WO2021042483A1 - 一种mimo雷达系统 - Google Patents
一种mimo雷达系统 Download PDFInfo
- Publication number
- WO2021042483A1 WO2021042483A1 PCT/CN2019/115197 CN2019115197W WO2021042483A1 WO 2021042483 A1 WO2021042483 A1 WO 2021042483A1 CN 2019115197 W CN2019115197 W CN 2019115197W WO 2021042483 A1 WO2021042483 A1 WO 2021042483A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- antenna
- radar system
- antennas
- mimo radar
- chip
- Prior art date
Links
Images
Classifications
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01S—RADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
- G01S13/00—Systems using the reflection or reradiation of radio waves, e.g. radar systems; Analogous systems using reflection or reradiation of waves whose nature or wavelength is irrelevant or unspecified
- G01S13/02—Systems using reflection of radio waves, e.g. primary radar systems; Analogous systems
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01S—RADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
- G01S7/00—Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
- G01S7/02—Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S13/00
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01S—RADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
- G01S7/00—Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
- G01S7/02—Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S13/00
- G01S7/28—Details of pulse systems
Definitions
- the invention discloses a MIMO radar system, which relates to the technical field of radar detection.
- Radar can be made smaller and smaller. Thanks to the advent of radar chips, the original transceiver radio frequency link, waveform formation, digital sampling and other transceiver digital links can all be integrated in a very small chip. However, the highly integrated chip also limits the design of the entire radar scheme. The number of transceivers of the existing chip is small, which makes it impossible to change the number of antennas to be designed based on the chip. In the radar system, if the number of antennas is small, the angular resolution will be low, which will affect the data processing results. In addition, in order to better use the radar and save system cost, the radar must be designed to be miniaturized, so the distance between the antennas should be shortened as much as possible during the design. However, when designing a radar antenna, if the antenna spacing is too small, it will lead to low angular resolution, while too large a spacing will cause grating lobes and interfere with the measurement of the target.
- the present invention provides a MIMO radar system, which not only increases the number of equivalent channels but also increases the antenna spacing, has a simple structure, reasonable antenna settings, and saves system costs.
- a MIMO radar system including: an antenna module, two identical chip modules and a processing module, the antenna module includes a receiving antenna and a transmitting antenna, two chip modules The same number of receiving antennas and transmitting antennas are respectively connected, the two chip modules are connected in a cascade manner, the output end of the chip module is connected with the input end of the processing module, and the antenna module adopts a series feed array.
- the transmitting antennas are arranged in a linear array at equal intervals
- the receiving antennas are divided into two groups, and the receiving antennas of each group are arranged in a linear array at equal intervals.
- the distance between the transmitting antennas is 11.08 to 11.32 mm; the distance between each group of receiving antennas is 55.57 to 56.63 mm; and the distance between each receiving antenna in the group is 2.77 to 2.83 mm.
- the optimal distance between the transmitting antennas is 11.2mm; the optimal distance between each group of receiving antennas is 56mm; the optimal distance between each receiving antenna in the group is 2.8mm; this system transmits
- the distance between the antennas, between the two groups of receiving antennas, and between each receiving antenna in the group is set with this distance, so that no grating lobes are generated in the angle measurement range, and the angle resolution also meets the actual engineering requirements.
- the chip module adopts the chip AWR1243P, and each chip realizes accurate reception and sampling of 4 receiving channels; and can realize the synchronization of the transmission channel between the two chips and the broadband signal between the reception channels.
- the working frequency band of the antenna module is 76-79 GHz.
- processing module is based on a TI DSP TMS320C6678 chip and a Xilinx K7 series FPGA XC7K325T-2FFG900 processing card; FPGA is interconnected with SRIO, SPI, EMIF, UART and GPIO in the DSP
- the AWR1243 chip used in the new radar system has integrated the transceiver radio frequency link, waveform formation, digital sampling and other transceiver digital links, so it only needs to be based on the AWR1243 chip plus the transceiver antenna and digital processing module to form a complete radar system .
- the 6 transmitting antennas of the antenna module transmit 6 orthogonal waveforms at the same time, so that it can be easily separated in the receiving antenna, and 8 receiving antennas receive the echo at the same time; the receiving antenna and the AWR1243 chip M2, K2, H2, F2 Connected, the transmitting antenna is connected to B4, B6, and B8 of the AWR1243 chip.
- the echo signal is converted into a digital signal by ADC and output through the CSI2 interface of the AWR1243 chip to achieve accurate reception and sampling of the single-chip 4-channel echo signal; the antenna and the chip need to meet a) The port matching between the chip transmitting channel and the transmitting antenna The wave is not more than 1.5; b) The port matching standing wave between the chip receiving channel and the receiving antenna is not more than 1.5, then it can be matched.
- Two AWR1243 chips are cascaded, so that there are six transmitting channels and eight receiving channels.
- the phase difference between the two chips is corrected by forming an overlapping equivalent antenna unit.
- the transmitting channel between the two chips and the broadband between the receiving channel are corrected. Signal synchronization.
- the processing module obtains echo data through CSI2 and communicates with the chip through the SPI interface; the processing module processes 8 receiving channels at the same time, first preprocesses the echo data, and separates 6 groups of transmitted signals from each channel, using overlapping virtual
- the data of the unit corrects the phase difference of the array to obtain 48 groups of multi-beam DBF, and then through data processing, feature matching, and feature recognition, the final radar data processing result is obtained.
- the antenna array can transmit completely orthogonal waveforms, as well as some related waveforms, which increases the degree of freedom for the radar system and improves the detection performance of the system.
- the overall antenna adopts a series-fed array, the Chebyshev excitation is used in the array to reduce the side lobe, and the feeders between the units are set to be unevenly distributed to increase the bandwidth, and the units are slotted to adjust the matching; use one to two equal power
- the splitter connects the two antennas in series to the 8*2 array antenna. Reduce the system isolation, which can be well matched with the two chips.
- Figure 1 is a schematic diagram of the system of the present invention
- Figure 2 is a schematic diagram of the practical antenna array layout
- Figure 3 is a schematic diagram of an equivalent array of the practical antenna array layout.
- a MIMO radar system includes an antenna module, two identical chip modules and a processing module.
- the antenna module includes a receiving antenna and a transmitting antenna.
- the two chip modules are respectively connected to the same number of receiving antennas and transmitting antennas.
- the two chip modules are connected in a cascade manner, the output end of the chip module is connected to the input end of the processing module, and the antenna module adopts a series feed array.
- the angular resolution of the equivalent array formed by MIMO needs to reach 80m, and the azimuth resolution is less than 3m, so that the aperture length of the equivalent array Need to be greater than 100mm.
- the aperture length of the equivalent array needs to be greater than 100m, but also the unit spacing of the equivalent array meets the requirement of DBF beam scanning ⁇ 17.5° (meeting 35° azimuth coverage requirements) without grating lobes.
- the transmitting antennas are arranged in a linear array at equal intervals, the receiving antennas are divided into two groups, and the receiving antennas of each group are arranged in a linear array at equal intervals; the distance between the transmitting antennas is 11.2mm; The distance between the receiving antennas is 56mm; the distance between each receiving antenna in the group is 2.8mm;
- the present invention adopts two chips for cascading, has six transmitting channels and eight receiving channels, so that 48 equivalent antenna units can be combined at most, and the requirement for an equivalent antenna array length greater than 100mm is met;
- the antenna module is set at this interval, forming 47 effective antenna radiation units, the unit interval is 2.8mm, the equivalent antenna aperture is 131.6mm, so the azimuth resolution within the range of 30m ⁇ 80m is 0.97m ⁇ 2.59 m, smaller than the width of the lane, has a certain ability to distinguish lanes; in addition, an overlapping equivalent array element position is formed, which can be used to correct the channel phase between chips.
- the set spacing does not produce grating lobes within the angle measurement range, and the angle resolution also meets the actual engineering requirements.
- the working frequency band of the antenna module is 76-79 GHz.
- the invention adopts the cascade connection of two chips, the system structure is simple, the formed equivalent array meets the system detection performance, and there is no redundant design.
- the antenna array of the present invention can transmit completely orthogonal waveforms, and can also transmit partial related waveforms, which improves a higher degree of freedom for the radar system and improves the detection performance of the system.
- the whole antenna of the present invention adopts a series-fed array, the Chebyshev excitation is used in the array to reduce the side lobe, and the feeders between the units are set to be unevenly distributed to increase the bandwidth, and the units are slotted to adjust the matching; use one to two equal power
- the splitter connects the two antennas in series to the 8*2 array antenna. Reduce the system isolation, which can be well matched with the two chips.
Landscapes
- Engineering & Computer Science (AREA)
- Radar, Positioning & Navigation (AREA)
- Remote Sensing (AREA)
- Computer Networks & Wireless Communication (AREA)
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Variable-Direction Aerials And Aerial Arrays (AREA)
- Radar Systems Or Details Thereof (AREA)
Abstract
提供了一种MIMO雷达系统,包括:天线模块,两个相同的芯片模块和处理模块,天线模块包括接收天线和发射天线,两个芯片模块分别连接相同数量的接收天线和发射天线,芯片模块的输出端与处理模块的输入端相连接。该系统采用两个芯片级联,系统结构简单,形成的等效阵列满足系统检测性能,且无冗余设计;天线阵列可以发射完全正交的波形,也可以发射部分相关的波形,为雷达系统提高了自由度,提高了系统的检测性能。
Description
本发明公开了一种MIMO雷达系统,涉及雷达检测技术领域。
雷达可以做的越来越小得益于雷达芯片的问世,原有的收发射频链路、波形形成、数字采样等收发数字链路都可以集成在很小的芯片中。但高度集成的芯片也局限了整个雷达方案的设计,现有芯片的收发数量不多,导致基于该芯片要设计的天线数量无法改动。在雷达系统中若天线数量少会导致角度分辨率低,进而影响数据处理结果。还有就是为了雷达更好的应用和节约系统成本,就要将雷达往小型化设计,所以在设计时要尽可能缩短天线间的距离。但是在进行雷达天线设计时如果天线间距过小,会导致角度分辨率低,而间距过大会导致栅瓣的产生,对目标的测量产生干扰。
发明内容
本发明针对上述背景技术中的缺陷,提供一种MIMO雷达系统,既增加了等效通道数又增加了天线间距,结构简单,天线设置合理,节约了系统成本。
为实现上述目的,本发明采用的技术方案如下:一种MIMO雷达系统,包括:天线模块,两个相同的芯片模块和处理模块,所述的天线模块包括接收天线和发射天线,两个芯片模块分别连接相同的数量的接收天线和发射天线,两个芯片模块之间级采用级联方式连接,所述芯片模块的输出端与处理模块的输入端相连接,天线模块采用串联馈电阵列。
进一步的,所述的接收天线为6个,所述的发射天线为8个。
进一步的,所述的发射天线等间距排列成线阵,所述的接收天线均分为两组,每组的接收天线等间距排列成线阵。
进一步的,所述的发射天线之间的间距为11.08~11.32mm;每组接收天线之间的距离为55.57~56.63mm;且组内每个接收天线之间的间距为 2.77~2.83mm。
进一步的,所述的发射天线之间的最佳间距为11.2mm;每组接收天线之间的最佳距离为56mm;组内每个接收天线之间的最佳间距为2.8mm;本系统发射天线之间、两组接收天线之间、组内每个接收天线之间的间距采用此间距设置,在角度测量范围内正好不会产生栅瓣,同时角度分辨率也满足实际工程需求。
所述的芯片模块采用芯片AWR1243P,每个芯片实现4路接收通道的准确接收和采样;且能实现两个芯片间发射通道及接收通道间宽带信号的同步。
进一步的,所述的天线模块的工作频段为76~79GHz。
进一步的,所述的处理模块基于1片TI DSP TMS320C6678芯片和1片Xilinx公司K7系列FPGA XC7K325T-2FFG900的处理卡;FPGA与DSP中的SRIO、SPI、EMIF、UART和GPIO进行互联
工作过程:
本新型雷达系统的采用的AWR1243芯片已集成了收发射频链路、波形形成、数字采样等收发数字链路,因此仅需基于AWR1243芯片加上收发天线和数字处理模块即可构成一个完整的雷达系统。
天线模块的6个发射天线同时发射6个正交的波形,使其能够在接收天线中容易分离开来,8个接收天线同时接收回波;接收天线与AWR1243芯片的M2、K2、H2、F2相连,发射天线与AWR1243芯片的B4、B6、B8相连。
回波信号经ADC后转换成数字信号通过AWR1243芯片的CSI2接口输出,实现单芯片4路回波信号准确接收和采样;天线与芯片间需满足a)芯片发射通道与发射天线间的端口匹配驻波不大于1.5;b)芯片接收通道与接收天线间的端口匹配驻波不大于1.5,方能匹配。
两个AWR1243芯片进行级联,这样就具备六个发射通道和八个接收通道,通过形成重叠的等效天线单元来校正两个芯片间的相位差,两个芯片间发射通道及接收通道间宽带信号同步。
处理模块通过CSI2获得回波数据和通过SPI接口与芯片交互通信;处理模 块同时对8个接收通道处理,先对回波数据预处理,从每个通道中分离出6组发射信号,采用重叠虚拟单元的数据校正阵列相位差得到48组多波束DBF,再经数据处理、特征匹配、特征识别得到最终的雷达数据处理结果。
1.采用两个芯片级联,系统结构简单,形成的等效阵列满足系统检测性能,且无冗余设计。
2.天线阵列可以发射完全正交的波形,也可以发射部分相关的波形,为雷达系统提高了更高的自由度,提高了系统的检测性能。
3.整体天线采用串联馈电阵列,阵列中使用切比雪夫激励以降低副瓣,再将单元间馈线设置为不均匀分布以增加带宽,单元开槽以调节匹配;使用一分二等分功率分配器,将两列天线串联至8*2阵列天线。降低系统隔离度,可与两个芯片很好地匹配。
图1为本发明系统原理图;
图2为本实用天线阵列布局示意图;
图3为本实用天线阵列布局等效阵列示意图。
下面结合附图对技术方案的实施作进一步的详细描述。以下实施例仅用于更加清楚地说明本发明的技术方案,而不能以此来限制本发明的保护范围。
一种MIMO雷达系统,包括:天线模块,两个相同的芯片模块和处理模块,所述的天线模块包括接收天线和发射天线,两个芯片模块分别连接相同的数量的接收天线和发射天线,两个芯片模块之间级采用联方式连接,所述芯片模块的输出端与处理模块的输入端连接相连接,天线模块采用串联馈电阵列。
要实现作用距离范围内尤其是在距离80m处对车道的分辨,也就是说通过MIMO形成的等效阵列其角度分辨率需达到80m处的方位分辨率小于3m,从而对等效阵列的孔径长度需大于100mm。不仅等效阵列的孔径长度需大于 100m,而且等效阵列的单元间距满足DBF波束扫描±17.5°(满足35°的方位覆盖需求)不出栅瓣的需求。
根据要求本发明所述的接收天线为6个,所述的发射天线为8个。所述的发射天线等间距排列成线阵,所述的接收天线均分为两组,每组的接收天线等间距排列成线阵;所述的发射天线之间的间距为11.2mm;每组接收天线之间的距离为56mm;组内每个接收天线之间的间距为2.8mm;
本发明采用两片芯片进行级联,具备六个发射通道和八个接收通道,从而最多可组合出48个等效的天线单元,且满足大于100mm长的等效天线阵列长度的需求;
并且天线模块按此间距设置,形成了47个有效的天线辐射单元,单元间距为2.8mm,等效天线口径131.6mm,从而在30m~80m的作用距离范围内的方位分辨率为0.97m~2.59m,小于车道的宽度,具备了一定的分辨车道的能力;另外,还形成了1个重叠的等效阵元位置,可用于芯片间通道相位的校正。
设置的间距在角度测量范围内正好不会产生栅瓣,同时角度分辨率也满足实际工程需求。
所述的天线模块的工作频段为76~79GHz。
本发明采用两个芯片级联,系统结构简单,形成的等效阵列满足系统检测性能,且无冗余设计。
本发明天线阵列可以发射完全正交的波形,也可以发射部分相关的波形,为雷达系统提高了更高的自由度,提高了系统的检测性能。
本发明整体天线采用串联馈电阵列,阵列中使用切比雪夫激励以降低副瓣,再将单元间馈线设置为不均匀分布以增加带宽,单元开槽以调节匹配;使用一分二等分功率分配器,将两列天线串联至8*2阵列天线。降低系统隔离度,可与两个芯片很好地匹配。
以上所述仅是本发明的优选实施方式,应当指出,对于本技术领域的普通 技术人员来说,在不脱离本发明技术原理的前提下,还可以做出若干改进和变形,这些改进和变形也应视为本发明的保护范围。
Claims (9)
- 一种MIMO雷达系统,其特征在于,包括:天线模块,两个相同的芯片模块和处理模块,所述的天线模块包括接收天线和发射天线,两个芯片模块分别连接相同的数量的接收天线和发射天线,所述芯片模块的输出端与处理模块的输入端连接相连接。
- 根据权利要求1所述的一种MIMO雷达系统,其特征在于,所述芯片模块发射通道与发射天线间的端口匹配驻波不大于1.5;所述芯片模块接收通道与接收天线间的端口匹配驻波不大于1.5。
- 根据权利要求1所述的一种MIMO雷达系统,其特征在于,所述的接收天线为6个,所述的发射天线为8个。
- 根据权利要求3所述的一种MIMO雷达系统,其特征在于,所述的发射天线等间距排列成线阵,所述的接收天线均分为两组,每组的接收天线等间距排列成线阵。
- 根据权利要求4所述的一种MIMO雷达系统,其特征在于,所述的发射天线之间的间距为11.08~11.32mm;每组接收天线之间的距离为55.57~56.63mm;且组内每个接收天线之间的间距为2.77~2.83mm。
- 根据权利要求5所述的一种MIMO雷达系统,其特征在于,所述的发射天线之间的最佳间距为11.2mm;每组接收天线之间的最佳距离为56mm;且组内每个接收天线之间的最佳间距为2.8mm。
- 根据权利要求1所述的一种MIMO雷达系统,其特征在于,所述的芯片模块采用芯片AWR1243P。
- 根据权利要求1所述的一种MIMO雷达系统,其特征在于,所述的天线模块的工作频段为76~79GHz。
- 根据权利要求1所述的一种MIMO雷达系统,其特征在于,所述的处理模块为。
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201921461301.9 | 2019-09-04 | ||
CN201921461301.9U CN210775830U (zh) | 2019-09-04 | 2019-09-04 | 一种mimo雷达系统 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2021042483A1 true WO2021042483A1 (zh) | 2021-03-11 |
Family
ID=71045184
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/CN2019/115197 WO2021042483A1 (zh) | 2019-09-04 | 2019-11-03 | 一种mimo雷达系统 |
Country Status (2)
Country | Link |
---|---|
CN (1) | CN210775830U (zh) |
WO (1) | WO2021042483A1 (zh) |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN106537170A (zh) * | 2014-07-17 | 2017-03-22 | 德州仪器公司 | 雷达系统中的分布式雷达信号处理 |
CN108051806A (zh) * | 2017-12-04 | 2018-05-18 | 上海无线电设备研究所 | 一种基于通用雷达前端芯片的毫米波成像安检雷达系统 |
US20180149730A1 (en) * | 2016-11-26 | 2018-05-31 | Wenhua Li | Cognitive MIMO Radar with Multi-dimensional Hopping Spread Spectrum and Interference-Free Windows for Autonomous Vehicles |
CN108594233A (zh) * | 2018-04-24 | 2018-09-28 | 森思泰克河北科技有限公司 | 一种基于mimo汽车雷达的速度解模糊方法 |
CN109358322A (zh) * | 2018-10-25 | 2019-02-19 | 森思泰克河北科技有限公司 | 前向目标检测雷达和方法 |
CN209028208U (zh) * | 2018-10-25 | 2019-06-25 | 森思泰克河北科技有限公司 | 目标检测装置和毫米波雷达 |
-
2019
- 2019-09-04 CN CN201921461301.9U patent/CN210775830U/zh active Active
- 2019-11-03 WO PCT/CN2019/115197 patent/WO2021042483A1/zh active Application Filing
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN106537170A (zh) * | 2014-07-17 | 2017-03-22 | 德州仪器公司 | 雷达系统中的分布式雷达信号处理 |
US20180149730A1 (en) * | 2016-11-26 | 2018-05-31 | Wenhua Li | Cognitive MIMO Radar with Multi-dimensional Hopping Spread Spectrum and Interference-Free Windows for Autonomous Vehicles |
CN108051806A (zh) * | 2017-12-04 | 2018-05-18 | 上海无线电设备研究所 | 一种基于通用雷达前端芯片的毫米波成像安检雷达系统 |
CN108594233A (zh) * | 2018-04-24 | 2018-09-28 | 森思泰克河北科技有限公司 | 一种基于mimo汽车雷达的速度解模糊方法 |
CN109358322A (zh) * | 2018-10-25 | 2019-02-19 | 森思泰克河北科技有限公司 | 前向目标检测雷达和方法 |
CN209028208U (zh) * | 2018-10-25 | 2019-06-25 | 森思泰克河北科技有限公司 | 目标检测装置和毫米波雷达 |
Non-Patent Citations (1)
Title |
---|
ANONYMOUS: "AWR1243 Single-Chip 77- and 79-GHz FMCW Transceiver", 31 October 2018 (2018-10-31), XP055788478, Retrieved from the Internet <URL:https://www.ti.com/lit/ds/symlink/awr1243.pdf?ts=1616427367111&ref_url=https%253A%252F%252Fwww.google.com%252F> * |
Also Published As
Publication number | Publication date |
---|---|
CN210775830U (zh) | 2020-06-16 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN109728445B (zh) | 一种三频段测控遥感卫通多功能复合馈源 | |
US5831581A (en) | Dual frequency band planar array antenna | |
CN105372648B (zh) | 一种基于多波束信号的角度搜索方法 | |
US6819302B2 (en) | Dual port helical-dipole antenna and array | |
CN104466380A (zh) | 平面双频双圆极化阵列天线 | |
US20190372240A1 (en) | Elementary antenna comprising a planar radiating device | |
CN105006635B (zh) | 集成内校正通道的开口脊波导阵列天线 | |
CN109755767A (zh) | 八频段双极化单脉冲双反射面天线 | |
CN105428822B (zh) | 车载防撞雷达一发多收siw透镜天线 | |
CN110752441A (zh) | 一种收发天线及手持式穿墙雷达系统 | |
CN108470988A (zh) | 一种宽带低剖面高增益卫星天线 | |
WO2021042483A1 (zh) | 一种mimo雷达系统 | |
CN211123242U (zh) | 一种基于mimo体制的提高雷达角度分辨率的布局 | |
CN212366213U (zh) | 一种高增益毫米波高灵敏度阵列天线 | |
CN212062682U (zh) | 一种微带天线 | |
Tadayon et al. | A Wide-Angle Scanning Phased Array Antenna with Non-Reciprocal Butler Matrix Beamforming Network | |
WO2021042481A1 (zh) | 一种雷达天线布局 | |
CN208507972U (zh) | 一种宽带低剖面高增益卫星天线 | |
CN117276899B (zh) | 相控阵天线和无线电通信装置 | |
CN110988870A (zh) | 一种毫米波成像系统 | |
Bentini et al. | Compact AESA for airborne self-protection and close-support jammers | |
JP2001044703A (ja) | 2周波共用フィード | |
CN114706043B (zh) | 一种利用数字波束偏转提高有效角度功率的方法 | |
CN117199839B (zh) | 一种圆极化频分天线装置 | |
CN109103584B (zh) | 一种爪状新型共面波导级联毫米波雷达天线 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 19944312 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 19944312 Country of ref document: EP Kind code of ref document: A1 |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 19944312 Country of ref document: EP Kind code of ref document: A1 |