WO2021042482A1 - 一种mimo体制下发射波形参数设计的方法 - Google Patents
一种mimo体制下发射波形参数设计的方法 Download PDFInfo
- Publication number
- WO2021042482A1 WO2021042482A1 PCT/CN2019/115195 CN2019115195W WO2021042482A1 WO 2021042482 A1 WO2021042482 A1 WO 2021042482A1 CN 2019115195 W CN2019115195 W CN 2019115195W WO 2021042482 A1 WO2021042482 A1 WO 2021042482A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- designing
- design
- transmitting
- resolution
- antenna
- Prior art date
Links
Images
Classifications
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01S—RADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
- G01S7/00—Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
- G01S7/02—Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S13/00
- G01S7/28—Details of pulse systems
- G01S7/282—Transmitters
Definitions
- the invention discloses a method for designing transmission waveform parameters under a MIMO system, and relates to the technical field of traffic radar antennas.
- Angular resolution characterizes the ability of the radar system to distinguish tangential targets, and it directly affects the accuracy of the radar's angle measurement.
- the angular resolution of the radar system depends on the beam width of the radar antenna, and the beam width of the antenna depends on the antenna aperture. Therefore, the larger the antenna aperture of the radar system, the higher its angular resolution and angular measurement accuracy.
- the existing AWR1642 chip has 2 transmitters and 4 receivers antennas. Its angle measurement resolution is low, and it is difficult to meet the requirements of distinguishing lanes.
- the existing AWR1443 has only three transmitting channels and four receiving channels on a single chip.
- the antenna layout method combines up to 12 equivalent antenna units, which still cannot meet the needs of actual engineering to distinguish vehicles.
- the present invention is based on the MIMO radar system, and provides a method for designing transmission waveform parameters to improve measurement effects.
- a method for designing transmit waveform parameters under the MIMO system includes the following steps:
- Step 1 Design the number of transmitting and receiving antennas that affect the azimuth resolution of the MIMO radar measurement
- Step 2 Design the bandwidth that affects the measurement range resolution of the MIMO radar
- Step 3 Design the pulse repetition period that affects the speed resolution of the MIMO radar measurement
- Step 4 Design the number of pulses
- Step 5 Determine the array layout of the transmitting and receiving antennas in Step 1.
- step 1 the design method for the number of transmitting and receiving antennas is specifically as follows:
- R is the range of the radar
- ⁇ a is the azimuth resolution
- ⁇ is the wavelength
- c is the speed of light
- f 0 is the base carrier frequency
- n is the number of transmitting and receiving antennas
- D is the aperture of the equivalent array
- r is the unit spacing of the equivalent array.
- step 2 the bandwidth design method is specifically as follows:
- the pulse repetition period design method is specifically: design the PRF range according to the measurement distance range:
- the PRF pulse repetition frequency l max is the maximum distance measured, and l min is the minimum distance measured;
- step 4 the number of pulses is an integer multiple of the transmitting antenna.
- the transmitting and receiving antennas include transmitting antennas and receiving antennas, the transmitting antennas are arranged in a linear array at equal intervals, and the receiving antennas are divided into two groups, and the receiving antennas of each group are arranged at equal intervals.
- Linear array The array layout of the transmitting and receiving antenna adopts the equivalent antenna, and the single-transmit and single-receive equivalent antenna is obtained by multiplying the number of the transmitting antenna by the number of the receiving antenna through the arrangement geometry.
- step 1 the MIMO radar transceiver antenna is p transmitting and q receiving, that is
- the present invention increases the equivalent array aperture, thereby achieving the effect of improving the azimuth resolution.
- the high azimuth resolution can better distinguish the lanes, so that in the subsequent point target detection, the targets can be better distinguished.
- Figure 1 is the simulation direction diagram
- Figure 2 is a schematic diagram of the array layout
- Figure 3 is a schematic diagram of an equivalent array of array layout
- Figure 4 is a schematic diagram of a vehicle crossing detection section.
- the width of the standard lane is 3m, and the total width of the 6-lane is 18m. Covering 18m lane width at a distance of 30m, the required azimuth coverage width or azimuth scanning coverage width is 35°; the height of a standard traffic light beacon is 5.5m-7m, and the pitch beam width required to cover a distance of 30m-80m It is 6.6°(5.5m) or 8.5°(7m), but the effect of vehicle height must be considered, so the far-end beam is close to head-up. Therefore, the pitch beam width needs to reach 10.5° (5.5m) or 13.4° (7m). Therefore, in order to enable the radar to meet the requirements of the above application scenarios, the radar is required to meet the following technical indicators:
- the operating distance to vehicles is 30m ⁇ 80m;
- the azimuth resolution is less than 3m within the working distance, and it has the ability to distinguish lanes
- the front azimuth beam width or azimuth scanning beam width is not less than 35°
- the front elevation beam width is not less than 13.4°, and it has the ability to cover the range of action.
- n is the number of transmitting and receiving antennas
- D is the aperture of the equivalent array
- r is the unit spacing of the equivalent array.
- the azimuth resolution of the equivalent array formed by MIMO needs to reach 80m and the azimuth resolution is less than 3m, according to the azimuth resolution formula (Among them, R is the range of the radar, ⁇ a is the azimuth resolution, ⁇ is the wavelength, c is the speed of light, f 0 is the base carrier frequency).
- the aperture D of the equivalent array must be longer than 100mm; not only the aperture length of the equivalent array must be greater than 100m, but also the element spacing of the equivalent array meets the DBF beam scanning ⁇ 17.5° (Meet the 35° azimuth coverage requirement) The grating lobe is not required.
- Figure 1 is the antenna coordinate design when the element spacing r of the equivalent array is 2.8mm, which can meet the requirement of scanning ⁇ 17.5°.
- the equivalent antenna array with a length of 100mm requires 36 equivalent antenna elements, so two pieces are used.
- the AWR1243 chip is cascaded and has six transmitting channels and eight receiving channels, which can combine up to 48 equivalent antenna units to meet the needs of an equivalent antenna array length greater than 100mm.
- the eight receiving antennas are divided into two sub-arrays.
- the spacing between the receiving antennas in each sub-array is 2.8mm, and the distance between the two sub-arrays is 2.8mm ⁇ 20 between the receiving antennas.
- the unit spacing between the six transmitting antennas is 2.8mm ⁇ 4.
- the antenna arrangement forms 47 effective antenna radiating elements, the element spacing is 2.8mm, and the equivalent array aperture is 131.6mm, so that the azimuth resolution within the range of 30m ⁇ 80m is 0.97m ⁇ 2.59m, which is smaller than the lane.
- the width of the vehicle has a certain ability to distinguish vehicles.
- an overlapping equivalent array element position is also formed, which can be used to correct the phase of the channel between the chips.
- the traffic radar is installed on the diagonally opposite traffic light poles, and at the same time realizes the presence detection of vehicles entering the detection section in 6 lanes within a distance of 30m to 80m, and can output each vehicle entering the virtual coil. Trigger the signal, leave the signal and provide the existence time.
- the length of the detection section is likely to be less than the length of the vehicle, if the distance is low resolution, each vehicle may only reflect back to one point and the reflection point may come from a different position of the vehicle, so that not only the vehicle and other metal objects on the road cannot be distinguished , And it cannot accurately reflect the time when the vehicle enters the detection coil and leaves the detection coil. Therefore, a high distance resolution is adopted, and the distance resolution is not greater than 0.3m, which is determined by the distance resolution formula
- the available bandwidth B ⁇ 500MHz, so the bandwidth is 540MHz.
- the maximum ranging range is 80m, so the pulse repetition period PRI is taken as 24us, and the corresponding unambiguous speed is ⁇ 6.7m/s. It can be obtained that the frequency modulation slope k of the chirp signal is 22500G, and the value of the frequency modulation slope is used to simulate the limited abscissa in the distance graph.
- the base carrier frequency f 0 Take the base carrier frequency f 0 as 77 GHz, the number of sampling points of a single chirp is 900, and the number of pulses is set to 192. In addition, according to The available sampling frequency fs is 37.5MHz.
Landscapes
- Engineering & Computer Science (AREA)
- Computer Networks & Wireless Communication (AREA)
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Radar, Positioning & Navigation (AREA)
- Remote Sensing (AREA)
- Radar Systems Or Details Thereof (AREA)
Abstract
提供一种MIMO体制下发射波形参数设计的方法,包括设计影响MIMO雷达测量方位分辨率的收发天线数量;设计影响MIMO雷达测量距离分辨率的带宽;设计影响MIMO雷达测量速度分辨率的脉冲重复周期;设计脉冲数;确定收发天线的阵列布局方式。由此增大等效阵列孔径,从而达到提高方位分辨率的效果。
Description
本发明公开了一种MIMO体制下发射波形参数设计的方法,涉及交通雷达天线技术领域。
角分辨力表征的是雷达系统区分切向目标的能力,它直接影响到雷达的测角精度。雷达系统的角分辨力取决于雷达天线的波束宽度,而天线的波束宽度又取决于天线的孔径,因此,雷达系统的天线孔径越大,其角分辨力和角测量精度越高。现有的AWR1642芯片为2发4收天线,其测角分辨率低,难以满足分辨车道的要求,另外,现有的AWR1443,单个芯片均只有三个发射通道和四个接收通道,通过MIMO的天线布局方式最多组合出12个等效的天线单元,依旧不能满足实际工程分辨车辆的需求。
发明内容
为解决上述问题,本发明基于MIMO雷达体制,提供一种发射波形参数设计方法,提高测量效果。
为实现上述目的,本发明采用的技术方案如下:一种MIMO体制下发射波形参数设计的方法,包括以下步骤:
步骤一:设计影响MIMO雷达测量方位分辨率的收发天线数量;
步骤二:设计影响MIMO雷达测量距离分辨率的带宽;
步骤三:设计影响MIMO雷达测量速度分辨率的脉冲重复周期
步骤四:设计脉冲数;
步骤五:确定步骤一中收发天线的阵列布局方式。
进一步的,步骤一中,收发天线数量设计方法具体为:
根据方位分辨率设计等效阵列孔径:
设定系统对检测场景的方位分辨率要求ρ
a≤a,a为常数,则等效阵列孔径的取值范围为:
根据等效阵列孔径设计收发天线数量:
进一步的,步骤二中,带宽设计方法具体为:
设定系统对检测场景的距离分辨率要求R
res≤e,e为常数,则:
进一步的,步骤三中,脉冲重复周期设计方法具体为:根据测量距离范围设计PRF范围:
其中,PRF脉冲重复频率,l
max为测量的最大距离,l
min为测量的最小距离;
根据PRF范围设计脉冲重复周期范围PRI:
再根据模糊速度公式:
得到对应的不模糊速度,当目标速度V>V
a时,发生速度模糊V
a:
此时,
PRF<4Vλ
进一步的,步骤四中,所述脉冲数为发射天线的整数倍。
进一步的,步骤五中,所述收发天线包括发射天线和接收天线,所述的发射天线等间距排列成线阵,所述的接收天线均分为两组,每组的接收天线等间距排列成线阵;收发天线的阵列布局方式采用等效天线,通过排列几何的方式得到发射天线乘以接收天线的数量的单发单收等效天线。
进一步的,步骤一中,所述的MIMO雷达收发天线为p发q收,即
有益效果:1.本发明增大等效阵列孔径,从而达到提高方位分辨率的效果。高方位分辨率,可以更好地分辨车道,这样在后续点目标检测时,可以更好地区分开目标。
2.符合用于实际交通检测时的测距范围要求和用于实际交通检测时的不模糊速度要求。
图1为仿真方向图;
图2为阵列布局示意图;
图3为阵列布局等效阵列示意图;
图4为车辆穿越检测断面示意图。
下面结合附图对技术方案的实施作进一步的详细描述。以下实施例仅用于更加清楚地说明本发明的技术方案,而不能以此来限制本发明的保护范围。
本发明提供的一种实施例:标准车道的宽度为3m,6车道的总宽度为18m。 在30m的距离处覆盖18m的车道宽度,所需的方位覆盖宽度或方位扫描覆盖宽度为35°;标准的红绿灯灯塔的高度为5.5m~7m,覆盖30m~80m的距离所需的俯仰波束宽度为6.6°(5.5m)或8.5°(7m),但还要考虑车高的影响,因此远端波束接近平视。因此俯仰波束宽度需达到10.5°(5.5m)或13.4°(7m)。因此,为了使雷达能够满足上述应用场景的需求,要求雷达满足以下技术指标:
作用距离:对车辆(包含轿车、卡车等)的作用距离为30m~80m;
在作用距离范围内方位分辨率小于3m,具备对车道的分辨能力;
阵面方位波束宽度或方位扫描波束宽度不小于35°,
具备在作用距离范围内同时覆盖6车道的能力;
阵面俯仰波束宽度不小于13.4°,具备覆盖作用距离范围的能力。
收发天线数量设计方法具体为:
其中,n为收发天线的数量,D为等效阵列的孔径,r为等效阵列的单元间距。
要实现作用距离范围内尤其是在距离80m处对车道的分辨,也就是说通过MIMO形成的等效阵列其方位分辨率需达到80m处的方位分辨率小于3m,根据方位分辨率的公式
(其中,R为雷达作用的距离,ρ
a为方位分辨率,λ为波长,
c为光速,f
0为基载频),可知,等效阵列的孔径D长度需大于100mm;不仅等效阵列的孔径长度需大于100m,而且等效阵列的单元间距满足DBF波束扫描±17.5°(满足35°的方位覆盖需求)不出栅瓣的需求。
图1为等效阵列的单元间距r为2.8mm时的天线坐标设计,可满足扫描±17.5°的需求,100mm长的等效天线阵列所需的等效天线单元为36个,因此采用两片AWR1243芯片进行级联,具备六个发射通道和八个接收通道,从而最多可组合出48个等效的天线单元,满足大于100mm长的等效天线阵列长度的需求。
如图2~3所示,八个接收天线分为两个子阵,每个子阵内部的接收天线之间的间距为2.8mm,两个子阵之间距离为接收天线间单元间距为2.8mm×20,六个发射天线之间的单元间距为2.8mm×4。
天线的布置方式形成了47个有效的天线辐射单元,单元间距为2.8mm,等效阵列孔径131.6mm,从而在30m~80m的作用距离范围内的方位分辨率为0.97m~2.59m,小于车道的宽度,具备了一定的分辨车辆的能力。另外,还形成了1个重叠的等效阵元位置,可用于芯片间通道相位的校正。
如图4所示,交通雷达安装在斜对面红绿灯灯杆上,同时实现对向30m~80m距离范围内6个车道的车辆进入检测断面的车辆进行存在检测,能够输出每个车辆进入虚拟线圈的触发信号,离开信号并且提供存在时间。
由于检测断面的长度很可能小于车长,若采用距离低分辨率,则可能每辆车只反射回一个点且该反射点可能来自车的不同位置,这样不仅不能区分车辆及路面上其他金属物,而且也不能准确反映车辆进入检测线圈和离开检测线圈的时间,因此采用高距离分辨率,距离分辨率不大于0.3m,由距离分辨率的公式
可得带宽B≥500MHz,因此取带宽为540MHz。
在本次工程实践中最大测距范围为80m,因此取脉冲重复周期PRI为24us,对应的不模糊速度为±6.7m/s,并由
可得,线性调频信号的调频斜率k为22500G,调频斜率的值,用来仿真画距离图中限定横坐标。
以上所述仅是本发明的优选实施方式,应当指出,对于本技术领域的普通技术人员来说,在不脱离本发明技术原理的前提下,还可以做出若干改进和变形,这些改进和变形也应视为本发明的保护范围。
Claims (7)
- 一种MIMO体制下发射波形参数设计的方法,其特征在于,包括以下步骤:步骤一:设计影响MIMO雷达测量方位分辨率的收发天线数量;步骤二:设计影响MIMO雷达测量距离分辨率的带宽;步骤三:设计影响MIMO雷达测量速度分辨率的脉冲重复周期;步骤四:设计脉冲数;步骤五:确定步骤一中收发天线的阵列布局方式。
- 根据权利要求1中的一种MIMO体制下发射波形参数设计的方法,其特征在于,步骤四中,所述脉冲数为发射天线的整数倍。
- 根据权利要求1中的一种MIMO体制下发射波形参数设计的方法,其特征在于,步骤五中,收发天线的阵列布局方式采用等效天线,即通过排列几何的方式得到发射天线乘以接收天线的数量的单发单收等效天线。
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201910831756.3A CN110554361B (zh) | 2019-09-04 | 2019-09-04 | 一种mimo体制下发射波形参数设计的方法 |
CN201910831756.3 | 2019-09-04 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2021042482A1 true WO2021042482A1 (zh) | 2021-03-11 |
Family
ID=68738973
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/CN2019/115195 WO2021042482A1 (zh) | 2019-09-04 | 2019-11-03 | 一种mimo体制下发射波形参数设计的方法 |
Country Status (2)
Country | Link |
---|---|
CN (1) | CN110554361B (zh) |
WO (1) | WO2021042482A1 (zh) |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN111786132B (zh) * | 2020-06-29 | 2022-01-07 | 珠海上富电技股份有限公司 | 一种基于mimo体制的雷达天线设计方法以及雷达天线 |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN102967861A (zh) * | 2012-10-17 | 2013-03-13 | 中国人民解放军国防科学技术大学 | Topsar系统参数工程设计方法 |
CN106353744A (zh) * | 2016-10-28 | 2017-01-25 | 中国人民解放军信息工程大学 | 基于双基地fda‑mimo雷达的多参数联合估计方法 |
EP3339894A1 (en) * | 2016-12-22 | 2018-06-27 | Airbus Defence and Space GmbH | A multiple input multiple output, mimo, radar system |
CN108363058A (zh) * | 2018-03-06 | 2018-08-03 | 电子科技大学 | 频控阵成像雷达的信号参数设计方法 |
CN109659705A (zh) * | 2018-10-24 | 2019-04-19 | 厦门运晨科技有限公司 | Mimo雷达二维稀疏天线布阵方法、雷达天线、雷达和存储介质 |
Family Cites Families (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN101087166B (zh) * | 2006-06-05 | 2011-10-26 | 中兴通讯股份有限公司 | 一种实现多天线系统切换的方法和装置 |
US8456349B1 (en) * | 2009-03-19 | 2013-06-04 | Gregory Hubert Piesinger | Three dimensional radar method and apparatus |
US9696419B2 (en) * | 2014-05-06 | 2017-07-04 | Mark Resources, Inc. | Marine radar based on cylindrical array antennas with other applications |
-
2019
- 2019-09-04 CN CN201910831756.3A patent/CN110554361B/zh active Active
- 2019-11-03 WO PCT/CN2019/115195 patent/WO2021042482A1/zh active Application Filing
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN102967861A (zh) * | 2012-10-17 | 2013-03-13 | 中国人民解放军国防科学技术大学 | Topsar系统参数工程设计方法 |
CN106353744A (zh) * | 2016-10-28 | 2017-01-25 | 中国人民解放军信息工程大学 | 基于双基地fda‑mimo雷达的多参数联合估计方法 |
EP3339894A1 (en) * | 2016-12-22 | 2018-06-27 | Airbus Defence and Space GmbH | A multiple input multiple output, mimo, radar system |
CN108363058A (zh) * | 2018-03-06 | 2018-08-03 | 电子科技大学 | 频控阵成像雷达的信号参数设计方法 |
CN109659705A (zh) * | 2018-10-24 | 2019-04-19 | 厦门运晨科技有限公司 | Mimo雷达二维稀疏天线布阵方法、雷达天线、雷达和存储介质 |
Non-Patent Citations (1)
Title |
---|
ZHANG JUAN: "Signal Detection and Parameter Estimation Algorithms for MIMO Radar", WANFANG DATA KNOWLEDGE SERVICE PLATFORM, 3 December 2015 (2015-12-03), Xian China, pages 1 - 114, XP055778848 * |
Also Published As
Publication number | Publication date |
---|---|
CN110554361A (zh) | 2019-12-10 |
CN110554361B (zh) | 2023-11-03 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US7501976B2 (en) | Monopulse traffic sensor and method | |
CN108469607B (zh) | 基于频率扫描天线的无人机探测雷达测角方法 | |
US9341706B2 (en) | Radar system | |
CN110596646B (zh) | 一种基于mimo体制的提高雷达角度分辨率的布局及方法 | |
US7579988B2 (en) | Method, device and system for determining direction of arrival of signal | |
KR20180083865A (ko) | 인터리빙된 직렬 송신 및 병렬 수신을 포함하는 레이더 시스템 | |
CN110850400A (zh) | 基于干涉仪测向的lfmcw雷达多目标检测方法 | |
JP2020532186A (ja) | 一次元での受信アンテナの分散配置によって二次元での物体の角度を判断するための受信アレイを有するイメージングレーダシステム | |
CN105652245A (zh) | 一种固态脉冲压缩雷达宽距离覆盖方法 | |
US7548186B2 (en) | Method and apparatus for detection of an electromagnetic signal reflected from and object | |
RU2711115C1 (ru) | Радиолокационный способ обнаружения малозаметных целей в импульсно-доплеровской РЛС с ФАР | |
WO2021042482A1 (zh) | 一种mimo体制下发射波形参数设计的方法 | |
GB2600019A (en) | Waveform peak detection and timing for radar applications | |
Liu et al. | Collision avoidance radar system for the bullet train: implementation and first results | |
WO2024164382A9 (zh) | 一种mimo雷达天线阵列及mimo雷达天线阵列的布局方法 | |
RU95860U1 (ru) | Радиолокационный модуль | |
Zhao et al. | Using sky-wave echoes information to extend HFSWR's maximum detection range | |
US20150123836A1 (en) | Obstacles detection system | |
RU2676673C1 (ru) | Способ радиолокационного обзора пространства | |
Parker | Radar Basics-Part 2: Pulse Doppler Radar | |
Brazda et al. | Automotive radar sensor-wave propagation issues and their mitigation | |
US20240201320A1 (en) | Method of designing radome of radar device, radome and radar device using the same | |
Tian et al. | Motion Parameter Estimation Based on Overlapping Elements for TDM-MIMO FMCW Radar | |
US20240219552A1 (en) | Mimo radar using a frequency scanning antenna | |
CN214473933U (zh) | 车辆 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 19944110 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 19944110 Country of ref document: EP Kind code of ref document: A1 |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 19944110 Country of ref document: EP Kind code of ref document: A1 |