WO2021040314A1 - Galloaluminosilicate catalyst, method of preparing same galloaluminosilicate catalyst, and method of preparing btx using same galloaluminosilicate catalyst - Google Patents

Galloaluminosilicate catalyst, method of preparing same galloaluminosilicate catalyst, and method of preparing btx using same galloaluminosilicate catalyst Download PDF

Info

Publication number
WO2021040314A1
WO2021040314A1 PCT/KR2020/011072 KR2020011072W WO2021040314A1 WO 2021040314 A1 WO2021040314 A1 WO 2021040314A1 KR 2020011072 W KR2020011072 W KR 2020011072W WO 2021040314 A1 WO2021040314 A1 WO 2021040314A1
Authority
WO
WIPO (PCT)
Prior art keywords
catalyst
galloaluminosilicate
gas
meso
precursor
Prior art date
Application number
PCT/KR2020/011072
Other languages
French (fr)
Korean (ko)
Inventor
김도희
김민영
임용현
이관영
Original Assignee
서울대학교산학협력단
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 서울대학교산학협력단 filed Critical 서울대학교산학협력단
Publication of WO2021040314A1 publication Critical patent/WO2021040314A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J29/00Catalysts comprising molecular sieves
    • B01J29/87Gallosilicates; Aluminogallosilicates; Galloborosilicates
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/0009Use of binding agents; Moulding; Pressing; Powdering; Granulating; Addition of materials ameliorating the mechanical properties of the product catalyst
    • B01J37/0018Addition of a binding agent or of material, later completely removed among others as result of heat treatment, leaching or washing,(e.g. forming of pores; protective layer, desintegrating by heat)
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/08Heat treatment
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/30Ion-exchange
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C15/00Cyclic hydrocarbons containing only six-membered aromatic rings as cyclic parts
    • C07C15/02Monocyclic hydrocarbons
    • C07C15/04Benzene
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C15/00Cyclic hydrocarbons containing only six-membered aromatic rings as cyclic parts
    • C07C15/02Monocyclic hydrocarbons
    • C07C15/06Toluene
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C15/00Cyclic hydrocarbons containing only six-membered aromatic rings as cyclic parts
    • C07C15/02Monocyclic hydrocarbons
    • C07C15/067C8H10 hydrocarbons
    • C07C15/08Xylenes
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C2/00Preparation of hydrocarbons from hydrocarbons containing a smaller number of carbon atoms
    • C07C2/76Preparation of hydrocarbons from hydrocarbons containing a smaller number of carbon atoms by condensation of hydrocarbons with partial elimination of hydrogen
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C2529/00Catalysts comprising molecular sieves
    • C07C2529/87Gallosilicates; Aluminogallosilicates; Galloborosilicates
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/52Improvements relating to the production of bulk chemicals using catalysts, e.g. selective catalysts

Definitions

  • the present invention relates to a galloaluminosilicate catalyst, a method for preparing the galloaluminosilicate catalyst, and a method for preparing BTX using the galloaluminosilicate catalyst.
  • BTX which refers to benzene, toluene, and xylene
  • BTX is a high value-added compound used as a raw material for nylon, polystyrene, and the like, and their demand is increasing.
  • BTX is produced by the naphtha reforming process.
  • crude oil prices increase and are unstable, research is being conducted to manufacture BTX from raw materials other than crude oil.
  • LPG gas production has more than doubled in the last 20 years and is expected to continue to increase in the future. Therefore, attempts to convert LPG gas to BTX have been made steadily, and studies are underway to make BTX using propane and butane, which are major components of LPG, as reactants.
  • the BTX is formed by the dehydrogenation aromatication reaction of the propane, and conventionally proposed catalysts have low reaction activity and low yield or unstable problems.
  • the present invention provides a galoaluminosilicate catalyst having excellent performance.
  • the present invention provides a method for preparing the galloaluminosilicate catalyst.
  • the present invention provides a method for producing BTX using the gallo aluminosilicate catalyst.
  • a method of manufacturing a galloaluminosilicate catalyst according to embodiments of the present invention includes forming a precursor solution including a silicon precursor, an aluminum precursor, a gallium precursor, and a carbon template material, and crystallizing the precursor solution to obtain galloalumino. Forming a silicate catalyst.
  • the galloaluminosilicate catalyst according to the embodiments of the present invention is a galloaluminosilicate catalyst prepared by the above method, and a gallium atom is located in the crystal of the galloaluminosilicate catalyst.
  • the BTX production method includes: filling the galloaluminosilicate catalyst into a reactor, raising the temperature of the reactor to a reaction temperature, and providing a front panel to the reactor to perform a dehydrogenation aromatication reaction. Including the step of performing.
  • the galloaluminosilicate catalyst according to the embodiments of the present invention may have excellent performance.
  • the galoaluminosilicate catalyst has excellent acid properties and structural properties and is effective in propane dehydrogenation aromatication.
  • the BTX yield of the propane dehydrogenation aromatication reaction can be further increased.
  • a galloaluminosilicate catalyst having mesopores can be effectively prepared by using an inexpensive carbon template material.
  • FIG. 1 shows the results of X-ray diffraction analysis of a meso-GAS x:y catalyst according to embodiments of the present invention, a micro-GAS x:y catalyst according to comparative examples, and a GaOy/meso-HZSM-5 catalyst.
  • 6 and 7 are 71 Ga-NMR and 27 of the meso-GAS x:y catalyst according to embodiments of the present invention and the micro-GAS x:y catalyst according to comparative examples and the GaOy/meso-HZSM-5 catalyst. The results of Al-NMR analysis are shown.
  • the method of manufacturing a galloaluminosilicate catalyst according to embodiments of the present invention includes forming a precursor solution including a silicon precursor, an aluminum precursor, a gallium precursor, and a carbon template material, and crystallizing the precursor solution to obtain galloalumino. Forming a silicate catalyst.
  • the forming of the galloaluminosilicate catalyst includes forming a first galloaluminosilicate by performing a crystallization process on the precursor solution, and performing a first sintering process on the first galloaluminosilicate to carbon Removing the template material, adding the first galloaluminosilicate to an ion exchange solution to perform ion exchange to form a second galloaluminosilicate, and a second firing process for the second galoaluminosilicate It may include the step of performing.
  • the silicon precursor may include tetraethyl orthosilicate
  • the aluminum precursor may include sodium aluminate
  • the gallium precursor may include gallium nitrate
  • the precursor solution may further include sodium hydroxide and terpopropylammonium bromide.
  • the galloaluminosilicate catalyst according to the embodiments of the present invention is a galloaluminosilicate catalyst prepared by the above method, and a gallium atom is located in the crystal of the galloaluminosilicate catalyst.
  • the molar ratio of aluminum:gallium may be 10:1 to 1:10.
  • the galloaluminosilicate catalyst may have mesopores.
  • the BTX production method includes: filling the galloaluminosilicate catalyst into a reactor, raising the temperature of the reactor to a reaction temperature, and providing a front panel to the reactor to perform a dehydrogenation aromatication reaction. Including the step of performing.
  • the step of raising the temperature of the reactor may be performed under a nitrogen atmosphere.
  • the reaction temperature may be 500 ⁇ 600 °C.
  • Sodium hydroxide 1.30 g, tetrapropylammonium bromide 1.36 g, tetraethyl orthosilicate 38.2 ml, and sodium aluminate and gallium nitrate (Si/(Al+Ga) were fixed at about 27, and Al:Ga
  • a precursor solution was prepared by dissolving the molar ratio of 6:1, 4:3, and 1:6 in 108 ml of distilled water, and stirred at room temperature for 2 hours.
  • a carbon template material (BP-2000, Cabot Corp.) was added to the precursor solution so as to be 1% by weight, followed by stirring for an additional 4 hours. The mixture was injected into a batch reactor and stirred at a temperature of 160° C.
  • Na + type galoaluminosilicate was prepared.
  • a washing process using 1000 ml of distilled water and a drying process at 110° C. for 8 hours were performed, and the temperature was raised to 5° C. per minute in an air atmosphere, and a sintering process was performed at 550° C. for 10 hours to burn the carbon template material.
  • the catalyst thus prepared is expressed in the present specification as meso-GAS x:y (GAS is an abbreviation for Galloaluminosilicate, and x:y is the molar ratio of Al:Ga).
  • GAS is an abbreviation for Galloaluminosilicate
  • x:y is the molar ratio of Al:Ga
  • the galloaluminosilicate catalyst is expressed as meso-GAS 6:1.
  • micro-GAS x:y (GAS is an abbreviation for Galloaluminosilicate, and x:y is the molar ratio of Al:Ga). For example, when the molar ratio of Al:Ga is 6:1, the galloaluminosilicate catalyst is expressed as micro-GAS 6:1.
  • Gallium was supported on meso-HZSM-5 using a wet impregnation method.
  • a metal oxide precursor solution was prepared by adding 0.025 g of a gallium nitrate precursor (Ga content such as meso-GAS 6:1) to 10 ml of distilled water, and 1 g of meso-HZSM-5 was added to the precursor solution, and then 300 per minute at 85°C. The mixture was stirred until the moisture was completely evaporated at the rotational speed. After passing through the drying process at 100° C. for 8 hours, the temperature was raised to 550° C. at a rate of 5° C. per minute, and kept for 4 hours, followed by firing.
  • the catalyst thus prepared is referred to herein as GaO y /meso-HZSM-5.
  • FIG. 1 shows the results of X-ray diffraction analysis of a meso-GAS x:y catalyst according to embodiments of the present invention, a micro-GAS x:y catalyst according to comparative examples, and a GaOy/meso-HZSM-5 catalyst.
  • Table 1 shows the structural properties of the meso-GAS x:y catalyst, the micro-GAS x:y catalyst, and the GaOy/meso-HZSM-5 catalyst.
  • the micro-GAS catalyst has a specific surface area of 356 ⁇ 429m 2 / g, a micropore (micropore) volume of 0.157 ⁇ 0.209cm 3 /g, and a medium pore (mesopores) volume. Is 0.065 ⁇ 0.165cm 3 /g.
  • the meso-GAS catalyst has a specific surface area of 477 ⁇ 653m 2 / g, a micropore volume of 0.221 ⁇ 0.287 cm 3 /g, and a mesopore volume of 0.111 ⁇ 0.0.278 cm 3 /g depending on the Al:Ga molar ratio.
  • the meso-GAS catalyst Comparing the micro-GAS catalyst and the meso-GAS catalyst of the same Al:Ga molar ratio, the meso-GAS catalyst has a large specific surface area and pore volume, indicating that a catalyst structure with improved porosity was formed by the carbon template material.
  • the surface area and pore volume of the meso-GAS 6:1 catalyst are larger.
  • 6 and 7 are 71 Ga-NMR and 27 of the meso-GAS x:y catalyst according to embodiments of the present invention and the micro-GAS x:y catalyst according to comparative examples and the GaOy/meso-HZSM-5 catalyst.
  • the results of Al-NMR analysis are shown.
  • the metal constituting the MFI zeolite structure can be identified by NMR analysis.
  • gallium substituted in the MFI zeolite structure shows a peak at a position of about 150 ppm on 71 Ga-NMR, and aluminum constituting the MFI zeolite structure is at a position of about 50 ppm on 27 Al-NMR. Shows a peak at. meso-GAS x:y catalyst and micro-GAS x:y The catalyst showed a peak at about 150 ppm on 71 Ga-NMR, indicating that the galoaluminosilicate was successfully prepared. In addition, it can be seen from the intensity of the peak that the galloalunosilicate was produced in the intended Al:Ga ratio.
  • the GaOy/meso-HZSM-5 catalyst shows no peak on 71 Ga-NMR, indicating that gallium is located outside the MFI zeolite structure.
  • the entire ammonia desorption curve can be divided into two curves, a curve between 150 and 300 degrees represents an ammonia desorption curve due to a weak acid point, and a curve between 300 and 500 degrees is a strong acid point.
  • a weak acid point means Lewis acid
  • a strong acid point means Bronsted-Lowry acid.
  • Table 2 shows the results of an elevated temperature ammonia adsorption and desorption experiment of the meso-GAS x:y catalyst according to the examples of the present invention and the micro-GAS x:y catalyst according to the comparative examples and the GaOy/meso-HZSM-5 catalyst, and each acid point Represents a numerical value for the acid amount of
  • the total acid amount of the meso-GAS catalyst and the micro-GAS catalyst is in the range of 1638 to 1922 ⁇ mol-NH3/gcat, of which 59.3 to 67.9% appear as Bronsted-Lowry acid sites.
  • the acid amount of the meso-GAS 6:1 catalyst is larger. Also, the proportion of the Bronsted-Lowry scattered points is larger.
  • the meso-GAS catalyst has better acid properties than the catalyst supporting gallium on HZSM-5, and the Bronsted-Lowry acid site is located inside the MFI zeolite structure without blocking the Bronsted-Lowry acid site of the zeolite.
  • the ratio of is also improved.
  • BTX was prepared by performing a propane dehydrogenation aromatication reaction at a reaction temperature of 550°C using a meso-GAS catalyst and a micro-GAS catalyst.
  • GHSV total gas hourly space velocity
  • 0.2 g of the catalyst was charged into a quartz reactor, the temperature was raised to the reaction temperature at a rate of 11° C./min in a nitrogen atmosphere, and after reaching the reaction temperature, propane was passed through the catalyst layer to perform a dehydrogenation aromatication reaction.
  • the conversion and yield of the reactants were calculated by the following equations 1, 2, and 3, respectively.
  • the GaOy/meso-HZSM-5 catalyst in which gallium is not substituted in the MFI structure, does not have high aromatization activity, whereas the meso-GAS 6:1 catalyst increases the activity with only a small amount of substituted gallium.
  • Table 3 shows the conversion rate and product selectivity of the meso-GAS 6:1 catalyst having excellent propane dehydrogenation aromatication activity even with a small gallium content among the galoaluminosilicate catalysts in the initial reaction (0.75 hours) and late reaction (13.5 hours). .
  • the meso-GAS 6:1 catalyst showed a high conversion rate of 83.9% even after 13.5 hours reaction, and the BTX selectivity also did not change significantly.
  • a dehydroaromatic reaction of propane was performed using a meso-GAS 6:1 catalyst having the same gallium content and a GaOy/meso-HZSM-5 catalyst.
  • the meso-GAS 6:1 catalyst exhibits higher propane conversion and BTX yield than the GaO y /meso-HZSM-5 catalyst.
  • propane dehydrogenation aromatization reaction both the acid point and structural properties of the catalyst play an important role.
  • the reactant propane is activated by the Lewis acid site of the catalyst to form an intermediate, and the intermediates are converted to aromatics by the Bronsted-Lowry acid site. The produced aromatic escapes through the pores of the catalyst.
  • the meso-GAS catalyst exhibits better activity in the propane dehydroaromatization reaction because the acid and structural properties are better than that of the GaO y /meso-HZSM-5 catalyst.
  • the galloaluminosilicate catalyst according to the embodiments of the present invention may have excellent performance.
  • the galoaluminosilicate catalyst has excellent acid properties and structural properties and is effective in propane dehydrogenation aromatication.
  • the BTX yield of the propane dehydrogenation aromatication reaction can be further increased.
  • a galloaluminosilicate catalyst having mesopores can be effectively prepared by using an inexpensive carbon template material.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Catalysts (AREA)

Abstract

Provided are a galloaluminosilicate catalyst, a method of preparing the galloaluminosilicate catalyst, and a method of preparing BTX using the galloaluminosilicate catalyst. The method of preparing the galloaluminosilicate catalyst comprises: a step of forming a precursor solution comprising a silicone precursor, an aluminum precursor, a gallium precursor, and a carbon template material; and a step of crystallizing the precursor solution to form a galloaluminosilicate catalyst. The galloaluminosilicate catalyst is prepared by the method and has gallium atoms positioned within crystals of the galloaluminosilicate catalyst. The method of preparing BTX comprises: a step of filling a reactor with the galloaluminosilicate catalyst; a step of raising a temperature of the reactor to a reaction temperature; and a step of providing propane to the reactor to conduct a dehydroaromatization reaction.

Description

갈로알루미노실리케이트 촉매, 상기 갈로알루미노실리케이트 촉매의 제조 방법 및 상기 갈로알루미노실리케이트 촉매를 이용한 BTX 제조 방법Gallo aluminosilicate catalyst, method for preparing the gallo aluminosilicate catalyst, and method for producing BTX using the gallo aluminosilicate catalyst
본 발명은 갈로알루미노실리케이트 촉매, 상기 갈로알루미노실리케이트 촉매의 제조 방법 및 상기 갈로알루미노실리케이트 촉매를 이용한 BTX 제조 방법에 관한 것이다.The present invention relates to a galloaluminosilicate catalyst, a method for preparing the galloaluminosilicate catalyst, and a method for preparing BTX using the galloaluminosilicate catalyst.
벤젠, 톨루엔, 자일렌을 일컫는 BTX는 나일론, 폴리스티렌 등의 원료로 이용되는 고부가가치 화합물로서 그 수요가 점점 높아지고 있다. 현재 대부분의 BTX는 납사 개질 공정에 의해 생산되는데, 원유 가격이 높아지고 불안정함에 따라 원유 외의 다른 원료로 BTX를 제조하기 위한 연구가 이루어지고 있다.BTX, which refers to benzene, toluene, and xylene, is a high value-added compound used as a raw material for nylon, polystyrene, and the like, and their demand is increasing. Currently, most of BTX is produced by the naphtha reforming process. As crude oil prices increase and are unstable, research is being conducted to manufacture BTX from raw materials other than crude oil.
LPG 가스는 최근 20년 동안 생산량이 2배 이상 늘었으며 앞으로도 계속해서 증가할 것으로 예상된다. 따라서 LPG 가스를 BTX로 전환하려는 시도가 꾸준히 이루어졌으며, LPG의 주요 구성성분인 프로판과 뷰테인을 반응물로 하여 BTX를 만들기 위한 연구가 진행되고 있다. 상기 BTX는 상기 프로판의 탈수소방향족화 반응에 의해 형성되는데 종래에 제안된 촉매들은 반응 활성이 낮아 수율이 낮거나 불안정한 문제가 있다.LPG gas production has more than doubled in the last 20 years and is expected to continue to increase in the future. Therefore, attempts to convert LPG gas to BTX have been made steadily, and studies are underway to make BTX using propane and butane, which are major components of LPG, as reactants. The BTX is formed by the dehydrogenation aromatication reaction of the propane, and conventionally proposed catalysts have low reaction activity and low yield or unstable problems.
상기와 같은 문제점을 해결하기 위하여, 본 발명은 우수한 성능을 갖는 갈로알루미노실리케이트 촉매를 제공한다.In order to solve the above problems, the present invention provides a galoaluminosilicate catalyst having excellent performance.
본 발명은 상기 갈로알루미노실리케이트 촉매의 제조 방법을 제공한다.The present invention provides a method for preparing the galloaluminosilicate catalyst.
본 발명은 상기 갈로알루미노실리케이트 촉매를 이용한 BTX 제조 방법을 제공한다.The present invention provides a method for producing BTX using the gallo aluminosilicate catalyst.
본 발명의 다른 목적들은 다음의 상세한 설명과 첨부한 도면으로부터 명확해 질 것이다.Other objects of the present invention will become apparent from the following detailed description and accompanying drawings.
본 발명의 실시예들에 따른 갈로알루미노실리케이트 촉매의 제조 방법은, 실리콘 전구체, 알루미늄 전구체, 갈륨 전구체, 및 탄소 주형물질을 포함하는 전구체 용액을 형성하는 단계 및 상기 전구체 용액을 결정화하여 갈로알루미노실리케이트 촉매를 형성하는 단계를 포함한다.A method of manufacturing a galloaluminosilicate catalyst according to embodiments of the present invention includes forming a precursor solution including a silicon precursor, an aluminum precursor, a gallium precursor, and a carbon template material, and crystallizing the precursor solution to obtain galloalumino. Forming a silicate catalyst.
본 발명의 실시예들에 따른 갈로알루미노실리케이트 촉매는, 상기 방법에 의해 제조된 갈로알루미노실리케이트 촉매로서, 상기 갈로알루미노실리케이트 촉매의 결정 내에 갈륨 원자가 위치한다.The galloaluminosilicate catalyst according to the embodiments of the present invention is a galloaluminosilicate catalyst prepared by the above method, and a gallium atom is located in the crystal of the galloaluminosilicate catalyst.
본 발명의 실시예들에 따른 BTX 제조 방법은, 상기 갈로알루미노실리케이트 촉매를 반응기에 충진시키는 단계, 상기 반응기를 반응 온도까지 승온시키는 단계, 및 상기 반응기에 프론판을 제공하여 탈수소방향족화 반응을 수행하는 단계를 포함한다. The BTX production method according to the embodiments of the present invention includes: filling the galloaluminosilicate catalyst into a reactor, raising the temperature of the reactor to a reaction temperature, and providing a front panel to the reactor to perform a dehydrogenation aromatication reaction. Including the step of performing.
본 발명의 실시예들에 따른 갈로알루미노실리케이트 촉매는 우수한 성능을 가질 수 있다. 예를 들어, 상기 갈로알루미노실리케이트 촉매는 산 특성 및 구조적 특성이 우수하여 프로판 탈수소방향족화 반응에 효과적이다. 또, 상기 갈로알루미노실리케이트 촉매의 Al/Ga 몰비를 최적화하여 프로판 탈수소방향족화 반응의 BTX 수율을 더 높일 수 있다. 저렴한 탄소 주형물질을 이용하여 메조기공을 갖는 갈로알루미노실리케이트 촉매를 효과적으로 제조할 수 있다. The galloaluminosilicate catalyst according to the embodiments of the present invention may have excellent performance. For example, the galoaluminosilicate catalyst has excellent acid properties and structural properties and is effective in propane dehydrogenation aromatication. In addition, by optimizing the Al/Ga molar ratio of the galloaluminosilicate catalyst, the BTX yield of the propane dehydrogenation aromatication reaction can be further increased. A galloaluminosilicate catalyst having mesopores can be effectively prepared by using an inexpensive carbon template material.
도 1은 본 발명의 실시예들에 따른 meso-GAS x:y 촉매 및 비교예들에 따른 micro-GAS x:y 촉매와 GaOy/meso-HZSM-5 촉매의 X선 회절 분석 결과를 나타낸다.1 shows the results of X-ray diffraction analysis of a meso-GAS x:y catalyst according to embodiments of the present invention, a micro-GAS x:y catalyst according to comparative examples, and a GaOy/meso-HZSM-5 catalyst.
도 2 내지 도 5는 본 발명의 실시예들에 따른 meso-GAS x:y 촉매 및 비교예들에 따른 micro-GAS x:y 촉매와 GaOy/meso-HZSM-5 촉매의 질소 흡탈착 실험 결과를 나타낸다. 2 to 5 show the results of nitrogen adsorption and desorption experiments of the meso-GAS x:y catalyst according to the embodiments of the present invention and the micro-GAS x:y catalyst according to the comparative examples and the GaOy/meso-HZSM-5 catalyst. Show.
도 6 및 도 7은 본 발명의 실시예들에 따른 meso-GAS x:y 촉매 및 비교예들에 따른 micro-GAS x:y 촉매와 GaOy/meso-HZSM-5 촉매의 71Ga-NMR과 27Al-NMR 분석 결과를 나타낸다. 6 and 7 are 71 Ga-NMR and 27 of the meso-GAS x:y catalyst according to embodiments of the present invention and the micro-GAS x:y catalyst according to comparative examples and the GaOy/meso-HZSM-5 catalyst. The results of Al-NMR analysis are shown.
도 8 및 도 9는 본 발명의 실시예들에 따른 meso-GAS x:y 촉매 및 비교예들에 따른 micro-GAS x:y 촉매와 GaOy/meso-HZSM-5 촉매의 승온 암모니아 흡탈착 실험 결과를 나타낸다.8 and 9 are results of an elevated temperature ammonia adsorption and desorption experiment of a meso-GAS x:y catalyst according to embodiments of the present invention and a micro-GAS x:y catalyst according to comparative examples and a GaOy/meso-HZSM-5 catalyst. Represents.
도 10 및 도 11은 본 발명의 실시예들에 따른 meso-GAS x:y 촉매 및 비교예들에 따른 micro-GAS x:y 촉매의 프로판 탈수소방향족화 반응 전환율 및 BTX 수율을 나타낸다.10 and 11 show the propane dehydrogenation aromatization conversion rate and BTX yield of the meso-GAS x:y catalyst according to examples of the present invention and the micro-GAS x:y catalyst according to comparative examples.
도 12 및 도 13은 meso-GAS 6:1 촉매와 GaOy/meso-HZSM-5 촉매의 프로판 탈수소방향족화 반응 전환율 및 BTX 수율을 나타낸다. 12 and 13 show the conversion rate of the propane dehydrogenation aromatication reaction and the BTX yield of the meso-GAS 6:1 catalyst and the GaO y /meso-HZSM-5 catalyst.
이하, 실시예들을 통하여 본 발명을 상세하게 설명한다. 본 발명의 목적, 특징, 장점은 이하의 실시예들을 통해 쉽게 이해될 것이다. 본 발명은 여기서 설명되는 실시예들에 한정되지 않고, 다른 형태로 구체화될 수도 있다. 여기서 소개되는 실시예들은 개시된 내용이 철저하고 완전해질 수 있도록 그리고 본 발명이 속하는 기술 분야에서 통상의 지식을 가진 자에게 본 발명의 사상이 충분히 전달될 수 있도록 하기 위해 제공되는 것이다. 따라서, 이하의 실시예들에 의하여 본 발명이 제한되어서는 안 된다.Hereinafter, the present invention will be described in detail through examples. Objects, features, and advantages of the present invention will be easily understood through the following embodiments. The present invention is not limited to the embodiments described herein, and may be embodied in other forms. The embodiments introduced herein are provided so that the disclosed contents may be thorough and complete, and the spirit of the present invention may be sufficiently transmitted to those of ordinary skill in the art to which the present invention pertains. Therefore, the present invention should not be limited by the following examples.
본 명세서에서 제1, 제2 등의 용어가 다양한 요소들(elements)을 기술하기 위해서 사용되었지만, 상기 요소들이 이 같은 용어들에 의해서 한정되어서는 안 된다. 이러한 용어들은 단지 상기 요소들을 서로 구별시키기 위해서 사용되었을 뿐이다. In the present specification, terms such as first and second are used to describe various elements, but the elements should not be limited by these terms. These terms are only used to distinguish the elements from each other.
본 발명의 실시예들에 따른 갈로알루미노실리케이트 촉매의 제조 방법은, 실리콘 전구체, 알루미늄 전구체, 갈륨 전구체, 및 탄소 주형물질을 포함하는 전구체 용액을 형성하는 단계 및 상기 전구체 용액을 결정화하여 갈로알루미노실리케이트 촉매를 형성하는 단계를 포함한다.The method of manufacturing a galloaluminosilicate catalyst according to embodiments of the present invention includes forming a precursor solution including a silicon precursor, an aluminum precursor, a gallium precursor, and a carbon template material, and crystallizing the precursor solution to obtain galloalumino. Forming a silicate catalyst.
상기 갈로알루미노실리케이트 촉매를 형성하는 단계는, 상기 전구체 용액에 대하여 결정화 공정을 수행하여 제1 갈로알루미노실리케이트를 형성하는 단계, 상기 제1 갈로알루미노실리케이트에 대하여 제1 소성 공정을 수행하여 탄소 주형물질을 제거하는 단계, 상기 제1 갈로알루미노실리케이트를 이온 교환 용액에 넣어 이온 교환을 수행하여 제2 갈로알루미노실리케이트를 형성하는 단계, 및 상기 제2 갈로알루미노실리케이트에 대하여 제2 소성 공정을 수행하는 단계를 포함할 수 있다.The forming of the galloaluminosilicate catalyst includes forming a first galloaluminosilicate by performing a crystallization process on the precursor solution, and performing a first sintering process on the first galloaluminosilicate to carbon Removing the template material, adding the first galloaluminosilicate to an ion exchange solution to perform ion exchange to form a second galloaluminosilicate, and a second firing process for the second galoaluminosilicate It may include the step of performing.
상기 실리콘 전구체는 테트라에틸 오르소실리케이트를 포함할 수 있고, 상기 알루미늄 전구체는 소듐 알루미네이트를 포함할 수 있으며, 상기 갈륨 전구체는 갈륨 나이트레이트를 포함할 수 있다.The silicon precursor may include tetraethyl orthosilicate, the aluminum precursor may include sodium aluminate, and the gallium precursor may include gallium nitrate.
상기 전구체 용액은 소듐 하이드록사이드 및 테르포프로필암모늄 브로마이드를 더 포함할 수 있다.The precursor solution may further include sodium hydroxide and terpopropylammonium bromide.
본 발명의 실시예들에 따른 갈로알루미노실리케이트 촉매는, 상기 방법에 의해 제조된 갈로알루미노실리케이트 촉매로서, 상기 갈로알루미노실리케이트 촉매의 결정 내에 갈륨 원자가 위치한다.The galloaluminosilicate catalyst according to the embodiments of the present invention is a galloaluminosilicate catalyst prepared by the above method, and a gallium atom is located in the crystal of the galloaluminosilicate catalyst.
상기 갈로알루미노실리케이트 촉매에서 알루미늄:갈륨의 몰비가 10:1 ~ 1:10일 수 있다. 상기 갈로알루미노실리케이트 촉매는 메조 기공을 가질 수 있다. In the galloaluminosilicate catalyst, the molar ratio of aluminum:gallium may be 10:1 to 1:10. The galloaluminosilicate catalyst may have mesopores.
본 발명의 실시예들에 따른 BTX 제조 방법은, 상기 갈로알루미노실리케이트 촉매를 반응기에 충진시키는 단계, 상기 반응기를 반응 온도까지 승온시키는 단계, 및 상기 반응기에 프론판을 제공하여 탈수소방향족화 반응을 수행하는 단계를 포함한다. The BTX production method according to the embodiments of the present invention includes: filling the galloaluminosilicate catalyst into a reactor, raising the temperature of the reactor to a reaction temperature, and providing a front panel to the reactor to perform a dehydrogenation aromatication reaction. Including the step of performing.
상기 반응기를 승온시키는 단계는 질소 분위기 하에서 수행될 수 있다. 상기 반응 온도는 500 ~ 600℃일 수 있다.The step of raising the temperature of the reactor may be performed under a nitrogen atmosphere. The reaction temperature may be 500 ~ 600 ℃.
[실시예 1 : 메조기공(중형기공)을 갖는 갈로알루미노실리케이트 촉매의 제조예][Example 1: Preparation of a galloaluminosilicate catalyst having mesopores (medium pores)]
소듐 하이드록사이드 1.30g, 테트라프로필암모늄 브로마이드 1.36g, 테트라에틸 오르소실리케이트 38.2ml, 및 소듐 알루미네이트와 갈륨 나이트레이트 (Si/(Al+Ga)의 값을 약 27로 고정하고, Al:Ga의 몰비가 각각 6:1, 4:3, 1:6이 되는 함량)를 증류수 108ml에 녹여 전구체 용액을 만들고, 상온에서 2시간 동안 교반하였다. 탄소 주형물질(BP-2000, Cabot Corp.)을 1중량%가 되도록 전구체 용액에 첨가하여 추가로 4시간 동안 교반하였다. 상기 혼합물을 회분식 반응기에 주입하여 160℃의 온도에서 72시간 동안 교반하며 결정화 공정을 수행하였다. 이러한 수열합성 과정을 통해 Na+ 형태의 갈로알루미노실리케이트가 제조되었다. 증류수 1000ml를 이용한 세척 과정 및 110℃에서 8시간 동안 건조 과정을 수행하고, 공기 분위기 하에서 분당 5℃로 승온하여 550℃의 온도에서 10시간 동안 소성 공정을 수행하여 탄소 주형물질을 연소시켰다. 암모늄 나이트레이트 8.01g을 증류수 100ml에 녹여 이온 교환 용액을 만들고, 소성된 촉매를 주입하여 130℃의 온도에서 6시간 동안 이온 교환을 한 후 증류수 1000ml를 이용한 세척 과정 및 110℃에서 8시간 동안 건조 과정을 거쳐 NH4 + 형태의 갈로알루미노실리케이트를 제조하였다. 상기 이온 교환의 과정은 총 2회 수행하였다. NH4 + 형태의 갈로알루미노실리케이트를 분당 5℃로 승온하여 550℃에서 5시간 동안 유지를 통해 소성 과정을 거쳐 H+ 형태의 갈로알루미노실리케이트를 제조하였다. 이렇게 제조된 촉매는 본 명세서에서 meso-GAS x:y(GAS는 갈로알루미노실리케이트(Galloaluminosilicate)의 약자이고, x:y는 Al:Ga 의 몰비임)로 표기된다. 예를 들어, Al:Ga의 몰비가 6:1인 경우 갈로알루미노실리케이트 촉매는 meso-GAS 6:1로 표기된다.Sodium hydroxide 1.30 g, tetrapropylammonium bromide 1.36 g, tetraethyl orthosilicate 38.2 ml, and sodium aluminate and gallium nitrate (Si/(Al+Ga) were fixed at about 27, and Al:Ga A precursor solution was prepared by dissolving the molar ratio of 6:1, 4:3, and 1:6 in 108 ml of distilled water, and stirred at room temperature for 2 hours. A carbon template material (BP-2000, Cabot Corp.) was added to the precursor solution so as to be 1% by weight, followed by stirring for an additional 4 hours. The mixture was injected into a batch reactor and stirred at a temperature of 160° C. for 72 hours to perform a crystallization process. Through this hydrothermal synthesis process, Na + type galoaluminosilicate was prepared. A washing process using 1000 ml of distilled water and a drying process at 110° C. for 8 hours were performed, and the temperature was raised to 5° C. per minute in an air atmosphere, and a sintering process was performed at 550° C. for 10 hours to burn the carbon template material. Dissolve 8.01 g of ammonium nitrate in 100 ml of distilled water to make an ion exchange solution, and after ion exchange at a temperature of 130°C for 6 hours by injecting a calcined catalyst, a washing process using 1000 ml of distilled water and a drying process at 110°C for 8 hours Through the process, a galloaluminosilicate in the form of NH 4 + was prepared. The ion exchange process was performed a total of two times. The galloaluminosilicate in the form of NH 4 + was heated to 5° C. per minute, maintained at 550° C. for 5 hours, and then calcined to prepare a gallo aluminosilicate in the form of H +. The catalyst thus prepared is expressed in the present specification as meso-GAS x:y (GAS is an abbreviation for Galloaluminosilicate, and x:y is the molar ratio of Al:Ga). For example, when the molar ratio of Al:Ga is 6:1, the galloaluminosilicate catalyst is expressed as meso-GAS 6:1.
[비교예 1 : 마이크로기공(미세기공)을 갖는 갈로알루미노실리케이트 촉매의 제조예] [Comparative Example 1: Preparation Example of Galoaluminosilicate Catalyst Having Micropores (Micropores)]
실시예 1과 동일한 방법으로 제조하되 전구체 용액에 탄소 주형물질을 첨가하지 않은 채로 회분식 반응기에 주입해 결정화 공정을 수행하여 미세기공성 갈로알루미노실리케이트를 제조하였다. 이렇게 제조된 촉매는 본 명세서에서 micro-GAS x:y(GAS는 갈로알루미노실리케이트(Galloaluminosilicate)의 약자이고, x:y는 Al:Ga 의 몰비임)로 표기된다. 예를 들어, Al:Ga의 몰비가 6:1인 경우 갈로알루미노실리케이트 촉매는 micro-GAS 6:1로 표기된다.It was prepared in the same manner as in Example 1, but was injected into a batch reactor without adding a carbon template material to the precursor solution to perform a crystallization process to prepare microporous galoaluminosilicate. The catalyst thus prepared is expressed in the present specification as micro-GAS x:y (GAS is an abbreviation for Galloaluminosilicate, and x:y is the molar ratio of Al:Ga). For example, when the molar ratio of Al:Ga is 6:1, the galloaluminosilicate catalyst is expressed as micro-GAS 6:1.
[비교예 2 : 갈륨 옥사이드가 담지되고 메조기공을 갖는 GaOy/meso-HZSM-5 촉매의 제조예] [Comparative Example 2: Preparation Example of GaO y /meso-HZSM-5 catalyst supporting gallium oxide and having mesopores]
소듐 하이드록사이드 1.30g, 테트라프로필암모늄 브로마이드 1.36g, 테트라에틸 오르소실리케이트 38.2ml, 및 소듐 알루미네이트(Si/Al 비율이 27에 해당하는 함량)를 증류수 108ml에 녹여 전구체 용액을 만들고, 상온에서 2시간 동안 교반하였다. 탄소 주형물질(BP-2000, Cabot Corp.)을 1중량%가 되도록 전구체 용액에 첨가하여 추가로 4시간 동안 교반하였다. 이후 과정은 실시예 1과 동일한 방법으로 메조기공을 갖는 HZSM-5 촉매를 제조하였다. 이렇게 제조된 촉매는 본 명세서에서 meso-HZSM-5로 표기된다. 습윤함침법을 이용해 meso-HZSM-5에 갈륨을 담지하였다. 갈륨 나이트레이트 전구체 0.025g(meso-GAS 6:1과 같은 Ga 함량)을 증류수 10ml에 첨가하여 메탈 옥사이드 전구체 용액을 제조하고, meso-HZSM-5 1g을 전구체 용액에 첨가한 후 85℃에서 분당 300회전수로 수분이 완전히 증발할 때까지 교반하였다. 100℃에서 8시간 동안 건조 과정을 거친 후, 분당 5℃의 승온 속도로 550℃까지 승온시키고 4시간 동안 유지하여 소성하였다. 이렇게 제조된 촉매는 본 명세서에서 GaOy/meso-HZSM-5로 표기된다.1.30 g of sodium hydroxide, 1.36 g of tetrapropylammonium bromide, 38.2 ml of tetraethyl orthosilicate, and sodium aluminate (a content corresponding to a Si/Al ratio of 27) were dissolved in 108 ml of distilled water to make a precursor solution, and at room temperature Stir for 2 hours. A carbon template material (BP-2000, Cabot Corp.) was added to the precursor solution so as to be 1% by weight, followed by stirring for an additional 4 hours. After the procedure, the HZSM-5 catalyst having mesopores was prepared in the same manner as in Example 1. The catalyst thus prepared is referred to herein as meso-HZSM-5. Gallium was supported on meso-HZSM-5 using a wet impregnation method. A metal oxide precursor solution was prepared by adding 0.025 g of a gallium nitrate precursor (Ga content such as meso-GAS 6:1) to 10 ml of distilled water, and 1 g of meso-HZSM-5 was added to the precursor solution, and then 300 per minute at 85°C. The mixture was stirred until the moisture was completely evaporated at the rotational speed. After passing through the drying process at 100° C. for 8 hours, the temperature was raised to 550° C. at a rate of 5° C. per minute, and kept for 4 hours, followed by firing. The catalyst thus prepared is referred to herein as GaO y /meso-HZSM-5.
[분석예 1 : meso-GAS x:y 촉매, micro-GAS x:y 촉매, 및 GaOy/meso-HZSM-5 촉매의 특성 분석 및 비교][Analysis Example 1: Characterization and comparison of meso-GAS x:y catalyst, micro-GAS x:y catalyst, and GaO y /meso-HZSM-5 catalyst]
도 1은 본 발명의 실시예들에 따른 meso-GAS x:y 촉매 및 비교예들에 따른 micro-GAS x:y 촉매와 GaOy/meso-HZSM-5 촉매의 X선 회절 분석 결과를 나타낸다.1 shows the results of X-ray diffraction analysis of a meso-GAS x:y catalyst according to embodiments of the present invention, a micro-GAS x:y catalyst according to comparative examples, and a GaOy/meso-HZSM-5 catalyst.
도 1을 참조하면, 모든 촉매들이 ZSM-5 결정상의 특성 피크를 보이는데, 이는 모든 촉매가 ZSM-5 구조의 결정을 잘 형성하고 있음을 나타낸다. meso-GAS x:y 촉매가 micro-GAS x: y에 비해 상대 감도가 비슷하게 얻어진 것으로 보아, 탄소 주형물질이 결정화 과정에서 불순물로 작용했음에도 불구하고 결정성에는 큰 영향을 주지 않은 것으로 보인다. 또한 GAS 촉매와 GaOy/meso-HZSM-5 촉매를 비교했을 때 상대 감도가 큰 차이가 없었는데, MFI 제올라이트 구조 중 일부의 알루미늄이 갈륨으로 치환되었음에도 불구하고 결정성에는 큰 영향을 주지 않은 것으로 판단된다.Referring to FIG. 1, all catalysts show characteristic peaks of the ZSM-5 crystal phase, indicating that all catalysts form crystals having a ZSM-5 structure well. The meso-GAS x:y catalyst was found to have similar relative sensitivity compared to the micro-GAS x:y, so it does not appear to have a significant effect on the crystallinity even though the carbon template material acted as an impurity during the crystallization process. In addition, when comparing the GAS catalyst and the GaOy/meso-HZSM-5 catalyst, there was no significant difference in relative sensitivity. Although some of the aluminum in the MFI zeolite structure was replaced with gallium, it was judged that it did not significantly affect the crystallinity.
도 2 내지 도 5는 본 발명의 실시예들에 따른 meso-GAS x:y 촉매 및 비교예들에 따른 micro-GAS x:y 촉매와 GaOy/meso-HZSM-5 촉매의 질소 흡탈착 실험 결과를 나타낸다. 2 to 5 show the results of nitrogen adsorption and desorption experiments of the meso-GAS x:y catalyst according to the embodiments of the present invention and the micro-GAS x:y catalyst according to the comparative examples and the GaOy/meso-HZSM-5 catalyst. Show.
도 2 내지 도 5를 참조하면, 모든 촉매에서 IV-유형의 질소 흡탈착 등온선을 나타내어 전형적인 메조기공성 물질의 특성을 보이고 있다. Micro-GAS x:y와 meso-GAS x:y를 비교하면 meso-GAS x:y가 탄소 주형물질의 영향으로 더 뚜렷한 이력곡선 (Hysteresis Loop)을 나타낸다.2 to 5, IV-type nitrogen adsorption and desorption isotherms are shown in all catalysts, showing the characteristics of typical mesoporous materials. When comparing Micro-GAS x:y and meso-GAS x:y, meso-GAS x:y shows a more pronounced hysteresis loop due to the influence of the carbon template material.
표 1은 meso-GAS x:y 촉매, micro-GAS x:y 촉매, 및 GaOy/meso-HZSM-5 촉매의 구조적 특성을 나타낸다.Table 1 shows the structural properties of the meso-GAS x:y catalyst, the micro-GAS x:y catalyst, and the GaOy/meso-HZSM-5 catalyst.
표 1을 참조하면, micro-GAS 촉매는 Al:Ga 몰비에 따라 비표면적이 356 ~ 429m2 /g, 미세기공(마이크로기공) 부피가 0.157 ~ 0.209cm3/g, 중형기공(메조기공) 부피가 0.065 ~ 0.165cm3/g이다. meso-GAS 촉매는 Al:Ga 몰비에 따라 비표면적이 477 ~ 653m2 /g, 미세기공 부피가 0.221 ~ 0.287cm3/g, 중형기공 부피가 0.111 ~ 0.0.278cm3/g이다. 동일한 Al:Ga 몰비의 micro-GAS 촉매와 meso-GAS 촉매를 비교하면, meso-GAS 촉매가 비표면적 및 기공 부피가 크며, 이는 탄소 주형물질에 의해 기공성이 향상된 촉매 구조가 형성되었다는 것을 나타낸다. 동일한 갈륨 함량의 meso-GAS 6:1 촉매와 GaOy/meso-HZSM-5 촉매를 비교하면, meso-GAS 6:1 촉매의 표면적과 기공 부피가 더 크다.Referring to Table 1, according to the Al:Ga molar ratio, the micro-GAS catalyst has a specific surface area of 356 ~ 429m 2 / g, a micropore (micropore) volume of 0.157 ~ 0.209cm 3 /g, and a medium pore (mesopores) volume. Is 0.065 ~ 0.165cm 3 /g. The meso-GAS catalyst has a specific surface area of 477 ~ 653m 2 / g, a micropore volume of 0.221 ~ 0.287 cm 3 /g, and a mesopore volume of 0.111 ~ 0.0.278 cm 3 /g depending on the Al:Ga molar ratio. Comparing the micro-GAS catalyst and the meso-GAS catalyst of the same Al:Ga molar ratio, the meso-GAS catalyst has a large specific surface area and pore volume, indicating that a catalyst structure with improved porosity was formed by the carbon template material. When comparing the meso-GAS 6:1 catalyst with the same gallium content and the GaOy/meso-HZSM-5 catalyst, the surface area and pore volume of the meso-GAS 6:1 catalyst are larger.
[표 1][Table 1]
Figure PCTKR2020011072-appb-I000001
Figure PCTKR2020011072-appb-I000001
도 6 및 도 7은 본 발명의 실시예들에 따른 meso-GAS x:y 촉매 및 비교예들에 따른 micro-GAS x:y 촉매와 GaOy/meso-HZSM-5 촉매의 71Ga-NMR과 27Al-NMR 분석 결과를 나타낸다. NMR 분석에 의해 MFI 제올라이트 구조를 이루고 있는 금속을 확인할 수 있다. 6 and 7 are 71 Ga-NMR and 27 of the meso-GAS x:y catalyst according to embodiments of the present invention and the micro-GAS x:y catalyst according to comparative examples and the GaOy/meso-HZSM-5 catalyst. The results of Al-NMR analysis are shown. The metal constituting the MFI zeolite structure can be identified by NMR analysis.
도 6 및 도 7을 참조하면, MFI 제올라이트 구조에 치환된 갈륨은 71Ga-NMR 상에서 약 150 ppm의 위치에 피크를 나타내고, MFI 제올라이트 구조를 이루고 있는 알루미늄은 27Al-NMR 상에서 약 50 ppm의 위치에 피크를 나타낸다. meso-GAS x:y 촉매와 micro-GAS x:y 촉매는 71Ga-NMR 상에서 약 150 ppm 위치에 피크가 나타나는데, 이는 갈로알루미노실리케이트가 성공적으로 제조되었다는 것을 나타낸다. 또, 피크의 세기로부터 의도했던 Al:Ga 비율대로 갈로알루노실리케이트가 제조되었음을 확인할 수 있다. GaOy/meso-HZSM-5 촉매는 71Ga-NMR 상에서는 피크가 나타나지 않는데, 이는 갈륨이 MFI 제올라이트 구조 외부에 위치하고 있다는 것을 나타낸다.6 and 7, gallium substituted in the MFI zeolite structure shows a peak at a position of about 150 ppm on 71 Ga-NMR, and aluminum constituting the MFI zeolite structure is at a position of about 50 ppm on 27 Al-NMR. Shows a peak at. meso-GAS x:y catalyst and micro-GAS x:y The catalyst showed a peak at about 150 ppm on 71 Ga-NMR, indicating that the galoaluminosilicate was successfully prepared. In addition, it can be seen from the intensity of the peak that the galloalunosilicate was produced in the intended Al:Ga ratio. The GaOy/meso-HZSM-5 catalyst shows no peak on 71 Ga-NMR, indicating that gallium is located outside the MFI zeolite structure.
도 8 및 도 9는 본 발명의 실시예들에 따른 meso-GAS x:y 촉매 및 비교예들에 따른 micro-GAS x:y 촉매와 GaOy/meso-HZSM-5 촉매의 승온 암모니아 흡탈착 실험 결과를 나타낸다.8 and 9 are results of an elevated temperature ammonia adsorption and desorption experiment of a meso-GAS x:y catalyst according to embodiments of the present invention and a micro-GAS x:y catalyst according to comparative examples and a GaOy/meso-HZSM-5 catalyst. Represents.
도 8 및 도 9를 참조하면, 전체 암모니아 탈착 곡선을 두 개의 곡선으로 나눌 수 있으며, 150 ~ 300도 사이의 곡선은 약한 산점에 의한 암모니아 탈착 곡선을 나타내고, 300 ~ 500도 사이의 곡선은 강한 산점에 의한 암모니아 탈착 곡선을 나타낸다. 약한 산점은 루이스 산을 의미하고, 강한 산점은 브뢴스테드-로우리 산을 의미한다. 8 and 9, the entire ammonia desorption curve can be divided into two curves, a curve between 150 and 300 degrees represents an ammonia desorption curve due to a weak acid point, and a curve between 300 and 500 degrees is a strong acid point. The ammonia desorption curve by is shown. A weak acid point means Lewis acid, and a strong acid point means Bronsted-Lowry acid.
표 2는 본 발명의 실시예들에 따른 meso-GAS x:y 촉매 및 비교예들에 따른 micro-GAS x:y 촉매와 GaOy/meso-HZSM-5 촉매의 승온 암모니아 흡탈착 실험 결과 및 각 산점의 산량에 대한 수치를 나타낸다.Table 2 shows the results of an elevated temperature ammonia adsorption and desorption experiment of the meso-GAS x:y catalyst according to the examples of the present invention and the micro-GAS x:y catalyst according to the comparative examples and the GaOy/meso-HZSM-5 catalyst, and each acid point Represents a numerical value for the acid amount of
표 2를 참조하면, meso-GAS 촉매와 micro-GAS 촉매는 전체 산량이 1638 ~ 1922μmol-NH3/gcat 범위에 있으며, 그 중 59.3 ~ 67.9%가 브뢴스테드-로우리 산점으로 나타난다. 동일한 갈륨 함량의 meso-GAS 6:1 촉매와 GaOy/meso-HZSM-5 촉매를 비교하면, meso-GAS 6:1 촉매의 산량이 더 크다. 또, 산점 중 브뢴스테드-로우리 산점의 비율이 더 크다. 즉, meso-GAS 촉매는 갈륨을 HZSM-5에 담지한 촉매보다 산 특성이 향샹되며, 갈륨이 제올라이트의 브뢴스테드-로우리 산점을 막지 않고 MFI 제올라이트 구조 내부에 위치하기 때문에 브뢴스테드-로우리 산점의 비율도 향상된다.Referring to Table 2, the total acid amount of the meso-GAS catalyst and the micro-GAS catalyst is in the range of 1638 to 1922 μmol-NH3/gcat, of which 59.3 to 67.9% appear as Bronsted-Lowry acid sites. When comparing the meso-GAS 6:1 catalyst with the same gallium content and the GaOy/meso-HZSM-5 catalyst, the acid amount of the meso-GAS 6:1 catalyst is larger. Also, the proportion of the Bronsted-Lowry scattered points is larger. In other words, the meso-GAS catalyst has better acid properties than the catalyst supporting gallium on HZSM-5, and the Bronsted-Lowry acid site is located inside the MFI zeolite structure without blocking the Bronsted-Lowry acid site of the zeolite. The ratio of is also improved.
[표 2][Table 2]
Figure PCTKR2020011072-appb-I000002
Figure PCTKR2020011072-appb-I000002
[실시예 2 : 갈로알루미노실리케이트 촉매를 이용한 프로판 탈수소방향족화 반응에 의한 BTX 제조][Example 2: Preparation of BTX by propane dehydrogenation aromatication reaction using galoaluminosilicate catalyst]
meso-GAS 촉매와 micro-GAS 촉매를 이용하여 반응 온도 550℃에서 프로판 탈수소방향족화 반응을 수행하여 BTX를 제조하였다. 본 실시예에서 사용한 가스의 조성은 질소:프로판 = 12.5:0.5이며, 가스의 총합 공간속도(GHSV: Gas Hourly Space Velocity)는 3900ml/g-촉매h이다. 촉매 0.2g을 석영 반응기에 충진시키고, 질소 분위기 하에서 반응온도까지 11℃/min의 속도로 승온하여 반응 온도에 도달한 후 프로판을 촉매층에 통과시켜 탈수소방향족화 반응을 수행하였다. 본 실시예에서 반응물의 전환율 및 수율은 하기 수학식 1, 2 및 3 에 의해 각각 계산되었다.BTX was prepared by performing a propane dehydrogenation aromatication reaction at a reaction temperature of 550°C using a meso-GAS catalyst and a micro-GAS catalyst. The composition of the gas used in this example is nitrogen:propane = 12.5:0.5, and the total gas hourly space velocity (GHSV) is 3900ml/g-catalyst h. 0.2 g of the catalyst was charged into a quartz reactor, the temperature was raised to the reaction temperature at a rate of 11° C./min in a nitrogen atmosphere, and after reaching the reaction temperature, propane was passed through the catalyst layer to perform a dehydrogenation aromatication reaction. In this example, the conversion and yield of the reactants were calculated by the following equations 1, 2, and 3, respectively.
[수학식 1][Equation 1]
Figure PCTKR2020011072-appb-I000003
Figure PCTKR2020011072-appb-I000003
[수학식 2][Equation 2]
Figure PCTKR2020011072-appb-I000004
Figure PCTKR2020011072-appb-I000004
[수학식 3][Equation 3]
Figure PCTKR2020011072-appb-I000005
Figure PCTKR2020011072-appb-I000005
도 10 및 도 11은 본 발명의 실시예들에 따른 meso-GAS x:y 촉매 및 비교예들에 따른 micro-GAS x:y 촉매의 프로판 탈수소방향족화 반응 전환율 및 BTX 수율을 나타낸다. 10 and 11 show the propane dehydrogenation aromatization conversion rate and BTX yield of the meso-GAS x:y catalyst according to examples of the present invention and the micro-GAS x:y catalyst according to comparative examples.
도 10 및 도 11을 참조하면, meso-GAS 촉매와 micro-GAS 촉매를 비교하면, Al:Ga의 몰비가 6:1과 1:6에서는 meso-GAS 촉매가 micro-GAS 촉매보다 프로판 전환율과 BTX 수율이 높고 4:3인 촉매에서는 그 반대로 나타났다. 즉, 알루미늄과 갈륨 중 하나의 원소가 지배적일 때는 탄소 주형물질에 의해 향상된 구조적 특성이 활성에 도움이 된다. 적은 갈륨 함량으로 좋은 활성을 보이는 meso-GAS 6:1 촉매가 프로판 탈수소방향족화 반응에 가장 적합한 것으로 나타났다. 갈륨이 MFI 구조에 치환되지 않은 GaOy/meso-HZSM-5 촉매는 방향족화 활성이 높지 않은 반면, meso-GAS 6:1 촉매는 적은 양의 치환된 갈륨만으로도 활성이 높아진다.10 and 11, when comparing the meso-GAS catalyst and the micro-GAS catalyst, when the molar ratio of Al:Ga is 6:1 and 1:6, the meso-GAS catalyst is more than the micro-GAS catalyst. In the case of a catalyst with a high yield of 4:3, the opposite was observed. That is, when one element of aluminum and gallium is dominant, the structural properties improved by the carbon template material are helpful for activation. It was found that the meso-GAS 6:1 catalyst showing good activity with a low gallium content was most suitable for propane dehydroaromatization reaction. The GaOy/meso-HZSM-5 catalyst, in which gallium is not substituted in the MFI structure, does not have high aromatization activity, whereas the meso-GAS 6:1 catalyst increases the activity with only a small amount of substituted gallium.
표 3은 갈로알루미노실리케이트 촉매 중 적은 갈륨 함량으로도 프로판 탈수소방향족화 활성이 우수한 meso-GAS 6:1 촉매의 반응 초기(0.75시간)와 반응 후기(13.5시간)의 전환율과 생성물 선택도를 나타낸다. meso-GAS 6:1 촉매는 13.5시간 반응 후에도 83.9%의 높은 전환율을 보였으며 BTX 선택도 또한 크게 변하지 않았다. Table 3 shows the conversion rate and product selectivity of the meso-GAS 6:1 catalyst having excellent propane dehydrogenation aromatication activity even with a small gallium content among the galoaluminosilicate catalysts in the initial reaction (0.75 hours) and late reaction (13.5 hours). . The meso-GAS 6:1 catalyst showed a high conversion rate of 83.9% even after 13.5 hours reaction, and the BTX selectivity also did not change significantly.
[표 3][Table 3]
Figure PCTKR2020011072-appb-I000006
Figure PCTKR2020011072-appb-I000006
[분석예 2 : 프로판 탈수소방향족화 반응에 의한 BTX 제조에서 meso-GAS 6:1 촉매와 GaOy/meso-HZSM-5 촉매의 비교][Analysis Example 2: Comparison of meso-GAS 6:1 catalyst and GaO y /meso-HZSM-5 catalyst in the production of BTX by propane dehydrogenation aromatication]
실시예 2의 프로판 탈수소방향족화 반응과 동일한 조건으로, 같은 갈륨 함량의 meso-GAS 6:1 촉매와 GaOy/meso-HZSM-5 촉매를 이용하여 프로판의 탈수소방향족화 반응을 수행하였다. Under the same conditions as in the propane dehydroaromatization reaction of Example 2, a dehydroaromatic reaction of propane was performed using a meso-GAS 6:1 catalyst having the same gallium content and a GaOy/meso-HZSM-5 catalyst.
도 12 및 도 13은 meso-GAS 6:1 촉매와 GaOy/meso-HZSM-5 촉매의 프로판 탈수소방향족화 반응 전환율 및 BTX 수율을 나타낸다. 12 and 13 show the conversion rate of the propane dehydrogenation aromatication reaction and the BTX yield of the meso-GAS 6:1 catalyst and the GaO y /meso-HZSM-5 catalyst.
도 12 및 도 13을 참조하면, meso-GAS 6:1 촉매가 GaOy/meso-HZSM-5 촉매보다 높은 프로판 전환율과 BTX 수율을 나타낸다. 프로판 탈수소방향족화 반응에 있어 촉매의 산점과 구조적 특성이 모두 중요한 역할을 한다. 촉매의 루이스 산점에 의해 반응물인 프로판이 활성화되어 중간체를 형성하고, 브뢴스테드-로우리 산점에 의해 중간체들이 방향족으로 전환된다. 생성된 방향족은 촉매의 기공을 통해 밖으로 빠져나온다. 동일한 갈륨 함량을 가질 때, meso-GAS 촉매가 GaOy/meso-HZSM-5 촉매보다 산 특성 및 구조적 특성이 더 우수하기 때문에 프로판 탈수소방향족화 반응에서 더 좋은 활성을 나타낸다.12 and 13, the meso-GAS 6:1 catalyst exhibits higher propane conversion and BTX yield than the GaO y /meso-HZSM-5 catalyst. In the propane dehydrogenation aromatization reaction, both the acid point and structural properties of the catalyst play an important role. The reactant propane is activated by the Lewis acid site of the catalyst to form an intermediate, and the intermediates are converted to aromatics by the Bronsted-Lowry acid site. The produced aromatic escapes through the pores of the catalyst. When having the same gallium content, the meso-GAS catalyst exhibits better activity in the propane dehydroaromatization reaction because the acid and structural properties are better than that of the GaO y /meso-HZSM-5 catalyst.
이제까지 본 발명에 대한 구체적인 실시예들을 살펴보았다. 본 발명이 속하는 기술 분야에서 통상의 지식을 가진 자는 본 발명이 본 발명의 본질적인 특성에서 벗어나지 않는 범위에서 변형된 형태로 구현될 수 있음을 이해할 수 있을 것이다. 그러므로 개시된 실시예들은 한정적인 관점이 아니라 설명적인 관점에서 고려되어야 한다. 본 발명의 범위는 전술한 설명이 아니라 특허청구범위에 나타나 있으며, 그와 동등한 범위 내에 있는 모든 차이점은 본 발명에 포함된 것으로 해석되어야 할 것이다.So far, specific examples of the present invention have been looked at. Those of ordinary skill in the art to which the present invention pertains will be able to understand that the present invention may be implemented in a modified form without departing from the essential characteristics of the present invention. Therefore, the disclosed embodiments should be considered from an illustrative point of view rather than a limiting point of view. The scope of the present invention is shown in the claims rather than the above description, and all differences within the scope equivalent thereto should be construed as being included in the present invention.
본 발명의 실시예들에 따른 갈로알루미노실리케이트 촉매는 우수한 성능을 가질 수 있다. 예를 들어, 상기 갈로알루미노실리케이트 촉매는 산 특성 및 구조적 특성이 우수하여 프로판 탈수소방향족화 반응에 효과적이다. 또, 상기 갈로알루미노실리케이트 촉매의 Al/Ga 몰비를 최적화하여 프로판 탈수소방향족화 반응의 BTX 수율을 더 높일 수 있다. 저렴한 탄소 주형물질을 이용하여 메조기공을 갖는 갈로알루미노실리케이트 촉매를 효과적으로 제조할 수 있다.The galloaluminosilicate catalyst according to the embodiments of the present invention may have excellent performance. For example, the galoaluminosilicate catalyst has excellent acid properties and structural properties and is effective in propane dehydrogenation aromatication. In addition, by optimizing the Al/Ga molar ratio of the galloaluminosilicate catalyst, the BTX yield of the propane dehydrogenation aromatication reaction can be further increased. A galloaluminosilicate catalyst having mesopores can be effectively prepared by using an inexpensive carbon template material.

Claims (10)

  1. 실리콘 전구체, 알루미늄 전구체, 갈륨 전구체, 및 탄소 주형물질을 포함하는 전구체 용액을 형성하는 단계; 및Forming a precursor solution comprising a silicon precursor, an aluminum precursor, a gallium precursor, and a carbon template material; And
    상기 전구체 용액을 결정화하여 갈로알루미노실리케이트 촉매를 형성하는 단계를 포함하는 갈로알루미노실리케이트 촉매의 제조 방법.A method of producing a galloaluminosilicate catalyst comprising the step of crystallizing the precursor solution to form a galloaluminosilicate catalyst.
  2. 제 1 항에 있어서,The method of claim 1,
    상기 갈로알루미노실리케이트 촉매를 형성하는 단계는,The step of forming the galloaluminosilicate catalyst,
    상기 전구체 용액에 대하여 결정화 공정을 수행하여 제1 갈로알루미노실리케이트를 형성하는 단계,Forming a first galloaluminosilicate by performing a crystallization process on the precursor solution,
    상기 제1 갈로알루미노실리케이트에 대하여 제1 소성 공정을 수행하여 탄소 주형물질을 제거하는 단계,Removing a carbon template material by performing a first firing process on the first galoaluminosilicate,
    상기 제1 갈로알루미노실리케이트를 이온 교환 용액에 넣어 이온 교환을 수행하여 제2 갈로알루미노실리케이트를 형성하는 단계, 및Adding the first galloaluminosilicate to an ion exchange solution to perform ion exchange to form a second galloaluminosilicate, and
    상기 제2 갈로알루미노실리케이트에 대하여 제2 소성 공정을 수행하는 단계를 포함하는 것을 특징으로 하는 갈로알루미노실리케이트 촉매의 제조 방법. And performing a second firing process on the second galloaluminosilicate.
  3. 제 1 항에 있어서,The method of claim 1,
    상기 실리콘 전구체는 테트라에틸 오르소실리케이트를 포함하고,The silicon precursor comprises tetraethyl orthosilicate,
    상기 알루미늄 전구체는 소듐 알루미네이트를 포함하며,The aluminum precursor includes sodium aluminate,
    상기 갈륨 전구체는 갈륨 나이트레이트를 포함하는 것을 특징으로 하는 갈로알루미노실리케이트 촉매의 제조 방법.The gallium precursor is a method of producing a galloaluminosilicate catalyst, characterized in that it contains gallium nitrate.
  4. 제 3 항에 있어서,The method of claim 3,
    상기 전구체 용액은 소듐 하이드록사이드 및 테르포프로필암모늄 브로마이드를 더 포함하는 것을 특징으로 하는 갈로알루미노실리케이트 촉매의 제조 방법.The precursor solution further comprises sodium hydroxide and terpopropylammonium bromide.
  5. 제 1 항 내지 제 4 항 중 어느 한 항의 방법에 의해 제조된 갈로알루미노실리케이트 촉매로서,As a galoaluminosilicate catalyst prepared by the method of any one of claims 1 to 4,
    상기 갈로알루미노실리케이트 촉매의 결정 내에 갈륨 원자가 위치하는 것을 특징으로 하는 갈로알루미노실리케이트 촉매.A gallium aluminosilicate catalyst, characterized in that a gallium atom is located in the crystal of the galloaluminosilicate catalyst.
  6. 제 5 항에 있어서,The method of claim 5,
    알루미늄:갈륨의 몰비가 10:1 ~ 1:10인 것을 특징으로 하는 갈로알루미노실리케이트 촉매.A galoaluminosilicate catalyst, characterized in that the molar ratio of aluminum:gallium is 10:1 to 1:10.
  7. 제 5 항에 있어서,The method of claim 5,
    상기 갈로알루미노실리케이트 촉매는 메조 기공을 갖는 것을 특징으로 하는 갈로알루미노실리케이트 촉매. The galloaluminosilicate catalyst is a galloaluminosilicate catalyst, characterized in that it has mesopores.
  8. 제 5 항의 갈로알루미노실리케이트 촉매를 반응기에 충진시키는 단계;Filling the reactor with the galloaluminosilicate catalyst of claim 5;
    상기 반응기를 반응 온도까지 승온시키는 단계; 및Raising the temperature of the reactor to a reaction temperature; And
    상기 반응기에 프론판을 제공하여 탈수소방향족화 반응을 수행하는 단계를 포함하는 것을 특징으로 하는 BTX 제조 방법.BTX manufacturing method comprising the step of performing a dehydrogenation aromatication reaction by providing a fronpan to the reactor.
  9. 제 8 항에 있어서,The method of claim 8,
    상기 반응기를 승온시키는 단계는 질소 분위기 하에서 수행되는 것을 특징으로 하는 BTX 제조 방법. BTX manufacturing method, characterized in that the step of raising the temperature of the reactor is carried out under a nitrogen atmosphere.
  10. 제 8 항에 있어서,The method of claim 8,
    상기 반응 온도는 500 ~ 600℃인 것을 특징으로 하는 BTX 제조 방법.The reaction temperature is 500 ~ 600 ℃ BTX manufacturing method, characterized in that.
PCT/KR2020/011072 2019-08-23 2020-08-20 Galloaluminosilicate catalyst, method of preparing same galloaluminosilicate catalyst, and method of preparing btx using same galloaluminosilicate catalyst WO2021040314A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR1020190103790A KR102265476B1 (en) 2019-08-23 2019-08-23 Galloaluminosilicate catalyst, preparation method of the galloaluminosilicate catalyst, and btx production method using the galloaluminosilicate catalyst
KR10-2019-0103790 2019-08-23

Publications (1)

Publication Number Publication Date
WO2021040314A1 true WO2021040314A1 (en) 2021-03-04

Family

ID=74683580

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2020/011072 WO2021040314A1 (en) 2019-08-23 2020-08-20 Galloaluminosilicate catalyst, method of preparing same galloaluminosilicate catalyst, and method of preparing btx using same galloaluminosilicate catalyst

Country Status (2)

Country Link
KR (1) KR102265476B1 (en)
WO (1) WO2021040314A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116262242A (en) * 2023-01-06 2023-06-16 东北石油大学 Catalyst for catalyzing propane dehydrogenation and preparation method and application thereof

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20110257452A1 (en) * 2010-04-20 2011-10-20 Fina Technology, Inc. Regenerable Composite Catalysts for Hydrocarbon Aromatization
KR101862683B1 (en) * 2016-12-15 2018-07-04 서울대학교산학협력단 Preparation of Metal Oxide Catalyst Supported on Microporous and Mesoporous HZSM-5 for Co-aromatization of Methane and Propane, and Production Method of BTX Using Said Catalyst

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20110257452A1 (en) * 2010-04-20 2011-10-20 Fina Technology, Inc. Regenerable Composite Catalysts for Hydrocarbon Aromatization
KR101862683B1 (en) * 2016-12-15 2018-07-04 서울대학교산학협력단 Preparation of Metal Oxide Catalyst Supported on Microporous and Mesoporous HZSM-5 for Co-aromatization of Methane and Propane, and Production Method of BTX Using Said Catalyst

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
AL-YASSIR N; AKHTAR M N; OGUNRONBI K; AL-KHATTAF S: "Synthesis of stable H-galloaluminosilicate MFI with hierarchical pore architecture by surfactant-mediated base hydrolysis, and their application in propane aromatization", JOURNAL OF MOLECULAR CATALYSIS A : CHEMICAL, vol. 360, 11 April 2012 (2012-04-11), pages 1 - 15, XP028510760, ISSN: 1381-1169, DOI: 10.1016/j.molcata.2012.04.005 *
MIYAMOTO MANABU; MABUCHI KOTA; KAMADA JUN; HIROTA YUICHIRO; OUMI YASUNORI; NISHIYAMA NORIKAZU; UEMIYA SHIGEYUKI: "para-Selectivity of silicalite-1 coated MFI type galloaluminosilicate in aromatization of light alkanes", JOURNAL OF POROUS MATERIALS, 24 March 2015 (2015-03-24), pages 769 - 778, XP035494824, ISSN: 1380-2224, DOI: 10.1007/s10934-015-9950-8 *
WANNAPAKDEE WANNARUEDEE, WATTANAKIT CHULARAT, PALUKA VEERACHART, YUTTHALEKHA THITTAYA, LIMTRAKUL JUMRAS: "One-pot synthesis of novel hierarchical bifunctional Ga/HZSM-5 nanosheets for propane aromatization", RSC ADVANCES, vol. 6, no. 4, 1 January 2016 (2016-01-01), pages 2875 - 2881, XP055785900, DOI: 10.1039/C5RA22707K *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116262242A (en) * 2023-01-06 2023-06-16 东北石油大学 Catalyst for catalyzing propane dehydrogenation and preparation method and application thereof

Also Published As

Publication number Publication date
KR102265476B1 (en) 2021-06-14
KR20210023514A (en) 2021-03-04

Similar Documents

Publication Publication Date Title
US4257885A (en) Novel zeolite compositions and processes for preparing and using same
Corma et al. Synthesis and characterization of the MCM-22 zeolite
EP2490985A2 (en) Method of preparing zsm-5 zeolite using nanocrystalline zsm-5 seeds
CN101003380B (en) Method for synthesizing ZSM-5 zeolite with multilevel pore canals
Bellussi et al. Amorphous mesoporous silica-alumina with controlled pore size as acid catalysts
TWI657047B (en) Full-twist molecular sieve and synthesis method thereof
WO2021040314A1 (en) Galloaluminosilicate catalyst, method of preparing same galloaluminosilicate catalyst, and method of preparing btx using same galloaluminosilicate catalyst
WO2019039749A1 (en) Method for producing metal oxide catalyst supported on mesoporous hzsm-11 for direct dehydrogenation and aromatization reaction of methane and propane co-reactant, and method for producing btx using catalyst
WO2018110998A2 (en) Mfi zeolite with microporous and mesoporous hierarchical structure, preparation method therefor, and catalytic use thereof
CN101003378A (en) Method for preparing beta zeolite with multilevel pore canals
US20100280297A1 (en) Process of using germanium zeolite catalyst for alkane aromatization
WO2022165911A1 (en) Single-crystal hierarchically porous hzsm-5 molecular sieve and green preparation method therefor
US2982612A (en) Process for producing sodium zeolite a
CN86101990B (en) Process for preparing layered column type of clayey molecular sieve
Liu et al. Synthesis and characterization of a novel microporous titanosilicate with a structure of penkvilksite-1M
CN112520754B (en) Aluminum-rich ZSM-5 molecular sieve and synthesis method thereof
RU2044690C1 (en) METHOD OF PREPARING CRYSTALLINE GALLOSILICATE WITH ZEOLITE STRUCTURE AND ATOMIC RATIO Si/Ga ≥ 5
JP7261316B2 (en) High silica Y molecular sieve with FAU topology structure and its preparation method
PT841985E (en) CATALYST PROCESS FOR PREPARING THEMSELVES AND USING THEM IN A METHYLAMINE MANUFACTURING PROCESS
KR102220202B1 (en) Dehydroaromatization catalyst and method of manufacturing btx using the same
KR102231798B1 (en) Regeneration method of galloaluminosilicate catalyst and btx production method using the regenerated galloaluminosilicate catalyst
CN115043414B (en) Hierarchical pore molecular sieve and preparation method and application thereof
SU1745678A1 (en) Process for producing zeolite zsm-11
CN111099628B (en) Method for synthesizing BEC molecular sieve and synthesized BEC molecular sieve
WO2023106735A1 (en) Catalyst for preparation of aromatic compounds by dehydroaromatization, and method for preparing aromatic compounds using same

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20856678

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20856678

Country of ref document: EP

Kind code of ref document: A1