WO2021042384A1 - 碳纳米管纤维复合材料及其制备方法 - Google Patents

碳纳米管纤维复合材料及其制备方法 Download PDF

Info

Publication number
WO2021042384A1
WO2021042384A1 PCT/CN2019/104759 CN2019104759W WO2021042384A1 WO 2021042384 A1 WO2021042384 A1 WO 2021042384A1 CN 2019104759 W CN2019104759 W CN 2019104759W WO 2021042384 A1 WO2021042384 A1 WO 2021042384A1
Authority
WO
WIPO (PCT)
Prior art keywords
carbon nanotube
nanotube fiber
fiber fabric
thermosetting resin
composite material
Prior art date
Application number
PCT/CN2019/104759
Other languages
English (en)
French (fr)
Inventor
邓飞
刘畅
Original Assignee
深圳烯湾科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳烯湾科技有限公司 filed Critical 深圳烯湾科技有限公司
Priority to PCT/CN2019/104759 priority Critical patent/WO2021042384A1/zh
Priority to CN201980001641.XA priority patent/CN110799592A/zh
Publication of WO2021042384A1 publication Critical patent/WO2021042384A1/zh

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K7/00Use of ingredients characterised by shape
    • C08K7/02Fibres or whiskers
    • C08K7/04Fibres or whiskers inorganic
    • C08K7/06Elements
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/02Elements
    • C08K3/04Carbon
    • C08K3/041Carbon nanotubes
    • DTEXTILES; PAPER
    • D03WEAVING
    • D03DWOVEN FABRICS; METHODS OF WEAVING; LOOMS
    • D03D13/00Woven fabrics characterised by the special disposition of the warp or weft threads, e.g. with curved weft threads, with discontinuous warp threads, with diagonal warp or weft
    • DTEXTILES; PAPER
    • D03WEAVING
    • D03DWOVEN FABRICS; METHODS OF WEAVING; LOOMS
    • D03D13/00Woven fabrics characterised by the special disposition of the warp or weft threads, e.g. with curved weft threads, with discontinuous warp threads, with diagonal warp or weft
    • D03D13/008Woven fabrics characterised by the special disposition of the warp or weft threads, e.g. with curved weft threads, with discontinuous warp threads, with diagonal warp or weft characterised by weave density or surface weight
    • DTEXTILES; PAPER
    • D03WEAVING
    • D03DWOVEN FABRICS; METHODS OF WEAVING; LOOMS
    • D03D15/00Woven fabrics characterised by the material, structure or properties of the fibres, filaments, yarns, threads or other warp or weft elements used
    • DTEXTILES; PAPER
    • D10INDEXING SCHEME ASSOCIATED WITH SUBLASSES OF SECTION D, RELATING TO TEXTILES
    • D10BINDEXING SCHEME ASSOCIATED WITH SUBLASSES OF SECTION D, RELATING TO TEXTILES
    • D10B2101/00Inorganic fibres
    • D10B2101/10Inorganic fibres based on non-oxides other than metals
    • D10B2101/12Carbon; Pitch
    • D10B2101/122Nanocarbons

Definitions

  • This application relates to the field of material technology, in particular to a carbon nanotube fiber composite material and a preparation method thereof.
  • Carbon nanotubes have a unique structure and excellent mechanical properties, and are ideal reinforcement materials for composite materials. Their super mechanical properties and thermal stability can greatly improve the strength and toughness of polymer matrix composites.
  • the research of carbon nanotube/polymer composites has become a new hot spot in the application of carbon nanotubes.
  • carbon nanotubes are mainly dispersed in the polymer matrix in the form of powder, and their mechanical properties still need to be further improved. Allaoui, Schadler, Breton, etc.
  • One of the objectives of the embodiments of the present application is to provide a carbon nanotube fiber composite material and a preparation method thereof, so as to further improve the mechanical properties of the carbon nanotube/polymer carbon nanotube fiber composite material.
  • a method for preparing a carbon nanotube fiber composite material which includes the following steps:
  • thermosetting resin solution Obtaining a thermosetting resin solution, mixing the carbon nanotube fiber fabric with the thermosetting resin solution to prepare a carbon nanotube fiber fabric impregnated with the thermosetting resin solution;
  • the carbon nanotube fiber fabric impregnated with the thermosetting resin solution is cured to obtain a carbon nanotube fiber fabric/thermosetting resin composite material.
  • the carbon nanotube fiber fabric in the step of mixing the carbon nanotube fiber fabric with the thermosetting resin solution, the carbon nanotube fiber fabric is immersed in the thermosetting resin solution until the carbon nanotube fiber The fabric is completely wetted by the thermosetting resin solution.
  • thermosetting resin solution in the step of preparing the carbon nanotube fiber fabric impregnated with the thermosetting resin solution, a vacuum-assisted resin transfer molding method is adopted to make the thermosetting resin solution completely infiltrate the carbon nanotube fiber fabric.
  • the carbon nanotube fiber fabric impregnated with the thermosetting resin in the step of curing the carbon nanotube fiber fabric impregnated with the thermosetting resin, is heated and cured at a preset temperature And press and shape the carbon nanotube fiber fabric impregnated with the thermosetting resin to make the surface smooth.
  • the carbon nanotube fiber fabric is a plain weave fabric, a twill weave fabric or a satin weave fabric.
  • the warp and weft density of the carbon nanotube fiber fabric is 5-40 bundles/cm2.
  • the gram weight of the carbon nanotube fiber fabric is 50-400 g/m 2 .
  • the carbon nanotube fiber fabric includes warp threads and weft threads, the warp threads and/or the weft threads are several carbon nanotube fiber bundles, and the direction in which the warp threads extend is the carbon nanotube fiber fabric The length direction.
  • the preparation method of the carbon nanotube fiber fabric includes the following steps:
  • a plurality of the carbon nanotube fiber bundles are woven into a cloth to obtain the carbon nanotube fiber fabric.
  • thermosetting resin solution includes: a thermosetting resin and a curing agent, and the weight ratio of the thermosetting resin to the curing agent is 100: (30-50).
  • thermosetting resin is at least one of epoxy resin, phenolic resin, unsaturated polyester resin, formaldehyde resin and furan resin.
  • a carbon nanotube fiber composite material which is a fiber fabric formed by a composite of carbon nanotube fiber fabric and thermosetting resin.
  • thermosetting resin is coated and arranged on the surface of the carbon nanotube fiber fabric, and the thermosetting resin is filled and arranged in the gaps of the carbon nanotube fiber fabric.
  • the carbon nanotube fiber fabric is a plain weave fabric, a twill weave fabric or a satin weave fabric.
  • the warp and weft density of the carbon nanotube fiber fabric is 5-40 bundles/cm2.
  • the gram weight of the carbon nanotube fiber fabric is 50-400 g/m 2 .
  • the carbon nanotube fiber fabric includes warp threads and weft threads, the warp threads and/or the weft threads are carbon nanotube fiber bundles, and the direction in which the warp threads extend is the direction of the carbon nanotube fiber fabric. Longitudinal direction.
  • thermosetting resin is at least one of epoxy resin, phenolic resin, unsaturated polyester resin, formaldehyde resin and furan resin.
  • the preparation method of the carbon nanotube fiber composite material obtained in the present invention mixes the carbon nanotube fiber fabric with a thermosetting resin solution and solidifies to realize the composite between the carbon nanotube fiber fabric and the thermosetting resin.
  • the present invention uses carbon nanotube fiber fabric as the reinforcement, solves the problem of carbon nanotube powder agglomeration in the thermosetting resin, and maximizes the reinforcement effect of carbon nanotubes, so that the present invention
  • the carbon nanotube fiber fabric/thermosetting resin composite material prepared by the preparation method has good mechanical properties, the method is simple and convenient, and it is easy to be mass-produced on a large scale.
  • the carbon nanotube fiber composite material obtained by the present invention is a fiber fabric formed by a composite of carbon nanotube fiber fabric and thermosetting resin, and the carbon nanotube fiber fabric is used as a reinforcing body, which has good mechanical properties and can be widely used in aerospace , Automobiles, wind power and sports equipment.
  • Figure 1 The appearance of the carbon nanotube fiber fabric prepared in Example 1;
  • Example 2 is the appearance of the carbon nanotube fiber fabric/thermosetting resin carbon nanotube fiber composite material prepared in Example 1.
  • a preparation method of carbon nanotube fiber composite material includes the following steps:
  • thermosetting resin solution preparing a carbon nanotube fiber fabric; obtaining a thermosetting resin solution, mixing the carbon nanotube fiber fabric and the thermosetting resin solution to prepare a carbon nanotube fiber fabric impregnated with the thermosetting resin solution;
  • the carbon nanotube fiber fabric and the thermosetting resin solution are mixed and cured to realize the composite between the carbon nanotube fiber fabric and the thermosetting resin.
  • the present invention uses carbon nanotube fiber fabric as the reinforcement, solves the problem of carbon nanotube powder agglomeration in the thermosetting resin, and maximizes the reinforcement effect of carbon nanotubes, so that the present invention
  • the carbon nanotube fiber fabric/thermosetting resin composite material prepared by the preparation method has good mechanical properties, the method is simple and convenient, and it is easy to be mass-produced on a large scale.
  • the carbon nanotube fiber fabric is used as a reinforcement of the carbon nanotube fiber composite material, which avoids the problem of agglomeration of powdered carbon nanotubes dispersed in a thermosetting resin in the prior art, and The reinforcing effect of the carbon nanotubes is exerted to the greatest extent, so that the carbon nanotube fiber fabric/thermosetting resin composite material prepared by the preparation method of the present invention has good mechanical properties.
  • the carbon nanotube fiber fabric may have a single-layer structure, or a composite layer structure of two or more layers, which can be flexibly adjusted according to the specific actual situation of the carbon nanotube fiber composite material.
  • the carbon nanotube fiber fabric has a single-layer structure, and its thickness is about the diameter of one carbon nanotube fiber bundle.
  • the carbon nanotube fiber fabric includes warp threads and weft threads, the warp threads and/or the weft threads are several carbon nanotube fiber bundles, and the direction in which the warp threads extend is the carbon nanotube fiber fabric The length direction.
  • the carbon nanotube fiber fabric is a plain weave fabric, a twill weave fabric or a satin weave fabric, preferably a plain weave fabric.
  • the plain weave fabric has good operability and stability, and has more weave points and yarns.
  • the line buckling point makes the fabric firm, wear-resistant, stiff and flat. Under the same conditions of warp and weft yarn thickness and density, the plain weave fabric has the best weave fastness and abrasion resistance among the above three fabrics.
  • the warp and weft density of the carbon nanotube fiber fabric is 5-40 bundles per square centimeter; in other embodiments, the gram weight of the carbon nanotube fiber fabric is 50-400 g/m 2 .
  • the carbon nanotube fiber fabric with the above warp and weft density and gram weight has good mechanical properties, good hardness and flexibility, and is easier to be infiltrated by the thermosetting resin.
  • the carbon nanotube fiber fabric is mainly obtained by spinning a plurality of carbon nanotube fiber bundles, and at the same time, the carbon nanotube fiber bundle is obtained by combining a plurality of carbon nanotube fiber threads.
  • the preparation method of the carbon nanotube fiber fabric includes the following steps:
  • the preparation of the carbon nanotube array can refer to conventional operations in the art.
  • the preparation method of the carbon nanotube array includes: depositing a catalyst layer on a substrate, and placing A protective gas is introduced into the chemical vapor deposition reaction furnace, the temperature is raised to 500-900°C, and then the carbon source gas is introduced to react for about 20 minutes, thereby generating a uniformly grown carbon nanotube array on the substrate.
  • the carbon nanotube film is drawn from the carbon nanotube array, and the carbon nanotube film is twisted to prepare carbon nanotube fiber filaments.
  • the carbon nanotube film drawn from the carbon nanotube array has an orderly arrangement, uniform length and diameter, and the carbon nanotube fiber yarn obtained by twisting has good mechanical properties.
  • a 0.1-20 cm carbon nanotube film is drawn from the carbon nanotube array.
  • the carbon nanotube film is twisted to obtain carbon nanotube filaments. Further, in the step of twisting the carbon nanotube film, selecting a carbon nanotube film with uniform diameter and length and no defects for twisting treatment; and, performing twisting treatment on the carbon nanotube film In the step, the carbon nanotube film is twisted according to a twist of 100-15000 tpm. In some embodiments, the twist is preferably 1200-1500 tpm, 500-1000 tpm, 300-9000 tpm, 1500-13000 tpm, 3000-15000 tpm, or 10000-14500 tpm.
  • a plurality of the carbon nanotube fiber filaments are combined to obtain a carbon nanotube fiber bundle.
  • the step of doubling the plurality of carbon nanotube fiber filaments includes: doubling the plurality of carbon nanotube fiber filaments without twisting or twisting.
  • the number of the carbon nanotube filaments is 50-120; in other embodiments, a plurality of the carbon nanotube filaments are twisted and combined, and the twist is 50-150 tpm
  • a plurality of the carbon nanotube fiber filaments are arranged in parallel or spirally rotated along the axial direction of the carbon nanotube fiber bundle.
  • step S013 a plurality of the carbon nanotube fiber bundles are woven into a cloth to obtain the carbon nanotube fiber fabric.
  • step S013 For the step of spinning a plurality of the carbon nanotube fiber bundles into a cloth, reference may be made to the cloth weaving process.
  • thermosetting resin solution is used to provide a thermosetting resin to facilitate the composite of the carbon nanotube fiber fabric and the thermosetting resin.
  • the thermosetting resin solution includes: a thermosetting resin and a curing agent, and the weight ratio of the thermosetting resin to the curing agent is 100: (30-50). Based on 100 parts of the thermosetting resin, when the curing agent is greater than 50 parts, the subsequently obtained carbon nanotube fiber fabric/thermosetting resin carbon nanotube fiber composite material is relatively brittle; when the curing agent is less than 30 parts, The subsequent curing process is not perfect.
  • the weight ratio of the thermosetting resin and the curing agent is 100:30, 100:32, 100:35, 100:37, 100:39, 100:42, 100:45, 100:46 , 100:49, 100:50.
  • the viscosity of the thermosetting resin solution is 0.1-0.5 Pa.s to ensure that the thermosetting resin solution has good fluidity.
  • the viscosity of the thermosetting resin solution is 0.10, 0.15, 0.25, 0.30, 0.40, 0.50 Pa.S.
  • the thermosetting resin is at least one of epoxy resin, phenolic resin, unsaturated polyester resin, formaldehyde resin and furan resin; and the curing agent is selected from amine curing agents.
  • the thermosetting resin is an epoxy resin
  • the epoxy resin is selected from at least one of bisphenol A type epoxy resin, bisphenol F type epoxy resin, and bisphenol S type epoxy resin.
  • the amine curing agent is selected from aliphatic amines and/or aromatic amines, wherein the aliphatic amine is preferably at least diethylenetriamine, triethylenetetramine, tetraethylenepentamine and diethylaminopropylamine
  • the aromatic amine is preferably at least one of meta-xylylenediamine, meta-phenylenediamine and diaminodiphenylmethane.
  • thermosetting resin solution further comprises: an organic solvent for dissolving the thermosetting resin and the curing agent, and the organic solvent is preferably acetone, methyl ethyl ketone, xylene, n-butanol, and ethyl acetate. At least one of esters.
  • the carbon nanotube fiber fabric is mixed with the thermosetting resin solution so that the carbon nanotube fiber fabric is in full contact with the thermosetting resin solution to obtain a carbon nanotube fiber fabric impregnated with the thermosetting resin solution.
  • the carbon nanotube fiber fabric in the step of preparing the carbon nanotube fiber fabric impregnated with the thermosetting resin solution, the carbon nanotube fiber fabric is immersed in the thermosetting resin solution until the carbon nanotube fiber fabric is covered by the thermosetting resin solution. The thermosetting resin solution is completely infiltrated.
  • a vacuum-assisted resin transfer molding method is adopted so that the thermosetting resin solution completely infiltrates the carbon nanotube fiber fabric.
  • the step of mixing the carbon nanotube fiber fabric with the thermosetting resin solution adopts the VARTM molding process.
  • the carbon nanotube fiber fabric is placed in the mold cavity, and the thermosetting resin is injected after vacuuming, so that the thermosetting resin can fully infiltrate the carbon.
  • the viscosity of the thermosetting resin solution is adjusted to 0.1-0.5 Pa.s, so that the thermosetting resin solution has good fluidity in the mold cavity, which is beneficial for the thermosetting resin to fully infiltrate the carbon nanotube fibers Fabric.
  • step S02 the carbon nanotube fiber fabric impregnated with the thermosetting resin solution is cured to cure the thermosetting resin on the carbon nanotube fiber fabric to obtain a carbon nanotube fiber fabric/thermosetting resin carbon nanotube fiber composite material .
  • the carbon nanotube fiber fabric impregnated with the thermosetting resin is heated and cured at a preset temperature And press and shape the carbon nanotube fiber fabric impregnated with the thermosetting resin to make the surface smooth.
  • the carbon nanotube fiber fabric impregnated with the thermosetting resin is heated and cured at 50-100° C. until the thermosetting resin on the carbon nanotube fiber fabric is completely cured.
  • the carbon nanotube fiber fabric impregnated with the thermosetting resin is heated and cured at 50-100° C. for 2-15 hours. Further, a method of energizing and heating the carbon nanotube fiber fabric is adopted to cure the thermosetting resin solution on the carbon nanotube fiber fabric.
  • the carbon nanotube fiber fabric has good electrical conductivity.
  • the carbon nanotube fiber fabric is energized, and the carbon nanotubes themselves are energized to generate heat. When the temperature rises to 50-100°C, all the carbon nanotube fiber fabrics can be The thermosetting resin solution is heated and cured.
  • the current magnitude for energizing the carbon nanotube fiber fabric is 0.1-0.6A, and the current is controlled at 0.1-0.6A, so that the temperature can quickly reach the curing temperature without affecting the carbon nanotube fiber fabric itself. performance.
  • the carbon nanotube fiber composite material obtained by the preparation method obtained in the embodiment of the present invention can be made Has the best mechanical properties.
  • a carbon nanotube fiber composite material prepared by the above preparation method is a fiber fabric formed by a composite of a carbon nanotube fiber fabric and a thermosetting resin.
  • the carbon nanotube fiber composite material obtained in the embodiment of the present invention is: a fiber fabric formed by a composite of carbon nanotube fiber fabric and thermosetting resin, and the carbon nanotube fiber fabric is used as a reinforcement, which has good mechanical properties and can be widely used Aerospace, automotive, wind power and sports equipment and other fields.
  • the carbon nanotube fiber composite material is a carbon nanotube fiber fabric/thermosetting resin carbon nanotube fiber composite material, which is a cloth-like fiber fabric formed by a composite of carbon nanotube fiber fabric and a thermosetting resin.
  • the thermosetting resin is coated and disposed on the surface of the carbon nanotube fiber fabric, and the thermosetting resin is filled and disposed in the voids of the carbon nanotube fiber fabric. Different from the carbon nanotube fiber fabric, the warp and weft threads of the carbon nanotube fiber fabric compounded with thermosetting resin are not easy to disperse, and the user can cut it at will during use.
  • the carbon nanotube fiber fabric includes warp threads and weft threads, the warp threads and/or the weft threads are carbon nanotube fiber bundles, and the direction in which the warp threads extend is the carbon nanotubes.
  • the carbon nanotube fiber bundle is formed by combining multiple carbon nanotube fiber filaments, for example, by combining 50-120 carbon nanotube cellulose filaments.
  • the carbon nanotube fiber fabric is a plain weave fabric, a twill weave fabric or a satin weave fabric.
  • the gram weight of the carbon nanotube fiber composite material is 50-400 g/m 2 .
  • the warp and weft density of the carbon nanotube fiber fabric is 5-40 bundles/cm2.
  • thermosetting resin is at least one of epoxy resin, phenolic resin, unsaturated polyester resin, formaldehyde resin and furan resin.
  • a fiber fabric is prepared, and the specific process flow is as follows:
  • the carbon nanotube fiber fabric is placed in the mold cavity, and the epoxy resin solution is injected after vacuuming, so that the epoxy resin solution can fully infiltrate the carbon nanotube fiber fabric; among them, in the epoxy resin solution, the epoxy resin
  • the weight ratio of resin to curing agent is 100:34;
  • a fiber fabric is prepared, and the specific process flow is as follows:
  • the fabric weight is about 200g/m 2 .
  • the carbon nanotube fiber fabric is placed in the mold cavity, and the epoxy resin solution is injected after vacuuming, so that the epoxy resin solution can fully infiltrate the carbon nanotube fiber fabric; among them, in the epoxy resin solution, the epoxy resin
  • the weight ratio of resin to curing agent is 100:45;
  • a fiber fabric is prepared, and the specific process flow is as follows:
  • the carbon nanotube fiber fabric is placed in the mold cavity, and the epoxy resin solution is injected after vacuuming, so that the epoxy resin solution can fully infiltrate the carbon nanotube fiber fabric; among them, in the epoxy resin solution, the epoxy resin
  • the weight ratio of resin to curing agent is 100:45;
  • a fiber fabric is prepared, and the specific process flow is as follows:
  • the fabric weight is about 400g/m 2 .
  • the carbon nanotube fiber fabric is placed in the mold cavity, and the epoxy resin solution is injected after vacuuming, so that the epoxy resin solution can fully infiltrate the carbon nanotube fiber fabric; among them, in the epoxy resin solution, the epoxy resin
  • the weight ratio of resin to curing agent is 100:45;

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Textile Engineering (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Nanotechnology (AREA)
  • Reinforced Plastic Materials (AREA)

Abstract

提供一种碳纳米管纤维复合材料的制备方法,包括以下步骤:将碳纳米管纤维织物与热固性树脂溶液进行混合,制备浸润有热固性树脂溶液的碳纳米管纤维织物;对浸润有热固性树脂溶液的碳纳米管纤维织物进行固化处理,获得碳纳米管纤维织物/热固性树脂复合材料。该方法采用碳纳米管纤维织物作为增强体,避免了碳纳米管粉体在热固性树脂中发生团聚的问题,最大程度地发挥了碳纳米管的增强作用。由该方法制得的复合材料为由碳纳米管纤维织物和热固性树脂复合形成的纤维织物,具有良好的力学性能。

Description

碳纳米管纤维复合材料及其制备方法 技术领域
本申请涉及材料技术领域,具体涉及一种碳纳米管纤维复合材料及其制备方法。
背景技术
碳纳米管具有独特的结构和优异的力学性能,是复合材料理想的增强材料,其超强的力学性能和热稳定性可以极大地改善聚合物基复合材料的强度和韧性。近年来,碳纳米管/聚合物复合材料的研究已成为碳纳米管应用研究的一个新热点。目前,碳纳米管主要以粉末的形式分散在聚合物基体中,其力学性能仍有待进一步改善,Allaoui、Schadler、Breton等用共混法制得了碳纳米管/环氧树脂复合材料,发现添加碳纳米管虽然可以提高基体的力学性能,但是由于碳纳米管的分散性问题未能得到较好解决,导致复合材料的力学性能的提高幅度不大,甚至有所降低。
发明概述
技术问题
本申请实施例的目的之一在于:提供一种碳纳米管纤维复合材料及其制备方法,以进一步改善碳纳米管/聚合物碳纳米管纤维复合材料的力学性能。
问题的解决方案
技术解决方案
为解决上述技术问题,本申请实施例采用的技术方案是:
第一方面,提供了一种碳纳米管纤维复合材料的制备方法,包括以下步骤:
制备碳纳米管纤维织物;
获取热固性树脂溶液,将所述碳纳米管纤维织物与所述热固性树脂溶液进行混合,制备浸润有所述热固性树脂溶液的碳纳米管纤维织物;
对浸润有所述热固性树脂溶液的碳纳米管纤维织物进行固化处理,获得碳纳米管纤维织物/热固性树脂复合材料。
在一个实施例中,将所述碳纳米管纤维织物与所述热固性树脂溶液进行混合的步骤中,将所述碳纳米管纤维织物浸没于所述热固性树脂溶液中,直至所述碳纳米管纤维织物被所述热固性树脂溶液完全浸润为止。
在一个实施例中,制备浸润有所述热固性树脂溶液的碳纳米管纤维织物的步骤中,采用真空辅助树脂传递模塑的方法,使得所述热固性树脂溶液完全浸润所述碳纳米管纤维织物。
在一个实施例中,对所述浸润有所述热固性树脂的碳纳米管纤维织物进行固化处理的步骤中,对所述浸润有所述热固性树脂的碳纳米管纤维织物以预设温度进行加热固化,并对所述浸润有所述热固性树脂的碳纳米管纤维织物进行加压定型使得表面平整。
在一个实施例中,所述碳纳米管纤维织物为平纹织物、斜纹织物或缎纹织物。
在一个实施例中,所述碳纳米管纤维织物的经纬密度为5-40束/平方厘米。
在一个实施例中,所述碳纳米管纤维织物的克重为50-400g/m 2
在一个实施例中,所述碳纳米管纤维织物包括经线和纬线,所述经线和/或所述纬线为若干碳纳米管纤维束,且所述经线延伸的方向是所述碳纳米管纤维织物的长度方向。
在一个实施例中,所述碳纳米管纤维织物的制备方法包括以下步骤:
获取碳纳米管阵列,从所述碳纳米管阵列中拉出碳纳米管薄膜,然后将所述碳纳米管薄膜进行加捻处理,获得碳纳米管纤维丝;
将多根所述碳纳米管纤维丝进行并丝处理,获得碳纳米管纤维束;
将多根所述碳纳米管纤维束纺织成布,获得所述碳纳米管纤维织物。
在一个实施例中,所述热固性树脂溶液包括:热固性树脂和固化剂,且所述热固性树脂和所述固化剂的重量比为100∶(30-50)。
在一个实施例中,所述热固性树脂为环氧树脂、酚醛树脂、不饱和聚酯树脂、甲醛树脂和呋喃树脂中的至少一种。
第二方面,提供了一种碳纳米管纤维复合材料,由碳纳米管纤维织物和热固性树脂复合形成的纤维织物。
在一个实施例中,所述热固性树脂包覆设置在所述碳纳米管纤维织物的表面, 且所述热固性树脂填充设置于所述碳纳米管纤维织物的空隙中。
在一个实施例中,所述碳纳米管纤维织物为平纹织物、斜纹织物或缎纹织物。
在一个实施例中,所述碳纳米管纤维织物的经纬密度为5-40束/平方厘米。
在一个实施例中,所述碳纳米管纤维织物的克重为50-400g/m 2
在一个实施例中,所述碳纳米管纤维织物包括经线和纬线,所述经线和/或所述纬线为碳纳米管纤维束,且所述经线延伸的方向是所述碳纳米管纤维织物的长度方向。
在一个实施例中,所述热固性树脂为环氧树脂、酚醛树脂、不饱和聚酯树脂、甲醛树脂和呋喃树脂中的至少一种。
本发明获取的碳纳米管纤维复合材料的制备方法,将碳纳米管纤维织物与热固性树脂溶液进行混合,固化,实现碳纳米管纤维织物与热固性树脂间的复合。不同于现有技术,本发明采用碳纳米管纤维织物作为增强体,解决了碳纳米管粉体在热固性树脂中发生团聚的问题,且最大程度地发挥了碳纳米管的增强作用,使得由本发明制备方法制得的碳纳米管纤维织物/热固性树脂复合材料具有良好的力学性能,方法简便,易于规模化量产。
本发明获取的碳纳米管纤维复合材料,为:由碳纳米管纤维织物和热固性树脂复合形成的纤维织物,以碳纳米管纤维织物作为增强体,具有良好的力学性能,可广泛应用于航天航空、汽车、风力发电和体育器械等领域。
发明的有益效果
对附图的简要说明
附图说明
为了更清楚地说明本申请实施例中的技术方案,下面将对实施例或示范性技术描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本申请的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其它的附图。
图1实施例1中制备的碳纳米管纤维织物的外观;
图2是实施例1中制备的碳纳米管纤维织物/热固性树脂碳纳米管纤维复合材料的外观。
发明实施例
本发明的实施方式
为了使本申请的目的、技术方案及优点更加清楚明白,以下结合附图及实施例,对本申请进行进一步详细说明。应当理解,此处所描述的具体实施例仅用以解释本发明,并不用于限定本申请。
为了说明本申请所述的技术方案,以下结合具体附图及实施例进行详细说明。
一种碳纳米管纤维复合材料的制备方法,包括以下步骤:
S01、制备碳纳米管纤维织物;获取热固性树脂溶液,将所述碳纳米管纤维织物与所述热固性树脂溶液进行混合,制备浸润有所述热固性树脂溶液的碳纳米管纤维织物;
S02、对浸润有所述热固性树脂溶液的碳纳米管纤维织物进行固化处理,获得碳纳米管纤维织物/热固性树脂碳纳米管纤维复合材料。
本发明实施例获取的碳纳米管纤维复合材料的制备方法,将碳纳米管纤维织物与热固性树脂溶液进行混合,固化,实现碳纳米管纤维织物与热固性树脂间的复合。不同于现有技术,本发明采用碳纳米管纤维织物作为增强体,解决了碳纳米管粉体在热固性树脂中发生团聚的问题,且最大程度地发挥了碳纳米管的增强作用,使得由本发明制备方法制得的碳纳米管纤维织物/热固性树脂复合材料具有良好的力学性能,方法简便,易于规模化量产。
具体地,步骤S01中,所述碳纳米管纤维织物作为碳纳米管纤维复合材料的增强体,避免了现有技术中采用粉体状的碳纳米管分散在热固性树脂中发生团聚的问题,且最大程度地发挥了碳纳米管的增强作用,使得由本发明制备方法制得的碳纳米管纤维织物/热固性树脂复合材料具有良好的力学性能。
所述碳纳米管纤维织物可为单层结构,也可为两层或两层以上的复合层结构,可根据所述碳纳米管纤维复合材料的具体实际情况进行灵活调整。在一些实施例中,所述碳纳米管纤维织物为单层结构,其厚度约为一个碳纳米管纤维束的直径大小。作为一种实施方式,所述碳纳米管纤维织物包括经线和纬线,所述经线和/或所述纬线为若干碳纳米管纤维束,且所述经线延伸的方向是所述碳纳米管纤维织物的长度方向。作为另一种实施方式,所述碳纳米管纤维织物为平 纹织物、斜纹织物或缎纹织物,优选为平纹织物,平纹织物具有良好的操作性和稳定性,具有较多的组织交织点和纱线屈曲点,使织物坚牢、耐磨、硬挺、平整,在经纬纱粗细、密度相同的条件下,上述三种织物中,平纹织物的组织牢度与耐磨性最好。在一些实施例中,所述碳纳米管纤维织物的经纬密度为5-40束/平方厘米;在另一些实施例中,所述碳纳米管纤维织物的克重为50-400g/m 2。具有上述经纬密度和克重的碳纳米管纤维织物具有良好的力学性能,兼具良好的硬度和柔韧性,且更易于被所述热固性树脂浸润。
进一步的,所述碳纳米管纤维织物主要由多根碳纳米管纤维束纺织获得,同时,所述碳纳米管纤维束由多根碳纳米管纤维丝经过并丝处理获得。在一些实施例中,所述碳纳米管纤维织物的制备方法包括以下步骤:
S011、获取碳纳米管阵列,从碳纳米管阵列中拉出碳纳米管薄膜,然后将所述碳纳米管薄膜进行加捻处理,获得碳纳米管纤维丝;
S012、将多根所述碳纳米管纤维丝进行并丝处理,获得碳纳米管纤维束;
S013、将多根所述碳纳米管纤维束纺织成布,获得所述碳纳米管纤维织物。
更为具体地,在步骤S011中,所述碳纳米管阵列的制备可参考本领域常规操作,在一些实施例中,所述碳纳米管阵列的制备方法包括:在基片上沉积催化剂层,放置于化学气相沉积反应炉中并通入保护气体,升温至500-900℃,再通入碳源气体,反应约20min,从而在基片上生成均匀生长的碳纳米管阵列。
从碳纳米管阵列中拉出碳纳米管薄膜,并对碳纳米管薄膜进行加捻处理,以制备获得碳纳米管纤维丝。从碳纳米管阵列中拉出来的碳纳米管薄膜,排列有序,长度和直径均匀,由此加捻得到的碳纳米管纤维丝具有较好的力学性能。在一些实施例中,从碳纳米管阵列中拉出0.1-20cm的碳纳米管薄膜。
将所述碳纳米管薄膜进行加捻处理,以获得碳纳米管纤维丝。进一步的,将所述碳纳米管薄膜进行加捻处理的步骤中,选择直径、长度均匀且无缺陷的碳纳米管薄膜进行加捻处理;以及,将所述碳纳米管薄膜进行加捻处理的步骤中,按照捻度为100-15000tpm对所述碳纳米管薄膜进行加捻处理。在一些实施例中,所述捻度优选为1200-1500tpm、500-1000tpm、300-9000tpm、1500-13000tpm、3000-15000tpm或10000-14500tpm。
在步骤S012中,将多根所述碳纳米管纤维丝进行并丝处理,以获得碳纳米管纤维束。将多根所述碳纳米管纤维丝进行并丝处理的步骤包括:将多根所述碳纳米管纤维丝进行无加捻并丝或者加捻并丝。在一些实施例中,所述碳纳米管纤维丝的数量为50-120根;在另一些实施例中,将多根所述碳纳米管纤维丝进行加捻并丝,且捻度为50-150tpm;在又一些实施例中,将多根所述碳纳米管纤维丝沿所述碳纳米管纤维束的轴向平行排列或螺旋旋转排列。
在步骤S013中,将多根所述碳纳米管纤维束纺织成布,以获得所述碳纳米管纤维织物。将多根所述碳纳米管纤维束纺织成布的步骤可参考布料织造工艺。
具体地,所述热固性树脂溶液用于提供热固性树脂,便于所述碳纳米管纤维织物与热固性树脂复合。作为一种实施方式,所述热固性树脂溶液包括:热固性树脂和固化剂,且所述热固性树脂和所述固化剂的重量比为100∶(30-50)。以所述热固性树脂为100份计,当所述固化剂大于50份时,后续获得的碳纳米管纤维织物/热固性树脂碳纳米管纤维复合材料较脆;当所述固化剂小于30份时,后续固化处理过程固化不完善。在一些实施例中,所述热固性树脂和所述固化剂的重量比为100∶30、100∶32、100∶35、100∶37、100∶39、100∶42、100∶45、100∶46、100∶49、100∶50。作为另一种实施方式,所述热固性树脂溶液的粘度为0.1-0.5Pa.s,以保证所述热固性树脂溶液具有良好的流动性。在一些实施例中,所述热固性树脂溶液的粘度为0.10、0.15、0.25、0.30、0.40、0.50Pa.S。作为又一种实施方式,所述热固性树脂为环氧树脂、酚醛树脂、不饱和聚酯树脂、甲醛树脂和呋喃树脂中的至少一种;所述固化剂选自胺类固化剂。在一些实施例中,所述热固性树脂为环氧树脂,且所述环氧树脂选自双酚A型环氧树脂、双酚F型环氧树脂和双酚S型环氧树脂中的至少一种;所述胺类固化剂选自脂肪族胺和/或芳香胺,其中,所述脂肪族胺优选为二乙烯三胺、三乙烯四胺、四乙烯五胺和二乙氨基丙胺中的至少一种,所述芳香胺优选为间苯二甲胺、间苯二胺和二氨基二苯甲烷中的至少一种。作为再一种实施方式,所述热固性树脂溶液还包含:用于溶解所述热固性树脂和所述固化剂的有机溶剂,所述有机溶剂优选为丙酮、丁酮、二甲苯、正丁醇和乙酸乙酯中的至少一种。
将所述碳纳米管纤维织物与所述热固性树脂溶液进行混合,使得所述碳纳米管 纤维织物与所述热固性树脂溶液充分接触,以获得浸润有所述热固性树脂溶液的碳纳米管纤维织物。作为一种实施方式,制备浸润有所述热固性树脂溶液的碳纳米管纤维织物的步骤中,将所述碳纳米管纤维织物浸没于所述热固性树脂溶液中,直至所述碳纳米管纤维织物被所述热固性树脂溶液完全浸润为止。在一些实施例中,制备浸润有所述热固性树脂溶液的碳纳米管纤维织物的步骤中,采用真空辅助树脂传递模塑的方法,使得所述热固性树脂溶液完全浸润所述碳纳米管纤维织物。作为示例,将所述碳纳米管纤维织物与所述热固性树脂溶液进行混合的步骤采用VARTM成型工艺,碳纳米管纤维织物置于模腔中,抽真空后注入热固性树脂,使热固性树脂充分浸润碳纳米管纤维织物,进一步地,将热固性树脂溶液的粘度调节为0.1-0.5Pa.s,使得所述热固性树脂溶液在模腔中具有良好的流动性,利于所述热固性树脂充分浸润碳纳米管纤维织物。
在步骤S02中,对浸润有所述热固性树脂溶液的碳纳米管纤维织物进行固化处理,使得碳纳米管纤维织物上的热固性树脂固化,获得碳纳米管纤维织物/热固性树脂碳纳米管纤维复合材料。作为一种实施方式,对所述浸润有所述热固性树脂的碳纳米管纤维织物进行固化处理的步骤中,对所述浸润有所述热固性树脂的碳纳米管纤维织物以预设温度进行加热固化,并对所述浸润有所述热固性树脂的碳纳米管纤维织物进行加压定型使得表面平整。在一些实施例中,对所述浸润有所述热固性树脂的碳纳米管纤维织物以50-100℃进行加热固化,直至碳纳米管纤维织物上的热固性树脂完全固化。作为示例,将所述浸润有所述热固性树脂的碳纳米管纤维织物在50-100℃下加热固化2-15小时。进一步的,采用对所述碳纳米管纤维织物进行通电加热的方法,使得所述碳纳米管纤维织物上的所述热固性树脂溶液固化。碳纳米管纤维织物具有良好的导电,给所述碳纳米管纤维织物通电,利用碳纳米管自身通电发热,当温度上升至50-100℃之后,可使得所述碳纳米管纤维织物上的所述热固性树脂溶液被加热固化。在一些实施例中,给所述碳纳米管纤维织物通电的电流大小为0.1-0.6A,电流控制在0.1-0.6A,可使得温度快速达到固化温度,且不影响碳纳米管纤维织物自身的性能。
综上,在本发明实施例获取的上述优化的工艺及反应温度、时间、用量配比等条件参数的综合作用下,可使得通过本发明实施例获取的制备方法得到的碳纳 米管纤维复合材料具有最佳的力学性能。
相应的,一种由上述制备方法制得的碳纳米管纤维复合材料,由碳纳米管纤维织物和热固性树脂复合形成的纤维织物。
本发明实施例获取的碳纳米管纤维复合材料,为:由碳纳米管纤维织物和热固性树脂复合形成的纤维织物,以碳纳米管纤维织物作为增强体,具有良好的力学性能,可广泛应用于航天航空、汽车、风力发电和体育器械等领域。
具体得,所述碳纳米管纤维复合材料为碳纳米管纤维织物/热固性树脂碳纳米管纤维复合材料,为一种呈布料状的纤维织物,由碳纳米管纤维织物和热固性树脂复合形成,其具体复合过程参考上文内容。在一些实施方式中,所述热固性树脂包覆设置在所述碳纳米管纤维织物的表面,且所述热固性树脂填充设置于所述碳纳米管纤维织物的空隙中。不同于碳纳米管纤维织物,复合热固性树脂后的碳纳米管纤维织物的经丝和纬丝不容易散开,用户在使用时可任意裁剪。
进一步的,在一些实施方式中,所述碳纳米管纤维织物包括经线和纬线,所述经线和/或所述纬线为碳纳米管纤维束,且所述经线延伸的方向是所述碳纳米管纤维织物的长度方向。在一些实施例中,所述碳纳米管纤维束由多根碳纳米管纤维丝并丝而成,例如由50-120根碳纳米管纤维素并丝而成。在另一些实施方式中,所述碳纳米管纤维织物为平纹织物、斜纹织物或缎纹织物。在又一些实施方式中,所述碳纳米管纤维复合材料的克重为50-400g/m 2。在再一些实施例中,所述碳纳米管纤维织物的经纬密度为5-40束/平方厘米。
进一步的,在一些实施方式中,所述热固性树脂为环氧树脂、酚醛树脂、不饱和聚酯树脂、甲醛树脂和呋喃树脂中的至少一种。
为使本发明上述实施细节和操作能清楚地被本领域技术人员理解,以及本发明实施例一种碳纳米管纤维复合材料及其制备方法的进步性能显著地体现,以下通过实施例对本发明的实施进行举例说明。
实施例1
本实施例制备了一种纤维织物,具体工艺流程如下:
1、制备碳纳米管纤维织物
在基片上沉积催化剂层,放置于化学气相沉积反应炉中并通入保护气体,升温至700℃,再通入碳源气体,反应约20min,从而在基片上生成均匀生长的碳纳米管阵列;
从碳纳米管阵列中拉出宽度为7.5cm的碳纳米管薄膜,使用捻度仪对上述薄膜进行加捻处理,捻度为1300tpm,获得碳纳米管纤维丝;
将50根碳纳米管纤维丝合并成一束碳纳米管纤维束;然后,用织机将碳纳米管纤维束织造成布,织物组织为平纹,获得如图1所示的碳纳米管纤维织物,其经纬密为10束/平方厘米,织物克重约为200g/m 2
2、碳纳米管纤维织物复合热固性树脂
采用VARTM成型工艺,将碳纳米管纤维织物置于模腔中,抽真空后注入环氧树脂溶液,使环氧树脂溶液充分浸润碳纳米管纤维织物;其中,在环氧树脂溶液中,环氧树脂与固化剂的重量比为100∶34;
取出充分浸润有所述热固性树脂溶液的碳纳米管纤维织物,给碳纳米管纤维织物通入0.6A的电流,使其温度约为100℃,并固化时间为2小时,获得如图2所示的碳纳米管纤维织物/热固性树脂碳纳米管纤维复合材料。
实施例2
本实施例制备了一种纤维织物,具体工艺流程如下:
1、制备碳纳米管纤维织物
在基片上沉积催化剂层,放置于化学气相沉积反应炉中并通入保护气体,升温至700℃,再通入碳源气体,反应约20min,从而在基片上生成均匀生长的碳纳米管阵列;
从碳纳米管阵列中拉出宽度为7.5cm的碳纳米管薄膜,使用捻度仪对上述薄膜进行加捻处理,捻度为1300tpm,获得碳纳米管纤维丝;
将100根碳纳米管纤维丝合并成一束碳纳米管纤维束;然后,用织机将碳纳米管纤维束织造成布,织物组织为平纹,获得碳纳米管纤维织物,其经纬密为5束/平方厘米,织物克重约为200g/m 2
2、碳纳米管纤维织物复合热固性树脂
采用VARTM成型工艺,将碳纳米管纤维织物置于模腔中,抽真空后注入环氧 树脂溶液,使环氧树脂溶液充分浸润碳纳米管纤维织物;其中,在环氧树脂溶液中,环氧树脂与固化剂的重量比为100∶45;
取出充分浸润有所述热固性树脂溶液的碳纳米管纤维织物,给碳纳米管纤维织物通入0.4A的电流,使其温度约为80℃,并固化时间为6小时,获得碳纳米管纤维织物/热固性树脂复合材料。
实施例3
本实施例制备了一种纤维织物,具体工艺流程如下:
1、制备碳纳米管纤维织物
在基片上沉积催化剂层,放置于化学气相沉积反应炉中并通入保护气体,升温至700℃,再通入碳源气体,反应约20min,从而在基片上生成均匀生长的碳纳米管阵列;
从碳纳米管阵列中拉出宽度为7.5cm的碳纳米管薄膜,使用捻度仪对上述薄膜进行加捻处理,捻度为1300tpm,获得碳纳米管纤维丝;
将120根碳纳米管纤维丝合并成一束碳纳米管纤维束;然后,用织机将碳纳米管纤维束织造成布,织物组织为平纹,获得碳纳米管纤维织物,其经纬密为5束/平方厘米,织物克重约为400g/m 2
2、碳纳米管纤维织物复合热固性树脂
采用VARTM成型工艺,将碳纳米管纤维织物置于模腔中,抽真空后注入环氧树脂溶液,使环氧树脂溶液充分浸润碳纳米管纤维织物;其中,在环氧树脂溶液中,环氧树脂与固化剂的重量比为100∶45;
取出充分浸润有所述热固性树脂溶液的碳纳米管纤维织物,给碳纳米管纤维织物通入0.6A的电流,使其温度约为100℃,并固化时间为6小时,获得碳纳米管纤维织物/热固性树脂复合材料。
实施例4
本实施例制备了一种纤维织物,具体工艺流程如下:
1、制备碳纳米管纤维织物
在基片上沉积催化剂层,放置于化学气相沉积反应炉中并通入保护气体,升温至700℃,再通入碳源气体,反应约20min,从而在基片上生成均匀生长的碳纳 米管阵列;
从碳纳米管阵列中拉出宽度为7.5cm的碳纳米管薄膜,使用捻度仪对上述薄膜进行加捻处理,捻度为1300tpm,获得碳纳米管纤维丝;
将50根碳纳米管纤维丝合并成一束碳纳米管纤维束;然后,用织机将碳纳米管纤维束织造成布,织物组织为平纹,获得碳纳米管纤维织物,其经纬密为40束/平方厘米,织物克重约为400g/m 2
2、碳纳米管纤维织物复合热固性树脂
采用VARTM成型工艺,将碳纳米管纤维织物置于模腔中,抽真空后注入环氧树脂溶液,使环氧树脂溶液充分浸润碳纳米管纤维织物;其中,在环氧树脂溶液中,环氧树脂与固化剂的重量比为100∶45;
取出充分浸润有所述热固性树脂溶液的碳纳米管纤维织物,给碳纳米管纤维织物通入0.1A的电流,使其温度约为50℃,并固化时间为15小时,获得碳纳米管纤维织物/热固性树脂复合材料。
对比例1
本对比例制备了一种碳纳米管/环氧树脂复合物,包括:将碳纳米管粉体分散于环氧树脂溶液中,再加入固化剂进行分散,高速搅拌混合均匀后,浇铸于模具中固化成型,制备成碳纳米管/环氧树脂复合薄膜。
测试例
取实施例1-4制备得纤维织物以及对比例1制备的碳纳米管/环氧树脂复合薄膜作为测试样品,然后,采用电子万能试验机在室温下按照标准ASTM D790三点载荷简支梁法测试各测试样品的弯曲弹性模量,测试结果如表1所示。由表1可得,以碳纳米管纤维织物为增强体可以有效提高其制得的复合材料的力学性能。
表1
[Table 1]
Figure PCTCN2019104759-appb-000001
以上仅为本申请的可选实施例而已,并不用于限制本申请。对于本领域的技术人员来说,本申请可以有各种更改和变化。凡在本申请的精神和原则之内,所作的任何修改、等同替换、改进等,均应包含在本申请的权利要求范围之内。

Claims (18)

  1. 一种碳纳米管纤维复合材料的制备方法,其特征在于,包括以下步骤:
    制备碳纳米管纤维织物;
    获取热固性树脂溶液,将所述碳纳米管纤维织物与所述热固性树脂溶液进行混合,制备浸润有所述热固性树脂溶液的碳纳米管纤维织物;
    对浸润有所述热固性树脂溶液的所述碳纳米管纤维织物进行固化处理,获得碳纳米管纤维织物/热固性树脂复合材料。
  2. 根据权利要求1所述的碳纳米管纤维复合材料的制备方法,其特征在于,制备浸润有所述热固性树脂溶液的碳纳米管纤维织物的步骤中,将所述碳纳米管纤维织物浸没于所述热固性树脂溶液中,直至所述碳纳米管纤维织物被所述热固性树脂溶液完全浸润为止。
  3. 根据权利要求1所述的碳纳米管纤维复合材料的制备方法,其特征在于,制备浸润有所述热固性树脂溶液的碳纳米管纤维织物的步骤中,采用真空辅助树脂传递模塑的方法,使得所述热固性树脂溶液完全浸润所述碳纳米管纤维织物。
  4. 根据权利要求1所述的碳纳米管纤维复合材料的制备方法,其特征在于,对所述浸润有所述热固性树脂的碳纳米管纤维织物进行固化处理的步骤中,对所述浸润有所述热固性树脂的碳纳米管纤维织物以预设温度进行加热固化,并对所述浸润有所述热固性树脂的碳纳米管纤维织物进行加压定型使得表面平整。
  5. 根据权利要求1所述的碳纳米管纤维复合材料的制备方法,其特征在于,所述碳纳米管纤维织物为平纹织物、斜纹织物或缎纹织物。
  6. 根据权利要求1所述的碳纳米管纤维复合材料的制备方法,其特征在于,所述碳纳米管纤维织物的经纬密度为5-40束/平方厘米。
  7. 根据权利要求1所述的碳纳米管纤维复合材料的制备方法,其特征在于,所述碳纳米管纤维织物的克重为50-400g/m 2
  8. 根据权利要求1所述的碳纳米管纤维复合材料的制备方法,其特征在于,所述碳纳米管纤维织物包括经线和纬线,所述经线和/或所述纬线为若干碳纳米管纤维束,且所述经线延伸的方向是所述碳纳米管纤维织物的长度方向。
  9. 根据权利要求1所述的碳纳米管纤维复合材料的制备方法,其特征在于,所述碳纳米管纤维织物的制备方法包括以下步骤:
    获取碳纳米管阵列,从所述碳纳米管阵列中拉出碳纳米管薄膜,然后将所述碳纳米管薄膜进行加捻处理,获得碳纳米管纤维丝;
    将多根所述碳纳米管纤维丝进行并丝处理,获得碳纳米管纤维束;
    将多根所述碳纳米管纤维束纺织成布,获得所述碳纳米管纤维织物。
  10. 根据权利要求1所述的碳纳米管纤维复合材料的制备方法,其特征在于,所述热固性树脂溶液包括:热固性树脂和固化剂,且所述热固性树脂和所述固化剂的重量比为100∶(30-50)。
  11. 根据权利要求10所述的碳纳米管纤维复合材料的制备方法,其特征在于,所述热固性树脂为环氧树脂、酚醛树脂、不饱和聚酯树脂、甲醛树脂和呋喃树脂中的至少一种。
  12. 一种碳纳米管纤维复合材料,其特征在于,由碳纳米管纤维织物和热固性树脂复合形成的纤维织物。
  13. 根据权利要求12所述的碳纳米管纤维复合材料,其特征在于,所述热固性树脂包覆设置在所述碳纳米管纤维织物的表面,且所述热固性树脂填充设置于所述碳纳米管纤维织物的空隙中。
  14. 根据权利要求12所述的碳纳米管纤维复合材料,其特征在于,所述碳纳米管纤维织物为平纹织物、斜纹织物或缎纹织物。
  15. 根据权利要求12所述的碳纳米管纤维复合材料,其特征在于,所 述碳纳米管纤维织物的经纬密度为5-40束/平方厘米。
  16. 根据权利要求12所述的碳纳米管纤维复合材料,其特征在于,所述碳纳米管纤维织物的克重为50-400g/m 2
  17. 根据权利要求12所述的碳纳米管纤维复合材料,其特征在于,所述碳纳米管纤维织物包括经线和纬线,所述经线和/或所述纬线为碳纳米管纤维束,且所述经线延伸的方向是所述碳纳米管纤维织物的长度方向。
  18. 根据权利要求12所述的碳纳米管纤维复合材料,其特征在于,所述热固性树脂为环氧树脂、酚醛树脂、不饱和聚酯树脂、甲醛树脂和呋喃树脂中的至少一种。
PCT/CN2019/104759 2019-09-06 2019-09-06 碳纳米管纤维复合材料及其制备方法 WO2021042384A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
PCT/CN2019/104759 WO2021042384A1 (zh) 2019-09-06 2019-09-06 碳纳米管纤维复合材料及其制备方法
CN201980001641.XA CN110799592A (zh) 2019-09-06 2019-09-06 碳纳米管纤维复合材料及其制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2019/104759 WO2021042384A1 (zh) 2019-09-06 2019-09-06 碳纳米管纤维复合材料及其制备方法

Publications (1)

Publication Number Publication Date
WO2021042384A1 true WO2021042384A1 (zh) 2021-03-11

Family

ID=69448528

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/104759 WO2021042384A1 (zh) 2019-09-06 2019-09-06 碳纳米管纤维复合材料及其制备方法

Country Status (2)

Country Link
CN (1) CN110799592A (zh)
WO (1) WO2021042384A1 (zh)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111705391B (zh) * 2020-06-08 2022-05-17 深圳烯湾科技有限公司 碳纳米管纤维混杂织物及其制备方法和增强复合材料
CN111764026B (zh) * 2020-06-08 2022-05-13 深圳烯湾科技有限公司 碳纳米管纤维混杂织物及其制备方法和增强复合材料
CN112662010B (zh) * 2020-12-21 2022-11-11 远景能源有限公司 一种连续碳纳米管纤维增强树脂基复合材料、风电叶片及其制备方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103850114A (zh) * 2012-12-04 2014-06-11 中国科学院苏州纳米技术与纳米仿生研究所 电致增强碳纳米管纤维的方法
WO2018047718A1 (ja) * 2016-09-07 2018-03-15 ヤマハ株式会社 異方性歪みセンサシート及び衣類
CN108120670A (zh) * 2016-11-29 2018-06-05 上海大学 高温下纤维树脂复合材料界面剪切性能的测试及改善方法
CN108284619A (zh) * 2018-02-11 2018-07-17 中国科学院苏州纳米技术与纳米仿生研究所 一种层间增韧复合材料、其制备方法及应用
CN108656652A (zh) * 2017-03-30 2018-10-16 中国科学院苏州纳米技术与纳米仿生研究所 碳纳米管纤维复合材料及其制备方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103850114A (zh) * 2012-12-04 2014-06-11 中国科学院苏州纳米技术与纳米仿生研究所 电致增强碳纳米管纤维的方法
WO2018047718A1 (ja) * 2016-09-07 2018-03-15 ヤマハ株式会社 異方性歪みセンサシート及び衣類
CN108120670A (zh) * 2016-11-29 2018-06-05 上海大学 高温下纤维树脂复合材料界面剪切性能的测试及改善方法
CN108656652A (zh) * 2017-03-30 2018-10-16 中国科学院苏州纳米技术与纳米仿生研究所 碳纳米管纤维复合材料及其制备方法
CN108284619A (zh) * 2018-02-11 2018-07-17 中国科学院苏州纳米技术与纳米仿生研究所 一种层间增韧复合材料、其制备方法及应用

Also Published As

Publication number Publication date
CN110799592A (zh) 2020-02-14

Similar Documents

Publication Publication Date Title
WO2021042384A1 (zh) 碳纳米管纤维复合材料及其制备方法
Yao et al. Interfacial improvement of carbon fiber/epoxy composites using one-step method for grafting carbon nanotubes on the fibers at ultra-low temperatures
Zhao et al. Mechanical, thermal and interfacial performances of carbon fiber reinforced composites flavored by carbon nanotube in matrix/interface
TWI504501B (zh) 碳纖維預浸布及其製造方法、碳纖維強化複合材料
CN111101371B (zh) 一种高性能碳纳米管/碳复合纤维及其快速制备方法
JP4538502B2 (ja) ピッチ系炭素繊維、マットおよびそれらを含む樹脂成形体
CN106671525B (zh) 杂化改性的高导电及高增韧结构复合材料及其制备方法
CN109206146B (zh) 碳纤维/纳米纤维协同强韧陶瓷基复合材料及其制备方法
Hu et al. Process and mechanical properties of carbon/carbon–silicon carbide composite reinforced with carbon nanotubes grown in situ
CN110435239B (zh) 一种多尺度增韧环氧树脂基碳纤维复合材料及其制备方法
CN110284322A (zh) 一种柔性导电发热碳基阻燃复合织物及其制备方法
Yan et al. Structures and mechanical properties of plied and twisted polyacrylonitrile nanofiber yarns fabricated by a multi-needle electrospinning device
Feng et al. Interfacial improvement of carbon fiber/epoxy composites by incorporating superior and versatile multiscale gradient modulus intermediate layer with rigid-flexible hierarchical structure
Klett et al. Flexible towpreg for the fabrication of high thermal conductivity carbon/carbon composites
CN106905546B (zh) 一种高强高导电复合纤维增强复合材料的制备方法
CN101513177A (zh) 掺入碳纳米颗粒的鱼竿及其制备方法
Li et al. Prescribed morphology and interface correlation of MWNTs-EP/PSF hybrid nanofibers reinforced and toughened epoxy matrix
CN110029523B (zh) 一种接枝纳米纤维增强碳纤维纸及其制备方法
Kong et al. Intensive and thermally conductive boron nitride/aramid nanofiber composite fibers fabricated via a wet spinning technique
CN105859303B (zh) 一种碳/碳复合材料预制体及其制备方法
JP2004316052A (ja) 炭素繊維製造用油剤及び炭素繊維の製造方法
CN110528271A (zh) 一种蔗糖炭化改性碳纤维的制备方法及其应用
TWI422524B (zh) 奈米碳管複合材料的製備方法
JP5226238B2 (ja) 炭素繊維及びそれを用いた複合材料
JP2005314830A (ja) ポリアクリロニトリル系炭素繊維及びその製造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19944258

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19944258

Country of ref document: EP

Kind code of ref document: A1