为所述终端设备与目标网络设备之间进行传输所使用的密钥,所述目标小区的信息包括所述目标小区的频点信息和/或所述目标小区的物理小区标识,所述目标小区属于所述目标网络设备,所述目标网络设备为所述终端设备需要切换至的网络设备;所述源网络设备向所述目标网络设备发送所述第二密钥。
源网络设备可以在确定了第二密钥之后,向目标网络设备发送该第二密钥。该源网络设备还可以向终端设备发送该第二密钥的相关信息。该相关信息例如可以是指示信息和/或该源网络设备获取到的第一NCC,或者还可以是第一数值,或者还可以是第一数值和指示信息,或者还可以是第一数值和第一NCC。
结合第四方面,在第四方面的某些可能的实现方式中,所述源网络设备根据第一NCC对应的NH以及所述目标小区的信息确定所述第二密钥,其中,第二NCC为所述终端设备发送所述RRC重配置消息之前最近一次使用的数值,所述第一NCC与所述第二NCC不同。
结合第四方面,在第四方面的某些可能的实现方式中,所述源网络设备根据所述第一密钥以及所述目标小区的信息确定所述第二密钥,所述第一NCC与所述第二NCC相同。
结合第四方面,在第四方面的某些可能的实现方式中,所述源网络设备根据第一数值以及所述第一密钥确定所述第二密钥,其中,所述第一NCC与所述第二NCC相同。
结合第四方面,在第四方面的某些可能的实现方式中,所述第一数值为sk-counter值。
第五方面,提供了一种通信装置,包括用于实现第一方面的方法的模块,部件或者电路。
可以理解的是,第五方面的通信装置可以是终端设备,也可以是可用于终端设备的部件(例如芯片或者电路)。
第六方面,提供了一种通信装置,包括用于实现第二方面的方法的模块,部件或者电路。
可以理解的是,第六方面的通信装置可以是主节点,也可以是可用于主节点的部件(例如芯片或者电路)。
第七方面,提供了一种通信装置,包括用于实现第三方面的方法的模块,部件或者电路。
可以理解的是,第七方面的通信装置可以是终端设备,也可以是可用于终端设备的部件(例如芯片或者电路)。
第八方面,提供了一种通信装置,包括用于实现第四方面的方法的模块,部件或者电路。
可以理解的是,第八方面的通信装置可以是源网络设备,也可以是可用于源网络设备的部件(例如芯片或者电路)。
第九方面,提供了一种通信装置,包括:本申请提供的通信装置具有实现上述方法方面中终端设备行为的功能,其包括用于执行上述方法所描述的步骤或功能相对应的部件(means)。所述步骤或功能可以通过软件实现,或硬件(如电路)实现,或者通过硬件 和软件结合来实现。其中,所述通信装置可以是芯片等。
在一种可能的设计中,上述通信装置包括一个或多个处理器。所述一个或多个处理器被配置为支持所述通信装置执行上述方法中终端设备相应的功能。
可选的,所述通信装置还可以包括一个或多个存储器,所述存储器用于与处理器耦合,其保存通信装置必要的程序指令和/或数据。所述一个或多个存储器可以和处理器集成在一起,也可以与处理器分离设置。本申请并不限定。
该存储器可以是处理器内部的存储单元,也可以是与处理器独立的外部存储单元,还可以是包括处理器内部的存储单元和与处理器独立的外部存储单元的部件。
可选地,该处理器可以是通用处理器,可以通过硬件来实现也可以通过软件来实现。当通过硬件实现时,该处理器可以是逻辑电路、集成电路等;当通过软件来实现时,该处理器可以是一个通用处理器,通过读取存储器中存储的软件代码来实现,该存储器可以集成在处理器中,可以位于该处理器之外,独立存在。
可选的,所述通信装置还可以包括一个或多个通信单元,所述通信单元可以是收发器,或收发电路。可选的,所述收发器也可以为输入/输出电路或者接口。
另一个可能的设计中,上述通信装置,包括收发器、处理器和存储器。该处理器用于控制收发器或输入/输出电路收发信号,该存储器用于存储计算机程序,该处理器用于运行该存储器中的计算机程序,使得该装置执行第一方面或第一方面中任一种可能实现方式中终端设备完成的方法。
第十方面,提供了一种通信装置,本申请提供的通信装置具有实现上述方法方面中主节点行为的功能,其包括用于执行上述方法所描述的步骤或功能相对应的部件(means)。所述步骤或功能可以通过软件实现,或硬件(如电路)实现,或者通过硬件和软件结合来实现。其中,所述通信装置可以是芯片等。
在一种可能的设计中,上述通信装置包括一个或多个处理器。所述一个或多个处理器被配置为支持所述通信装置执行上述方法中主节点相应的功能。
可选的,所述通信装置还可以包括一个或多个存储器,所述存储器用于与处理器耦合,其保存通信装置必要的程序指令和/或数据。所述一个或多个存储器可以和处理器集成在一起,也可以与处理器分离设置。本申请并不限定。
该存储器可以是处理器内部的存储单元,也可以是与处理器独立的外部存储单元,还可以是包括处理器内部的存储单元和与处理器独立的外部存储单元的部件。
可选地,该处理器可以是通用处理器,可以通过硬件来实现也可以通过软件来实现。当通过硬件实现时,该处理器可以是逻辑电路、集成电路等;当通过软件来实现时,该处理器可以是一个通用处理器,通过读取存储器中存储的软件代码来实现,该存储器可以集成在处理器中,可以位于该处理器之外,独立存在。
可选的,所述通信装置还可以包括一个或多个通信单元,所述通信单元可以是收发器,或收发电路。可选的,所述收发器也可以为输入/输出电路或者接口。
另一个可能的设计中,上述通信装置,包括收发器、处理器和存储器。该处理器用于控制收发器或输入/输出电路收发信号,该存储器用于存储计算机程序,该处理器用于运行该存储器中的计算机程序,使得该装置执行第二方面或第二方面中任一种可能实现方式中主节点完成的方法。
第十一方面,提供了一种通信装置,本申请提供的通信装置具有实现上述方法方面中终端设备行为的功能,其包括用于执行上述方法所描述的步骤或功能相对应的部件(means)。所述步骤或功能可以通过软件实现,或硬件(如电路)实现,或者通过硬件和软件结合来实现。其中,所述通信装置可以是芯片等。
在一种可能的设计中,上述通信装置包括一个或多个处理器。所述一个或多个处理器被配置为支持所述通信装置执行上述方法中终端设备相应的功能。
可选的,所述通信装置还可以包括一个或多个存储器,所述存储器用于与处理器耦合,其保存通信装置必要的程序指令和/或数据。所述一个或多个存储器可以和处理器集成在一起,也可以与处理器分离设置。本申请并不限定。
该存储器可以是处理器内部的存储单元,也可以是与处理器独立的外部存储单元,还可以是包括处理器内部的存储单元和与处理器独立的外部存储单元的部件。
可选地,该处理器可以是通用处理器,可以通过硬件来实现也可以通过软件来实现。当通过硬件实现时,该处理器可以是逻辑电路、集成电路等;当通过软件来实现时,该处理器可以是一个通用处理器,通过读取存储器中存储的软件代码来实现,该存储器可以集成在处理器中,可以位于该处理器之外,独立存在。
可选的,所述通信装置还可以包括一个或多个通信单元,所述通信单元可以是收发器,或收发电路。可选的,所述收发器也可以为输入/输出电路或者接口。
另一个可能的设计中,上述通信装置,包括收发器、处理器和存储器。该处理器用于控制收发器或输入/输出电路收发信号,该存储器用于存储计算机程序,该处理器用于运行该存储器中的计算机程序,使得该装置执行第三方面或第三方面中任一种可能实现方式中终端设备完成的方法。
第十二方面,提供了一种通信装置,本申请提供的通信装置具有实现上述方法方面中源网络设备行为的功能,其包括用于执行上述方法所描述的步骤或功能相对应的部件(means)。所述步骤或功能可以通过软件实现,或硬件(如电路)实现,或者通过硬件和软件结合来实现。其中,所述通信装置可以是芯片等。
在一种可能的设计中,上述通信装置包括一个或多个处理器。所述一个或多个处理器被配置为支持所述通信装置执行上述方法中源网络设备相应的功能。
可选的,所述通信装置还可以包括一个或多个存储器,所述存储器用于与处理器耦合,其保存通信装置必要的程序指令和/或数据。所述一个或多个存储器可以和处理器集成在一起,也可以与处理器分离设置。本申请并不限定。
该存储器可以是处理器内部的存储单元,也可以是与处理器独立的外部存储单元,还可以是包括处理器内部的存储单元和与处理器独立的外部存储单元的部件。
可选地,该处理器可以是通用处理器,可以通过硬件来实现也可以通过软件来实现。当通过硬件实现时,该处理器可以是逻辑电路、集成电路等;当通过软件来实现时,该处理器可以是一个通用处理器,通过读取存储器中存储的软件代码来实现,该存储器可以集成在处理器中,可以位于该处理器之外,独立存在。
可选的,所述通信装置还可以包括一个或多个通信单元,所述通信单元可以是收发器,或收发电路。可选的,所述收发器也可以为输入/输出电路或者接口。
另一个可能的设计中,上述通信装置,包括收发器、处理器和存储器。该处理器用于 控制收发器或输入/输出电路收发信号,该存储器用于存储计算机程序,该处理器用于运行该存储器中的计算机程序,使得该装置执行第四方面或第四方面中任一种可能实现方式中源网络设备完成的方法。
第十三方面,提供了一种计算机可读存储介质,包括计算机程序,当该计算机程序在终端设备上运行时,使得该通信装置执行如第一方面或第一方面的任意一种实现方式中所述的方法。
第十四方面,提供了一种计算机可读存储介质,包括计算机程序,当该计算机程序在通信装置上运行时,使得该通信装置执行第二方面或第二方面任意一种实现方式中所述的方法。
第十五方面,提供了一种计算机可读存储介质,包括计算机程序,当该计算机程序在通信装置上运行时,使得该通信装置执行第三方面或第三方面任意一种实现方式中所述的方法。
第十六方面,提供了一种计算机可读存储介质,包括计算机程序,当该计算机程序在通信装置上运行时,使得该通信装置执行第四方面或第四方面任意一种实现方式中所述的方法。
第十七方面,提供了一种计算机程序产品,当该计算机程序产品在计算机上运行时,使得该计算机执行如第一方面或第一方面任意一种实现方式中所述的方法。
第十八方面,提供了一种计算机程序产品,当该计算机程序产品在计算机上运行时,使得该计算机执行如第二方面或第二方面任意一种实现方式中所述的方法。
第十九方面,提供了一种计算机程序产品,当该计算机程序产品在计算机上运行时,使得该计算机执行如第三方面或第三方面任意一种实现方式中所述的方法。
第二十方面,提供了一种计算机程序产品,当该计算机程序产品在计算机上运行时,使得该计算机执行如第四方面或第四方面任意一种实现方式中所述的方法。
附图说明
图1是本申请实施例可应用的通信系统100的场景示意图。
图2是适用于本申请的通信系统200的示意图。
图3是适用于本申请的一种DC架构的示意图。
图4是适用于本申请的另一种DC架构的示意图。
图5是适用于本申请的另一种DC架构的示意图。
图6是适用于本申请的另一种DC架构的示意图。
图7中的(a)是适用于本申请的另一种DC架构的示意图。
图7中的(b)是适用于本申请的一种可能的场景示意图。
图8是本申请实施例提供的一种通信方法的示意性流程图。
图9是本申请实施例提供的另一种通信方法的示意性流程图。
图10中的(a)是本申请实施例提供的另一种通信方法的示意性流程图。
图10中的(b)是本申请实施例提供的另一种通信方法的示意性流程图。
图11是本申请实施例提供的一种基于DC架构实现0ms切换的示意性流程图。
图12是本申请实施例提供的一种通信装置1200的示意性框图。
图13是本申请实施例提供的一种通信装置1300的示意性框图。
图14是本申请实施例提供的一种通信装置1400的示意性框图。
图15是本申请实施例提供的一种通信装置1500的示意性框图。
图16是本申请实施例提供的一种终端设备50的结构示意图。
图17是本申请实施例提供的另一种终端设备60的结构示意图。
图18是本申请实施例提供的一种网络设备的结构示意图。
图19是本申请实施例提供的通信装置80的结构示意图。
具体实施方式
下面将结合附图,对本申请中的技术方案进行描述。
应理解,本申请实施例的技术方案可以应用于各种通信系统,例如:长期演进(Long Term Evolution,LTE)系统、LTE频分双工(frequency division duplex,FDD)系统、LTE时分双工(Time Division Duplex,TDD)、全球互联微波接入(worldwide interoperability for microwave access,WiMAX)通信系统、未来的第五代(5th generation,5G)系统或新无线(new radio,NR)等。
本申请实施例中对终端设备的类型不做具体限定,例如可以是用户设备(user equipment,UE)、接入终端、用户单元、用户站、移动站、移动台、远方站、远程终端、移动设备、用户终端、无线网络设备、用户代理或用户装置。终端可以包括但不限于移动台(mobile station,MS)、移动电话(mobile telephone)、用户设备(user equipment,UE)、手机(handset)、便携设备(portable equipment)、蜂窝电话、无绳电话、会话启动协议(session initiation protocol,SIP)电话、无线本地环路(wireless local loop,WLL)站、个人数字处理(personal digital assistant,PDA)、物流用的射频识别(radio frequency identification,RFID)终端设备,具有无线通信功能的手持设备、计算设备或连接到无线调制解调器的其它设备、车载设备、可穿戴设备、物联网、车辆网中的终端设备以及未来5G网络中的终端设备或者未来演进的公共陆地移动网络(public land mobile network,PLMN)网络中的终端设备等。
作为示例而非限定,在本申请实施例中,可穿戴设备也可以称为穿戴式智能设备,是应用穿戴式技术对日常穿戴进行智能化设计、开发出可以穿戴的设备的总称,如眼镜、手套、手表、服饰及鞋等。可穿戴设备即直接穿在身上,或是整合到用户的衣服或配件的一种便携式设备。可穿戴设备不仅仅是一种硬件设备,更是通过软件支持以及数据交互、云端交互来实现强大的功能。广义穿戴式智能设备包括功能全、尺寸大、可不依赖智能手机实现完整或者部分的功能,例如:智能手表或智能眼镜等,以及只专注于某一类应用功能,需要和其它设备如智能手机配合使用,如各类进行体征监测的智能手环、智能首饰等。
本申请实施例中对网络设备的类型不做具体限定,可以是用于与终端设备通信的任何设备,该网络设备例如可以是长期演进(long term evolution,LTE)系统中的演进型基站(evolutional Node B,eNB或eNodeB),还可以是云无线接入网络(cloud radio access network,CRAN)场景下的无线控制器,或者该网络设备例如可以为中继站、接入点、车载设备、可穿戴设备以及未来5G网络中的网络设备或者未来演进的PLMN网络中的网络设备等。
另外,在本申请实施例中,网络设备为小区提供服务,终端设备通过该小区使用的传输资源(例如,频域资源,或者说,频谱资源)与网络设备进行通信。该小区可以是网络设备(例如基站)对应的小区,小区可以属于宏基站,也可以属于小小区(small cell)对应的基站,这里的小小区可以包括:城市小区(Metro cell)、微小区(Micro cell)、微微小区(Pico cell)、毫微微小区(Femto cell)等,这些小小区具有覆盖范围小和发射功率低的特点,适用于提供高速率的数据传输服务。
本申请实施例提供的方法,可以应用于终端设备或网络设备,该终端设备或网络设备可以包括硬件层、运行在硬件层之上的操作系统层,以及运行在操作系统层上的应用层。该硬件层包括中央处理器(central processing unit,CPU)、内存管理单元(memory management unit,MMU)和内存(也称为主存)等硬件。该操作系统可以是任意一种或多种通过进程(process)实现业务处理的计算机操作系统,例如,Linux操作系统、Unix操作系统、Android操作系统、iOS操作系统或windows操作系统等。该应用层包含浏览器、通讯录、文字处理软件、以及即时通信软件等应用。并且,在本申请实施例中,通信方法的执行主体的具体结构,本申请实施例并未特别限定,只要能够通过运行记录有本申请实施例的传输信号的方法的代码的程序,以根据本申请实施例的传输信号的方法进行通信即可,例如,本申请实施例的通信方法的执行主体可以是终端设备或网络设备,或者,是终端设备或网络设备中能够调用程序并执行程序的功能模块。
此外,本申请实施例的各个方面或特征可以实现成方法、装置或使用标准编程和/或工程技术的制品。本申请中使用的术语“制品”涵盖可从任何计算机可读器件、载体或介质访问的计算机程序。例如,计算机可读介质可以包括,但不限于:磁存储器件(例如,硬盘、软盘或磁带等),光盘(例如,压缩盘(compact disc,CD)、数字通用盘(digital versatile disc,DVD)等),智能卡和闪存器件(例如,可擦写可编程只读存储器(erasable programmable read-only memory,EPROM)、卡、棒或钥匙驱动器等)。另外,本文描述的各种存储介质可代表用于存储信息的一个或多个设备和/或其它机器可读介质。术语“机器可读介质”可包括但不限于,无线信道和能够存储、包含和/或承载指令和/或数据的各种其它介质。
图1是本申请实施例可应用的通信系统100的场景示意图。如图1所示,该通信系统100包括网络设备102,网络设备102可包括多个天线组。每个天线组可以包括多个天线,例如,一个天线组可包括天线104和106,另一个天线组可包括天线106和110,附加组可包括天线112和114。图1中每个天线组示出了2个天线,然而对于每个组可使用更多或更少的天线。网络设备102可附加地包括发射机链和接收机链,本领域普通技术人员可以理解,它们均可包括与信号发送和接收相关的多个部件(例如处理器、调制器、复用器、解调器、解复用器或天线等)。
网络设备102可以与多个终端设备(例如终端设备116和终端设备122)通信。然而,可以理解,网络设备102可以与类似于终端设备116或122的任意数目的终端设备通信。终端设备116和122例如可以是蜂窝电话、智能电话、便携式电脑、手持通信设备、手持计算设备、卫星无线电装置、全球定位系统、PDA和/或用于在无线通信系统100上通信的任意其它适合设备。
如图1所示,终端设备116与天线112和114通信,其中天线112和114通过链路116向终端设备116发送信息,并通过链路120从终端设备116接收信息。此外,终端设 备122与天线104和106通信,其中天线104和106通过链路124向终端设备122发送信息,并通过链路126从终端设备122接收信息。
例如,在频分双工(frequency division duplex,FDD)系统中,例如,链路116可利用与链路120所使用的不同频带,链路124可利用与链路126所使用的不同频带。
再例如,在时分双工(time division duplex,TDD)系统和全双工(full duplex)系统中,链路116和链路120可使用共同频带,链路124和链路126可使用共同频带。
被设计用于通信的每组天线和/或区域称为网络设备102的扇区。例如,可将天线组设计为与网络设备102覆盖区域的扇区中的终端设备通信。在网络设备102通过链路116和124分别与终端设备116和122进行通信的过程中,网络设备102的发射天线可利用波束成形来改善链路116和124的信噪比。此外,与网络设备通过单个天线向它所有的终端设备发送信号的方式相比,在网络设备102利用波束成形向相关覆盖区域中随机分散的终端设备116和122发送信号时,相邻小区中的移动设备会受到较少的干扰。
在给定时间,网络设备102、终端设备116或终端设备122可以是无线通信发送装置和/或无线通信接收装置。当发送数据时,无线通信发送装置可对数据进行编码以用于传输。具体地,无线通信发送装置可获取(例如生成、从其它通信装置接收、或在存储器中保存等)要通过信道发送至无线通信接收装置的一定数目的数据比特。这种数据比特可包含在数据的传输块(或多个传输块)中,传输块可被分段以产生多个码块。
此外,该通信系统100可以是公共陆地移动网络PLMN网络或者设备对设备(device to device,D2D)网络或者机器对机器(machine to machine,M2M)网络或者其他网络,图1仅为便于理解而示例的简化示意图,网络中还可以包括其他网络设备,图1中未予以画出。
图2是适用于本申请的通信系统200的示意图。如图2所示,该通信系统200可以包括至少两个网络设备,例如网络设备210和网络设备220,该通信系统200还可以包括至少一个终端设备,例如终端设备230。此外,通信系统200还可以包括至少一个核心网设备,例如核心网设备240。应理解,图2只是示意图,该通信系统中还可以包括其它网络设备,如还可以包括无线中继设备和无线回传设备等。此外,本申请的实施例对该移动通信系统中包括的网络设备和终端设备的数量不做限定。
在图2中,终端设备230可以通过空中接口连接网络设备210和网络设备220,网络设备210和网络设备220之间可以通过有线或者无线的方式连接,网络设备210和网络设备220可以通过有线的方式连接至核心网设备240。核心网设备240可以是4G核心网设备,也可以是5G核心网设备。网络设备210可以是LTE基站,也可以是NR基站,网络设备220可以是LTE基站,也可以是NR基站。终端设备230可以通过采用双连接(dual connectivity,DC)技术,与网络设备210和网络设备220进行通信。
应理解,DC技术即支持两个不同的网络设备(例如,网络设备210和网络设备220)同时为一个终端设备230提供数据传输服务。其中,一个网络设备可以称为主基站或主节点(master node,MN),另外一个网络设备称为辅基站或辅节点(secondary node,SN)。应理解,主基站可以是NR制式的主基站(master gNB,MgNB)或者LTE制式的主基站(master eNB,MeNB);辅基站可以是NR制式的辅基站(secondary gNB,SgNB)或者LTE制式的辅基站(secondary eNB,SeNB)。DC存在多种组合,下面分别结合图3-图6 对几种可能的DC组合进行举例描述。
(1)核心网设备240为分组核心网(evolved packet core,EPC),LTE基站做MN,NR基站做SN,也可以称为EN-DC(E-UTRA NR DC)。参见图3,此时LTE基站和NR基站之间可以通过X2接口连接,至少有控制面连接,可以还有用户面连接。LTE基站和EPC之间可以通过S1接口连接,至少有控制面连接,可以还有用户面连接。NR基站和EPC之间可以通过S1-U接口连接,即只可以有用户面连接。此时LTE基站可以通过至少一个LTE小区为终端设备230提供空口资源,此时所述至少一个LTE小区称为主小区组(master cell group,MCG)。相应的,NR基站也可以通过至少一个NR小区为终端设备230提供空口资源,此时所述至少一个NR小区称为辅小区组(secondary cell group,SCG)。
(2)核心网设备240为5G核心网(5G core,5GC),LTE基站做MN,NR基站做SN,也可以称为NGEN-DC(NG-RAN E-UTRA-NR dual connectivity)。参见图4,此时LTE基站和NR基站之间可以通过Xn接口连接,至少有控制面连接,可以还有用户面连接。LTE基站和5GC之间可以通过NG接口连接,至少有控制面连接,可以还有用户面连接。NR基站和5GC之间可以通过NG-U接口连接,即只可以有用户面连接。此时LTE基站可以通过至少一个LTE小区为终端设备230提供空口资源,此时所述至少一个LTE小区称为MCG。相应的,NR基站也可以通过至少一个NR小区为终端设备230提供空口资源,此时所述至少一个NR小区称为SCG。
(3)核心网设备240为5GC时,NR基站做MN,LTE基站做SN,也可以称为NE-DC(NR-E-UTRA dual connectivity)。参见图5,此时NR基站和LTE基站之间可以通过Xn接口连接,至少有控制面连接,可以还有用户面连接。NR基站和5GC之间可以通过NG接口连接,至少有控制面连接,可以还有用户面连接。LTE基站和5GC之间存在NG-U接口,即只可以有用户面连接。此时NR基站可以通过至少一个NR小区为终端设备230提供空口资源,此时所述至少一个NR小区称为MCG。相应的,LTE基站也可以通过至少一个LTE小区为终端设备230提供空口资源,此时所述至少一个LTE小区称为SCG。
(4)核心网设备240为5GC时,MN和SN都是NR基站,也可以称为NR-NR DC。参见图6,主基站和辅基站均为NR的基站,NR主基站和NR辅基站之间可以通过Xn接口连接,至少有控制面连接,可以还有用户面连接。NR主基站和5GC之间存在NG接口,至少有控制面连接,可以还有用户面连接。NR辅基站和5GC之间存在NG-U接口,即只可以有用户面连接。此时NR主基站可以通过至少一个NR小区为终端设备230提供空口资源,此时所述至少一个NR小区称为MCG。相应的,NR辅基站也可以通过至少一个NR小区为终端设备230提供空口资源,此时所述至少一个NR小区称为SCG。
应理解,图3至图6中,均以LTE基站为eNB,NR基站为gNB为例进行说明,但这并不应对本申请构成任何限定。还应理解,上述几种DC组合只是作为示例进行描述,而不应该将本申请实施例限定在上述几种DC组合。
对于DC技术,辅节点SN和主节点MN可以同时为终端设备提供数据传输服务。终端设备可以基于与主节点MN之间的密钥确定与辅节点SN之间的密钥。具体的,以信令无线承载(signalling radio bearer,SRB)为例,主节点MN可以基于自身的密钥(例如KgNB)以及sk-counter值计算辅节点SN的密钥(例如S-KgNB)。主节点MN向终端设备发送的无线资源控制(radio resource control,RRC)重配置消息中可以包含sk-counter 值。终端设备根据与主节点MN之间通过SRB传输信令的密钥(如KgNB)以及sk-counter值确定与辅节点SN之间通过SRB传输信令的密钥。
需要说明的是,sk-counter值是衍生密钥过程中使用的参数之一,sk-counter值可以是协议中规定的取值,比如为大于等于0,小于等于65535的整数。
具体的,主节点MN可以通过第一SRB向终端设备传输信令,例如,RRC重配置消息。辅节点SN可以通过第二SRB向终端设备传输信令。其中,第一SRB为终端设备与主节点之间进行信令传输的承载,第二SRB为终端设备与辅节点之间进行信令传输的承载。
第一SRB可以是SRB1或SRB2。其中,在接入层(access stratum,AS)层安全激活之后,网络可配置SRB2,SRB2用于非接入层(non-access stratum,NAS)消息的发送,使用的是专用控制信道(dedlicated control channel,DCCH)。SRB1用于无线资源控制(radio resource control,RRC)消息的发送,或者用于在SRB2建立之前NAS消息的发送,使用的是DCCH。SRB2的优先级低于SRB1的优先级。
在终端设备配置了EN-DC或者NR-DC或者NGEN-DC或NE-DC或MR-DC,第二SRB可以是SRB3,用于特定RRC消息的发送,使用的是DCCH。其中,特定RRC消息例如可以是包含测量配置信息的RRC重配置消息或者可以是测量报告。
具体的,用于指示添加辅节点的RRC重配置消息中可以包括辅小区组配置(secondary cell group configuration)信元。用于指示切换的RRC重配置消息中可以携带同步重配置(reconfiguration with sync)信元或移动控制(mobilitycontrolinfo)信元。
在5G系统中,基站被称为gNB,可以包含无线资源控制(radio resource control,RRC)、服务数据适配协议栈(service data adaptation protocol,SDAP)、分组数据汇聚协议(packet data convergence protocol,PDCP)层、无线链路控制(radio link control,RLC)层、介质访问控制(media access control,MAC)层以及物理(physical,PHY)层中的一项或多项。基站可以由集中式单元(centralized unit,CU)和分布式单元(distributed unit,DU)构成。
一个CU可以连接一个DU,或者也可以多个DU共用一个CU,从而节省成本,以及易于网络扩展。CU和DU的切分可以按照协议栈切分,其中一种可能的方式是将RRC、SDAP以及PDCP层部署在CU,其余的RLC层、MAC层以及物理层部署在DU。例如,参见图7中的(a),CU和DU之间通过F1接口连接。CU代表gNB通过Ng接口和核心网连接。
需要说明的是,图7中的(a)中以两个DU共用一个CU为例进行描述,本申请实施例中也可以是多个DU共用一个CU,对此不做具体限定。
图7中的(b)给出一种本申请实施例适用的场景,具体的,如图7中的(b)所示,一个DU和一个CU共同组成一个节点。也就是说,DU1和CU1可以看做一个节点,DU2和CU1可以看做另一个节点。例如,DU1和CU1为主节点MN,DU2和CU1为辅节点SN,终端设备可以同时与作为主节点的DU1和CU1,以及作为辅节点SN的DU2和CU1连接,辅节点SN和主节点MN可以同时为终端设备提供数据传输服务。
对于图7中的(b)所述的DC场景,CU(或者说PDCP)是生成密钥/处理密钥的负责者。对于终端设备同时连接的主节点MN的辅节点SN而言,由于作为主节点的DU1和CU1,以及作为辅节点的DU2和CU1,这两个节点有一个共同的CU(即CU1),因 此,DU1和CU1作为主节点和终端设备之间通过第一SRB传输信令的密钥(例如KgNB),与DU2和CU1作为辅节点和终端设备之间通过第二SRB传输信令的密钥(例如,S-KgNB)是相同的。传统的DC方案中,终端设备与辅节点之间通过第二SRB传输信令时,需要根据与主节点MN之间通过第一SRB传输信令的密钥(例如KgNB)以及sk-counter值确定其与辅节点SN之间通过第二SRB传输信令的密钥(例如,S-KgNB),引入实现复杂度。
本申请实施例提供的通信方法中,在主节点MN与辅节点SN共用一个CU的场景中,终端设备可以确定与辅节点SN之间通过第二SRB传输信令的密钥和终端设备与主节点MN之间通过第一SRB传输信令的密钥相同,因此,该终端设备可以在与辅节点SN之间通过第二SRB传输信令时使用MN所对应的密钥(例如KgNB),而不需要根据MN所对应的密钥(即KgNB)衍生与辅节点SN之间通过第二SRB传输信令时使用的密钥(例如S-KgNB),从而降低实现复杂度,节约资源。
图8是本申请实施例提供的一种通信方法的示意性流程图,如图8所示,该方法可以包括步骤810-820,下面分别对步骤810-820进行详细描述。
步骤810:终端设备接收来自主节点的指示信息,该指示信息用于指示终端设备与第一辅节点之间通过第二SRB进行信令传输所使用的密钥为第一密钥,第一辅节点与主节点共用一个CU。
以图7中的(b)为例,DU1和CU1可以作为主节点MN,图7中的(b)所示的DU2和CU1以作为第一辅节点SN。
应理解,上述第一密钥为终端设备与所述主节点之间通过第一SRB进行信令传输所使用的密钥,或者,上述第一密钥为主节点所对应的密钥(例如KgNB)。有关第一SRB和第二SRB的描述请参考上文中的说明,此处不再赘述。
本申请实施例中指示信息可以携带在RRC重配置消息中,该RRC重配置消息可以用于通知终端设备添加第一辅节点SN以作为DC架构中的辅节点,或者该RRC重配置消息用于通知终端设备进行辅节点的切换(或辅节点的改变),例如,该RRC重配置消息通知终端设备将辅节点由第二辅节点切换至(或改变为)第一辅节点,切换之后(或辅节点改变之后)的第一辅节点与主节点共用一个集中式单元CU。
具体的,当通知终端设备添加第一辅节点SN以作为DC架构中的辅节点时,该RRC重配置消息中可以携带辅小区组配置(secondary cell group configuration)信元,用于包含添加辅节点时所需的相关配置信息。又如,当该RRC重配置消息用于通知终端设备进行辅节点的切换(或辅节点的改变)时,在NR系统中,该RRC重配置消息中可以携带reconfiguration with sync信元,用于包含辅节点切换(或辅节点改变)所需的相关配置信息;在LTE系统中,RRC连接重配置消息中携带mobility control info信元,用于包含辅节点切换(或辅节点改变)所需的相关配置信息。
步骤820:终端设备根据指示信息确定与第一辅节点之间通过第二SRB进行信令传输所使用的密钥为第一密钥。
一种可能的实现方式中,该RRC重配置消息中可以包含第一信息,该第一信息用于指示终端设备与第一辅节点SN之间通过第二SRB进行信令传输所使用的密钥为第一密钥。具体的,该第一信息可以用二进制数值表示,例如,“0”表示终端设备与第一辅节点 SN之间通过第二SRB进行信令传输所使用的密钥与第一密钥不同,“1”表示终端设备与第一辅节点SN之间通过第二SRB进行信令传输所使用的密钥与第一密钥相同;或者,该第一信息可以用布尔值表示,例如,“FALSE”表示终端设备与第一辅节点SN之间通过第二SRB进行信令传输所使用的密钥与第一密钥不同,“TRUE”表示终端设备与第一辅节点SN之间通过第二SRB进行信令传输所使用的密钥与第一密钥相同;或者,该第一信息可以用某个信元表示,例如,该信元为“master key”,如果该RRC重配置消息中不包含该信元,表示终端设备与第一辅节点SN之间通过第二SRB进行信令传输所使用的密钥与第一密钥不同,如果该RRC重配置消息中包含该信元,表示终端设备与第一辅节点SN之间通过第二SRB进行信令传输所使用的密钥与第一密钥相同;或者,该第一信息有其他表现形式,本实施例对此不作限定。终端设备可以根据该RRC重配置消息中包含的第一信息确定与第一辅节点之间通过第二SRB进行信令传输所使用的密钥,例如,该第一信息为布尔值“TRUE”,则终端设备确定与第一辅节点之间通过第二SRB进行信令传输所使用的密钥为第一密钥。这种情况下,步骤820中的指示信息包括所述第一信息。
另一种可能的实现方式中,网络配置sk-counter值,该RRC重配置消息中包含sk-counter值,且该sk-counter值为预设值(例如,该sk-counter值为无穷大或无穷小或其他特殊的取值(例如,该特殊的取值不在现有协议定义的sk-counter的取值范围内),不做限定)。当该sk-counter值为预设值时,可以隐式地指示终端设备与第一辅节点之间通过第二SRB进行信令传输所使用的密钥为所述第一密钥。这种情况下,步骤820中的指示信息为属于预设范围或取预设值的sk-counter值。终端设备可以根据该RRC重配置消息中包含预设的sk-counter值确定与第一辅节点之间通过第二SRB进行信令传输所使用的密钥为第一密钥。
另一种可能的实现方式中,该RRC重配置消息中包含第一信息以及sk-counter值,该sk-counter值可以在现有协议定义的sk-counter的取值范围内,或者,该sk-counter值为预设值(例如,该sk-counter值为无穷大或无穷小或其他特殊的取值(例如,该特殊的取值不在现有协议定义的sk-counter的取值范围内)),不做限定。该第一信息用于指示终端设备与第一辅节点SN之间通过第二SRB进行信令传输所使用的密钥为第一密钥,具体的,该第一信息的表现形式可参照上文针对第一信息相应的描述,不再赘述。终端设备可以根据该RRC重配置消息中包含的第一信息和/或sk-counter值确定与第一辅节点之间通过第二SRB进行信令传输所使用的密钥为第一密钥。这种情况下,步骤820中的指示信息可以包括所述第一信息和/或所述属于预设范围或取预设值的sk-counter值。
另一种可能的实现方式中,网络不配置sk-counter值,也就是说,该RRC重配置消息中不包含sk-counter值,可以隐式地指示终端设备与第一辅节点之间通过第二SRB进行信令传输所使用的密钥为第一密钥。终端设备可以根据该RRC重配置消息中不包含sk-counter值确定与第一辅节点之间通过第二SRB进行信令传输所使用的密钥为第一密钥。这种情况下,步骤820中的指示信息可以为该RRC重配置消息中不包含sk-counter值。
上述技术方案中,可以在主节点与第一辅节点共用一个CU的场景中,终端设备确定与第一辅节点之间传输信令所使用的密钥和终端设备与主节点之间传输信令所使用的密钥相同,避免衍生与第一辅节点之间进行信令传输时使用的密钥所造成的复杂度。
可以理解的,终端设备或网络设备可以执行上述实施例中的部分或全部步骤,这些步骤或操作仅是示例,本申请实施例还可以执行其它操作或者各种操作的变形。此外,各个步骤可以按照上述实施例呈现的不同的顺序来执行,并且有可能并非要执行上述实施例中的全部操作。
下面以DC场景中的添加辅节点的流程为例,结合图9更加详细地描述本申请实施例中的具体实现方式。应注意,图9的例子仅仅是为了帮助本领域技术人员理解本申请实施例,而非要将申请实施例限制于所示例的具体数值或具体场景。本领域技术人员根据所给出的图9的例子所给出的例子,显然可以进行各种等价的修改或变化,这样的修改和变化也落入本申请实施例的范围内。
图9是本申请实施例提供的另一种通信方法的示意性流程图。如图9所示,该方法可以包括步骤910-960,下面分别对步骤910-960进行详细描述。
应理解,图7中的(b)所示的DU1和CU1可以作为主节点MN,图7中的(b)所示的DU2和CU1以作为辅节点SN。
步骤910:主节点MN向辅节点SN发送第一请求消息,该第一请求消息用于请求将对端添加为辅节点,可选地,该第一请求消息为辅节点添加请求消息。
步骤920:辅节点SN向主节点MN回复第一确认消息,该第一确认消息用于通知对端辅节点添加请求被允许/接纳,可选地,该第一确认消息为辅节点添加请求确认消息。
具体地,一种示例中,辅节点SN在接收到主节点MN发送的第一请求消息,例如辅节点添加请求消息,之后,可以进行相应的辅节点配置,并向主节点MN回复第一确认消息,该第一确认消息用于表示辅节点SN已经成功接收该辅节点添加请求消息。作为一个示例,该第一确认消息例如可以是辅节点SN添加请求确认(SN addition request acknowledgement,SN addition request ACK)消息。
步骤930:主节点MN向终端设备发送无线资源控制(radio resource control,RRC)重配置消息,该RRC重配置消息携带secondary cell group configuration信元。
主节点MN在接收到辅节点SN回复的辅节点添加请求确认消息,可以向终端设备发送RRC重配置消息,该RRC重配置消息中携带secondary cell group configuration信元,用于指示该终端设备添加辅节点SN。终端设备根据secondary cell group configuration信元,进行辅节点的配置,将RRC重配置消息中指示的节点添加为辅节点。
本申请实施例中RRC重配置消息还用于指示终端设备与辅节点SN之间通过第二SRB进行信令传输所使用的密钥为第一密钥,其中,第一密钥为该终端设备与主节点MN之间通过第一SRB进行信令传输所使用的密钥(例如KgNB)。具体的实现方式有多种。一种可能的实现方式中,该RRC重配置消息中可以包含指示信息,该指示信息用于指示终端设备与辅节点SN之间通过第二SRB进行信令传输所使用的密钥为第一密钥。另一种可能的实现方式中,该RRC重配置消息中可以包含sk-counter值,且该sk-counter值为预设值(例如,该sk-counter值为无穷大或无穷小或其他特殊的取值(例如,该特殊的取值不在现有协议定义的sk-counter值的取值范围内),不做限定),当该sk-counter值为预设值时,可以隐式地指示终端设备与辅节点之间通过第二SRB进行信令传输所使用的密钥为所述第一密钥。另一种可能的实现方式中,该RRC重配置消息中既可以包含指示信息,又可以包含sk-counter值。另一种可能的实现方式中,RRC重配置消息中不包含sk-counter 值,可以隐式地指示终端设备与辅节点之间通过第二SRB进行信令传输所使用的密钥为所述第一密钥。
可选地,在步骤930之前,主节点MN还可以向终端设备发送第一密钥信息,终端设备可以根据该第一密钥信息衍生出与所述主节点MN之间通过第一SRB进行信令传输所使用的第一密钥(例如KgNB)。
步骤940:终端设备根据所述RRC重配置消息确定与所述辅节点之间通过第二SRB进行信令传输所使用的密钥为第一密钥。
终端设备根据所述RRC重配置消息确定与所述辅节点之间通过第二SRB进行信令传输所使用的密钥为第一密钥的实现方式有多种,本申请对此不做具体限定。
一种可能的实现方式中,该RRC重配置消息中可以包含第一信息,该第一信息用于指示终端设备与辅节点SN之间通过第二SRB进行信令传输所使用的密钥为第一密钥。终端设备可以根据该RRC重配置消息中包含的第一信息确定与第一辅节点之间通过第二SRB进行信令传输所使用的密钥为第一密钥。具体的,第一信息的表现形式可参照步骤820中针对第一信息相应的描述,不再赘述。
另一种可能的实现方式中,网络配置sk-counter值,该RRC重配置消息中包含sk-counter值,且该sk-counter值为预设值(例如,该sk-counter值为无穷大或无穷小或其他特殊的取值(例如,该特殊的取值不在现有协议定义的sk-counter的取值范围内),不做限定)。这种情况下,所述指示信息为属于预设范围或取预设值的sk-counter值。当该sk-counter值为预设值时,可以隐式地指示终端设备与辅节点之间通过第二SRB进行信令传输所使用的密钥为所述第一密钥。终端设备可以根据该RRC重配置消息中包含预设的sk-counter值确定与第一辅节点之间通过第二SRB进行信令传输所使用的密钥为第一密钥。
另一种可能的实现方式中,该RRC重配置消息中包含第一信息以及sk-counter值,该sk-counter值可以在现有协议定义的sk-counter的取值范围内,或者,该sk-counter值为预设值(例如,该sk-counter值为无穷大或无穷小或其他特殊的取值(例如,该特殊的取值不在现有协议定义的sk-counter的取值范围内)),不做限定。该第一信息用于指示终端设备与辅节点SN之间通过第二SRB进行信令传输所使用的密钥为第一密钥,具体的,该第一信息的表现形式可参照步骤820中针对第一信息相应的描述,不再赘述。终端设备可以根据该RRC重配置消息中包含的第一信息和/或sk-counter值确定与第一辅节点之间通过第二SRB进行信令传输所使用的密钥为第一密钥。
另一种可能的实现方式中,网络不配置sk-counter值,也就是说,该RRC重配置消息中不包含sk-counter值,可以隐式地指示终端设备与辅节点之间通过第二SRB进行信令传输所使用的密钥为所述第一密钥。终端设备可以根据该RRC重配置消息中不包含sk-counter值确定与第一辅节点之间通过第二SRB进行信令传输所使用的密钥为第一密钥。
步骤950:终端设备向主节点MN发送RRC消息,该RRC消息用于表示已经完成RRC重配置,可选地,该RRC消息为RRC重配置完成消息。
步骤960:主节点MN向辅节点SN发送第一消息,该第一消息用于表示终端设备已经完成辅节点添加的过程,可选地,该第一消息为辅节点重配置完成消息。
终端设备可以通过随机接入信道(random access channel,RACH)流程与辅节点SN进行随机接入。当终端设备完成辅节点添加流程后,主节点MN和辅节点SN可以同时为终端设备提供数据传输服务。
可以理解的,终端设备或网络设备可以执行上述实施例中的部分或全部步骤,这些步骤或操作仅是示例,本申请实施例还可以执行其它操作或者各种操作的变形。此外,各个步骤可以按照上述实施例呈现的不同的顺序来执行,并且有可能并非要执行上述实施例中的全部操作。
上述技术方案,在添加辅节点SN,且主节点MN与辅节点SN共用一个CU的场景中,该终端设备可以根据RRC重配置消息确定在与辅节点SN之间通过第二SRB传输信令时可以使用MN所对应的密钥(即KgNB),而不需要根据KgNB去衍生与辅节点SN之间通过第二SRB传输信令时使用的密钥,从而降低实现复杂度,节约资源。
下面以DC场景中辅节点切换/改变的流程为例,结合图10中的(a)、10b更加详细地描述本申请实施例中的具体实现方式。应注意,图10中的(a)、10b的例子仅仅是为了帮助本领域技术人员理解本申请实施例,而非要将申请实施例限制于所示例的具体数值或具体场景。本领域技术人员根据所给出的图10中的(a)、10b的例子所给出的例子,显然可以进行各种等价的修改或变化,这样的修改和变化也落入本申请实施例的范围内。
图10中的(a)是本申请实施例提供的另一种通信方法的示意性流程图,用于主节点发起的辅节点改变/切换。如图10中的(a)所示,该方法可以包括步骤1010-1080,下面分别对步骤1010-1080进行详细描述。
应理解,图10中的(a)中的主节点为如图7中的(b)所示的DU1和CU1,第一辅节点为如图图7中的(b)所示的DU2和CU1,第二辅节点例如可以由DU3和CU2构成。
步骤1010:主节点MN向第一辅节点发送第二请求消息,该第二请求消息用于请求将对端添加为辅节点,可选地,该第二请求消息为辅节点添加请求消息。
步骤1020:第一辅节点向MN回复第二确认消息,该第二确认消息用于通知对端辅节点添加请求被允许/接纳,可选地,该第二确认消息为辅节点添加请求确认消息。
具体地,一种示例中,第一辅节点在接收到主节点MN发送的第二请求消息,例如辅节点添加请求消息,之后,可以进行相应的辅节点配置,并向主节点MN回复第二确认消息,该第二确认消息用于表示辅节点SN已经成功接收该辅节点添加请求消息。作为一个示例,该第二确认消息例如可以是SN addition request ACK消息。
步骤1030:MN向第二辅节点发送第三请求消息,该第三请求消息用于请求释放辅节点,例如,该第三请求消息是辅节点释放请求消息。
步骤1040:第二辅节点向MN发送辅节点第三确认消息,例如,该第三确认消息是辅节点SN释放请求确认消息。
第二辅节点在接收到MN发送的第三请求消息,例如辅节点释放请求消息,之后,可以进行相关资源的释放,并向MN回复第三确认确认消息,该第三确认确认消息用于表示第二辅节点已经对相关资源进行释放,该第三确认确认消息例如可以是辅节点SN释放请求确认(SN release request acknowledgement,SN release request ACK)消息。
步骤1050:MN向终端设备发送RRC重配置消息,该RRC重配置消息指示终端设备进行辅节点切换/改变。
具体的,将辅节点由第二辅节点切换/改变为第一辅节点。即,辅节点切换/改变前,MN和第二辅节点可以为终端设备提供服务,辅节点切换/改变后,MN和第一辅节点可以为终端设备提供服务。
主节点MN在接收到第二辅节点回复的辅节点释放请求确认消息,可以向终端设备发送RRC重配置消息。当MN为gNB时,MN给UE发送的RRC重配置消息中可以携带reconfiguration with sync信元,用于指示终端设备将辅节点由第二辅节点切换为/改变为第一辅节点。当MN为eNB时,MN给UE发送的RRC连接重配置消息中可以携带mobility control info信元,用于通知终端设备将辅节点由第二辅节点切换/改变至第一辅节点。
本申请实施例中主节点MN确定辅节点切换/改变后的第一辅节点为DU2和CU1,与作为主节点MN的DU1和CU1共用CU1,因此,该RRC重配置消息还用于指示终端设备与第一辅节点之间通过第二SRB进行信令传输所使用的密钥为第一密钥,其中,第一密钥为该终端设备与主节点MN之间通过第一SRB进行信令传输所使用的密钥(例如KgNB)。具体的实现方式有多种,一种可能的实现方式中,该RRC重配置消息中可以包含指示信息,该指示信息用于指示终端设备与第一辅节点之间通过第二SRB进行信令传输所使用的密钥为第一密钥。另一种可能的实现方式中,该RRC重配置消息中可以包含sk-counter值,且该sk-counter值为预设值(例如,该sk-counter值为无穷大或无穷小或其他特殊的取值(例如,该特殊的取值不在现有协议定义的sk-counter的取值范围内),不做限定),当该sk-counter值为预设值时,可以隐式地指示终端设备与第一辅节点之间通过第二SRB进行信令传输所使用的密钥为所述第一密钥。另一种可能的实现方式中,该RRC重配置消息中既可以包含指示信息,又可以包含sk-counter值。另一种可能的实现方式中,RRC重配置消息中不包含sk-counter值,可以隐式地指示终端设备与第一辅节点之间通过第二SRB进行信令传输所使用的密钥为所述第一密钥。
可选地,在步骤1010之前,主节点MN还可以向终端设备发送第一密钥信息,终端设备可以根据该第一密钥信息衍生出与所述主节点MN之间通过第一SRB进行信令传输所使用的第一密钥(例如KgNB)。
步骤1060:终端设备根据所述RRC重配置消息确定与所述第一辅节点之间通过第二SRB进行信令传输所使用的密钥为第一密钥。
终端设备根据所述RRC重配置消息确定与第一辅节点之间通过第二SRB进行信令传输所使用的密钥为第一密钥的具体实现方式与步骤940对应,具体的请参考步骤940中的描述,此处不再赘述。
步骤1070:终端设备向主节点MN发送RRC消息,该RRC消息用于表示已经完成辅节点切换/改变,可选地,该RRC消息为RRC重配置完成消息。
步骤1080:主节点MN向第一辅节点发送第二消息,该第二消息用于表示终端设备已经完成辅节点切换/改变的过程,可选地,该第二消息为辅节点重配置完成消息。
可以理解的,终端设备或网络设备可以执行上述实施例中的部分或全部步骤,这些步骤或操作仅是示例,本申请实施例还可以执行其它操作或者各种操作的变形。此外,各个步骤可以按照上述实施例呈现的不同的顺序来执行,并且有可能并非要执行上述实施例中的全部操作。
图10中的(b)是本申请实施例提供的另一种通信方法的示意性流程图,用于辅节点 主动发起的辅节点改变/切换。如图10中的(b)所示,该方法可以包括步骤1001-1008,下面分别对步骤1001-1008进行详细描述。
应理解,图10中的(b)中的主节点为如图7中的(b)所示的DU1和CU1,第一辅节点为如图7中的(b)所示的DU2和CU1,第二辅节点例如可以由DU3和CU2构成。
步骤1001:第二辅节点向MN发送第四请求消息,该第四请求消息用于请求改变辅节点,可选地,该第四请求消息例如可以是辅节点改变请求消息。
步骤1002:主节点MN向第一辅节点发送第五请求消息,该第五请求消息用于请求将第一辅节点添加为辅节点,可选地,该第五请求消息例如可以是辅节点添加请求消息。
步骤1003:第一辅节点向MN回复第五确认消息,该第五确认消息用于表示第一辅节点SN已经允许/接纳该辅节点添加请求消息,可选地,该第五确认消息例如可以是SN addition request ACK消息。
具体地,一种示例中,第一辅节点在接收到主节点MN发送的辅节点添加请求消息之后,可以进行相应的辅节点配置,并向主节点MN回复SN addition request ACK消息。
步骤1004:MN向终端设备发送RRC重配置消息,该RRC重配置消息指示终端设备进行辅节点切换/改变。
具体的,将辅节点由第二辅节点切换/改变为第一辅节点。即,辅节点切换/改变前,MN和第二辅节点可以为终端设备提供服务,辅节点切换/改变后,MN和第一辅节点可以为终端设备提供服务。
主节点MN在接收到第一辅节点回复的辅节点添加请求确认消息后,可以向终端设备发送RRC重配置消息。当MN为gNB时,MN给UE发送的RRC重配置消息中可以携带reconfiguration with sync信元,用于指示终端设备将辅节点由第二辅节点切换为/改变为第一辅节点。当MN为eNB时,MN给UE发送的RRC连接重配置消息中可以携带mobility control info信元,用于通知终端设备将辅节点由第二辅节点切换/改变至第一辅节点。
本申请实施例中主节点MN确定辅节点切换/改变后的第一辅节点为DU2和CU1,与作为主节点MN的DU1和CU1共用CU1,因此,该RRC重配置消息还用于指示终端设备与第一辅节点之间通过第二SRB进行信令传输所使用的密钥为第一密钥,其中,第一密钥为该终端设备与主节点MN之间通过第一SRB进行信令传输所使用的密钥(例如KgNB)。具体的实现方式有多种,一种可能的实现方式中,该RRC重配置消息中可以包含指示信息,该指示信息用于指示终端设备与第一辅节点之间通过第二SRB进行信令传输所使用的密钥为第一密钥。另一种可能的实现方式中,该RRC重配置消息中可以包含sk-counter值,且该sk-counter值为预设值(例如,该sk-counter值为无穷大或无穷小或其他特殊的取值(例如,该特殊的取值不在现有协议定义的sk-counter值的取值范围内),不做限定),当该sk-counter值为预设值时,可以隐式地指示终端设备与第一辅节点之间通过第二SRB进行信令传输所使用的密钥为所述第一密钥。另一种可能的实现方式中,该RRC重配置消息中既可以包含指示信息,又可以包含sk-counter值。另一种可能的实现方式中,RRC重配置消息中不包含sk-counter值,可以隐式地指示终端设备与辅节点之间通过第二SRB进行信令传输所使用的密钥为所述第一密钥。
可选地,在步骤1101之前,主节点MN还可以向终端设备发送第一密钥信息,终端设备可以根据该第一密钥信息衍生出与所述主节点MN之间通过第一SRB进行信令传输 所使用的第一密钥(例如KgNB)。
步骤1005:终端设备根据所述RRC重配置消息确定与所述第一辅节点之间通过第二SRB进行信令传输所使用的密钥为第一密钥。
终端设备根据所述RRC重配置消息确定与第一辅节点之间通过第二SRB进行信令传输所使用的密钥为第一密钥的具体实现方式与步骤940对应,具体的请参考步骤940中的描述,此处不再赘述。
步骤1006:终端设备向主节点MN发送RRC消息,该RRC消息用于表示已经完成辅节点切换/改变重配置,可选地,该RRC消息为RRC重配置完成消息。
步骤1007:主节点MN向第二辅节点发送第四确认消息,该第四确认消息用于确认辅节点是否改变,例如,该第四确认消息为辅节点改变确认消息。
步骤1008:主节点MN向第一辅节点发送第三消息,该第三消息用于表示终端设备已经完成辅节点切换/改变的过程,可选地,该第三消息为辅节点重配置完成消息。
在切换过程中,源基站在向终端设备发送切换消息之后,该终端设备与源基站之间的数据传输会中断,直至终端设备成功切换至目标基站后,该终端设备可以与目标基站进行数据传输。也就是说,只有在终端设备切换成功之后才会恢复数据传输。为实现0ms移动中断时延这一性能,给出一种基于DC架构的切换方案。
在基于DC架构的切换过程中,当源小区的链路质量较好时,进行辅节点的添加,将目标基站添加为辅节点SN。由目标基站(即辅节点SN)和源基站(即主节点MN)同时为终端设备提供数据传输服务。在源小区(即切换前的属于MN的小区)的链路质量变差、目标小区(即切换前的属于SN的小区)的链路质量变好时,源基站可以做出切换/角色互换判决。即可以将切换前的MN(即源基站)变成切换后的SN,将切换前的SN(即目标基站)变成切换后的MN。
在上述基于DC架构的切换过程中,切换之前,源基站作为MN,源基站使用的密钥为KgNB,目标基站作为SN,目标基站使用的密钥为S-KgNB(S-KgNB是根据KgNB以及sk-counter值确定的)。在切换之后,切换至的目标基站变成了MN,切换之前的源基站变成了SN,此时,切换至的目标基站(即切换前的SN)使用的密钥为S-KgNB。如果发生下一轮切换过程,假设还是采用上述的基于DC架构的切换方案,源基站(即上一轮切换过程中切换至的目标基站作为本轮切换过程中的源基站)需要根据自身的密钥(即S-KgNB)以及sk-counter值衍生在第二轮切换过程中作为辅节点SN的目标基站的密钥。由此,在采用基于DC架构的切换方案中,切换至的目标基站(该需要切换至的目标基站总是先添加为辅节点SN)的密钥总是基于sk-counter值确定的,其安全性不高。
可以理解的,终端设备或网络设备可以执行上述实施例中的部分或全部步骤,这些步骤或操作仅是示例,本申请实施例还可以执行其它操作或者各种操作的变形。此外,各个步骤可以按照上述实施例呈现的不同的顺序来执行,并且有可能并非要执行上述实施例中的全部操作。
本申请实施例提供的技术方案,可以在基于DC架构的切换方案中,根据多种信息确定切换(角色互换)之前添加为辅节点SN的目标基站所对应的密钥,避免每一轮切换过程中均是基于sk-counter值确定的密钥所造成的安全性不高等问题。下面结合图11对本申请实施例提供的技术方案进行详细描述。
图11是本申请实施例提供的一种基于DC架构实现0ms切换中断时延的示意性流程图。图11所示的方法可以包括步骤1110-1155,下面分别对步骤1110-1155进行详细描述。应注意,图11的例子仅仅是为了帮助本领域技术人员理解本申请实施例,而非要将申请实施例限制于所示例的具体数值或具体场景。本领域技术人员根据所给出的图11的例子所给出的例子,显然可以进行各种等价的修改或变化,这样的修改和变化也落入本申请实施例的范围内。
步骤1110:源基站向目标基站发送第六请求消息,该第六请求消息用于请求将目标基站添加为辅节点,例如,该第六请求消息可以是辅节点添加请求消息。
作为示例,源基站作为切换前的主节点MN可以向目标基站发送辅节点添加请求消息,该辅节点添加请求消息用于指示将该目标基站添加为辅节点SN。
源基站(切换前的MN)可以确定目标基站(切换前的SN)使用的密钥(如S-KgNB),并可以向目标基站(切换前的SN)发送目标基站所使用的密钥(如S-KgNB),作为示例而非限定,源基站可以将目标基站(切换前的SN)的密钥(如S-KgNB)携带在辅节点添加请求消息中,并发送至目标基站。
在步骤1110之前,源基站可以从核心网设备,例如接入和移动管理功能(access and mobile management functions,AMF)接收到第一下一跳链计数值(next hop chaining counter,NCC)。
一种可能的实现方式中,第一NCC与第二NCC不同。源基站(切换前的MN)可以根据第一NCC确定与其对应的下一跳(next hop,NH),并根据第一NCC对应的NH以及要切换至的目标小区的信息衍生出目标基站(切换前的SN)使用的密钥S-KgNB。
应理解,第二NCC可以是终端设备在收到第一NCC前,最近一次使用的数值。
还应理解,NCC和NH之间有映射关系,源基站(切换前的MN)可以根据第一NCC以及映射关系确定第一NCC对应的NH,其中,该映射关系表示第一NCC和NH之间的对应关系。
具体的,源基站(切换前的MN)可以根据以下中的至少一种衍生出目标基站(切换前的SN)使用的密钥S-KgNB:第一NCC对应的NH,目标小区的物理小区标识(physical cell identification,PCI),目标小区的频点信息。
另一种可能的实现方式中,第一NCC与第二NCC相同。源基站(切换前的MN)衍生出目标基站使用的密钥(切换前的SN)的实现方式有多种,本申请实施例对此不做具体限定。作为一个示例,源基站可以根据其自身使用的密钥KgNB以及要切换至的目标小区的信息衍生出目标基站所对应的密钥S-KgNB。作为另一个示例,源基站还可以根据自身使用的密钥KgNB以及sk-counter值衍生出目标基站所对应的密钥S-KgNB。
例如,源基站(切换前的MN)可以根据其自身使用的密钥KgNB以及要切换至的目标小区的信息衍生出目标基站(切换前的SN)使用的密钥S-KgNB。并将目标基站(切换前的SN)使用的密钥S-KgNB携带在辅节点添加请求消息中,发送至目标基站。
具体的,源基站(切换前的MN)可以根据以下中的至少一种衍生出目标基站(切换前的SN)使用的密钥S-KgNB:其自身使用的密钥KgNB,目标小区的物理小区标识(physical cell identification,PCI),目标小区的频点信息。其中,目标小区的频点信息可以包括目标小区所对应的频率,作为示例而非限定,该频点信息可以包括同步信号块 (synchronization signal block,SSB)的频率,例如,SSB的绝对频率(absolute frequency SSB)和/或参考资源模块的绝对频率位置(例如absolute frequency pointA),本申请不局限于此。具体频点信息包含的内容可参照协议TS38.331-f51中对FrequencyInfoDL信元的解释,此处不再赘述。
又如,源基站(切换前的MN)可以根据其自身的密钥KgNB以及sk-counter值衍生出目标基站使用的密钥S-KgNB,并将目标基站(切换前的SN)使用的密钥S-KgNB携带在辅节点添加请求消息中,发送至目标基站。
步骤1115:目标基站向源基站发送第六确认消息,该第六确认消息用于表示辅节点SN已经接纳/允许该辅节点添加请求消息,可选地,该第六确认消息例如可以是SN addition request ACK消息。
目标基站在接收到源基站发送的辅节点添加请求消息之后,可以进行相应的辅节点配置,完成辅节点配置后,向源基站回复辅节点添加请求确认消息。
步骤1120:源基站向终端设备发送重配置消息,该重配置消息用于指示终端设备进行辅节点添加,可选地,该重配置消息为RRC重配置消息。
作为示例,源基站接收到SN添加请求确认消息后,向终端设备发送携带secondary cell group configuration信元的RRC重配置消息,用于指示终端设备进行辅节点添加。
源基站还可以通过该RRC重配置消息向终端设备指示目标基站(切换前的SN)的安全密钥S-KgNB。指示的具体实现方式有多种,本申请对此不做具体限定。
在第一NCC与第二NCC不同的实施例中,作为一个示例,该RRC重配置消息中可以包含第一NCC,终端设备可以将在收到第一NCC之前最近一次使用的NCC(即第二NCC)与第一NCC进行比较,如果第一NCC与第二NCC不同,该终端设备可以根据以下中的至少一种衍生出目标基站(切换前的SN)使用的密钥S-KgNB:第一NCC对应的NH,目标小区的物理小区标识PCI,目标小区的频点信息。作为另一个示例,该RRC重配置消息中可以包含第一指示信息和第一NCC,该第一指示信息用于指示第一NCC与第二NCC不同。终端设备可以根据第一指示信息,通过以下中的至少一种衍生出目标基站(切换前的SN)使用的密钥S-KgNB:第一NCC对应的NH,目标小区的物理小区标识PCI,目标小区的频点信息。
应理解,第二NCC为终端设备在收到RRC重配置消息之前最近一次使用的NCC,或者,可以理解为终端设备在源基站最近一次使用过的NCC。
在第一NCC与第二NCC相同的实施例中,以源基站根据其自身使用的密钥KgNB以及要切换至的目标小区的信息衍生出目标基站所对应的密钥S-KgNB为例。作为一个示例,该RRC重配置消息中可以包含第二指示信息,该第二指示信息用于指示终端设备根据源基站(切换前的MN)的密钥KgNB以及要切换至的目标小区的信息衍生出目标基站所对应密钥S-KgNB,例如,该第二指示信息用于指示终端设备根据以下中的至少一种衍生出目标基站(切换前的SN)使用的密钥S-KgNB:源基站(切换前的MN)的密钥KgNB,目标小区的物理小区标识PCI,目标小区的频点信息。作为另一个示例,该RRC重配置消息中可以包含第一NCC,终端设备可以将在收到第一NCC之前最近一次使用的NCC(即第二NCC)与第一NCC进行比较,如果第一NCC与第二NCC相同,该终端设备可以根据源基站(切换前的MN)对应的密钥KgNB以及要切换至的目标小区的信息衍生出 目标基站所对应的密钥S-KgNB,例如,该终端设备可以根据以下中的至少一种衍生出目标基站(切换前的SN)使用的密钥S-KgNB:源基站(切换前的MN)的密钥KgNB,目标小区的物理小区标识PCI,目标小区的频点信息。
在第一NCC与第二NCC相同的实施例中,以源基站根据自身使用的密钥KgNB以及sk-counter值衍生出目标基站所对应的密钥S-KgNB为例。作为一个示例,该RRC重配置消息中包含sk-counter值,该终端设备可以根据RRC重配置消息中包含sk-counter值确定根据自身使用的密钥KgNB以及sk-counter值衍生出目标基站所对应的密钥S-KgNB。作为另一个示例,该RRC重配置消息中可以包含sk-counter值和第三指示信息,该第三指示信息用于指示终端设备根据源基站(切换前的MN)的密钥KgNB以及RRC重配置消息中的sk-counter值衍生出目标基站使用的密钥S-KgNB。作为另一个示例,该RRC重配置消息中可以包含sk-counter值和第一NCC,终端设备可以将在收到第一NCC之前最近一次使用的NCC(即第二NCC)与第一NCC进行比较,如果第一NCC与第二NCC相同,该终端设备可以根据源基站(切换前的MN)的密钥KgNB以及RRC重配置消息中的sk-counter值衍生出目标基站使用的密钥S-KgNB。
步骤1125:终端设备向源基站(切换前的MN)发送第四消息,该第四消息用于表示完成RRC重配置,可选地,该第四消息为RRC重配置完成消息。
步骤1130:源基站(切换前的MN)向目标基站(切换前的SN)发送第五消息,该第五消息用于表示终端设备已经完成重配置过程,可选地,该第五消息为辅节点重配置完成消息。
终端设备与目标基站(切换前的SN)进行RACH过程。
通过上述步骤,目标基站被配置成DC架构中的辅节点,终端设备可以与源基站(切换前的MN)以及目标基站(切换前的SN)进行数据传输。
步骤1135:源基站(切换前的MN)做出切换/角色互换判决。
辅节点SN添加完成后,终端设备可以与源基站(切换前的MN)以及目标基站(切换前的SN)进行数据传输。在源小区(即切换前的属于MN的服务小区)的链路质量变差、目标小区(即切换前的属于SN的服务小区)的链路质量变好时,源基站可以做出角色互换/切换判决,例如,源基站可以基于终端设备上报的测量报告做出角色互换/切换判决。即可以将切换前的MN变成切换后的SN,将切换前的SN变成切换后的MN。
步骤1140:源基站(即切换前的MN)向目标基站(即切换前的SN)发送角色互换请求/切换请求。
例如,可以通过现有的消息,如切换请求消息,进行角色互换/切换请求;或者,可以通过新引入的消息,本申请对此不做限定。
步骤1145:目标基站(即切换前的SN)向源基站(即切换前的MN)发送角色互换应答/切换请求应答。
例如,可以通过现有的消息,如切换请求确认消息,进行角色互换应答/切换请求应答;或者,可以通过新引入的消息,不做限定。
步骤1150:源基站(即切换前的MN)向终端设备发送重配置消息,该重配置消息用于指示终端设备进行进行角色互换/切换,可选地,该重配置消息为RRC重配置消息。
作为示例,该RRC重配置消息用于指示终端设备进行角色互换/切换,即指示终端设 备将源基站(即切换前的MN)切换变为SN,将目标基站(即切换前的SN)切换变为MN。
具体的,在NR系统中,该RRC重配置消息可以是携带reconfiguration with sync信元的RRC重配置消息。在LTE系统中,该RRC重配置消息可以是携带mobility control info信元的RRC连接重配置消息。
需要说明的是,第一种可能的实现方式中,源基站(即切换前的MN)可以向终端设备分别发送两条RRC重配置消息,例如,步骤1120中携带secondary cell group configuration信元的RRC重配置消息,以及步骤1150中携带reconfiguration with sync信元的RRC重配置消息。即第一种方式中,添加辅节点、角色互换/切换是分开完成的,相应的,源基站与目标基站之间可以通过如步骤1110、1115进行辅节点添加,且通过如步骤1140、1145进行角色互换准备/切换准备。
或者,第二种可能的实现方式中,源基站(即切换前的MN)可以向终端设备仅发送一条RRC重配置消息,以NR系统为例,该RRC重配置消息携带secondary cell group configuration信元和reconfiguration with sync信元。终端设备可以根据该RRC重配置消息中携带的secondary cell group configuration信元进行辅节点SN添加流程,同时,还可以根据该RRC重配置消息中携带的reconfiguration with sync信元进行角色互换/切换流程,将源基站(即切换前的MN)切换变为SN,目标基站(即切换前的SN)切换变为MN。也就是说,步骤1120与步骤1150中的消息可以合并成一条消息,用于指示终端设备进行辅节点添加、角色互换/切换。即,第二种方式中,添加辅节点、角色互换/切换可以同时进行。相应的,在第二种实现方式中,源基站与目标基站之间可以通过一条Xn消息进行辅节点添加请求、角色互换请求/切换请求,而且通过一条Xn消息进行辅节点添加请求的回复、角色互换请求/切换请求的回复。也就是说,步骤1110与步骤1140中的消息可以合并成一条消息,用于辅节点添加请求、角色互换请求/切换请求,步骤1115与步骤1145中的消息可以合并成一条消息,用于辅节点添加请求的回复、角色互换请求/切换请求的回复。
切换完成或者角色互换后,源基站(即切换前的MN)变成了SN,目标基站(即切换前的SN)变成了MN。切换之后,终端设备可以同时与源基站(即切换后的SN)和目标基站(即切换后的MN)进行数据传输。
需要说明的是,在第一种可能的实现方式中,携带secondary cell group configuration信元的RRC重配置消息可以包含用于获得目标基站所对应的密钥S-KgNB所需的相关参数,具体参数如步骤S1120所述。在第二种可能的实现方式中,携带secondary cell group configuration信元以及reconfiguration with sync信元的RRC重配置消息可以包含用于获得目标基站所对应的密钥S-KgNB所需的相关参数,具体参数如步骤S1120所述。
步骤1153:终端设备向目标基站(即切换后的MN)发送第六消息,该第六消息用于表示已经完成进行角色互换/切换,可选地,该第六消息为RRC重配置完成消息。
步骤1155:将源基站(即切换前的MN)释放。
在源基站(即切换前的MN,切换后的SN)的链路质量变差的情况下,可以通过辅节点(即源基站,源基站在角色互换/切换完成后变为SN)释放流程,将源基站(即切换前的MN,切换后的SN)释放。
可以理解的,终端设备或网络设备可以执行上述实施例中的部分或全部步骤,这些步骤或操作仅是示例,本申请实施例还可以执行其它操作或者各种操作的变形。此外,各个步骤可以按照上述实施例呈现的不同的顺序来执行,并且有可能并非要执行上述实施例中的全部操作。
上述技术方案中,在基于DC架构的切换方案中,根据多种信息确定辅节点SN(即终端设备即将切换至的目标基站)的密钥,避免密钥安全性不高等问题。
可以理解的是,本申请中各个实施例中的通信方法中,由终端设备实现的步骤,也可以由可用于终端设备的部件(例如芯片或者电路)实现。由网络设备实现的步骤,也可以由可用于网络设备的部件(例如芯片或者电路)实现。
上文结合图1至图11,详细描述了本申请实施例提供的通信方法,下面将结合图12至图19,详细描述本申请的装置实施例。应理解,方法实施例的描述与装置实施例的描述相互对应,因此,未详细描述的部分可以参见前面方法实施例。
图12是本申请实施例提供的一种通信装置1200的示意性框图。可以理解的是,该通信装置1200可以是终端设备,也可以是可用于终端设备的部件,该部件可以包括用于终端设备的芯片。
该通信装置1200可以包括:接收模块1210、确定模块1220。
接收模块1210:用于接收来自主节点的指示信息,所述指示信息用于指示所述终端设备与第一辅节点之间通过第二信令无线承载SRB进行信令传输所使用的密钥为第一密钥,所述第一密钥为所述终端设备与所述主节点之间通过第一SRB进行信令传输所使用的密钥,所述第一辅节点与所述主节点共用一个集中式单元CU
确定模块1220:所述指示信息确定与所述第一辅节点之间通过第二SRB进行信令传输所使用的密钥为所述第一密钥。
可选的,所述指示信息携带在无线资源控制RRC重配置消息中,所述RRC重配置消息用于通知所述终端设备添加所述第一辅节点,或者用于通知所述终端设备将辅节点由第二辅节点切换至所述第一辅节点。
可选的,所述第一SRB为SRB1或SRB2,所述第二SRB为SRB3。
可选的,所述RRC重配置消息中还包括第一数值,所述确定模块1020具体用于:当所述第一数值为预设值时,所述终端设备根据所述第一数值确定与所述第一辅节点之间通过第二SRB进行信令传输所使用的密钥为所述第一密钥。
可选的,所述第一数值为sk-counter值。
图13是本申请实施例提供的一种通信装置1300的示意性框图。可以理解的是,该通信装置1300可以是主节点,也可以是可用于主节点的部件,该部件可以包括CU,用于CU的芯片,DU,用于DU的芯片,或,用于主节点的芯片。
该通信装置1300可以包括:发送模块1310,用于向终端设备发送指示信息,所述指示信息用于指示所述终端设备与第一辅节点之间通过第二信令无线承载SRB进行信令传输所使用的密钥为第一密钥,所述第一密钥为所述终端设备与所述主节点之间通过第一SRB进行信令传输所使用的密钥,所述第一辅节点与所述主节点共用一个集中式单元CU。
可选的,所述指示信息携带在无线资源控制RRC重配置消息中,所述RRC重配置消息用于通知所述终端设备添加所述第一辅节点,或者用于通知所述终端设备将辅节点由第 二辅节点切换至所述第一辅节点。
可选的,所述第一SRB为SRB1或SRB2,所述第二SRB为SRB3。
可选的,所述RRC重配置消息中还包括第一数值,当所述第一数值为预设值时,所述第一数值用于指示所述终端设备与所述第一辅节点之间通过第二SRB进行信令传输所使用的密钥为所述第一密钥。
可选的,所述第一数值为sk-counter值。
图14是本申请实施例提供的一种通信装置1400的示意性框图。可以理解的是,该通信装置1400可以是终端设备,也可以是可用于终端设备的部件,该部件可以包括用于终端设备的芯片。
该通信装置1400可以包括:接收模块1410、确定模块1420。
接收模块1410,用于:接收来自源网络设备的无线资源控制RRC重配置消息,所述RRC重配置消息用于指示所述终端设备将需要切换至的目标小区所属的网络设备添加为辅节点SN。
确定模块1420,用于:根据所述RRC重配置消息,通过以下信息中的一种或多种确定第二密钥:所述终端设备与所述源网络设备之间进行传输所使用的第一密钥,目标小区的信息,下一跳链计数值NCC对应的下一跳NH,其中,所述第二密钥为所述终端设备与所述目标网络设备之间进行传输所使用的密钥,所述目标小区的信息包括所述目标小区的频点信息和/或所述目标小区的物理小区标识,所述目标小区属于所述目标网络设备,所述源网络设备为切换之前的主节点MN且为切换之后的辅节点SN,所述目标网络设备为切换之前的辅节点SN且为切换之后的主节点MN。
可选的,所述RRC重配置消息包含第一NCC。
可选的,所述确定模块1420具体用于:根据所述第一NCC对应的NH以及所述目标小区的信息确定所述第二密钥,其中,第二NCC为所述终端设备接收到所述RRC重配置消息之前,所述终端设备最近一次使用的数值,所述第一NCC与所述第二NCC不同。
可选的,所述确定模块1420还用于:确定所述第一NCC与所述第二NCC不同;所述终端设备根据所述第一NCC与所述第二NCC不同,通过所述第一NCC对应的NH以及所述目标小区的信息确定所述第二密钥。
可选的,所述确定模块1420具体用于:根据所述第一密钥以及所述目标小区的信息确定所述第二密钥,所述第一NCC与所述第二NCC相同。
可选的,所述确定模块1420还用于:确定所述第一NCC与所述第二NCC相同;所述终端设备根据所述第一NCC与所述第二NCC相同,通过所述第一密钥以及所述目标小区的信息确定所述第二密钥。
可选的,所述RRC重配置消息包含第一指示信息,所述第一指示信息用于指示所述第一NCC与所述第二NCC不同,所述确定模块1420具体用于:根据所述第一指示信息,使用所述第一NCC对应的NH以及所述目标小区的信息确定所述第二密钥。
可选的,所述RRC重配置消息包含第二指示信息,所述第二指示信息用于指示所述终端设备通过所述第一密钥以及所述目标小区的信息确定所述第二密钥,所述确定模块1420具体用于:根据所述第二指示信息,通过所述第一密钥以及所述目标小区的信息确定所述第二密钥。
可选的,所述RRC重配置消息包含第一数值。
可选的,所述RRC重配置消息还包含第一数值和第一NCC,所述确定模块1420具体用于:根据所述第一数值以及所述第一密钥确定所述第二密钥,其中,所述第一NCC与所述第二NCC相同。
可选的,所述确定模块1420还用于:确定所述第一NCC与所述第二NCC相同;根据所述第一NCC与所述第二NCC相同以及所述RRC重配置消息中包含的第一数值,通过所述第一数值以及所述第一密钥确定所述第二密钥。
可选的,所述RRC重配置消息还包含第一数值和第三指示信息,所述第三指示信息用于指示根据所述第一数值以及所述第一密钥确定所述第二密钥,所述确定模块1420具体用于:根据所述第三指示信息以及所述RRC重配置消息中包含的第一数值,通过所述第一数值以及所述第一密钥确定所述第二密钥。
可选的,所述RRC重配置消息还用于指示所述终端设备进行切换,所述切换完成之后,所述源网络设备成为SN,所述目标网络设备成为MN。
可选的,所述第一数值为sk-counter值。
图15是本申请实施例提供的一种通信装置1500的示意性框图。可以理解的是,该通信装置1500可以是源网络设备,也可以是可用于源网络设备的部件,该部件可以包括CU,用于CU的芯片,DU,用于DU的芯片,或是,用于源网络设备的芯片。
该通信装置1500可以包括:发送模块1510,用于向所述终端设备发送无线资源控制RRC重配置消息,所述RRC重配置消息用于指示所述终端设备将需要切换至的目标小区所属的网络设备添加为辅节点SN,所述源网络设备为所述终端设备切换之前的主节点MN且为切换之后的辅节点SN,所述目标网络设备为切换之前的辅节点SN且为切换之后的主节点MN。
可选的,该通信装置1500还包括:确定模块1520,用于通过以下信息中的一种或多种确定第二密钥:所述终端设备与所述源网络设备之间进行传输所使用的第一密钥,目标小区的信息,下一跳链计数值NCC对应的下一跳NH,其中,所述第二密钥为所述终端设备与目标网络设备之间进行传输所使用的密钥,所述目标小区的信息包括所述目标小区的频点信息和/或所述目标小区的物理小区标识,所述目标小区属于所述目标网络设备,所述目标网络设备为所述终端设备需要切换至的网络设备;所述源网络设备向所述目标网络设备发送所述第二密钥。
所述发送模块1510还用于:向所述目标网络设备发送所述第二密钥。
可选的,所述确定模块1520具体用于:根据第一NCC对应的NH以及所述目标小区的信息确定所述第二密钥,其中,第二NCC为所述终端设备发送所述RRC重配置消息之前最近一次使用的数值,所述第一NCC与所述第二NCC不同。
可选的,所述确定模块1520具体用于:根据所述第一密钥以及所述目标小区的信息确定所述第二密钥,所述第一NCC与所述第二NCC相同。
可选的,所述确定模块1520具体用于根据第一数值以及所述第一密钥确定所述第二密钥,其中,所述第一NCC与所述第二NCC相同。
可选的,所述第一数值为sk-counter值。
图16是本申请实施例提供的一种终端设备50的结构示意图。该终端设备50可适用 于图1、图2或图7中的(a)中的一项或多项所示出的系统中,执行上述方法实施例中终端设备的功能。为了便于说明,图16仅示出了终端设备50的主要部件。如图16所示,终端设备50包括处理器、存储器、控制电路、天线以及输入输出装置。处理器主要用于对通信协议以及通信数据进行处理,以及对整个终端设备50进行控制,执行软件程序,处理软件程序的数据,例如用于支持终端设备50执行上述方法实施例中所描述的动作。存储器主要用于存储软件程序和数据。控制电路主要用于基带信号与射频信号的转换以及对射频信号的处理。控制电路和天线一起也可以叫做收发器,主要用于收发电磁波形式的射频信号。输入输出装置,例如触摸屏、显示屏,键盘等主要用于接收用户输入的数据以及对用户输出数据。
当终端设备50开机后,处理器可以读取存储器的软件程序,解释并执行软件程序的指令,处理软件程序的数据。当需要通过无线发送数据时,处理器对待发送的数据进行基带处理后,输出基带信号至射频电路,射频电路将基带信号进行射频处理后将射频信号通过天线以电磁波的形式向外发送。当有数据发送到终端设备50时,射频电路通过天线接收到射频信号,将射频信号转换为基带信号,并将基带信号输出至处理器,处理器将基带信号转换为数据并对该数据进行处理。
本领域技术人员可以理解,为了便于说明,图16仅示出了一个存储器和一个处理器。在实际的终端设备50中,可以存在多个处理器和多个存储器。存储器也可以称为存储介质或者存储设备等。存储器可以为与处理器处于同一芯片上的存储元件,即片内存储元件,或者为独立的存储元件,本申请实施例对此不做限定。
作为一种可选的实现方式,所述终端设备50可以包括基带处理器和中央处理器,基带处理器主要用于对通信协议以及通信数据进行处理,中央处理器主要用于对整个终端设备进行控制,执行软件程序,处理软件程序的数据。图16中的处理器可以集成基带处理器和中央处理器的功能,本领域技术人员可以理解,基带处理器和中央处理器也可以是各自独立的处理器,通过总线等技术互联。本领域技术人员可以理解,终端设备50可以包括多个基带处理器以适应不同的网络制式,终端设备50可以包括多个中央处理器以增强其处理能力,终端设备50的各个部件可以通过各种总线连接。所述基带处理器也可以表述为基带处理电路或者基带处理芯片。所述中央处理器也可以表述为中央处理电路或者中央处理芯片。对通信协议以及通信数据进行处理的功能可以内置在处理器中,也可以以软件程序的形式存储在存储器中,由处理器执行软件程序以实现基带处理功能。
在本申请实施例中,可以将具有收发功能的天线和控制电路视为终端设备50的收发单元501,例如,用于支持终端设备50执行接收功能和发送功能。将具有处理功能的处理器502视为终端设备50的处理单元502。如图16所示,终端设备50包括收发单元501和处理单元502。收发单元也可以称为收发器、收发机、收发装置等。可选的,可以将收发单元501中用于实现接收功能的器件视为接收单元,将收发单元501中用于实现发送功能的器件视为发送单元,即收发单元501包括接收单元和发送单元,接收单元也可以称为接收机、输入口、接收电路等,发送单元可以称为发射机、发射器或者发射电路等。
处理器502可用于执行该存储器存储的指令,以控制收发单元501接收信号和/或发送信号,完成上述方法实施例中终端设备的功能。所述处理器502还包括接口,用以实现信号的输入/输出功能。作为一种实现方式,收发单元501的功能可以考虑通过收发电路 或者收发的专用芯片实现。
图17是本申请实施例提供的另一种终端设备60的结构示意图。如图17所示,该终端设备60包括处理器601和收发器602。可选的,该终端设备600还包括存储器603。其中,处理器601、收发器602和存储器603之间可以通过内部连接通路互相通信,传递控制和/或数据信号,该存储器603用于存储计算机程序,该处理器601用于从该存储器603中调用并运行该计算机程序,以控制该收发器602收发信号。终端设备600还可以包括天线604,用于将收发器602输出的上行数据或上行控制信令通过无线信号发送出去。
上述处理器601和存储器603可以合成一个处理装置,处理器601用于执行存储器603中存储的程序代码来实现上述功能。具体实现时,该存储器603也可以集成在处理器601中,或者独立于处理器601。
具体的,该终端设备60可对应于根据本申请实施例的方法的各个实施例中。并且,该终端设备60中的各单元和上述其他操作和/或功能分别为了实现方法的各个实施例中的相应流程。
上述处理器601可以用于执行前面方法实施例中描述的终端设备实现的动作,而收发器602可以用于执行前面方法实施例中描述的终端设备发送或者接收的动作。具体请见前面方法实施例中的描述,此处不再赘述。
可选的,上述终端设备60还可以包括电源605,用于给终端设备中的各种器件或电路提供电源。
除此之外,为了使得终端设备的功能更加完善,该终端设备60还可以包括输入单元606、显示单元607、音频电路608、摄像头609和传感器66等中的一个或多个,该音频电路还可以包括扬声器6082、麦克风6084等。
图18是本申请实施例提供的一种网络设备的结构示意图,如可以为基站的结构示意图。如图18所示,该基站可应用于如图1至图7中的一项或多项所示的系统中,执行上述方法实施例中主节点或用于主节点的部件,或源网络设备或用于源网络设备的部件执行的功能。基站70可包括一个或多个DU 701和一个或多个CU 702。CU702可以与NG core(下一代核心网,NC))通信。所述DU 701可以包括至少一个射频单元7012,至少一个处理器7013和至少一个存储器7014。所述DU701还可以包括至少一个天线7011。所述DU 701部分主要用于射频信号的收发以及射频信号与基带信号的转换,以及部分基带处理。CU702可以包括至少一个处理器7022和至少一个存储器7021。CU702和DU701之间可以通过接口进行通信,其中,控制面(control plan)接口可以为Fs-C,比如F1-C,用户面(user plan)接口可以为Fs-U,比如F1-U。
所述CU 702部分主要用于进行基带处理,对基站进行控制等。所述DU 701与CU 702可以是物理上设置在一起,也可以物理上分离设置的,即分布式基站。所述CU 702为基站的控制中心,也可以称为处理单元,主要用于完成基带处理功能。例如所述CU 702可以用于控制基站执行上述方法实施例中关于主节点或用于主节点的部件,或源网络设备或用于源网络设备的部件的操作流程。
具体的,CU和DU上的基带处理可以根据无线网络的协议层划分,例如分组数据汇聚层协议(packet data convergence protocol,PDCP)层及以上协议层的功能设置在CU,PDCP以下的协议层,例如无线链路控制(radio link control,RLC)层和媒体接入控制(media  access control,MAC)层等的功能设置在DU。又例如,CU实现无线资源控制(radio resource control,RRC),分组数据汇聚层协议(packet data convergence protocol,PDCP)层的功能,DU实现无线链路控制(radio link control,RLC)、介质接入控制(medium access control,MAC)和物理(physical,PHY)层的功能。
此外,可选的(图中未示),基站70可以包括一个或多个天线,一个或多个射频单元,一个或多个DU和一个或多个CU。其中,DU可以包括至少一个处理器和至少一个存储器,至少一个天线和至少一个射频单元可以集成在一个天线装置中,CU可以包括至少一个处理器和至少一个存储器。
在一个实例中,所述CU702可以由一个或多个单板构成,多个单板可以共同支持单一接入指示的无线接入网(如5G网),也可以分别支持不同接入制式的无线接入网(如LTE网,5G网或其他网)。所述存储器7021和处理器7022可以服务于一个或多个单板。也就是说,可以每个单板上单独设置存储器和处理器。也可以是多个单板共用相同的存储器和处理器。此外每个单板上还可以设置有必要的电路。所述DU701可以由一个或多个单板构成,多个单板可以共同支持单一接入指示的无线接入网(如5G网),也可以分别支持不同接入制式的无线接入网(如LTE网,5G网或其他网)。所述存储器7014和处理器7013可以服务于一个或多个单板。也就是说,可以每个单板上单独设置存储器和处理器。也可以是多个单板共用相同的存储器和处理器。此外每个单板上还可以设置有必要的电路。
图19是本申请实施例提供的通信装置80的结构示意图。通信装置80可用于实现上述方法实施例中描述的方法,可以参见上述方法实施例中的说明。所述通信装置80可以是芯片,网络设备(如基站),或,终端设备。
所述通信装置80包括一个或多个处理器801。所述处理器801可以是通用处理器或者专用处理器等。例如可以是基带处理器、或中央处理器。基带处理器可以用于对通信协议以及通信数据进行处理,中央处理器可以用于对装置(如,基站、终端、或芯片等)进行控制,执行软件程序,处理软件程序的数据。所述装置可以包括收发单元,用以实现信号的输入(接收)和输出(发送)。例如,装置可以为芯片,所述收发单元可以是芯片的输入和/或输出电路,或者通信接口。所述芯片可以用于终端设备或网络设备(比如基站)。又如,装置可以为终端设备或网络设备(比如基站),所述收发单元可以为收发器,射频芯片等。
所述通信装置80包括一个或多个所述处理器801,所述一个或多个处理器801可实现图8,图9,图10中的(a)、图10中的(b)、图11所示的实施例中主节点,或源网络设备或终端设备的方法。
在一种可能的设计中,所述通信装置80包括用于接收来自源网络设备的调度信息的部件(means),以及用于根据所述调度信息发送侧行数据的部件(means)。例如可以通过收发器、或输入/输出电路、或芯片的接口接收所述调度信息或发送所述侧行数据。所述调度信息可以参见上述方法实施例中的相关描述。
在一种可能的设计中,所述通信装置80包括用于确定终端设备的调度信息的部件(means),以及用于向所述终端设备发送所述调度信息的部件(means)。具体参见上述方法实施例中的相关描述。例如可以通过收发器、或输入/输出电路、或芯片的接口发送调度 信息,通过一个或多个处理器确定终端设备的调度信息。
在一种可能的设计中,所述通信装置80包括用于接收来自主节点的调度信息的部件(means),以及用于根据所述调度信息接收侧行数据的部件(means)。具体参见上述方法实施例中的相关描述。例如可以通过收发器、或输入/输出电路、或芯片的接口接收调度信息和侧行数据。
可选的,处理器801除了实现图8,图9,图10中的(a)、图10中的(b)b、图11中的一项或多项所示的实施例的方法,还可以实现其他功能。
可选的,一种设计中,处理器801也可以包括指令803,所述指令可以在所述处理器上被运行,使得所述通信装置80执行上述方法实施例中描述的方法。
在又一种可能的设计中,通信装置80也可以包括电路,所述电路可以实现前述方法实施例中主节点或用于主节点的部件,或源网络设备或用于源网络设备的部件或终端设备的功能。
在又一种可能的设计中所述通信装置80中可以包括一个或多个存储器802,其上存有指令804,所述指令可在所述处理器上被运行,使得所述通信装置80执行上述方法实施例中描述的方法。可选的,所述存储器中还可以存储有数据。可选的处理器中也可以存储指令和/或数据。例如,所述一个或多个存储器802可以存储上述实施例中所描述的移动有效区域,或者上述实施例中所涉及的相关的参数或表格等。所述处理器和存储器可以单独设置,也可以集成在一起。
在又一种可能的设计中,所述通信装置80还可以包括收发单元805以及天线806,或者,包括通信接口。所述收发单元805可以称为收发机、收发电路、或者收发器等,用于通过天线806实现装置的收发功能。所述通信接口(图中未示出),可以用于核心网设备和网络设备,或是,网络设备和网络设备之间的通信。可选的,该通信接口可以为有线通信的接口,比如光纤通信的接口。
所述处理器801可以称为处理单元,对装置(比如终端或者基站)进行控制。
此外,由于本申请实施例中所描述收发单元805进行的发送或接收是在处理单元(处理器801)的控制之下,因此,本申请实施例中也可以将发送或接收的动作描述为处理单元(处理器801)执行的,并不影响本领域技术人员对方案的理解。
上述各个装置实施例中的终端设备、主节点、源网络设备可以与方法实施例中的终端设备、主节点、源网络设备完全对应,由相应的模块或者单元执行相应的步骤,例如,当该装置以芯片的方式实现时,该接收单元可以是该芯片用于从其他芯片或者装置接收信号的接口电路。以上用于发送的单元是一种该装置的接口电路,用于向其他装置发送信号,例如,当该装置以芯片的方式实现时,该发送单元是该芯片用于向其他芯片或者装置发送信号的接口电路。
应理解,本申请实施例中的处理器可以为CPU,该处理器还可以是其他通用处理器、数字信号处理器(digital signal processor,DSP)、专用集成电路(application specific integrated circuit,ASIC)、现成可编程门阵列(field programmable gate array,FPGA)或者其他可编程逻辑器件、分立门或者晶体管逻辑器件、分立硬件组件等。
还应理解,本申请实施例中的存储器可以是易失性存储器或非易失性存储器,或可包括易失性和非易失性存储器两者。其中,非易失性存储器可以是只读存储器(read-only  memory,ROM)、可编程只读存储器(programmable ROM,PROM)、可擦除可编程只读存储器(erasable PROM,EPROM)、电可擦除可编程只读存储器(electrically EPROM,EEPROM)或闪存。易失性存储器可以是随机存取存储器(random access memory,RAM),其用作外部高速缓存。通过示例性但不是限制性说明,许多形式的随机存取存储器(random access memory,RAM)可用,例如静态随机存取存储器(static RAM,SRAM)、动态随机存取存储器(DRAM)、同步动态随机存取存储器(synchronous DRAM,SDRAM)、双倍数据速率同步动态随机存取存储器(double data rate SDRAM,DDR SDRAM)、增强型同步动态随机存取存储器(enhanced SDRAM,ESDRAM)、同步连接动态随机存取存储器(synchlink DRAM,SLDRAM)和直接内存总线随机存取存储器(direct rambus RAM,DR RAM)。
本申请实施例还提供了一种通信系统,该通信系统包括以下中的一项或多项:
上述的主节点或用于主节点的部件,或
源网络设备或用于源网络设备的部件,或,
终端设备或可用于终端设备的部件。
本申请实施例还提供了一种计算机可读介质,用于存储计算机程序代码,该计算机程序包括用于执行上述方法中主节点或用于主节点的部件,或源网络设备或用于源网络设备的部件,或终端设备或用于终端设备的部件所执行方法的指令。该可读介质可以是只读存储器(read-only memory,ROM)或随机存取存储器(random access memory,RAM),本申请实施例对此不做限制。
本申请还提供了一种计算机程序产品,该计算机程序产品包括指令,当该指令被执行时,以使得该主节点或用于主节点的部件,或源网络设备或用于源网络设备的部件,或终端设备或用于终端设备的部件分别执行对应于上述方法的主节点、源网络设备、终端设备的操作。
本申请实施例还提供了一种系统芯片,该系统芯片包括:处理单元和通信单元,该处理单元,例如可以是处理器,该通信单元例如可以是输入/输出接口、管脚或电路等。该处理单元可执行计算机指令,以使该芯片所应用的通信装置执行上述本申请实施例提供的方法。
可选地,上述本申请实施例中提供的任意一种通信装置可以包括该系统芯片。
可选地,该计算机指令被存储在存储单元中。
可选地,该存储单元为该芯片内的存储单元,如寄存器、缓存等,该存储单元还可以是该通信装置内的位于该芯片外部的存储单元,如ROM或可存储静态信息和指令的其他类型的静态存储设备,RAM等。其中,上述任一处提到的处理器,可以是一个CPU,微处理器,ASIC,或一个或多个用于控制上述的通信方法的程序执行的集成电路。该处理单元和该存储单元可以解耦,分别设置在不同的物理设备上,通过有线或者无线的方式连接来实现该处理单元和该存储单元的各自的功能,以支持该系统芯片实现上述实施例中的各种功能。或者,该处理单元和该存储器也可以耦合在同一个设备上。应理解,在本申请实施例中的处理器可以是CPU,该处理器还可以是其他通用处理器、DSP、ASIC、FPGA或者其他可编程逻辑器件、分立门或者晶体管逻辑器件、分立硬件组件等。通用处理器可以是微处理器或者该处理器也可以是任何常规的处理器等。
所属领域的技术人员可以清楚地了解到,为描述的方便和简洁,上述描述的系统、装置和单元的具体工作过程,可以参考前述方法实施例中的对应过程,在此不再赘述。
上述实施例,可以全部或部分地通过软件、硬件(如电路)、固件或其他任意组合来实现。当使用软件实现时,上述实施例可以全部或部分地以计算机程序产品的形式实现。所述计算机程序产品包括一个或多个计算机指令或计算机程序。在计算机上加载或执行所述计算机指令或计算机程序时,全部或部分地产生按照本申请实施例所述的流程或功能。所述计算机可以为通用计算机、专用计算机、计算机网络、或者其他可编程装置。所述计算机指令可以存储在计算机可读存储介质中,或者从一个计算机可读存储介质向另一个计算机可读存储介质传输,例如,所述计算机指令可以从一个网站站点、计算机、服务器或数据中心通过有线(例如红外、无线、微波等)方式向另一个网站站点、计算机、服务器或数据中心进行传输。所述计算机可读存储介质可以是计算机能够存取的任何可用介质或者是包含一个或多个可用介质集合的服务器、数据中心等数据存储设备。所述可用介质可以是磁性介质(例如,软盘、硬盘、磁带)、光介质(例如,DVD)、或者半导体介质。半导体介质可以是固态硬盘。
在本申请中可能出现的对各种消息/信息/设备/网元/系统/装置/动作/操作/流程/概念等各类客体进行了赋名,可以理解的是,这些具体的名称并不构成对相关客体的限定,所赋名称可随着场景,语境或者使用习惯等因素而变更,对本申请中技术术语的技术含义的理解,应主要从其在技术方案中所体现/执行的功能和技术效果来确定。
应理解,本文中术语“和/或”,仅仅是一种描述关联对象的关联关系,表示可以存在三种关系,例如,A和/或B,可以表示:单独存在A,同时存在A和B,单独存在B这三种情况,其中A,B可以是单数或者复数。另外,本文中字符“/”,一般表示前后关联对象是一种“或”的关系,但也可能表示的是一种“和/或”的关系,具体可参考前后文进行理解。
应理解,在本申请实施例中,“与A相应的B”表示B与A相关联,根据A可以确定B。但还应理解,根据A确定B并不意味着仅仅根据A确定B,还可以根据A和/或其它信息确定B。
本申请中,“至少一个”是指一个或者多个,“多个”是指两个或两个以上。“以下至少一项(个)”或其类似表达,是指的这些项中的任意组合,包括单项(个)或复数项(个)的任意组合。例如,a,b,或c中的至少一项(个),可以表示:a,b,c,a-b,a-c,b-c,或a-b-c,其中a,b,c可以是单个,也可以是多个。
应理解,在本申请的各种实施例中,上述各过程的序号的大小并不意味着执行顺序的先后,各过程的执行顺序应以其功能和内在逻辑确定,而不应对本申请实施例的实施过程构成任何限定。
本领域普通技术人员可以意识到,结合本文中所公开的实施例描述的各示例的单元及算法步骤,能够以电子硬件、或者计算机软件和电子硬件的结合来实现。这些功能究竟以硬件还是软件方式来执行,取决于技术方案的特定应用和设计约束条件。专业技术人员可以对每个特定的应用来使用不同方法来实现所描述的功能,但是这种实现不应认为超出本申请的范围。
在本申请所提供的几个实施例中,应该理解到,所揭露的系统、通信装置和方法,可以通过其它的方式实现。例如,以上所描述的装置实施例仅仅是示意性的,例如,所述单 元的划分,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式,例如多个单元或组件可以结合或者可以集成到另一个系统,或一些特征可以忽略,或不执行。另一点,所显示或讨论的相互之间的耦合或直接耦合或通信连接可以是通过一些接口,装置或单元的间接耦合或通信连接,可以是电性,机械或其它的形式。
所述作为分离部件说明的单元可以是或者也可以不是物理上分开的,作为单元显示的部件可以是或者也可以不是物理单元,即可以位于一个地方,或者也可以分布到多个网络单元上。可以根据实际的需要选择其中的部分或者全部单元来实现本实施例方案的目的。
另外,在本申请各个实施例中的各功能单元可以集成在一个处理单元中,也可以是各个单元单独物理存在,也可以两个或两个以上单元集成在一个单元中。
所述功能如果以软件功能单元的形式实现并作为独立的产品销售或使用时,可以存储在一个计算机可读取存储介质中。基于这样的理解,本申请的技术方案本质上或者说对现有技术做出贡献的部分或者该技术方案的部分可以以软件产品的形式体现出来,该计算机软件产品存储在一个存储介质中,包括若干指令用以使得一台计算机设备(可以是个人计算机,服务器,或者网络设备等)执行本申请各个实施例所述方法的全部或部分步骤。而前述的存储介质包括:U盘、移动硬盘、只读存储器(Read-Only Memory,ROM)、随机存取存储器(Random Access Memory,RAM)、磁碟或者光盘等各种可以存储程序代码的介质。
以上所述,仅为本申请的具体实施方式,但本申请的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本申请揭露的技术范围内,可轻易想到变化或替换,都应涵盖在本申请的保护范围之内。因此,本申请的保护范围应以所述权利要求的保护范围为准。

Claims (62)

  1. 一种通信方法,其特征在于,包括:
    接收来自主节点的指示信息,所述指示信息用于指示终端设备与第一辅节点之间通过第二信令无线承载SRB进行信令传输所使用的密钥为第一密钥,所述第一密钥为所述终端设备与所述主节点之间通过第一SRB进行信令传输所使用的密钥,所述第一辅节点与所述主节点共用一个集中式单元CU;
    根据所述指示信息确定与所述第一辅节点之间通过第二SRB进行信令传输所使用的密钥为所述第一密钥。
  2. 根据权利要求1所述的方法,其特征在于,所述指示信息携带在无线资源控制RRC重配置消息中,所述RRC重配置消息用于通知所述终端设备添加所述第一辅节点,或者用于通知所述终端设备将辅节点由第二辅节点切换至所述第一辅节点。
  3. 根据权利要求1或2所述的方法,其特征在于,所述第一SRB为SRB1或SRB2,所述第二SRB为SRB3。
  4. 根据权利要求2或3所述的方法,其特征在于,所述RRC重配置消息还包括第一数值;
    所述终端设备根据所述指示信息确定与所述第一辅节点之间通过第二SRB进行信令传输所使用的密钥为所述第一密钥,包括:
    当所述第一数值为预设值时,所述终端设备根据所述第一数值确定与所述第一辅节点之间通过第二SRB进行信令传输所使用的密钥为所述第一密钥。
  5. 根据权利要求4所述的方法,其特征在于,所述第一数值为sk-counter值。
  6. 一种通信方法,其特征在于,包括:
    向终端设备发送指示信息,所述指示信息用于指示所述终端设备与第一辅节点之间通过第二信令无线承载SRB进行信令传输所使用的密钥为第一密钥,所述第一密钥为所述终端设备与主节点之间通过第一SRB进行信令传输所使用的密钥,所述第一辅节点与所述主节点共用一个集中式单元CU。
  7. 根据权利要求6所述的方法,其特征在于,所述指示信息携带在无线资源控制RRC重配置消息中,所述RRC重配置消息用于通知所述终端设备添加所述第一辅节点,或者用于通知所述终端设备将辅节点由第二辅节点切换至所述第一辅节点。
  8. 根据权利要求6或7所述的方法,其特征在于,所述第一SRB为SRB1或SRB2,所述第二SRB为SRB3。
  9. 根据权利要求7或8所述的方法,其特征在于,所述RRC重配置消息还包括第一数值,当所述第一数值为预设值时,所述第一数值用于指示所述终端设备与所述第一辅节点之间通过第二SRB进行信令传输所使用的密钥为所述第一密钥。
  10. 根据权利要求9所述的方法,其特征在于,所述第一数值为sk-counter值。
  11. 一种通信方法,其特征在于,包括:
    接收来自源网络设备的无线资源控制RRC重配置消息,所述RRC重配置消息用于指 示终端设备将需要切换至的目标小区所属的网络设备添加为辅节点SN;
    根据所述RRC重配置消息,通过以下信息中的一种或多种确定第二密钥:所述终端设备与所述源网络设备之间进行传输所使用的第一密钥,目标小区的信息,下一跳链计数值NCC对应的下一跳NH,其中,所述第二密钥为所述终端设备与所述目标网络设备之间进行传输所使用的密钥,所述目标小区的信息包括所述目标小区的频点信息和/或所述目标小区的物理小区标识,所述目标小区属于所述目标网络设备,所述源网络设备为切换之前的主节点MN且为切换之后的辅节点SN,所述目标网络设备为切换之前的辅节点SN且为切换之后的主节点MN。
  12. 根据权利要求11所述的方法,其特征在于,所述RRC重配置消息包含第一NCC。
  13. 根据权利要求12所述的方法,其特征在于,所述根据所述RRC重配置消息,通过以下信息中的一种或多种确定第二密钥,包括:
    根据所述第一NCC对应的NH以及所述目标小区的信息确定所述第二密钥,其中,第二NCC为所述终端设备接收到所述RRC重配置消息之前,所述终端设备最近一次使用的数值,所述第二NCC与所述第一NCC不同。
  14. 根据权利要求13所述的方法,其特征在于,所述方法还包括:
    确定所述第一NCC与所述第二NCC不同;
    所述第一NCC对应的NH以及所述目标小区的信息确定所述第二密钥,包括:
    根据所述第一NCC与所述第二NCC不同,通过所述第一NCC对应的NH以及所述目标小区的信息确定所述第二密钥。
  15. 根据权利要求12所述的方法,其特征在于,所述根据所述RRC重配置消息,通过以下信息中的一种或多种确定第二密钥,包括:
    根据所述第一密钥以及所述目标小区的信息确定所述第二密钥,所述第一NCC与所述第二NCC相同。
  16. 根据权利要求13所述的方法,其特征在于,所述方法还包括:
    确定所述第一NCC与所述第二NCC相同;
    所述第一NCC对应的NH以及所述目标小区的信息确定所述第二密钥,包括:
    根据所述第一NCC与所述第二NCC相同,通过所述第一密钥以及所述目标小区的信息确定所述第二密钥。
  17. 根据权利要求13或14所述的方法,其特征在于,所述RRC重配置消息包含第一指示信息,所述第一指示信息用于指示所述第一NCC与所述第二NCC不同,
    所述第一NCC对应的NH以及所述目标小区的信息确定所述第二密钥,包括:
    根据所述第一指示信息,使用所述第一NCC对应的NH以及所述目标小区的信息确定所述第二密钥。
  18. 根据权利要求15或16所述的方法,其特征在于,所述RRC重配置消息包含第二指示信息,所述第二指示信息用于指示所述终端设备通过所述第一密钥以及所述目标小区的信息确定所述第二密钥,
    所述第一NCC对应的NH以及所述目标小区的信息确定所述第二密钥,包括:
    根据所述第二指示信息,通过所述第一密钥以及所述目标小区的信息确定所述第二密钥。
  19. 根据权利要求11所述的方法,其特征在于,所述RRC重配置消息包含第一数值。
  20. 根据权利要求11所述的方法,其特征在于,所述RRC重配置消息还包含第一数值和第一NCC,
    所述根据所述RRC重配置消息,通过以下信息中的一种或多种确定第二密钥,包括:
    根据所述第一数值以及所述第一密钥确定所述第二密钥,其中,所述第一NCC与所述第二NCC相同。
  21. 根据权利要求20所述的方法,其特征在于,所述方法还包括:
    确定所述第一NCC与所述第二NCC相同;
    所述所述第一数值以及所述第一密钥确定所述第二密钥,包括:
    根据所述第一NCC与所述第二NCC相同,以及所述RRC重配置消息中包含的第一数值,通过所述第一数值以及所述第一密钥确定所述第二密钥。
  22. 根据权利要求11所述的方法,其特征在于,所述RRC重配置消息还包含第一数值和第三指示信息,所述第三指示信息用于指示根据所述第一数值以及所述第一密钥确定所述第二密钥,
    所述根据所述RRC重配置消息,通过以下信息中的一种或多种确定第二密钥,包括:
    根据所述第三指示信息以及所述RRC重配置消息中包含的第一数值,通过所述第一数值以及所述第一密钥确定所述第二密钥。
  23. 根据权利要求19至22中任一项所述的方法,其特征在于,所述第一数值为
    sk-counter值。
  24. 一种通信方法,其特征在于,包括:
    向终端设备发送无线资源控制RRC重配置消息,所述RRC重配置消息用于指示所述终端设备将需要切换至的目标小区所属的网络设备添加为辅节点SN,所述目标小区所属的网络设备为切换之前的辅节点SN且为切换之后的主节点MN。
  25. 根据权利要求24所述的方法,其特征在于,所述方法还包括:
    通过以下信息中的一种或多种确定第二密钥:所述终端设备与源网络设备之间进行传输所使用的第一密钥,目标小区的信息,下一跳链计数值NCC对应的下一跳NH,其中,所述第二密钥为所述终端设备与目标网络设备之间进行传输所使用的密钥,所述目标小区的信息包括所述目标小区的频点信息和/或所述目标小区的物理小区标识,所述目标小区属于所述目标网络设备,所述目标网络设备为所述终端设备需要切换至的网络设备;
    向所述目标网络设备发送所述第二密钥。
  26. 根据权利要求25所述的方法,其特征在于,所述通过以下信息中的一种或多种确定第二密钥,包括:
    根据第一NCC对应的NH以及所述目标小区的信息确定所述第二密钥,其中,第二NCC为所述终端设备发送所述RRC重配置消息之前最近一次使用的数值,所述第一NCC与所述第二NCC不同。
  27. 根据权利要求25所述的方法,其特征在于,所述通过以下信息中的一种或多种确定第二密钥,包括:
    根据所述第一密钥以及所述目标小区的信息确定所述第二密钥,所述第一NCC与所述第二NCC相同。
  28. 根据权利要求25所述的方法,其特征在于,所述通过以下信息中的一种或多种确定第二密钥,包括:
    根据第一数值以及所述第一密钥确定所述第二密钥,其中,所述第一NCC与所述第二NCC相同。
  29. 根据权利要求28所述的方法,其特征在于,所述第一数值为sk-counter值。
  30. 一种通信装置,其特征在于,包括:
    接收模块,用于接收来自主节点的指示信息,所述指示信息用于指示终端设备与第一辅节点之间通过第二信令无线承载SRB进行信令传输所使用的密钥为第一密钥,所述第一密钥为所述终端设备与所述主节点之间通过第一SRB进行信令传输所使用的密钥,所述第一辅节点与所述主节点共用一个集中式单元CU;
    确定模块,用于根据所述指示信息确定与所述第一辅节点之间通过第二SRB进行信令传输所使用的密钥为所述第一密钥。
  31. 根据权利要求30所述的通信装置,其特征在于,所述指示信息携带在无线资源控制RRC重配置消息中,所述RRC重配置消息用于通知所述终端设备添加所述第一辅节点,或者用于通知所述终端设备将辅节点由第二辅节点切换至所述第一辅节点。
  32. 根据权利要求30或31所述的通信装置,其特征在于,所述第一SRB为SRB1或SRB2,所述第二SRB为SRB3。
  33. 根据权利要求31或32所述的通信装置,其特征在于,所述RRC重配置消息还包括第一数值;所述确定模块具体用于:
    当所述第一数值为预设值时,所述终端设备根据所述第一数值确定与所述第一辅节点之间通过第二SRB进行信令传输所使用的密钥为所述第一密钥。
  34. 根据权利要求33所述的通信装置,其特征在于,所述第一数值为sk-counter值。
  35. 一种通信装置,其特征在于,包括:
    发送模块,用于向终端设备发送指示信息,所述指示信息用于指示所述终端设备与第一辅节点之间通过第二信令无线承载SRB进行信令传输所使用的密钥为第一密钥,所述第一密钥为所述终端设备与主节点之间通过第一SRB进行信令传输所使用的密钥,所述第一辅节点与所述主节点共用一个集中式单元CU。
  36. 根据权利要求35所述的通信装置,其特征在于,所述指示信息携带在无线资源控制RRC重配置消息中,所述RRC重配置消息用于通知所述终端设备添加所述第一辅节点,或者用于通知所述终端设备将辅节点由第二辅节点切换至所述第一辅节点。
  37. 根据权利要求35或36所述的通信装置,其特征在于,所述第一SRB为SRB1或SRB2,所述第二SRB为SRB3。
  38. 根据权利要求36或37所述的通信装置,其特征在于,所述RRC重配置消息还包括第一数值,当所述第一数值为预设值时,所述第一数值用于指示所述终端设备与所述第一辅节点之间通过第二SRB进行信令传输所使用的密钥为所述第一密钥。
  39. 根据权利要求38所述的通信装置,其特征在于,所述第一数值为sk-counter值。
  40. 一种通信装置,其特征在于,包括:
    接收模块,用于接收来自源网络设备的无线资源控制RRC重配置消息,所述RRC重配置消息用于指示终端设备将需要切换至的目标小区所属的网络设备添加为辅节点SN;
    确定模块,用于根据所述RRC重配置消息,通过以下信息中的一种或多种确定第二密钥:所述终端设备与所述源网络设备之间进行传输所使用的第一密钥,目标小区的信息,下一跳链计数值NCC对应的下一跳NH,其中,所述第二密钥为所述终端设备与所述目标网络设备之间进行传输所使用的密钥,所述目标小区的信息包括所述目标小区的频点信息和/或所述目标小区的物理小区标识,所述目标小区属于所述目标网络设备,所述源网络设备为切换之前的主节点MN且为切换之后的辅节点SN,所述目标网络设备为切换之前的辅节点SN且为切换之后的主节点MN。
  41. 根据权利要求40所述的通信装置,其特征在于,所述RRC重配置消息包含第一NCC。
  42. 根据权利要求41所述的通信装置,其特征在于,所述确定模块具体用于:
    根据所述第一NCC对应的NH以及所述目标小区的信息确定所述第二密钥,其中,第二NCC为所述终端设备接收到所述RRC重配置消息之前,所述终端设备最近一次使用的数值,所述第二NCC与所述第一NCC不同。
  43. 根据权利要求42所述的通信装置,其特征在于,
    所述确定模块,还用于确定所述第一NCC与所述第二NCC不同;
    所述确定模块,还用于根据所述第一NCC与所述第二NCC不同,通过所述第一NCC对应的NH以及所述目标小区的信息确定所述第二密钥。
  44. 根据权利要求41所述的通信装置,其特征在于,所述确定模块具体用于:
    根据所述第一密钥以及所述目标小区的信息确定所述第二密钥,所述第一NCC与所述第二NCC相同。
  45. 根据权利要求42所述的通信装置,其特征在于,
    所述确定模块,还用于确定所述第一NCC与所述第二NCC相同;
    所述确定模块,还用于根据所述第一NCC与所述第二NCC相同,通过所述第一密钥以及所述目标小区的信息确定所述第二密钥。
  46. 根据权利要求42或43所述的通信装置,其特征在于,所述RRC重配置消息包含第一指示信息,所述第一指示信息用于指示所述第一NCC与所述第二NCC不同,所述确定模块具体用于:
    根据所述第一指示信息,使用所述第一NCC对应的NH以及所述目标小区的信息确定所述第二密钥。
  47. 根据权利要求44或45所述的通信装置,其特征在于,所述RRC重配置消息包含第二指示信息,所述第二指示信息用于指示所述终端设备通过所述第一密钥以及所述目标小区的信息确定所述第二密钥,所述确定模块具体用于:
    根据所述第二指示信息,通过所述第一密钥以及所述目标小区的信息确定所述第二密钥。
  48. 根据权利要求40所述的通信装置,其特征在于,所述RRC重配置消息包含第一数值。
  49. 根据权利要求40所述的通信装置,其特征在于,所述RRC重配置消息还包含第一数值和第一NCC,所述确定模块具体用于:
    根据所述第一数值以及所述第一密钥确定所述第二密钥,其中,所述第一NCC与所 述第二NCC相同。
  50. 根据权利要求49所述的通信装置,其特征在于,
    所述确定模块,还用于确定所述第一NCC与所述第二NCC相同;
    所述确定模块,还用于根据所述第一NCC与所述第二NCC相同,以及所述RRC重配置消息中包含的第一数值,通过所述第一数值以及所述第一密钥确定所述第二密钥。
  51. 根据权利要求40所述的通信装置,其特征在于,所述RRC重配置消息还包含第一数值和第三指示信息,所述第三指示信息用于指示根据所述第一数值以及所述第一密钥确定所述第二密钥,所述确定模块具体用于:
    根据所述第三指示信息以及所述RRC重配置消息中包含的第一数值,通过所述第一数值以及所述第一密钥确定所述第二密钥。
  52. 根据权利要求49至51中任一项所述的通信装置,其特征在于,所述第一数值为sk-counter值。
  53. 一种通信装置,其特征在于,包括:
    发送模块,用于向终端设备发送无线资源控制RRC重配置消息,所述RRC重配置消息用于指示所述终端设备将需要切换至的目标小区所属的网络设备添加为辅节点SN,所述目标小区所属的网络设备为切换之前的辅节点SN且为切换之后的主节点MN。
  54. 根据权利要求53所述的通信装置,其特征在于,还包括:
    确定模块,用于通过以下信息中的一种或多种确定第二密钥:所述终端设备与源网络设备之间进行传输所使用的第一密钥,目标小区的信息,下一跳链计数值NCC对应的下一跳NH,其中,所述第二密钥为所述终端设备与目标网络设备之间进行传输所使用的密钥,所述目标小区的信息包括所述目标小区的频点信息和/或所述目标小区的物理小区标识,所述目标小区属于所述目标网络设备,所述目标网络设备为所述终端设备需要切换至的网络设备;
    所述发送模块,还用于向所述目标网络设备发送所述第二密钥。
  55. 根据权利要求54所述的通信装置,其特征在于,所述确定模块具体用于:
    根据第一NCC对应的NH以及所述目标小区的信息确定所述第二密钥,其中,第二NCC为所述终端设备发送所述RRC重配置消息之前最近一次使用的数值,所述第一NCC与所述第二NCC不同。
  56. 根据权利要求54所述的通信装置,其特征在于,所述确定模块具体用于:
    根据所述第一密钥以及所述目标小区的信息确定所述第二密钥,所述第一NCC与所述第二NCC相同。
  57. 根据权利要求54所述的通信装置,其特征在于,所述确定模块具体用于:
    根据第一数值以及所述第一密钥确定所述第二密钥,其中,所述第一NCC与所述第二NCC相同。
  58. 根据权利要求57所述的通信装置,其特征在于,所述第一数值为sk-counter值。
  59. 一种计算机可读存储介质,其特征在于,包括指令,当其在通信装置上运行时,使得通信装置执行如权利要求1至5中任一项所述的方法。
  60. 一种计算机可读存储介质,其特征在于,包括指令,当其在通信装置上运行时,使得通信装置执行如权利要求6至10中任一项所述的方法。
  61. 一种计算机可读存储介质,其特征在于,包括指令,当其在通信装置上运行时,使得通信装置执行如权利要求11至23中任一项所述的方法。
  62. 一种计算机可读存储介质,其特征在于,包括指令,当其在通信装置上运行时,使得通信装置执行如权利要求24至29中任一项所述的方法。
PCT/CN2020/112778 2019-09-04 2020-09-01 通信方法、装置及计算机可读存储介质 WO2021043122A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP20861780.3A EP4021044A4 (en) 2019-09-04 2020-09-01 COMMUNICATION METHOD AND APPARATUS AND COMPUTER READABLE STORAGE MEDIA
US17/684,711 US20220201559A1 (en) 2019-09-04 2022-03-02 Communication method and apparatus, and computer-readable storage medium

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201910830355.6A CN112449346B (zh) 2019-09-04 2019-09-04 通信方法、装置及计算机可读存储介质
CN201910830355.6 2019-09-04

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US17/684,711 Continuation US20220201559A1 (en) 2019-09-04 2022-03-02 Communication method and apparatus, and computer-readable storage medium

Publications (1)

Publication Number Publication Date
WO2021043122A1 true WO2021043122A1 (zh) 2021-03-11

Family

ID=74734474

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/112778 WO2021043122A1 (zh) 2019-09-04 2020-09-01 通信方法、装置及计算机可读存储介质

Country Status (4)

Country Link
US (1) US20220201559A1 (zh)
EP (1) EP4021044A4 (zh)
CN (1) CN112449346B (zh)
WO (1) WO2021043122A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2024066738A1 (zh) * 2022-09-30 2024-04-04 华为技术有限公司 一种通信的方法和装置

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2024000106A1 (zh) * 2022-06-27 2024-01-04 Oppo广东移动通信有限公司 条件切换的控制方法和设备
WO2024145952A1 (zh) * 2023-01-08 2024-07-11 北京小米移动软件有限公司 一种密钥更新方法、装置、设备及存储介质

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103188663A (zh) * 2011-12-27 2013-07-03 华为技术有限公司 基站间载波聚合的安全通讯方法及设备
CN103959829A (zh) * 2013-11-01 2014-07-30 华为技术有限公司 一种双连接模式下的密钥处理方法和设备
CN105706473A (zh) * 2013-11-08 2016-06-22 株式会社Ntt都科摩 移动通信方法
EP3282760A1 (en) * 2015-04-10 2018-02-14 Kyocera Corporation Method for controlling handover procedure and base station
CN109429281A (zh) * 2017-08-28 2019-03-05 大唐移动通信设备有限公司 一种基于双连接架构的业务切换方法、终端及基站

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
SE513544C2 (sv) * 1998-06-17 2000-10-02 Ziad Ismail Anläggning och förfarande för att tillhandahålla en tjänst
EP3087769A1 (en) * 2013-12-24 2016-11-02 Nec Corporation Apparatus, system and method for sce
CN109691155B (zh) * 2016-08-09 2023-05-30 三星电子株式会社 无线通信系统中管理用户平面操作的方法和装置
JP6673793B2 (ja) * 2016-09-27 2020-03-25 Kddi株式会社 制御装置、端末装置、制御方法、及びプログラム
CN108924894B (zh) * 2017-04-11 2023-09-29 华为技术有限公司 一种移动性管理方法、接入网设备和终端设备
EP3479647B1 (en) * 2017-05-05 2020-12-02 Samsung Electronics Co., Ltd. Method for establishing a fronthaul interface and base station
US20230268982A1 (en) * 2022-04-29 2023-08-24 Intel Corporation Network controlled repeater

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103188663A (zh) * 2011-12-27 2013-07-03 华为技术有限公司 基站间载波聚合的安全通讯方法及设备
CN103959829A (zh) * 2013-11-01 2014-07-30 华为技术有限公司 一种双连接模式下的密钥处理方法和设备
CN105706473A (zh) * 2013-11-08 2016-06-22 株式会社Ntt都科摩 移动通信方法
EP3282760A1 (en) * 2015-04-10 2018-02-14 Kyocera Corporation Method for controlling handover procedure and base station
CN109429281A (zh) * 2017-08-28 2019-03-05 大唐移动通信设备有限公司 一种基于双连接架构的业务切换方法、终端及基站

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
ERICSSON: "Security key update during handover", 3GPP DRAFT; R2-1804798 - SECURITY KEY UPDATE DURING HANDOVER, vol. RAN WG2, 5 April 2018 (2018-04-05), Sanya, P.R. of China, pages 1 - 10, XP051415157 *
See also references of EP4021044A4

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2024066738A1 (zh) * 2022-09-30 2024-04-04 华为技术有限公司 一种通信的方法和装置

Also Published As

Publication number Publication date
CN112449346A (zh) 2021-03-05
CN112449346B (zh) 2022-09-23
EP4021044A4 (en) 2022-10-26
US20220201559A1 (en) 2022-06-23
EP4021044A1 (en) 2022-06-29

Similar Documents

Publication Publication Date Title
US20230156767A1 (en) Communication method and communication apparatus
EP3592099B1 (en) Handover method and corresponding storage medium and chip system
WO2021043122A1 (zh) 通信方法、装置及计算机可读存储介质
CN111866966B (zh) 通信方法和通信装置
JP7332799B2 (ja) 通信方法および通信装置
WO2020199942A1 (zh) 通信方法、通信装置和系统
WO2021013122A1 (zh) 切换的方法和装置
WO2020200034A1 (zh) 一种网络接入的方法和装置
WO2021023215A1 (zh) 无线通信的方法和装置
US20230040220A1 (en) Method and apparatus for processing time synchronization packet
EP4124116A1 (en) Communication method and apparatus
WO2020164464A1 (zh) 无线通信的方法和装置
WO2020228630A1 (zh) 一种通信方法和通信装置
WO2021185350A1 (zh) 一种通信方法、接入网设备、终端设备和核心网设备
WO2021159863A1 (zh) 一种多卡终端设备的通信参数测量方法、终端设备和接入网设备
WO2020073257A1 (zh) 无线通信方法和终端设备
WO2020211778A1 (zh) 小区切换方法以及装置
WO2020119615A1 (zh) 一种通信方法、装置及计算机可读存储介质
US20230021397A1 (en) Time Synchronization Packet Processing Method and Apparatus
US20230092744A1 (en) Ckey obtaining method and apparatus
JP2022517391A (ja) 無線通信方法、端末装置及びネットワーク装置
WO2021088984A1 (zh) 一种小区切换方法、终端装置与基站
JP7450644B2 (ja) 無線通信方法及び端末装置
WO2020164510A1 (zh) 通信方法、通信装置和计算机可读存储介质
CN112020056B (zh) 切换的方法、装置和通信系统

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20861780

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2020861780

Country of ref document: EP

Effective date: 20220324