WO2021040350A1 - 무선 통신 시스템에서 무선 신호 송수신 방법 및 장치 - Google Patents

무선 통신 시스템에서 무선 신호 송수신 방법 및 장치 Download PDF

Info

Publication number
WO2021040350A1
WO2021040350A1 PCT/KR2020/011246 KR2020011246W WO2021040350A1 WO 2021040350 A1 WO2021040350 A1 WO 2021040350A1 KR 2020011246 W KR2020011246 W KR 2020011246W WO 2021040350 A1 WO2021040350 A1 WO 2021040350A1
Authority
WO
WIPO (PCT)
Prior art keywords
pbch
dmrs
ofdm
dft
payload
Prior art date
Application number
PCT/KR2020/011246
Other languages
English (en)
French (fr)
Inventor
김선욱
김기준
윤석현
고현수
양석철
박창환
Original Assignee
엘지전자 주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 엘지전자 주식회사 filed Critical 엘지전자 주식회사
Priority to KR1020227007408A priority Critical patent/KR20220051840A/ko
Priority to US17/621,880 priority patent/US11895604B2/en
Publication of WO2021040350A1 publication Critical patent/WO2021040350A1/ko

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W56/00Synchronisation arrangements
    • H04W56/001Synchronization between nodes
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/26Systems using multi-frequency codes
    • H04L27/2601Multicarrier modulation systems
    • H04L27/2647Arrangements specific to the receiver only
    • H04L27/2649Demodulators
    • H04L27/26524Fast Fourier transform [FFT] or discrete Fourier transform [DFT] demodulators in combination with other circuits for demodulation
    • H04L27/26526Fast Fourier transform [FFT] or discrete Fourier transform [DFT] demodulators in combination with other circuits for demodulation with inverse FFT [IFFT] or inverse DFT [IDFT] demodulators, e.g. standard single-carrier frequency-division multiple access [SC-FDMA] receiver or DFT spread orthogonal frequency division multiplexing [DFT-SOFDM]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/0008Modulated-carrier systems arrangements for allowing a transmitter or receiver to use more than one type of modulation
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/26Systems using multi-frequency codes
    • H04L27/2601Multicarrier modulation systems
    • H04L27/2602Signal structure
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/26Systems using multi-frequency codes
    • H04L27/2601Multicarrier modulation systems
    • H04L27/2602Signal structure
    • H04L27/26025Numerology, i.e. varying one or more of symbol duration, subcarrier spacing, Fourier transform size, sampling rate or down-clocking
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/26Systems using multi-frequency codes
    • H04L27/2601Multicarrier modulation systems
    • H04L27/2602Signal structure
    • H04L27/2605Symbol extensions, e.g. Zero Tail, Unique Word [UW]
    • H04L27/2607Cyclic extensions
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/26Systems using multi-frequency codes
    • H04L27/2601Multicarrier modulation systems
    • H04L27/2602Signal structure
    • H04L27/261Details of reference signals
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/26Systems using multi-frequency codes
    • H04L27/2601Multicarrier modulation systems
    • H04L27/2647Arrangements specific to the receiver only
    • H04L27/2655Synchronisation arrangements
    • H04L27/2668Details of algorithms
    • H04L27/2669Details of algorithms characterised by the domain of operation
    • H04L27/2672Frequency domain
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/26Systems using multi-frequency codes
    • H04L27/2601Multicarrier modulation systems
    • H04L27/2647Arrangements specific to the receiver only
    • H04L27/2655Synchronisation arrangements
    • H04L27/2668Details of algorithms
    • H04L27/2673Details of algorithms characterised by synchronisation parameters
    • H04L27/2675Pilot or known symbols
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/26Systems using multi-frequency codes
    • H04L27/2601Multicarrier modulation systems
    • H04L27/2647Arrangements specific to the receiver only
    • H04L27/2655Synchronisation arrangements
    • H04L27/2668Details of algorithms
    • H04L27/2673Details of algorithms characterised by synchronisation parameters
    • H04L27/2676Blind, i.e. without using known symbols
    • H04L27/2678Blind, i.e. without using known symbols using cyclostationarities, e.g. cyclic prefix or postfix
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0044Arrangements for allocating sub-channels of the transmission path allocation of payload
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W48/00Access restriction; Network selection; Access point selection
    • H04W48/08Access restriction or access information delivery, e.g. discovery data delivery
    • H04W48/10Access restriction or access information delivery, e.g. discovery data delivery using broadcasted information
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/26Systems using multi-frequency codes
    • H04L27/2601Multicarrier modulation systems
    • H04L27/2626Arrangements specific to the transmitter only
    • H04L27/2627Modulators
    • H04L27/2634Inverse fast Fourier transform [IFFT] or inverse discrete Fourier transform [IDFT] modulators in combination with other circuits for modulation
    • H04L27/2636Inverse fast Fourier transform [IFFT] or inverse discrete Fourier transform [IDFT] modulators in combination with other circuits for modulation with FFT or DFT modulators, e.g. standard single-carrier frequency-division multiple access [SC-FDMA] transmitter or DFT spread orthogonal frequency division multiplexing [DFT-SOFDM]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0048Allocation of pilot signals, i.e. of signals known to the receiver
    • H04L5/005Allocation of pilot signals, i.e. of signals known to the receiver of common pilots, i.e. pilots destined for multiple users or terminals
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0048Allocation of pilot signals, i.e. of signals known to the receiver
    • H04L5/0051Allocation of pilot signals, i.e. of signals known to the receiver of dedicated pilots, i.e. pilots destined for a single user or terminal
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0053Allocation of signaling, i.e. of overhead other than pilot signals

Definitions

  • the present invention relates to a wireless communication system, and more particularly, to a method and apparatus for transmitting and receiving a wireless signal.
  • Wireless communication systems are widely deployed to provide various types of communication services such as voice and data.
  • a wireless communication system is a multiple access system capable of supporting communication with multiple users by sharing available system resources (bandwidth, transmission power, etc.).
  • multiple access systems include a code division multiple access (CDMA) system, a frequency division multiple access (FDMA) system, a time division multiple access (TDMA) system, an orthogonal frequency division multiple access (OFDMA) system, and a single carrier frequency (SC-FDMA) system. division multiple access) system.
  • CDMA code division multiple access
  • FDMA frequency division multiple access
  • TDMA time division multiple access
  • OFDMA orthogonal frequency division multiple access
  • SC-FDMA single carrier frequency division multiple access
  • An object of the present invention is to provide a method and apparatus for efficiently performing a wireless signal transmission/reception process.
  • a synchronization signal/physical broadcast channel (SS/PBCH) block is detected, wherein the SS/PBCH block is a PBCH payload and a PBCH DMRS.
  • SS/PBCH synchronization signal/physical broadcast channel
  • PBCH payload based on any one of a plurality of WF (Waveform) schemes based on the characteristics of the PBCH DMRS, wherein the plurality of WFs are at least CP-OFDM (Cyclic Prefix Orthogonal
  • CP-OFDM Cyclic Prefix Orthogonal
  • a method including a Frequency Division Multiplexing) scheme and a Discrete Fourier Transform-spread-OFDM (DFT-s-OFDM) scheme is provided.
  • a terminal used in a wireless communication system comprising: at least one processor; And at least one computer memory operatively connected to the at least one processor and allowing the at least one processor to perform an operation when executed, the operation including: SS/ Detects a Synchronization Signal/Physical Broadcast Channel (PBCH) block, wherein the SS/PBCH block includes a PBCH payload and a PBCH demodulation reference signal (DMRS), and based on the characteristics of the PBCH DMRS, a plurality of Waveforms (WFs) ) Processing the PBCH payload based on any one of the WFs, wherein the plurality of WFs are at least a Cyclic Prefix Orthogonal Frequency Division Multiplexing (CP-OFDM) scheme and a Discrete Fourier Transform-spread-OFDM (DFT-s-OFDM) scheme. ) Method.
  • CP-OFDM Cyclic Prefix Orthogonal Frequency Division Multiplexing
  • an apparatus for a terminal comprising: at least one processor; And at least one computer memory operably connected to the at least one processor and allowing the at least one processor to perform an operation when executed, the operation comprising: SS/ Detects a Synchronization Signal/Physical Broadcast Channel (PBCH) block, wherein the SS/PBCH block includes a PBCH payload and a PBCH demodulation reference signal (DMRS), and based on the characteristics of the PBCH DMRS, a plurality of Waveforms (WFs) ) Processing the PBCH payload based on any one of the WFs, wherein the plurality of WFs are at least a Cyclic Prefix Orthogonal Frequency Division Multiplexing (CP-OFDM) scheme and a Discrete Fourier Transform-spread-OFDM (DFT-s-OFDM) scheme. ) Method.
  • CP-OFDM Cyclic Prefix Orthogonal Frequency Division Multiplexing
  • a computer-readable storage medium comprising at least one computer program that, when executed, causes the at least one processor to perform an operation, the operation including: SS/PBCH (Synchronization Signal/Physical Broadcast Channel) block is detected, wherein the SS/PBCH block includes a PBCH payload and a PBCH demodulation reference signal (DMRS), and a plurality of WF (Waveform) based on the characteristics of the PBCH DMRS
  • the PBCH payload is processed based on any one of the WFs, and the plurality of WFs are at least a Cyclic Prefix Orthogonal Frequency Division Multiplexing (CP-OFDM) scheme and a Discrete Fourier Transform-spread-OFDM (DFT-s-OFDM) scheme.
  • CP-OFDM Cyclic Prefix Orthogonal Frequency Division Multiplexing
  • DFT-s-OFDM Discrete Fourier Transform-spread-OFDM
  • the REs in which the PBCH DMRS is present have N resource element (RE) intervals in the frequency domain (N is an integer greater than 1), and the characteristic of the PBCH DMRS includes a frequency shift value applied to the PBCH DMRS.
  • RE resource element
  • the characteristic of the PBCH DMRS may include a parameter used to generate a DMRS sequence.
  • the characteristic of the PBCH DMRS may include an initialization value used to generate the DMRS sequence.
  • the DFT size applied to the PBCH payload is a value corresponding to the minimum band defined for the synchronization raster in which the SS/PBCH block is located. Can be assumed.
  • wireless signal transmission and reception can be efficiently performed in a wireless communication system.
  • FIG. 1 illustrates physical channels used in a 3GPP system, which is an example of a wireless communication system, and a general signal transmission method using the same.
  • FIG. 2 illustrates a structure of a radio frame.
  • 3 illustrates a resource grid of a slot.
  • 4-5 illustrate an SSB (SS/PBCH block) structure.
  • RACH random access channel
  • FIG. 7 shows an example in which a physical channel is mapped in a slot.
  • PUSCH 9 illustrates a physical uplink shared channel (PUSCH) transmission process.
  • 10-11 illustrate the structure of a transmitter/receiver.
  • 15 to 16 illustrate a signal transmission/reception process according to the present invention.
  • 17-20 illustrate a communication system 1 and a wireless device applied to the present invention.
  • CDMA code division multiple access
  • FDMA frequency division multiple access
  • TDMA time division multiple access
  • OFDMA orthogonal frequency division multiple access
  • SC-FDMA single carrier frequency division multiple access
  • CDMA may be implemented with a radio technology such as Universal Terrestrial Radio Access (UTRA) or CDMA2000.
  • TDMA may be implemented with a radio technology such as Global System for Mobile communications (GSM)/General Packet Radio Service (GPRS)/Enhanced Data Rates for GSM Evolution (EDGE).
  • GSM Global System for Mobile communications
  • GPRS General Packet Radio Service
  • EDGE Enhanced Data Rates for GSM Evolution
  • OFDMA may be implemented with a wireless technology such as IEEE 802.11 (Wi-Fi), IEEE 802.16 (WiMAX), IEEE 802-20, E-UTRA (Evolved UTRA), and the like.
  • UTRA is a part of Universal Mobile Telecommunications System (UMTS).
  • 3rd Generation Partnership Project (3GPP) long term evolution (LTE) is a part of Evolved UMTS (E-UMTS) using E-UTRA
  • LTE-A Advanced
  • 3GPP New Radio or New Radio Access Technology (NR) is an evolved version of 3GPP LTE/LTE-A.
  • NR New Radio or New RAT
  • 3GPP NR is mainly described, but the technical idea of the present invention is not limited thereto.
  • a terminal receives information from a base station through a downlink (DL), and the terminal transmits information to the base station through an uplink (UL).
  • the information transmitted and received by the base station and the terminal includes data and various control information, and various physical channels exist according to the type/use of information transmitted and received by them.
  • FIG. 1 is a diagram illustrating physical channels used in a 3GPP NR system and a general signal transmission method using them.
  • the terminal In a state in which the power is turned off, the terminal is turned on again or newly enters the cell and performs an initial cell search operation such as synchronizing with the base station in step S101.
  • the UE receives a Synchronization Signal Block (SSB) from the base station.
  • the SSB includes a Primary Synchronization Signal (PSS), a Secondary Synchronization Signal (SSS), and a Physical Broadcast Channel (PBCH).
  • PSS Primary Synchronization Signal
  • SSS Secondary Synchronization Signal
  • PBCH Physical Broadcast Channel
  • the terminal synchronizes with the base station based on PSS/SSS and acquires information such as cell identity (cell identity).
  • the terminal may acquire intra-cell broadcast information based on the PBCH.
  • the UE may receive a downlink reference signal (DL RS) in the initial cell search step to check the downlink channel state.
  • DL RS downlink reference signal
  • the UE After completing the initial cell search, the UE receives a physical downlink control channel (PDCCH) and a physical downlink shared channel (PDSCH) according to the physical downlink control channel information in step S102 to be more specific.
  • PDCCH physical downlink control channel
  • PDSCH physical downlink shared channel
  • the terminal may perform a random access procedure such as steps S103 to S106 in order to complete the access to the base station.
  • the UE transmits a preamble through a physical random access channel (PRACH) (S103), and a response message to the preamble through a physical downlink control channel and a corresponding physical downlink shared channel.
  • PRACH physical random access channel
  • Can receive S104
  • a contention resolution procedure such as transmission of an additional physical random access channel (S105) and reception of a physical downlink control channel and a corresponding physical downlink shared channel (S106) ) Can be performed.
  • the UE receives a physical downlink control channel/physical downlink shared channel (S107) and a physical uplink shared channel (PUSCH) as a general uplink/downlink signal transmission procedure.
  • Physical Uplink Control Channel (PUCCH) transmission (S108) may be performed.
  • Control information transmitted from the UE to the base station is collectively referred to as uplink control information (UCI).
  • UCI includes HARQ ACK/NACK (Hybrid Automatic Repeat and ReQuest Acknowledgement/Negative-ACK), SR (Scheduling Request), CSI (Channel State Information), and the like.
  • CSI includes Channel Quality Indicator (CQI), Precoding Matrix Indicator (PMI), Rank Indication (RI), and the like.
  • CQI Channel Quality Indicator
  • PMI Precoding Matrix Indicator
  • RI Rank Indication
  • UCI is generally transmitted through PUCCH, but may be transmitted through PUSCH when control information and traffic data are to be transmitted at the same time. In addition, UCI may be aperiodically transmitted through the PUSCH at the request/instruction of the network.
  • each radio frame has a length of 10 ms and is divided into two 5 ms half-frames (HF). Each half-frame is divided into five 1ms subframes (Subframe, SF). The subframe is divided into one or more slots, and the number of slots in the subframe depends on Subcarrier Spacing (SCS).
  • SCS Subcarrier Spacing
  • Each slot includes 12 or 14 Orthogonal Frequency Division Multiplexing (OFDM) symbols according to a cyclic prefix (CP). When a normal CP is used, each slot includes 14 OFDM symbols. When an extended CP is used, each slot includes 12 OFDM symbols.
  • OFDM Orthogonal Frequency Division Multiplexing
  • Table 1 exemplifies that when a normal CP is used, the number of symbols per slot, the number of slots per frame, and the number of slots per subframe vary according to the SCS.
  • N subframe,u slot the number of slots in the subframe
  • Table 2 exemplifies that when the extended CP is used, the number of symbols per slot, the number of slots per frame, and the number of slots per subframe vary according to the SCS.
  • the structure of the frame is only an example, and the number of subframes, the number of slots, and the number of symbols in the frame may be variously changed.
  • OFDM numerology eg, SCS
  • the (absolute time) section of the time resource eg, SF, slot, or TTI
  • TU Time Unit
  • the symbol may include an OFDM symbol (or CP-OFDM symbol), an SC-FDMA symbol (or a Discrete Fourier Transform-spread-OFDM, DFT-s-OFDM symbol).
  • NR supports multiple numerology (or subcarrier spacing (SCS)) to support various 5G services. For example, when the SCS is 15 kHz, it supports a wide area in traditional cellular bands, and when the SCS is 30 kHz/60 kHz, it is dense-urban, lower latency. And a wider carrier bandwidth, and when the SCS is 60 kHz or higher, a bandwidth greater than 24.25 GHz is supported to overcome phase noise.
  • SCS subcarrier spacing
  • the NR frequency band is defined as a frequency range of two types (FR1, FR2).
  • FR1 and FR2 may be configured as shown in Table 3 below. Further, FR2 may mean a millimeter wave (mmW).
  • mmW millimeter wave
  • a slot includes a plurality of symbols in the time domain. For example, in the case of a normal CP, one slot includes 14 symbols, but in the case of an extended CP, one slot includes 12 symbols.
  • the carrier includes a plurality of subcarriers in the frequency domain.
  • RB Resource Block
  • BWP Bandwidth Part
  • PRB Physical RBs
  • the carrier may contain up to N (eg, 5) BWPs. Data communication is performed through the activated BWP, and only one BWP can be activated to one terminal.
  • Each element in the resource grid is referred to as a resource element (RE), and one complex symbol may be mapped.
  • RE resource element
  • SSB Synchronization Signal Block
  • the UE may perform cell search, system information acquisition, beam alignment for initial access, and DL measurement based on the SSB.
  • SSB is used interchangeably with a Synchronization Signal/Physical Broadcast Channel (SS/PBCH) block.
  • SSB consists of PSS, SSS and PBCH.
  • the SSB is composed of four consecutive OFDM symbols, and PSS, PBCH, SSS/PBCH and PBCH are transmitted for each OFDM symbol.
  • the PSS and SSS are each composed of 1 OFDM symbol and 127 subcarriers, and the PBCH is composed of 3 OFDM symbols and 576 subcarriers.
  • Polar coding and Quadrature Phase Shift Keying (QPSK) are applied to the PBCH.
  • the UE may acquire time/frequency synchronization of a cell and acquire a cell ID (eg, Physical layer Cell ID, PCID) of a corresponding cell.
  • a cell ID eg, Physical layer Cell ID, PCID
  • PSS is used to detect a cell ID within a cell ID group
  • SSS is used to detect a cell ID group.
  • PBCH is used for SSB (time) index detection and half-frame detection.
  • cell ID groups There are 336 cell ID groups, and 3 cell IDs exist for each cell ID group. There are a total of 1008 cell IDs, and the cell ID may be defined by Equation 1.
  • N cell ID 3N (1) ID + N (2) ID where N (1) ID ⁇ 0,1,...,335 ⁇ and N (2) ID ⁇ 0,1,2 ⁇
  • N cell ID represents a cell ID (eg, PCID).
  • N (1) ID represents a cell ID group and is provided/acquired through SSS.
  • N (2) ID represents the cell ID in the cell ID group and is provided/acquired through PSS.
  • the PSS sequence d PSS (n) may be defined to satisfy Equation 2.
  • x(i+7) (x(i+4)+x(i)) mod 2
  • the SSS sequence d SSS (n) may be defined to satisfy Equation 3.
  • x 1 (i+7) (x 0 (i+1)+x 1 (i)) mod 2
  • a PBCH is composed of a data RE and a demodulation reference signal (DMRS) RE for each OFDM symbol.
  • DMRS demodulation reference signal
  • the DMRS sequence consists of a QPSK-modulated Gold sequence.
  • Equation 4 illustrates the DMRS sequence
  • c() is defined as the length-31 gold sequence in Equation 5.
  • Nc 1600, and the first m-sequence x 1 (n) and the second m-sequence x 2 (n) are initialized to the values of Equation 6.
  • Equation 7 c init is defined by Equation 7.
  • N cell ID represents the (physical) cell ID
  • PBCH DMRSs in each OFDM symbol in the SSB are mapped as follows.
  • the symbol/subcarrier index may refer to FIG. 4.
  • DM-RS for PBCH Symbol index in SSB
  • Subcarrier index in OFDM symbol 1 3 0+v, 4+v, 8+v, ..., 236+v 2 0+v, 4+v, 8+v, ..., 44+v192+v, 196+v, 236+v
  • the PBCH DMRS RE is frequency shifted based on the cell ID.
  • v shift (v) N cell ID mod 4.
  • mod represents a modulo operation.
  • the random access process is used for various purposes.
  • the random access procedure may be used for initial network access, handover, and terminal-triggered UL data transmission.
  • the UE may acquire UL synchronization and UL transmission resources through a random access process.
  • the random access process is divided into a contention-based process and a non-contention based or dedicated process.
  • the random access process is mixed with the RACH (Random Access Channel) process.
  • FIG. 6 illustrates a collision-based random access process
  • the terminal receives information on random access from a base station through system information. Thereafter, if random access is required, the terminal transmits a random access preamble (message 1) to the base station (S710).
  • the base station transmits a random access response (RAR) message (message 2) to the terminal (S720).
  • RAR random access response
  • scheduling information for a random access response message may be CRC masked with a random access-RNTI (RA-RNTI) and transmitted on an L1/L2 control channel (PDCCH).
  • RA-RNTI random access-RNTI
  • PDCH L1/L2 control channel
  • the PDCCH masked with RA-RNTI can be transmitted only through a common search space.
  • the terminal may receive a random access response message from the PDSCH indicated by the scheduling information. After that, the terminal checks whether there is random access response information instructed to itself in the random access response message. Whether the random access response information instructed to itself exists may be determined by whether there is a random access preamble ID (RAID) for the preamble transmitted by the terminal.
  • the random access response information includes timing offset information for UL synchronization (eg, Timing Advance Command, TAC), UL scheduling information (eg, UL grant), and terminal temporary identification information (eg, Temporary-C-RNTI, TC-RNTI). Includes.
  • the terminal When receiving the random access response information, the terminal transmits UL-SCH (Shared Channel) data (message 3) through the PUSCH according to the UL scheduling information (S730). After receiving the UL-SCH data, the base station transmits a contention resolution message (message 4) to the terminal (S740).
  • UL-SCH Shared Channel
  • the base station After receiving the UL-SCH data, the base station transmits a contention resolution message (message 4) to the terminal (S740).
  • a frame is characterized by a self-complete structure in which all of a DL control channel, DL or UL data, and UL control channel can be included in one slot.
  • the first N symbols in the slot are used to transmit the DL control channel (eg, PDCCH) (hereinafter, the DL control region), and the last M symbols in the slot are used to transmit the UL control channel (eg, PUCCH).
  • the DL control channel eg, PDCCH
  • the last M symbols in the slot are used to transmit the UL control channel (eg, PUCCH).
  • Can hereinafter, UL control region).
  • N and M are each an integer of 0 or more.
  • a resource region (hereinafter, a data region) between the DL control region and the UL control region may be used for transmission of DL data (eg, PDSCH) or may be used for transmission of UL data (eg, PUSCH).
  • the GP provides a time gap when the base station and the terminal switch from a transmission mode to a reception mode or a process from a reception mode to a transmission mode. Some symbols at a time point at which the DL to UL is switched within a subframe may be set as a GP.
  • PDCCH carries Downlink Control Information (DCI).
  • DCI Downlink Control Information
  • DL-SCH downlink shared channel
  • UL-SCH uplink shared channel
  • PCH paging information for a paging channel
  • It carries system information on the DL-SCH, resource allocation information for an upper layer control message such as a random access response transmitted on the PDSCH, a transmission power control command, and activation/release of Configured Scheduling (CS).
  • DL-SCH downlink shared channel
  • UL-SCH uplink shared channel
  • PCH paging information for a paging channel
  • CS Configured Scheduling
  • DCI formats are provided according to the information in the DCI.
  • Table 5 exemplifies DCI formats transmitted through the PDCCH.
  • DCI includes a cyclic redundancy check (CRC), and the CRC is masked/scrambled with various identifiers (eg, Radio Network Temporary Identifier, RNTI) according to the owner or usage of the PDCCH.
  • RNTI Radio Network Temporary Identifier
  • the CRC is masked/scrambled with various identifiers (eg, Radio Network Temporary Identifier, RNTI) according to the owner or usage of the PDCCH.
  • RNTI Radio Network Temporary Identifier
  • Table 6 exemplifies the use and transport channel of the PDCCH according to the RNTI.
  • the transport channel represents a transport channel related to data carried by the PDSCH/PUSCH scheduled by the PDCCH.
  • SI-RNTI Usage Transport Channel P-RNTI Paging and System Information change notification Paging Channel (PCH) SI-RNTI Broadcast of System Information DL-SCH RA-RNTI Random Access Response DL-SCH C-RNTI Dynamically scheduled unicast transmission UL-SCH, DL-SCH SFI (Slot Format Indication)-RNTI Slot Format Indication on the given cell N/A
  • the modulation method of the PDCCH is fixed (e.g., Quadrature Phase Shift Keying, QPSK), and one PDCCH consists of 1, 2, 4, 8, 16 CCEs (Control Channel Elements) according to the Aggregation Level (AL).
  • One CCE consists of six REGs (Resource Element Group).
  • One REG is defined as one OFDMA symbol and one (P)RB.
  • PDCCH is transmitted through CORESET (Control Resource Set).
  • CORESET corresponds to a set of physical resources/parameters used to carry PDCCH/DCI within the BWP.
  • the UE may monitor (eg, blind decoding) a set of PDCCH candidates in CORESET.
  • the PDCCH candidate represents CCE(s) monitored by the UE for PDCCH reception/detection.
  • PDCCH monitoring may be performed at one or more CORESETs on an active DL BWP on each activated cell for which PDCCH monitoring is set.
  • the set of PDCCH candidates monitored by the UE is defined as a PDCCH search space (SS) set.
  • the SS set may be a common search space (CSS) set or a UE-specific search space (USS) set.
  • Table 7 illustrates the PDCCH search space.
  • UCI Uplink Control Information
  • UCI includes:
  • -SR (Scheduling Request): This is information used to request UL-SCH resources.
  • HARQ-ACK Hybrid Automatic Repeat Request-ACK (Acknowledgement): This is a response to a downlink data packet (eg, codeword) on the PDSCH. Indicates whether a downlink data packet has been successfully received.
  • HARQ-ACK 1 bit may be transmitted in response to a single codeword, and HARQ-ACK 2 bits may be transmitted in response to two codewords.
  • the HARQ-ACK response includes positive ACK (briefly, ACK), negative ACK (NACK), DTX or NACK/DTX.
  • HARQ-ACK is mixed with HARQ ACK/NACK and ACK/NACK.
  • MIMO Multiple Input Multiple Output
  • PMI Precoding Matrix Indicator
  • Table 8 illustrates PUCCH formats. Depending on the PUCCH transmission length, it can be classified into Short PUCCH (formats 0, 2) and Long PUCCH (formats 1, 3, 4).
  • the UE may detect the PDCCH in slot #n.
  • the PDCCH includes downlink scheduling information (eg, DCI formats 1_0, 1_1), and the PDCCH represents a DL assignment-to-PDSCH offset (K0) and a PDSCH-HARQ-ACK reporting offset (K1).
  • DCI formats 1_0 and 1_1 may include the following information.
  • -FDRA Frequency domain resource assignment
  • TDRA -Time domain resource assignment
  • K0 indicating the starting position (eg, OFDM symbol index) and length (eg, number of OFDM symbols) of the PDSCH in the slot.
  • TDRA may be indicated through SLIV (Start and Length Indicator Value).
  • -HARQ process number (4 bits): indicates the HARQ process ID (Identity) for data (eg, PDSCH, TB)
  • -PUCCH resource indicator indicates a PUCCH resource to be used for UCI transmission among a plurality of PUCCH resources in a PUCCH resource set
  • the UE may transmit UCI through PUCCH in slot #(n+K1).
  • the UCI includes a HARQ-ACK response for the PDSCH.
  • the HARQ-ACK response may consist of 1-bit.
  • the HARQ-ACK response may consist of 2-bits when spatial bundling is not configured, and may consist of 1-bits when spatial bundling is configured.
  • the HARQ-ACK transmission time point for a plurality of PDSCHs is designated as slot #(n+K1)
  • the UCI transmitted in slot #(n+K1) includes HARQ-ACK responses for the plurality of PDSCHs.
  • the UE may detect the PDCCH in slot #n.
  • the PDCCH includes uplink scheduling information (eg, DCI formats 0_0, 0_1).
  • DCI formats 0_0 and 0_1 may include the following information.
  • -FDRA indicates a set of RBs allocated to PUSCH
  • -TDRA indicates the slot offset K2, the starting position (eg, symbol index) and length (eg number of OFDM symbols) of the PUSCH in the slot.
  • the start symbol and length may be indicated through SLIV or may be indicated respectively.
  • the terminal may transmit the PUSCH in slot # (n+K2) according to the scheduling information of slot #n.
  • the PUSCH includes the UL-SCH TB.
  • the UCI may be transmitted through the PUSCH (PUSCH piggyback).
  • downlink transmission is performed based on OFDM/OFDMA (e.g., cyclic prefix (CP)-OFDM), and uplink transmission is DFT-s-OFDM (or single carrier (SC)-OFDM).
  • SC-FDMA CP-OFDM-based uplink transmission was added to the NR system.
  • FIGS. 10-11 illustrate the structure of a transmitter/receiver.
  • the difference between the DFT-s-OFDM(A) method in the transmitter structure from the OFDM(A) method is that the DFT precoding 706 is applied before the IFFT processing 710, and the DFT-s-
  • the difference between the OFDM(A) method and the OFDM(A) method is that the IFFT postcoding 728 is applied after the FFT processing 724.
  • the signal processing of FIGS. 10 to 11 is described based on the DFT-s-OFDM(A) method, and if the signal processing 706 and 728 indicated by the dotted line is omitted, it corresponds to the OFDM(A) method.
  • the bit stream is modulated into a sequence of data symbols (702). Thereafter, the serial data symbol sequence is converted in parallel by N u pieces (704). Parallel data symbol sequences of length N u is converted into a frequency-domain sequence of length N u through the FFT processing of the same size (706). By processing the signal with a DFT of the same size as the sequence of data symbols, the sequence of data symbols is transformed into a contiguous sequence in the frequency domain. FFT processing can be performed through N u -point DFT processing. In this specification, FFT is mixed with DFT, and DFT processing is mixed with DFT spreading or DFT precoding.
  • the frequency domain sequence of the full length N u N c sub-carriers mapped to the N subcarriers assigned u from u and N c -N of the remaining sub-carriers, or 0 is padded (padding) (708).
  • N c The sequence mapped to the sub-carriers is N c - are converted by a point IFFT processing to a time domain sequence having a length N c 710.
  • CP is constructed by copying the N p samples at the end of the time domain sequence and adding them to the front of the sequence (712).
  • the generated time domain sequence corresponds to one transmission symbol, and is converted into a serial sequence through a parallel/serial converter (714). Thereafter, the serial sequence is transmitted to the receiving end through a process such as frequency upconversion.
  • Another user transmits data by receiving an available subcarrier from among the remaining N c -N u subcarriers used by the previous user.
  • the receiving end 720 includes a serial/parallel converter 722, an N c -point FFT module 724, a subcarrier-to-symbol mapping module 726, and an N u -point DFT despreading module 728. ), a bottle/serial converter 730 and a constellation demapping module 732. Since the signal processing process of the receiving end 720 is configured in the reverse manner of the transmitting end 700, refer to FIG. 10 for details.
  • the waveform with low PAPR is applied to the downlink in consideration of the power amplifier (PA) linearity in terms of transmission of not only the terminal but also the base station. Is being considered.
  • PA power amplifier
  • DFT-s-OFDM may be considered, and the DFT-s-OFDM operation considered in the present specification may be as follows.
  • IFFT IFFT front end
  • f frequency
  • DFT front end or pre-DFT
  • IFFT rear end a time domain signal
  • the number of DFT blocks corresponding to one IFFT block may be plural.
  • the generated K1 samples and K2 samples (in the time domain) can be successively mapped in the f-domain.
  • K1 samples and K2 samples may be mapped to the f-domain so that they are interleaved according to a specific rule (eg, K1 samples are mapped to even indexes, K2 samples are mapped to odd indexes).
  • . 13 to 14 illustrate two DFT blocks, even when three or more DFT blocks are used, the method/rules proposed in the present specification may be equally applied.
  • the high frequency band of 52.6 GHz or higher is defined as FR4.
  • base stations operating in the FR4 band will have different preferred DL WFs depending on the situation among a plurality of DL waveform (WF) candidates in consideration of cell coverage, the number of users associated within the cell, and base station implementation complexity/cost. I can.
  • WF DL waveform
  • DL WF may be simply indicated as WF.
  • the proposed method of this specification can be applied irrespective of the frequency band if a plurality of DL WFs are defined/supported.
  • the proposed method of the present specification can be applied only when operating in a high frequency band (eg, 52.6 GHz or higher).
  • the proposed method of this specification includes two downlink candidate WFs (e.g., (1) CP-OFDM and (2) different waveform; (1) CP-OFDM and (2) DFT-s-OFDM; or ( 1) CP-OFDM and (2) single-carrier waveform not based on (I-)DFT/(I-)FFT application) are assumed.
  • the proposed method of this specification can be extended and applied even when there are more than two candidate WFs (C-WFs).
  • a base station/terminal attempting initial access may transmit and receive a downlink signal assuming a DL default WF (D-WF) (S1502).
  • the terminal may be configured with a DL operating WF (O-WF) through a specific downlink signal and/or channel (S1504).
  • the UE may receive a downlink signal and/or a channel thereafter based on the O-WF (S1506).
  • the base station transmits the downlink signal and/channel through the D-WF, and the terminal assumes the D-WF before receiving the O-WF signal and receives the downlink signal and/channel.
  • the terminal assumes the D-WF before receiving the O-WF signal and receives the downlink signal and/channel. I can.
  • O-WF is indicated through a specific downlink signal and/or channel (CH#1)
  • CH#1 the UE transmits a downlink signal and/channel (CH#2) through the indicated O-WF. You can receive it.
  • the terminal may continuously receive without a gap between the time points when CH#2 can be received after CH#1 is received.
  • the UE indicates after a specific timing gap (defined in advance or reported by the UE) between CH#1 reception and CH#2 reception time. O-WF based CH#2 reception may be possible.
  • Method #1-1 A method of utilizing the sequence type: The PSS and/or SSS and/or PBCH DM-RS sequence is divided into a plurality of sets (eg, two), or the sequence generation parameter(s) is divided into a plurality of (Yes, 2 pieces) Can be divided into sets. And, by defining a relationship between each C-WF and a corresponding set in advance, and signaling a sequence that belongs/based to a specific set among them, the C-WF corresponding to the O-WF among the plurality of C-WFs is determined.
  • the base station can inform the terminal.
  • the PSS (and/or SSS) may divide the available N_id value into two sets, or the PBCH DM-RS may divide the parameters on a scrambling sequence generator into two sets.
  • Equation 1 may be changed as follows.
  • N cell ID 3N (1) ID + N (2) ID where N (1) ID ⁇ ⁇ N (1) ID_WF1 , N (1) ID_WF2 ⁇ and/or N (2) ID ⁇ ⁇ N (2) ID_WF1 , N (2) ID_WF2 ⁇ .
  • N (1) ID and N (2) ID may have the same range as before, or may be extended than before to distinguish WF.
  • the maximum value of N (1) ID may be extended by a multiple of 355 (eg, 355*2).
  • the maximum value of N (2) ID may be extended to a value greater than 3 (eg, 4).
  • the coefficient of N (1) ID in Equation 8 is also changed to M.
  • Equation 7 may be changed as follows.
  • x is an integer greater than or equal to 12
  • WF represents a value corresponding to O-WF among a plurality of C-WFs.
  • a method of using a resource location through which a sequence is transmitted For example, a synchronization raster (or GSCN, global synchronization channel number) corresponding C-WF is defined in advance, and PSS and Based on which synchronization raster/or SSS and/or PBCH DM-RS corresponds to, the base station may inform the UE of the C-WF corresponding to the O-WF among C-WFs. As another example, the base station determines which C-WF among C-WFs is used as O-WF by utilizing the relative resource location/information between PSS and/or SSS and/or PBCH DM-RS (on frequency and/or time). Can inform the terminal.
  • the distance between the PSS symbol and the SSS symbol, the distance between the PSS and/or the SSS symbol and the PBCH DM-RS symbol, a specific (eg, the smallest or largest) RB index among the RBs to which the PSS is mapped and the SSS are mapped.
  • the base station/terminal may indicate/know the C-WF corresponding to the O-WF among the plurality of C-WFs according to the corresponding resource information.
  • M is the number of C-WF
  • WF represents the index of C-WF corresponding to O-WF (0 to M-1).
  • the PBCH DM-RS location needs to be fixed on a specific domain (eg, f-domain) regardless of the WF of the PBCH payload. There is. This is because PBCH reception complexity increases if the PBCH DM-RS location is also changed as the WF of the PBCH payload is changed. For example, when the PBCH payload and the PBCH DM-RS are transmitted through Q1 REs on the f-domain in a symbol in which the PBCH payload and the PBCH DM-RS are transmitted,
  • the PBCH DM-RS mapping is different as the WF of the PBCH payload is different, it may be difficult to measure the neighbor cell RRM of the terminal.
  • WF and/or PBCH DM-RS mapping related information of the PBCH payload transmitted on the cell corresponding to the ID may be included.
  • SCell or PSCell
  • the corresponding serving through related higher layer signaling (e.g., RRC signaling) It can inform the O-WF for the cell.
  • the base station responds to the downlink signal and/or channel to be received thereafter within the corresponding DL CC/BWP to the UE through the PBCH payload, SIB1 PDCCH (i.e., PDCCH for scheduling PDSCH including SIB1) or PDSCH including SIB1. It is possible to signal the O-WF. As an example, when O-WF is indicated through the PBCH payload, the UE assumes the indicated O-WF from the downlink signal and/or channel (eg, SIB1 PDCCH/PDSCH, etc.) to be received thereafter and the corresponding downlink It can receive signals and/or channels.
  • SIB1 PDCCH i.e., PDCCH for scheduling PDSCH including SIB1
  • SIB1 PDCCH i.e., PDCCH for scheduling PDSCH including SIB1
  • PDSCH including SIB1. It is possible to signal the O-WF.
  • the UE assumes the indicated O-WF from the downlink signal and/or channel
  • the UE may perform a reception operation, including the PBCH, assuming D-WF for DL transmission prior to that.
  • the UE assumes the indicated O-WF from the downlink signal and/or channel (eg, SIB1 PDSCH, etc.) to be received thereafter, and the corresponding downlink signal and/or Or it can receive a channel.
  • the UE may perform a reception operation, including the SIB1 PDCCH, assuming D-WF for DL transmission prior to that.
  • the UE can then receive a downlink signal and/or a channel (eg, a cell-common RRC signal such as SIB2, a paging signal, etc.), and the indicated O- It is possible to receive the corresponding downlink signal and/or channel on the assumption of WF.
  • the UE may perform a reception operation, including the SIB1 PDSCH, assuming D-WF for DL transmission prior to that.
  • the base station (not SIB1) through the PDSCH containing the cell-common RRC signal and/or the UE-specific RRC signal and/or the PDCCH scheduling the PDSCH, the downlink to be received after that within the corresponding DL CC/BWP to the UE.
  • the link signal and/or the O-WF corresponding to the channel may be signaled.
  • the base station through the PDSCH (e.g., RAR message, msg4, etc.) associated with the paging and/or RACH process and/or the PDCCH scheduling the PDSCH (e.g., PDCCH scrambled with RA-RNTI), the corresponding DL CC/BWP to the terminal It is possible to signal an O-WF corresponding to a downlink signal and/or a channel to be received thereafter within.
  • the PDSCH e.g., RAR message, msg4, etc.
  • the PDCCH scheduling the PDSCH e.g., PDCCH scrambled with RA-RNTI
  • timing values may be different.
  • the O-WF is CP-OFDM
  • the PDSCH and (ii) the HARQ timing value between the corresponding PUCCH is n1 slot
  • the O-WF is DFT-s-OFDM
  • a PUCCH minimum processing time may be differently defined for O-WF.
  • the PUCCH minimum processing time when the O-WF is CP-OFDM may be set to be shorter than the minimum processing time when the O-WF is DFT-s-OFDM.
  • the PUCCH minimum processing time refers to the minimum processing time required to prepare for PUCCH transmission from the PDSCH reception time point.
  • the PUCCH minimum processing time may mean the minimum time interval required between the last symbol of the PDSCH and the first symbol of PUCCH.
  • N denotes the number of symbols corresponding to the PUCCH minimum processing time
  • d denotes an offset value equal to or greater than
  • Ts denotes the time length of the symbol.
  • the HARQ timing and/or the minimum PUCCH processing time may be applied not only to the RACH process, but also to a general signal transmission process (eg, FIG. 8 ).
  • the PBCH payload and/or the WF corresponding to SIB1 in the initial access process is DFT-s-OFDM
  • the PBCH payload and/or the SIB1 reception method and (2) the PBCH payload.
  • the DFT-s-OFDM applied to the PBCH payload and/or SIB1 may be a D-WF or a pre-instructed O-WF by the base station.
  • the DFT size applied to the PBCH payload may be assumed to be one of the following.
  • the minimum BW that the UE must have when operating on FR4 (here, the minimum BW means the number of subcarriers corresponding to the number of effective RB/REs excluding the guard band in the corresponding frequency band (e.g., a frequency band corresponding to Y MHz)).
  • the minimum BW means the number of subcarriers corresponding to the number of effective RB/REs excluding the guard band in the corresponding frequency band (e.g., a frequency band corresponding to Y MHz)).
  • the minimum BW that the terminal must have, defined for each synchronization raster on each FR4 (here, the minimum BW corresponds to the number of effective RB/REs excluding the guard band in the corresponding frequency band (eg, a frequency band corresponding to Y MHz)) It can mean the number of subcarriers to be used)
  • the assumption of the DFT size of the PBCH payload may be limited to the initial access procedure and applied.
  • the terminal may obtain information on the actual DFT size of the PBCH payload from the base station through the UE-common configuration information (eg, system information), and perform a PBCH detection/reception operation based thereon.
  • K RBs may be the number of RBs corresponding to the band set in the CC/BWP
  • N RBs are RBs corresponding to the PBCH transmission band in [Method #A] DL channels (eg, PDCCH, PDSCH) can be transmitted/received by configuring a single or multiple DFT blocks with only (KN) RBs excluding the number of RBs.
  • the K1 value is the number of REs corresponding to N RBs
  • the K2 value is the number of REs corresponding to (KN) RBs
  • DL channels can be transmitted and received based on a plurality of DFT block structures.
  • the Mux DFT-s-OFDM symbol means a DFT-s-OFDM symbol in which simultaneous transmission of PBCH and other DL channel(s) is scheduled/allocated.
  • a base station that cannot transmit a plurality of DFT blocks may not transmit DL channels other than the PBCH in the Mux DFT-s-OFDM symbol (or the slot to which the Mux DFT-s-OFDM symbol belongs).
  • the UE may not expect to receive DL channels (eg, PDCCH, PDSCH) other than the PBCH.
  • DL channels eg, PDCCH, PDSCH
  • the UE receives a DL channel (eg, PDCCH, PDSCH) other than the PBCH (eg, demapping, decoding) Can be omitted/skipped.
  • a terminal that does not support receiving a plurality of DFT blocks-based DL signals does not expect to receive a DL channel other than the PBCH in the Mux DFT-s-OFDM symbol, or one of the PBCH and DL channels (e.g., PDCCH, PDSCH) It is possible to selectively receive only the DL signal corresponding to the DFT block of (based on the terminal implementation).
  • PBCH and (ii) WF of the DL channel may be different (e.g., PBCH is based on DFT-s-OFDM, DL channel is based on CP-OFDM)
  • PBCH is based on DFT-s-OFDM
  • DL channel is based on CP-OFDM
  • the UE may not expect to receive the corresponding DL channel. Accordingly, in the corresponding symbol and/or slot, the UE may omit/skip the reception process (eg, demapping, decoding) of the DL channel (eg, PDCCH, PDSCH).
  • the UE may assume that the WF of the DL channel follows the PBCH (regardless of the WF indicated/configured for the DL channel). In order to support at least such a terminal operation, the WF of the DL channel may be dynamically indicated through the PDCCH.
  • whether a PBCH and a DL channel are muxed may be signaled in a symbol through which a corresponding DL channel is transmitted and/or a slot (including a symbol through which the corresponding DL channel is transmitted).
  • K RBs may be the number of RBs corresponding to the band set in the CC/BWP
  • N RBs are SIB1 PDCCH in [Method #C]
  • a DFT size to be assumed for SIB1 PDSCH reception or a corresponding number of RBs except for the remaining (KN) RBs, a single or multiple DFT blocks may be configured to transmit and receive a DL channel.
  • the K1 value is the number of REs corresponding to N RBs
  • the K2 value is the number of REs corresponding to (KN) RBs
  • DL channels may be transmitted and received based on a plurality of DFT block structures.
  • the Mux DFT-s-OFDM symbol means a DFT-s-OFDM symbol in which simultaneous transmission of the PBCH and other DL channel(s) is scheduled/allocated.
  • a base station that cannot transmit a plurality of DFT blocks may not transmit DL channels other than the SIB1 PDCCH and/or SIB1 PDSCH in the Mux DFT-s-OFDM symbol (or the slot to which the Mux DFT-s-OFDM symbol belongs).
  • the UE may not expect to receive DL channels other than the SIB1 PDCCH and/or SIB1 PDSCH.
  • the UE receives a DL channel other than SIB1 PDCCH and/or SIB1 PDSCH (e.g., PDCCH, PDSCH) receiving process (e.g. , Demapping, decoding) can be omitted/skipped.
  • a UE that does not support receiving a plurality of DFT blocks-based DL signals does not expect to receive DL channels other than SIB1 PDCCH and/or SIB1 PDSCH in the Mux DFT-s-OFDM symbol, or with SIB1 PDCCH and/or SIB1 PDSCH. Only a DL signal corresponding to a DFT block of one of the DL channels can be selectively received (based on terminal implementation).
  • SIB1 PDCCH and/or SIB1 PDSCH and (ii) WF of the DL channel may be different (e.g., SIB1 PDCCH and/or SIB1 PDSCH is DFT-s -OFDM-based, DL channel is CP-OFDM-based), SIB1 PDCCH and / or SIB1 PDSCH is transmitted symbol and / or (including the SIB1 PDCCH and / or SIB1 PDSCH symbol is transmitted) the UE to receive the corresponding DL channel in the slot Can not expect.
  • SIB1 PDCCH and/or SIB1 PDSCH is DFT-s -OFDM-based
  • DL channel is CP-OFDM-based
  • SIB1 PDCCH and / or SIB1 PDSCH is transmitted symbol and / or (including the SIB1 PDCCH and / or SIB1 PDSCH symbol is transmitted) the UE to receive the corresponding DL channel in the slot Can not expect.
  • the UE may omit/skip the reception process (eg, demapping, decoding) of the DL channel (eg, PDCCH, PDSCH).
  • the WF of the DL channel is (regardless of the WF indicated/configured for the DL channel) )
  • the UE may assume that the SIB1 PDCCH and/or the SIB1 PDSCH are followed.
  • the WF of the DL channel may be dynamically indicated through the PDCCH.
  • whether a SIB1 PDCCH and/or a SIB1 PDSCH and a DL channel are mux in a symbol in which the DL channel is transmitted and/or a slot (including a symbol in which the DL channel is transmitted) may be signaled. .
  • the UE may detect an SS/PBCH block (S1602).
  • the SS/PBCH block may include a PBCH payload and a PBCH DMRS. Thereafter, the UE may process the PBCH payload based on any one of a plurality of WF schemes based on the characteristics of the PBCH DMRS (S1604).
  • the plurality of WFs may include at least a CP-OFDM scheme and a DFT-s-OFDM scheme.
  • REs in which PBCH DMRSs exist have N RE intervals in the frequency domain (N is an integer greater than 1)
  • the characteristics of PBCH DMRSs may include a frequency shift value applied to PBCH DMRSs.
  • the characteristics of the PBCH DMRS may include a parameter used to generate a DMRS sequence, for example, an initialization value used to generate a DMRS sequence.
  • the DFT size applied to the PBCH payload may be assumed to be a value corresponding to the minimum band defined for the synchronization raster in which the SS/PBCH block is located. have.
  • FIG. 17 illustrates a communication system 1 applied to the present invention.
  • a communication system 1 applied to the present invention includes a wireless device, a base station, and a network.
  • the wireless device refers to a device that performs communication using a wireless access technology (eg, 5G NR (New RAT), LTE (Long Term Evolution)), and may be referred to as a communication/wireless/5G device.
  • wireless devices include robots 100a, vehicles 100b-1 and 100b-2, eXtended Reality (XR) devices 100c, hand-held devices 100d, and home appliances 100e. ), an Internet of Thing (IoT) device 100f, and an AI device/server 400.
  • the vehicle may include a vehicle equipped with a wireless communication function, an autonomous vehicle, a vehicle capable of performing inter-vehicle communication, and the like.
  • the vehicle may include an Unmanned Aerial Vehicle (UAV) (eg, a drone).
  • UAV Unmanned Aerial Vehicle
  • XR devices include Augmented Reality (AR)/Virtual Reality (VR)/Mixed Reality (MR) devices. It can be implemented in the form of a computer, a wearable device, a home appliance, a digital signage, a vehicle, a robot, and the like.
  • Portable devices may include smart phones, smart pads, wearable devices (eg, smart watches, smart glasses), computers (eg, notebook computers, etc.).
  • Home appliances may include TVs, refrigerators, washing machines, and the like.
  • IoT devices may include sensors, smart meters, and the like.
  • the base station and the network may be implemented as a wireless device, and the specific wireless device 200a may operate as a base station/network node to other
  • the wireless devices 100a to 100f may be connected to the network 300 through the base station 200.
  • AI Artificial Intelligence
  • the network 300 may be configured using a 3G network, a 4G (eg, LTE) network, or a 5G (eg, NR) network.
  • the wireless devices 100a to 100f may communicate with each other through the base station 200/network 300, but may communicate directly (e.g. sidelink communication) without passing through the base station/network.
  • the vehicles 100b-1 and 100b-2 may perform direct communication (e.g.
  • V2V Vehicle to Vehicle
  • V2X Vehicle to Everything
  • the IoT device eg, sensor
  • the IoT device may directly communicate with other IoT devices (eg, sensors) or other wireless devices 100a to 100f.
  • Wireless communication/connections 150a, 150b, and 150c may be established between the wireless devices 100a to 100f/base station 200, and the base station 200/base station 200.
  • wireless communication/connection includes various wireless access such as uplink/downlink communication 150a, sidelink communication 150b (or D2D communication), base station communication 150c (eg relay, Integrated Access Backhaul). This can be achieved through technology (eg 5G NR)
  • the wireless communication/connection 150a, 150b, 150c can transmit/receive radio signals to each other.
  • the wireless communication/connection 150a, 150b, 150c can transmit/receive signals through various physical channels.
  • At least some of a process of setting various configuration information various signal processing processes (eg, channel encoding/decoding, modulation/demodulation, resource mapping/demapping, etc.), resource allocation process, and the like may be performed.
  • various signal processing processes eg, channel encoding/decoding, modulation/demodulation, resource mapping/demapping, etc.
  • resource allocation process e.g., resource allocation process, and the like.
  • the first wireless device 100 and the second wireless device 200 may transmit and receive wireless signals through various wireless access technologies (eg, LTE and NR).
  • ⁇ the first wireless device 100, the second wireless device 200 ⁇ is the ⁇ wireless device 100x, the base station 200 ⁇ and/or ⁇ wireless device 100x, wireless device 100x) of FIG. 17 ⁇ Can be matched.
  • the first wireless device 100 includes one or more processors 102 and one or more memories 104, and may further include one or more transceivers 106 and/or one or more antennas 108.
  • the processor 102 controls the memory 104 and/or the transceiver 106 and may be configured to implement the descriptions, functions, procedures, suggestions, methods, and/or operational flowcharts disclosed herein.
  • the processor 102 may process information in the memory 104 to generate first information/signal, and then transmit a radio signal including the first information/signal through the transceiver 106.
  • the processor 102 may store information obtained from signal processing of the second information/signal in the memory 104 after receiving a radio signal including the second information/signal through the transceiver 106.
  • the memory 104 may be connected to the processor 102 and may store various information related to the operation of the processor 102. For example, the memory 104 may perform some or all of the processes controlled by the processor 102, or instructions for performing the descriptions, functions, procedures, suggestions, methods, and/or operational flow charts disclosed herein. It is possible to store software code including:
  • the processor 102 and the memory 104 may be part of a communication modem/circuit/chip designed to implement a wireless communication technology (eg, LTE, NR).
  • the transceiver 106 may be coupled with the processor 102 and may transmit and/or receive radio signals through one or more antennas 108.
  • Transceiver 106 may include a transmitter and/or a receiver.
  • the transceiver 106 may be mixed with an RF (Radio Frequency) unit.
  • the wireless device may mean a communication modem/circuit/chip.
  • the second wireless device 200 includes one or more processors 202 and one or more memories 204, and may further include one or more transceivers 206 and/or one or more antennas 208.
  • the processor 202 controls the memory 204 and/or the transceiver 206 and may be configured to implement the descriptions, functions, procedures, suggestions, methods, and/or operational flowcharts disclosed herein.
  • the processor 202 may process information in the memory 204 to generate third information/signal, and then transmit a wireless signal including the third information/signal through the transceiver 206.
  • the processor 202 may receive the radio signal including the fourth information/signal through the transceiver 206 and then store information obtained from signal processing of the fourth information/signal in the memory 204.
  • the memory 204 may be connected to the processor 202 and may store various information related to the operation of the processor 202. For example, the memory 204 may perform some or all of the processes controlled by the processor 202, or instructions for performing the descriptions, functions, procedures, suggestions, methods, and/or operational flow charts disclosed in this document. It is possible to store software code including:
  • the processor 202 and the memory 204 may be part of a communication modem/circuit/chip designed to implement a wireless communication technology (eg, LTE, NR).
  • the transceiver 206 may be connected to the processor 202 and may transmit and/or receive radio signals through one or more antennas 208.
  • the transceiver 206 may include a transmitter and/or a receiver.
  • the transceiver 206 may be used interchangeably with an RF unit.
  • the wireless device may mean a communication modem/circuit/chip.
  • one or more protocol layers may be implemented by one or more processors 102, 202.
  • one or more processors 102 and 202 may implement one or more layers (eg, functional layers such as PHY, MAC, RLC, PDCP, RRC, and SDAP).
  • One or more processors 102, 202 may be configured to generate one or more Protocol Data Units (PDUs) and/or one or more Service Data Units (SDUs) according to the description, functions, procedures, proposals, methods, and/or operational flow charts disclosed in this document. Can be generated.
  • PDUs Protocol Data Units
  • SDUs Service Data Units
  • One or more processors 102, 202 may generate messages, control information, data, or information according to the description, function, procedure, proposal, method, and/or operational flow chart disclosed herein. At least one processor (102, 202) generates a signal (e.g., a baseband signal) containing PDU, SDU, message, control information, data or information according to the functions, procedures, proposals and/or methods disclosed in this document. , Can be provided to one or more transceivers (106, 206).
  • a signal e.g., a baseband signal
  • One or more processors 102, 202 may receive signals (e.g., baseband signals) from one or more transceivers 106, 206, and the descriptions, functions, procedures, proposals, methods, and/or operational flowcharts disclosed herein PDUs, SDUs, messages, control information, data, or information may be obtained according to the parameters.
  • signals e.g., baseband signals
  • One or more of the processors 102 and 202 may be referred to as a controller, microcontroller, microprocessor, or microcomputer.
  • One or more of the processors 102 and 202 may be implemented by hardware, firmware, software, or a combination thereof.
  • ASICs application specific integrated circuits
  • DSPs digital signal processors
  • DSPDs digital signal processing devices
  • PLDs programmable logic devices
  • FPGAs field programmable gate arrays
  • the description, functions, procedures, suggestions, methods, and/or operational flowcharts disclosed in this document may be implemented using firmware or software, and firmware or software may be implemented to include modules, procedures, functions, and the like.
  • the description, functions, procedures, proposals, methods and/or operational flow charts disclosed in this document are configured to perform firmware or software included in one or more processors 102, 202, or stored in one or more memories 104, 204, and It may be driven by the above processors 102 and 202.
  • the descriptions, functions, procedures, proposals, methods, and/or operational flowcharts disclosed in this document may be implemented using firmware or software in the form of codes, instructions, and/or sets of instructions.
  • One or more memories 104, 204 may be connected to one or more processors 102, 202, and may store various types of data, signals, messages, information, programs, codes, instructions and/or instructions.
  • One or more of the memories 104 and 204 may be composed of ROM, RAM, EPROM, flash memory, hard drive, registers, cache memory, computer readable storage media, and/or combinations thereof.
  • One or more memories 104 and 204 may be located inside and/or outside of one or more processors 102 and 202.
  • one or more memories 104, 204 may be connected to one or more processors 102, 202 through various technologies such as wired or wireless connection.
  • One or more transceivers 106 and 206 may transmit user data, control information, radio signals/channels, and the like mentioned in the methods and/or operation flow charts of this document to one or more other devices.
  • One or more transceivers (106, 206) may receive user data, control information, radio signals/channels, etc., mentioned in the description, functions, procedures, proposals, methods and/or operational flowcharts disclosed in this document from one or more other devices. have.
  • one or more transceivers 106 and 206 may be connected to one or more processors 102 and 202 and may transmit and receive wireless signals.
  • one or more processors 102, 202 may control one or more transceivers 106, 206 to transmit user data, control information, or radio signals to one or more other devices.
  • one or more processors 102, 202 may control one or more transceivers 106, 206 to receive user data, control information, or radio signals from one or more other devices.
  • one or more transceivers (106, 206) may be connected to one or more antennas (108, 208), one or more transceivers (106, 206) through the one or more antennas (108, 208), the description and functions disclosed in this document.
  • one or more antennas may be a plurality of physical antennas or a plurality of logical antennas (eg, antenna ports).
  • One or more transceivers (106, 206) in order to process the received user data, control information, radio signal / channel, etc. using one or more processors (102, 202), the received radio signal / channel, etc. in the RF band signal. It can be converted into a baseband signal.
  • One or more transceivers 106 and 206 may convert user data, control information, radio signals/channels, etc. processed using one or more processors 102 and 202 from a baseband signal to an RF band signal.
  • one or more of the transceivers 106 and 206 may include (analog) oscillators and/or filters.
  • At least one memory may store instructions or programs, and when the instructions or programs are executed, at least one memory is operably connected to the at least one memory. It is possible to cause a single processor to perform operations according to some embodiments or implementations of the present disclosure.
  • a computer-readable storage medium may store at least one instruction or computer program, and the at least one instruction or computer program is executed by at least one processor. It is possible to cause a single processor to perform operations according to some embodiments or implementations of the present disclosure.
  • a processing device or apparatus may include at least one processor and at least one computer memory that is connectable to the at least one processor.
  • the at least one computer memory may store instructions or programs, and the instructions or programs, when executed, cause at least one processor to be operably connected to the at least one memory. It may be possible to perform operations according to embodiments or implementations.
  • the wireless device may be implemented in various forms according to use-examples/services (see FIG. 17).
  • the wireless devices 100 and 200 correspond to the wireless devices 100 and 200 of FIG. 18, and various elements, components, units/units, and/or modules ).
  • the wireless devices 100 and 200 may include a communication unit 110, a control unit 120, a memory unit 130, and an additional element 140.
  • the communication unit may include a communication circuit 112 and a transceiver(s) 114.
  • communication circuitry 112 may include one or more processors 102 and 202 and/or one or more memories 104 and 204 of FIG. 18.
  • the transceiver(s) 114 may include one or more transceivers 106,206 and/or one or more antennas 108,208 of FIG. 18.
  • the control unit 120 is electrically connected to the communication unit 110, the memory unit 130, and the additional element 140 and controls all operations of the wireless device. For example, the control unit 120 may control the electrical/mechanical operation of the wireless device based on the program/code/command/information stored in the memory unit 130. In addition, the control unit 120 transmits the information stored in the memory unit 130 to an external (eg, other communication device) through the communication unit 110 through a wireless/wired interface, or externally through the communication unit 110 (eg, Information received through a wireless/wired interface from another communication device) may be stored in the memory unit 130.
  • an external eg, other communication device
  • the additional element 140 may be configured in various ways depending on the type of wireless device.
  • the additional element 140 may include at least one of a power unit/battery, an I/O unit, a driving unit, and a computing unit.
  • wireless devices include robots (Figs. 17, 100a), vehicles (Figs. 17, 100b-1, 100b-2), XR devices (Figs. 17, 100c), portable devices (Figs. (Figs. 17, 100e), IoT devices (Figs. 17, 100f), digital broadcasting terminals, hologram devices, public safety devices, MTC devices, medical devices, fintech devices (or financial devices), security devices, climate/environment devices, It may be implemented in the form of an AI server/device (FIGS. 17 and 400), a base station (FIGS. 17 and 200), and a network node.
  • the wireless device can be used in a mobile or fixed place depending on the use-example/service.
  • various elements, components, units/units, and/or modules in the wireless devices 100 and 200 may be entirely interconnected through a wired interface, or at least some may be wirelessly connected through the communication unit 110.
  • the control unit 120 and the communication unit 110 are connected by wire, and the control unit 120 and the first unit (eg, 130, 140) are connected through the communication unit 110.
  • the control unit 120 and the first unit eg, 130, 140
  • each element, component, unit/unit, and/or module in the wireless device 100 and 200 may further include one or more elements.
  • the control unit 120 may be configured with one or more processor sets.
  • control unit 120 may be composed of a set of a communication control processor, an application processor, an electronic control unit (ECU), a graphic processing processor, and a memory control processor.
  • memory unit 130 includes random access memory (RAM), dynamic RAM (DRAM), read only memory (ROM), flash memory, volatile memory, and non-volatile memory. volatile memory) and/or a combination thereof.
  • wireless communication technologies implemented in the wireless devices 100 and 200 of the present specification may include LTE, NR, and 6G, as well as Narrowband Internet of Things for low-power communication.
  • the NB-IoT technology may be an example of a Low Power Wide Area Network (LPWAN) technology, and may be implemented in a standard such as LTE Cat NB1 and/or LTE Cat NB2, and limited to the above name no.
  • the wireless communication technology implemented in the wireless devices 100 and 200 of the present specification may perform communication based on the LTE-M technology.
  • the LTE-M technology may be an example of an LPWAN technology, and may be referred to by various names such as enhanced machine type communication (eMTC).
  • eMTC enhanced machine type communication
  • LTE-M technology is 1) LTE CAT 0, 2) LTE Cat M1, 3) LTE Cat M2, 4) LTE non-Bandwidth Limited (BL), 5) LTE-MTC, 6) LTE Machine Type Communication, and/or 7) may be implemented in at least one of various standards such as LTE M, and is not limited to the above-described name.
  • the wireless communication technology implemented in the wireless devices 100 and 200 of the present specification includes at least one of ZigBee, Bluetooth, and Low Power Wide Area Network (LPWAN) in consideration of low power communication. Any one may be included, and the name is not limited to the above.
  • ZigBee technology can create personal area networks (PANs) related to small/low-power digital communication based on various standards such as IEEE 802.15.4, and may be referred to by various names.
  • PANs personal area networks
  • the vehicle or autonomous vehicle may be implemented as a mobile robot, a vehicle, a train, an aerial vehicle (AV), a ship, or the like.
  • AV aerial vehicle
  • the vehicle or autonomous vehicle 100 includes an antenna unit 108, a communication unit 110, a control unit 120, a driving unit 140a, a power supply unit 140b, a sensor unit 140c, and autonomous driving. It may include a unit (140d).
  • the antenna unit 108 may be configured as a part of the communication unit 110.
  • Blocks 110/130/140a to 140d correspond to blocks 110/130/140 of FIG. 19, respectively.
  • the communication unit 110 may transmit and receive signals (eg, data, control signals, etc.) with external devices such as other vehicles, base stations (e.g. base stations, roadside base stations, etc.), and servers.
  • the controller 120 may perform various operations by controlling elements of the vehicle or the autonomous vehicle 100.
  • the control unit 120 may include an Electronic Control Unit (ECU).
  • the driving unit 140a may cause the vehicle or the autonomous vehicle 100 to travel on the ground.
  • the driving unit 140a may include an engine, a motor, a power train, a wheel, a brake, a steering device, and the like.
  • the power supply unit 140b supplies power to the vehicle or the autonomous vehicle 100, and may include a wired/wireless charging circuit, a battery, and the like.
  • the sensor unit 140c may obtain vehicle status, surrounding environment information, user information, and the like.
  • the sensor unit 140c is an IMU (inertial measurement unit) sensor, a collision sensor, a wheel sensor, a speed sensor, an inclination sensor, a weight detection sensor, a heading sensor, a position module, and a vehicle advancement. /Reverse sensor, battery sensor, fuel sensor, tire sensor, steering sensor, temperature sensor, humidity sensor, ultrasonic sensor, illuminance sensor, pedal position sensor, etc. can be included.
  • the autonomous driving unit 140d is a technology that maintains a driving lane, a technology that automatically adjusts the speed such as adaptive cruise control, a technology that automatically travels along a predetermined route, and automatically sets a route when a destination is set. Technology, etc. can be implemented.
  • the communication unit 110 may receive map data, traffic information data, and the like from an external server.
  • the autonomous driving unit 140d may generate an autonomous driving route and a driving plan based on the acquired data.
  • the controller 120 may control the driving unit 140a so that the vehicle or the autonomous vehicle 100 moves along the autonomous driving path according to the driving plan (eg, speed/direction adjustment).
  • the communication unit 110 asynchronously/periodically acquires the latest traffic information data from an external server, and may acquire surrounding traffic information data from surrounding vehicles.
  • the sensor unit 140c may acquire vehicle status and surrounding environment information.
  • the autonomous driving unit 140d may update the autonomous driving route and the driving plan based on the newly acquired data/information.
  • the communication unit 110 may transmit information about a vehicle location, an autonomous driving route, a driving plan, and the like to an external server.
  • the external server may predict traffic information data in advance using AI technology or the like based on information collected from the vehicle or autonomously driving vehicles, and may provide the predicted traffic information data to the vehicle or autonomously driving vehicles.
  • the present invention can be used in a terminal, a base station, or other equipment of a wireless mobile communication system.

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Physics & Mathematics (AREA)
  • Mathematical Physics (AREA)
  • Discrete Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Security & Cryptography (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

본 발명은 무선 통신 시스템에 관한 것으로서, 구체적으로 SS/PBCH 블록을 검출하되, 상기 SS/PBCH 블록은 PBCH 페이로드 및 PBCH DMRS를 포함하는 단계; 및 상기 PBCH DMRS의 특성에 기반하여, 복수의 WF 방식 중 어느 하나의 WF에 기반하여 상기 PBCH 페이로드를 처리하는 단계를 포함하고, 상기 복수의 WF는 적어도 CP-OFDM 방식과 DFT-s-OFDM 방식을 포함하는 방법 및 이를 위한 장치에 관한 것이다.

Description

무선 통신 시스템에서 무선 신호 송수신 방법 및 장치
본 발명은 무선 통신 시스템에 관한 것으로, 보다 상세하게는 무선 신호 송수신 방법 및 장치에 관한 것이다.
무선 통신 시스템이 음성이나 데이터 등과 같은 다양한 종류의 통신 서비스를 제공하기 위해 광범위하게 전개되고 있다. 일반적으로 무선통신 시스템은 가용한 시스템 자원(대역폭, 전송 파워 등)을 공유하여 다중 사용자와의 통신을 지원할 수 있는 다중 접속(multiple access) 시스템이다. 다중 접속 시스템의 예들로는 CDMA(code division multiple access) 시스템, FDMA(frequency division multiple access) 시스템, TDMA(time division multiple access) 시스템, OFDMA(orthogonal frequency division multiple access) 시스템, SC-FDMA(single carrier frequency division multiple access) 시스템 등이 있다.
본 발명의 목적은 무선 신호 송수신 과정을 효율적으로 수행하는 방법 및 이를 위한 장치를 제공하는데 있다.
본 발명에서 이루고자 하는 기술적 과제들은 상기 기술적 과제로 제한되지 않으며, 언급하지 않은 또 다른 기술적 과제들은 아래의 기재로부터 본 발명이 속하는 기술분야에서 통상의 지식을 가진 자에게 명확하게 이해될 수 있을 것이다.
본 발명의 제1 양상으로, 무선 통신 시스템에서 단말이 통신을 수행하는 방법에 있어서, SS/PBCH(Synchronization Signal/Physical Broadcast Channel) 블록을 검출하되, 상기 SS/PBCH 블록은 PBCH 페이로드 및 PBCH DMRS(Demodulation Reference signal)를 포함하는 단계; 및 상기 PBCH DMRS의 특성에 기반하여, 복수의 WF(Waveform) 방식 중 어느 하나의 WF에 기반하여 상기 PBCH 페이로드를 처리하는 단계를 포함하고, 상기 복수의 WF는 적어도 CP-OFDM(Cyclic Prefix Orthogonal Frequency Division Multiplexing) 방식과 DFT-s-OFDM(Discrete Fourier Transform-spread- OFDM) 방식을 포함하는 방법이 제공된다.
본 발명의 제2 양상으로, 무선 통신 시스템에 사용되는 단말에 있어서, 적어도 하나의 프로세서; 및 상기 적어도 하나의 프로세서와 동작 가능하게 연결되고, 실행될 때, 상기 적어도 하나의 프로세서가 동작을 수행하도록 하는 적어도 하나의 컴퓨터 메모리를 포함하는 단말이 제공되며, 상기 동작은 다음을 포함한다: SS/PBCH(Synchronization Signal/Physical Broadcast Channel) 블록을 검출하되, 상기 SS/PBCH 블록은 PBCH 페이로드 및 PBCH DMRS(Demodulation Reference signal)를 포함하는 것과, 상기 PBCH DMRS의 특성에 기반하여, 복수의 WF(Waveform) 방식 중 어느 하나의 WF에 기반하여 상기 PBCH 페이로드를 처리하되, 상기 복수의 WF는 적어도 CP-OFDM(Cyclic Prefix Orthogonal Frequency Division Multiplexing) 방식과 DFT-s-OFDM(Discrete Fourier Transform-spread- OFDM) 방식을 포함한다.
본 발명의 제3 양상으로, 단말을 위한 장치에 있어서, 적어도 하나의 프로세서; 및 상기 적어도 하나의 프로세서와 동작 가능하게 연결되고, 실행될 때, 상기 적어도 하나의 프로세서가 동작을 수행하도록 하는 적어도 하나의 컴퓨터 메모리를 포함하는 장치가 제공되며, 상기 동작은 다음을 포함한다: SS/PBCH(Synchronization Signal/Physical Broadcast Channel) 블록을 검출하되, 상기 SS/PBCH 블록은 PBCH 페이로드 및 PBCH DMRS(Demodulation Reference signal)를 포함하는 것과, 상기 PBCH DMRS의 특성에 기반하여, 복수의 WF(Waveform) 방식 중 어느 하나의 WF에 기반하여 상기 PBCH 페이로드를 처리하되, 상기 복수의 WF는 적어도 CP-OFDM(Cyclic Prefix Orthogonal Frequency Division Multiplexing) 방식과 DFT-s-OFDM(Discrete Fourier Transform-spread- OFDM) 방식을 포함한다.
본 발명의 제4 양상으로, 실행될 때, 상기 적어도 하나의 프로세서가 동작을 수행하도록 하는 적어도 하나의 컴퓨터 프로그램을 포함하는 컴퓨터 판독가능한 저장 매체가 제공되며, 상기 동작은 다음을 포함한다: SS/PBCH(Synchronization Signal/Physical Broadcast Channel) 블록을 검출하되, 상기 SS/PBCH 블록은 PBCH 페이로드 및 PBCH DMRS(Demodulation Reference signal)를 포함하는 것과, 상기 PBCH DMRS의 특성에 기반하여, 복수의 WF(Waveform) 방식 중 어느 하나의 WF에 기반하여 상기 PBCH 페이로드를 처리하되, 상기 복수의 WF는 적어도 CP-OFDM(Cyclic Prefix Orthogonal Frequency Division Multiplexing) 방식과 DFT-s-OFDM(Discrete Fourier Transform-spread- OFDM) 방식을 포함한다.
바람직하게, 상기 PBCH DMRS가 존재하는 RE들은 주파수 도메인에서 N개 RE(Resource Element) 간격을 가지며(N은 1보다 큰 정수), 상기 PBCH DMRS의 특성은 상기 PBCH DMRS에 적용된 주파수 쉬프트 값을 포함할 수 있다.
바람직하게, 상기 PBCH DMRS의 특성은 DMRS 시퀀스를 생성하는데 사용되는 파라미터를 포함할 수 있다.
바람직하게, 상기 PBCH DMRS의 특성은 상기 DMRS 시퀀스를 생성하는데 사용되는 초기화 값을 포함할 수 있다.
바람직하게, 상기 PBCH 페이로드를 CP-OFDM 방식에 따라 처리하는 것에 기반하여, 상기 PBCH 페이로드에 적용되는 DFT 사이즈는 상기 SS/PBCH 블록이 위치하는 동기화 래스터에 대해 정의된 최소 대역에 대응하는 값으로 가정될 수 있다.
본 발명에 의하면, 무선 통신 시스템에서 무선 신호 송수신을 효율적으로 수행할 수 있다.
본 발명에서 얻은 수 있는 효과는 이상에서 언급한 효과들로 제한되지 않으며, 언급하지 않은 또 다른 효과들은 아래의 기재로부터 본 발명이 속하는 기술분야에서 통상의 지식을 가진 자에게 명확하게 이해될 수 있을 것이다.
본 발명에 관한 이해를 돕기 위해 상세한 설명의 일부로 포함되는, 첨부 도면은 본 발명에 대한 실시예를 제공하고, 상세한 설명과 함께 본 발명의 기술적 사상을 설명한다.
도 1은 무선 통신 시스템의 일례인 3GPP 시스템에 이용되는 물리 채널들 및 이들을 이용한 일반적인 신호 전송 방법을 예시한다.
도 2는 무선 프레임(radio frame)의 구조를 예시한다.
도 3은 슬롯의 자원 그리드(resource grid)를 예시한다.
도 4~5는 SSB(SS/PBCH block) 구조를 예시한다.
도 6은 RACH(Random Access Channel) 과정을 예시한다.
도 7은 슬롯 내에 물리 채널이 매핑되는 예를 도시한다.
도 8은 ACK/NACK 전송 과정을 예시한다.
도 9는 PUSCH(Physical Uplink Shared Channel) 전송 과정을 예시한다.
도 10~11은 송신기/수신기의 구조를 예시한다.
도 12~14는 DFT-s-OFDM(Discrete Fourier Transformation-Spread-Orthogonal Frequency Division Multiplexing) 처리를 예시한다.
도 15~16은 본 발명에 따른 신호 송수신 과정을 예시한다.
도 17~20은 본 발명에 적용되는 통신 시스템(1)과 무선 기기를 예시한다.
이하의 기술은 CDMA(code division multiple access), FDMA(frequency division multiple access), TDMA(time division multiple access), OFDMA(orthogonal frequency division multiple access), SC-FDMA(single carrier frequency division multiple access) 등과 같은 다양한 무선 접속 시스템에 사용될 수 있다. CDMA는 UTRA(Universal Terrestrial Radio Access)나 CDMA2000과 같은 무선 기술(radio technology)로 구현될 수 있다. TDMA는 GSM(Global System for Mobile communications)/GPRS(General Packet Radio Service)/EDGE(Enhanced Data Rates for GSM Evolution)와 같은 무선 기술로 구현될 수 있다. OFDMA는 IEEE 802.11 (Wi-Fi), IEEE 802.16 (WiMAX), IEEE 802-20, E-UTRA(Evolved UTRA) 등과 같은 무선 기술로 구현될 수 있다. UTRA는 UMTS(Universal Mobile Telecommunications System)의 일부이다. 3GPP(3rd Generation Partnership Project) LTE(long term evolution)은 E-UTRA를 사용하는 E-UMTS(Evolved UMTS)의 일부이고 LTE-A(Advanced)는 3GPP LTE의 진화된 버전이다. 3GPP NR(New Radio or New Radio Access Technology)는 3GPP LTE/LTE-A의 진화된 버전이다.
더욱 많은 통신 기기들이 더욱 큰 통신 용량을 요구하게 됨에 따라 기존의 RAT(Radio Access Technology)에 비해 향상된 모바일 브로드밴드 통신에 대한 필요성이 대두되고 있다. 또한, 다수의 기기 및 사물들을 연결하여 언제 어디서나 다양한 서비스를 제공하는 massive MTC(Machine Type Communications)도 차세대 통신에서 고려될 주요 이슈 중 하나이다. 또한, 신뢰도(reliability) 및 지연(latency)에 민감한 서비스/단말을 고려한 통신 시스템 디자인이 논의되고 있다. 이와 같이 eMBB(enhanced Mobile BroadBand Communication), massive MTC, URLLC (Ultra-Reliable and Low Latency Communication) 등을 고려한 차세대 RAT의 도입이 논의되고 있으며, 본 발명에서는 편의상 해당 기술을 NR(New Radio 또는 New RAT)이라고 부른다.
설명을 명확하게 하기 위해, 3GPP NR을 위주로 기술하지만 본 발명의 기술적 사상이 이에 제한되는 것은 아니다.
무선 통신 시스템에서 단말은 기지국으로부터 하향링크(Downlink, DL)를 통해 정보를 수신하고, 단말은 기지국으로 상향링크(Uplink, UL)를 통해 정보를 전송한다. 기지국과 단말이 송수신하는 정보는 데이터 및 다양한 제어 정보를 포함하고, 이들이 송수신 하는 정보의 종류/용도에 따라 다양한 물리 채널이 존재한다.
도 1은 3GPP NR 시스템에 이용되는 물리 채널들 및 이들을 이용한 일반적인 신호 전송 방법을 설명하기 위한 도면이다.
전원이 꺼진 상태에서 다시 전원이 켜지거나, 새로이 셀에 진입한 단말은 단계 S101에서 기지국과 동기를 맞추는 등의 초기 셀 탐색(Initial cell search) 작업을 수행한다. 이를 위해 단말은 기지국으로부터 SSB(Synchronization Signal Block)를 수신한다. SSB는 PSS(Primary Synchronization Signal), SSS(Secondary Synchronization Signal) 및 PBCH(Physical Broadcast Channel)를 포함한다. 단말은 PSS/SSS에 기반하여 기지국과 동기를 맞추고, 셀 ID(cell identity) 등의 정보를 획득한다. 또한, 단말은 PBCH에 기반하여 셀 내 방송 정보를 획득할 수 있다. 한편, 단말은 초기 셀 탐색 단계에서 하향링크 참조 신호(Downlink Reference Signal, DL RS)를 수신하여 하향링크 채널 상태를 확인할 수 있다.
초기 셀 탐색을 마친 단말은 단계 S102에서 물리 하향링크 제어 채널(Physical Downlink Control Channel, PDCCH) 및 물리 하향링크 제어 채널 정보에 따른 물리 하향링크 공유 채널(Physical Downlink Control Channel, PDSCH)을 수신하여 좀더 구체적인 시스템 정보를 획득할 수 있다.
이후, 단말은 기지국에 접속을 완료하기 위해 단계 S103 내지 단계 S106과 같은 임의 접속 과정(Random Access Procedure)을 수행할 수 있다. 이를 위해 단말은 물리 임의 접속 채널(Physical Random Access Channel, PRACH)을 통해 프리앰블(preamble)을 전송하고(S103), 물리 하향링크 제어 채널 및 이에 대응하는 물리 하향링크 공유 채널을 통해 프리앰블에 대한 응답 메시지를 수신할 수 있다(S104). 경쟁 기반 임의 접속(Contention based random access)의 경우 추가적인 물리 임의 접속 채널의 전송(S105) 및 물리 하향링크 제어 채널 및 이에 대응하는 물리 하향링크 공유 채널 수신(S106)과 같은 충돌 해결 절차(Contention Resolution Procedure)를 수행할 수 있다.
상술한 바와 같은 절차를 수행한 단말은 이후 일반적인 상향/하향링크 신호 전송 절차로서 물리 하향링크 제어 채널/물리 하향링크 공유 채널 수신(S107) 및 물리 상향링크 공유 채널(Physical Uplink Shared Channel, PUSCH)/물리 상향링크 제어 채널(Physical Uplink Control Channel, PUCCH) 전송(S108)을 수행할 수 있다. 단말이 기지국으로 전송하는 제어 정보를 통칭하여 상향링크 제어 정보(Uplink Control Information, UCI)라고 지칭한다. UCI는 HARQ ACK/NACK(Hybrid Automatic Repeat and reQuest Acknowledgement/Negative-ACK), SR(Scheduling Request), CSI(Channel State Information) 등을 포함한다. CSI는 CQI(Channel Quality Indicator), PMI(Precoding Matrix Indicator), RI(Rank Indication) 등을 포함한다. UCI는 일반적으로 PUCCH를 통해 전송되지만, 제어 정보와 트래픽 데이터가 동시에 전송되어야 할 경우 PUSCH를 통해 전송될 수 있다. 또한, 네트워크의 요청/지시에 의해 PUSCH를 통해 UCI를 비주기적으로 전송할 수 있다.
도 2는 무선 프레임(radio frame)의 구조를 예시한다. NR에서 상향링크 및 하향링크 전송은 프레임으로 구성된다. 각 무선 프레임은 10ms의 길이를 가지며, 두 개의 5ms 하프-프레임(Half-Frame, HF)으로 분할된다. 각 하프-프레임은 5개의 1ms 서브프레임(Subframe, SF)으로 분할된다. 서브프레임은 하나 이상의 슬롯으로 분할되며, 서브프레임 내 슬롯 개수는 SCS(Subcarrier Spacing)에 의존한다. 각 슬롯은 CP(cyclic prefix)에 따라 12개 또는 14개의 OFDM(Orthogonal Frequency Division Multiplexing) 심볼을 포함한다. 보통(normal) CP가 사용되는 경우, 각 슬롯은 14개의 OFDM 심볼을 포함한다. 확장(extended) CP가 사용되는 경우, 각 슬롯은 12개의 OFDM 심볼을 포함한다.
표 1은 보통 CP가 사용되는 경우, SCS에 따라 슬롯 별 심볼의 개수, 프레임 별 슬롯의 개수와 서브프레임 별 슬롯의 개수가 달라지는 것을 예시한다.
SCS (15*2^u) N slot symb N frame,u slot N subframe,u slot
15KHz (u=0) 14 10 1
30KHz (u=1) 14 20 2
60KHz (u=2) 14 40 4
120KHz (u=3) 14 80 8
240KHz (u=4) 14 160 16
* N slot symb: 슬롯 내 심볼의 개수
* N frame,u slot: 프레임 내 슬롯의 개수
* N subframe,u slot: 서브프레임 내 슬롯의 개수
표 2는 확장 CP가 사용되는 경우, SCS에 따라 슬롯 별 심볼의 개수, 프레임 별 슬롯의 개수와 서브프레임 별 슬롯의 개수가 달라지는 것을 예시한다.
SCS (15*2^u) N slot symb N frame,u slot N subframe,u slot
60KHz (u=2) 12 40 4
프레임의 구조는 예시에 불과하고, 프레임에서 서브프레임의 수, 슬롯의 수, 심볼의 수는 다양하게 변경될 수 있다.
NR 시스템에서는 하나의 단말에게 병합되는 복수의 셀들간에 OFDM 뉴모놀로지(numerology)(예, SCS)가 상이하게 설정될 수 있다. 이에 따라, 동일한 개수의 심볼로 구성된 시간 자원(예, SF, 슬롯 또는 TTI)(편의상, TU(Time Unit)로 통칭)의 (절대 시간) 구간이 병합된 셀들간에 상이하게 설정될 수 있다. 여기서, 심볼은 OFDM 심볼 (혹은, CP-OFDM 심볼), SC-FDMA 심볼 (혹은, Discrete Fourier Transform-spread-OFDM, DFT-s-OFDM 심볼)을 포함할 수 있다.
NR은 다양한 5G 서비스들을 지원하기 위한 다수의 numerology(또는 subcarrier spacing(SCS))를 지원한다. 예를 들어, SCS가 15kHz인 경우, 전통적인 셀룰러 밴드들에서의 넓은 영역(wide area)를 지원하며, SCS가 30kHz/60kHz인 경우, 밀집한-도시(dense-urban), 더 낮은 지연(lower latency) 및 더 넓은 캐리어 대역폭(wider carrier bandwidth)를 지원하며, SCS가 60kHz 또는 그보다 높은 경우, 위상 잡음(phase noise)를 극복하기 위해 24.25GHz보다 큰 대역폭을 지원한다.
NR 주파수 밴드(frequency band)는 2가지 type(FR1, FR2)의 주파수 범위(frequency range)로 정의된다. FR1, FR2는 아래 표 3과 같이 구성될 수 있다. 또한, FR2는 밀리미터 웨이브(millimeter wave, mmW)를 의미할 수 있다.
Frequency Rangedesignation Corresponding frequency range Subcarrier Spacing
FR1 450MHz - 7125MHz 15, 30, 60kHz
FR2 24250MHz - 52600MHz 60, 120, 240kHz
도 3은 슬롯의 자원 그리드(resource grid)를 예시한다. 슬롯은 시간 도메인에서 복수의 심볼을 포함한다. 예를 들어, 보통 CP의 경우 하나의 슬롯이 14개의 심볼을 포함하나, 확장 CP의 경우 하나의 슬롯이 12개의 심볼을 포함한다. 반송파는 주파수 도메인에서 복수의 부반송파를 포함한다. RB(Resource Block)는 주파수 도메인에서 복수(예, 12)의 연속한 부반송파로 정의된다. BWP(Bandwidth Part)는 주파수 도메인에서 복수의 연속한 PRB(Physical RB)로 정의되며, 하나의 뉴모놀로지(numerology)(예, SCS, CP 길이 등)에 대응될 수 있다. 반송파는 최대 N개(예, 5개)의 BWP를 포함할 수 있다. 데이터 통신은 활성화된 BWP를 통해서 수행되며, 하나의 단말한테는 하나의 BWP만 활성화 될 수 있다. 자원 그리드에서 각각의 요소는 자원요소(Resource Element, RE)로 지칭되며, 하나의 복소 심볼이 매핑될 수 있다.
도 4는 SSB(Synchronization Signal Block) 구조를 예시한다. 단말은 SSB에 기반하여 셀 탐색(search), 시스템 정보 획득, 초기 접속을 위한 빔 정렬, DL 측정 등을 수행할 수 있다. SSB는 SS/PBCH(Synchronization Signal/Physical Broadcast channel) 블록과 혼용된다. SSB는 PSS, SSS와 PBCH로 구성된다. SSB는 4개의 연속된 OFDM 심볼에 구성되며, OFDM 심볼 별로 PSS, PBCH, SSS/PBCH 및 PBCH가 전송된다. PSS와 SSS는 각각 1개의 OFDM 심볼과 127개의 부반송파로 구성되고, PBCH는 3개의 OFDM 심볼과 576개의 부반송파로 구성된다. PBCH에는 폴라 코딩 및 QPSK(Quadrature Phase Shift Keying)이 적용된다.
셀 탐색 과정에서 단말은 셀의 시간/주파수 동기를 획득하고, 해당 셀의 셀 ID(Identifier)(예, Physical layer Cell ID, PCID)를 획득할 수 있다. PSS는 셀 ID 그룹 내에서 셀 ID를 검출하는데 사용되고, SSS는 셀 ID 그룹을 검출하는데 사용된다. PBCH는 SSB (시간) 인덱스 검출 및 하프-프레임 검출에 사용된다.
336개의 셀 ID 그룹이 존재하고, 셀 ID 그룹 별로 3개의 셀 ID가 존재한다. 총 1008개의 셀 ID가 존재하며, 셀 ID는 수학식 1에 의해 정의될 수 있다.
[수학식 1]
N cell ID = 3N (1) ID + N (2) ID 여기서, N (1) ID∈{0,1,...,335} 및 N (2) ID∈{0,1,2}
여기서, N cell ID는 셀 ID(예, PCID)를 나타낸다. N (1) ID는 셀 ID 그룹을 나타내며 SSS를 통해 제공/획득된다. N (2) ID는 셀 ID 그룹 내의 셀 ID를 나타내며 PSS를 통해 제공/획득된다.
PSS 시퀀스 d PSS(n)는 수학식 2를 만족하도록 정의될 수 있다.
[수학식 2]
d SSS(n)=1-2x(m)
m=(n+43N (2) ID) mod 127, 0≤n<127, 여기서,
x(i+7)=(x(i+4)+x(i)) mod 2이고,
[x(6) x(5) x(4) x(3) x(2) x(1) x(0)] = [1 1 1 0 1 1 0]이다.
SSS 시퀀스 d SSS(n)는 수학식 3을 만족하도록 정의될 수 있다.
[수학식 3]
d SSS(n)=[1-2x 0((n+m 0) mod 127)][1-2x 1((n+m 1) mod 127)]
m 0=15*flooring(N (1) ID/112) + 5N (2) ID
m 1=N (1) ID mod 112, 0≤n<127
x 0(i+7)=(x 0(i+4)+x 0(i)) mod 2
x 1(i+7)=(x 0(i+1)+x 1(i)) mod 2
[x 0(6) x 0(5) x 0(4) x 0(3) x 0(2) x 0(1) x 0(0)] = [0 0 0 0 0 0 1], 및
[x 1(6) x 1(5) x 1(4) x 1(3) x 1(2) x 1(1) x 1(0)] = [0 0 0 0 0 0 1]이다.
도 5는 SSB 내 PBCH DMRS(Demodulation Reference Signal) 구조를 예시한다. 도 5를 참조하면, PBCH는 OFDM 심볼마다 데이터 RE와 DMRS(Demodulation Reference Signal) RE로 구성된다. RB 별로 3개의 DMRS RE가 존재하며, DMRS RE 사이에는 3개의 데이터 RE가 존재한다. DMRS 시퀀스는 QPSK-변조된 골드 시퀀스로 구성된다.
수학식 4는 DMRS 시퀀스를 예시한다
[수학식 4]
Figure PCTKR2020011246-appb-img-000001
여기서, c()는 수학식 5의 길이-31 골드 시퀀스로 정의된다.
[수학식 5]
Figure PCTKR2020011246-appb-img-000002
여기서, Nc=1600이고, 첫 번째 m-시퀀스 x 1(n)와 두 번째 m-시퀀스 x 2(n)은 수학식 6의 값으로 초기화된다.
[수학식 6]
Figure PCTKR2020011246-appb-img-000003
여기서, PBCH DMRS의 경우, c init는 수학식 7에 의해 정의된다.
[수학식 7]
Figure PCTKR2020011246-appb-img-000004
여기서, N cell ID는 (물리) 셀 ID를 나타내고,
Figure PCTKR2020011246-appb-img-000005
는 SSB 인덱스와 관련된 3-비트 값을 나타낸다.
SSB 내의 각 OFDM 심볼에서 PBCH DMRS는 다음과 같이 매핑된다. 심볼/부반송파 인덱스는 도 4를 참조할 수 있다.
DM-RS for PBCH SSB 내 심볼 인덱스 OFDM 심볼 내 부반송파 인덱스
1, 3 0+v, 4+v, 8+v, ..., 236+v
2 0+v, 4+v, 8+v, ..., 44+v192+v, 196+v, 236+v
여기서, PBCH DMRS RE는 셀 ID에 기반하여 주파수 쉬프트 된다. 예를 들어, v shift (v) = N cell ID mod 4로 정의될 수 있다. mod는 모듈로 연산을 나타낸다.
PBCH DMRS에 관해 보다 자세한 사항은 본 발명의 우선일 이전에 공개된 3GPP TS 38.211 Rel-15 (2019-12), Section 7.4.1.4를 참조할 수 있다.
랜덤 접속 과정은 다양한 용도로 사용된다. 예를 들어, 랜덤 접속 과정은 네트워크 초기 접속, 핸드오버, 단말-트리거드(triggered) UL 데이터 전송에 사용될 수 있다. 단말은 랜덤 접속 과정을 통해 UL 동기와 UL 전송 자원을 획득할 수 있다. 랜덤 접속 과정은 충돌 기반(contention-based) 과정과 비-충돌 기반(non-contention based 또는 dedicated) 과정으로 구분된다. 랜덤 접속 과정은 RACH(Random Access Channel) 과정과 혼용된다.
도 6은 충돌 기반 랜덤 접속 과정을 예시한다.
도 6을 참조하면, 단말은 시스템 정보를 통해 기지국으로부터 랜덤 접속에 관한 정보를 수신한다. 그 후, 랜덤 접속이 필요하면, 단말은 랜덤 접속 프리앰블 (메시지 1)을 기지국으로 전송한다(S710). 기지국이 단말로부터 랜덤 접속 프리앰블을 수신하면, 기지국은 랜덤 접속 응답(Random Access Response, RAR) 메시지 (메시지 2)를 단말에게 전송한다(S720). 구체적으로, 랜덤 접속 응답 메시지에 대한 스케줄링 정보는 RA-RNTI(Random Access-RNTI)로 CRC 마스킹 되어 L1/L2 제어채널(PDCCH) 상에서 전송될 수 있다. RA-RNTI로 마스킹된 PDCCH는 공통 검색 공간(common search space)를 통해서만 전송될 수 있다. RA-RNTI로 마스킹된 스케줄링 신호를 수신한 경우, 단말은 상기 스케줄링 정보가 지시하는 PDSCH로부터 랜덤 접속 응답 메시지를 수신할 수 있다. 그 후, 단말은 랜덤 접속 응답 메시지에 자신에게 지시된 랜덤 접속 응답 정보가 있는지 확인한다. 자신에게 지시된 랜덤 접속 응답 정보가 존재하는지 여부는 단말이 전송한 프리앰블에 대한 RAID(Random Access preamble ID)가 존재하는지 여부로 확인될 수 있다. 랜덤 접속 응답 정보는 UL 동기화를 위한 타이밍 옵셋 정보(예, Timing Advance Command, TAC), UL 스케줄링 정보(예, UL 그랜트) 및 단말 임시 식별 정보(예, Temporary-C-RNTI, TC-RNTI)를 포함한다. 랜덤 접속 응답 정보를 수신한 경우, 단말은 UL 스케줄링 정보에 따라 PUSCH를 통해 UL-SCH(Shared Channel) 데이터 (메시지 3)를 전송한다(S730). UL-SCH 데이터 수신 후, 기지국은 충돌 해결(contention resolution) 메시지 (메시지 4)를 단말에게 전송한다(S740).
도 7은 슬롯 내에 물리 채널이 매핑되는 예를 도시한다. NR 시스템에서 프레임은 하나의 슬롯 내에 DL 제어 채널, DL 또는 UL 데이터, UL 제어 채널 등이 모두 포함될 수 있는 자기-완비 구조를 특징으로 한다. 예를 들어, 슬롯 내의 처음 N개의 심볼은 DL 제어 채널(예, PDCCH)을 전송하는데 사용되고(이하, DL 제어 영역), 슬롯 내의 마지막 M개의 심볼은 UL 제어 채널(예, PUCCH)을 전송하는데 사용될 수 있다(이하, UL 제어 영역). N과 M은 각각 0 이상의 정수이다. DL 제어 영역과 UL 제어 영역의 사이에 있는 자원 영역(이하, 데이터 영역)은 DL 데이터(예, PDSCH) 전송을 위해 사용되거나, UL 데이터(예, PUSCH) 전송을 위해 사용될 수 있다. GP는 기지국과 단말이 송신 모드에서 수신 모드로 전환하는 과정 또는 수신 모드에서 송신 모드로 전환하는 과정에서 시간 갭을 제공한다. 서브프레임 내에서 DL에서 UL로 전환되는 시점의 일부 심볼이 GP로 설정될 수 있다.
PDCCH는 DCI(Downlink Control Information)를 운반한다. 예를 들어, PCCCH (즉, DCI)는 DL-SCH(downlink shared channel)의 전송 포맷 및 자원 할당, UL-SCH(uplink shared channel)에 대한 자원 할당 정보, PCH(paging channel)에 대한 페이징 정보, DL-SCH 상의 시스템 정보, PDSCH 상에서 전송되는 랜덤 접속 응답과 같은 상위 계층 제어 메시지에 대한 자원 할당 정보, 전송 전력 제어 명령, CS(Configured Scheduling)의 활성화/해제 등을 나른다.
DCI 내의 정보에 따라 다양한 DCI 포맷이 제공된다.
표 5는 PDCCH를 통해 전송되는 DCI 포맷들을 예시한다.
DCI format Usage
0_0 Scheduling of PUSCH in one cell
0_1 Scheduling of PUSCH in one cell
1_0 Scheduling of PDSCH in one cell
1_1 Scheduling of PDSCH in one cell
2_0 Notifying a group of UEs of the slot format
2_1 Notifying a group of UEs of the PRB(s) and OFDM symbol(s) where UE may assume no transmission is intended for the UE
2_2 Transmission of TPC commands for PUCCH and PUSCH
2_3 Transmission of a group of TPC commands for SRS transmissions by one or more UEs
DCI는 CRC(cyclic redundancy check)를 포함하며, CRC는 PDCCH의 소유자 또는 사용 용도에 따라 다양한 식별자(예, Radio Network Temporary Identifier, RNTI)로 마스킹/스크램블 된다. 예를 들어, PDCCH가 특정 단말을 위한 것이면, CRC는 단말 식별자(예, Cell-RNTI, C-RNTI)로 마스킹 된다. PDCCH가 페이징에 관한 것이면, CRC는 P-RNTI(Paging-RNTI)로 마스킹 된다. PDCCH가 시스템 정보(예, System Information Block, SIB)에 관한 것이면, CRC는 SI-RNTI(System Information RNTI)로 마스킹 된다. PDCCH가 랜덤 접속 응답에 관한 것이면, CRC는 RA-RNTI(Random Access-RNTI)로 마스킹 된다.
표 6은 RNTI에 따른 PDCCH의 용도 및 전송 채널을 예시한다. 전송 채널은 PDCCH에 의해 스케줄링된 PDSCH/PUSCH가 운반하는 데이터와 관련된 전송 채널을 나타낸다.
RNTI Usage Transport Channel
P-RNTI Paging and System Information change notification PCH(Paging Channel)
SI-RNTI Broadcast of System Information DL-SCH
RA-RNTI Random Access Response DL-SCH
C-RNTI Dynamically scheduled unicast transmission UL-SCH, DL-SCH
SFI (Slot Format Indication)-RNTI Slot Format Indication on the given cell N/A
PDCCH의 변조 방식은 고정돼 있으며(예, Quadrature Phase Shift Keying, QPSK), 하나의 PDCCH는 AL(Aggregation Level)에 따라 1, 2, 4, 8, 16 개의 CCE(Control Channel Element)로 구성된다. 하나의 CCE는 6개의 REG(Resource Element Group)로 구성된다. 하나의 REG는 하나의 OFDMA 심볼과 하나의 (P)RB로 정의된다. PDCCH는 CORESET(Control Resource Set)를 통해 전송된다. CORESET는 BWP 내에서 PDCCH/DCI를 운반하는데 사용되는 물리 자원/파라미터 세트에 해당한다. PDCCH 수신을 위해, 단말은 CORESET에서 PDCCH 후보들의 세트를 모니터링(예, 블라인드 디코딩)을 할 수 있다. PDCCH 후보는 PDCCH 수신/검출을 위해 단말이 모니터링 하는 CCE(들) 을 나타낸다. PDCCH 모니터링은 PDCCH 모니터링이 설정된 각각의 활성화된 셀 상의 활성 DL BWP 상의 하나 이상의 CORESET에서 수행될 수 있다. 단말이 모니터링 하는 PDCCH 후보들의 세트는 PDCCH 검색 공간(Search Space, SS) 세트로 정의된다. SS 세트는 공통 검색 공간(Common Search Space, CSS) 세트 또는 단말-특정 검색 공간(UE-specific Search Space, USS) 세트일 수 있다.
표 7은 PDCCH 검색 공간을 예시한다.
Search Space Type RNTI Use Case
Type0-PDCCH Common SI-RNTI on a primary cell Broadcast of System Information
Type0A-PDCCH Common SI-RNTI on a primary cell Broadcast of System Information
Type1-PDCCH Common RA-RNTI or TC-RNTI on a primary cell Msg2, Msg4 in RACH
Type2-PDCCH Common P-RNTI on a primary cell Paging System Information change notification
Type3-PDCCH Common INT-RNTI, SFI-RNTI, TPC-PUSCH-RNTI, TPC-PUCCH-RNTI, TPC-SRS-RNTI, C-RNTI, MCS-C-RNTI or CS-RNTI Group signaling
UE Specific UE Specific C-RNTI, MCS-C-RNTI or CS-RNTI UE signaling (e.g., PDSCH/PUSCH)
PUCCH는 UCI(Uplink Control Information)를 나른다. UCI는 다음을 포함한다.
- SR(Scheduling Request): UL-SCH 자원을 요청하는데 사용되는 정보이다.
- HARQ(Hybrid Automatic Repeat reQuest)-ACK(Acknowledgement): PDSCH 상의 하향링크 데이터 패킷(예, 코드워드)에 대한 응답이다. 하향링크 데이터 패킷이 성공적으로 수신되었는지 여부를 나타낸다. 단일 코드워드에 대한 응답으로 HARQ-ACK 1비트가 전송되고, 두 개의 코드워드에 대한 응답으로 HARQ-ACK 2비트가 전송될 수 있다. HARQ-ACK 응답은 포지티브 ACK(간단히, ACK), 네거티브 ACK(NACK), DTX 또는 NACK/DTX를 포함한다. 여기서, HARQ-ACK은 HARQ ACK/NACK, ACK/NACK과 혼용된다.
- CSI(Channel State Information): 하향링크 채널에 대한 피드백 정보이다. MIMO(Multiple Input Multiple Output)-관련 피드백 정보는 RI(Rank Indicator) 및 PMI(Precoding Matrix Indicator)를 포함한다.
표 8은 PUCCH 포맷들을 예시한다. PUCCH 전송 길이에 따라 Short PUCCH (포맷 0, 2) 및 Long PUCCH (포맷 1, 3, 4)로 구분될 수 있다.
PUCCH format Length in OFDM symbolsN PUCCH symb Number of bits Usage Etc
0 1 - 2 ≤2 HARQ, SR Sequence selection
1 4 - 14 ≤2 HARQ, [SR] Sequence modulation
2 1 - 2 >2 HARQ, CSI, [SR] CP-OFDM
3 4 - 14 >2 HARQ, CSI, [SR] DFT-s-OFDM(no UE multiplexing)
4 4 - 14 >2 HARQ, CSI, [SR] DFT-s-OFDM(Pre DFT OCC)
도 8은 ACK/NACK 전송 과정을 예시한다. 도 8을 참조하면, 단말은 슬롯 #n에서 PDCCH를 검출할 수 있다. 여기서, PDCCH는 하향링크 스케줄링 정보(예, DCI 포맷 1_0, 1_1)를 포함하며, PDCCH는 DL assignment-to-PDSCH offset (K0)과 PDSCH-HARQ-ACK reporting offset (K1)를 나타낸다. 예를 들어, DCI 포맷 1_0, 1_1은 다음의 정보를 포함할 수 있다.
- FDRA(Frequency domain resource assignment): PDSCH에 할당된 RB 세트를 나타냄
- TDRA(Time domain resource assignment): K0, 슬롯 내의 PDSCH의 시작 위치(예, OFDM 심볼 인덱스) 및 길이(예, OFDM 심볼 개수)를 나타냄. TDRA는 SLIV(Start and Length Indicator Value)를 통해 지시될 수 있음.
- PDSCH-to-HARQ_feedback timing indicator: K1을 나타냄
- HARQ process number (4비트): 데이터(예, PDSCH, TB)에 대한 HARQ process ID(Identity)를 나타냄
- PUCCH resource indicator (PRI): PUCCH 자원 세트 내의 복수의 PUCCH 자원 중에서 UCI 전송에 사용될 PUCCH 자원을 지시함
이후, 단말은 슬롯 #n의 스케줄링 정보에 따라 슬롯 #(n+K0)에서 PDSCH를 수신한 뒤, 슬롯 #(n+K1)에서 PUCCH를 통해 UCI를 전송할 수 있다. 여기서, UCI는 PDSCH에 대한 HARQ-ACK 응답을 포함한다. PDSCH가 최대 1개 TB를 전송하도록 구성된 경우, HARQ-ACK 응답은 1-비트로 구성될 수 있다. PDSCH가 최대 2개의 TB를 전송하도록 구성된 경우, HARQ-ACK 응답은 공간(spatial) 번들링이 구성되지 않은 경우 2-비트로 구성되고, 공간 번들링이 구성된 경우 1-비트로 구성될 수 있다. 복수의 PDSCH에 대한 HARQ-ACK 전송 시점이 슬롯 #(n+K1)로 지정된 경우, 슬롯 #(n+K1)에서 전송되는 UCI는 복수의 PDSCH에 대한 HARQ-ACK 응답을 포함한다.
도 9는 PUSCH 전송 과정을 예시한다. 도 9를 참조하면, 단말은 슬롯 #n에서 PDCCH를 검출할 수 있다. 여기서, PDCCH는 상향링크 스케줄링 정보(예, DCI 포맷 0_0, 0_1)를 포함한다. DCI 포맷 0_0, 0_1은 다음의 정보를 포함할 수 있다.
- FDRA: PUSCH에 할당된 RB 세트를 나타냄
- TDRA: 슬롯 오프셋 K2, 슬롯 내의 PUSCH의 시작 위치(예, 심볼 인덱스) 및 길이(예 OFDM 심볼 개수)를 나타냄. 시작 심볼과 길이는 SLIV를 통해 지시되거나, 각각 지시될 수 있음.
이후, 단말은 슬롯 #n의 스케줄링 정보에 따라 슬롯 #(n+K2)에서 PUSCH를 전송할 수 있다. 여기서, PUSCH는 UL-SCH TB를 포함한다. PUCCH 전송 시점과 PUSCH 전송 시점이 겹치는 경우, UCI는 PUSCH를 통해 전송될 수 있다(PUSCH 피기백).
실시예: 하향링크 웨이브폼(waveform)
기존의 LTE/NR 시스템에서 하향링크 전송은 OFDM/OFDMA(예, CP(cyclic prefix)-OFDM)에 기반하여 수행되고, 상향링크 전송은 DFT-s-OFDM(혹은, SC(single carrier)-OFDM, SC-FDMA)에 기반하여 수행됐다 (NR 시스템에는 CP-OFDM 기반 상향링크 전송이 추가됐다). 이는 기지국에 비해 상대적으로 낮은 전송 전력을 갖는 상향링크의 특성 상, PAPR(Peak-to-Average Power Ratio)이 낮은 DFT-s-OFDM을 적용함으로써 상향링크 커버리지를 확장할 수 있다는 장점이 있기 때문이다.
도 10~11은 송신기/수신기 구조를 예시한다. 송신기 구조에서 DFT-s-OFDM(A) 방식이 OFDM(A) 방식과 다른 점은 IFFT 처리(710) 이전에 DFT 프리코딩(precoding)(706)이 적용되는 것이고, 수신기 구조에서 DFT-s-OFDM(A) 방식이 OFDM(A) 방식과 다른 점은 FFT 처리(724) 이후에 IFFT 포스트코딩(postcoding)(728)이 적용되는 것이다. 도 10~11의 신호 처리는 DFT-s-OFDM(A) 방식을 기준으로 설명하며, 점선으로 표시된 신호 처리(706, 728)를 생략하면 OFDM(A) 방식에 대응한다.
도 10을 참조하면, 비트 스트림이 데이터 심볼 시퀀스로 변조된다(702). 그 후, 직렬의 데이터 심볼 시퀀스는 N u개씩 병렬로 변환된다(704). N u 길이의 병렬 데이터 심볼 시퀀스는 동일한 크기의 FFT 처리를 통해 N u 길이의 주파수 영역 시퀀스로 변환된다(706). 데이터 심볼 시퀀스와 동일한 크기의 DFT로 신호를 처리함으로써 데이터 심볼 시퀀스는 주파수 영역에서 연속된 시퀀스로 변환된다. FFT 처리는 N u-포인트 DFT 처리를 통해 수행될 수 있다. 본 명세서에서 FFT는 DFT와 혼용되고, DFT 처리는 DFT 확산 또는 DFT 프리코딩과 혼용된다. 그 후, N u 길이의 주파수 영역 시퀀스는 전체 N c개의 부반송파 중에서 할당받은 N u개의 부반송파에 맵핑되고 N c-N u개의 남은 부반송파에는 0이 패딩(padding)된다(708). N c 부반송파에 맵핑된 시퀀스는 N c-포인트 IFFT 처리를 통해 N c 길이의 시간 영역 시퀀스로 변환된다(710). ISI와 ICI를 줄이기 위해, 시간 영역 시퀀스 중에서 맨 뒤에 있는 N p개의 샘플을 복사하여 시퀀스의 맨 앞에 부가함으로써 CP를 구성한다(712). 생성된 시간 영역 시퀀스는 하나의 전송 심볼을 해당하고, 병/직렬 변환기를 통해 직렬 시퀀스로 변환된다(714). 그 후, 직렬 시퀀스는 주파수 상향 변환 등을 과정을 통해 수신단으로 전송된다. 다른 사용자는 앞의 사용자가 사용하고 남은 N c-N u 부반송파 중에서 가용한 부반송파를 할당받아 데이터를 전송한다.
도 11을 참조하면, 수신단(720)은 직/병렬 변환기(722), N c-포인트 FFT 모듈(724), 부반송파-대-심볼 맵핑 모듈(726), N u-포인트 DFT 역확산 모듈(728), 병/직렬 변환기(730) 및 성상 디맵핑 모듈(732)을 포함한다. 수신단(720)의 신호 처리 과정은 송신단(700)의 역으로 구성되므로 자세한 사항은 도 10을 참조한다.
한편, NR 시스템의 동작을 고려하는 주파수 대역이 높아짐에 따라(예, above 52.6 GHz), 단말뿐 아니라 기지국 전송 측면에서도 PA(Power Amplifier) 선형성 등을 고려하여 PAPR이 낮은 웨이브폼을 하향링크에 적용하는 것이 고려되고 있다. 기존에 적용되던 CP-OFDM에 비해 PAPR이 낮은 웨이브폼의 예로, DFT-s-OFDM이 고려될 수 있으며, 본 명세에서 고려하는 DFT-s-OFDM 동작은 아래와 같을 수 있다.
도 12의 예와 같이, K개의 입력 신호/샘플에 대해 DFT를 취한 이후(K-포인트 DFT; 도 10, 706 참조), IFFT 전단에서 제로-패딩(zero-padding)을 수행하여 N (즉, N>K 또는 N=K) 포인트 IFFT를 수행할 수 있다. 편의상, DFT 후단 혹은 IFFT 전단을 f(frequency)-도메인, DFT 전단(또는, pre-DFT)을 가상(virtual) 시간 도메인 샘플, IFFT 후단을 시간 도메인 신호로 지칭/이해될 수 있다.
추가로, 하나의 IFFT 블록(N-포인트 IFFT; 도 10, 710 참조)에 대응되는 DFT 블록의 개수가 복수일 수 있다. 도 13과 같이 가상 시간 도메인의 K1개 샘플 및 K2개(예, K1=K2일 수 있고, K1과 K2 값은 상이할 수 있음) 샘플에 대해 각각 K1-포인트 및 K2-포인트 DFT를 수행한 이후, 생성된 (시간 도메인의) K1개 샘플들 및 K2개 샘플들은 f-도메인에서 연속적으로 매핑될 수 있다. 혹은, 도 14와 같이, K1개 샘플들 및 K2개 샘플들이 특정 규칙(예, 짝수 인덱스에 K1개 샘플, 홀수 인덱스에 K2개 샘플이 매핑됨)에 의해 인터리빙되도록 f-도메인에 매핑될 수 있다. 도 13~14는 2개 DFT 블록을 예시하지만, 3개 이상의 DFT 블록이 사용되는 경우에도 본 명세에서 제안한 방법/규칙이 동일하게 적용될 수 있다.
편의상, 본 명세에서는 52.6 GHz 이상의 고주파수 대역을 FR4로 정의한다. 향후, FR4 대역에서 운용되는 기지국은 셀 커버리지, 셀 내 연계(association)된 사용자 수, 기지국 구현 복잡도/비용 등을 고려하여 복수의 DL 웨이브폼(WF) 후보들 중에서 상황에 따라 선호되는 DL WF가 다를 수 있다.
이하, 본 명세에서는 기지국/단말이 지원하는 DL WF가 복수 개 정의될 수 있을 때, 어떤 DL WF에 기반하여 하향링크가 전송되는 지를 지시하는 방법에 대해 제안한다. 또한, 본 명세에서는 초기 접속 과정에서의 DL WF 확인 방법, 및 DL WF를 고려한 하향링크 신호의 다중화 방법 등에 대해 제안한다. 편의상, 이하의 설명에서 DL WF는 WF로 간단히 표시될 수 있다.
본 명세의 제안 방법은 복수의 DL WF가 정의/지원된 상황이라면 주파수 대역과 관계 없이 적용될 수 있다. 바람직하게, 본 명세의 제안 방법은 고주파 대역(예, 52.6 GHz 이상)에서 동작하는 경우에 국한되어 적용될 수 있다.
편의상, 본 명세의 제안 방법은 2개의 하향링크 후보 WF들(예, (1) CP-OFDM과 (2) 다른 웨이브폼; (1) CP-OFDM과 (2) DFT-s-OFDM; 또는 (1) CP-OFDM과 (2) (I-)DFT/(I-)FFT 적용에 기반하지 않는 싱글-캐리어 형태의 웨이브폼)을 가정하여 설명한다. 그러나, 본 명세의 제안 방법은 2개 초과의 후보 WF (C-WF)들이 있는 경우에도 확장 적용 가능하다.
도 15는 본 발명의 일 예에 따른 신호 송수신 과정을 예시한다. 도 15를 참조하면, (FR4 셀 상에서) 초기 접속을 시도하는 기지국/단말은 DL 디폴트 WF(D-WF)을 가정하여 하향링크 신호를 송수신할 수 있다(S1502). 또한, 단말은 특정 하향링크 신호 및/또는 채널을 통해 DL 운영(operating) WF(O-WF)을 설정 받을 수 있다(S1504). 단말은 O-WF를 토대로 그 이후 하향링크 신호 및/또는 채널을 수신할 수 있다(S1506). 즉, O-WF가 지시되기 전까지 기지국은 D-WF를 통해 하향링크 신호 및/채널을 송신하며, 단말은 O-WF를 시그널링 받기 전까지 D-WF를 가정하여 하향링크 신호 및/채널을 수신할 수 있다. 또한, 특정 하향링크 신호 및/또는 채널(CH#1)을 통해 O-WF가 지시되면, CH#1 수신 이후 단말은 지시된 O-WF를 통해 하향링크 신호 및/채널(CH#2)을 수신할 수 있다. 이때, (1) D-WF와 (2) 지시된 O-WF가 같다면, 단말은 CH#1 수신 이후 CH#2 수신 가능 시점 사이에 갭 없이 연속하여 수신이 가능할 수 있다. 반면, (1) D-WF와 (2) 지시된 O-WF가 다르면, 단말은 CH#1 수신 이후 CH#2 수신 시점 사이에 (사전에 정의된 혹은 단말이 보고한) 특정 타이밍 갭 이후 지시된 O-WF 기반 CH#2 수신이 가능할 수 있다.
WF 지시 방법
[방법#1] PSS 및/또는 SSS 및/또는 PBCH DM-RS 기반 O-WF 지시 방법
[방법#1-1] 시퀀스 종류를 활용하는 방법: PSS 및/또는 SSS 및/또는 PBCH DM-RS 시퀀스를 복수의(예, 2개) 세트로 나누거나, 시퀀스 생성 파라미터(들)을 복수의(예, 2개) 세트로 나눌 수 있다. 그리고, 각각의 C-WF와 이에 대응되는 세트간 관계를 사전에 정의하고 그 중 특정 하나의 세트에 속하는/기반한 시퀀스를 시그널링함으로써, 복수 C-WF들 중에서 O-WF에 해당하는 C-WF를 기지국은 단말에게 알려줄 수 있다. 일 예로, PSS (및/또는SSS)는 가용 N_id 값을 2 세트로 나누거나, PBCH DM-RS는 스크램블링 시퀀스 생성기(generator) 상 파라미터를 2 세트로 나눌 수 있다. 예를 들어, 수학식 1은 다음과 같이 변경될 수 있다.
[수학식 8]
N cell ID = 3N (1) ID + N (2) ID 여기서, N (1) ID ∈ {N (1) ID_WF1, N (1) ID_WF2} 및/또는 N (2) ID ∈ {N (2) ID_WF1, N (2) ID_WF2}.
N (1) ID과 N (2) ID는 기존과 동일한 범위를 가지거나, WF를 구분하기 위해 기존보다 확장될 수 있다. 예를 들어, N (1) ID의 최대 값이 355의 배수로 확장될 수 있다(예, 355*2). 또한, N (2) ID의 최대 값이 3보다 큰 값으로 확장될 수 있다(예, 4). N (2) ID의 최대 값이 M(3>)으로 확장될 경우, 수학식 8에서 N (1) ID의 계수도 M으로 변경된다.
혹은, O-WF를 지시하는 별도의 신호를 정의하고, 해당 신호의 시퀀스 혹은 시퀀스 생성 파라미터에 기반하여, C-WF들 중 O-WF에 해당하는 C-WF를 기지국은 단말에게 알려줄 수 있다. 예를 들어, 수학식 7은 다음과 같이 변경될 수 있다.
[수학식 9]
Figure PCTKR2020011246-appb-img-000006
여기서, x는 12 이상의 정수이고, WF는 복수의 C-WF들 중에서 O-WF에 해당하는 값을 나타낸다.
[방법#1-2] 시퀀스가 전송되는 자원 위치를 활용하는 방법: 일 예로, 동기화 래스터(synchronization raster)(혹은 GSCN, global synchronization channel number)별로 대응되는 C-WF를 사전에 정의하고, PSS 및/또는 SSS 및/또는 PBCH DM-RS가 어느 동기화 래스터에 대응되는 지에 기반하여, C-WF들 중 O-WF에 해당하는 C-WF를 기지국은 단말에게 알려줄 수 있다. 다른 예로, PSS 및/또는 SSS 및/또는 PBCH DM-RS 간 (주파수 및/또는 시간 상의) 상대적인 자원 위치/정보를 활용하여 C-WF들 중 어떤 C-WF가 O-WF로 사용되는 지를 기지국은 단말에게 알려줄 수 있다. 구체적으로, PSS 심볼과 SSS 심볼 간 거리, PSS 및/또는 SSS 심볼과 PBCH DM-RS 심볼 간 거리, PSS가 매핑되는 RB들 중 특정(예, 가장 작은 또는 가장 큰) RB 인덱스와 SSS가 매핑되는 RB들 중 특정(예, 가장 작은 또는 가장 큰) RB 인덱스 간 거리, PSS 및/또는 SSS가 매핑되는 RB들 중 특정(예, 가장 작은 또는 가장 큰) RB 인덱스와 PBCH DM-RS가 매핑되는 RB들 중 특정(예, 가장 작은 또는 가장 큰) RB 인덱스 간 거리, PBCH DM-RS에 적용된 v_shift 값 등의 자원 정보가 활용될 수 있다. 예를 들어, 해당 자원 정보에 따라 복수 C-WF들 중 O-WF에 해당하는 C-WF를 기지국/단말은 지시/파악할 수 있다. 예를 들어, 표 4의 v shift (v)는 다음과 같이 변경될 수 있다: v shift (v) = (M*N cell ID + WF) mod 4. 여기서, M은 C-WF의 개수이고, WF는 O-WF에 대응하는 C-WF의 인덱스를 나타낸다(0~M-1).
특히, PBCH DM-RS와 PBCH 페이로드가 동일 심볼에서 매핑/전송되는 구조가 적용되면, PBCH 페이로드의 WF에 무관하게 특정 도메인(예, f-도메인) 상에서 PBCH DM-RS 위치가 고정될 필요가 있다. PBCH 페이로드의 WF가 달라짐에 따라 PBCH DM-RS 위치도 달라진다면 PBCH 수신 복잡도가 증가하기 때문이다. 예를 들어, PBCH 페이로드와 PBCH DM-RS가 전송되는 심볼에서 f-도메인 상 Q1개 REs를 통해 PBCH 페이로드및 PBCH DM-RS가 전송될 때,
- PBCH 페이로드에 대해 Q1-포인트 DFT를 수행하고, f-도메인 상 Q1개 부반송파들 상에 DFTed PBCH 페이로드 심볼들을 매핑하되, PBCH DM-RS 위치인 부반송파#n에 대해 펑처링을 수행하고 부반송파#n에 PBCH DM-RS를 매핑하거나(즉, f-도메인 상 PBCH DM-RS 위치인 부반송파#n에 대해 펑처링을 수행),
- PBCH DM-RS RE 개수가 Q2개일 때, PBCH 페이로드에 대해 (Q1-Q2)-포인트 DFT를 수행하고, f-도메인 상에서 PBCH DM-RS 위치인 부반송파#n을 피해서 (Q1-Q2)개 DFTed PBCH 페이로드 심볼들을 매핑하고 부반송파 #n에 PBCH DM-RS를 매핑할 수 있다(즉, PBCH 페이로드를 Q1-Q2 REs 자원에 맞게 레이트-매칭 수행).
혹은, PBCH 페이로드의 WF가 달라짐에 따라 PBCH DM-RS 매핑이 달라진다면 단말의 이웃 셀 RRM 측정 등이 어려울 수 있으므로, 이웃 셀 RRM 측정을 위한 정보 (예, 시스템 정보 상 측정 오브젝트) 내에 이웃 셀 ID에 대응되는 셀 상에서 전송되는 PBCH 페이로드의 WF 및/또는 PBCH DM-RS 매핑 관련 정보가 포함될 수 있다. 혹은, (FR4 셀이 논-스탠드-얼론 모드로만 동작한다면) FR4 상의 서빙 셀에 대해 SCell (혹은, PSCell) 추가(addition)을 설정할 때, 관련 상위 계층 시그널링(예, RRC 시그널링)을 통해 해당 서빙 셀에 대한 O-WF를 알려줄 수 있다.
[방법#2] PBCH 페이로드 또는 SIB1 PDCCH/PDSCH를 통한 O-WF 지시 방법
기지국은 PBCH 페이로드, SIB1 PDCCH(즉, SIB1을 포함한 PDSCH를 스케줄링 하는 PDCCH) 혹은 SIB1을 포함한 PDSCH를 통해, 단말에게 해당 DL CC/BWP 내에서 그 이후 수신할 하향링크 신호 및/또는 채널에 대응되는 O-WF를 시그널링 할 수 있다. 일 예로, PBCH 페이로드를 통해 O-WF가 지시되면, 단말은 그 이후 수신할 하향링크 신호 및/또는 채널(예, SIB1 PDCCH/PDSCH 등)부터, 지시된 O-WF를 가정하여 해당 하향링크 신호 및/또는 채널을 수신할 수 있다. 이 경우, 단말은 PBCH를 포함하여, 그 이전 DL 전송에 대해서는 D-WF를 가정하여 수신 동작을 할 수 있다. 다른 예로, SIB1 PDCCH를 통해 O-WF가 지시되면, 단말은 그 이후 수신할 하향링크 신호 및/또는 채널(예, SIB1 PDSCH 등)부터, 지시된 O-WF를 가정하여 해당 하향링크 신호 및/또는 채널을 수신할 수 있다. 이 경우, 단말은 SIB1 PDCCH를 포함하여, 그 이전 DL 전송에 대해서는 D-WF를 가정하여 수신 동작을 할 수 있다. 또 다른 예로, SIB1 PDSCH를 통해 O-WF가 지시되면, 단말은 그 이후 수신할 하향링크 신호 및/또는 채널(예, SIB2 등의 셀-공통 RRC 신호, 페이징 신호 등)부터, 지시된 O-WF를 가정하여 해당 하향링크 신호 및/또는 채널을 수신할 수 있다. 이 경우, 단말은 SIB1 PDSCH를 포함하여, 그 이전 DL 전송에 대해서는 D-WF을 가정하여 수신 동작을 할 수 있다.
[방법#3] 셀-공통 RRC 신호 및/또는 UE-특정 RRC 신호를 통한 O-WF 지시 방법
기지국은 (SIB1이 아닌) 셀-공통 RRC 신호 및/또는 UE-특정 RRC 신호가 포함된 PDSCH 및/또는 해당 PDSCH를 스케줄링 하는 PDCCH를 통해, 단말에게 해당 DL CC/BWP 내에서 그 이후 수신할 하향링크 신호 및/또는 채널에 대응되는 O-WF를 시그널링 할 수 있다.
[방법#4] 페이징 및/또는 RACH 과정에 연관된 DL 신호/채널을 통한 O-WF 지시 방법
기지국은 페이징 및/또는 RACH 과정에 연관된 PDSCH(예, RAR 메세지, msg4 등) 및/또는 해당 PDSCH을 스케줄링 하는 PDCCH(예, RA-RNTI로 스크램블된 PDCCH)를 통해, 단말에게 해당 DL CC/BWP 내에서 그 이후 수신할 하향링크 신호 및/또는 채널에 대응되는 O-WF를 시그널링 할 수 있다. 한편, RACH 과정에서 PDSCH (예, , msg4) 수신 이후, 연관되는 PUCCH(예, msg4에 대하 A/N) 전송 시 시그널링된 O-WF의 종류에 따라, PDSCH로부터 PUCCH 사이의 (슬롯 레벨) HARQ 타이밍 값에 대한 해석이 다를 수 있다. 일 예로, msg4를 스케줄링하는 DCI에서 지시한 HARQ 타이밍 필드의 코드 포인트가 '000'인 경우, O-WF가 CP-OFDM이면 (i) PDSCH와 (ii) 대응되는 PUCCH간의 HARQ 타이밍 값을 n1 슬롯으로 인지하고, O-WF가 DFT-s-OFDM이면 (i) PDSCH와 (ii) 대응되는 PUCCH간의 HARQ 타이밍 값을 n2 슬롯(예, n2>n1)으로 인지하도록 정의될 수 있다. 다른 예로, msg4를 스케줄링하는 DCI에서 지시한 HARQ 타이밍 필드의 코드 포인트가 '000'인 경우, (i) PDSCH와 (ii) 대응되는 PUCCH간의 HARQ 타이밍 값은 O-WF와 관계 없이 동일하게 인지될 수 있다(예, n1). 대신, O-WF에 대해 PUCCH 최소 프로세싱 시간이 다르게 정의될 수 있다. 예를 들어, O-WF가 CP-OFDM인 경우의 PUCCH 최소 프로세싱 시간이 O-WF가 DFT-s-OFDM인 경우의 최소 프로세싱 시간보다 짧게 설정될 수 있다. PUCCH 최소 프로세싱 시간은, PDSCH 수신 시점으로부터 PUCCH 전송을 준비하는데 필요한 최소 프로세싱 시간을 의미하며, 예를 들어, PUCCH 최소 프로세싱 시간은 PDSCH 마지막 심볼과 PUCCH 첫 번째 심볼간에 필요한 최소 시간 간격을 의미할 수 있으며, (N+d)*Ts로 정의될 수 있다. 여기서, N은 PUCCH 최소 프로세싱 시간에 해당하는 심볼 개수를 나타내고, d은 0 이상의 오프셋 값을 나타내며, Ts는 심볼의 시간 길이를 나타낸다. O-WF가 CP-OFDM인 경우 N=n1로 정의되고, O-WF가 DFT-s-OFDM인 경우 N=n2로 정의될 수 있다(n2>n1). PUCCH 최소 프로세싱 시간이 보장되는 경우, 단말은 PUCCH 전송을 정상적으로 수행할 수 있다. 반면, PUCCH 최소 프로세싱 시간이 보장되지 않는 경우, 단말은 PUCCH 전송을 생략할 수 있다.
여기서, HARQ 타이밍 및/또는 PUCCH 최소 프로세싱 시간은 RACH 과정뿐만 아니라, 일반적인 신호 전송 과정에도 적용될 수 있다(예, 도 8).
초기 접속 과정에서의 DFT 사이즈 가정
본 절에서는 초기 접속 과정에서 PBCH 페이로드 및/또는 SIB1에 대응되는 WF가 DFT-s-OFDM인 경우를 가정하여, (1) PBCH 페이로드 및/또는 SIB1 수신 방법, 및 (2) PBCH 페이로드 및/또는 SIB1과 동일한 DFT-s-OFDM 심볼에 다중화 되는 다른 하향링크 신호 및/채널의 송수신 방법을 제안한다. 이때, PBCH 페이로드 및/또는 SIB1에 적용되는 DFT-s-OFDM는 D-WF이거나 기지국에 의해 기-지시된 O-WF일 수 있다.
[방법#A] PBCH 페이로드 수신 시 DFT 사이즈에 대한 가정 방법
PBCH 페이로드에 적용된 DFT 사이즈는 다음 중 하나로 가정될 수 있다.
1) PBCH가 전송되는 DFT-s-OFDM 심볼에서 f-도메인 상 (최대) X개 RBs/REs를 통해 PBCH가 매핑/전송될 때 X개 RBs/REs에 대응되는 부반송파 개수
2) FR4 상 동작 시 단말이 가져야 할 최소 BW (여기서, 최소 BW는 해당 주파수 대역(예, Y MHz에 해당하는 주파수 대역)에서 가드 밴드를 제외한 유효 RB/RE 개수에 대응되는 부반송파 개수를 의미할 수 있음)
3) 각 FR4 상에서 동기화 래스터 별로 정의된, 단말이 가져야 할 최소 BW (여기서, 최소 BW는, 해당 주파수 대역(예, Y MHz에 해당하는 주파수 대역)에서 가드 밴드를 제외한 유효 RB/RE 개수에 대응되는 부반송파 개수를 의미할 수 있음)
이때, PBCH를 전송하는 기지국은 1), 2) 또는 3) 중 하나에 대응되는 DFT 블록(=N개 RBs/REs)을 구성하여 DFT-s-OFDM 심볼에서 PBCH 전송을 수행할 수 있다. 또한, PBCH를 수신하는 단말은 1), 2) 또는 3) 중 하나에 대응되는 DFT 블록 (=N RBs 또는 REs)을 가정하여 해당 DFT-s-OFDM 심볼에서 PBCH 수신을 시도할 수 있다. 여기서, PBCH 페이로드의 DFT 사이즈에 대한 가정은 초기 접속 과정에 국한되어 적용될 수 있다. 예를 들어, 단말은 UE-공통 구성 정보(예, 시스템 정보)를 통해, 기지국으로부터 PBCH 페이로드의 실제 DFT 사이즈에 관한 정보를 얻고, 이에 기반하여 PBCH 검출/수신 동작을 수행할 수 있다.
[방법#B] 동일한 (DFT-s-OFDM) 심볼에서 전송되는 PBCH 심볼과 DL 채널의 다중화 방법
동일한 심볼에 스케줄링/할당된, (i) PBCH와 (ii) mux (혹은 다중화)되는 DL 채널이 모두 DFT-s-OFDM 기반일 때, 해당 심볼(이하, Mux DFT-s-OFDM 심볼)의 전체 K개 RBs (이때, K개 RBs는 해당 CC/BWP에 설정된 대역에 대응되는 RB 개수일 수 있음) 중, N RBs (이때, N개 RBs는 [방법#A]에서 PBCH 전송 대역에 대응되는 RB 개수일 수 있음)을 제외한 나머지 (K-N)개 RBs만으로 단일 혹은 복수의 DFT 블록을 구성하여 DL 채널(예, PDCCH, PDSCH)이 송수신 될 수 있다. 일 예로, 도 13~14에서 K1 값은 N개 RBs에 대응되는 RE 개수, K2 값은 (K-N)개 RBs에 대응되는 RE 개수로서, 복수의 DFT 블록 구조에 기반하여 DL 채널이 송수신될 수 있다. 여기서, Mux DFT-s-OFDM 심볼은 PBCH와 그 외 DL 채널(들)의 동시 전송이 스케줄링/할당된 DFT-s-OFDM 심볼을 의미한다. 한편, 복수의 DFT 블록을 전송하지 못하는 기지국은, Mux DFT-s-OFDM 심볼 (혹은, Mux DFT-s-OFDM 심볼이 속하는 슬롯)에서는 PBCH 이외의 DL 채널을 송신하지 않을 수 있다. 이에 따라, Mux DFT-s-OFDM 심볼 (혹은, Mux DFT-s-OFDM 심볼이 속하는 슬롯)에서 단말은 PBCH 이외의 DL 채널(예, PDCCH, PDSCH) 수신을 기대하지 않을 수 있다. 예를 들어, Mux DFT-s-OFDM 심볼 (혹은, Mux DFT-s-OFDM 심볼이 속하는 슬롯)에서 단말은 PBCH 이외의 DL 채널(예, PDCCH, PDSCH) 수신 과정(예, 디매핑, 디코딩)을 생략/스킵할 수 있다. 혹은, 복수의 DFT 블록 기반 DL 신호 수신을 지원하지 못하는 단말은, Mux DFT-s-OFDM 심볼에서는 PBCH 이외의 DL 채널 수신을 기대하지 않거나, PBCH와 DL 채널(예, PDCCH, PDSCH)들 중 하나의 DFT 블록에 대응되는 DL 신호만을 (단말 구현에 기반하여) 선택적으로 수신할 수 있다.
한편, 동일한 심볼/슬롯에 스케줄링/할당된, (i) PBCH와 (ii) DL 채널의 WF가 서로 다를 수 있을 때(예, PBCH는 DFT-s-OFDM 기반, DL 채널은 CP-OFDM 기반), PBCH가 전송되는 심볼 및/또는 (PBCH가 전송되는 심볼을 포함한) 슬롯에서, 단말은 해당 DL 채널 수신을 기대하지 않을 수 있다. 이에 따라, 해당 심볼 및/또는 슬롯에서 단말은 DL 채널(예, PDCCH, PDSCH)의 수신 과정(예, 디매핑, 디코딩)을 생략/스킵할 수 있다. 혹은, PBCH가 전송되는 심볼 및/또는 (PBCH가 전송되는 심볼을 포함한) 슬롯에서는 DL 채널의 WF가 (DL 채널에 대해 지시/설정된 WF와 관계 없이) PBCH를 따름을 단말은 가정할 수 있다. 적어도 이러한 단말 동작을 지원하기 위해, PDCCH를 통해 DL 채널의 WF가 동적으로 지시될 수 있다. 혹은, DL 채널을 수신함에 있어서, 해당 DL 채널이 전송되는 심볼 및/또는 (해당 DL 채널이 전송되는 심볼을 포함한) 슬롯에서 PBCH와 DL 채널의 mux 여부가 시그널링 될 수 있다.
[방법#C] SIB1 수신 시 DFT 사이즈에 대한 가정 방법
PBCH에서 지시한 초기 활성(initial active) DL BWP의 BW(=N개 RBs)에 대응되는 N개 RBs sized DFT 블록을 별도로 구성하여 SIB1 PDCCH가 전송될 수 있다. 혹은, PBCH를 통해 초기 활성 DL BWP에 대응되는 RB 개수 외에 별도로, 단말이 SIB1 PDCCH 수신을 위해 가정할 DFT 사이즈(=N RBs)을 기지국이 단말에게 직접 시그널링 할 수도 있다.
다른 방법으로, PBCH를 통해 지시된 초기 활성 DL BWP의 BW(= N개 RBs = L개 REs) 크기에 상응하는 L-포인트 DFT 블록을 적용하여 SIB1 PDSCH를 수신하도록 동작할 수 있다. 또한, PBCH를 통해 지시된 특정 DL 제어 자원 세트(예, CORESET 인덱스 #0)의 BW(= Nc개 RBs = Lc개 REs) 크기에 상응하는 Lc-포인트 DFT 블록을 적용하여 SIB1 PDCCH를 수신하도록 동작할 수 있다.
[방법#D] 동일한 심볼(예, DFT-s-OFDM 심볼)에서 전송되는 (i) SIB1 PDCCH 및/또는 SIB1 PDSCH와 (ii) DL 채널의 다중화 방법
동일한 심볼에 스케줄링/할당된, (i) SIB1 PDCCH 및/또는 SIB1 PDSCH와 (ii) mux되는 DL 채널의 WF가 모두 DFT-s-OFDM 기반일 때, 해당 심볼(이하, Mux DFT-s-OFDM 심볼)의 전체 K개 RBs (이때, K개 RBs는 해당 CC/BWP에 설정된 대역에 대응되는 RB 개수일 수 있음) 중, N개 RBs (이때, N개 RBs는 [방법#C]에서 SIB1 PDCCH 및/또는 SIB1 PDSCH 수신을 위해 가정할 DFT 사이즈 혹은 대응되는 RB 개수일 수 있음)을 제외한 나머지 (K-N)개 RBs만으로 단일 혹은 복수의 DFT 블록을 구성하여 DL 채널이 송수신 될 수 있다. 일 예로, 도 13~14에서 K1 값은 N개 RBs에 대응되는 RE 개수, K2 값은 (K-N)개 RBs에 대응되는 RE 개수로서, 복수의 DFT 블록 구조에 기반하여 DL 채널이 송수신될 수 있다. 여기서, Mux DFT-s-OFDM 심볼은 PBCH와 그 외 DL 채널(들)의 동시 전송이 스케줄링/할당된 DFT-s-OFDM 심볼을 의미한다. 한편, 복수의 DFT 블록을 전송하지 못하는 기지국은, Mux DFT-s-OFDM 심볼 (혹은, Mux DFT-s-OFDM 심볼이 속하는 슬롯)에서는 SIB1 PDCCH 및/또는 SIB1 PDSCH 이외의 DL 채널을 송신하지 않을 수 있다. 이에 따라, Mux DFT-s-OFDM 심볼 (혹은, Mux DFT-s-OFDM 심볼이 속하는 슬롯)에서 단말은 SIB1 PDCCH 및/또는 SIB1 PDSCH 이외의 DL 채널 수신을 기대하지 않을 수 있다. 예를 들어, Mux DFT-s-OFDM 심볼 (혹은, Mux DFT-s-OFDM 심볼이 속하는 슬롯)에서 단말은 SIB1 PDCCH 및/또는 SIB1 PDSCH 이외의 DL 채널(예, PDCCH, PDSCH) 수신 과정(예, 디매핑, 디코딩)을 생략/스킵할 수 있다. 혹은, 복수의 DFT 블록 기반 DL 신호 수신을 지원하지 못하는 단말은, Mux DFT-s-OFDM 심볼에서는 SIB1 PDCCH 및/또는 SIB1 PDSCH 이외의 DL 채널 수신을 기대하지 않거나, SIB1 PDCCH 및/또는 SIB1 PDSCH와 DL 채널 들 중 하나의 DFT 블록에 대응되는 DL 신호만을 (단말 구현에 기반하여) 선택적으로 수신할 수 있다.
한편, 동일한 심볼/슬롯에 스케줄링/할당된, (i) SIB1 PDCCH 및/또는 SIB1 PDSCH와 (ii) DL 채널의 WF가 서로 다를 수 있을 때(예, SIB1 PDCCH 및/또는 SIB1 PDSCH는 DFT-s-OFDM 기반, DL 채널은 CP-OFDM 기반), SIB1 PDCCH 및/또는 SIB1 PDSCH가 전송되는 심볼 및/또는 (SIB1 PDCCH 및/또는 SIB1 PDSCH가 전송되는 심볼을 포함한) 슬롯에서 해당 DL 채널 수신을 단말은 기대하지 않을 수 있다. 이에 따라, 해당 심볼 및/또는 슬롯에서 단말은 DL 채널(예, PDCCH, PDSCH)의 수신 과정(예, 디매핑, 디코딩)을 생략/스킵할 수 있다. 혹은, SIB1 PDCCH 및/또는 SIB1 PDSCH가 전송되는 심볼 및/또는 (SIB1 PDCCH 및/또는 SIB1 PDSCH가 전송되는 심볼을 포함한) 슬롯에서는 DL 채널의 WF가 (DL 채널에 대해 지시/설정된 WF와 관계 없이) SIB1 PDCCH 및/또는 SIB1 PDSCH를 따름을 단말은 가정할 수 있다. 적어도 이러한 단말 동작을 지원하기 위해, PDCCH를 통해 DL 채널의 WF가 동적으로 지시될 수 있다. 혹은, DL 채널을 수신함에 있어서, 해당 DL 채널이 전송되는 심볼 및/또는 (해당 DL 채널이 전송되는 심볼을 포함한) 슬롯에서 SIB1 PDCCH 및/또는 SIB1 PDSCH와 DL 채널의 mux 여부가 시그널링 될 수 있다.
도 16은 본 발명의 일 예에 따른 송수신 과정을 예시한다. 도 16을 참조하면, 단말은 SS/PBCH 블록을 검출할 수 있다(S1602). 여기서, SS/PBCH 블록은 PBCH 페이로드 및 PBCH DMRS를 포함할 수 있다. 이후, 단말은 PBCH DMRS의 특성에 기반하여, 복수의 WF 방식 중 어느 하나의 WF에 기반하여 PBCH 페이로드를 처리할 수 있다(S1604). 여기서, 복수의 WF는 적어도 CP-OFDM 방식과 DFT-s-OFDM 방식을 포함할 수 있다. 바람직하게, PBCH DMRS가 존재하는 RE들은 주파수 도메인에서 N개 RE 간격을 가지며(N은 1보다 큰 정수), PBCH DMRS의 특성은 PBCH DMRS에 적용된 주파수 쉬프트 값을 포함할 수 있다. 또한, PBCH DMRS의 특성은 DMRS 시퀀스를 생성하는데 사용되는 파라미터, 예를 들어 DMRS 시퀀스를 생성하는데 사용되는 초기화 값을 포함할 수 있다. 또한, PBCH 페이로드를 CP-OFDM 방식에 따라 처리하는 것에 기반하여, PBCH 페이로드에 적용되는 DFT 사이즈는 SS/PBCH 블록이 위치하는 동기화 래스터에 대해 정의된 최소 대역에 대응하는 값으로 가정될 수 있다.
도시하지는 않았지만, WF 지시에 관한 다른 방법은 [방법#1~4]를 참조할 수 있고, 초기 접속 과정에서의 DFT 사이즈 가정은 [방법#A~D]를 참조할 수 있다.
이로 제한되는 것은 아니지만, 본 문서에 개시된 본 발명의 다양한 설명, 기능, 절차, 제안, 방법 및/또는 동작 순서도들은 기기들간에 무선 통신/연결(예, 5G)을 필요로 하는 다양한 분야에 적용될 수 있다.
이하, 도면을 참조하여 보다 구체적으로 예시한다. 이하의 도면/설명에서 동일한 도면 부호는 다르게 기술하지 않는 한, 동일하거나 대응되는 하드웨어 블블록, 소프트웨어 블록 또는 기능 블록을 예시할 수 있다.
도 17은 본 발명에 적용되는 통신 시스템(1)을 예시한다.
도 17을 참조하면, 본 발명에 적용되는 통신 시스템(1)은 무선 기기, 기지국 및 네트워크를 포함한다. 여기서, 무선 기기는 무선 접속 기술(예, 5G NR(New RAT), LTE(Long Term Evolution))을 이용하여 통신을 수행하는 기기를 의미하며, 통신/무선/5G 기기로 지칭될 수 있다. 이로 제한되는 것은 아니지만, 무선 기기는 로봇(100a), 차량(100b-1, 100b-2), XR(eXtended Reality) 기기(100c), 휴대 기기(Hand-held device)(100d), 가전(100e), IoT(Internet of Thing) 기기(100f), AI기기/서버(400)를 포함할 수 있다. 예를 들어, 차량은 무선 통신 기능이 구비된 차량, 자율 주행 차량, 차량간 통신을 수행할 수 있는 차량 등을 포함할 수 있다. 여기서, 차량은 UAV(Unmanned Aerial Vehicle)(예, 드론)를 포함할 수 있다. XR 기기는 AR(Augmented Reality)/VR(Virtual Reality)/MR(Mixed Reality) 기기를 포함하며, HMD(Head-Mounted Device), 차량에 구비된 HUD(Head-Up Display), 텔레비전, 스마트폰, 컴퓨터, 웨어러블 디바이스, 가전 기기, 디지털 사이니지(signage), 차량, 로봇 등의 형태로 구현될 수 있다. 휴대 기기는 스마트폰, 스마트패드, 웨어러블 기기(예, 스마트워치, 스마트글래스), 컴퓨터(예, 노트북 등) 등을 포함할 수 있다. 가전은 TV, 냉장고, 세탁기 등을 포함할 수 있다. IoT 기기는 센서, 스마트미터 등을 포함할 수 있다. 예를 들어, 기지국, 네트워크는 무선 기기로도 구현될 수 있으며, 특정 무선 기기(200a)는 다른 무선 기기에게 기지국/네트워크 노드로 동작할 수도 있다.
무선 기기(100a~100f)는 기지국(200)을 통해 네트워크(300)와 연결될 수 있다. 무선 기기(100a~100f)에는 AI(Artificial Intelligence) 기술이 적용될 수 있으며, 무선 기기(100a~100f)는 네트워크(300)를 통해 AI 서버(400)와 연결될 수 있다. 네트워크(300)는 3G 네트워크, 4G(예, LTE) 네트워크 또는 5G(예, NR) 네트워크 등을 이용하여 구성될 수 있다. 무선 기기(100a~100f)는 기지국(200)/네트워크(300)를 통해 서로 통신할 수도 있지만, 기지국/네트워크를 통하지 않고 직접 통신(e.g. 사이드링크 통신(sidelink communication))할 수도 있다. 예를 들어, 차량들(100b-1, 100b-2)은 직접 통신(e.g. V2V(Vehicle to Vehicle)/V2X(Vehicle to everything) communication)을 할 수 있다. 또한, IoT 기기(예, 센서)는 다른 IoT 기기(예, 센서) 또는 다른 무선 기기(100a~100f)와 직접 통신을 할 수 있다.
무선 기기(100a~100f)/기지국(200), 기지국(200)/기지국(200) 간에는 무선 통신/연결(150a, 150b, 150c)이 이뤄질 수 있다. 여기서, 무선 통신/연결은 상향/하향링크 통신(150a)과 사이드링크 통신(150b)(또는, D2D 통신), 기지국간 통신(150c)(e.g. relay, IAB(Integrated Access Backhaul)과 같은 다양한 무선 접속 기술(예, 5G NR)을 통해 이뤄질 수 있다. 무선 통신/연결(150a, 150b, 150c)을 통해 무선 기기와 기지국/무선 기기, 기지국과 기지국은 서로 무선 신호를 송신/수신할 수 있다. 예를 들어, 무선 통신/연결(150a, 150b, 150c)은 다양한 물리 채널을 통해 신호를 송신/수신할 수 있다. 이를 위해, 본 발명의 다양한 제안들에 기반하여, 무선 신호의 송신/수신을 위한 다양한 구성정보 설정 과정, 다양한 신호 처리 과정(예, 채널 인코딩/디코딩, 변조/복조, 자원 매핑/디매핑 등), 자원 할당 과정 등 중 적어도 일부가 수행될 수 있다.
도 18는 본 발명에 적용될 수 있는 무선 기기를 예시한다.
도 18를 참조하면, 제1 무선 기기(100)와 제2 무선 기기(200)는 다양한 무선 접속 기술(예, LTE, NR)을 통해 무선 신호를 송수신할 수 있다. 여기서, {제1 무선 기기(100), 제2 무선 기기(200)}은 도 17의 {무선 기기(100x), 기지국(200)} 및/또는 {무선 기기(100x), 무선 기기(100x)}에 대응할 수 있다.
제1 무선 기기(100)는 하나 이상의 프로세서(102) 및 하나 이상의 메모리(104)를 포함하며, 추가적으로 하나 이상의 송수신기(106) 및/또는 하나 이상의 안테나(108)을 더 포함할 수 있다. 프로세서(102)는 메모리(104) 및/또는 송수신기(106)를 제어하며, 본 문서에 개시된 설명, 기능, 절차, 제안, 방법 및/또는 동작 순서도들을 구현하도록 구성될 수 있다. 예를 들어, 프로세서(102)는 메모리(104) 내의 정보를 처리하여 제1 정보/신호를 생성한 뒤, 송수신기(106)을 통해 제1 정보/신호를 포함하는 무선 신호를 전송할 수 있다. 또한, 프로세서(102)는 송수신기(106)를 통해 제2 정보/신호를 포함하는 무선 신호를 수신한 뒤, 제2 정보/신호의 신호 처리로부터 얻은 정보를 메모리(104)에 저장할 수 있다. 메모리(104)는 프로세서(102)와 연결될 수 있고, 프로세서(102)의 동작과 관련한 다양한 정보를 저장할 수 있다. 예를 들어, 메모리(104)는 프로세서(102)에 의해 제어되는 프로세스들 중 일부 또는 전부를 수행하거나, 본 문서에 개시된 설명, 기능, 절차, 제안, 방법 및/또는 동작 순서도들을 수행하기 위한 명령들을 포함하는 소프트웨어 코드를 저장할 수 있다. 여기서, 프로세서(102)와 메모리(104)는 무선 통신 기술(예, LTE, NR)을 구현하도록 설계된 통신 모뎀/회로/칩의 일부일 수 있다. 송수신기(106)는 프로세서(102)와 연결될 수 있고, 하나 이상의 안테나(108)를 통해 무선 신호를 송신 및/또는 수신할 수 있다. 송수신기(106)는 송신기 및/또는 수신기를 포함할 수 있다. 송수신기(106)는 RF(Radio Frequency) 유닛과 혼용될 수 있다. 본 발명에서 무선 기기는 통신 모뎀/회로/칩을 의미할 수도 있다.
제2 무선 기기(200)는 하나 이상의 프로세서(202), 하나 이상의 메모리(204)를 포함하며, 추가적으로 하나 이상의 송수신기(206) 및/또는 하나 이상의 안테나(208)를 더 포함할 수 있다. 프로세서(202)는 메모리(204) 및/또는 송수신기(206)를 제어하며, 본 문서에 개시된 설명, 기능, 절차, 제안, 방법 및/또는 동작 순서도들을 구현하도록 구성될 수 있다. 예를 들어, 프로세서(202)는 메모리(204) 내의 정보를 처리하여 제3 정보/신호를 생성한 뒤, 송수신기(206)를 통해 제3 정보/신호를 포함하는 무선 신호를 전송할 수 있다. 또한, 프로세서(202)는 송수신기(206)를 통해 제4 정보/신호를 포함하는 무선 신호를 수신한 뒤, 제4 정보/신호의 신호 처리로부터 얻은 정보를 메모리(204)에 저장할 수 있다. 메모리(204)는 프로세서(202)와 연결될 수 있고, 프로세서(202)의 동작과 관련한 다양한 정보를 저장할 수 있다. 예를 들어, 메모리(204)는 프로세서(202)에 의해 제어되는 프로세스들 중 일부 또는 전부를 수행하거나, 본 문서에 개시된 설명, 기능, 절차, 제안, 방법 및/또는 동작 순서도들을 수행하기 위한 명령들을 포함하는 소프트웨어 코드를 저장할 수 있다. 여기서, 프로세서(202)와 메모리(204)는 무선 통신 기술(예, LTE, NR)을 구현하도록 설계된 통신 모뎀/회로/칩의 일부일 수 있다. 송수신기(206)는 프로세서(202)와 연결될 수 있고, 하나 이상의 안테나(208)를 통해 무선 신호를 송신 및/또는 수신할 수 있다. 송수신기(206)는 송신기 및/또는 수신기를 포함할 수 있다 송수신기(206)는 RF 유닛과 혼용될 수 있다. 본 발명에서 무선 기기는 통신 모뎀/회로/칩을 의미할 수도 있다.
이하, 무선 기기(100, 200)의 하드웨어 요소에 대해 보다 구체적으로 설명한다. 이로 제한되는 것은 아니지만, 하나 이상의 프로토콜 계층이 하나 이상의 프로세서(102, 202)에 의해 구현될 수 있다. 예를 들어, 하나 이상의 프로세서(102, 202)는 하나 이상의 계층(예, PHY, MAC, RLC, PDCP, RRC, SDAP와 같은 기능적 계층)을 구현할 수 있다. 하나 이상의 프로세서(102, 202)는 본 문서에 개시된 설명, 기능, 절차, 제안, 방법 및/또는 동작 순서도들에 따라 하나 이상의 PDU(Protocol Data Unit) 및/또는 하나 이상의 SDU(Service Data Unit)를 생성할 수 있다. 하나 이상의 프로세서(102, 202)는 본 문서에 개시된 설명, 기능, 절차, 제안, 방법 및/또는 동작 순서도들에 따라 메시지, 제어정보, 데이터 또는 정보를 생성할 수 있다. 하나 이상의 프로세서(102, 202)는 본 문서에 개시된 기능, 절차, 제안 및/또는 방법에 따라 PDU, SDU, 메시지, 제어정보, 데이터 또는 정보를 포함하는 신호(예, 베이스밴드 신호)를 생성하여, 하나 이상의 송수신기(106, 206)에게 제공할 수 있다. 하나 이상의 프로세서(102, 202)는 하나 이상의 송수신기(106, 206)로부터 신호(예, 베이스밴드 신호)를 수신할 수 있고, 본 문서에 개시된 설명, 기능, 절차, 제안, 방법 및/또는 동작 순서도들에 따라 PDU, SDU, 메시지, 제어정보, 데이터 또는 정보를 획득할 수 있다.
하나 이상의 프로세서(102, 202)는 컨트롤러, 마이크로 컨트롤러, 마이크로 프로세서 또는 마이크로 컴퓨터로 지칭될 수 있다. 하나 이상의 프로세서(102, 202)는 하드웨어, 펌웨어, 소프트웨어, 또는 이들의 조합에 의해 구현될 수 있다. 일 예로, 하나 이상의 ASIC(Application Specific Integrated Circuit), 하나 이상의 DSP(Digital Signal Processor), 하나 이상의 DSPD(Digital Signal Processing Device), 하나 이상의 PLD(Programmable Logic Device) 또는 하나 이상의 FPGA(Field Programmable Gate Arrays)가 하나 이상의 프로세서(102, 202)에 포함될 수 있다. 본 문서에 개시된 설명, 기능, 절차, 제안, 방법 및/또는 동작 순서도들은 펌웨어 또는 소프트웨어를 사용하여 구현될 수 있고, 펌웨어 또는 소프트웨어는 모듈, 절차, 기능 등을 포함하도록 구현될 수 있다. 본 문서에 개시된 설명, 기능, 절차, 제안, 방법 및/또는 동작 순서도들은 수행하도록 설정된 펌웨어 또는 소프트웨어는 하나 이상의 프로세서(102, 202)에 포함되거나, 하나 이상의 메모리(104, 204)에 저장되어 하나 이상의 프로세서(102, 202)에 의해 구동될 수 있다. 본 문서에 개시된 설명, 기능, 절차, 제안, 방법 및/또는 동작 순서도들은 코드, 명령어 및/또는 명령어의 집합 형태로 펌웨어 또는 소프트웨어를 사용하여 구현될 수 있다.
하나 이상의 메모리(104, 204)는 하나 이상의 프로세서(102, 202)와 연결될 수 있고, 다양한 형태의 데이터, 신호, 메시지, 정보, 프로그램, 코드, 지시 및/또는 명령을 저장할 수 있다. 하나 이상의 메모리(104, 204)는 ROM, RAM, EPROM, 플래시 메모리, 하드 드라이브, 레지스터, 캐쉬 메모리, 컴퓨터 판독 저장 매체 및/또는 이들의 조합으로 구성될 수 있다. 하나 이상의 메모리(104, 204)는 하나 이상의 프로세서(102, 202)의 내부 및/또는 외부에 위치할 수 있다. 또한, 하나 이상의 메모리(104, 204)는 유선 또는 무선 연결과 같은 다양한 기술을 통해 하나 이상의 프로세서(102, 202)와 연결될 수 있다.
하나 이상의 송수신기(106, 206)는 하나 이상의 다른 장치에게 본 문서의 방법들 및/또는 동작 순서도 등에서 언급되는 사용자 데이터, 제어 정보, 무선 신호/채널 등을 전송할 수 있다. 하나 이상의 송수신기(106, 206)는 하나 이상의 다른 장치로부터 본 문서에 개시된 설명, 기능, 절차, 제안, 방법 및/또는 동작 순서도 등에서 언급되는 사용자 데이터, 제어 정보, 무선 신호/채널 등을 수신할 수 있다. 예를 들어, 하나 이상의 송수신기(106, 206)는 하나 이상의 프로세서(102, 202)와 연결될 수 있고, 무선 신호를 송수신할 수 있다. 예를 들어, 하나 이상의 프로세서(102, 202)는 하나 이상의 송수신기(106, 206)가 하나 이상의 다른 장치에게 사용자 데이터, 제어 정보 또는 무선 신호를 전송하도록 제어할 수 있다. 또한, 하나 이상의 프로세서(102, 202)는 하나 이상의 송수신기(106, 206)가 하나 이상의 다른 장치로부터 사용자 데이터, 제어 정보 또는 무선 신호를 수신하도록 제어할 수 있다. 또한, 하나 이상의 송수신기(106, 206)는 하나 이상의 안테나(108, 208)와 연결될 수 있고, 하나 이상의 송수신기(106, 206)는 하나 이상의 안테나(108, 208)를 통해 본 문서에 개시된 설명, 기능, 절차, 제안, 방법 및/또는 동작 순서도 등에서 언급되는 사용자 데이터, 제어 정보, 무선 신호/채널 등을 송수신하도록 설정될 수 있다. 본 문서에서, 하나 이상의 안테나는 복수의 물리 안테나이거나, 복수의 논리 안테나(예, 안테나 포트)일 수 있다. 하나 이상의 송수신기(106, 206)는 수신된 사용자 데이터, 제어 정보, 무선 신호/채널 등을 하나 이상의 프로세서(102, 202)를 이용하여 처리하기 위해, 수신된 무선 신호/채널 등을 RF 밴드 신호에서 베이스밴드 신호로 변환(Convert)할 수 있다. 하나 이상의 송수신기(106, 206)는 하나 이상의 프로세서(102, 202)를 이용하여 처리된 사용자 데이터, 제어 정보, 무선 신호/채널 등을 베이스밴드 신호에서 RF 밴드 신호로 변환할 수 있다. 이를 위하여, 하나 이상의 송수신기(106, 206)는 (아날로그) 오실레이터 및/또는 필터를 포함할 수 있다.
본 명세서에서, 적어도 하나의 메모리(예, 104 또는 204)는 지시들 또는 프로그램들을 저장할 수 있으며, 상기 지시들 또는 프로그램들은, 실행될 때, 상기 적어도 하나의 메모리에 작동 가능하게(operably) 연결되는 적어도 하나의 프로세서로 하여금 본 명세의 몇몇 실시예들 또는 구현들에 따른 동작들을 수행하도록 할 수 있다.
본 명세서에서, 컴퓨터 판독가능한(readable) 저장(storage) 매체(medium)은 적어도 하나의 지시 또는 컴퓨터 프로그램을 저장할 수 있으며, 상기 적어도 하나의 지시 또는 컴퓨터 프로그램은 적어도 하나의 프로세서에 의해 실행될 때 상기 적어도 하나의 프로세서로 하여금 본 명세의 몇몇 실시예들 또는 구현들에 따른 동작들을 수행하도록 할 수 있다.
본 명세서에서, 프로세싱 기기(device) 또는 장치(apparatus)는 적어도 하나의 프로세서와 상기 적어도 하나의 프로세서여 연결 가능한 적어도 하나의 컴퓨터 메모리를 포함할 수 있다. 상기 적어도 하나의 컴퓨터 메모리는 지시들 또는 프로그램들을 저장할 수 있으며, 상기 지시들 또는 프로그램들은, 실행될 때, 상기 적어도 하나의 메모리에 작동 가능하게(operably) 연결되는 적어도 하나의 프로세서로 하여금 본 명세의 몇몇 실시예들 또는 구현들에 따른 동작들을 수행하도록 할 수 있다.
도 19은 본 발명에 적용되는 무선 기기의 다른 예를 나타낸다. 무선 기기는 사용-예/서비스에 따라 다양한 형태로 구현될 수 있다(도 17 참조).
도 19을 참조하면, 무선 기기(100, 200)는 도 18의 무선 기기(100,200)에 대응하며, 다양한 요소(element), 성분(component), 유닛/부(unit), 및/또는 모듈(module)로 구성될 수 있다. 예를 들어, 무선 기기(100, 200)는 통신부(110), 제어부(120), 메모리부(130) 및 추가 요소(140)를 포함할 수 있다. 통신부는 통신 회로(112) 및 송수신기(들)(114)을 포함할 수 있다. 예를 들어, 통신 회로(112)는 도 18의 하나 이상의 프로세서(102,202) 및/또는 하나 이상의 메모리(104,204) 를 포함할 수 있다. 예를 들어, 송수신기(들)(114)는 도 18의 하나 이상의 송수신기(106,206) 및/또는 하나 이상의 안테나(108,208)을 포함할 수 있다. 제어부(120)는 통신부(110), 메모리부(130) 및 추가 요소(140)와 전기적으로 연결되며 무선 기기의 제반 동작을 제어한다. 예를 들어, 제어부(120)는 메모리부(130)에 저장된 프로그램/코드/명령/정보에 기반하여 무선 기기의 전기적/기계적 동작을 제어할 수 있다. 또한, 제어부(120)는 메모리부(130)에 저장된 정보를 통신부(110)을 통해 외부(예, 다른 통신 기기)로 무선/유선 인터페이스를 통해 전송하거나, 통신부(110)를 통해 외부(예, 다른 통신 기기)로부터 무선/유선 인터페이스를 통해 수신된 정보를 메모리부(130)에 저장할 수 있다.
추가 요소(140)는 무선 기기의 종류에 따라 다양하게 구성될 수 있다. 예를 들어, 추가 요소(140)는 파워 유닛/배터리, 입출력부(I/O unit), 구동부 및 컴퓨팅부 중 적어도 하나를 포함할 수 있다. 이로 제한되는 것은 아니지만, 무선 기기는 로봇(도 17, 100a), 차량(도 17, 100b-1, 100b-2), XR 기기(도 17, 100c), 휴대 기기(도 17, 100d), 가전(도 17, 100e), IoT 기기(도 17, 100f), 디지털 방송용 단말, 홀로그램 장치, 공공 안전 장치, MTC 장치, 의료 장치, 핀테크 장치(또는 금융 장치), 보안 장치, 기후/환경 장치, AI 서버/기기(도 17, 400), 기지국(도 17, 200), 네트워크 노드 등의 형태로 구현될 수 있다. 무선 기기는 사용-예/서비스에 따라 이동 가능하거나 고정된 장소에서 사용될 수 있다.
도 19에서 무선 기기(100, 200) 내의 다양한 요소, 성분, 유닛/부, 및/또는 모듈은 전체가 유선 인터페이스를 통해 상호 연결되거나, 적어도 일부가 통신부(110)를 통해 무선으로 연결될 수 있다. 예를 들어, 무선 기기(100, 200) 내에서 제어부(120)와 통신부(110)는 유선으로 연결되며, 제어부(120)와 제1 유닛(예, 130, 140)은 통신부(110)를 통해 무선으로 연결될 수 있다. 또한, 무선 기기(100, 200) 내의 각 요소, 성분, 유닛/부, 및/또는 모듈은 하나 이상의 요소를 더 포함할 수 있다. 예를 들어, 제어부(120)는 하나 이상의 프로세서 집합으로 구성될 수 있다. 예를 들어, 제어부(120)는 통신 제어 프로세서, 어플리케이션 프로세서(Application processor), ECU(Electronic Control Unit), 그래픽 처리 프로세서, 메모리 제어 프로세서 등의 집합으로 구성될 수 있다. 다른 예로, 메모리부(130)는 RAM(Random Access Memory), DRAM(Dynamic RAM), ROM(Read Only Memory), 플래시 메모리(flash memory), 휘발성 메모리(volatile memory), 비-휘발성 메모리(non-volatile memory) 및/또는 이들의 조합으로 구성될 수 있다.
여기서, 본 명세의 무선 기기(100, 200)에서 구현되는 무선 통신 기술은 LTE, NR 및 6G뿐만 아니라 저전력 통신을 위한 Narrowband Internet of Things를 포함할 수 있다. 이때, 예를 들어 NB-IoT 기술은 LPWAN(Low Power Wide Area Network) 기술의 일례일 수 있고, LTE Cat NB1 및/또는 LTE Cat NB2 등의 규격으로 구현될 수 있으며, 상술한 명칭에 한정되는 것은 아니다. 추가적으로 또는 대체적으로, 본 명세서의 무선 기기(100, 200)에서 구현되는 무선 통신 기술은 LTE-M 기술을 기반으로 통신을 수행할 수 있다. 이때, 일 예로, LTE-M 기술은 LPWAN 기술의 일례일 수 있고, eMTC(enhanced Machine Type Communication) 등의 다양한 명칭으로 불릴 수 있다. 예를 들어, LTE-M 기술은 1) LTE CAT 0, 2) LTE Cat M1, 3) LTE Cat M2, 4) LTE non-BL(non-Bandwidth Limited), 5) LTE-MTC, 6) LTE Machine Type Communication, 및/또는 7) LTE M 등의 다양한 규격 중 적어도 어느 하나로 구현될 수 있으며 상술한 명칭에 한정되는 것은 아니다. 추가적으로 또는 대체적으로, 본 명세서의 무선 기기(100, 200)에서 구현되는 무선 통신 기술은 저전력 통신을 고려한 지그비(ZigBee), 블루투스(Bluetooth) 및 저전력 광역 통신망(Low Power Wide Area Network, LPWAN) 중 적어도 어느 하나를 포함할 수 있으며, 상술한 명칭에 한정되는 것은 아니다. 일 예로 ZigBee 기술은 IEEE 802.15.4 등의 다양한 규격을 기반으로 소형/저-파워 디지털 통신에 관련된 PAN(personal area networks)을 생성할 수 있으며, 다양한 명칭으로 불릴 수 있다.
도 20은 본 발명에 적용되는 차량 또는 자율 주행 차량을 예시한다. 차량 또는 자율 주행 차량은 이동형 로봇, 차량, 기차, 유/무인 비행체(Aerial Vehicle, AV), 선박 등으로 구현될 수 있다.
도 20을 참조하면, 차량 또는 자율 주행 차량(100)은 안테나부(108), 통신부(110), 제어부(120), 구동부(140a), 전원공급부(140b), 센서부(140c) 및 자율 주행부(140d)를 포함할 수 있다. 안테나부(108)는 통신부(110)의 일부로 구성될 수 있다. 블록 110/130/140a~140d는 각각 도 19의 블록 110/130/140에 대응한다.
통신부(110)는 다른 차량, 기지국(e.g. 기지국, 노변 기지국(Road Side unit) 등), 서버 등의 외부 기기들과 신호(예, 데이터, 제어 신호 등)를 송수신할 수 있다. 제어부(120)는 차량 또는 자율 주행 차량(100)의 요소들을 제어하여 다양한 동작을 수행할 수 있다. 제어부(120)는 ECU(Electronic Control Unit)를 포함할 수 있다. 구동부(140a)는 차량 또는 자율 주행 차량(100)을 지상에서 주행하게 할 수 있다. 구동부(140a)는 엔진, 모터, 파워 트레인, 바퀴, 브레이크, 조향 장치 등을 포함할 수 있다. 전원공급부(140b)는 차량 또는 자율 주행 차량(100)에게 전원을 공급하며, 유/무선 충전 회로, 배터리 등을 포함할 수 있다. 센서부(140c)는 차량 상태, 주변 환경 정보, 사용자 정보 등을 얻을 수 있다. 센서부(140c)는 IMU(inertial measurement unit) 센서, 충돌 센서, 휠 센서(wheel sensor), 속도 센서, 경사 센서, 중량 감지 센서, 헤딩 센서(heading sensor), 포지션 모듈(position module), 차량 전진/후진 센서, 배터리 센서, 연료 센서, 타이어 센서, 스티어링 센서, 온도 센서, 습도 센서, 초음파 센서, 조도 센서, 페달 포지션 센서 등을 포함할 수 있다. 자율 주행부(140d)는 주행중인 차선을 유지하는 기술, 어댑티브 크루즈 컨트롤과 같이 속도를 자동으로 조절하는 기술, 정해진 경로를 따라 자동으로 주행하는 기술, 목적지가 설정되면 자동으로 경로를 설정하여 주행하는 기술 등을 구현할 수 있다.
일 예로, 통신부(110)는 외부 서버로부터 지도 데이터, 교통 정보 데이터 등을 수신할 수 있다. 자율 주행부(140d)는 획득된 데이터를 기반으로 자율 주행 경로와 드라이빙 플랜을 생성할 수 있다. 제어부(120)는 드라이빙 플랜에 따라 차량 또는 자율 주행 차량(100)이 자율 주행 경로를 따라 이동하도록 구동부(140a)를 제어할 수 있다(예, 속도/방향 조절). 자율 주행 도중에 통신부(110)는 외부 서버로부터 최신 교통 정보 데이터를 비/주기적으로 획득하며, 주변 차량으로부터 주변 교통 정보 데이터를 획득할 수 있다. 또한, 자율 주행 도중에 센서부(140c)는 차량 상태, 주변 환경 정보를 획득할 수 있다. 자율 주행부(140d)는 새로 획득된 데이터/정보에 기반하여 자율 주행 경로와 드라이빙 플랜을 갱신할 수 있다. 통신부(110)는 차량 위치, 자율 주행 경로, 드라이빙 플랜 등에 관한 정보를 외부 서버로 전달할 수 있다. 외부 서버는 차량 또는 자율 주행 차량들로부터 수집된 정보에 기반하여, AI 기술 등을 이용하여 교통 정보 데이터를 미리 예측할 수 있고, 예측된 교통 정보 데이터를 차량 또는 자율 주행 차량들에게 제공할 수 있다.
이상에서 설명된 실시예들은 본 발명의 구성요소들과 특징들이 소정 형태로 결합된 것들이다. 각 구성요소 또는 특징은 별도의 명시적 언급이 없는 한 선택적인 것으로 고려되어야 한다. 각 구성요소 또는 특징은 다른 구성요소나 특징과 결합되지 않은 형태로 실시될 수 있다. 또한, 일부 구성요소들 및/또는 특징들을 결합하여 본 발명의 실시예를 구성하는 것도 가능하다. 본 발명의 실시예들에서 설명되는 동작들의 순서는 변경될 수 있다. 어느 실시예의 일부 구성이나 특징은 다른 실시예에 포함될 수 있고, 또는 다른 실시예의 대응하는 구성 또는 특징과 교체될 수 있다. 특허청구범위에서 명시적인 인용 관계가 있지 않은 청구항들을 결합하여 실시예를 구성하거나 출원 후의 보정에 의해 새로운 청구항으로 포함시킬 수 있음은 자명하다.
본 발명은 본 발명의 특징을 벗어나지 않는 범위에서 다른 특정한 형태로 구체화될 수 있음은 당업자에게 자명하다. 따라서, 상기의 상세한 설명은 모든 면에서 제한적으로 해석되어서는 아니되고 예시적인 것으로 고려되어야 한다. 본 발명의 범위는 첨부된 청구항의 합리적 해석에 의해 결정되어야 하고, 본 발명의 등가적 범위 내에서의 모든 변경은 본 발명의 범위에 포함된다.
본 발명은 무선 이동 통신 시스템의 단말기, 기지국, 또는 기타 다른 장비에 사용될 수 있다.

Claims (15)

  1. 무선 통신 시스템에서 단말이 통신을 수행하는 방법에 있어서,
    SS/PBCH(Synchronization Signal/Physical Broadcast Channel) 블록을 검출하되, 상기 SS/PBCH 블록은 PBCH 페이로드 및 PBCH DMRS(Demodulation Reference signal)를 포함하는 단계; 및
    상기 PBCH DMRS의 특성에 기반하여, 복수의 WF(Waveform) 방식 중 어느 하나의 WF에 기반하여 상기 PBCH 페이로드를 처리하는 단계를 포함하고,
    상기 복수의 WF는 적어도 CP-OFDM(Cyclic Prefix Orthogonal Frequency Division Multiplexing) 방식과 DFT-s-OFDM(Discrete Fourier Transform-spread- OFDM) 방식을 포함하는 방법.
  2. 제1항에 있어서,
    상기 PBCH DMRS가 존재하는 RE들은 주파수 도메인에서 N개 RE(Resource Element) 간격을 가지며(N은 1보다 큰 정수), 상기 PBCH DMRS의 특성은 상기 PBCH DMRS에 적용된 주파수 쉬프트 값을 포함하는 방법.
  3. 제2항에 있어서,
    상기 PBCH DMRS의 특성은 DMRS 시퀀스를 생성하는데 사용되는 파라미터를 포함하는 방법.
  4. 제3항에 있어서,
    상기 PBCH DMRS의 특성은 상기 DMRS 시퀀스를 생성하는데 사용되는 초기화 값을 포함하는 방법.
  5. 제1항에 있어서,
    상기 PBCH 페이로드를 CP-OFDM 방식에 따라 처리하는 것에 기반하여,
    상기 PBCH 페이로드에 적용되는 DFT 사이즈는 상기 SS/PBCH 블록이 위치하는 동기화 래스터에 대해 정의된 최소 대역에 대응하는 값으로 가정되는 방법.
  6. 무선 통신 시스템에 사용되는 단말에 있어서,
    적어도 하나의 프로세서; 및
    상기 적어도 하나의 프로세서와 동작 가능하게 연결되고, 실행될 때, 상기 적어도 하나의 프로세서가 동작을 수행하도록 하는 적어도 하나의 컴퓨터 메모리를 포함하며, 상기 동작은,
    SS/PBCH(Synchronization Signal/Physical Broadcast Channel) 블록을 검출하되, 상기 SS/PBCH 블록은 PBCH 페이로드 및 PBCH DMRS(Demodulation Reference signal)를 포함하는 것과,
    상기 PBCH DMRS의 특성에 기반하여, 복수의 WF(Waveform) 방식 중 어느 하나의 WF에 기반하여 상기 PBCH 페이로드를 처리하는 것을 포함하고,
    상기 복수의 WF는 적어도 CP-OFDM(Cyclic Prefix Orthogonal Frequency Division Multiplexing) 방식과 DFT-s-OFDM(Discrete Fourier Transform-spread- OFDM) 방식을 포함하는 단말.
  7. 제6항에 있어서,
    상기 PBCH DMRS가 존재하는 RE들은 주파수 도메인에서 N개 RE(Resource Element) 간격을 가지며(N은 1보다 큰 정수), 상기 PBCH DMRS의 특성은 상기 PBCH DMRS에 적용된 주파수 쉬프트 값을 포함하는 단말.
  8. 제6항에 있어서,
    상기 PBCH DMRS의 특성은 DMRS 시퀀스를 생성하는데 사용되는 파라미터를 포함하는 단말.
  9. 제8항에 있어서,
    상기 PBCH DMRS의 특성은 상기 DMRS 시퀀스를 생성하는데 사용되는 초기화 값을 포함하는 단말.
  10. 제6항에 있어서,
    상기 PBCH 페이로드를 CP-OFDM 방식에 따라 처리하는 것에 기반하여,
    상기 PBCH 페이로드에 적용되는 DFT 사이즈는 상기 SS/PBCH 블록이 위치하는 동기화 래스터에 대해 정의된 최소 대역에 대응하는 값으로 가정되는 단말.
  11. 단말을 위한 장치에 있어서,
    적어도 하나의 프로세서; 및
    상기 적어도 하나의 프로세서와 동작 가능하게 연결되고, 실행될 때, 상기 적어도 하나의 프로세서가 동작을 수행하도록 하는 적어도 하나의 컴퓨터 메모리를 포함하며, 상기 동작은:
    SS/PBCH(Synchronization Signal/Physical Broadcast Channel) 블록을 검출하되, 상기 SS/PBCH 블록은 PBCH 페이로드 및 PBCH DMRS(Demodulation Reference signal)를 포함하는 것과,
    상기 PBCH DMRS의 특성에 기반하여, 복수의 WF(Waveform) 방식 중 어느 하나의 WF에 기반하여 상기 PBCH 페이로드를 처리하는 것을 포함하고,
    상기 복수의 WF는 적어도 CP-OFDM(Cyclic Prefix Orthogonal Frequency Division Multiplexing) 방식과 DFT-s-OFDM(Discrete Fourier Transform-spread- OFDM) 방식을 포함하는 장치.
  12. 제11항에 있어서,
    상기 PBCH DMRS가 존재하는 RE들은 주파수 도메인에서 N개 RE(Resource Element) 간격을 가지며(N은 1보다 큰 정수), 상기 PBCH DMRS의 특성은 상기 PBCH DMRS에 적용된 주파수 쉬프트 값을 포함하는 장치.
  13. 제11항에 있어서,
    상기 PBCH DMRS의 특성은 DMRS 시퀀스를 생성하는데 사용되는 파라미터를 포함하는 장치.
  14. 제13항에 있어서,
    상기 PBCH DMRS의 특성은 상기 DMRS 시퀀스를 생성하는데 사용되는 초기화 값을 포함하는 장치.
  15. 제11항에 있어서,
    상기 PBCH 페이로드를 CP-OFDM 방식에 따라 처리하는 것에 기반하여,
    상기 PBCH 페이로드에 적용되는 DFT 사이즈는 상기 SS/PBCH 블록이 위치하는 동기화 래스터에 대해 정의된 최소 대역에 대응하는 값으로 가정되는 장치.
PCT/KR2020/011246 2019-08-23 2020-08-24 무선 통신 시스템에서 무선 신호 송수신 방법 및 장치 WO2021040350A1 (ko)

Priority Applications (2)

Application Number Priority Date Filing Date Title
KR1020227007408A KR20220051840A (ko) 2019-08-23 2020-08-24 무선 통신 시스템에서 무선 신호 송수신 방법 및 장치
US17/621,880 US11895604B2 (en) 2019-08-23 2020-08-24 Method and apparatus for transmitting and receiving wireless signal in wireless communication system

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR20190104011 2019-08-23
KR10-2019-0104011 2019-08-23

Publications (1)

Publication Number Publication Date
WO2021040350A1 true WO2021040350A1 (ko) 2021-03-04

Family

ID=74685664

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2020/011246 WO2021040350A1 (ko) 2019-08-23 2020-08-24 무선 통신 시스템에서 무선 신호 송수신 방법 및 장치

Country Status (3)

Country Link
US (1) US11895604B2 (ko)
KR (1) KR20220051840A (ko)
WO (1) WO2021040350A1 (ko)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023147955A1 (en) * 2022-02-01 2023-08-10 Sony Group Corporation Wireless telecommunications apparatuses and methods

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US12075449B2 (en) * 2021-07-01 2024-08-27 Nokia Technologies Oy Blind physical broadcast channel detection for narrowband new radio

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017201273A1 (en) * 2016-05-19 2017-11-23 Intel IP Corporation Subframe structure for discrete fourier transform (dft) spread orthogonal frequency division multiplexing (s-ofdm) waveforms
US20180227101A1 (en) * 2017-02-06 2018-08-09 Qualcomm Incorporated Uplink mimo reference signals and data transmission schemes
WO2019005311A1 (en) * 2017-06-29 2019-01-03 Qualcomm Incorporated PROVIDING PROTECTION FOR INFORMATION EMITTED IN DEMODULATION REFERENCE SIGNALS (DMRS)

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018129123A1 (en) * 2017-01-06 2018-07-12 Idac Holding, Inc. Physical broadcast channel, initial uplink transmission and system acquisition associated with new radio
US11316721B2 (en) * 2017-07-27 2022-04-26 Apple Inc. Demodulation reference signal for physical broadcast channel in new radio
US20200053781A1 (en) * 2018-08-08 2020-02-13 Idac Holdings, Inc. Ss block methods and procedures for nr-u

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017201273A1 (en) * 2016-05-19 2017-11-23 Intel IP Corporation Subframe structure for discrete fourier transform (dft) spread orthogonal frequency division multiplexing (s-ofdm) waveforms
US20180227101A1 (en) * 2017-02-06 2018-08-09 Qualcomm Incorporated Uplink mimo reference signals and data transmission schemes
WO2019005311A1 (en) * 2017-06-29 2019-01-03 Qualcomm Incorporated PROVIDING PROTECTION FOR INFORMATION EMITTED IN DEMODULATION REFERENCE SIGNALS (DMRS)

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
SAMSUNG: "On physical layer structures for NR V2X", 3GPP DRAFT; R1-1902273 ON PHYSICAL LAYER STRUCTURES FOR NR V2X, 3RD GENERATION PARTNERSHIP PROJECT (3GPP), MOBILE COMPETENCE CENTRE ; 650, ROUTE DES LUCIOLES ; F-06921 SOPHIA-ANTIPOLIS CEDEX ; FRANCE, vol. RAN WG1, no. Athens, Greece; 20190225 - 20190301, 15 February 2019 (2019-02-15), Mobile Competence Centre ; 650, route des Lucioles ; F-06921 Sophia-Antipolis Cedex ; France, XP051599968 *
ZTE, SANECHIPS: "Discussion on synchronization mechanism in NR V2X", 3GPP DRAFT; R1-1908895 DISCUSSION ON SYNCHRONIZATION MECHANISM IN NR V2X, 3RD GENERATION PARTNERSHIP PROJECT (3GPP), MOBILE COMPETENCE CENTRE ; 650, ROUTE DES LUCIOLES ; F-06921 SOPHIA-ANTIPOLIS CEDEX ; FRANCE, vol. RAN WG1, no. Prague, CZ; 20190826 - 20190830, 17 August 2019 (2019-08-17), Mobile Competence Centre ; 650, route des Lucioles ; F-06921 Sophia-Antipolis Cedex ; France, XP051765503 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023147955A1 (en) * 2022-02-01 2023-08-10 Sony Group Corporation Wireless telecommunications apparatuses and methods

Also Published As

Publication number Publication date
US11895604B2 (en) 2024-02-06
US20220264492A1 (en) 2022-08-18
KR20220051840A (ko) 2022-04-26

Similar Documents

Publication Publication Date Title
WO2021206422A1 (ko) 무선 통신 시스템에서 무선 신호 송수신 방법 및 장치
WO2020032558A1 (ko) 무선 통신 시스템에서 무선 신호 송수신 방법 및 장치
WO2022071755A1 (ko) 무선 통신 시스템에서 무선 신호 송수신 방법 및 장치
WO2020167106A1 (ko) 무선 통신 시스템에서 무선 신호 송수신 방법 및 장치
WO2021230701A1 (ko) 무선 통신을 위한 신호 송수신 방법 및 이를 위한 장치
WO2020204561A1 (ko) 무선 통신 시스템에서 무선 신호 송수신 방법 및 장치
WO2022154637A1 (ko) 무선 통신 시스템에서 신호 송수신 방법 및 장치
WO2021162526A1 (ko) 무선 통신 시스템에서 무선 신호 송수신 방법 및 장치
WO2021033952A1 (ko) 무선 통신 시스템에서 무선 신호 송수신 방법 및 장치
WO2020204560A1 (ko) 무선 통신 시스템에서 무선 신호 송수신 방법 및 장치
WO2020060365A1 (ko) 무선 통신 시스템에서 무선 신호 송수신 방법 및 장치
WO2021066633A1 (ko) 무선 통신 시스템에서 무선 신호 송수신 방법 및 장치
WO2020145801A1 (ko) 무선 통신 시스템에서 무선 신호 송수신 방법 및 장치
WO2020032757A1 (ko) 비면허 대역을 지원하는 무선 통신 시스템에서 신호를 송수신하는 방법 및 이를 지원하는 장치
WO2020209676A1 (ko) 무선 통신 시스템에서 harq 피드백을 수행하는 방법 및 장치
WO2020222599A1 (ko) 무선 통신 시스템에서 신호를 송수신하는 방법 및 이를 지원하는 장치
WO2022030991A1 (ko) 무선 통신 시스템에서 무선 신호 송수신 방법 및 장치
WO2022031123A1 (ko) 무선 통신 시스템에서 무선 신호 송수신 방법 및 장치
WO2020091574A1 (ko) 무선 통신 시스템에서 무선 신호 송수신 방법 및 장치
WO2020222612A1 (ko) 무선 통신 시스템에서 무선 신호 송수신 방법 및 장치
WO2022154393A1 (ko) 무선 통신 시스템에서 신호 송수신 방법 및 장치
WO2020167107A1 (ko) 무선 통신 시스템에서 무선 신호 송수신 방법 및 장치
WO2021040348A1 (ko) 무선 통신 시스템에서 무선 신호 송수신 방법 및 장치
WO2021096249A1 (ko) 무선 통신 시스템에서 무선 신호 송수신 방법 및 장치
WO2021040350A1 (ko) 무선 통신 시스템에서 무선 신호 송수신 방법 및 장치

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20856571

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 20227007408

Country of ref document: KR

Kind code of ref document: A

122 Ep: pct application non-entry in european phase

Ref document number: 20856571

Country of ref document: EP

Kind code of ref document: A1