WO2021040327A1 - 심혈관 질환 위험 인자 예측 장치 및 방법 - Google Patents

심혈관 질환 위험 인자 예측 장치 및 방법 Download PDF

Info

Publication number
WO2021040327A1
WO2021040327A1 PCT/KR2020/011163 KR2020011163W WO2021040327A1 WO 2021040327 A1 WO2021040327 A1 WO 2021040327A1 KR 2020011163 W KR2020011163 W KR 2020011163W WO 2021040327 A1 WO2021040327 A1 WO 2021040327A1
Authority
WO
WIPO (PCT)
Prior art keywords
risk factor
cardiovascular disease
disease risk
predicted value
target
Prior art date
Application number
PCT/KR2020/011163
Other languages
English (en)
French (fr)
Inventor
조수아
이준호
이준석
송지은
이민영
송수정
Original Assignee
삼성에스디에스 주식회사
(의)삼성의료재단
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 삼성에스디에스 주식회사, (의)삼성의료재단 filed Critical 삼성에스디에스 주식회사
Priority to US17/637,564 priority Critical patent/US20220378378A1/en
Publication of WO2021040327A1 publication Critical patent/WO2021040327A1/ko

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B3/00Apparatus for testing the eyes; Instruments for examining the eyes
    • A61B3/10Objective types, i.e. instruments for examining the eyes independent of the patients' perceptions or reactions
    • A61B3/12Objective types, i.e. instruments for examining the eyes independent of the patients' perceptions or reactions for looking at the eye fundus, e.g. ophthalmoscopes
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B3/00Apparatus for testing the eyes; Instruments for examining the eyes
    • A61B3/10Objective types, i.e. instruments for examining the eyes independent of the patients' perceptions or reactions
    • A61B3/14Arrangements specially adapted for eye photography
    • A61B3/145Arrangements specially adapted for eye photography by video means
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/02Detecting, measuring or recording pulse, heart rate, blood pressure or blood flow; Combined pulse/heart-rate/blood pressure determination; Evaluating a cardiovascular condition not otherwise provided for, e.g. using combinations of techniques provided for in this group with electrocardiography or electroauscultation; Heart catheters for measuring blood pressure
    • A61B5/02007Evaluating blood vessel condition, e.g. elasticity, compliance
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/72Signal processing specially adapted for physiological signals or for diagnostic purposes
    • A61B5/7235Details of waveform analysis
    • A61B5/7264Classification of physiological signals or data, e.g. using neural networks, statistical classifiers, expert systems or fuzzy systems
    • A61B5/7267Classification of physiological signals or data, e.g. using neural networks, statistical classifiers, expert systems or fuzzy systems involving training the classification device
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/72Signal processing specially adapted for physiological signals or for diagnostic purposes
    • A61B5/7271Specific aspects of physiological measurement analysis
    • A61B5/7275Determining trends in physiological measurement data; Predicting development of a medical condition based on physiological measurements, e.g. determining a risk factor
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06NCOMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
    • G06N3/00Computing arrangements based on biological models
    • G06N3/02Neural networks
    • GPHYSICS
    • G16INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR SPECIFIC APPLICATION FIELDS
    • G16HHEALTHCARE INFORMATICS, i.e. INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR THE HANDLING OR PROCESSING OF MEDICAL OR HEALTHCARE DATA
    • G16H30/00ICT specially adapted for the handling or processing of medical images
    • G16H30/40ICT specially adapted for the handling or processing of medical images for processing medical images, e.g. editing
    • GPHYSICS
    • G16INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR SPECIFIC APPLICATION FIELDS
    • G16HHEALTHCARE INFORMATICS, i.e. INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR THE HANDLING OR PROCESSING OF MEDICAL OR HEALTHCARE DATA
    • G16H50/00ICT specially adapted for medical diagnosis, medical simulation or medical data mining; ICT specially adapted for detecting, monitoring or modelling epidemics or pandemics
    • G16H50/20ICT specially adapted for medical diagnosis, medical simulation or medical data mining; ICT specially adapted for detecting, monitoring or modelling epidemics or pandemics for computer-aided diagnosis, e.g. based on medical expert systems
    • GPHYSICS
    • G16INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR SPECIFIC APPLICATION FIELDS
    • G16HHEALTHCARE INFORMATICS, i.e. INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR THE HANDLING OR PROCESSING OF MEDICAL OR HEALTHCARE DATA
    • G16H50/00ICT specially adapted for medical diagnosis, medical simulation or medical data mining; ICT specially adapted for detecting, monitoring or modelling epidemics or pandemics
    • G16H50/30ICT specially adapted for medical diagnosis, medical simulation or medical data mining; ICT specially adapted for detecting, monitoring or modelling epidemics or pandemics for calculating health indices; for individual health risk assessment
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B2576/00Medical imaging apparatus involving image processing or analysis
    • A61B2576/02Medical imaging apparatus involving image processing or analysis specially adapted for a particular organ or body part

Definitions

  • Embodiments of the present invention relate to a cardiovascular disease risk factor prediction technique.
  • Cardiovascular disease is a major disease that can lead to death, and the risk of heart attack, myocardial infarction, etc. should be checked based on the values of various cardiovascular risk factors in order to suggest appropriate treatment to the patient.
  • Some risk factors for cardiovascular disease can be measured with a simple examination such as a blood test, but some risk factors, such as the Coronary Artery Calcification Score, are relatively expensive tests or burdened with radiation exposure. It can be measured by inspection.
  • fundus imaging is a non-invasive means of observing blood vessels in detail and is useful for screening eye diseases due to its low cost, but the cardiovascular disease prediction method based on existing fundus images is a separate method for patients with high risk of major cardiovascular disease.
  • EHR electronic health record
  • Embodiments of the present invention are to provide an apparatus and method for predicting cardiovascular disease risk factors.
  • An apparatus for predicting cardiovascular risk factors includes a target cardiovascular disease risk factor prediction module that generates an initial predicted value for a target cardiovascular risk factor from a fundus image, at least one from the fundus image. At least one associated cardiovascular disease risk factor prediction module that generates a predicted value for each of the associated cardiovascular disease risk factors, and an initial predicted value for the target cardiovascular disease risk factor and the predicted value for each of the at least one associated cardiovascular risk factor. Thus, it includes a binding module that generates a final predicted value for the target cardiovascular disease risk factor.
  • the target cardiovascular disease risk factor prediction module is a pre-learned target cardiovascular disease risk factor prediction model using measured values for the target cardiovascular disease risk factors corresponding to a plurality of pre-collected fundus images and each of the plurality of fundus images.
  • the initial prediction value may be generated by using.
  • the target cardiovascular disease risk factor prediction model may be a prediction model based on a convolutional neural network (CNN).
  • CNN convolutional neural network
  • the at least one associated cardiovascular disease risk factor prediction module may include a plurality of pre-collected fundus images and a pre-learned associated cardiovascular disease using measured values for each of the at least one associated cardiovascular disease risk factor corresponding to each of the plurality of fundus images.
  • the predicted value may be generated using a disease risk factor prediction model.
  • the associated cardiovascular disease risk factor prediction model may be a prediction model based on a convolutional neural network (CNN).
  • CNN convolutional neural network
  • the binding module includes an initial predicted value for the target cardiovascular risk factor for each of a plurality of pre-collected fundus images, a predicted value for each of the one or more associated cardiovascular disease risk factors, and an actual measurement for the target cardiovascular risk factor.
  • the final predicted value may be generated by using a predictive result combination model that is pre-trained using the value.
  • the prediction result combination model may be a prediction model based on one of a regression analysis and an artificial neural network.
  • the target cardiovascular risk factor may be a coronary artery calcification score (CACS).
  • CACS coronary artery calcification score
  • the target cardiovascular risk factor may be a carotid artery intima thickness.
  • the one or more associated cardiovascular risk factors include age, sex, smoking, glycated hemoglobin Glycosylated Hemoglobin, blood pressure, pulse wave, blood sugar level, cholesterol level, creatinine level, insulin level, and intraocular pressure. It may include at least one of (Intraocular Pressure).
  • a method for predicting cardiovascular risk factors includes generating an initial predicted value for a target cardiovascular risk factor from a fundus image, each of one or more associated cardiovascular disease risk factors from the fundus image Generating a predicted value for and based on the initial predicted value for the target cardiovascular disease risk factor and the predicted value for each of the one or more associated cardiovascular disease risk factors, a final predicted value for the target cardiovascular disease risk factor Including the step of generating.
  • the generating of the initial predicted value includes a pre-learned target cardiovascular risk factor prediction model using measured values for the target cardiovascular risk factors corresponding to a plurality of pre-collected fundus images and each of the plurality of fundus images.
  • the initial prediction value may be generated by using.
  • the target cardiovascular disease risk factor prediction model may be a prediction model based on a convolutional neural network (CNN).
  • CNN convolutional neural network
  • the generating of the predicted value for each of the one or more associated cardiovascular risk factors includes a plurality of pre-collected fundus images and an actual measured value for each of the one or more associated cardiovascular disease risk factors corresponding to each of the plurality of fundus images.
  • the predicted value may be generated using a pre-learned associated cardiovascular risk factor prediction model.
  • the associated cardiovascular disease risk factor prediction model may be a prediction model based on a convolutional neural network (CNN).
  • CNN convolutional neural network
  • the generating of the final predicted value includes an initial predicted value for the target cardiovascular disease risk factor for each of a plurality of pre-collected fundus images, a predicted value for each of the one or more associated cardiovascular disease risk factors, and the target cardiovascular disease.
  • the final predicted value may be generated using a pre-learned prediction result combined model using the measured value of the risk factor.
  • the prediction result combination model may be a prediction model based on one of a regression analysis and an artificial neural network.
  • the target cardiovascular risk factor may be a coronary artery calcification score (CACS).
  • CACS coronary artery calcification score
  • the target cardiovascular risk factor may be a carotid artery intima thickness.
  • the one or more associated cardiovascular risk factors include age, sex, smoking, glycated hemoglobin Glycosylated Hemoglobin, blood pressure, pulse wave, blood sugar level, cholesterol level, creatinine level, insulin level, and intraocular pressure. It may include at least one of (Intraocular Pressure).
  • the prediction performance is improved by using the predicted values of the associated cardiovascular risk factors, without additional electronic health record (EHR) information. Prediction accuracy can be maintained.
  • EHR electronic health record
  • FIG. 1 is a block diagram of an apparatus for predicting cardiovascular risk factors according to an embodiment of the present invention
  • FIG. 2 is a flowchart of a method for predicting risk factors for cardiovascular disease according to an embodiment of the present invention
  • FIG. 3 is a block diagram illustrating and describing a computing environment including a computing device suitable for use in example embodiments.
  • an embodiment of the present invention may include a program for performing the methods described in the present specification on a computer, and a computer-readable recording medium including the program.
  • the computer-readable recording medium may include a program command, a local data file, a local data structure, or the like alone or in combination.
  • the media may be specially designed and configured for the present invention, or may be commonly used in the field of computer software.
  • Examples of computer-readable recording media include magnetic media such as hard disks, floppy disks and magnetic tapes, optical recording media such as CD-ROMs and DVDs, and specially configured to store and execute program instructions such as ROM, RAM, flash memory, and the like. Includes hardware devices.
  • Examples of the program may include not only machine language codes such as those produced by a compiler, but also high-level language codes that can be executed by a computer using an interpreter or the like.
  • FIG. 1 is a block diagram of an apparatus 120 for predicting cardiovascular risk factors according to an embodiment of the present invention.
  • the cardiovascular disease risk factor prediction apparatus 120 includes a target cardiovascular disease risk factor prediction module 121, one or more associated cardiovascular disease risk factor prediction modules 122, and a combination module. Includes 123.
  • the target cardiovascular risk factor prediction module 121 generates an initial prediction value for a target cardiovascular risk factor (T-CRF) from the fundus image 110.
  • T-CRF target cardiovascular risk factor
  • the target cardiovascular disease risk factor refers to a factor that is a final prediction target by the cardiovascular disease risk factor prediction device 120 among risk factors that may induce cardiovascular disease.
  • the target cardiovascular risk factor may be, for example, a coronary artery calcification score (CACS), a carotid artery intima thickness, and the like, but is not necessarily limited to a specific factor. .
  • the target cardiovascular disease risk factor prediction module 121 is a target cardiovascular system that is pre-learned using measured values for a target cardiovascular disease risk factor corresponding to each of a plurality of fundus images and a plurality of fundus images that are previously collected. An initial predicted value can be generated using a disease risk factor prediction model.
  • the target cardiovascular disease risk factor prediction model is pre-trained based on a learning dataset that includes measured values for target cardiovascular risk factors corresponding to a plurality of pre-collected fundus images and each of the plurality of fundus images. Can be.
  • the target cardiovascular disease risk factor prediction model may be a prediction model based on a convolutional neural network (CNN).
  • CNN convolutional neural network
  • the at least one associated cardiovascular risk factor prediction module 122 generates a predicted value for each of at least one related cardiovascular risk factor (R-CRF) from the fundus image 110.
  • the at least one associated cardiovascular risk factor refers to a factor associated with a target cardiovascular risk factor.
  • the one or more associated cardiovascular risk factors include, for example, age, sex, smoking, Glycosylated Hemoglobin level, blood pressure, Pulse Wave, blood sugar level, cholesterol level, creatinine. It may include levels, insulin levels, and intraocular pressure.
  • the associated cardiovascular risk factors may include various types of factors that are related to the target cardiovascular risk factors in addition to the above-described examples.
  • the associated cardiovascular risk factors may be preselected using a feature selection technique, but may be selected by a user with expert knowledge, such as a doctor, according to embodiments.
  • At least one associated cardiovascular disease risk factor prediction module 122 may generate predicted values for different associated cardiovascular disease risk factors, respectively, and the number of associated cardiovascular disease risk factor prediction modules 122-1 to 122-N May be changed according to the number of associated cardiovascular risk factors to be predicted.
  • the at least one associated cardiovascular disease risk factor prediction module 122 uses measured values for each of a plurality of pre-collected fundus images and one or more associated cardiovascular risk factors corresponding to each of the plurality of fundus images.
  • a predicted value may be generated using a pre-learned associated cardiovascular disease risk factor prediction model.
  • the associated cardiovascular disease risk factor prediction model may be pre-trained based on a learning dataset including measured values for the associated cardiovascular disease risk factors corresponding to the plurality of fundus images and the plurality of fundus images that are collected in advance. .
  • the associated cardiovascular disease risk factor prediction model may be a prediction model based on a convolutional neural network.
  • the combining module 123 generates a final predicted value for the target cardiovascular risk factor based on the initial predicted value for the target cardiovascular risk factor and the predicted value for each of one or more associated cardiovascular risk factors.
  • the coupling module 123 includes an initial predicted value for a target cardiovascular risk factor for each of a plurality of pre-collected fundus images, a predicted value for each of one or more associated cardiovascular risk factors, and a target cardiovascular risk factor.
  • a final predicted value may be generated using a pre-learned prediction result combined model using the measured value.
  • the prediction result binding model is based on a training dataset that includes an initial predicted value for a target cardiovascular risk factor, a predicted value for each of one or more associated cardiovascular risk factors, and an actual measured value for the target cardiovascular risk factor. It can be pre-learned.
  • the prediction result combination model is, for example, a regression analysis such as a logistic regression model, a linear regression model, or an artificial neural network. Neural Network Model).
  • FIG. 2 is a flowchart illustrating a method of predicting cardiovascular risk factors according to an embodiment of the present invention.
  • the method illustrated in FIG. 2 may be performed, for example, by the cardiovascular disease risk factor prediction apparatus 120 illustrated in FIG. 1.
  • the method is described by dividing the method into a plurality of steps, but at least some of the steps are performed in a different order, combined with other steps, performed together, omitted, divided into detailed steps, or not shown. One or more steps may be added and performed.
  • a target cardiovascular disease risk factor prediction module 121 of the cardiovascular disease risk factor prediction device 120 generates an initial prediction value for a target cardiovascular disease risk factor from the fundus image 110 (210). ).
  • the target cardiovascular disease risk factor prediction module 121 is pre-learned by using the measured values for the target cardiovascular disease risk factors corresponding to each of the plurality of fundus images and the plurality of fundus images collected in advance.
  • An initial prediction value may be generated using a target cardiovascular disease risk factor prediction model.
  • the target cardiovascular disease risk factor prediction model may be pre-trained based on a prior dataset including actual measured values for target cardiovascular disease risk factors corresponding to a plurality of pre-collected fundus images and each of the plurality of fundus images. have.
  • the target cardiovascular disease risk factor prediction model may be a prediction model based on a convolutional neural network.
  • the one or more associated cardiovascular disease risk factor prediction module 122 of the cardiovascular disease risk factor prediction apparatus 120 generates a predicted value for each of the at least one associated cardiovascular disease risk factor from the fundus image 110 (220 ).
  • the number of the associated cardiovascular disease risk factor prediction module 122 may be changed according to the number of the associated cardiovascular disease risk factor to be predicted, and each associated cardiovascular disease risk factor prediction module 122-1 to 122-N is different. It is possible to generate a predicted value for the associated cardiovascular disease risk factor.
  • the at least one associated cardiovascular disease risk factor prediction module 122 includes a plurality of pre-collected fundus images and one or more fundus images corresponding to each of the plurality of fundus images.
  • a predicted value may be generated using a pre-learned associated cardiovascular disease risk factor prediction model using measured values for each of the associated cardiovascular disease risk factors.
  • the associated cardiovascular risk factor prediction model will be pre-trained based on a learning dataset that includes measured values for the associated cardiovascular risk factors corresponding to each of a plurality of pre-collected fundus images and a plurality of fundus images). I can.
  • the associated cardiovascular risk factor prediction model may be a prediction model based on a convolutional neural network.
  • the coupling module 123 generates a final predicted value for the target cardiovascular risk factor based on the initial predicted value for the target cardiovascular risk factor and the predicted value for each of the one or more associated cardiovascular risk factors (230). ).
  • the combining module 123 is a pre-learned prediction result using an initial predicted value for a target cardiovascular risk factor, a predicted value for each of one or more associated cardiovascular risk factors, and an actual measured value for the target cardiovascular risk factor.
  • a final predicted value can be generated using a combined model.
  • the prediction result combination model is based on a prior data set including an initial predicted value for a target cardiovascular risk factor, a predicted value for each of one or more associated cardiovascular risk factors, and an actual measured value for the target cardiovascular risk factor. Can be learned.
  • the prediction result combination model is, for example, a regression analysis such as a logistic regression model, a linear regression model, or an artificial neural network.
  • Model may be a predictive model.
  • FIG. 3 is a block diagram illustrating and describing a computing environment 10 including a computing device suitable for use in example embodiments.
  • each component may have different functions and capabilities in addition to those described below, and may include additional components in addition to those described below.
  • the illustrated computing environment 10 includes a computing device 12.
  • the computing device 12 may be a cardiovascular disease risk factor prediction device.
  • the computing device 12 includes at least one processor 14, a computer-readable storage medium 16 and a communication bus 18.
  • the processor 14 may cause the computing device 12 to operate in accordance with the aforementioned exemplary embodiments.
  • the processor 14 may execute one or more programs stored in the computer-readable storage medium 16.
  • the one or more programs may include one or more computer-executable instructions, and the computer-executable instructions are configured to cause the computing device 12 to perform operations according to an exemplary embodiment when executed by the processor 14 Can be.
  • the computer-readable storage medium 16 is configured to store computer-executable instructions or program code, program data, and/or other suitable form of information.
  • the program 20 stored in the computer-readable storage medium 16 includes a set of instructions executable by the processor 14.
  • the computer-readable storage medium 16 includes memory (volatile memory such as random access memory, nonvolatile memory, or a suitable combination thereof), one or more magnetic disk storage devices, optical disk storage devices, flash It may be memory devices, other types of storage media that can be accessed by the computing device 12 and store desired information, or a suitable combination thereof.
  • the communication bus 18 interconnects the various other components of the computing device 12, including the processor 14 and computer readable storage medium 16.
  • Computing device 12 may also include one or more input/output interfaces 22 and one or more network communication interfaces 26 that provide interfaces for one or more input/output devices 24.
  • the input/output interface 22 and the network communication interface 26 are connected to the communication bus 18.
  • the input/output device 24 may be connected to other components of the computing device 12 through the input/output interface 22.
  • the exemplary input/output device 24 includes a pointing device (mouse or track pad, etc.), a keyboard, a touch input device (touch pad or touch screen, etc.), a voice or sound input device, various types of sensor devices, and/or photographing devices. Input devices and/or output devices such as display devices, printers, speakers, and/or network cards.
  • the exemplary input/output device 24 may be included in the computing device 12 as a component constituting the computing device 12, and may be connected to the computing device 102 as a separate device distinct from the computing device 12. May be.

Landscapes

  • Health & Medical Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Medical Informatics (AREA)
  • Public Health (AREA)
  • Biomedical Technology (AREA)
  • General Health & Medical Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Pathology (AREA)
  • Molecular Biology (AREA)
  • Biophysics (AREA)
  • Artificial Intelligence (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Surgery (AREA)
  • Animal Behavior & Ethology (AREA)
  • Veterinary Medicine (AREA)
  • Data Mining & Analysis (AREA)
  • Physiology (AREA)
  • Primary Health Care (AREA)
  • Epidemiology (AREA)
  • Databases & Information Systems (AREA)
  • Signal Processing (AREA)
  • Psychiatry (AREA)
  • Computer Vision & Pattern Recognition (AREA)
  • Evolutionary Computation (AREA)
  • Mathematical Physics (AREA)
  • Theoretical Computer Science (AREA)
  • Ophthalmology & Optometry (AREA)
  • Computational Linguistics (AREA)
  • Fuzzy Systems (AREA)
  • Vascular Medicine (AREA)
  • Computing Systems (AREA)
  • General Engineering & Computer Science (AREA)
  • General Physics & Mathematics (AREA)
  • Software Systems (AREA)
  • Cardiology (AREA)
  • Multimedia (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Radiology & Medical Imaging (AREA)
  • Eye Examination Apparatus (AREA)

Abstract

심혈관 질환 위험 인자 예측 장치 및 방법이 개시된다. 본 발명의 일 실시예에 따른 심혈관 질환 위험 인자 예측 장치 및 방법은 안저 영상(Fundus image)으로부터 대상 심혈관 질환 위험 인자에 대한 초기 예측 값을 생성하는 대상 심혈관 질환 위험 인자 예측 모듈, 상기 안저 영상으로부터 하나 이상의 연관 심혈관 질환 위험 인자 각각에 대한 예측 값을 생성하는 하나 이상의 연관 심혈관 질환 위험 인자 예측 모듈 및 상기 대상 심혈관 질환 위험 인자에 대한 초기 예측 값과 상기 하나 이상의 연관 심혈관 질환 위험 인자 각각에 대한 예측 값에 기초하여, 상기 대상 심혈관 질환 위험 인자에 대한 최종 예측 값을 생성하는 결합 모듈을 포함한다.

Description

심혈관 질환 위험 인자 예측 장치 및 방법
본 발명의 실시예들은 심혈관 질환 위험 인자 예측 기술과 관련된다.
심혈관 질환은 사망에 이를 수 있는 주요 질환으로, 환자에게 적절한 치료를 제시하기 위해 여러 가지의 심혈관 질환 위험 인자 값을 바탕으로 심장 발작, 심근 경색 등의 위험도를 확인하여야 한다.
일부 심혈관 질환 위험 인자는 피검사와 같은 간단한 검진으로 측정할 수 있으나, 관상동맥 석회화 지수(Coronary Artery Calcification Score)와 같은 일부 위험 인자는 비교적 높은 비용이 소요되는 검사나, 방사선 노출 등의 부담이 있는 검사를 통해 측정할 수 있다.
반면 안저 영상은 비침습적으로 혈관을 자세히 관찰할 수 있는 수단이면서 검사 비용이 낮아 안질환 검진에 유용하나, 기존 안저 영상을 기반으로 한 심혈관 질환 예측 방법은 주요 심혈관 질환 발생 위험이 큰 환자에 대해서 별도의 정밀 검진이 필요할 뿐만 아니라, 전자의무기록(Electronic Health Record, EHR) 정보가 누락된 경우 예측 정확도가 저하된다는 문제점이 있다.
본 발명의 실시예들은 심혈관 질환 위험 인자 예측 장치 및 방법을 제공하기 위한 것이다.
본 발명의 일 실시예에 따른 심혈관 질환 위험 인자 예측 장치는, 안저 영상(Fundus image)으로부터 대상 심혈관 질환 위험 인자에 대한 초기 예측 값을 생성하는 대상 심혈관 질환 위험 인자 예측 모듈, 상기 안저 영상으로부터 하나 이상의 연관 심혈관 질환 위험 인자 각각에 대한 예측 값을 생성하는 하나 이상의 연관 심혈관 질환 위험 인자 예측 모듈 및 상기 대상 심혈관 질환 위험 인자에 대한 초기 예측 값과 상기 하나 이상의 연관 심혈관 질환 위험 인자 각각에 대한 예측 값에 기초하여, 상기 대상 심혈관 질환 위험 인자에 대한 최종 예측 값을 생성하는 결합 모듈을 포함한다.
상기 대상 심혈관 질환 위험 인자 예측 모듈은, 사전 수집된 복수의 안저 영상 및 상기 복수의 안저 영상 각각에 대응되는 상기 대상 심혈관 질환 위험 인자에 대한 실측 값을 이용하여 사전 학습된 대상 심혈관 질환 위험 인자 예측 모델을 이용하여 상기 초기 예측 값을 생성할 수 있다.
상기 대상 심혈관 질환 위험 인자 예측 모델은, 컨벌루션 뉴럴 네트워크(Convolutional Neural Network, CNN) 기반의 예측 모델일 수 있다.
상기 하나 이상의 연관 심혈관 질환 위험 인자 예측 모듈은, 사전 수집된 복수의 안저 영상 및 상기 복수의 안저 영상 각각에 대응되는 상기 하나 이상의 연관 심혈관 질환 위험 인자 각각에 대한 실측 값을 이용하여 사전 학습된 연관 심혈관 질환 위험 인자 예측 모델을 이용하여 상기 예측 값을 생성할 수 있다.
상기 연관 심혈관 질환 위험 인자 예측 모델은, 컨벌루션 뉴럴 네트워크(Convolutional Neural Network, CNN) 기반의 예측 모델일 수 있다.
상기 결합 모듈은, 사전 수집된 복수의 안저 영상 각각에 대한 상기 대상 심혈관 질환 위험 인자에 대한 초기 예측 값, 상기 하나 이상의 연관 심혈관 질환 위험 인자 각각에 대한 예측 값 및 상기 대상 심혈관 질환 위험 인자에 대한 실측 값을 이용하여 사전 학습된 예측 결과 결합 모델을 이용하여 상기 최종 예측 값을 생성할 수 있다.
상기 예측 결과 결합 모델은, 회귀 분석(Regression analysis) 및 인공 신경망(Artificial Neural Network) 중 하나에 기반한 예측 모델일 수 있다.
상기 대상 심혈관 질환 위험 인자는, 관상동맥 석회화 지수(Coronary Artery Calcification Score, CACS)일 수 있다.
상기 대상 심혈관 질환 위험 인자는, 경동맥 내막 두께(Carotid Artery Intima Thickness)일 수 있다.
상기 하나 이상의 연관 심혈관 질환 위험 인자는, 나이, 성별, 흡연, 당화혈색소 Glycosylated Hemoglobin) 수치, 혈압, 맥파(Pulse Wave), 혈당 수치, 콜레스테롤 수치, 크레아티닌(Creatinine) 수치, 인슐린(Insulin) 수치 및 안압(Intraocular Pressure) 중 적어도 하나를 포함할 수 있다.
본 발명의 일 실시예에 따른 심혈관 질환 위험 인자 예측 방법은, 안저 영상(Fundus image)으로부터 대상 심혈관 질환 위험 인자에 대한 초기 예측 값을 생성하는 단계, 상기 안저 영상으로부터 하나 이상의 연관 심혈관 질환 위험 인자 각각에 대한 예측 값을 생성하는 단계 및 상기 대상 심혈관 질환 위험 인자에 대한 초기 예측 값과 상기 하나 이상의 연관 심혈관 질환 위험 인자 각각에 대한 예측 값에 기초하여, 상기 대상 심혈관 질환 위험 인자에 대한 최종 예측 값을 생성하는 단계를 포함한다.
상기 초기 예측 값을 생성하는 단계는, 사전 수집된 복수의 안저 영상 및 상기 복수의 안저 영상 각각에 대응되는 상기 대상 심혈관 질환 위험 인자에 대한 실측 값을 이용하여 사전 학습된 대상 심혈관 질환 위험 인자 예측 모델을 이용하여 상기 초기 예측 값을 생성할 수 있다.
상기 대상 심혈관 질환 위험 인자 예측 모델은, 컨벌루션 뉴럴 네트워크(Convolutional Neural Network, CNN) 기반의 예측 모델일 수 있다.
상기 하나 이상의 연관 심혈관 질환 위험 인자 각각에 대한 예측 값을 생성하는 단계는, 사전 수집된 복수의 안저 영상 및 상기 복수의 안저 영상 각각에 대응되는 상기 하나 이상의 연관 심혈관 질환 위험 인자 각각에 대한 실측 값을 이용하여 사전 학습된 연관 심혈관 질환 위험 인자 예측 모델을 이용하여 상기 예측 값을 생성할 수 있다.
상기 연관 심혈관 질환 위험 인자 예측 모델은, 컨벌루션 뉴럴 네트워크(Convolutional Neural Network, CNN) 기반의 예측 모델일 수 있다.
상기 최종 예측 값을 생성하는 단계는, 사전 수집된 복수의 안저 영상 각각에 대한 상기 대상 심혈관 질환 위험 인자에 대한 초기 예측 값, 상기 하나 이상의 연관 심혈관 질환 위험 인자 각각에 대한 예측 값 및 상기 대상 심혈관 질환 위험 인자에 대한 실측 값을 이용하여 사전 학습된 예측 결과 결합 모델을 이용하여 상기 최종 예측 값을 생성할 수 있다.
상기 예측 결과 결합 모델은, 회귀 분석(Regression analysis) 및 인공 신경망(Artificial Neural Network) 중 하나에 기반한 예측 모델일 수 있다.
상기 대상 심혈관 질환 위험 인자는, 관상동맥 석회화 지수(Coronary Artery Calcification Score, CACS)일 수 있다.
상기 대상 심혈관 질환 위험 인자는, 경동맥 내막 두께(Carotid Artery Intima Thickness)일 수 있다.
상기 하나 이상의 연관 심혈관 질환 위험 인자는, 나이, 성별, 흡연, 당화혈색소 Glycosylated Hemoglobin) 수치, 혈압, 맥파(Pulse Wave), 혈당 수치, 콜레스테롤 수치, 크레아티닌(Creatinine) 수치, 인슐린(Insulin) 수치 및 안압(Intraocular Pressure) 중 적어도 하나를 포함할 수 있다.
본 발명의 실시예들에 따르면, 안저 영상(Fundus image)만을 이용하여 심혈관 질환 위험 인자에 대한 예측을 수행함으로써, 저비용으로 방사선 노출과 같은 부담 없이 심혈관 질환 위험 인자를 예측할 수 있다.
또한 본 발명의 실시예들에 따르면, 예측의 대상이 되는 심혈관 질환 위험 인자 외에도 연관 심혈관 질환 위험 인자의 예측 값을 사용하여 예측 성능을 향상시킴으로써 별도의 전자의무기록(Electronic Health Record, EHR) 정보 없이도 예측 정확도를 유지할 수 있다.
도 1은 본 발명의 일 실시예에 따른 심혈관 질환 위험 인자 예측 장치의 블록도
도 2는 본 발명의 일 실시예에 따른 심혈관 질환 위험 인자 예측 방법의 흐름도
도 3은 예시적인 실시예들에서 사용되기에 적합한 컴퓨팅 장치를 포함하는 컴퓨팅 환경을 예시하여 설명하기 위한 블록도
이하, 도면을 참조하여 본 발명의 구체적인 실시형태를 설명하기로 한다. 이하의 상세한 설명은 본 명세서에서 기술된 방법, 장치 및/또는 시스템에 대한 포괄적인 이해를 돕기 위해 제공된다. 그러나 이는 예시에 불과하며 본 발명은 이에 제한되지 않는다.
본 발명의 실시예들을 설명함에 있어서, 본 발명과 관련된 공지기술에 대한 구체적인 설명이 본 발명의 요지를 불필요하게 흐릴 수 있다고 판단되는 경우에는 그 상세한 설명을 생략하기로 한다. 그리고, 후술되는 용어들은 본 발명에서의 기능을 고려하여 정의된 용어들로서 이는 사용자, 운용자의 의도 또는 관례 등에 따라 달라질 수 있다. 그러므로 그 정의는 본 명세서 전반에 걸친 내용을 토대로 내려져야 할 것이다. 상세한 설명에서 사용되는 용어는 단지 본 발명의 실시예들을 기술하기 위한 것이며, 결코 제한적이어서는 안 된다. 명확하게 달리 사용되지 않는 한, 단수 형태의 표현은 복수 형태의 의미를 포함한다. 본 설명에서, "포함" 또는 "구비"와 같은 표현은 어떤 특성들, 숫자들, 단계들, 동작들, 요소들, 이들의 일부 또는 조합을 가리키기 위한 것이며, 기술된 것 이외에 하나 또는 그 이상의 다른 특성, 숫자, 단계, 동작, 요소, 이들의 일부 또는 조합의 존재 또는 가능성을 배제하도록 해석되어서는 안 된다.
한편, 본 발명의 실시예는 본 명세서에서 기술한 방법들을 컴퓨터상에서 수행하기 위한 프로그램, 및 상기 프로그램을 포함하는 컴퓨터 판독 가능 기록매체를 포함할 수 있다. 상기 컴퓨터 판독 가능 기록매체는 프로그램 명령, 로컬 데이터 파일, 로컬 데이터 구조 등을 단독으로 또는 조합하여 포함할 수 있다. 상기 매체는 본 발명을 위하여 특별히 설계되고 구성된 것들이거나, 또는 컴퓨터 소프트웨어 분야에서 통상적으로 사용 가능한 것일 수 있다. 컴퓨터 판독 가능 기록매체의 예에는 하드 디스크, 플로피 디스크 및 자기 테이프와 같은 자기 매체, CD-ROM, DVD와 같은 광 기록 매체, 및 롬, 램, 플래시 메모리 등과 같은 프로그램 명령을 저장하고 수행하도록 특별히 구성된 하드웨어 장치가 포함된다. 상기 프로그램의 예에는 컴파일러에 의해 만들어지는 것과 같은 기계어 코드뿐만 아니라 인터프리터 등을 사용해서 컴퓨터에 의해서 실행될 수 있는 고급 언어 코드를 포함할 수 있다.
도 1은 본 발명의 일 실시예에 따른 심혈관 질환 위험 인자 예측 장치(120)의 블록도이다.
도 1을 참조하면, 본 발명의 일 실시예에 따른 심혈관 질환 위험 인자 예측 장치(120)는 대상 심혈관 질환 위험 인자 예측 모듈(121), 하나 이상의 연관 심혈관 질환 위험 인자 예측 모듈(122) 및 결합 모듈(123)을 포함한다.
대상 심혈관 질환 위험 인자 예측 모듈(121)은 안저 영상(Fundus image)(110)으로부터 대상 심혈관 질환 위험 인자(Target Cardiovascular Risk Factor, T-CRF)에 대한 초기 예측 값을 생성한다.
이때, 대상 심혈관 질환 위험 인자는 심혈관 질환을 유발할 수 있는 위험 인자 중 심혈관 질환 위험 인자 예측 장치(120)에 의한 최종 예측 대상이 되는 인자를 의미한다. 일 실시예에 따르면, 대상 심혈관 질환 위험 인자는 예를 들어, 관상동맥 석회화 지수(Coronary Artery Calcification Score, CACS), 경동맥 내막 두께(Carotid Artery Intima Thickness) 등일 수 있으나, 반드시 특정한 인자로 한정되는 것은 아니다.
일 실시예에 따르면, 대상 심혈관 질환 위험 인자 예측 모듈(121)은 사전 수집된 복수의 안저 영상 및 복수의 안저 영상 각각에 대응되는 대상 심혈관 질환 위험 인자에 대한 실측 값을 이용하여 사전 학습된 대상 심혈관 질환 위험 인자 예측 모델을 이용하여 초기 예측 값을 생성할 수 있다.
구체적으로, 대상 심혈관 질환 위험 인자 예측 모델은 사전 수집된 복수의 안저 영상 및 복수의 안저 영상 각각에 대응되는 대상 심혈관 질환 위험 인자에 대한 실측 값이 포함된 학습 데이터셋(Dataset)을 기반으로 사전 학습될 수 있다.
또한, 본 발명의 일 실시예에 따르면, 대상 심혈관 질환 위험 인자 예측 모델은 컨벌루션 뉴럴 네트워크(Convolutional Neural Network, CNN) 기반의 예측 모델일 수 있다.
하나 이상의 연관 심혈관 질환 위험 인자 예측 모듈(122)은 안저 영상(110)으로부터 하나 이상의 연관 심혈관 질환 위험 인자(Related Cardiovascular Risk Factor, R-CRF) 각각에 대한 예측 값을 생성한다.
이때, 하나 이상의 연관 심혈관 질환 위험 인자는 대상 심혈관 질환 위험 인자와 연관된 인자를 의미한다. 일 실시예에 따르면, 하나 이상의 연관 심혈관 질환 위험 인자는 예를 들어, 나이, 성별, 흡연, 당화혈색소(Glycosylated Hemoglobin) 수치, 혈압, 맥파(Pulse Wave), 혈당 수치, 콜레스테롤 수치, 크레아티닌(Creatinine) 수치, 인슐린(Insulin) 수치 및 안압(Intraocular Pressure) 등을 포함할 수 있다. 그러나, 연관 심혈관 질환 위험 인자는 상술한 예 외에도 대상 심혈관 질환 위험 인자와 연관성이 있는 다양한 종류의 인자를 포함할 수 있다. 또한, 연관 심혈관 질환 위험 인자는 특징 선택(Feature Selection) 기술을 이용하여 사전 선택될 수 있으나, 실시예에 따라, 의사와 같이 전문 지식을 가진 사용자에 의해 선택될 수도 있다.
한편, 하나 이상의 연관 심혈관 질환 위험 인자 예측 모듈(122)은 각각 상이한 연관 심혈관 질환 위험 인자에 대한 예측 값을 생성할 수 있으며, 연관 심혈관 질환 위험 인자 예측 모듈(122-1 내지 122-N)의 개수는 예측 대상인 연관 심혈관 질환 위험 인자의 개수에 따라 변경될 수 있다.
일 실시예에 따르면, 하나 이상의 연관 심혈관 질환 위험 인자 예측 모듈(122)은 각각 사전 수집된 복수의 안저 영상 및 복수의 안저 영상 각각에 대응되는 하나 이상의 연관 심혈관 질환 위험 인자 각각에 대한 실측 값을 이용하여 사전 학습된 연관 심혈관 질환 위험 인자 예측 모델을 이용하여 예측 값을 생성할 수 있다.
구체적으로, 연관 심혈관 질환 위험 인자 예측 모델은 사전 수집된 복수의 안저 영상 및 복수의 안저 영상 각각에 대응되는 연관 심혈관 질환 위험 인자에 대한 실측 값이 포함된 학습 데이터셋을 기반으로 사전 학습될 수 있다.
또한, 본 발명의 일 실시예에 따르면, 연관 심혈관 질환 위험 인자 예측 모델은 컨벌루션 뉴럴 네트워크 기반의 예측 모델일 수 있다.
결합 모듈(123)은 대상 심혈관 질환 위험 인자에 대한 초기 예측 값과 하나 이상의 연관 심혈관 질환 위험 인자 각각에 대한 예측 값에 기초하여, 대상 심혈관 질환 위험 인자에 대한 최종 예측 값을 생성한다.
구체적으로, 결합 모듈(123)은 사전 수집된 복수의 안저 영상 각각에 대한 대상 심혈관 질환 위험 인자에 대한 초기 예측 값, 하나 이상의 연관 심혈관 질환 위험 인자 각각에 대한 예측 값 및 대상 심혈관 질환 위험 인자에 대한 실측 값을 이용하여 사전 학습된 예측 결과 결합 모델을 이용하여 최종 예측 값을 생성할 수 있다.
보다 구체적으로, 예측 결과 결합 모델은 대상 심혈관 질환 위험 인자에 대한 초기 예측 값, 하나 이상의 연관 심혈관 질환 위험 인자 각각에 대한 예측 값 및 대상 심혈관 질환 위험 인자에 대한 실측 값이 포함된 학습 데이터셋을 기반으로 사전 학습될 수 있다.
한편, 본 발명의 일 실시예에 따르면, 예측 결과 결합 모델은 예를 들어, 로지스틱 회귀 모델(Logistic Regression Model), 선형 회귀 모델(Linear Regression Model) 등과 같은 회귀 분석(Regression Analysis) 또는 인공 신경망 (Artificial Neural Network Model)에 기반한 예측 모델일 수 있다.
도 2는 본 발명의 일 실시예에 따른 심혈관 질환 위험 인자 예측 방법을 설명하기 위한 흐름도이다.
도 2에 도시된 방법은 예를 들어, 도 1에 도시된 심혈관 질환 위험 인자 예측 장치(120)에 의해 수행될 수 있다. 도시된 흐름도에서는 상기 방법을 복수 개의 단계로 나누어 기재하였으나, 적어도 일부의 단계들은 순서를 바꾸어 수행되거나, 다른 단계와 결합되어 함께 수행되거나, 생략되거나, 세부 단계들로 나뉘어 수행되거나, 또는 도시되지 않은 하나 이상의 단계가 부가되어 수행될 수 있다.
도 2를 참조하면, 우선, 심혈관 질환 위험 인자 예측 장치(120) 중 대상 심혈관 질환 위험 인자 예측 모듈(121)은 안저 영상(110)으로부터 대상 심혈관 질환 위험 인자에 대한 초기 예측 값을 생성한다(210).
이때, 일 실시예에 따르면, 대상 심혈관 질환 위험 인자 예측 모듈(121)은 사전 수집된 복수의 안저 영상 및 복수의 안저 영상 각각에 대응되는 대상 심혈관 질환 위험 인자에 대한 실측 값을 이용하여 사전 학습된 대상 심혈관 질환 위험 인자 예측 모델을 이용하여 초기 예측 값을 생성할 수 있다.
구체적으로, 대상 심혈관 질환 위험 인자 예측 모델은, 사전 수집된 복수의 안저 영상 및 복수의 안저 영상 각각에 대응되는 대상 심혈관 질환 위험 인자에 대한 실측 값이 포함된 사전 데이터셋을 기반으로 사전 학습될 수 있다.
본 발명의 일 실시예에 따르면, 대상 심혈관 질환 위험 인자 예측 모델은 컨벌루션 뉴럴 네트워크 기반의 예측 모델일 수 있다.
이후, 심혈관 질환 위험 인자 예측 장치(120) 중 하나 이상의 연관 심혈관 질환 위험 인자 예측 모듈(122)은 안저 영상(110)으로부터 하나 이상의 연관 심혈관 질환 위험 인자 각각에 대한 예측 값을 생성한다(220).
이때, 연관 심혈관 질환 위험 인자 예측 모듈(122)의 개수는 예측 대상인 연관 심혈관 질환 위험 인자의 개수에 따라 변경될 수 있으며, 각 연관 심혈관 질환 위험 인자 예측 모듈(122-1 내지 122-N )은 상이한 연관 심혈관 질환 위험 인자에 대한 예측 값을 생성할 수 있다..구체적으로, 하나 이상의 연관 심혈관 질환 위험 인자 예측 모듈(122)은 사전 수집된 복수의 안저 영상 및 복수의 안저 영상 각각에 대응되는 하나 이상의 연관 심혈관 질환 위험 인자 각각에 대한 실측 값을 이용하여 사전 학습된 연관 심혈관 질환 위험 인자 예측 모델을 이용하여 예측 값을 생성할 수 있다.
보다 구체적으로, 연관 심혈관 질환 위험 인자 예측 모델은 사전 수집된 복수의 안저 영상 및 복수의 안저 영상) 각각에 대응되는 연관 심혈관 질환 위험 인자에 대한 실측 값이 포함된 학습 데이터셋을 기반으로 사전 학습될 수 있다.
본 발명의 일 실시예에 따르면, 연관 심혈관 질환 위험 인자 예측 모델은 컨벌루션 뉴럴 네트워크 기반의 예측 모델일 수 있다.
이후, 결합 모듈(123)은 대상 심혈관 질환 위험 인자에 대한 초기 예측 값과 하나 이상의 연관 심혈관 질환 위험 인자 각각에 대한 예측 값에 기초하여, 대상 심혈관 질환 위험 인자에 대한 최종 예측 값을 생성한다(230).
구체적으로, 결합 모듈(123)은 대상 심혈관 질환 위험 인자에 대한 초기 예측 값, 하나 이상의 연관 심혈관 질환 위험 인자 각각에 대한 예측 값 및 대상 심혈관 질환 위험 인자에 대한 실측 값을 이용하여 사전 학습된 예측 결과 결합 모델을 이용하여 최종 예측 값을 생성할 수 있다.
이때, 예측 결과 결합 모델은 대상 심혈관 질환 위험 인자에 대한 초기 예측 값, 하나 이상의 연관 심혈관 질환 위험 인자 각각에 대한 예측 값 및 대상 심혈관 질환 위험 인자에 대한 실측 값이 포함된 사전 데이터셋을 기반으로 사전 학습될 수 있다.
본 발명의 일 실시예에 따르면, 예측 결과 결합 모델은 예를 들어, 로지스틱 회귀 모델(Logistic Regression Model), 선형 회귀 모델(Linear Regression Model) 등과 같은 회귀 분석(Regression Analysis) 또는 인공 신경망 (Artificial Neural Network Model)에 기반한 예측 모델일 수 있다.
도 3은 예시적인 실시예들에서 사용되기에 적합한 컴퓨팅 장치를 포함하는 컴퓨팅 환경(10)을 예시하여 설명하기 위한 블록도이다. 도시된 실시예에서, 각 컴포넌트들은 이하에 기술된 것 이외에 상이한 기능 및 능력을 가질 수 있고, 이하에 기술된 것 이외에도 추가적인 컴포넌트를 포함할 수 있다.
도시된 컴퓨팅 환경(10)은 컴퓨팅 장치(12)를 포함한다. 일 실시예에서, 컴퓨팅 장치(12)는 심혈관 질환 위험 인자 예측 장치일 수 있다.
컴퓨팅 장치(12)는 적어도 하나의 프로세서(14), 컴퓨터 판독 가능 저장 매체(16) 및 통신 버스(18)를 포함한다. 프로세서(14)는 컴퓨팅 장치(12)로 하여금 앞서 언급된 예시적인 실시예에 따라 동작하도록 할 수 있다. 예컨대, 프로세서(14)는 컴퓨터 판독 가능 저장 매체(16)에 저장된 하나 이상의 프로그램들을 실행할 수 있다. 상기 하나 이상의 프로그램들은 하나 이상의 컴퓨터 실행 가능 명령어를 포함할 수 있으며, 상기 컴퓨터 실행 가능 명령어는 프로세서(14)에 의해 실행되는 경우 컴퓨팅 장치(12)로 하여금 예시적인 실시예에 따른 동작들을 수행하도록 구성될 수 있다.
컴퓨터 판독 가능 저장 매체(16)는 컴퓨터 실행 가능 명령어 내지 프로그램 코드, 프로그램 데이터 및/또는 다른 적합한 형태의 정보를 저장하도록 구성된다. 컴퓨터 판독 가능 저장 매체(16)에 저장된 프로그램(20)은 프로세서(14)에 의해 실행 가능한 명령어의 집합을 포함한다. 일 실시예에서, 컴퓨터 판독 가능 저장 매체(16)는 메모리(랜덤 액세스 메모리와 같은 휘발성 메모리, 비휘발성 메모리, 또는 이들의 적절한 조합), 하나 이상의 자기 디스크 저장 디바이스들, 광학 디스크 저장 디바이스들, 플래시 메모리 디바이스들, 그 밖에 컴퓨팅 장치(12)에 의해 액세스되고 원하는 정보를 저장할 수 있는 다른 형태의 저장 매체, 또는 이들의 적합한 조합일 수 있다.
통신 버스(18)는 프로세서(14), 컴퓨터 판독 가능 저장 매체(16)를 포함하여 컴퓨팅 장치(12)의 다른 다양한 컴포넌트들을 상호 연결한다.
컴퓨팅 장치(12)는 또한 하나 이상의 입출력 장치(24)를 위한 인터페이스를 제공하는 하나 이상의 입출력 인터페이스(22) 및 하나 이상의 네트워크 통신 인터페이스(26)를 포함할 수 있다. 입출력 인터페이스(22) 및 네트워크 통신 인터페이스(26)는 통신 버스(18)에 연결된다. 입출력 장치(24)는 입출력 인터페이스(22)를 통해 컴퓨팅 장치(12)의 다른 컴포넌트들에 연결될 수 있다. 예시적인 입출력 장치(24)는 포인팅 장치(마우스 또는 트랙패드 등), 키보드, 터치 입력 장치(터치패드 또는 터치스크린 등), 음성 또는 소리 입력 장치, 다양한 종류의 센서 장치 및/또는 촬영 장치와 같은 입력 장치, 및/또는 디스플레이 장치, 프린터, 스피커 및/또는 네트워크 카드와 같은 출력 장치를 포함할 수 있다. 예시적인 입출력 장치(24)는 컴퓨팅 장치(12)를 구성하는 일 컴포넌트로서 컴퓨팅 장치(12)의 내부에 포함될 수도 있고, 컴퓨팅 장치(12)와는 구별되는 별개의 장치로 컴퓨팅 장치(102)와 연결될 수도 있다.
이상에서 본 발명의 대표적인 실시예들을 상세하게 설명하였으나, 본 발명이 속하는 기술분야에서 통상의 지식을 가진 자는 상술한 실시예에 대하여 본 발명의 범주에서 벗어나지 않는 한도 내에서 다양한 변형이 가능함을 이해할 것이다. 그러므로 본 발명의 권리범위는 설명된 실시예에 국한되어 정해져서는 안 되며, 후술하는 청구범위뿐만 아니라 이 청구범위와 균등한 것들에 의해 정해져야 한다.

Claims (21)

  1. 안저 영상(Fundus image)으로부터 대상 심혈관 질환 위험 인자에 대한 초기 예측 값을 생성하는 대상 심혈관 질환 위험 인자 예측 모듈;
    상기 안저 영상으로부터 하나 이상의 연관 심혈관 질환 위험 인자 각각에 대한 예측 값을 생성하는 하나 이상의 연관 심혈관 질환 위험 인자 예측 모듈; 및
    상기 대상 심혈관 질환 위험 인자에 대한 초기 예측 값과 상기 하나 이상의 연관 심혈관 질환 위험 인자 각각에 대한 예측 값에 기초하여, 상기 대상 심혈관 질환 위험 인자에 대한 최종 예측 값을 생성하는 결합 모듈을 포함하는, 심혈관 질환 위험 인자 예측 장치.
  2. 청구항 1에 있어서,
    상기 대상 심혈관 질환 위험 인자 예측 모듈은, 사전 수집된 복수의 안저 영상 및 상기 복수의 안저 영상 각각에 대응되는 상기 대상 심혈관 질환 위험 인자에 대한 실측 값을 이용하여 사전 학습된 대상 심혈관 질환 위험 인자 예측 모델을 이용하여 상기 초기 예측 값을 생성하는, 심혈관 질환 위험 인자 예측 장치.
  3. 청구항 2에 있어서,
    상기 대상 심혈관 질환 위험 인자 예측 모델은, 컨벌루션 뉴럴 네트워크(Convolutional Neural Network, CNN) 기반의 예측 모델인, 심혈관 질환 위험 인자 예측 장치.
  4. 청구항 1에 있어서,
    상기 하나 이상의 연관 심혈관 질환 위험 인자 예측 모듈은, 사전 수집된 복수의 안저 영상 및 상기 복수의 안저 영상 각각에 대응되는 상기 하나 이상의 연관 심혈관 질환 위험 인자 각각에 대한 실측 값을 이용하여 사전 학습된 연관 심혈관 질환 위험 인자 예측 모델을 이용하여 상기 예측 값을 생성하는, 심혈관 질환 위험 인자 예측 장치.
  5. 청구항 4에 있어서,
    상기 연관 심혈관 질환 위험 인자 예측 모델은, 컨벌루션 뉴럴 네트워크(Convolutional Neural Network, CNN) 기반의 예측 모델인, 심혈관 질환 위험 인자 예측 장치.
  6. 청구항 1에 있어서,
    상기 결합 모듈은, 사전 수집된 복수의 안저 영상 각각에 대한 상기 대상 심혈관 질환 위험 인자에 대한 초기 예측 값, 상기 하나 이상의 연관 심혈관 질환 위험 인자 각각에 대한 예측 값 및 상기 대상 심혈관 질환 위험 인자에 대한 실측 값을 이용하여 사전 학습된 예측 결과 결합 모델을 이용하여 상기 최종 예측 값을 생성하는, 심혈관 질환 위험 인자 예측 장치.
  7. 청구항 6에 있어서,
    상기 예측 결과 결합 모델은, 회귀 분석(Regression analysis) 및 인공 신경망(Artificial Neural Network) 중 하나에 기반한 예측 모델인, 심혈관 질환 위험 인자 예측 장치.
  8. 청구항 1에 있어서,
    상기 대상 심혈관 질환 위험 인자는, 관상동맥 석회화 지수(Coronary Artery Calcification Score, CACS)인, 심혈관 질환 위험 인자 예측 장치.
  9. 청구항 1에 있어서,
    상기 대상 심혈관 질환 위험 인자는, 경동맥 내막 두께(Carotid Artery Intima Thickness)인, 심혈관 질환 위험 인자 예측 장치.
  10. 청구항 1에 있어서,
    상기 하나 이상의 연관 심혈관 질환 위험 인자는, 나이, 성별, 흡연, 당화혈색소(Glycosylated Hemoglobin) 수치, 혈압, 맥파(Pulse Wave), 혈당 수치, 콜레스테롤 수치, 크레아티닌(Creatinine) 수치, 인슐린(Insulin) 수치 및 안압(Intraocular Pressure) 중 적어도 하나를 포함하는, 심혈관 질환 위험 인자 예측 장치.
  11. 안저 영상(Fundus image)으로부터 대상 심혈관 질환 위험 인자에 대한 초기 예측 값을 생성하는 단계;
    상기 안저 영상으로부터 하나 이상의 연관 심혈관 질환 위험 인자 각각에 대한 예측 값을 생성하는 단계; 및
    상기 대상 심혈관 질환 위험 인자에 대한 초기 예측 값과 상기 하나 이상의 연관 심혈관 질환 위험 인자 각각에 대한 예측 값에 기초하여, 상기 대상 심혈관 질환 위험 인자에 대한 최종 예측 값을 생성하는 단계를 포함하는, 심혈관 질환 위험 인자 예측 방법.
  12. 청구항 11에 있어서,
    상기 초기 예측 값을 생성하는 단계는, 사전 수집된 복수의 안저 영상 및 상기 복수의 안저 영상 각각에 대응되는 상기 대상 심혈관 질환 위험 인자에 대한 실측 값을 이용하여 사전 학습된 대상 심혈관 질환 위험 인자 예측 모델을 이용하여 상기 초기 예측 값을 생성하는, 심혈관 질환 위험 인자 예측 방법.
  13. 청구항 12에 있어서,
    상기 대상 심혈관 질환 위험 인자 예측 모델은, 컨벌루션 뉴럴 네트워크(Convolutional Neural Network, CNN) 기반의 예측 모델인, 심혈관 질환 위험 인자 예측 방법.
  14. 청구항 11에 있어서,
    상기 하나 이상의 연관 심혈관 질환 위험 인자 각각에 대한 예측 값을 생성하는 단계는, 사전 수집된 복수의 안저 영상 및 상기 복수의 안저 영상 각각에 대응되는 상기 하나 이상의 연관 심혈관 질환 위험 인자 각각에 대한 실측 값을 이용하여 사전 학습된 연관 심혈관 질환 위험 인자 예측 모델을 이용하여 상기 예측 값을 생성하는, 심혈관 질환 위험 인자 예측 방법.
  15. 청구항 14에 있어서,
    상기 연관 심혈관 질환 위험 인자 예측 모델은, 컨벌루션 뉴럴 네트워크(Convolutional Neural Network, CNN) 기반의 예측 모델인, 심혈관 질환 위험 인자 예측 방법.
  16. 청구항 11에 있어서,
    상기 최종 예측 값을 생성하는 단계는, 사전 수집된 복수의 안저 영상 각각에 대한 상기 대상 심혈관 질환 위험 인자에 대한 초기 예측 값, 상기 하나 이상의 연관 심혈관 질환 위험 인자 각각에 대한 예측 값 및 상기 대상 심혈관 질환 위험 인자에 대한 실측 값을 이용하여 사전 학습된 예측 결과 결합 모델을 이용하여 상기 최종 예측 값을 생성하는, 심혈관 질환 위험 인자 예측 방법.
  17. 청구항 16에 있어서,
    상기 예측 결과 결합 모델은, 회귀 분석(Regression analysis) 및 인공 신경망(Artificial Neural Network) 중 하나에 기반한 예측 모델인, 심혈관 질환 위험 인자 예측 방법.
  18. 청구항 11에 있어서,
    상기 대상 심혈관 질환 위험 인자는, 관상동맥 석회화 지수(Coronary Artery Calcification Score, CACS)인, 심혈관 질환 위험 인자 예측 방법.
  19. 청구항 11에 있어서,
    상기 대상 심혈관 질환 위험 인자는, 경동맥 내막 두께(Carotid Artery Intima Thickness)인, 심혈관 질환 위험 인자 예측 방법.
  20. 청구항 11에 있어서,
    상기 하나 이상의 연관 심혈관 질환 위험 인자는, 나이, 성별, 흡연, 당화혈색소(Glycosylated Hemoglobin) 수치, 혈압, 맥파(Pulse Wave), 혈당 수치, 콜레스테롤 수치, 크레아티닌(Creatinine) 수치, 인슐린(Insulin) 수치 및 안압(Intraocular Pressure) 중 적어도 하나를 포함하는, 심혈관 질환 위험 인자 예측 방법.
  21. 비일시적 컴퓨터 판독 가능한 저장매체(Non-Transitory Computer Readable Storage Medium)에 저장된 컴퓨터 프로그램으로서,
    상기 컴퓨터 프로그램은 하나 이상의 명령어들을 포함하고, 상기 명령어들은 하나 이상의 프로세서들을 갖는 컴퓨팅 장치에 의해 실행될 때, 상기 컴퓨팅 장치로 하여금,
    안저 영상(Fundus image)으로부터 대상 심혈관 질환 위험 인자에 대한 초기 예측 값을 생성하고,
    상기 안저 영상으로부터 하나 이상의 연관 심혈관 질환 위험 인자 각각에 대한 예측 값을 생성하고, 그리고
    예측된 상기 대상 심혈관 질환 위험 인자에 대한 초기 예측 값과 예측된 상기 하나 이상의 연관 심혈관 질환 위험 인자 각각에 대한 예측 값에 기초하여, 상기 대상 심혈관 질환 위험 인자에 대한 최종 예측 값을 생성하도록 하는, 컴퓨터 프로그램.
PCT/KR2020/011163 2019-08-23 2020-08-21 심혈관 질환 위험 인자 예측 장치 및 방법 WO2021040327A1 (ko)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US17/637,564 US20220378378A1 (en) 2019-08-23 2020-08-21 Apparatus and method for predicting cardiovascular risk factor

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR10-2019-0103930 2019-08-23
KR1020190103930A KR20210023569A (ko) 2019-08-23 2019-08-23 심혈관 질환 위험 인자 예측 장치 및 방법

Publications (1)

Publication Number Publication Date
WO2021040327A1 true WO2021040327A1 (ko) 2021-03-04

Family

ID=74683554

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2020/011163 WO2021040327A1 (ko) 2019-08-23 2020-08-21 심혈관 질환 위험 인자 예측 장치 및 방법

Country Status (3)

Country Link
US (1) US20220378378A1 (ko)
KR (1) KR20210023569A (ko)
WO (1) WO2021040327A1 (ko)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113689954A (zh) * 2021-08-24 2021-11-23 平安科技(深圳)有限公司 高血压风险预测方法、装置、设备及介质
WO2023214890A1 (en) * 2022-05-05 2023-11-09 Toku Eyes Limited Systems and methods for processing of fundus images

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11766223B1 (en) * 2022-05-05 2023-09-26 Toku Eyes Limited Systems and methods for processing of fundus images

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014504523A (ja) * 2011-01-20 2014-02-24 ユニバーシティ オブ アイオワ リサーチ ファウンデーション 血管画像における動静脈比の自動測定
WO2014186838A1 (en) * 2013-05-19 2014-11-27 Commonwealth Scientific And Industrial Research Organisation A system and method for remote medical diagnosis
KR20160086730A (ko) * 2015-01-09 2016-07-20 재단법인 아산사회복지재단 심혈관질환 위험 인자를 사용한 심혈관질환 위험의 예측 방법
KR20190042621A (ko) * 2016-08-18 2019-04-24 구글 엘엘씨 기계 학습 모델들을 사용한 안저 이미지 프로세싱
KR20190074477A (ko) * 2017-12-20 2019-06-28 주식회사 메디웨일 안구영상을 이용한 심뇌혈관 질환 예측방법

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101977645B1 (ko) 2017-08-25 2019-06-12 주식회사 메디웨일 안구영상 분석방법

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014504523A (ja) * 2011-01-20 2014-02-24 ユニバーシティ オブ アイオワ リサーチ ファウンデーション 血管画像における動静脈比の自動測定
WO2014186838A1 (en) * 2013-05-19 2014-11-27 Commonwealth Scientific And Industrial Research Organisation A system and method for remote medical diagnosis
KR20160086730A (ko) * 2015-01-09 2016-07-20 재단법인 아산사회복지재단 심혈관질환 위험 인자를 사용한 심혈관질환 위험의 예측 방법
KR20190042621A (ko) * 2016-08-18 2019-04-24 구글 엘엘씨 기계 학습 모델들을 사용한 안저 이미지 프로세싱
KR20190074477A (ko) * 2017-12-20 2019-06-28 주식회사 메디웨일 안구영상을 이용한 심뇌혈관 질환 예측방법

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113689954A (zh) * 2021-08-24 2021-11-23 平安科技(深圳)有限公司 高血压风险预测方法、装置、设备及介质
WO2023214890A1 (en) * 2022-05-05 2023-11-09 Toku Eyes Limited Systems and methods for processing of fundus images

Also Published As

Publication number Publication date
US20220378378A1 (en) 2022-12-01
KR20210023569A (ko) 2021-03-04

Similar Documents

Publication Publication Date Title
WO2021040327A1 (ko) 심혈관 질환 위험 인자 예측 장치 및 방법
JP6780520B2 (ja) オープンデータ及び臨床医の入力を用いて患者のリスクを評価するシステム及び方法
JP6915282B2 (ja) オープンデータ及び臨床医の入力を用いて患者の治療リスクを評価するシステム及び方法
US11037070B2 (en) Diagnostic test planning using machine learning techniques
WO2021182889A2 (ko) 영상 기반의 안질환 진단 장치 및 방법
WO2021060700A1 (ko) 비디오투시 연하검사 판독 장치 및 방법
US11302440B2 (en) Accelerating human understanding of medical images by dynamic image alteration
WO2020231007A2 (ko) 의료기계 학습 시스템
WO2021087140A1 (en) Multi-variable heatmaps for computer-aided diagnostic models
Houlton How artificial intelligence is transforming healthcare
WO2020101264A1 (ko) 관상동맥석회화점수 산정 방법 및 장치
WO2022114793A1 (ko) 빅데이터 기반의 당뇨병 발병 위험도 예측 시스템, 예측 방법, 및 프로그램
WO2018147653A1 (ko) 생존율 예측 모델 생성 방법, 장치 및 컴퓨터 프로그램
JP7315181B2 (ja) 探索方法及び情報処理システム
WO2023068732A1 (ko) 신경 심리 검사에 대한 점수를 획득하는 방법 및 이를 수행하는 신경 심리 검사 장치 및 컴퓨터 판독 가능한 기록매체
WO2023121051A1 (ko) 환자 정보 제공 방법, 환자 정보 제공 장치, 및 컴퓨터 판독 가능한 기록 매체
KR20180024455A (ko) 의료 정보 처리 방법과 이를 수행하기 위한 장치 및 시스템
WO2018221816A1 (en) Method for determining whether examinee is infected by microorganism and apparatus using the same
WO2021162490A2 (ko) 칼슘 스코어 및 질환을 예측하는 방법
WO2023063489A1 (ko) 노드-링크 그래프 기반 골 미세구조 표현을 활용한 인공신경망으로 재구성된 골격계 영상의 골 미세구조 연결성 복구를 위한 컴퓨터 장치 및 그의 방법
WO2020116942A1 (ko) 피검체의 위험도를 평가하여 상기 위험도에 따라 상기 피검체를 분류하는 방법 및 이를 이용한 장치
CN113792798A (zh) 基于多源数据的模型训练方法、装置及计算机设备
WO2023033392A1 (ko) 기계학습 방법 및 장치
Susanto et al. How well do AI-enabled decision support systems perform in clinical settings?
WO2024117707A2 (ko) Ai를 이용해 간의 구조를 3d 모델로 구현하는 방법 및 이를 위한 장치

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20856372

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20856372

Country of ref document: EP

Kind code of ref document: A1