WO2023106735A1 - Catalyst for preparation of aromatic compounds by dehydroaromatization, and method for preparing aromatic compounds using same - Google Patents

Catalyst for preparation of aromatic compounds by dehydroaromatization, and method for preparing aromatic compounds using same Download PDF

Info

Publication number
WO2023106735A1
WO2023106735A1 PCT/KR2022/019393 KR2022019393W WO2023106735A1 WO 2023106735 A1 WO2023106735 A1 WO 2023106735A1 KR 2022019393 W KR2022019393 W KR 2022019393W WO 2023106735 A1 WO2023106735 A1 WO 2023106735A1
Authority
WO
WIPO (PCT)
Prior art keywords
catalyst
aromatic compound
supported
hzsm
producing
Prior art date
Application number
PCT/KR2022/019393
Other languages
French (fr)
Korean (ko)
Inventor
이관영
김도희
박예림
이병진
한근호
김상윤
Original Assignee
고려대학교 산학협력단
서울대학교산학협력단
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from KR1020220165040A external-priority patent/KR20230086593A/en
Application filed by 고려대학교 산학협력단, 서울대학교산학협력단 filed Critical 고려대학교 산학협력단
Publication of WO2023106735A1 publication Critical patent/WO2023106735A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J29/00Catalysts comprising molecular sieves
    • B01J29/04Catalysts comprising molecular sieves having base-exchange properties, e.g. crystalline zeolites
    • B01J29/06Crystalline aluminosilicate zeolites; Isomorphous compounds thereof
    • B01J29/70Crystalline aluminosilicate zeolites; Isomorphous compounds thereof of types characterised by their specific structure not provided for in groups B01J29/08 - B01J29/65
    • B01J29/72Crystalline aluminosilicate zeolites; Isomorphous compounds thereof of types characterised by their specific structure not provided for in groups B01J29/08 - B01J29/65 containing iron group metals, noble metals or copper
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/02Impregnation, coating or precipitation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/08Heat treatment
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C15/00Cyclic hydrocarbons containing only six-membered aromatic rings as cyclic parts
    • C07C15/02Monocyclic hydrocarbons
    • C07C15/04Benzene
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C15/00Cyclic hydrocarbons containing only six-membered aromatic rings as cyclic parts
    • C07C15/02Monocyclic hydrocarbons
    • C07C15/06Toluene
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C15/00Cyclic hydrocarbons containing only six-membered aromatic rings as cyclic parts
    • C07C15/02Monocyclic hydrocarbons
    • C07C15/067C8H10 hydrocarbons
    • C07C15/08Xylenes
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C2/00Preparation of hydrocarbons from hydrocarbons containing a smaller number of carbon atoms
    • C07C2/76Preparation of hydrocarbons from hydrocarbons containing a smaller number of carbon atoms by condensation of hydrocarbons with partial elimination of hydrogen
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/52Improvements relating to the production of bulk chemicals using catalysts, e.g. selective catalysts

Definitions

  • the present invention relates to a catalyst for preparing an aromatic compound by dehydroaromatization reaction and a method for preparing an aromatic compound using the same.
  • Aromatic compounds represented by benzene, toluene, and xylene are industrially very important compounds and are used as intermediate products of chemical products, solvents, and raw materials for polymers.
  • about 40 million tons of benzene and 14 million tons of toluene were produced, and demand for these products is expected to increase by 35% to 40% according to the global GDP growth rate.
  • aromatic compounds having high added value are currently mostly produced through a naphtha reforming reaction dependent on crude oil.
  • the naphtha reforming process is dependent on crude oil as a raw material, there are limitations in that it can be significantly affected by rapid oil price fluctuations and limited reserves of crude oil. Therefore, there is a need for a new raw material-based aromatic compound production technology that is out of this crude oil-dependent production method.
  • Natural gas including shale gas, consists of about 85% methane, 10% ethane, and light hydrocarbons such as propane. Considering the enormous reserves of natural gas, including shale gas, it would be industrially very important to synthesize high value-added compounds from them. Research on technologies for synthesizing high value-added compounds is being intensively studied.
  • a catalyst used for this reaction a catalyst based on HZSM-5 zeolite loaded with molybdenum (Mo), gallium (Ga), etc. has been widely used, but the catalyst is There are limitations in that it can undergo extreme deactivation, has a short lifetime of about 10-20 hours, and has a low yield of aromatic compounds.
  • the present invention has been made to solve the above problems, and in the present invention, by additionally introducing cobalt oxide into the catalyst supported on zinc oxide, the deactivation of the catalyst is suppressed, thereby stably maintaining the dehydroaromatization performance, and the lifespan And it is intended to provide a catalyst for preparing an aromatic compound capable of improving the cumulative yield of an aromatic compound and a method for preparing an aromatic compound using the same.
  • the present invention in order to solve the above problems,
  • zeolite support Zinc oxide supported on the zeolite support; and cobalt oxide mixed with the zinc oxide and supported on the zeolite carrier.
  • the zinc oxide and the cobalt oxide may be supported in a weight ratio of 1:0.05 to 1:0.15.
  • the zinc oxide may be supported in an amount of 8 to 12% by weight.
  • the cobalt oxide may be supported in an amount of 0.5 to 1.5% by weight.
  • the zeolite support may be selected from the group consisting of HZSM-5, ZSM-5, ZSM-11, MCM-22 and MCM-41.
  • the Si / Al ratio of the zeolite support may be 11.5 to 140.
  • It provides a method for preparing an aromatic compound including; performing a dehydroaromatization reaction using methane, ethane or a mixture thereof as a reactant under the catalyst for preparing the aromatic compound.
  • the dehydroaromatization reaction may be carried out in a gas phase reactor including a column filled with the catalyst for preparing the aromatic compound.
  • argon gas may be further included as a reactant.
  • the dehydroaromatization reaction may be carried out at 550 to 700 °C.
  • the aromatic compound may be at least one selected from the group consisting of benzene, toluene, xylene, naphthalene, and coke.
  • the catalyst for preparing an aromatic compound according to the present invention can suppress deactivation of the catalyst and improve the lifespan of the catalyst by additionally introducing cobalt oxide into the catalyst in which zinc oxide is supported on the zeolite carrier, and can significantly increase the production yield of the aromatic compound. can be improved
  • Figure 2 shows the results of measuring the cumulative aromatic compound production amount (Cumulative BTX formation) according to the dehydroaromatization reaction of ethane in the catalysts according to Examples and Comparative Examples of the present invention.
  • Figure 4 shows the results of TG (Thermogravimetric analysis) measurement after 40 hours of dehydroaromatization of ethane with catalysts according to Examples and Comparative Examples of the present invention.
  • the present invention relates to a catalyst for producing an aromatic compound by a dehydroaromatization reaction. It is intended to provide a catalyst capable of improving the production yield of the compound.
  • the present invention is a zeolite support; Zinc oxide supported on the zeolite support; and cobalt oxide mixed with the zinc oxide and supported on the zeolite carrier.
  • the zinc oxide and the cobalt oxide may be supported by any conventional method known in the art, and it may be more preferable that the zinc oxide and the cobalt oxide are supported by an initial wetting method.
  • the zinc oxide may be zinc oxide (ZnO).
  • the cobalt oxide may be CoO, Co 3 O 4 or a mixture thereof.
  • the zinc oxide and the cobalt oxide are preferably supported at a weight ratio of 1:0.05 to 1:0.15, and preferably at a weight ratio of 1:0.075 to 1:0.1. more preferable When zinc oxide and cobalt oxide are supported at the above weight ratio, deactivation of the catalyst is suppressed, the life of the catalyst is improved, and the production yield of aromatic compounds through the improvement of the dehydrogenation reaction can be remarkably increased.
  • the zinc oxide is preferably supported in an amount of 8 to 12% by weight based on the total weight of the zeolite carrier, and the content of 10% by weight is most preferred. desirable.
  • zinc oxide is supported in the above content range, the rate of formation of aromatic compounds through the improvement of dehydrogenation reaction may be remarkably increased.
  • the cobalt oxide is preferably supported in an amount of 0.5 to 1.5% by weight based on the total weight of the zeolite support, and supported in an amount of 0.75 to 1% by weight it is more preferable
  • the content of cobalt oxide is less than the lower limit, the effect of improving the lifespan and dehydrogenation reaction of the catalyst is insignificant, and when the content exceeds the upper limit, the deactivation of the catalyst is accelerated and the life of the catalyst is reduced, and as a result, the productivity of aromatic compounds is reduced.
  • the zeolite used in the present invention is commonly used as a catalyst support, and may be selected from the group consisting of, for example, HZSM-5, ZSM-5, ZSM-11, MCM-22 and MCM-41.
  • the Si / Al ratio of the zeolite support is preferably 11.5 to 140.
  • the present invention provides a method for preparing an aromatic compound comprising the steps of performing a dehydroaromatization reaction using methane, ethane or a mixture thereof as a reactant under the above-mentioned catalyst for preparing an aromatic compound.
  • the dehydroaromatization reaction is preferably carried out in a gas phase reactor including a column filled with the catalyst for preparing the aromatic compound, for example, a fixed bed gas phase reactor.
  • reactants may further include argon gas in addition to methane, ethane or a mixture thereof.
  • the dehydroaromatization reaction is preferably carried out at 550 to 700 °C.
  • the aromatic compound which is a product of the dehydroaromatization reaction, may be at least one selected from the group consisting of benzene, toluene, xylene, naphthalene, and coke.
  • the dehydroaromatization reaction carried out using ethane as a reactant under the catalyst for producing an aromatic compound according to the present invention is a reaction gas with a composition of 60 vol.% ethane / 40 vol.% argon, 6000 mL / h GHSV of g cat , it is most preferably carried out under the reaction temperature conditions of 600 °C.
  • Example 1 Zinc oxide and cobalt oxide supported Preparation of zeolite catalyst 0.5CoZn/HZSM-5
  • NH 4 -ZSM-5 (CBV 3024E, Zeolyst) with ammonium cations is heated at 1 °C/min and calcined at 600 °C for 10 hours to support HZSM-5 zeolite with proton cations, which is used as a catalyst carrier. A delay was made.
  • Zn(NO 3 ) 2 6H 2 O zinc nitrate hydrate
  • HZSM-5 carrier 0.9100 g of zinc nitrate hydrate (Zn(NO 3 ) 2 6H 2 O, Sigma-Aldrich) was dissolved in distilled water, and then supported on 2.0 g of HZSM-5 carrier by the initial wetting method and at 110 ° C. dried for a day. After drying, the temperature was raised at 1° C./min under atmospheric conditions and calcined at 500° C. for 4 hours to carry 10% by weight of zinc oxide (ZnO) based on the weight of the carrier.
  • ZnO zinc oxide
  • Example 2 zinc oxide and cobalt oxide supported Preparation of zeolite catalyst 0.75CoZn/HZSM-5
  • NH 4 -ZSM-5 (CBV 3024E, Zeolyst) with ammonium cations is heated at 1 °C/min and calcined at 600 °C for 10 hours to support HZSM-5 zeolite with proton cations, which is used as a catalyst carrier. A delay was made.
  • An aromatic compound was produced by carrying out a dehydroaromatization reaction of ethane using the catalysts according to the above examples and comparative examples, respectively.
  • the catalysts were used after separating only catalyst particles having a uniform size of 125-250 ⁇ m using a mesh sieve.
  • 0.05 g of the catalyst was filled in a fixed-bed quartz reactor having an outer diameter of 8 mm, and the temperature was raised to 600° C., the reaction temperature, under an argon atmosphere at a flow rate of 5 mL/min.
  • the reaction gas When the reaction temperature is reached, the reaction gas is changed to a reaction gas having a composition of 60 vol.% ethane/40 vol.% argon, and then the reaction gas is flowed at 5 mL/min to react for 44 hours under the GHSV condition of 6000 mL/h g cat . proceeded.
  • the yield (BTX yield) and cumulative aromatic compound production (Cumulative BTX formation) of the aromatic compound as a product were measured, and the results are shown in FIGS. 1 and 2, respectively.
  • the lifespan of the catalyst 0.5CoZn / HZSM-5 according to Example 1 increased to about 18 hours, and the lifespan of the catalyst 0.75CoZn / HZSM-5 according to Example 2 significantly increased to about 33 hours
  • the lifespan of the catalyst 1CoZn/HZSM-5 according to Example 3 showed a BTX yield of 6.3% even after 40 hours, and the lifespan was remarkably increased to more than 40 hours. In particular, the BTX yield was 12.0% even after 20 hours. It was found to be very stable.
  • the yield of the aromatic compound and the production of the aromatic compound can be improved (Examples 1 to 3), especially when the content of the supported cobalt oxide is 0.75 to 1% by weight. (Examples 2 to 3) It was confirmed that the performance was very excellent.
  • the weight change of the catalyst that is, the amount of coke deposited on the catalyst, was 9.1, 22.1, 47.6, and 68.6 for Zn/HZSM-5, 0.5CoZn/HZSM-5, 1CoZn/HZSM-5, and 2CoZn/HZSM-5, respectively. It was found to increase rapidly as the content of Co in % increased.
  • the amount of coke-in graphite that deactivates the catalyst can be reduced by converting the coke precursor into CNTs to block the entrance of the micropores of ZSM-5, thereby reducing the amount of coke-in graphite. It was confirmed that the life of the catalyst can be extended.
  • micropore volume decreased, which is usually due to the deposition of graphite at the pore inlets and clogging of the pores.
  • the micropore volumes of Zn/HZSM-5, 0.5CoZn/HZSM-5, 1CoZn/HZSM-5, and 2CoZn/HZSM-5 were respectively 0.13, 0.10, 0.11, and 0.11 cm 3 /g after reaction, 0.01, and 2CoZn/HZSM-5, respectively. It decreased to 0.02, 0.05, and 0.06 cm 3 /g. The decrease in micropore volume was most severe in Zn/HZSM-5 and suppressed as the Co content increased.
  • the deactivation of the catalyst is suppressed, the life of the catalyst is improved, and the production yield of the aromatic compound is remarkably improved by additionally introducing cobalt oxide into the catalyst in which zinc oxide is supported on the zeolite support. It can be usefully used in the process of producing compounds and related fields.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Catalysts (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)

Abstract

The present invention relates to a catalyst for preparing aromatic compounds by a dehydroaromatization reaction and to a method for preparing aromatic compounds by using same. With respect to the catalyst for preparing aromatic compounds according to the present invention, a cobalt oxide is further incorporated in the catalyst in which a zinc oxide is supported on a zeolite support, so that deactivation of the catalyst can be suppressed, lifetime of the catalyst can be improved, and also the production yield of the aromatic compounds can be significantly improved.

Description

탈수소방향족화 반응에 의한 방향족 화합물 제조용 촉매 및 이를 이용한 방향족 화합물의 제조방법Catalyst for producing aromatic compounds by dehydroaromatization reaction and method for producing aromatic compounds using the same
본 발명은 탈수소방향족화 반응에 의한 방향족 화합물 제조용 촉매 및 이를 이용한 방향족 화합물의 제조방법에 관한 것이다.The present invention relates to a catalyst for preparing an aromatic compound by dehydroaromatization reaction and a method for preparing an aromatic compound using the same.
벤젠, 톨루렌, 자일렌으로 대표되는 방향족 화합물은 산업적으로 매우 중요한 화합물로 화학제품의 중간 생성물, 용매, 고분자의 원료 등으로 활용되고 있다. 2012년 벤젠은 약 4,000만 톤, 톨루엔은 1,400만 톤 생산되었고, 이들에 대한 수요는 전 세계 GDP 증가율에 따라 35%에서 40%의 증가율을 나타낼 것으로 예측되고 있다.Aromatic compounds represented by benzene, toluene, and xylene are industrially very important compounds and are used as intermediate products of chemical products, solvents, and raw materials for polymers. In 2012, about 40 million tons of benzene and 14 million tons of toluene were produced, and demand for these products is expected to increase by 35% to 40% according to the global GDP growth rate.
이처럼 고부가 가치를 가지는 방향족 화합물은 현재 대부분 원유에 의존하는 납사 개질 반응을 통해 생산되고 있다. 그러나 납사 개질 공정은 원료인 원유에 의존하고 있어 급격한 유가의 변동 및 한정된 원유의 매장량에 의해 상당한 영향을 받을 수 있다는 점에서 한계가 존재한다. 따라서, 이러한 원유 의존적 생산 방식에서 벗어난 새로운 원료 기반의 방향족 화합물 생산 기술이 필요하다. As such, aromatic compounds having high added value are currently mostly produced through a naphtha reforming reaction dependent on crude oil. However, since the naphtha reforming process is dependent on crude oil as a raw material, there are limitations in that it can be significantly affected by rapid oil price fluctuations and limited reserves of crude oil. Therefore, there is a need for a new raw material-based aromatic compound production technology that is out of this crude oil-dependent production method.
한편, 최근에는 수평시추법, 수압파쇄법과 같은 셰일가스 채굴기술의 발전으로 인해 셰일가스 채굴단가가 낮아지고 있어 세계 에너지 시장에 중대한 변화를 일으키고 있다. 이러한 셰일가스를 비롯한 천연가스는 약 85%의 메탄과 10%의 에탄, 그리고 프로판 등의 경질 탄화수소로 구성되어 있다. 셰일가스를 비롯한 천연가스의 막대한 매장량을 고려할 때, 이들로부터 고부가 가치의 화합물을 합성하는 것은 산업적으로도 매우 중요하다고 할 것인바, 최근에는 상기 천연가스에 포함된 성분들로부터 올레핀, 방향족 화합물과 같은 고부가 가치의 화합물을 합성하는 기술에 대한 연구가 집중적으로 연구되고 있다.On the other hand, recent developments in shale gas mining technologies such as horizontal drilling and hydraulic fracturing have lowered the unit cost of shale gas mining, causing significant changes in the global energy market. Natural gas, including shale gas, consists of about 85% methane, 10% ethane, and light hydrocarbons such as propane. Considering the enormous reserves of natural gas, including shale gas, it would be industrially very important to synthesize high value-added compounds from them. Research on technologies for synthesizing high value-added compounds is being intensively studied.
그 중에서도 천연가스를 구성하는 성분들 중 큰 비중을 차지하고 있는 메탄 또는 에탄을 이용한 탈수소방향족화 반응을 통해 방향족 화합물을 제조하는 기술이 큰 주목을 받고 있으며, 메탄 또는 에탄의 탈수소방향족화 반응은 크게 메탄 또는 에탄의 탈수소화반응을 통한 반응물의 활성화(activation)와 활성화된 성분의 올리고머화 (oligomerization) 및 방향족화 반응(aromatization)으로 구성되어 있다.Among them, the technology of producing aromatic compounds through dehydroaromatization using methane or ethane, which accounts for a large proportion among the components constituting natural gas, is attracting great attention, and the dehydroaromatization reaction of methane or ethane is largely Or, it is composed of activation of reactants through dehydrogenation of ethane, oligomerization of activated components, and aromatization.
이러한 반응에 사용되는 촉매로서, 현재까지 몰리브데늄 (molybdenum, Mo), 갈륨 (gallium, Ga), 등이 담지된 HZSM-5 제올라이트 기반의 촉매가 많이 사용되어왔으나, 상기 촉매는 코크 침적으로 인한 극심한 비활성화를 겪을 수 있고, 약 10-20 시간 정도의 짧은 수명을 가지며, 방향족 화합물의 수율 또한 낮다는 점에서 한계가 존재한다.As a catalyst used for this reaction, a catalyst based on HZSM-5 zeolite loaded with molybdenum (Mo), gallium (Ga), etc. has been widely used, but the catalyst is There are limitations in that it can undergo extreme deactivation, has a short lifetime of about 10-20 hours, and has a low yield of aromatic compounds.
본 발명은 전술한 문제점을 해결하기 위해 안출된 것으로서, 본 발명에서는 아연 산화물이 담지된 촉매에 코발트 산화물을 추가 도입함으로써 촉매의 비활성화를 억제하고, 이를 통해 탈수소방향족화 성능을 안정적으로 유지하며, 수명 및 방향족 화합물의 누적 수율을 향상시킬 수 있는 방향족 화합물 제조용 촉매 및 이를 이용하여 방향족 화합물을 제조하는 방법을 제공하고자 한다. The present invention has been made to solve the above problems, and in the present invention, by additionally introducing cobalt oxide into the catalyst supported on zinc oxide, the deactivation of the catalyst is suppressed, thereby stably maintaining the dehydroaromatization performance, and the lifespan And it is intended to provide a catalyst for preparing an aromatic compound capable of improving the cumulative yield of an aromatic compound and a method for preparing an aromatic compound using the same.
본 발명은 상기 과제를 해결하기 위하여,The present invention, in order to solve the above problems,
제올라이트 담지체; 상기 제올라이트 담지체에 담지되는 아연 산화물; 및 상기 제올라이트 담지체에 상기 아연 산화물과 혼재되어 담지되는 코발트 산화물;을 포함하는 탈수소방향족화 반응에 의한 방향족 화합물 제조용 촉매를 제공한다.zeolite support; Zinc oxide supported on the zeolite support; and cobalt oxide mixed with the zinc oxide and supported on the zeolite carrier.
본 발명에 따르면, 상기 아연 산화물과 상기 코발트 산화물은 1:0.05 내지 1:0.15의 중량비로 담지될 수 있다. According to the present invention, the zinc oxide and the cobalt oxide may be supported in a weight ratio of 1:0.05 to 1:0.15.
본 발명에 따르면, 상기 아연 산화물은 8 내지 12 중량%의 함량으로 담지될 수 있다. According to the present invention, the zinc oxide may be supported in an amount of 8 to 12% by weight.
본 발명에 따르면, 상기 코발트 산화물은 0.5 내지 1.5 중량%의 함량으로 담지될 수 있다. According to the present invention, the cobalt oxide may be supported in an amount of 0.5 to 1.5% by weight.
본 발명에 따르면, 상기 제올라이트 담지체는 HZSM-5, ZSM-5, ZSM-11, MCM-22 및 MCM-41로 이루어진 군에서 선택될 수 있다. According to the present invention, the zeolite support may be selected from the group consisting of HZSM-5, ZSM-5, ZSM-11, MCM-22 and MCM-41.
본 발명에 따르면, 상기 제올라이트 담지체의 Si/Al 비율은 11.5 내지 140일 수 있다. According to the present invention, the Si / Al ratio of the zeolite support may be 11.5 to 140.
또한, 본 발명은 상기 과제를 해결하기 위하여,In addition, the present invention to solve the above problems,
상기 방향족 화합물 제조용 촉매하에서, 메탄, 에탄 또는 이들의 혼합물을 반응물로 탈수소방향족화 반응을 수행하는 단계;를 포함하는 방향족 화합물의 제조방법을 제공한다. It provides a method for preparing an aromatic compound including; performing a dehydroaromatization reaction using methane, ethane or a mixture thereof as a reactant under the catalyst for preparing the aromatic compound.
본 발명에 따르면, 상기 탈수소방향족화 반응은 상기 방향족 화합물 제조용 촉매가 충진된 컬럼을 포함하는 기체상 반응기에서 수행될 수 있다. According to the present invention, the dehydroaromatization reaction may be carried out in a gas phase reactor including a column filled with the catalyst for preparing the aromatic compound.
본 발명에 따르면, 반응물로 아르곤 가스를 더 포함할 수 있다.According to the present invention, argon gas may be further included as a reactant.
본 발명에 따르면, 상기 탈수소방향족화 반응은 550 내지 700℃에서 수행될 수 있다.According to the present invention, the dehydroaromatization reaction may be carried out at 550 to 700 °C.
본 발명에 따르면, 상기 방향족 화합물은 벤젠, 톨루엔, 자일렌, 나프탈렌 및 코크로 이루어진 군에서 선택되는 1종 이상일 수 있다.According to the present invention, the aromatic compound may be at least one selected from the group consisting of benzene, toluene, xylene, naphthalene, and coke.
본 발명의 특징 및 이점들은 첨부도면에 의거한 다음의 상세한 설명으로 더욱 명백해질 것이다.Features and advantages of the present invention will become more apparent from the following detailed description taken in conjunction with the accompanying drawings.
이에 앞서 본 명세서 및 청구범위에 사용된 용어나 단어는 통상적이고 사전적인 의미로 해석되어서는 아니되며, 발명자가 그 자신의 발명을 가장 최선의 방법으로 설명하기 위해 용어의 개념을 적절하게 정의할 수 있다는 원칙에 입각하여 본 발명의 기술적 사상에 부합하는 의미와 개념으로 해석되어야만 한다.Prior to this, the terms or words used in this specification and claims should not be interpreted in a conventional and dictionary sense, and the inventor may appropriately define the concept of the term in order to explain his or her invention in the best way. It should be interpreted as a meaning and concept consistent with the technical idea of the present invention based on the principle that there is.
본 발명에 따른 방향족 화합물 제조용 촉매는 제올라이트 담지체에 아연 산화물이 담지된 촉매에 코발트 산화물을 추가 도입함으로써 촉매의 비활성화를 억제하고, 촉매의 수명을 향상시킬 수 있을 뿐만 아니라 방향족 화합물의 생산 수율을 현저하게 향상시킬 수 있다.The catalyst for preparing an aromatic compound according to the present invention can suppress deactivation of the catalyst and improve the lifespan of the catalyst by additionally introducing cobalt oxide into the catalyst in which zinc oxide is supported on the zeolite carrier, and can significantly increase the production yield of the aromatic compound. can be improved
도 1은 본 발명의 실시예 및 비교예에 따른 촉매의, 에탄의 탈수소방향족화 반응에 따른 방향족 화합물의 수율(BTX yield)을 측정한 결과를 나타낸 것이다.1 shows the results of measuring the yield (BTX yield) of aromatic compounds according to the dehydroaromatization reaction of ethane of catalysts according to Examples and Comparative Examples of the present invention.
도 2는 본 발명의 실시예 및 비교예에 따른 촉매의, 에탄의 탈수소방향족화 반응에 따른 누적 방향족 화합물 생성량(Cumulative BTX formation)을 측정한 결과를 나타낸 것이다.Figure 2 shows the results of measuring the cumulative aromatic compound production amount (Cumulative BTX formation) according to the dehydroaromatization reaction of ethane in the catalysts according to Examples and Comparative Examples of the present invention.
도 3은 본 발명의 실시예 및 비교예에 따른 촉매의 XRD 패턴을 나타낸 그래프이다(좌측 도면: 2θ = 4-54°, 우측 도면: 2θ = 30-40°3 is a graph showing XRD patterns of catalysts according to Examples and Comparative Examples of the present invention (left drawing: 2θ = 4-54°, right drawing: 2θ = 30-40°
도 4는 본 발명의 실시예 및 비교예에 따른 촉매의 에탄의 탈수소방향족화 반응 40시간 후 TG(Thermogravimetric analysis) 측정 결과를 나타낸 것이다.Figure 4 shows the results of TG (Thermogravimetric analysis) measurement after 40 hours of dehydroaromatization of ethane with catalysts according to Examples and Comparative Examples of the present invention.
도 5는 본 발명의 실시예 및 비교예에 따른 촉매의 에탄의 탈수소방향족화 반응 40시간 후 DTG(differential thermogravimetric analysis) 측정 결과를 나타낸 것이다.5 shows the results of differential thermogravimetric analysis (DTG) after 40 hours of dehydroaromatization of ethane with catalysts according to Examples and Comparative Examples of the present invention.
다른 식으로 정의되지 않는 한, 본 명세서에서 사용된 모든 기술적 및 과학적 용어들은 본 발명이 속하는 기술 분야에서 숙련된 전문가에 의해서 통상적으로 이해되는 것과 동일한 의미를 가진다. 일반적으로, 본 명세서에서 사용된 명명법은 본 기술 분야에서 잘 알려져 있고 통상적으로 사용되는 것이다.Unless defined otherwise, all technical and scientific terms used herein have the same meaning as commonly understood by one of ordinary skill in the art to which this invention belongs. In general, the nomenclature used herein is one well known and commonly used in the art.
본 발명은 탈수소방향족화 반응에 의한 방향족 화합물 제조용 촉매에 관한 것으로서, 본 발명에서는 제올라이트 담지체에 아연 산화물이 활성금속으로 담지된 촉매에 코발트 산화물을 추가 도입함으로써 촉매의 수명을 증대시키고, 이를 통해 방향족 화합물의 생산 수율을 향상시킬 수 있는 촉매를 제공하고자 한다.The present invention relates to a catalyst for producing an aromatic compound by a dehydroaromatization reaction. It is intended to provide a catalyst capable of improving the production yield of the compound.
이를 위해, 본 발명은 제올라이트 담지체; 상기 제올라이트 담지체에 담지되는 아연 산화물; 및 상기 제올라이트 담지체에 상기 아연 산화물과 혼재되어 담지되는 코발트 산화물;을 포함하는 탈수소방향족화 반응에 의한 방향족 화합물 제조용 촉매를 제공한다. To this end, the present invention is a zeolite support; Zinc oxide supported on the zeolite support; and cobalt oxide mixed with the zinc oxide and supported on the zeolite carrier.
이때, 상기 아연 산화물 및 코발트 산화물의 담지는 당업계에 알려진 통상의 방법에 의한 것이라면 모두 가능하며, 초기젖음법에 의해 담지되는 것이 더욱 바람직할 수 있다.In this case, the zinc oxide and the cobalt oxide may be supported by any conventional method known in the art, and it may be more preferable that the zinc oxide and the cobalt oxide are supported by an initial wetting method.
또한, 상기 아연 산화물은 산화 아연(ZnO)일 수 있다.Also, the zinc oxide may be zinc oxide (ZnO).
또한, 상기 코발트 산화물은 CoO, Co3O4 또는 이들의 혼합물일 수 있다.In addition, the cobalt oxide may be CoO, Co 3 O 4 or a mixture thereof.
또한, 하기 실시예의 결과로부터 알 수 있는 바와 같이, 상기 아연 산화물과 상기 코발트 산화물은 1:0.05 내지 1:0.15의 중량비로 담지되는 것이 바람직하고, 1:0.075 내지 1:0.1의 중량비로 담지되는 것이 더욱 바람직하다. 상기 중량비로 아연 산화물과 코발트 산화물이 담지될 경우 촉매의 비활성화가 억제되어 촉매의 수명이 향상되고, 탈수소화 반응 향상을 통한 방향족 화화물의 생산 수율이 현저하게 상승할 수 있다. In addition, as can be seen from the results of the following examples, the zinc oxide and the cobalt oxide are preferably supported at a weight ratio of 1:0.05 to 1:0.15, and preferably at a weight ratio of 1:0.075 to 1:0.1. more preferable When zinc oxide and cobalt oxide are supported at the above weight ratio, deactivation of the catalyst is suppressed, the life of the catalyst is improved, and the production yield of aromatic compounds through the improvement of the dehydrogenation reaction can be remarkably increased.
또한, 하기 실시예의 결과로부터 알 수 있는 바와 같이, 상기 아연 산화물은 상기 상기 제올라이트 담지체 전체 중량을 기준으로 8 내지 12 중량%의 함량으로 담지되는 것이 바람직하며 10 중량%의 함량으로 담지되는 것이 가장 바람직하다. 상기 함량 범위로 아연 산화물이 담지될 경우 탈수소화 반응 향상을 통한 방향족 화합물의 형성 속도가 현저히 상승할 수 있다. In addition, as can be seen from the results of the following examples, the zinc oxide is preferably supported in an amount of 8 to 12% by weight based on the total weight of the zeolite carrier, and the content of 10% by weight is most preferred. desirable. When zinc oxide is supported in the above content range, the rate of formation of aromatic compounds through the improvement of dehydrogenation reaction may be remarkably increased.
또한, 하기 실시예의 결과로부터 알 수 있는 바와 같이, 상기 코발트 산화물은 상기 제올라이트 담지체 전체 중량을 기준으로 0.5 내지 1.5 중량%의 함량으로 담지되는 것이 바람하고, 0.75 내지 1 중량%의 함량으로 담지되는 것이 더욱 바람직하다. 상기 코발트 산화물의 함량이 상기 하한치 미만일 경우 촉매의 수명 및 탈수소화 반응 향상 효과가 미미하고, 상기 상한치를 초과할 경우 촉매의 비활성화가 촉진되어 촉매의 수명이 감소하고, 결과적으로 방향족 화합물의 생산성이 떨어질 수 있다.In addition, as can be seen from the results of the following examples, the cobalt oxide is preferably supported in an amount of 0.5 to 1.5% by weight based on the total weight of the zeolite support, and supported in an amount of 0.75 to 1% by weight it is more preferable When the content of cobalt oxide is less than the lower limit, the effect of improving the lifespan and dehydrogenation reaction of the catalyst is insignificant, and when the content exceeds the upper limit, the deactivation of the catalyst is accelerated and the life of the catalyst is reduced, and as a result, the productivity of aromatic compounds is reduced. can
본 발명에서 사용되는 제올라이트는 촉매 담지체로서 통상적으로 사용되는 것으로, 예를 들어 HZSM-5, ZSM-5, ZSM-11, MCM-22 및 MCM-41로 이루어진 군에서 선택될 수 있다. The zeolite used in the present invention is commonly used as a catalyst support, and may be selected from the group consisting of, for example, HZSM-5, ZSM-5, ZSM-11, MCM-22 and MCM-41.
또한, 상기 제올라이트 담지체의 Si/Al 비율은 11.5 내지 140인 것이 바람직하다. In addition, the Si / Al ratio of the zeolite support is preferably 11.5 to 140.
또한, 본 발명은 전술한 방향족 화합물 제조용 촉매하에서, 메탄, 에탄 또는 이들의 혼합물을 반응물로 탈수소방향족화 반응을 수행하는 단계;를 포함하는 방향족 화합물의 제조방법을 제공한다. In addition, the present invention provides a method for preparing an aromatic compound comprising the steps of performing a dehydroaromatization reaction using methane, ethane or a mixture thereof as a reactant under the above-mentioned catalyst for preparing an aromatic compound.
이때, 상기 탈수소방향족화 반응은 상기 방향족 화합물 제조용 촉매가 충진된 컬럼을 포함하는 기체상 반응기, 예를 들어 고정상 기상 반응기에서 수행되는 것이 바람직하다.At this time, the dehydroaromatization reaction is preferably carried out in a gas phase reactor including a column filled with the catalyst for preparing the aromatic compound, for example, a fixed bed gas phase reactor.
상기 탈수소방향족화 반응시 반응물에는 메탄, 에탄 또는 이들의 혼합물외에 아르곤 가스가 더 포함될 수 있다. During the dehydroaromatization reaction, reactants may further include argon gas in addition to methane, ethane or a mixture thereof.
상기 탈수소방향족화 반응은 550 내지 700℃에서 수행되는 것이 바람직하다. The dehydroaromatization reaction is preferably carried out at 550 to 700 °C.
상기 탈수소방향족화 반응에 따른 생성물인 방향족 화합물은 벤젠, 톨루엔, 자일렌, 나프탈렌 및 코크로 이루어진 군에서 선택되는 1종 이상일 수 있다.The aromatic compound, which is a product of the dehydroaromatization reaction, may be at least one selected from the group consisting of benzene, toluene, xylene, naphthalene, and coke.
또한, 하기 실시예와 같이 본 발명에 따른 방향족 화합물 제조용 촉매하에서 에탄을 반응물로 사용하여 수행되는 탈수소방향족화 반응은 60 vol.% 에탄/40 vol.% 아르곤의 조성의 반응기체, 6000 mL/h·gcat의 GHSV, 600℃의 반응온도 조건하에서 수행되는 것이 가장 바람직하다.In addition, as in the following examples, the dehydroaromatization reaction carried out using ethane as a reactant under the catalyst for producing an aromatic compound according to the present invention is a reaction gas with a composition of 60 vol.% ethane / 40 vol.% argon, 6000 mL / h GHSV of g cat , it is most preferably carried out under the reaction temperature conditions of 600 ℃.
[실시예][Example]
이하, 실시예를 통하여 본 발명을 더욱 상세히 설명하고자 한다. 이들 실시예는 오로지 본 발명을 예시하기 위한 것으로, 본 발명의 범위가 이들 실시예에 의해 제한되는 것으로 해석되지 않는 것은 당업계에서 통상의 지식을 가진 자에게 있어서 자명할 것이다. 따라서 본 발명의 실질적인 범위는 첨부된 청구항들과 그것들의 등가물에 의하여 정의된다고 할 것이다.Hereinafter, the present invention will be described in more detail through examples. These examples are only for illustrating the present invention, and it will be apparent to those skilled in the art that the scope of the present invention is not to be construed as being limited by these examples. Accordingly, the substantial scope of the present invention will be defined by the appended claims and their equivalents.
실시예Example 1. 아연 산화물 및 코발트 산화물이 1. Zinc oxide and cobalt oxide 담지된supported 제올라이트 촉매 0.5CoZn/HZSM-5의 제조 Preparation of zeolite catalyst 0.5CoZn/HZSM-5
먼저, 암모늄 양이온을 가진 NH4-ZSM-5 (CBV 3024E, Zeolyst)를 1℃/min으로 승온하여 600℃에서 10시간 동안 소성시킴으로써 촉매의 담지체로 사용되는, 프로톤 양이온을 가진 HZSM-5 제올라이트 담지체를 제조하였다.First, NH 4 -ZSM-5 (CBV 3024E, Zeolyst) with ammonium cations is heated at 1 °C/min and calcined at 600 °C for 10 hours to support HZSM-5 zeolite with proton cations, which is used as a catalyst carrier. A delay was made.
다음으로, 0.9100 g의 징크 나이트레이트 하이드레이트 (Zn(NO3)2·6H2O, Sigma-Aldrich)를 증류수에 용해시킨 후, HZSM-5 담지체 2.0g에 초기젖음법으로 담지하고 110℃에서 하루 건조시켰다. 건조 후, 대기 조건하에서 1℃/min으로 승온하고 500℃에서 4시간 동안 소성시켜서 담지체 중량 대비 10 중량%의 아연 산화물(ZnO)을 담지시켰다. Next, 0.9100 g of zinc nitrate hydrate (Zn(NO 3 ) 2 6H 2 O, Sigma-Aldrich) was dissolved in distilled water, and then supported on 2.0 g of HZSM-5 carrier by the initial wetting method and at 110 ° C. dried for a day. After drying, the temperature was raised at 1° C./min under atmospheric conditions and calcined at 500° C. for 4 hours to carry 10% by weight of zinc oxide (ZnO) based on the weight of the carrier.
이후, 0.0494g의 코발트 나이트레이트 하이드레이트(Co(NO3)2·6H2O, Sigma-Aldrich)를 증류수에 용해시킨 후, 상기 아연 산화물이 담지된 HZSM-5 담지체 2.0g에 초기젖음법으로 담지하고 110℃에서 하루 건조시켰다. 건조 후, 대기 조건하에서 1℃/min으로 승온하고 500℃에서 4시간 동안 소성시켜서 담지체 중량 대비 0.5 중량%의 코발트 산화물(CoO와 Co3O4 형태로 혼재)과 10 중량%의 아연 산화물이 담지된 제올라이트 촉매 0.5CoZn/HZSM-5를 제조하였다. Then, after dissolving 0.0494 g of cobalt nitrate hydrate (Co(NO 3 ) 2 6H 2 O, Sigma-Aldrich) in distilled water, 2.0 g of the zinc oxide-supported HZSM-5 carrier was pre-wetted. It was supported and dried at 110 ° C for one day. After drying, the temperature was raised at 1 ° C / min under atmospheric conditions and calcined at 500 ° C for 4 hours to obtain 0.5% by weight of cobalt oxide (CoO and Co 3 O 4 zeolite catalyst 0.5CoZn/HZSM-5 supported with 10% by weight of zinc oxide) was prepared.
실시예Example 2. 2. 아연 산화물 및 코발트 산화물이 zinc oxide and cobalt oxide 담지된supported 제올라이트 촉매 0.75CoZn/HZSM-5의 제조 Preparation of zeolite catalyst 0.75CoZn/HZSM-5
0.0741g의 코발트 나이트레이트 하이드레이트(Co(NO3)2·6H2O)를 사용하였다는 점을 제외하고는 실시예 1과 동일한 방법을 이용하여 담지체 중량 대비 0.75 중량%의 코발트 산화물(CoO와 Co3O4 형태로 혼재)과 10 중량%의 아연 산화물이 담지된 제올라이트 촉매 0.75CoZn/HZSM-5를 제조하였다. 0.75 % by weight of cobalt oxide ( CoO and Co 3 O 4 zeolite catalyst 0.75CoZn/HZSM-5 supported with 10% by weight of zinc oxide) was prepared.
실시예Example 3. 3. 아연 및 코발트가 zinc and cobalt 담지된supported 제올라이트 촉매 zeolite catalyst 1CoZn1CoZn // HZSMHZSM -5의 제조Manufacture of -5
0.0988g의 코발트 나이트레이트 하이드레이트(Co(NO3)2·6H2O)를 사용하였다는 점을 제외하고는 실시예 1과 동일한 방법을 이용하여 담지체 중량 대비 1 중량%의 코발트 산화물(CoO와 Co3O4 형태로 혼재)과 10 중량%의 아연 산화물이 담지된 제올라이트 촉매 1CoZn/HZSM-5를 제조하였다. 1 % by weight of cobalt oxide (CoO and Co 3 O 4 zeolite catalyst 1CoZn/HZSM-5 supported with 10% by weight of zinc oxide) was prepared.
비교예comparative example 1. 아연 산화물이 1. Zinc Oxide 담지된supported 제올라이트 촉매 Zn/ Zeolite Catalyst Zn/ HZSMHZSM -5의 제조 Manufacture of -5
먼저, 암모늄 양이온을 가진 NH4-ZSM-5 (CBV 3024E, Zeolyst)를 1℃/min으로 승온하여 600℃에서 10시간 동안 소성시킴으로써 촉매의 담지체로 사용되는, 프로톤 양이온을 가진 HZSM-5 제올라이트 담지체를 제조하였다.First, NH 4 -ZSM-5 (CBV 3024E, Zeolyst) with ammonium cations is heated at 1 °C/min and calcined at 600 °C for 10 hours to support HZSM-5 zeolite with proton cations, which is used as a catalyst carrier. A delay was made.
다음으로, 0.9100 g의 징크 나이트레이트 하이드레이트 (Zn(NO3)2·6H2O, Sigma-Aldrich)를 증류수에 용해시킨 후, HZSM-5 담지체 2.0g에 초기젖음법으로 담지하고 110℃에서 하루 건조시켰다. 건조 후, 대기 조건하에서 1℃/min으로 승온하고 500℃에서 4시간 동안 소성시켜서 담지체 중량 대비 10 중량%의 아연 산화물이 담지된 제올라이트 촉매 Zn/HZSM-5를 제조하였다. Next, 0.9100 g of zinc nitrate hydrate (Zn(NO 3 ) 2 6H 2 O, Sigma-Aldrich) was dissolved in distilled water, and then supported on 2.0 g of HZSM-5 carrier by the initial wetting method and at 110 ° C. dried for a day. After drying, the temperature was raised at 1 ° C / min under atmospheric conditions and calcined at 500 ° C for 4 hours to prepare a zeolite catalyst Zn / HZSM-5 supported with 10% by weight of zinc oxide based on the weight of the carrier.
비교예comparative example 2. 아연 산화물 및 코발트 산화물이 2. Zinc oxide and cobalt oxide 담지된supported 제올라이트 촉매 2CoZn/HZSM-5의 제조 Preparation of zeolite catalyst 2CoZn/HZSM-5
0.1975g의 코발트 나이트레이트 하이드레이트(Co(NO3)2·6H2O)를 사용하였다는 점을 제외하고는 실시예 1과 동일한 방법을 이용하여 담지체 중량 대비 2 중량%의 코발트 산화물(CoO와 Co3O4 형태로 혼재)과 10 중량%의 아연 산화물이 담지된 제올라이트 촉매 2CoZn/HZSM-5를 제조하였다. 2 % by weight of cobalt oxide (CoO and Co 3 O 4 zeolite catalyst 2CoZn/HZSM-5 supported with 10% by weight of zinc oxide) was prepared.
실험예Experimental example 1. 에탄의 탈수소방향족화 반응을 통한 방향족 화합물의 생산 1. Production of aromatic compounds through dehydroaromatization of ethane
상기 실시예 및 비교예에 따른 촉매들을 이용하여 각각 에탄의 탈수소방향족화 반응을 수행하여 방향족 화합물을 생산하였다. 상기 촉매들은 mesh 체를 이용하여 125-250 μm의 균일한 크기를 갖는 촉매 입자만을 분리하여 사용하였다. 다음으로, 촉매 0.05 g을 8 mm 외경의 고정층 쿼츠 반응기에 충진한 후, 5 mL/min 유량의 아르곤 분위기하에서 반응온도인 600℃까지 승온시켰다. 반응온도에 도달하면 60 vol.% 에탄/40 vol.% 아르곤 조성의 반응기체로 변경한 후 반응기체를 5 mL/min으로 흐르게 하여 6000 mL/h·gcat의 GHSV 조건으로 44시간 동안 반응을 진행하였다. 가스 크로마토그래피를 통해 분석된 가스의 조성을 이용하여 생성물인 방향족 화합물의 수율(BTX yield) 및 누적 방향족 화합물 생성량(Cumulative BTX formation)을 측정하였으며, 그 결과를 각각 하기 도 1 및 도 2에 나타내었다. An aromatic compound was produced by carrying out a dehydroaromatization reaction of ethane using the catalysts according to the above examples and comparative examples, respectively. The catalysts were used after separating only catalyst particles having a uniform size of 125-250 μm using a mesh sieve. Next, 0.05 g of the catalyst was filled in a fixed-bed quartz reactor having an outer diameter of 8 mm, and the temperature was raised to 600° C., the reaction temperature, under an argon atmosphere at a flow rate of 5 mL/min. When the reaction temperature is reached, the reaction gas is changed to a reaction gas having a composition of 60 vol.% ethane/40 vol.% argon, and then the reaction gas is flowed at 5 mL/min to react for 44 hours under the GHSV condition of 6000 mL/h g cat . proceeded. Using the composition of the gas analyzed through gas chromatography, the yield (BTX yield) and cumulative aromatic compound production (Cumulative BTX formation) of the aromatic compound as a product were measured, and the results are shown in FIGS. 1 and 2, respectively.
도 1에 나타난 바와 같이, 모든 촉매는 반응 후 1 시간에서 최대 BTX 수율을 보였으며, 이후 BTX 수율이 꾸준히 감소하였다. 코발트가 담지되지 않은 아연 산화물 단일금속 촉매(Zn/HZSM-5)(비교예 1)의 경우 빠른 비활성화로 인해 촉매의 수명이 약 12 시간으로 나타났다. 반면, 코발트 산화물이 추가적으로 담지될 경우 촉매의 수명은 증가하는 경향을 보였다. 구체적으로 실시예 1에 따른 촉매 0.5CoZn/HZSM-5의 수명은 약 18시간으로 증가하였고, 실시예 2에 따른 촉매 0.75CoZn/HZSM-5의 수명은 약 33시간으로 수명이 현저하게 증가하였으며, 실시예 3에 따른 촉매 1CoZn/HZSM-5의 수명은 40시간에도 6.3%의 BTX 수율을 보이는 등 수명이 40시간 이상으로 현저하게 증가하였으며, 특히, 20시간에도 12.0%의 BTX 수율을 보이며 BTX 수율이 매우 안정적으로 유지되는 것을 확인할 수 있었다. 반면, 비교예 2에 따른 촉매 즉 코발트 산화물이 과량으로 도입된 촉매 2CoZn/HZSM-5의 경우 7시간 만에 비활성화되어 기존 아연 산화물 단일금속 촉매보다 낮은 BTX 수율을 보였다. 이는 과량의 Co 도입으로 인해 과도한 C-C, C-H 결합 해리로 인해 반응 중간체인 에틸렌 및 목표 생성물인 BTX가 생성되지 않았기 때문이다.As shown in FIG. 1, all catalysts showed the maximum BTX yield at 1 hour after reaction, and then the BTX yield decreased steadily. In the case of the zinc oxide single metal catalyst (Zn/HZSM-5) (Comparative Example 1) without cobalt support, the life of the catalyst was about 12 hours due to rapid deactivation. On the other hand, when cobalt oxide is additionally supported, the life of the catalyst tends to increase. Specifically, the lifespan of the catalyst 0.5CoZn / HZSM-5 according to Example 1 increased to about 18 hours, and the lifespan of the catalyst 0.75CoZn / HZSM-5 according to Example 2 significantly increased to about 33 hours, The lifespan of the catalyst 1CoZn/HZSM-5 according to Example 3 showed a BTX yield of 6.3% even after 40 hours, and the lifespan was remarkably increased to more than 40 hours. In particular, the BTX yield was 12.0% even after 20 hours. It was found to be very stable. On the other hand, in the case of the catalyst according to Comparative Example 2, that is, the catalyst 2CoZn/HZSM-5 in which an excessive amount of cobalt oxide was introduced, it was deactivated in 7 hours, showing a lower BTX yield than the conventional zinc oxide single metal catalyst. This is because ethylene as a reaction intermediate and BTX as a target product were not produced due to excessive dissociation of C-C and C-H bonds due to the introduction of an excessive amount of Co.
다음으로, 도 2에 나타난 바와 같이, 비교예 1에 따른 아연 산화물 단일금속 촉매(Zn/HZSM-5)의 경우 40시간 누적 BTX 생성량이 5.8mmol/gcat으로 나타났고, 코발트 산화물이 과량으로 도입된 비교예 2에 따른 촉매 2CoZn/HZSM-5의 경우 40시간 누적 BTX 생성량이 2.6mmol/gcat으로 비교예 1보다 낮은 생성량을 나타낸 반면, 본 발명의 실시예 1 내지 3에 따른 촉매 0.5CoZn/HZSM-5, 0.75CoZn/HZSM-5, 1CoZn/HZSM-5의 경우 40시간 누적 BTX 생성량이 7.7, 13.2, 26.0 mmol/gcat으로 나타난바, BTX 생산성이 향상되는 것으로 나타났으며, 특히 실시예 2 내지 실시예 3에 따른 촉매는 BTX 생산성이 매우 우수한 것을 확인하였다. Next, as shown in FIG. 2, in the case of the zinc oxide single metal catalyst (Zn / HZSM-5) according to Comparative Example 1, the cumulative BTX production amount for 40 hours was 5.8 mmol / g cat , and cobalt oxide was introduced in excess In the case of the catalyst 2CoZn / HZSM-5 according to Comparative Example 2, the cumulative BTX production amount for 40 hours was 2.6 mmol / g cat , which was lower than that of Comparative Example 1, whereas the catalyst 0.5 CoZn / HZSM-5 according to Examples 1 to 3 of the present invention In the case of HZSM-5, 0.75CoZn/HZSM-5, and 1CoZn/HZSM-5, the cumulative BTX production for 40 hours was 7.7, 13.2, and 26.0 mmol/g cat , indicating that BTX productivity was improved. It was confirmed that the catalysts according to Examples 2 to 3 had very good BTX productivity.
결론적으로, 코발트 산화물이 추가로 담지됨에 따라 방향족 화합물 수율 및 방향족 화합물 생성량이 향상될 수 있으며(실시예 1 내지 실시예 3), 특히 담지된 코발트 산화물의 함량이 0.75 내지 1 중량%로 담지될 경우(실시예 2 내지 실시예 3) 그 성능이 매우 우수함을 확인하였다. In conclusion, as the cobalt oxide is additionally supported, the yield of the aromatic compound and the production of the aromatic compound can be improved (Examples 1 to 3), especially when the content of the supported cobalt oxide is 0.75 to 1% by weight. (Examples 2 to 3) It was confirmed that the performance was very excellent.
실험예Experimental example 2. 2. XRDXRD 패턴 분석 pattern analysis
상기 실시예 및 비교예에 따른 촉매들에 대한 XRD (X-ray powder diffraction) 분석을 진행하고 그 결과를 하기 도 3에 나타내었다. XRD (X-ray powder diffraction) analysis was performed on the catalysts according to Examples and Comparative Examples, and the results are shown in FIG. 3 below.
그 결과, 상기 촉매들은 모두 7.9, 23.0, 23.1, 및 23.9°의 2 theta 값에서 피크가 확인되어 전형적인 ZSM-5 제올라이트 패턴을 보임을 확인하였고, 이를 통해 합성된 촉매가 모두 ZSM-5의 구조를 갖는다는 것을 확인하였다. 또한, ZnO는 31.8, 36.2°의 2 theta 값에서 피크를 나타내는데 아연 산화물 단일금속 촉매에서는 해당 피크가 뚜렷하게 나타나는 반면, 코발트 산화물 도입 이후에는 해당 피크의 강도가 확연히 감소하였다. 이는 ZnO의 분산도가 증가하였기 때문으로 코발트 산화물 도입 이후 Co와 Zn 사이의 상호작용으로 인해 ZnO의 분산도가 증가함을 확인하였다.As a result, it was confirmed that all of the catalysts showed a typical ZSM-5 zeolite pattern with peaks at 2 theta values of 7.9, 23.0, 23.1, and 23.9 °, and the synthesized catalysts all showed the structure of ZSM-5. confirmed that it has. In addition, ZnO shows peaks at 2 theta values of 31.8 and 36.2 °, and the peaks appear distinctly in the zinc oxide single metal catalyst, but the intensity of the peak significantly decreases after the introduction of cobalt oxide. This is because the dispersion of ZnO increased, and it was confirmed that the dispersion of ZnO increased due to the interaction between Co and Zn after the introduction of cobalt oxide.
실험예Experimental example 3. 반응 후 촉매의 TG 분석 3. TG analysis of the catalyst after the reaction
상기 실시예 및 비교예에 따른 촉매들을 이용하여 에탄의 탈수소방향족화 반응을 진행한 뒤, 반응 후 촉매에 대한 TG(Thermogravimetric analysis) 분석 및 DTG(differential thermogravimetric analysis) 분석 후 그 결과를 하기 도 4 및 도 5에 나타내었다. After carrying out the dehydroaromatization reaction of ethane using the catalysts according to the above Examples and Comparative Examples, after the reaction, the catalyst was analyzed by thermogravimetric analysis (TG) and differential thermogravimetric analysis (DTG), and the results are shown in FIGS. 4 and 4 below. shown in Figure 5.
그 결과, 촉매의 무게 변화 즉, 촉매에 쌓인 코크의 양은 Zn/HZSM-5, 0.5CoZn/HZSM-5, 1CoZn/HZSM-5, 및 2CoZn/HZSM-5에서 각각 9.1, 22.1, 47.6, 및 68.6%로 Co의 함량이 증가함에 따라 급격하게 증가하는 것으로 나타났다.As a result, the weight change of the catalyst, that is, the amount of coke deposited on the catalyst, was 9.1, 22.1, 47.6, and 68.6 for Zn/HZSM-5, 0.5CoZn/HZSM-5, 1CoZn/HZSM-5, and 2CoZn/HZSM-5, respectively. It was found to increase rapidly as the content of Co in % increased.
DTG 프로파일의 경우, 가우시안 피크로 deconvolution하였다. 가장 낮은 온도에서 연소하는 코크가 비결정성 탄소, 중간 온도에서 연소하는 코크가 CNT(carbon nanotube), 가장 높은 온도에서 연소하는 코크가 그래파이트이다. 비교예 1에 따른 촉매 Zn/HZSM-5 에서는 그래파이트가 우세 종이지만 Co 함량이 증가할수록 그래파이트의 양은 감소하고 CNT의 양은 증가하였다. 이러한 결과를 통해, 본 발명에 따라 코발트 산화물을 추가적으로 도입할 경우 코크 전구체를 CNT로 전환시켜 ZSM-5의 미세기공의 입구를 막아 촉매를 비활성화시키는 코크인 그래파이트의 양을 감소시킬 수 있고, 이에 따라 촉매의 수명을 연장시킬 수 있음을 확인하였다. In the case of the DTG profile, it was deconvolved with a Gaussian peak. Amorphous carbon is the coke that burns at the lowest temperature, carbon nanotube (CNT) is the coke that burns at the medium temperature, and graphite is the coke that burns at the highest temperature. In the catalyst Zn/HZSM-5 according to Comparative Example 1, graphite was the dominant species, but the amount of graphite decreased and the amount of CNT increased as the Co content increased. From these results, when cobalt oxide is additionally introduced according to the present invention, the amount of coke-in graphite that deactivates the catalyst can be reduced by converting the coke precursor into CNTs to block the entrance of the micropores of ZSM-5, thereby reducing the amount of coke-in graphite. It was confirmed that the life of the catalyst can be extended.
실험예Experimental example 4. 반응 후 촉매의 질소 4. Nitrogen in catalyst after reaction 흡탈착adsorption/desorption 분석 analyze
상기 실시예 및 비교예에 따른 촉매들을 이용하여 에탄 탈수소방향족화 반응을 진행한 뒤, 반응 후 촉매에 대한 질소 흡탈착 분석을 진행하고 그 결과를 하기 표 1에 나타내었다.After the ethane dehydroaromatization reaction was performed using the catalysts according to the Examples and Comparative Examples, nitrogen adsorption and desorption analysis was performed on the catalyst after the reaction, and the results are shown in Table 1 below.
Figure PCTKR2022019393-appb-img-000001
Figure PCTKR2022019393-appb-img-000001
상기 표 1에 나타난 바와 같이, Zn/HZSM-5와 0.5CoZn/HZSM-5에서는 반응 후 전체 기공 부피가 각각 0.35 cm3/g에서 0.18 cm3/g로, 0.25 cm3/g에서 0.19 cm3/g로 감소하였다. 그러나, 1CoZn/HZSM-5와 2CoZn/HZSM-5에서는 각각 0.24 cm3/g에서 0.67 cm3/g로, 0.28 cm3/g에서 0.91 cm3/g로 증가하였다. 이는 후자의 두 촉매에서 반응 중 많은 양의 CNT가 성장하였고, CNT 내부의 공간이 기공으로 측정되었기 때문이다. 모든 촉매에서 반응 후, 미세기공 부피가 감소하였으며 이는 일반적으로 기공 입구에 그래파이트가 침적되어 기공이 막히기 때문이다. Zn/HZSM-5, 0.5CoZn/HZSM-5, 1CoZn/HZSM-5, 및 2CoZn/HZSM-5의 미세기공 부피는 반응 전 각각 0.13, 0.10, 0.11, 0.11 cm3/g에서 반응 후, 0.01, 0.02, 0.05, 0.06 cm3/g으로 감소하였다. 미세기공 부피의 감소는 Zn/HZSM-5에서 가장 극심하고 Co 함량이 증가할수록 억제되었다. 특히, Co 함량이 증가할수록 침적되는 코크의 양이 증가하여 촉매에서 제올라이트가 차지하는 비율이 감소하는 것을 고려할 때 Co 함량이 증가할수록 코크에 의한 미세기공 막힘은 크지 않은 것으로 판단된다. 이는 실험예 3에서 확인하였듯 코발트를 추가적으로 도입에 따라 촉매의 미세기공을 막는 그래파이트가 감소하였기 때문이며, 이러한 결과를 통해 본 발명에 따라 코발트 산화물을 추가적으로 도입할 경우 촉매의 비활성화가 지연되어 에탄 탈수소방향족화 반응에서 촉매 활성 안정성이 증가할 수 있음을 확인하였다.As shown in Table 1, in Zn/HZSM-5 and 0.5CoZn/HZSM-5, the total pore volume after reaction was 0.35 cm 3 /g to 0.18 cm 3 /g and 0.25 cm 3 / g to 0.19 cm 3 respectively. /g. However, in 1CoZn/HZSM-5 and 2CoZn/HZSM-5, it increased from 0.24 cm 3 /g to 0.67 cm 3 /g and from 0.28 cm 3 /g to 0.91 cm 3 /g, respectively. This is because a large amount of CNTs grew during the reaction in the latter two catalysts, and the space inside the CNTs was measured as pores. After the reaction in all catalysts, the micropore volume decreased, which is usually due to the deposition of graphite at the pore inlets and clogging of the pores. The micropore volumes of Zn/HZSM-5, 0.5CoZn/HZSM-5, 1CoZn/HZSM-5, and 2CoZn/HZSM-5 were respectively 0.13, 0.10, 0.11, and 0.11 cm 3 /g after reaction, 0.01, and 2CoZn/HZSM-5, respectively. It decreased to 0.02, 0.05, and 0.06 cm 3 /g. The decrease in micropore volume was most severe in Zn/HZSM-5 and suppressed as the Co content increased. In particular, considering that the proportion of zeolite in the catalyst decreases as the amount of coke deposited increases as the Co content increases, it is determined that the clogging of micropores by coke is not significant as the Co content increases. This is because, as confirmed in Experimental Example 3, the graphite blocking the micropores of the catalyst was reduced as cobalt was additionally introduced, and through this result, when cobalt oxide is additionally introduced according to the present invention, the deactivation of the catalyst is delayed, resulting in ethane dehydrogenation of aromatics. It was confirmed that the catalyst activity stability can be increased in the reaction.
이상으로 본 발명 내용의 특정한 부분을 상세히 기술하였는바, 당업계의 통상의 지식을 가진 자에게 있어서 이러한 구체적 기술은 단지 바람직한 실시형태일 뿐이며, 이에 의해 본 발명의 범위가 제한되는 것이 아닌 점은 명백할 것이다. 따라서, 본 발명의 실질적인 범위는 첨부된 청구항들과 그것들의 등가물에 의하여 정의된다고 할 것이다.Having described specific parts of the present invention in detail above, it is clear that these specific descriptions are only preferred embodiments for those skilled in the art, and the scope of the present invention is not limited thereby. something to do. Accordingly, the substantial scope of the present invention will be defined by the appended claims and their equivalents.
본 발명의 촉매는 제올라이트 담지체에 아연 산화물이 담지된 촉매에 코발트 산화물을 추가 도입함으로써 촉매의 비활성화가 억제되고, 촉매의 수명이 향상될 뿐만 아니라 방향족 화합물의 생산 수율이 현저하게 향상되었는바, 방향족 화합물을 생산하는 공정 및 관련 분야에 유용하게 활용될 수 있다. In the catalyst of the present invention, the deactivation of the catalyst is suppressed, the life of the catalyst is improved, and the production yield of the aromatic compound is remarkably improved by additionally introducing cobalt oxide into the catalyst in which zinc oxide is supported on the zeolite support. It can be usefully used in the process of producing compounds and related fields.

Claims (11)

  1. 제올라이트 담지체;zeolite support;
    상기 제올라이트 담지체에 담지되는 아연 산화물; 및Zinc oxide supported on the zeolite support; and
    상기 제올라이트 담지체에 상기 아연 산화물과 혼재되어 담지되는 코발트 산화물;을 포함하는 탈수소방향족화 반응에 의한 방향족 화합물 제조용 촉매.A catalyst for producing an aromatic compound by a dehydroaromatization reaction comprising: cobalt oxide mixed with and supported on the zeolite carrier.
  2. 제1항에 있어서,According to claim 1,
    상기 아연 산화물과 상기 코발트 산화물은 1:0.05 내지 1:0.15의 중량비로 담지되는 것을 특징으로 하는 방향족 화합물 제조용 촉매.The catalyst for producing an aromatic compound, characterized in that the zinc oxide and the cobalt oxide are supported in a weight ratio of 1:0.05 to 1:0.15.
  3. 제1항에 있어서,According to claim 1,
    상기 아연 산화물은 8 내지 12 중량%의 함량으로 담지되는 것을 특징으로 하는 방향족 화합물 제조용 촉매.The zinc oxide is a catalyst for producing an aromatic compound, characterized in that supported in an amount of 8 to 12% by weight.
  4. 제1항에 있어서,According to claim 1,
    상기 코발트 산화물은 0.5 내지 1.5 중량%의 함량으로 담지되는 것을 특징으로 하는 방향족 화합물 제조용 촉매.The cobalt oxide is a catalyst for producing an aromatic compound, characterized in that supported in an amount of 0.5 to 1.5% by weight.
  5. 제1항에 있어서,According to claim 1,
    상기 제올라이트 담지체는 HZSM-5, ZSM-5, ZSM-11, MCM-22 및 MCM-41로 이루어진 군에서 선택되는 것을 특징으로 하는 방향족 화합물 제조용 촉매.The catalyst for producing an aromatic compound, characterized in that the zeolite support is selected from the group consisting of HZSM-5, ZSM-5, ZSM-11, MCM-22 and MCM-41.
  6. 제1항에 있어서,According to claim 1,
    상기 제올라이트 담지체의 Si/Al 비율은 11.5 내지 140인 것을 특징으로 하는 방향족 화합물 제조용 촉매.A catalyst for producing an aromatic compound, characterized in that the Si / Al ratio of the zeolite support is 11.5 to 140.
  7. 제1항에 따른 방향족 화합물 제조용 촉매하에서, 메탄, 에탄 또는 이들의 혼합물을 반응물로 탈수소방향족화 반응을 수행하는 단계;를 포함하는 방향족 화합물의 제조방법.A method for preparing an aromatic compound comprising: performing a dehydroaromatization reaction using methane, ethane or a mixture thereof as a reactant under the catalyst for preparing an aromatic compound according to claim 1.
  8. 제7항에 있어서,According to claim 7,
    상기 탈수소방향족화 반응은 상기 방향족 화합물 제조용 촉매가 충진된 컬럼을 포함하는 기체상 반응기에서 수행되는 것을 특징으로 하는 방향족 화합물의 제조방법.The method for producing an aromatic compound, characterized in that the dehydroaromatization reaction is carried out in a gas phase reactor comprising a column filled with the catalyst for preparing the aromatic compound.
  9. 제7항에 있어서,According to claim 7,
    반응물로 아르곤 가스를 더 포함하는 것을 특징으로 하는 방향족 화합물의 방향족 화합물의 제조방법.A method for producing an aromatic compound of an aromatic compound, further comprising argon gas as a reactant.
  10. 제7항에 있어서,According to claim 7,
    상기 탈수소방향족화 반응은 550 내지 700℃에서 수행되는 것을 특징으로 하는 방향족 화합물의 제조방법.The dehydroaromatization reaction is a method for producing an aromatic compound, characterized in that carried out at 550 to 700 ℃.
  11. 제7항에 있어서,According to claim 7,
    상기 방향족 화합물은 벤젠, 톨루엔, 자일렌, 나프탈렌 및 코크로 이루어진 군에서 선택되는 1종 이상인 것을 특징으로 하는 방향족 화합물의 제조방법.The aromatic compound is a method for producing an aromatic compound, characterized in that at least one selected from the group consisting of benzene, toluene, xylene, naphthalene and coke.
PCT/KR2022/019393 2021-12-08 2022-12-01 Catalyst for preparation of aromatic compounds by dehydroaromatization, and method for preparing aromatic compounds using same WO2023106735A1 (en)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
KR20210175117 2021-12-08
KR10-2021-0175117 2021-12-08
KR10-2022-0165040 2022-11-30
KR1020220165040A KR20230086593A (en) 2021-12-08 2022-11-30 Dissimilar metal supported catalyst for preparation of aromatic compounds by dehydroaromatization, and Method for preparing aromatic compounds using the same

Publications (1)

Publication Number Publication Date
WO2023106735A1 true WO2023106735A1 (en) 2023-06-15

Family

ID=86730822

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2022/019393 WO2023106735A1 (en) 2021-12-08 2022-12-01 Catalyst for preparation of aromatic compounds by dehydroaromatization, and method for preparing aromatic compounds using same

Country Status (1)

Country Link
WO (1) WO2023106735A1 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20190020394A (en) * 2017-08-21 2019-03-04 서울대학교산학협력단 Preparation of Metal Oxide Catalyst Supported on Mesoporous HZSM-11 for Direct Dehydroaromatization of Methane and Propane, and Production Method of BTX Using Said Catalyst
KR20190032876A (en) * 2017-09-20 2019-03-28 고려대학교 산학협력단 Dissimilar metal supported catalyst for preparation of aromatic compounds by the co-dehydroaromatization of methane and C2-C4 alkane compounds, and Method for preparing aromatic compounds using the same
KR20210045671A (en) * 2019-10-17 2021-04-27 한국화학연구원 Catalyst for Dehydroaromatization of Methane and Production Method of BTX from Methane Using Said Catalyst

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20190020394A (en) * 2017-08-21 2019-03-04 서울대학교산학협력단 Preparation of Metal Oxide Catalyst Supported on Mesoporous HZSM-11 for Direct Dehydroaromatization of Methane and Propane, and Production Method of BTX Using Said Catalyst
KR20190032876A (en) * 2017-09-20 2019-03-28 고려대학교 산학협력단 Dissimilar metal supported catalyst for preparation of aromatic compounds by the co-dehydroaromatization of methane and C2-C4 alkane compounds, and Method for preparing aromatic compounds using the same
KR20210045671A (en) * 2019-10-17 2021-04-27 한국화학연구원 Catalyst for Dehydroaromatization of Methane and Production Method of BTX from Methane Using Said Catalyst

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
OSEKE, G. G. et al. PROPANE AROMATIZATION OVER ZINC-COBALT BIMETALLIC/ZSM-5 CATALYST. In: National Engineering Conference 2018. FACULTY OF ENGINEERING: AHMADU BELLO UNIVERSITY. 2018, pp. 399-404. *
SINGH OMVIR; AGRAWAL ANKIT; DHIMAN NEHA; VEMPATAPU BHANU PRASAD; CHIANG KEN; TRIPATHI SHAILENDRA; SARKAR BIPUL: "Production of renewable aromatics form jatropha oil over multifunctional ZnCo/ZSM-5 catalysts", RENEWABLE ENERGY, PERGAMON PRESS, OXFORD., GB, vol. 179, 11 August 2021 (2021-08-11), GB , pages 2124 - 2135, XP086793860, ISSN: 0960-1481, DOI: 10.1016/j.renene.2021.08.011 *

Similar Documents

Publication Publication Date Title
KR100557558B1 (en) Process for Producing Aromatic Hydrocarbons and Liquefied Petroleum Gas from Hydrocarbon Mixture
Pan et al. Efficient and selective conversion of methanol to para-xylene over stable H [Zn, Al] ZSM-5/SiO2 composite catalyst
US8946107B2 (en) Process for the conversion of ethane to aromatic hydrocarbons
WO2012036484A2 (en) Method of producing valuable aromatics and olefins from hydrocarbonaceous oils derived from coal or wood
WO2016111463A1 (en) Method for directly synthesizing monocyclic aromatic compound and long-chain olefin compound from carbon dioxide-rich synthetic gas
JP2004521070A (en) Catalysts and processes for the production of aromatic hydrocarbons from methane
AU2009235497B2 (en) Method for the dehydroaromatisation of mixtures containing methane by regenerating the corresponding catalysts that are devoid of precious metal
EP2629888A2 (en) Hydrocracking catalyst for preparing valuable light aromatic hydrocarbons from polycyclic aromatic hydrocarbons
CN104053504A (en) Improved performance of Ga- and Zn-exchanged ZSM-5 zeolite catalyst for conversion of oxygenates to aromatics
JPH032128A (en) Production of monocyclic aromatic-containing hydrocarbon
WO2019039749A1 (en) Method for producing metal oxide catalyst supported on mesoporous hzsm-11 for direct dehydrogenation and aromatization reaction of methane and propane co-reactant, and method for producing btx using catalyst
WO2023106735A1 (en) Catalyst for preparation of aromatic compounds by dehydroaromatization, and method for preparing aromatic compounds using same
WO2021066298A1 (en) Catalyst for hydrogenation reaction and method for producing same
CN114713276A (en) Catalyst for propane dehydrogenation aromatization and preparation method and application thereof
US7022637B2 (en) Selective methylation catalyst, method of catalyst manufacture and methylation process
CN107759433B (en) Shape selective disproportionation method of p-xylene and ethylbenzene
KR20230086593A (en) Dissimilar metal supported catalyst for preparation of aromatic compounds by dehydroaromatization, and Method for preparing aromatic compounds using the same
JP4164459B2 (en) Methylnaphthalene production catalyst and production method
CN113559924A (en) Ionic liquid catalyst and preparation method and application thereof
CN106608778B (en) Method for preparing aromatic hydrocarbon and propylene from oxygen-containing compound
CN115591570B (en) Ten-membered ring molecular sieve catalyst, preparation method and application thereof, and aromatic hydrocarbon alkylation method
WO2024085626A1 (en) Method for producing olefins through dehydrogenation-cracking reaction of saturated hydrocarbons
CN110387252B (en) Method for preparing gasoline rich in isoparaffin by catalytic conversion of dimethyl ether
CN111068756B (en) Toluene alkylation molecular sieve catalyst and application thereof
KR20190032876A (en) Dissimilar metal supported catalyst for preparation of aromatic compounds by the co-dehydroaromatization of methane and C2-C4 alkane compounds, and Method for preparing aromatic compounds using the same

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22904565

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE