WO2021039911A1 - Vacuum carburization treatment method and production method for carburized component - Google Patents

Vacuum carburization treatment method and production method for carburized component Download PDF

Info

Publication number
WO2021039911A1
WO2021039911A1 PCT/JP2020/032388 JP2020032388W WO2021039911A1 WO 2021039911 A1 WO2021039911 A1 WO 2021039911A1 JP 2020032388 W JP2020032388 W JP 2020032388W WO 2021039911 A1 WO2021039911 A1 WO 2021039911A1
Authority
WO
WIPO (PCT)
Prior art keywords
carburizing
flow rate
time
gas flow
carburized
Prior art date
Application number
PCT/JP2020/032388
Other languages
French (fr)
Japanese (ja)
Inventor
尚二 藤堂
秀樹 今高
Original Assignee
日本製鉄株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本製鉄株式会社 filed Critical 日本製鉄株式会社
Priority to JP2021543006A priority Critical patent/JP7201092B2/en
Priority to CN202080060380.1A priority patent/CN114341392B/en
Publication of WO2021039911A1 publication Critical patent/WO2021039911A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D1/00General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering
    • C21D1/06Surface hardening
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D1/00General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering
    • C21D1/74Methods of treatment in inert gas, controlled atmosphere, vacuum or pulverulent material
    • C21D1/773Methods of treatment in inert gas, controlled atmosphere, vacuum or pulverulent material under reduced pressure or vacuum
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C8/00Solid state diffusion of only non-metal elements into metallic material surfaces; Chemical surface treatment of metallic material by reaction of the surface with a reactive gas, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals
    • C23C8/06Solid state diffusion of only non-metal elements into metallic material surfaces; Chemical surface treatment of metallic material by reaction of the surface with a reactive gas, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using gases
    • C23C8/08Solid state diffusion of only non-metal elements into metallic material surfaces; Chemical surface treatment of metallic material by reaction of the surface with a reactive gas, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using gases only one element being applied
    • C23C8/20Carburising
    • C23C8/22Carburising of ferrous surfaces

Definitions

  • the present invention relates to a vacuum carburizing treatment method and a method for manufacturing carburized parts.
  • the carburized steel parts are referred to as "carburized parts”.
  • the vacuum carburizing treatment method includes a carburizing step and a diffusion step.
  • a carburizing gas which is a hydrocarbon gas
  • the hydrocarbon gas is, for example, acetylene, propane, or the like.
  • the diffusion step after the carburizing step, the introduction of the carburized gas is stopped to diffuse carbon in the depth direction of the surface layer of the steel material.
  • the carbon concentration in the surface layer of the steel material is controlled by adjusting the time of the carburizing step and the diffusion step.
  • the hydrocarbon gas which is a carburized gas
  • the carburized gas is thermodynamically unstable. Therefore, when the carburizing temperature is high, the carburized gas is easily decomposed into carbon, hydrogen, and the like.
  • the carburizing temperature is high, the carburized gas molecules move actively. Due to the vigorous movement, the carburized gas molecules collide with each other at high speed, and the carburized gas decomposes. Soot and tar are generated by the decomposition of carburized gas. In this case, the surface carbon concentration and carburizing depth vary. Therefore, the surface layer of the carburized parts cannot be maintained at a constant quality.
  • the vacuum carburizing treatment method is required to suppress variations in the carbon concentration on the surface of the carburized parts and variations in the carburizing depth of the surface layer.
  • the variation in the carbon concentration on the surface of the carburized part and the variation in the carburizing depth of the surface layer of the carburized part are referred to as "carburizing variation”.
  • Patent Document 1 JP-A-8-325701
  • Patent Document 2 JP-A-2016-148091
  • Patent Document 3 JP-A-2002-173759
  • Patent Document 5 JP-A-2005. It is proposed in Japanese Patent Application Laid-Open No. 350729 (Patent Document 4) and Japanese Patent Application Laid-Open No. 2012-7240 (Patent Document 5).
  • the object to be treated placed in the carburizing chamber is carburized by injecting carburizing gas into the carburizing chamber in a depressurized atmosphere.
  • the gas injection amount of the carburized gas to be injected into the carburizing chamber is the volume of the object to be carburized in the packed state, the volume of the carburizing chamber, the total surface area of the object to be carburized, and the carburizing. Calculated based on the constant set based on the type of gas. Then, the carburized gas of the calculated gas injection amount is injected into the carburizing chamber. It is described in Patent Document 2 that this can prevent the occurrence of spot-like excessive carburizing.
  • the time change of the theoretical flow rate of the carburized gas required for the carburizing treatment is obtained based on the diffusion of carbon into the product to be treated. Then, based on the time change of the theoretical flow rate, the partial pressure ratio of hydrogen generated by the carburizing reaction at the theoretical flow rate to the total pressure in the treatment chamber is defined as the theoretical hydrogen partial pressure ratio.
  • the time change of the theoretical hydrogen partial pressure ratio is obtained, and the time change of the theoretical hydrogen partial pressure ratio is compared with the time change of the hydrogen partial pressure ratio with respect to the total pressure in the treatment chamber during the actual carburizing treatment. Based on these approximation degrees, the degree of variation in carburizing quality within the same operation batch is determined. It is described in Patent Document 5 that this can improve the reproducibility of the quality of the carburized parts and reduce the quality variation of the carburized parts.
  • An object of the present disclosure is to provide a vacuum carburizing treatment method and a method for manufacturing carburized parts capable of suppressing carburizing variation.
  • the vacuum carburizing method is a vacuum carburizing method that performs vacuum carburizing treatment on steel materials in a vacuum carburizing furnace.
  • a heating process that heats the steel material to the carburizing temperature, After the heating step, a heat equalizing step of soaking the steel material at the carburizing temperature and After the heat soaking step, a carburizing step of holding the steel material at the carburizing temperature while supplying a carburizing gas which is an acetylene gas into the vacuum carburizing furnace.
  • a diffusion step of stopping the supply of the carburized gas into the vacuum carburizing furnace and holding the steel material at the carburizing temperature A quenching step of performing quenching on the steel material after the diffusion step, and With In the carburizing step
  • the flow rate of the carburized gas supplied into the vacuum carburizing furnace is defined as the actual carburized gas flow rate.
  • the flow rate of the carburized gas required for the vacuum carburizing treatment of the steel material is defined as the theoretical carburized gas flow rate.
  • the completion time of the carburizing process is defined as ta.
  • the carburizing step is A partial pressure measuring step of continuously measuring the hydrogen partial pressure and the acetylene partial pressure in the atmosphere in the vacuum carburizing furnace to specify the time t0.
  • the early carburizing process from the start of the carburizing process to the time t0, and The late carburizing step from time t0 to time ta, Including In the early carburizing process,
  • the actual carburized gas flow rate is set to be equal to or more than the theoretical carburized gas flow rate at time ta/10 and equal to or less than the theoretical carburized gas flow rate 4 seconds after the start of the carburizing step.
  • the actual carburized gas flow rate of the early carburizing step is defined as FA and the time from the start of the carburizing step is defined as time t.
  • the actual carburized gas flow rate during the period from time t0 to time 4t0 is set to FA ⁇ (t0 / t) or more and FA or less.
  • the actual carburized gas flow rate from the time 4t0 to the time ta is set to FA ⁇ (t0 / t) or more and 2FA ⁇ (t0 / t) or less.
  • the method for manufacturing carburized parts according to the present disclosure is as follows.
  • the steel material is provided with a step of carrying out the above-mentioned vacuum carburizing treatment method.
  • the vacuum carburizing treatment method of the present disclosure can suppress variations in carburizing.
  • the method for manufacturing carburized parts of the present disclosure can manufacture carburized parts in which carburizing variations are suppressed.
  • FIG. 1 is a diagram showing an example of the relationship between the theoretical carburized gas flow rate and time calculated by the diffusion flux of carbon on the surface layer of the steel material obtained by the diffusion simulation using the diffusion equation.
  • FIG. 2 is a diagram showing the time course of the actual carburized gas flow rate in the conventional carburizing step and the time course of the theoretical carburized gas flow rate.
  • FIG. 3 shows the time course of the actual carburized gas flow rate in the carburizing step of the vacuum carburizing treatment method according to the present embodiment (see the figure below) and the time course of the acetylene partial pressure and the hydrogen partial pressure in the atmosphere of the vacuum carburizing furnace in the carburizing step (see the figure below). It is a figure which shows (the above figure).
  • FIG. 1 is a diagram showing an example of the relationship between the theoretical carburized gas flow rate and time calculated by the diffusion flux of carbon on the surface layer of the steel material obtained by the diffusion simulation using the diffusion equation.
  • FIG. 2 is a diagram showing the time course of the actual
  • FIG. 4 is a diagram showing an example of a heat pattern of the vacuum carburizing treatment method of the present embodiment.
  • FIG. 5 is a diagram showing an example of a gas flow rate set value in the early carburizing step of the vacuum carburizing treatment method of the present embodiment.
  • FIG. 6 is a diagram showing an example of a gas flow rate set value of the vacuum carburizing treatment method of the present embodiment.
  • FIG. 7 is a diagram showing an example of a gas flow rate set value of the vacuum carburizing treatment method of the present embodiment, which is different from FIG.
  • FIG. 8 is a diagram showing an example of a gas flow rate set value of the vacuum carburizing treatment method of the present embodiment, which is different from FIGS. 6 and 7.
  • FIG. 9 is a schematic diagram of a gas flow rate set value and a gas analysis value in the carburizing process of test numbers 1, test number 5, and test numbers 7 to 12.
  • FIG. 10 is a schematic diagram of a gas flow rate set value and a gas analysis value in the carburizing process of test numbers 2 to 4 and test number 6.
  • FIG. 11 is a schematic diagram of the gas flow rate set value and the gas analysis value in the carburizing step of test numbers 13 and 14.
  • FIG. 12 is a schematic diagram of a gas flow rate set value and a gas analysis value in the carburizing process of test numbers 15 to 17.
  • FIG. 13 is a schematic diagram of a gas flow rate set value and a gas analysis value in the carburizing step of test number 18.
  • FIG. 14 is a schematic diagram of a gas flow rate set value and a gas analysis value in the carburizing step of test number 19.
  • FIG. 15 is a schematic diagram of a gas flow rate set value and a gas analysis value in the carburizing step of test number 20.
  • FIG. 16 is a schematic diagram of a gas flow rate set value and a gas analysis value in the carburizing step of test number 21.
  • the present inventors investigated a method for suppressing carburizing variation in carburized parts in the vacuum carburizing treatment method.
  • the present inventors first focused on the existence of carburized gas that was supplied into the vacuum carburizing furnace but was exhausted without causing a carburizing reaction.
  • a part of the carburized gas that did not cause the carburizing reaction becomes soot and adheres to the steel material to be vacuum carburized.
  • Soot is a source of carbon. Therefore, carbon is excessively supplied to the portion of the steel material to which soot is attached. Therefore, the adhesion of soot tends to cause variations in carburizing.
  • the carburizing gas flow rate is excessively reduced in order to suppress the adhesion of soot, the carburizing reaction becomes insufficient. In this case as well, carburizing variation is likely to occur.
  • the present inventors have come up with the idea of theoretically defining the flow rate of carburized gas that invades the surface of the steel material from the atmosphere inside the vacuum carburizing furnace in the carburizing process.
  • the "theoretical carburized gas flow rate” is the carburized gas flow rate required to bring the carbon concentration at a predetermined depth position from the surface of the steel material to a desired concentration, and is all carburized gas. Means the carburized gas flow rate on the assumption that is used for the carburizing reaction.
  • the present inventors adjust the flow rate of carburizing gas supplied to the vacuum carburizing furnace in the actual vacuum carburizing treatment (hereinafter referred to as the actual carburizing gas flow rate) based on the theoretical carburizing gas flow rate specified in advance. It was considered that the amount of carburized gas that does not contribute to the carburizing reaction can be suppressed and the carburizing reaction can be prevented from being insufficient, and as a result, the variation in carburizing can be suppressed.
  • the theoretical carburized gas flow rate is a function that fluctuates with the passage of time from the start of carburizing gas supply (start of carburizing process).
  • the theoretical carburized gas flow rate can be obtained based on diffusion simulation or experimentally.
  • the determination of the theoretical carburized gas flow rate based on the diffusion simulation will be described as an example of the method of determining the theoretical carburized gas flow rate.
  • the method for determining the theoretical carburized gas flow rate is not limited to the diffusion simulation.
  • acetylene is used as the carburizing gas.
  • the decomposition of acetylene is rate-determined by the diffusion of carbon in the surface layer of the steel material to be carburized. That is, the larger the diffusion flux of carbon that invades the inside of the steel material from the surface of the steel material, the larger the amount of decomposition of acetylene.
  • a chemical reaction other than the carburizing reaction is assumed as described later. Therefore, it is difficult to apply it to the vacuum carburizing method of the present embodiment.
  • the theoretical carburized gas flow rate FT diffuses, for example, the diffusion flux J (mm ⁇ mass% / s) of carbon entering from the surface of the steel material and the amount of change in carbon concentration per unit time ( ⁇ C / ⁇ t). It can be calculated by calculating based on a well-known diffusion simulation using an equation. Specifically, the theoretical carburized gas flow rate can be obtained by the following method.
  • the diffusion flux J (mm ⁇ mol% / s) of carbon is defined by the formula (3)
  • the time change of the carbon concentration is defined by the formula (4).
  • J -mx ( ⁇ / ⁇ z) (3)
  • ⁇ x / ⁇ t - ⁇ J / ⁇ z (4)
  • m is the mobility of carbon (mm 2 ⁇ mol / J ⁇ s).
  • x is the molar concentration of carbon (mol%).
  • is the chemical potential (J / mol) of carbon.
  • z is the displacement (mm) in the depth direction.
  • T in the formula (4) is the time (s) from the start of the carburizing step.
  • is a partial derivative symbol.
  • the driving force for carbon diffusion is the part of ( ⁇ / ⁇ z) in the equation (3).
  • the carbon concentration in austenite ( ⁇ ) in the vacuum carburizing treatment is as small as 2% or less, and the molar concentration and the mass concentration are almost proportional to each other. Therefore, the formula (3) may be expressed in terms of mass concentration (mass%).
  • the diffusion flux J (mm ⁇ mass% / s) of carbon is defined by the formula (5)
  • the time change of the carbon concentration is defined by the formula (2).
  • J -mC ( ⁇ / ⁇ z) (5)
  • C in the formula (5) is a carbon concentration (mass%).
  • the diffusion simulation for calculating is performed by the following method.
  • the boundary condition in the carbon diffusion simulation on the steel surface in the vacuum carburizing treatment is defined as "the carbon concentration on the steel surface is in equilibrium with graphite". Based on the above assumptions, the diffusion simulation is carried out as follows.
  • mesh data is created in which the surface layer of the steel material to be vacuum carburized is divided by a plurality of cells.
  • a well-known size is sufficient for the size of each cell.
  • the cell size is, for example, 1 to 500 ⁇ m.
  • the size of the cell may be gradually increased from the surface of the steel material in the depth direction. In that case, the size ratio of adjacent cells is 0.80 to 1.25, preferably 0.90 to 1.10.
  • the cell size is not limited to this.
  • the object for which the diffusion simulation is performed may be one-dimensional. When the shape of the steel material is a round bar or a cylinder, it can be treated as one dimension by using the mesh data as a cylindrical coordinate system.
  • the diameter of the steel material (round bar or cylinder) is 50 times or more the diffusion distance of carbon in the steel, it may be treated in the same way as a flat surface.
  • the diffusion distance here is ⁇ Dt.
  • the diffusion coefficient D is calculated from the carbon concentration of the steel material and the carburizing temperature.
  • the time t (seconds) is the carburizing time (carburizing step implementation time). For example, when SCM415 specified in JIS G 4053 (2008) is used as a steel material and the carburizing temperature is 950 ° C. and the carburizing time is 51 minutes, the diffusion distance ⁇ Dt is 0.20 mm. In this case, if the diameter of the steel material is 10 mm or more, it may be handled in the same way as a flat surface.
  • the diffusion distance ⁇ Dt is 0.21 mm.
  • the analysis time (step time) of the diffusion simulation is set.
  • the step time is not particularly limited, but is, for example, 0.001 to 1.0 second.
  • a carburizing step is carried out, and then a diffusion step is carried out.
  • the carburizing step and the diffusion step may be set multiple times. For example, when the carburizing step and the diffusion step are set twice, the first carburizing step is carried out, and the first diffusion step is carried out after the first carburizing step. Further, the second carburizing step is carried out after the first diffusion step, and the second diffusion step is carried out after the second carburizing step.
  • the carburizing step and the diffusion step are carried out a plurality of times in this way, the theoretical carburized gas flow rate in the previous carburizing step is reset and the theoretical carburized gas flow rate in the next carburizing step is newly set for each carburizing step. ..
  • the nth carburizing step (n is a natural number of 1 or more) is carried out and then the n + 1th carburizing step is carried out with a diffusion step of less than 1/10 of the nth carburizing step time, the nth time is carried out.
  • the carburizing step and the n + 1th carburizing step are considered to be one carburizing step. That is, in this case, the theoretical gas flow rate set in the nth carburizing step is used as it is in the n + 1th carburizing step without being reset.
  • the n + 1th carburizing step is the nth carburizing step. Reset the theoretical carburized gas flow rate of and set a new theoretical carburized gas flow rate.
  • the carbon concentration on the surface of the steel material is in equilibrium with graphite. Therefore, based on the chemical composition of the steel material to be vacuum carburized, the equilibrium phase and equilibrium composition in an equilibrium state with graphite at the carburizing temperature are obtained by a well-known thermodynamic calculation.
  • the chemical composition of the steel material to be vacuum carburized is thermodynamically calculated by increasing the C concentration until graphite appears as an equilibrium phase, taking into consideration that it is diluted by an increase in the C concentration. For example, when the C concentration increases by 7% by mass, the mass of the steel material itself increases 1.07 times. Therefore, the thermodynamic calculation is performed based on the chemical composition in which the concentrations of the elements other than C are 1 / 1.07 times.
  • thermodynamic calculation software can be used for thermodynamic calculation.
  • the well-known thermodynamic calculation software is, for example, the trade name Pandat TM.
  • cementite ( ⁇ ) may precipitate inside the steel material other than the surface of the steel material in the case of vacuum carburizing.
  • carbon (C) in the steel material is distributed to cementite and austenite. Therefore, the equilibrium phase and the equilibrium composition inside the steel material other than the steel material surface at the carburizing temperature are obtained by the above-mentioned thermodynamic calculation. Similar to the surface of the steel material, the equilibrium phase, the equilibrium composition, the C content in the steel material, the chemical potential of C, and the solid solution C concentration dissolved in austenite can be specified inside the steel material.
  • D diffusion coefficient D of carbon in austenite in the steel material
  • a numerical value obtained in advance by an experiment using the steel material to be vacuum carburized may be used, or data reported as experimental data may be used. Good.
  • D (m 2 / s) of C in austenite Gray G. et al.
  • D 4.7 ⁇ 10 -5 ⁇ exp (-1.6 ⁇ C- (37000-6600 ⁇ C) /1.987 / T)
  • C in the formula is the solid solution C concentration (mass%) in austenite
  • T carburizing temperature (K).
  • the mobility m (m 2 / s) of carbon in austenite in steel can be obtained from the diffusion coefficient D and thermodynamic calculation.
  • C in the formula is the solid solution C concentration (mass%) in austenite
  • T is the carburizing temperature (K).
  • the following calculation is performed for each step time.
  • the solid solution C concentration that is, the concentration of diffused C
  • the diffusion flux J in each cell is obtained by the difference method using the formula (1), the formula (3) or the formula (5) based on the specified solid solution C concentration.
  • the solid solution carbon concentration on the surface of the steel material is set to the solid solution carbon concentration (C sat ) at the solid solution limit in an equilibrium state with graphite.
  • the acetylene flow rate is determined with the carburizing efficiency as 100%.
  • the obtained acetylene flow rate is defined as the theoretical carburized gas flow rate at that step time.
  • C Based on the obtained diffusion flux J in each cell, the C concentration of each cell at the time when the step time elapses is determined.
  • D Based on the thermodynamic calculation result, it is determined whether cementite is generated as an equilibrium phase. The time required for cementite formation is ignored (that is, (A) is determined in the next step time).
  • E When the carburizing step is performed twice or more, the diffusion step between the carburizing steps is simulated, and then the carburizing step is simulated. In the diffusion step, calculations (A) to (D) are performed with the diffusion flux J 0 from the surface of the steel material as zero.
  • the above calculation is obtained for each step time, and the diffusion flux J 0 (t) of carbon from the surface of the steel material per unit surface area of the steel material during the carburizing step is obtained. Then, the diffusion flux J 0 (t) per unit surface surface of the steel material is converted into the acetylene gas flow rate, and further multiplied by the surface surface S (m 2 ) of the steel material to be vacuum carburized, the theory at time t. The carburized gas flow rate FT (t) is obtained.
  • FIG. 1 is a diagram showing an example of the relationship between the theoretical carburized gas flow rate and time calculated by the diffusion flux of carbon on the surface layer of the steel material obtained by the above diffusion simulation.
  • ⁇ in FIG. 1 indicates the theoretical carburized gas flow rate FT at each time.
  • Curve C 1.00 in FIG. 1 shows a theoretical carburized gas flow rate curve.
  • the approximate expression of the theoretical carburized gas flow rate curve C 1.00 can be expressed by the equation (6).
  • FT S ⁇ A / ⁇ t (6)
  • FT is the theoretical carburized gas flow rate (NL / min).
  • a in the formula (6) can be expressed by the formula (7).
  • T in the formula (6) is the time (minutes) from the start of the carburizing process.
  • A a ⁇ T 2 + b ⁇ T + c (7)
  • a, b and c are constants determined by the chemical composition of the steel material, and T is the carburizing temperature (° C.).
  • Equation (6) which is an approximate expression of the theoretical carburized gas flow rate FT, is also regarded as the theoretical carburized gas flow rate FT in this specification. That is, based on the equation (6), the theoretical carburized gas flow rate FT at each carburizing time may be obtained in the actual carburizing step.
  • the theoretical carburized gas flow rate was obtained based on a well-known diffusion simulation using the diffusion equation as an example of the method for determining the theoretical carburized gas flow rate.
  • the theoretical carburized gas flow rate may be determined by other methods.
  • the theoretical carburized gas flow rate can be determined experimentally.
  • the method of obtaining the theoretical gas flow rate by experiment is as follows.
  • the vacuum carburizing treatment is carried out on the steel material having the same chemical composition as the steel material to be actually vacuum carburized.
  • the flow rate of the carburized gas supplied to the vacuum carburizing furnace is kept constant, and the partial pressure of acetylene and the partial pressure of hydrogen in the vacuum carburizing furnace are continuously measured during the carburizing process.
  • the first time t0 at which the acetylene partial pressure becomes 0.8 times or more the hydrogen partial pressure is 1/10 or less of the time ta (that is, the total carburizing process time) which is the completion time of the carburizing process.
  • the theoretical carburized gas flow rate is equal to the carburized gas flow rate used for the carburizing reaction in contact with the surface of the steel material. Therefore, the theoretical carburized gas flow rate is not affected by the size and shape of the heat treatment furnace.
  • the flow rate of the carburized gas actually supplied to the vacuum carburizing furnace during the vacuum carburizing process is defined as the "actual carburized gas flow rate" FR.
  • the present inventors investigated and examined the events assumed when the actual carburized gas flow rate FR, which greatly deviates from the relationship of the theoretical carburized gas flow rate FT at the carburizing time, as shown in FIG. 1 is used.
  • FIG. 2 is a diagram showing a time-dependent change in the actual carburized gas flow rate FR in the conventional carburizing step and a time-dependent change in the theoretical carburized gas flow rate FT.
  • the vertical axis of FIG. 2 shows the carburized gas flow rate (NL / min), and the horizontal axis shows the time (minutes) from the start of the carburizing process.
  • the solid line FR in FIG. 2 shows the actual carburized gas flow rate FR in the conventional carburizing step.
  • the broken line C 1.00 in FIG. 2 indicates the theoretical carburized gas flow rate FT as described above.
  • the start time of the carburizing process is defined as "0"
  • the completion time of the carburizing process is defined as "ta”. That is, the carburizing step is performed from time 0 to time ta.
  • the completion time ta is set in advance according to the set value of the carbon concentration at the predetermined depth position of the steel material after the carburizing treatment. Further, the time during which the actual carburized gas flow rate FR first becomes equal to the theoretical carburized gas flow rate FT is defined as "te”.
  • the period from the start of the carburizing process to the time te is defined as the period S100.
  • the period from time te to time ta is defined as the period S200.
  • the actual carburized gas flow rate FR is lower than the theoretical carburized gas flow rate FT (curve C 1.00). Therefore, in the carburizing step of the conventional vacuum carburizing treatment method, the actual carburized gas flow rate FR in the period S100 is insufficient. In this case, on the surface of the steel material, a portion where the carburizing reaction is sufficient and a portion where the carburizing reaction is insufficient occur. Therefore, the carburizing variation on the surface of the steel material becomes large. In addition, the desired carbon concentration may not be obtained on the surface layer of the steel material.
  • the actual carburized gas flow rate FR is higher than the theoretical carburized gas flow rate FT (curve C 1.00). Therefore, in the period S200, the actual carburized gas flow rate FR becomes excessive and remains in the vacuum carburizing furnace. As a result, in period S200, soot and tar are generated by the residual carburized gas. In this case, the carburizing variation on the surface of the steel material becomes large.
  • the present inventors considered to control the actual carburized gas flow rate FR in accordance with the theoretical carburized gas flow rate curve C 1.00 during the carburizing step.
  • the present inventors considered not only considering the theoretical carburized gas flow rate FT as an element for actually controlling the carburized gas flow rate, but also considering other factors.
  • the gas component in the atmosphere in the vacuum carburizing furnace changes according to the carburized gas flow rate FR. This change in gas composition causes variation in carburizing and generation of soot. Therefore, the present inventors paid attention not only to the theoretical carburized gas flow rate FT but also to the gas component in the atmosphere of the vacuum carburizing furnace as an element for actually controlling the carburized gas flow rate.
  • the present inventors paid attention to the partial pressure of hydrogen and the partial pressure of acetylene in the atmosphere in the vacuum carburizing furnace.
  • the hydrogen partial pressure and the acetylene partial pressure in the atmosphere in the vacuum carburizing furnace can be measured by a well-known analyzer.
  • the analyzer is, for example, a quadrupole mass spectrometer.
  • Hydrogen partial pressure is an index of the amount of carburizing reaction in the carburizing process. That is, the hydrogen partial pressure is an index of the degree of suppression of carburizing variation.
  • the partial pressure of acetylene means the amount of surplus gas that did not cause a carburizing reaction, and is an index of the amount of soot and tar generated.
  • the chemical reaction is extremely fast immediately after the start of the carburizing process, that is, immediately after the start of supply of acetylene into the furnace. That is, the rate of carbon entering the surface of the steel material immediately after the start of the carburizing process is extremely high. Therefore, if the flow rate of acetylene (carburized gas flow rate) supplied into the furnace is small, most of the atmosphere in the furnace becomes hydrogen gas. As a result, the hydrogen partial pressure in the furnace becomes high and the acetylene partial pressure becomes low.
  • the flow rate of acetylene gas supplied into the furnace (vacuum carburizing gas flow rate) is large, acetylene gas that does not cause a carburizing reaction remains in the furnace. In this case, the hydrogen partial pressure in the furnace becomes low, and the acetylene partial pressure becomes high. Therefore, the amount of carburizing reaction on the surface of the steel material can be estimated by monitoring the partial pressure of hydrogen and the partial pressure of acetylene in the furnace.
  • the present inventors can reduce the carburizing variation in the vacuum carburizing treatment. It was thought that it could be suppressed and the generation of soot could be suppressed. Therefore, the present inventors further investigated and obtained the following findings.
  • the completion time of the carburizing process is defined as ta.
  • the completion time ta is set in advance according to the set values of the surface carbon concentration and the carburizing depth of the steel material after the carburizing treatment. Then, the time from the start time of the carburizing process to 1/10 of the completion time ta is defined as ta / 10.
  • the theoretical carburized gas flow rate at time ta / 10 is defined as FT ta / 10.
  • the actual carburized gas flow rate FR at the initial stage of the carburizing process is set to the theoretical carburized gas flow rate FT ta / 10 or more at time ta / 10, the hydrogen partial pressure in the atmosphere in the vacuum carburizing furnace rises rapidly, but it is early. The rate of increase in acetylene partial pressure increases. As a result, the shortage of the carburizing reaction amount at the initial stage of the carburizing process can be suppressed, and the carburizing variation can be reduced.
  • the present inventors can secure a sufficient amount of carburizing reaction at the initial stage of the carburizing process by adjusting the actual carburized gas flow rate FR in the carburizing process as shown in (I) to (III) below. It was thought that it could be done, and after that, excess gas could be suppressed to suppress the generation of soot and tar, and the variation in carburizing could be reduced.
  • Time ta Completion time of carburizing process
  • Time t0 First time when the partial pressure of acetylene becomes 0.8 times or more of the partial pressure of hydrogen after the start of the carburizing process
  • Time ta / 10 From the start time of the carburizing process to the completion time ta 1/10 time
  • Time 4t0 Time when four times the period from the start of the carburizing process to the time t0 elapses after the start of the carburizing process
  • Late carburizing step S2 Period from time t0 to time ta Actual carburizing gas flow rate
  • FR Carburizing gas (acetylene) flow rate actually supplied to the vacuum carburizing furnace
  • Theoretical carburizing gas flow rate FT ta / 10 Theoretical carburizing gas flow rate theory at time ta / 10
  • Carburizing gas flow rate FT 4 Theoretic
  • the actual carburized gas flow rate FR is adjusted as shown in (I) to (III) below, as shown in FIG. (I)
  • the actual carburized gas flow rate FR is set to FT ta / 10 or more and FT 4 or less.
  • the actual carburized gas flow rate FR is constant in the first carburizing step S1, that value is taken as the actual carburized gas flow rate FA.
  • the actual carburized gas flow rate FR is set to FA ⁇ ⁇ (t0 / t) or more and FA or less in the period of time t0 to 4t0.
  • the actual carburized gas flow rate FR is set to FA ⁇ ⁇ (t0 / t) or more and 2FA ⁇ ⁇ (t0 / t) or less in the period from time 4t0 to time ta.
  • t is the time from the start of carburizing.
  • FIG. 3 shows the time course of the actual carburized gas flow rate in the carburizing step of the vacuum carburizing treatment method according to the present embodiment (see the figure below) and the time course of the acetylene partial pressure and the hydrogen partial pressure in the atmosphere of the vacuum carburizing furnace in the carburizing step (see the figure below). It is a figure which shows (the above figure).
  • the actual carburized gas flow rate FR is adjusted within the range of the hatched region in FIG. 3 during the period from time t0 to time ta.
  • the time t0 is the first time after the start of the carburizing step, when the acetylene partial pressure becomes 0.8 times or more the hydrogen partial pressure.
  • the hydrogen partial pressure rises more rapidly than the acetylene partial pressure. This is because the carburizing reaction occurs actively. The hydrogen partial pressure rises rapidly and then begins to fall before the acetylene partial pressure. Then, as a result of the decrease in the hydrogen partial pressure, the acetylene partial pressure becomes 0.8 times or more the hydrogen partial pressure.
  • the first time when the acetylene partial pressure becomes 0.8 times or more the hydrogen partial pressure is defined as the time t0.
  • the "0.8" times referred to here is a value obtained by rounding down the second decimal place of the calculated value of the acetylene partial pressure / hydrogen partial pressure ratio.
  • the vacuum carburizing treatment method according to the present embodiment completed based on the above knowledge has the following configuration.
  • a heating process that heats the steel material to the carburizing temperature, After the heating step, a heat equalizing step of soaking the steel material at the carburizing temperature and After the heat soaking step, a carburizing step of holding the steel material at the carburizing temperature while supplying a carburizing gas which is an acetylene gas into the vacuum carburizing furnace.
  • a diffusion step of stopping the supply of the carburized gas into the vacuum carburizing furnace and holding the steel material at the carburizing temperature A quenching step of performing quenching on the steel material after the diffusion step, and With In the carburizing step
  • the flow rate of the carburized gas supplied into the vacuum carburizing furnace is defined as the actual carburized gas flow rate.
  • the flow rate of the carburized gas required for the vacuum carburizing treatment of the steel material is defined as the theoretical carburized gas flow rate.
  • the completion time of the carburizing process is defined as ta.
  • the carburizing step is A partial pressure measuring step of continuously measuring the hydrogen partial pressure and the acetylene partial pressure in the atmosphere in the vacuum carburizing furnace to specify the time t0.
  • the early carburizing process from the start of the carburizing process to the time t0, and The late carburizing step from time t0 to time ta, Including In the early carburizing process,
  • the actual carburized gas flow rate is set to be equal to or more than the theoretical carburized gas flow rate at time ta/10 and equal to or less than the theoretical carburized gas flow rate 4 seconds after the start of the carburizing step.
  • the actual carburized gas flow rate of the early carburizing step is defined as FA and the time from the start of the carburizing step is defined as time t.
  • the actual carburized gas flow rate during the period from time t0 to time 4t0 is set to FA ⁇ (t0 / t) or more and FA or less.
  • the actual carburized gas flow rate from the time 4t0 to the time ta is set to FA ⁇ (t0 / t) or more and 2FA ⁇ (t0 / t) or less.
  • [4] It is a method of manufacturing carburized parts.
  • a step of carrying out the vacuum carburizing treatment method according to any one of [1] to [3] is provided on the steel material. Manufacturing method of carburized parts.
  • FIG. 4 is a diagram showing an example of a heat pattern of the vacuum carburizing treatment method of the present embodiment.
  • the vacuum carburizing treatment method of the present embodiment includes a heating step (S10), a soaking step (S20), a carburizing step (S30), a diffusion step (S40), and a quenching step (S50). ) And. The details of each step will be described below.
  • Heating step (S10) In the heating step (S10), the steel material is heated to the carburizing temperature.
  • the steel material to be subjected to the vacuum carburizing treatment may be provided by a third party or may be manufactured by a person who implements the vacuum carburizing treatment method.
  • the chemical composition of the steel material is not particularly limited. It is sufficient to use a well-known steel material to be carburized.
  • the steel material is, for example, an alloy steel material for machine structure specified in JIS G 4053 (2008). More specifically, the steel material is, for example, SCr415, SCr420, SCM415, etc. specified in JIS G 4053 (2008).
  • the steel material to be prepared may be a hot-worked steel material or a cold-worked steel material.
  • Hot working is, for example, hot rolling, hot extrusion, hot forging and the like.
  • Cold working includes, for example, cold rolling, cold drawing, cold forging and the like.
  • the steel material may be one that has been subjected to machining typified by cutting after being hot-worked or cold-worked.
  • the heating step (S10) is a well-known step in the vacuum carburizing treatment method.
  • a well-known temperature is sufficient for the carburizing temperature Tc.
  • the carburizing temperature Tc is equal to or higher than the Ac3 transformation point.
  • the preferred range of carburizing temperature Tc is 900 to 1130 ° C.
  • the carburizing temperature Tc is 900 ° C. or higher, heat transfer due to radiation becomes high, and the temperature in the vacuum carburizing furnace tends to be uniform. As a result, the carburizing variation of the steel material tends to be small.
  • the carburizing temperature is 1130 ° C.
  • a more preferable lower limit of the carburizing temperature Tc is 910 ° C, and even more preferably 920 ° C.
  • a more preferable upper limit of the carburizing temperature Tc is 1100 ° C., and even more preferably 1080 ° C.
  • the heat soaking step (S20) is a well-known step in the vacuum carburizing treatment method.
  • the soaking time can be appropriately adjusted depending on the shape and / or size of the steel material.
  • the soaking time is 10 minutes or more.
  • the preferable heat equalization time is 30 minutes or more per 25 mm of the equivalent diameter of the circle.
  • the soaking time is preferably 36 minutes or more.
  • the preferable upper limit of the soaking time is preferably 120 minutes, more preferably 60 minutes.
  • the pressure in the furnace in the heating step (S10) and the soaking step (S20) is not particularly limited.
  • the pressure in the furnace in the heating step (S10) and the soaking step (S20) may be, for example, 100 Pa or less.
  • nitrogen gas may be introduced and vacuum exhausted by a vacuum pump to create a nitrogen atmosphere of 1000 Pa or less.
  • the inside of the vacuum carburizing furnace is made low pressure or vacuum by at least the start of the carburizing step (S30).
  • the inside of the vacuum carburizing furnace is set to 10 Pa or less by the start of the carburizing step (S30).
  • the carburizing step (S30) means a step of supplying carburizing gas in a furnace under reduced pressure or vacuum. That is, the time when the carburizing gas is started to be supplied into the furnace under reduced pressure or vacuum after the soaking step (S20) is the start of the carburizing step (S30).
  • the carburized gas is supplied into the furnace while maintaining the inside of the furnace at a low pressure. Since the pressure inside the furnace is low, the frequency of collision between carburized gas molecules is reduced. That is, the frequency of decomposition of the carburized gas in the atmosphere inside the furnace is reduced.
  • the pressure inside the furnace in the carburizing step (S30) is not limited to the above range.
  • a carburized gas is introduced into the vacuum carburizing furnace, and the steel material is held at the carburizing temperature Tc for a predetermined time.
  • the carburizing gas used in the carburizing step (S30) of the vacuum carburizing treatment method is acetylene gas.
  • Propane gas is often used in the conventional vacuum carburizing treatment.
  • propane gas also causes a decomposition reaction into methane, ethylene, acetylene, hydrogen and the like. Most of the methane and ethylene produced by the decomposition reaction do not contribute to the carburizing reaction and are exhausted from the vacuum carburizing furnace. Therefore, when propane gas is used, the theoretical carburized gas flow rate FT cannot be calculated by diffusion simulation using the diffusion flux of carbon obtained by the diffusion equation. On the other hand, acetylene is unlikely to cause reactions other than carburizing. Therefore, the theoretical carburized gas flow rate FT can be calculated by a diffusion simulation using the diffusion flux of carbon obtained by the diffusion equation.
  • the purity of acetylene which is a carburized gas, may be 98% or more.
  • acetylene for example, acetylene dissolved in acetone or acetylene dissolved in dimethylformamide (DMF) may be used as the carburizing gas.
  • DMF dimethylformamide
  • acetylene dissolved in DMF is used as the carburizing gas.
  • the primary pressure when supplying acetylene from the cylinder into the vacuum carburizing furnace is preferably 0.5 MPa or more.
  • the pressure is reduced to 0.20 MPa or less by using a pressure reducing valve.
  • the carburizing step (S30) includes a partial pressure measuring step S0, an early carburizing step S1, and a late carburizing step S2. The details of each step will be described below.
  • the theoretical carburized gas flow rate FT according to the target steel material is determined as a preliminary preparation, and the carburizing step (S30) is completed up to the completion time ta as shown in FIG.
  • the time course of the theoretical carburized gas flow rate FT is obtained.
  • the theoretical carburized gas flow rate FT may be determined based on a diffusion simulation or an experiment.
  • partial pressure measurement step S0 the hydrogen partial pressure and the acetylene partial pressure in the atmosphere in the vacuum carburizing furnace are measured during the carburizing step (S30). Specifically, the partial pressure of hydrogen and the partial pressure of acetylene in the atmosphere in the vacuum carburizing furnace are continuously measured.
  • “continuously” means measuring the hydrogen partial pressure and the acetylene partial pressure a plurality of times over time.
  • the hydrogen partial pressure and the acetylene partial pressure may be measured continuously, or may be measured at predetermined time intervals.
  • the measurement is performed using a well-known partial pressure measuring device.
  • the partial pressure measuring instrument is, for example, a quadrupole mass spectrometer. However, as the partial pressure measuring instrument, a partial pressure measuring instrument other than the quadrupole mass spectrometer may be used.
  • the hydrogen partial pressure and the acetylene partial pressure in the atmosphere in the vacuum carburizing furnace are measured over time. That is, the hydrogen partial pressure and the acetylene partial pressure in the atmosphere in the vacuum carburizing furnace are monitored.
  • the time t0 (the first time after the start of the carburizing step that the acetylene partial pressure becomes 0.8 times or more the hydrogen partial pressure) is determined based on the hydrogen partial pressure and the acetylene partial pressure measured over time.
  • the quadrupole mass analyzer measures each component gas (hydrogen, acetylene) in order. Therefore, the measurement time of hydrogen partial pressure and the measurement time of acetylene are different.
  • the analysis time of each component (hydrogen, acetylene) of the quadrupole mass analyzer is preferably 0.2 seconds or more and 2.0 seconds or less, and the analysis interval is preferably 4.0 seconds or less.
  • the time when the acetylene partial pressure becomes 0.8 times or more the hydrogen partial pressure is determined by the following method.
  • t1 be the start time of an analysis step
  • t2 be the completion time of that analysis step.
  • the hydrogen partial pressure may be measured first, or the acetylene partial pressure may be measured first.
  • the start time of the next analysis step is defined as t3
  • the completion time of the analysis step is defined as t4.
  • the analysis period is a time between time t1 and time t3.
  • the acetylene partial pressure obtained in the analysis step at time t1 to time t2 is 0.8 times or more the hydrogen partial pressure obtained in the same analysis step (that is, the analysis step at time t1 to time t2).
  • the hydrogen partial pressure obtained in the analysis step at the next time t3 to time t4 after the lapse of the analysis interval is 1.25 of the acetylene partial pressure obtained in the analysis step at time t1 to time t2.
  • the completion time t2 of the analysis step in which the acetylene partial pressure is measured is defined as the time t0.
  • the partial pressure of acetylene is more than 0.8 times the partial pressure of hydrogen obtained in the same analysis step, but the partial pressure of hydrogen obtained in the next analysis step is the acetylene obtained in the previous analysis step.
  • the reason for the condition that the partial pressure is 1.25 times or less is as follows. If the carburized gas starts to flow into the furnace after the hydrogen partial pressure measurement is completed and before the acetylene partial pressure measurement in the analysis steps of time t1 to time t2, this is the case.
  • the hydrogen partial pressure obtained in the analysis step is zero. Therefore, the acetylene partial pressure obtained in this analysis step is always 0.8 times or more the hydrogen partial pressure.
  • the completion time of this analysis step is determined to be time t0, it does not mean that the acetylene gas is actually sufficiently introduced into the furnace. Therefore, it is necessary not to recognize such a case as time t0.
  • the hydrogen partial pressure measured in the next analysis step (time t3 to time t4) after the lapse of the analysis interval is 1.25 times larger than the acetylene partial pressure obtained in the previous analysis step. Exceed. This is because the partial pressure of hydrogen rises sharply due to the introduction of acetylene gas.
  • the acetylene partial pressure obtained as a result of sufficient introduction of the carbonized gas into the furnace is 0.8 times or more the hydrogen partial pressure obtained in the same analysis step, after the analysis interval has elapsed.
  • the partial pressure of hydrogen obtained in the next analysis step is 1.25 times or less the partial pressure of acetylene obtained in the previous analysis step. This is because, as shown in FIG. 3, when the carburized gas is sufficiently introduced into the furnace, the hydrogen partial pressure does not increase with the passage of time, but rather decreases.
  • the obtained acetylene partial pressure is 0.8 times or more the hydrogen partial pressure obtained in the same analysis step, and the analysis interval elapses. If the hydrogen partial pressure obtained in the subsequent next analysis step is 1.25 times or less the acetylene partial pressure obtained in the previous analysis step, the completion time of the analysis step in which the acetylene partial pressure is measured is measured. t2 is defined as time t0.
  • the gas in the furnace may be analyzed in the furnace, or may be extracted and analyzed outside the furnace.
  • a partial pressure measuring device installed in the furnace is used.
  • the partial pressure measuring device may be a measuring device other than the above-mentioned quadrupole mass spectrometer. Further, the partial pressure measuring device may be used properly for each component gas.
  • the acetylene partial pressure may be analyzed by a quadrupole mass analyzer, and the hydrogen partial pressure may be analyzed by another pressure dividing measuring instrument.
  • the carburizing gas is supplied under the above-mentioned reduced pressure. Therefore, the carburized gas rapidly undergoes a carburizing reaction in the entire furnace. Therefore, the measurement result of the partial pressure of the gas in the furnace is unlikely to vary in the furnace. That is, the analysis result of the gas in the furnace can be regarded as almost uniform in the furnace.
  • First term carburizing process S1 As shown in FIG. 3, the period from the start of the carburizing step (S30) to the first time t0 when the acetylene partial pressure becomes 0.8 times or more the hydrogen partial pressure is defined as the early carburizing step S1.
  • the actual carburized gas flow rate FR is adjusted so as to satisfy the following condition I.
  • the actual carburizing gas flow rate FR is set to be the theoretical carburizing gas flow rate FT ta / 10 or more and the theoretical carburizing gas flow rate FT 4 or less.
  • FIG. 5 is a diagram showing an example of a gas flow rate set value in the early carburizing step S1 of the vacuum carburizing treatment method of the present embodiment.
  • the actual carburized gas flow rate FR is set within the range of the hatching region in FIG. 5 (FT ta / 10 or more and FT 4 or less).
  • the supply of carburized gas is too insufficient in the early carburizing step S1. In this case, the carburizing variation becomes large in the steel material (carburized parts) subjected to the vacuum carburizing treatment method.
  • the actual carburized gas flow rate FR in the first carburizing step S1 exceeds the theoretical carburized gas flow rate FT 4 at 4 seconds from the start of the carburizing process, the actual carburized gas flow rate FR is too large.
  • the actual carburizing gas flow rate FR in the first carburizing step S1 is the theoretical carburizing gas flow rate FT ta / 10 or more at time ta / 10 and the theoretical carburizing gas flow rate FT 4 or less at 4 seconds from the start of the carburizing process.
  • the carburizing variation of the carburized parts (steel material) after the vacuum carburizing treatment can be sufficiently suppressed.
  • the actual carburized gas flow rate FR in the early carburizing step S1 can be adjusted by a well-known method.
  • the flow rate of the carburized gas supplied to the vacuum carburizing furnace may be adjusted by the supply valve to adjust the actual carburized gas flow rate FR, or the actual carburized gas flow rate FR may be adjusted by another well-known method. May be good.
  • the adjustment of the carburized gas flow rate FR may be carried out by a well-known control device of the vacuum carburizing furnace. The control device actually adjusts the carburized gas flow rate FR by adjusting the opening degree of the supply valve described above, for example.
  • the actual carburized gas flow rate FR in the first carburizing step S1 is constant. If the actual carburized gas flow rate FR is constant, the fluctuations of the hydrogen partial pressure and the acetylene partial pressure in the furnace can be measured with high accuracy. If the actual carburized gas flow rate FR in the early carburizing step S1 fluctuates, the fluctuation of the hydrogen partial pressure in the furnace and the fluctuation of the acetylene partial pressure are affected by the fluctuation of the actual carburized gas flow rate FR. If the actual carburized gas flow rate FR in the first carburizing step S1 is constant, the fluctuations of the hydrogen partial pressure and the acetylene partial pressure in the furnace can be measured with high accuracy.
  • the actual carburized gas flow rate FR in the early carburizing step S1 is constant.
  • the actual carburized gas flow rate FR in the early carburizing step S1 is preferably constant.
  • the value of the actual carburized gas flow rate FR that was constant throughout the previous carburizing step S1 becomes the actual carburized gas flow rate FA in the first carburizing step S1.
  • the actual carburized gas flow rate does not become completely constant according to the set value and fluctuates within a certain range from the set value.
  • the actual carburized gas flow rate FR in the previous carburizing step S1 is constant, the actual carburized gas flow rate FR allows a margin of ⁇ 10% of the set value. That is, when the actual carburized gas flow rate FR changes within ⁇ 10% of the specific set value through the previous carburizing step S1, the set value is set as the value of the actual carburized gas flow rate FA in the previous carburizing step. That is, in the present specification, FA means the carburized gas flow rate within the range of ⁇ 10% of the set value in the early carburizing step S1. Preferably, FA is within the range of ⁇ 5% of the set value in the early carburizing step S1.
  • the period from the time t0 to the completion time ta of the carburizing step is defined as the late carburizing step S2.
  • the actual carburized gas flow rate FR is adjusted so as to satisfy the following conditions II and III.
  • the actual carburized gas flow rate FR is set to FA ⁇ ⁇ (t0 / t) or more and FA or less in the period of time t0 to 4t0.
  • the actual carburized gas flow rate FR is set to FA ⁇ ⁇ (t0 / t) or more and 2FA ⁇ ⁇ (t0 / t) or less in the period from time 4t0 to time ta.
  • t is the time from the start of carburizing.
  • the actual carburized gas flow rate FR is adjusted so as to be within the hatching range in FIG. As a result, it is possible to prevent excess carburizing gas from remaining in the vacuum carburizing furnace in the late carburizing step S2. As a result, the generation of soot and tar can be reduced, and the carburizing variation of the carburized parts (steel material) after the vacuum carburizing treatment method can be suppressed.
  • the gas flow rate is insufficient.
  • the distribution of the carburized gas varies in the vacuum carburizing furnace.
  • the concentration of carburized gas is high in the vicinity of the carburized gas supply nozzle, and the concentration of carburized gas is low in the region away from the supply nozzle.
  • the carburizing variation becomes large in the steel material after the vacuum carburizing treatment step.
  • the actual carburized gas flow rate FR is set to FA ⁇ ⁇ (t0 / t) or more and FA or less in the period of time t0 to 4t0 in the late carburizing step S2.
  • the carburized gas flow rate required for the carburizing reaction can be sufficiently secured and the generation of soot and tar can be suppressed, provided that the conditions I and III are satisfied.
  • the actual carburized gas flow rate FR allows a margin of ⁇ 10% of the set value. Therefore, as described above, there is a similar margin for the actual carburized gas flow rate FA in the early carburizing step S1.
  • the actual carburized gas flow rate FA in the early carburizing step means the carburized gas flow rate within the range of ⁇ 10% of the set value of the actual carburized gas FR in the early carburizing step S1. Further, until the middle of the time t0 to 4t0 of the late carburizing step S2, the actual carburized gas flow rate FR is maintained by FA following the early carburizing step S1, and then the actual carburized gas flow rate is FA to FA ⁇ ⁇ (t0 /). It may be adjusted within the range of t).
  • the actual carburized gas flow rate FR is set to FA ⁇ ⁇ (t0 / t) or more and 2FA ⁇ ⁇ (t0 / t) or less in the period of time 4t0 to ta in the late carburizing step S2.
  • the carburized gas flow rate required for the carburizing reaction can be sufficiently secured and the generation of soot and tar can be suppressed, provided that the conditions I and II are satisfied. As a result, it is possible to suppress the occurrence of carburizing variation of carburized parts.
  • the change with time of the actual carburized gas flow rate FR is not particularly limited.
  • the reduction of the actual carburized gas flow rate FR may be started within the period of time 4t0 to ta in the late carburizing step S2.
  • the actual carburized gas flow rate FR may be maintained and reduced repeatedly with the passage of time to gradually reduce the actual carburized gas flow rate FR. Further, as shown in FIG. 7, in the late carburizing step S2, the actual carburized gas flow rate FR may be gradually reduced with the passage of time. Further, as shown in FIG. 8, the actual carburized gas flow rate FR may be gradually decreased and then increased with the passage of time. In short, if the conditions II and III are satisfied in the late carburizing step S2, the time-dependent fluctuation of the actual carburized gas flow rate FR is not particularly limited.
  • the carburizing gas pressure (carburizing gas pressure) in the carburizing step (S30) is not particularly limited.
  • the carburized gas pressure in the early carburizing step S1 is made higher than the carburized gas pressure in the late carburizing step S2.
  • the generation of soot is further suppressed in the late carburizing step S2.
  • the carburized gas pressure in the late carburizing step S2 is lowered with the passage of time.
  • the preferable carburizing gas pressure in the carburizing step (S30) is 1 kPa or less.
  • the time ta may be determined by the above-mentioned diffusion simulation using the diffusion equation.
  • the time ta may be determined from experimental data by conducting a vacuum diffusion treatment test in advance. The longer the time ta, the better. The longer the time ta, the easier it is to actually adjust the carburized gas flow rate FR.
  • the preferred lower limit of the time ta is 50 seconds, more preferably 1 minute (60 seconds), and even more preferably 3 minutes (180 seconds).
  • the preferred upper limit of the time ta is 120 minutes, more preferably 60 minutes.
  • the diffusion step (S40) is a well-known step in the vacuum carburizing treatment method.
  • the diffusion step (S40) the supply of the carburized gas to the vacuum carburizing furnace is stopped, and the steel material is held at the carburizing temperature Tc for a predetermined time.
  • the carbon that has entered the steel material in the carburizing step (S30) is diffused inside the steel material. As a result, the carbon concentration of the surface layer increased in the carburizing step (S30) decreases, and the carbon concentration of a predetermined depth increases.
  • nitrogen gas is introduced into the vacuum carburizing furnace and vacuum exhaust is performed by a vacuum pump to create a nitrogen atmosphere of 1000 Pa or less, or to create a vacuum.
  • the vacuum is, for example, 10 Pa or less.
  • the holding time in the diffusion step (S40) is appropriately set according to the target carbon concentration of the surface layer of the steel material after the vacuum carburizing treatment step. Therefore, the holding time in the diffusion step (S40) is not particularly limited.
  • the quenching step (S50) In the quenching step (S50), the steel material for which the carburizing step (S30) and the diffusion step (S40) have been completed is held at the quenching temperature (Ts) for a predetermined time, and then rapidly cooled (quenched). As a result, the surface layer portion of the steel material having an increased C concentration is transformed into martensite to form a hardened layer.
  • the quenching step (S50) is a well-known step in the vacuum carburizing treatment method.
  • the steel material after the diffusion step (S40) is cooled to the quenching temperature Ts.
  • the cooling rate in this case is not particularly limited. Considering the processing time of the vacuum carburizing process, it is preferable that the cooling rate is high. The preferred cooling rate is 0.02 to 30.00 ° C./sec.
  • the cooling rate referred to here is the temperature difference between the carburizing temperature Tc and the quenching temperature Ts divided by the cooling time.
  • the steel material may be cooled by allowing it to cool under vacuum, or the steel material may be cooled by gas cooling.
  • the steel material is allowed to cool under vacuum, it is preferably allowed to cool at a pressure of 100 Pa or less.
  • gas cooling in cooling it is preferable to use an inert gas as the cooling gas.
  • the inert gas for example, nitrogen gas and / or helium gas is preferably used.
  • the inert gas it is particularly preferable to use inexpensively available nitrogen gas.
  • Quenching temperature Ts is not particularly limited as long as A 3 transformation point (A r3 transformation point) or more.
  • the preferred lower limit of the quenching temperature Ts is 800 ° C., more preferably 820 ° C., and even more preferably 850 ° C.
  • the preferred upper limit of the quenching temperature Ts is 1130 ° C., more preferably 1100 ° C., still more preferably 950 ° C., still more preferably 900 ° C., still more preferably 880 ° C.
  • a known quenching method is used as the quenching method in the quenching step (S50).
  • the quenching method is, for example, gas cooling, water cooling, or oil cooling.
  • the theoretical carburized gas flow rate FT for the steel material to be vacuum carburized is used.
  • the carburizing step (S30) is divided into an early carburizing step S1 and a late carburizing step S2 at the first time after the start of the carburizing step when the acetylene partial pressure becomes 0.8 times or more the hydrogen partial pressure.
  • the actual carburized gas flow rate FR is adjusted so that the condition I is satisfied in the early carburizing step S1 and the conditions II and III are satisfied in the late carburizing step S2. As a result, it is possible to suppress the occurrence of carburizing variation in the steel material after the vacuum carburizing treatment.
  • the vacuum carburizing treatment method of this embodiment may further include other steps.
  • the vacuum carburizing treatment method may include a tempering step after the quenching step (S50). It suffices to carry out the tempering process under well-known conditions.
  • the tempering step the steel material is held at a temperature equal to or lower than the Ac1 transformation point for a predetermined time, and then cooled.
  • the carburizing step (S30) and the diffusion step (S40) may be repeated a plurality of times.
  • the time ta and the theoretical carburized gas flow rate FT are determined for each carburizing step (S30).
  • the method for manufacturing a carburized part of the present embodiment includes a step of manufacturing a carburized part by carrying out the above-mentioned vacuum carburizing treatment method on a steel material.
  • the carburized parts manufactured by the above steps variations in carburizing can be suppressed.
  • the effect of the vacuum carburizing treatment method of the present embodiment will be described more specifically by way of examples.
  • the conditions in the following examples are one condition example adopted for confirming the feasibility and effect of the vacuum carburizing treatment method of the present embodiment. Therefore, the vacuum carburizing treatment method of the present embodiment is not limited to this one-condition example.
  • a steel pipe for mechanical structure (hereinafter referred to as a steel pipe) having a chemical composition corresponding to SCM415 specified in JIS G 4053 (2008) and a round bar corresponding to SCM415 were prepared.
  • the C content of the steel pipe and the round bar of each test number was 0.15% by mass.
  • the diameter of the steel pipe was 34 mm, the wall thickness was 4.5 mm, and the length was 110 mm.
  • the diameter of the round bar was 26 mm and the length was 70 mm.
  • the evaluation of the vacuum carburizing treatment was performed with a round bar, and the steel pipe was used as a dummy material for investigating the variation in carburizing depending on the position of the round bar in the vacuum carburizing furnace.
  • the total surface area (m 2 ) of the round bar and steel pipe vacuum carburized in each test number was defined as the surface area of the steel material (m 2).
  • the surface area of the steel material was calculated by the following formula.
  • Surface area of steel material surface area per steel pipe x number of steel pipes + surface area per round bar x number of round bars
  • Table 1 shows the surface area of the obtained steel material. In test numbers 1 to 5, 10 to 13, 15 and 16, 18 to 21, 248 steel pipes and 3 round bars were used. In test number 6, 496 steel pipes and 3 round bars were used. In test numbers 7-9, 14 and 17, 124 steel pipes and 3 round bars were used.
  • a diffusion simulation using the diffusion equation was performed to obtain the theoretical carburized gas flow rate. Specifically, it was divided into a plurality of cells having a thickness of 2 ⁇ m or more in the thickness direction of the round bar and the steel pipe.
  • the step time in the diffusion simulation was set to 0.002 to 0.02 seconds.
  • the equilibrium composition in the equilibrium state with graphite on the surface at the carburizing temperature was obtained by thermodynamic calculation. Furthermore, the equilibrium composition inside the steel material at the carburizing temperature, the chemical potential of carbon, and the mobility of carbon were determined.
  • the trade name Pandat TM was used for the thermodynamic calculation. Further, the database used the trade name PanFe TM.
  • the target value of carbon concentration on the surface of the steel pipe and round bar was set to 0.70% by mass, and the target value of carbon concentration at a depth of 1.0 mm from the surface was set to 0.40% by mass.
  • FT S ⁇ A / ⁇ t (6)
  • A is the carburized gas flow rate (NL / min) per 1 m 2 defined by the formula (7)
  • t is the time (minute) from the start of carburizing.
  • S indicates the surface area of the steel material (m 2 ).
  • A a ⁇ T 2 + b ⁇ T + c (7)
  • a 8.64 ⁇ 10-5
  • b ⁇ 0.141
  • c 59.0.
  • the actual vacuum carburizing treatment was carried out by the following method.
  • a basket made of a fully carburized stainless steel material (SUS316 specified in JIS G 4303 (2012)) was prepared.
  • the above-mentioned number of steel pipes were arranged evenly in an upright position in the car, and three round bars were placed in an upright state in the center of the car, in front of the left side of the car, and in the back right of the car.
  • the round bar was used as a test material
  • the steel pipe was used as a dummy material for confirming the occurrence of carburizing variation due to the arrangement location of the round bar.
  • a car with steel materials (steel pipes and round bars) was inserted into a vacuum carburizing furnace, and vacuum carburizing was performed. Then, carburized parts of test numbers 1 to 21 were obtained.
  • the conditions for the vacuum carburizing treatment were as shown in Table 1.
  • vacuum carburizing treatment was carried out as follows.
  • the pressure in the furnace was kept below 10 Pa.
  • the round bars of each test number were heated to the carburizing temperature Tc shown in Table 1.
  • a soaking step was carried out. In the soaking step, the steel material (round bar) was held for 60 minutes at the carburizing temperature Tc.
  • a carburizing process was carried out.
  • acetylene was supplied as a carburizing gas into the vacuum carburizing furnace.
  • the carburized gas pressure in the carburizing step was kept below 1 kPa.
  • the completion time ta (minutes) of the carburizing step was as shown in Table 1.
  • the carburizing time in the carburizing step and the diffusion time in the diffusion step were adjusted with the goal of setting the carbon concentration of the round bar to 0.40% by mass at a depth of 1.0 mm.
  • the gas in the atmosphere in the vacuum carburizing furnace was analyzed with a quadrupole mass analyzer to continuously measure the hydrogen partial pressure and the acetylene partial pressure.
  • the mass-to-charge ratio (m / z) of hydrogen was set to 2, and the mass-to-charge ratio of acetylene was set to 26.
  • the analysis time was 0.5 seconds and the analysis interval was 4 seconds. Based on the obtained hydrogen partial pressure and acetylene partial pressure, the time t0 (the first time when the acetylene partial pressure becomes 0.8 times or more the hydrogen partial pressure) was determined.
  • FIG. 9 is a diagram showing changes over time in the actual carburized gas flow rate FR in the carburizing steps of test numbers 1, 5, 7 to 12.
  • FA was FT ta / 10 or more and FT 4 or less.
  • the actual carburized gas flow rate FR was FT ta / 10 or more and FT 4 or less in the early carburizing step S1. Further, in the late carburizing step S2, the actual carburized gas flow rate FR in the period from time t0 to time 4t0 was FA ⁇ (t0 / t) or more and FA or less. Further, the actual carburized gas flow rate FR from time 4t0 to time ta was FA ⁇ (t0 / t) or more and 2FA ⁇ (t0 / t) or less.
  • FIG. 10 is a diagram showing changes over time in the actual carburized gas flow rate FR in the carburizing steps of test numbers 2 to 4 and 6.
  • FA was FT ta / 10 or more and FT 4 or less.
  • the actual carburized gas flow rate FR was kept constant as FA until the time ts before the time t0 was exceeded and the time 4t0 was reached.
  • the time ts in the period from time t0 to time 4t0 in FIG. 10 was later than the time ts in the period from time t0 to time 4t0 in FIG.
  • the actual carburized gas flow rate FR was FT ta / 10 or more and FT 4 or less in the early carburizing step S1.
  • the actual carburized gas flow rate FR in the period from time t0 to time 4t0 was FA ⁇ (t0 / t) or more and FA or less.
  • the actual carburized gas flow rate FR from time 4t0 to time ta was FA ⁇ (t0 / t) or more and 2FA ⁇ (t0 / t) or less.
  • FIG. 11 is a diagram showing changes over time in the actual carburized gas flow rate FR in the carburizing steps of test numbers 13 and 14.
  • FT ta / 10 the actual carburized gas flow rate FR
  • the partial pressure of acetylene in the vacuum carburizing furnace was not more than 0.8 times the partial pressure of hydrogen. Therefore, t0 was not specified during the vacuum carburizing treatment.
  • FIG. 12 is a diagram showing changes over time in the actual carburized gas flow rate FR in the carburizing steps of test numbers 15 to 17.
  • FT ta / 10 or more and FT 4 or less It was.
  • the actual carburized gas flow rate FR starts to gradually decrease, and the actual carburized gas flow rate FR becomes FA ⁇ ⁇ (ts / t). It was adjusted to be. Therefore, during the carburizing step, the partial pressure of acetylene in the vacuum carburizing furnace did not become 0.8 times or more the partial pressure of hydrogen. Therefore, t0 was not specified during the vacuum carburizing treatment.
  • FIG. 13 is a diagram showing the time course of the actual carburized gas flow rate FR in the carburizing step of test number 18.
  • FT ta / 10 or more and FT 4 or less was FT ta / 10 or more and FT 4 or less.
  • the actual carburized gas flow rate FR was kept constant as FA until the time ts that exceeded the time t0 and exceeded the time 4t0.
  • the actual carburizing gas flow rate FR is FT ta / 10 or more and FT 4 or less in the early carburizing step S1, and the actual carburizing in the period from time t0 to time 4t0 in the late carburizing step S2.
  • the gas flow rate FR was FA ⁇ (t0 / t) or more and FA or less.
  • the actual carburized gas flow rate FR from time 4t0 to time ta exceeded 2FA ⁇ (t0 / t).
  • FIG. 14 is a diagram showing the time course of the actual carburized gas flow rate FR in the carburizing step of test number 19.
  • FT ta / 10 the actual carburized gas flow rate FR after that was made constant by FA.
  • the partial pressure of acetylene in the vacuum carburizing furnace did not become 0.8 times or more the partial pressure of hydrogen during the carburizing step. Therefore, t0 was not specified during the vacuum carburizing treatment.
  • FIG. 15 is a diagram showing the time course of the actual carburized gas flow rate FR in the carburizing step of test number 20.
  • FT ta / 10 or more and FT 4 or less was FT ta / 10 or more and FT 4 or less.
  • the actual carburized gas flow rate FR was kept constant as FA until the time ts exceeding the time t0 and less than the time 4ta.
  • the actual carburized gas flow rate FR was less than FA ⁇ (t0 / t) in the late carburizing step S2.
  • FIG. 16 is a diagram showing the time course of the actual carburized gas flow rate FR in the carburizing step of test number 21.
  • FT ta / 10 or more and FT 4 or less was FT ta / 10 or more and FT 4 or less.
  • the actual carburized gas flow rate FR was kept constant as FA until the time ts exceeding the time t0 and less than the time 4ta.
  • the actual carburized gas flow rate FR was reduced.
  • the time 4ta and the time ta there was a period in which the actual carburized gas flow rate FR exceeded 2FA ⁇ (t0 / t).
  • the actual carburized gas flow rate was adjusted and measured using a flow meter (manufactured by Cofflock Co., Ltd., trade name: mass flow controller D3665).
  • the diffusion step was carried out on the round bar at the diffusion time (minutes) shown in Table 1, and the carbon that had penetrated into the round bar was diffused into the round bar.
  • the diffusion step was carried out at a pressure in the furnace of 10 Pa or less while maintaining the carburizing temperature.
  • the diffusion time (minutes) was as shown in Table 1.
  • the round bar was cooled to 860 ° C. Then, it was held at the quenching temperature (860 ° C.) for 30 minutes. After holding, the round bar was immersed in oil at 120 ° C. and oil-quenched. The round bar after quenching was tempered. The tempering temperature was 170 ° C., and the holding time at the tempering temperature was 2 hours.
  • the six carbon concentrations from the surface of the carburized part arranged at the center of the car to 0.30 mm were defined as carbon concentrations A1 to A6 (mass%) in order from the surface.
  • the six carbon concentrations up to 0.30 mm from the surface of the carburized parts arranged at the front left side of the car were defined as carbon concentrations B1 to B6 (mass%) in order from the surface.
  • the six carbon concentrations from the surface of the carburized parts arranged at the back right of the car to 0.30 mm were defined as carbon concentrations C1 to C6 (mass%) in order from the surface. Then, in the three carburized parts, the difference between the maximum value and the minimum value of the carbon concentration obtained at the same depth position was obtained.
  • the maximum value and the minimum value were selected from the carbon concentrations A1, B1, and C1 in the region from the surface to a depth of 0.05 mm, and the difference value of the carbon concentration was defined as ⁇ 1.
  • the maximum value and the minimum value were selected from the carbon concentrations A2, B2, and C2 in the region from the surface to the depth position of 0.05 mm to 0.10 mm, and the difference value of the carbon concentration was defined as ⁇ 2.
  • ⁇ 1 to ⁇ 6 were obtained, and the arithmetic mean value of ⁇ 1 to ⁇ 6 was defined as “surface carbon concentration difference” (mass%).
  • the obtained results are shown in the "Surface carbon concentration difference (mass%)" column of Table 1.
  • carburizing depth the depth of the region where the carbon concentration is 0.40% by mass or more.
  • the average of the difference between the maximum value and the minimum value of the carburizing depth obtained from each upper end surface test piece was defined as "0.40 mass% depth difference" (mm).
  • the obtained results are shown in the "0.40 mass% depth difference (mm)" column of Table 1.
  • the actual carburized gas flow rate FR was FT ta / 10 or more and FT 4 or less in the early carburizing step S1. Further, in the late carburizing step S2, the actual carburized gas flow rate FR was FA ⁇ ⁇ (t0 / t) or more and FA or less in the period of time t0 to 4t0. Further, in the late carburizing step S2, the actual carburized gas flow rate FR was FA ⁇ ⁇ (t0 / t) or more and 2FA ⁇ ⁇ (t0 / t) or less in the period from time 4t0 to time ta.
  • the average carbon concentration of the surface layer was 0.680 mass% or more, the surface carbon concentration difference was 0.030 mass% or less, and the depth difference of 0.40 mass% was 0.05 mm or less. That is, the carburizing variation of the carburized parts was small.
  • test numbers 13 and 14 as shown in FIGS. 11 and 1, the actual carburized gas flow rate (FA) in the early carburizing step was less than FT ta / 10. Therefore, the average carbon concentration in the surface layer was less than 0.680% by mass, and carburizing was not sufficiently performed.
  • FA carburized gas flow rate
  • the actual carburized gas flow rate (FA) at the start of carburizing was FT ta / 10 or more and FT 4 or less, but the acetylene partial pressure was 0 of the hydrogen partial pressure.
  • the actual carburized gas flow rate FR was gradually reduced before it became more than 0.8 times. Therefore, the average carbon concentration in the surface layer was less than 0.680% by mass, and carburizing was not sufficiently performed.
  • test number 18 as shown in FIG. 13 and Table 1, the time ts for gradually reducing the actual carburized gas flow rate FR was later than the time 4t0.
  • the actual carburized gas flow rate FR after the gradual decrease exceeded 2FA ⁇ ⁇ (t0 / t).
  • the difference in carbon concentration in the surface layer exceeded 0.030% by mass, and the carburizing variation of the carburized parts was large.
  • test number 19 as shown in FIG. 14 and Table 1, the actual carburized gas flow rate FR was constant at a value FA of less than FT ta / 10. Therefore, the 0.40 mass% depth difference exceeded 0.05 mm, and the carburizing variation of the carburized parts was large.
  • test number 20 the value FA of the actual carburizing gas flow rate at the start of carburizing was FT ta / 10 or more and FT 4 or less, but the actual carburizing was performed between time 4t0 and time ta. There was a period during which the gas flow rate FR was less than FA ⁇ ⁇ (t0 / t). Therefore, the average carbon concentration in the surface layer was less than 0.680% by mass, and carburizing was not sufficiently performed. Further, the difference in surface carbon concentration exceeded 0.030% by mass, the difference in depth of 0.40% by mass exceeded 0.05 mm, and the carburizing variation of the carburized parts was large.
  • test number 21 as shown in FIG. 16 and Table 1, the value FA of the actual carburizing gas flow rate at the start of carburizing was FT ta / 10 or more and FT 4 or less, but the actual carburizing was performed between time 4t0 and time ta. There was a period when the gas flow rate FR exceeded 2FA ⁇ ⁇ (t0 / t). Therefore, the difference in carbon concentration in the surface layer exceeded 0.030% by mass, and the carburizing variation of the carburized parts was large.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Solid-Phase Diffusion Into Metallic Material Surfaces (AREA)

Abstract

Provided is a vacuum carburization treatment method in which variations in carburization can be inhibited. In a preceding carburization step of the vacuum carburization treatment method according to an embodiment of the present invention, an actual carburization gas flow rate is not less than a theoretical carburization gas flow rate at time ta/10, where ta represents time at which the carburization step has been completed, and is not more than a theoretical carburization gas flow rate four seconds after the start of the preceding carburization step. In a subsequent carburization step, an actual carburization gas flow rate during a period of time from time t0 to time 4t0 is FA√(t0/t) to FA, and an actual carburization gas flow rate during a period of time from time 4t0 to time ta is FA√(t0/t) to 2FA√(t0/t), where t0 represents time at which the partial pressure of acetylene after the start of the carburization step first becomes not less than 0.8 times of the partial pressure of hydrogen, and FA represents an actual carburization gas flow rate at the start of the preceding carburization step.

Description

真空浸炭処理方法及び浸炭部品の製造方法Vacuum carburizing method and manufacturing method of carburized parts
 本発明は、真空浸炭処理方法及び浸炭部品の製造方法に関する。なお、本明細書において、浸炭処理された鋼部品を、「浸炭部品」と称する。 The present invention relates to a vacuum carburizing treatment method and a method for manufacturing carburized parts. In this specification, the carburized steel parts are referred to as "carburized parts".
 高い面疲労強度が求められる鋼部品は、鋼材に対して表面硬化処理を実施して製造される。表面硬化処理方法の一つに、真空浸炭処理方法がある。真空浸炭処理方法は、浸炭工程と拡散工程とを備える。浸炭工程では、炭化水素ガスである浸炭ガスを導入して、浸炭温度に加熱された鋼材の表面の炭素濃度を高める。炭化水素ガスはたとえば、アセチレンやプロパン等である。拡散工程では、浸炭工程後、浸炭ガスの導入を停止して、鋼材の表層の深さ方向に炭素を拡散させる。浸炭工程及び拡散工程の時間等を調整することにより、鋼材の表層の炭素濃度を制御する。 Steel parts that require high surface fatigue strength are manufactured by subjecting steel materials to surface hardening treatment. One of the surface hardening treatment methods is a vacuum carburizing treatment method. The vacuum carburizing treatment method includes a carburizing step and a diffusion step. In the carburizing step, a carburizing gas, which is a hydrocarbon gas, is introduced to increase the carbon concentration on the surface of the steel material heated to the carburizing temperature. The hydrocarbon gas is, for example, acetylene, propane, or the like. In the diffusion step, after the carburizing step, the introduction of the carburized gas is stopped to diffuse carbon in the depth direction of the surface layer of the steel material. The carbon concentration in the surface layer of the steel material is controlled by adjusting the time of the carburizing step and the diffusion step.
 しかしながら、浸炭ガスである炭化水素ガスは熱力学的に不安定である。そのため、浸炭温度が高い場合、浸炭ガスは炭素及び水素等に分解しやすい。浸炭温度が高い場合さらに、浸炭ガス分子は活発に運動する。活発な運動により、浸炭ガス分子同士が高速で衝突し、浸炭ガスが分解する。浸炭ガスの分解により、煤やタールが発生する。この場合、表面炭素濃度及び浸炭深さがばらつく。そのため、浸炭部品の表層を一定の品質に保つことができない。そのため、真空浸炭処理方法には、浸炭部品の表面の炭素濃度のばらつき、及び、表層の浸炭深さのばらつきの抑制が求められる。以降の説明では、浸炭部品における表面の炭素濃度のばらつき、及び、浸炭部品の表層の浸炭深さのばらつきを「浸炭ばらつき」という。 However, the hydrocarbon gas, which is a carburized gas, is thermodynamically unstable. Therefore, when the carburizing temperature is high, the carburized gas is easily decomposed into carbon, hydrogen, and the like. When the carburizing temperature is high, the carburized gas molecules move actively. Due to the vigorous movement, the carburized gas molecules collide with each other at high speed, and the carburized gas decomposes. Soot and tar are generated by the decomposition of carburized gas. In this case, the surface carbon concentration and carburizing depth vary. Therefore, the surface layer of the carburized parts cannot be maintained at a constant quality. Therefore, the vacuum carburizing treatment method is required to suppress variations in the carbon concentration on the surface of the carburized parts and variations in the carburizing depth of the surface layer. In the following description, the variation in the carbon concentration on the surface of the carburized part and the variation in the carburizing depth of the surface layer of the carburized part are referred to as "carburizing variation".
 浸炭ばらつきを抑制する技術が、特開平8-325701号公報(特許文献1)、特開2016-148091号公報(特許文献2)、特開2002-173759号公報(特許文献3)、特開2005-350729号公報(特許文献4)、及び、特開2012-7240号公報(特許文献5)に提案されている。 Techniques for suppressing variation in carburization include JP-A-8-325701 (Patent Document 1), JP-A-2016-148091 (Patent Document 2), JP-A-2002-173759 (Patent Document 3), and JP-A-2005. It is proposed in Japanese Patent Application Laid-Open No. 350729 (Patent Document 4) and Japanese Patent Application Laid-Open No. 2012-7240 (Patent Document 5).
 特許文献1に記載された真空浸炭処理方法は、鋼材からなるワークを、真空浸炭炉の加熱室内で真空加熱するとともに、加熱室内に浸炭ガスを供給して浸炭処理を行う。この真空浸炭処理方法では、浸炭ガスとしてガス状の鎖式不飽和炭化水素を使用する。そして、加熱室内を1kPa以下の真空状態として浸炭処理を実施する。これにより、煤の発生を抑えつつ、均一に浸炭できる、と特許文献1には記載されている。 In the vacuum carburizing treatment method described in Patent Document 1, a work made of a steel material is vacuum-heated in a heating chamber of a vacuum carburizing furnace, and a carburizing gas is supplied to the heating chamber to perform the carburizing treatment. In this vacuum carburizing method, a gaseous chain unsaturated hydrocarbon is used as the carburizing gas. Then, the carburizing treatment is carried out in a vacuum state of 1 kPa or less in the heating chamber. It is described in Patent Document 1 that this makes it possible to uniformly carburize while suppressing the generation of soot.
 特許文献2に記載された真空浸炭処理方法では、減圧した雰囲気の浸炭室に浸炭ガスを噴射することにより、浸炭室に配置した被処理物を浸炭する。この真空浸炭処理方法では、浸炭室へ噴射する浸炭ガスのガス噴射量を、被処理物の浸炭室における荷姿状態での容積と、浸炭室の体積と、被処理物の総表面積と、浸炭ガスの種類に基づき設定される定数と、に基づいて算出する。そして、算出されたガス噴射量の浸炭ガスを、浸炭室に噴射する。これにより、スポット状の過剰浸炭の発生を防ぐことができる、と特許文献2には記載されている。 In the vacuum carburizing treatment method described in Patent Document 2, the object to be treated placed in the carburizing chamber is carburized by injecting carburizing gas into the carburizing chamber in a depressurized atmosphere. In this vacuum carburizing method, the gas injection amount of the carburized gas to be injected into the carburizing chamber is the volume of the object to be carburized in the packed state, the volume of the carburizing chamber, the total surface area of the object to be carburized, and the carburizing. Calculated based on the constant set based on the type of gas. Then, the carburized gas of the calculated gas injection amount is injected into the carburizing chamber. It is described in Patent Document 2 that this can prevent the occurrence of spot-like excessive carburizing.
 特許文献3に記載された真空浸炭雰囲気ガス制御システムでは、プロパンガスを浸炭ガスとする。この制御システムでは、被浸炭処理材がセットされる真空浸炭炉内に浸炭ガスを供給する。そして、浸炭ガスの熱分解反応によって生じるカーボンが被浸炭処理材中へ固溶及び拡散することにより、被浸炭処理材の浸炭処理を行う。この制御システムでは、この熱分解反応により発生する水素ガスの分圧を浸炭処理中常時計測する。そして、その計測値に基づいて炉内に供給される浸炭ガス量をリアルタイムで調整制御する。これにより、高品質の浸炭鋼を安定的に生産できる、と特許文献3には記載されている。 In the vacuum carburized atmosphere gas control system described in Patent Document 3, propane gas is used as the carburized gas. In this control system, the carburized gas is supplied into the vacuum carburizing furnace in which the carburized material is set. Then, the carbon generated by the thermal decomposition reaction of the carburized gas is solid-solved and diffused into the carburized material to perform the carburizing treatment of the carburized material. In this control system, the partial pressure of hydrogen gas generated by this pyrolysis reaction is constantly measured during the carburizing process. Then, the amount of carburized gas supplied into the furnace is adjusted and controlled in real time based on the measured value. Patent Document 3 describes that this makes it possible to stably produce high-quality carburized steel.
 特許文献4に記載された真空浸炭処理方法では、浸炭処理に必要な浸炭ガスの理論流量Vと浸炭時間tとの関係V=f(t)を、浸炭深さと表面炭素濃度とにより、材料の内部拡散に基づいて算出する。そして、浸炭工程の浸炭前期において、理論流量Vよりも十分多くかつスーティングの発生しない浸炭時流量V1を供給する。さらに、浸炭前期に続く浸炭後期において、理論流量Vよりも少ない拡散時流量V2を供給する。これにより、煤の発生を防止しつつセメンタイトの残存を低減できる、と特許文献4には記載されている。 In the vacuum carburizing treatment method described in Patent Document 4, the relationship V = f (t) between the theoretical flow rate V of the carburized gas required for the carburizing treatment and the carburizing time t is determined by the carburizing depth and the surface carbon concentration of the material. Calculated based on internal diffusion. Then, in the early stage of carburizing in the carburizing step, the flow rate V1 at the time of carburizing, which is sufficiently larger than the theoretical flow rate V and does not cause sooting, is supplied. Further, in the latter stage of carburizing following the first stage of carburizing, a diffusion flow rate V2 smaller than the theoretical flow rate V is supplied. It is described in Patent Document 4 that this makes it possible to reduce the residual cementite while preventing the generation of soot.
 特許文献5に記載された真空浸炭方法では、被処理品内部への炭素の拡散に基づいて、浸炭処理に必要な浸炭ガスの理論流量の時間変化を求める。そして、理論流量の時間変化に基づいて、理論流量における浸炭反応により生じる水素の処理室内の全圧力に対する分圧比を理論水素分圧比と定義する。理論水素分圧比の時間変化を求め、理論水素分圧比の時間変化と、実際の浸炭処理時における処理室内の全圧力に対する水素分圧比の時間変化とを比較する。これらの近似度合いに基づいて、同一操業バッチ内における浸炭品質のばらつき度合いを判定する。これにより、浸炭部品の品質の再現性を高め、浸炭部品の品質ばらつきを低減できる、と特許文献5には記載されている。 In the vacuum carburizing method described in Patent Document 5, the time change of the theoretical flow rate of the carburized gas required for the carburizing treatment is obtained based on the diffusion of carbon into the product to be treated. Then, based on the time change of the theoretical flow rate, the partial pressure ratio of hydrogen generated by the carburizing reaction at the theoretical flow rate to the total pressure in the treatment chamber is defined as the theoretical hydrogen partial pressure ratio. The time change of the theoretical hydrogen partial pressure ratio is obtained, and the time change of the theoretical hydrogen partial pressure ratio is compared with the time change of the hydrogen partial pressure ratio with respect to the total pressure in the treatment chamber during the actual carburizing treatment. Based on these approximation degrees, the degree of variation in carburizing quality within the same operation batch is determined. It is described in Patent Document 5 that this can improve the reproducibility of the quality of the carburized parts and reduce the quality variation of the carburized parts.
特開平8-325701号公報Japanese Unexamined Patent Publication No. 8-325701 特開2016-148091号公報Japanese Unexamined Patent Publication No. 2016-148091 特開2002-173759号公報JP-A-2002-173759 特開2005-350729号公報Japanese Unexamined Patent Publication No. 2005-350729 特開2012-7240号公報Japanese Unexamined Patent Publication No. 2012-7240
 しかしながら、特許文献1~特許文献5の真空浸炭処理方法と異なる他の方法により、浸炭ばらつきを抑制できてもよい。 However, the variation in carburizing may be suppressed by another method different from the vacuum carburizing treatment methods of Patent Documents 1 to 5.
 本開示の目的は、浸炭ばらつきを抑制可能な真空浸炭処理方法及び浸炭部品の製造方法を提供することである。 An object of the present disclosure is to provide a vacuum carburizing treatment method and a method for manufacturing carburized parts capable of suppressing carburizing variation.
 本開示による真空浸炭処理方法は、
 真空浸炭炉内で鋼材に対して真空浸炭処理を実施する真空浸炭処理方法であって、
 前記鋼材を浸炭温度に加熱する加熱工程と、
 前記加熱工程後、前記鋼材を前記浸炭温度で均熱する均熱工程と、
 前記均熱工程後、アセチレンガスである浸炭ガスを前記真空浸炭炉内に供給しながら、前記鋼材を前記浸炭温度で保持する浸炭工程と、
 前記浸炭工程後、前記真空浸炭炉内への前記浸炭ガスの供給を停止し、前記鋼材を前記浸炭温度で保持する拡散工程と、
 前記拡散工程後の前記鋼材に対して焼入れを実施する焼入れ工程と、
 を備え、
 前記浸炭工程において、
 前記真空浸炭炉内に供給される前記浸炭ガスの流量を、実際浸炭ガス流量と定義し、
 前記鋼材の前記真空浸炭処理に必要な前記浸炭ガスの流量を、理論浸炭ガス流量と定義し、
 前記浸炭工程の完了時間をtaと定義し、
 前記浸炭工程の開始後、アセチレン分圧が水素分圧の0.8倍以上となる最初の時間をt0と定義したとき、
 前記浸炭工程は、
 前記真空浸炭炉内の雰囲気中の前記水素分圧及び前記アセチレン分圧を継続的に測定して前記時間t0を特定する分圧測定工程と、
 前記浸炭工程の開始から時間t0までの前期浸炭工程と、
 前記時間t0から時間taまでの後期浸炭工程と、
 を含み、
 前記前期浸炭工程では、
 前記実際浸炭ガス流量を、時間ta/10での前記理論浸炭ガス流量以上、かつ、前記浸炭工程の開始から4秒時点での前記理論浸炭ガス流量以下とし、
 前記後期浸炭工程では、
 前記前期浸炭工程の前記実際浸炭ガス流量をFAと定義し、前記浸炭工程の開始時からの時間を時間tと定義したとき、
 前記時間t0~時間4t0の期間における前記実際浸炭ガス流量を、FA√(t0/t)以上、かつ、FA以下とし、
 前記時間4t0~前記時間taまでの前記実際浸炭ガス流量を、FA√(t0/t)以上、かつ、2FA√(t0/t)以下、とする。
The vacuum carburizing method according to the present disclosure
This is a vacuum carburizing method that performs vacuum carburizing treatment on steel materials in a vacuum carburizing furnace.
A heating process that heats the steel material to the carburizing temperature,
After the heating step, a heat equalizing step of soaking the steel material at the carburizing temperature and
After the heat soaking step, a carburizing step of holding the steel material at the carburizing temperature while supplying a carburizing gas which is an acetylene gas into the vacuum carburizing furnace.
After the carburizing step, a diffusion step of stopping the supply of the carburized gas into the vacuum carburizing furnace and holding the steel material at the carburizing temperature,
A quenching step of performing quenching on the steel material after the diffusion step, and
With
In the carburizing step
The flow rate of the carburized gas supplied into the vacuum carburizing furnace is defined as the actual carburized gas flow rate.
The flow rate of the carburized gas required for the vacuum carburizing treatment of the steel material is defined as the theoretical carburized gas flow rate.
The completion time of the carburizing process is defined as ta.
When the first time after the start of the carburizing step that the acetylene partial pressure becomes 0.8 times or more the hydrogen partial pressure is defined as t0,
The carburizing step is
A partial pressure measuring step of continuously measuring the hydrogen partial pressure and the acetylene partial pressure in the atmosphere in the vacuum carburizing furnace to specify the time t0.
The early carburizing process from the start of the carburizing process to the time t0, and
The late carburizing step from time t0 to time ta,
Including
In the early carburizing process,
The actual carburized gas flow rate is set to be equal to or more than the theoretical carburized gas flow rate at time ta/10 and equal to or less than the theoretical carburized gas flow rate 4 seconds after the start of the carburizing step.
In the late carburizing step,
When the actual carburized gas flow rate of the early carburizing step is defined as FA and the time from the start of the carburizing step is defined as time t.
The actual carburized gas flow rate during the period from time t0 to time 4t0 is set to FA√ (t0 / t) or more and FA or less.
The actual carburized gas flow rate from the time 4t0 to the time ta is set to FA√ (t0 / t) or more and 2FA√ (t0 / t) or less.
 本開示による浸炭部品の製造方法は、
 前記鋼材に対して、上述の真空浸炭処理方法を実施する工程を備える。
The method for manufacturing carburized parts according to the present disclosure is as follows.
The steel material is provided with a step of carrying out the above-mentioned vacuum carburizing treatment method.
 本開示の真空浸炭処理方法は、浸炭ばらつきを抑制できる。本開示の浸炭部品の製造方法は、浸炭ばらつきが抑制された浸炭部品を製造できる。 The vacuum carburizing treatment method of the present disclosure can suppress variations in carburizing. The method for manufacturing carburized parts of the present disclosure can manufacture carburized parts in which carburizing variations are suppressed.
図1は、拡散方程式を用いた拡散シミュレーションで得られた鋼材の表層の炭素の拡散流束により算出された、理論浸炭ガス流量と時間との関係の一例を示す図である。FIG. 1 is a diagram showing an example of the relationship between the theoretical carburized gas flow rate and time calculated by the diffusion flux of carbon on the surface layer of the steel material obtained by the diffusion simulation using the diffusion equation. 図2は、従来の浸炭工程における実際浸炭ガス流量の経時変化と、理論浸炭ガス流量の経時変化を示す図である。FIG. 2 is a diagram showing the time course of the actual carburized gas flow rate in the conventional carburizing step and the time course of the theoretical carburized gas flow rate. 図3は、本実施形態による真空浸炭処理方法の浸炭工程における、実際浸炭ガス流量の経時変化(下図)と、浸炭工程における真空浸炭炉の雰囲気中のアセチレン分圧及び水素分圧の経時変化(上図)とを示す図である。FIG. 3 shows the time course of the actual carburized gas flow rate in the carburizing step of the vacuum carburizing treatment method according to the present embodiment (see the figure below) and the time course of the acetylene partial pressure and the hydrogen partial pressure in the atmosphere of the vacuum carburizing furnace in the carburizing step (see the figure below). It is a figure which shows (the above figure). 図4は、本実施形態の真空浸炭処理方法のヒートパターンの一例を示す図である。FIG. 4 is a diagram showing an example of a heat pattern of the vacuum carburizing treatment method of the present embodiment. 図5は、本実施形態の真空浸炭処理方法の前期浸炭工程でのガス流量設定値の一例を示す図である。FIG. 5 is a diagram showing an example of a gas flow rate set value in the early carburizing step of the vacuum carburizing treatment method of the present embodiment. 図6は、本実施形態の真空浸炭処理方法のガス流量設定値の一例を示す図である。FIG. 6 is a diagram showing an example of a gas flow rate set value of the vacuum carburizing treatment method of the present embodiment. 図7は、図6と異なる、本実施形態の真空浸炭処理方法のガス流量設定値の一例を示す図である。FIG. 7 is a diagram showing an example of a gas flow rate set value of the vacuum carburizing treatment method of the present embodiment, which is different from FIG. 図8は、図6及び図7と異なる、本実施形態の真空浸炭処理方法のガス流量設定値の一例を示す図である。FIG. 8 is a diagram showing an example of a gas flow rate set value of the vacuum carburizing treatment method of the present embodiment, which is different from FIGS. 6 and 7. 図9は、試験番号1、試験番号5、試験番号7~試験番号12の浸炭工程でのガス流量設定値とガス分析値との模式図である。FIG. 9 is a schematic diagram of a gas flow rate set value and a gas analysis value in the carburizing process of test numbers 1, test number 5, and test numbers 7 to 12. 図10は、試験番号2~試験番号4、試験番号6の浸炭工程でのガス流量設定値とガス分析値との模式図である。FIG. 10 is a schematic diagram of a gas flow rate set value and a gas analysis value in the carburizing process of test numbers 2 to 4 and test number 6. 図11は試験番号13、試験番号14の浸炭工程でのガス流量設定値とガス分析値との模式図である。FIG. 11 is a schematic diagram of the gas flow rate set value and the gas analysis value in the carburizing step of test numbers 13 and 14. 図12は試験番号15~試験番号17の浸炭工程でのガス流量設定値とガス分析値との模式図である。FIG. 12 is a schematic diagram of a gas flow rate set value and a gas analysis value in the carburizing process of test numbers 15 to 17. 図13は試験番号18の浸炭工程でのガス流量設定値とガス分析値との模式図である。FIG. 13 is a schematic diagram of a gas flow rate set value and a gas analysis value in the carburizing step of test number 18. 図14は試験番号19の浸炭工程でのガス流量設定値とガス分析値との模式図である。FIG. 14 is a schematic diagram of a gas flow rate set value and a gas analysis value in the carburizing step of test number 19. 図15は試験番号20の浸炭工程でのガス流量設定値とガス分析値との模式図である。FIG. 15 is a schematic diagram of a gas flow rate set value and a gas analysis value in the carburizing step of test number 20. 図16は試験番号21の浸炭工程でのガス流量設定値とガス分析値との模式図である。FIG. 16 is a schematic diagram of a gas flow rate set value and a gas analysis value in the carburizing step of test number 21.
 本発明者らは、真空浸炭処理方法における浸炭部品での浸炭ばらつきを抑制する方法について検討を行った。本発明者らは、初めに、真空浸炭炉内に供給されたにも関わらず浸炭反応を起こさずに排気される浸炭ガスが存在することに着目した。浸炭反応を起こさなかった浸炭ガスの一部は煤となり、真空浸炭処理の対象となる鋼材に付着する。煤は、炭素の供給源となる。そのため、鋼材のうち煤の付着した部分では、炭素が過剰に供給される。そのため、煤の付着により、浸炭ばらつきが生じやすくなる。一方、煤の付着を抑制するために浸炭ガス流量を過剰に少なくすれば、浸炭反応が不十分となる。この場合も、浸炭ばらつきが生じやすくなる。 The present inventors investigated a method for suppressing carburizing variation in carburized parts in the vacuum carburizing treatment method. The present inventors first focused on the existence of carburized gas that was supplied into the vacuum carburizing furnace but was exhausted without causing a carburizing reaction. A part of the carburized gas that did not cause the carburizing reaction becomes soot and adheres to the steel material to be vacuum carburized. Soot is a source of carbon. Therefore, carbon is excessively supplied to the portion of the steel material to which soot is attached. Therefore, the adhesion of soot tends to cause variations in carburizing. On the other hand, if the carburizing gas flow rate is excessively reduced in order to suppress the adhesion of soot, the carburizing reaction becomes insufficient. In this case as well, carburizing variation is likely to occur.
 以上の知見に基づいて、本発明者らは、浸炭工程において真空浸炭炉内の雰囲気から鋼材の表面に侵入する浸炭ガスの流量を理論的に規定することに着想した。本明細書において、「理論浸炭ガス流量」とは、鋼材の表面から所定の深さ位置での炭素濃度を所望の濃度にするために必要な浸炭ガス流量であって、かつ、全ての浸炭ガスが浸炭反応に用いられることを前提とした浸炭ガス流量を意味する。本発明者らは、事前に規定された理論浸炭ガス流量に基づいて実際の真空浸炭処理で真空浸炭炉に供給する浸炭ガスの流量(以下、実際浸炭ガス流量と表現する)を調整することにより、浸炭反応に寄与しない浸炭ガスの量を抑制し、かつ、浸炭反応が不足しないようにすることができ、その結果、浸炭ばらつきを抑制できると考えた。 Based on the above findings, the present inventors have come up with the idea of theoretically defining the flow rate of carburized gas that invades the surface of the steel material from the atmosphere inside the vacuum carburizing furnace in the carburizing process. In the present specification, the "theoretical carburized gas flow rate" is the carburized gas flow rate required to bring the carbon concentration at a predetermined depth position from the surface of the steel material to a desired concentration, and is all carburized gas. Means the carburized gas flow rate on the assumption that is used for the carburizing reaction. The present inventors adjust the flow rate of carburizing gas supplied to the vacuum carburizing furnace in the actual vacuum carburizing treatment (hereinafter referred to as the actual carburizing gas flow rate) based on the theoretical carburizing gas flow rate specified in advance. It was considered that the amount of carburized gas that does not contribute to the carburizing reaction can be suppressed and the carburizing reaction can be prevented from being insufficient, and as a result, the variation in carburizing can be suppressed.
 真空浸炭処理の進行に伴い、炭素濃度の勾配が緩やかになるため、鋼材表面から鋼材内部に侵入する炭素の拡散流束が減少する。炉内雰囲気から鋼材に侵入する浸炭ガス流量は、時間の経過とともに減少する。そこで、理論浸炭ガス流量は、浸炭ガスの供給開始(浸炭工程開始)からの時間の経過に伴い変動する関数となる。理論浸炭ガス流量は、拡散シミュレーションに基づいて求めることもできるし、実験により求めることもできる。以下、理論浸炭ガス流量の決定方法の一例として、拡散シミュレーションに基づく理論浸炭ガス流量の決定について説明する。ただし、理論浸炭ガス流量の決定方法は、上述のとおり、拡散シミュレーションに限定されるものではない。 As the vacuum carburizing process progresses, the gradient of carbon concentration becomes gentle, so the diffusion flux of carbon that invades the inside of the steel material from the surface of the steel material decreases. The flow rate of carburized gas entering the steel material from the atmosphere inside the furnace decreases with the passage of time. Therefore, the theoretical carburized gas flow rate is a function that fluctuates with the passage of time from the start of carburizing gas supply (start of carburizing process). The theoretical carburized gas flow rate can be obtained based on diffusion simulation or experimentally. Hereinafter, the determination of the theoretical carburized gas flow rate based on the diffusion simulation will be described as an example of the method of determining the theoretical carburized gas flow rate. However, as described above, the method for determining the theoretical carburized gas flow rate is not limited to the diffusion simulation.
 [理論浸炭ガス流量について]
 本実施形態の真空浸炭処理方法では、浸炭ガスとしてアセチレンを用いる。アセチレンの分解は、浸炭対象となる鋼材の表層での炭素の拡散により律速される。つまり、鋼材表面から鋼材内部に侵入する炭素の拡散流束が大きいほど、アセチレンの分解量が多くなる。なお、アセチレン以外の浸炭ガスで浸炭する場合には、後述するように浸炭反応以外の化学反応が想定される。したがって、本実施形態の真空浸炭処理方法に適用することは困難である。
[Theoretical carburized gas flow rate]
In the vacuum carburizing treatment method of the present embodiment, acetylene is used as the carburizing gas. The decomposition of acetylene is rate-determined by the diffusion of carbon in the surface layer of the steel material to be carburized. That is, the larger the diffusion flux of carbon that invades the inside of the steel material from the surface of the steel material, the larger the amount of decomposition of acetylene. When carburizing with a carburizing gas other than acetylene, a chemical reaction other than the carburizing reaction is assumed as described later. Therefore, it is difficult to apply it to the vacuum carburizing method of the present embodiment.
 真空浸炭処理では、鋼材中を炭素が拡散する、つまり、Fickの第1法則が成立している。真空浸炭処理により、鋼材の表面から所定の深さ位置での炭素濃度を所望の濃度にするために必要な浸炭ガス(アセチレンガス)の流量であって、全ての浸炭ガスが浸炭反応に用いられることを前提とした浸炭ガス流量を、理論浸炭ガス流量FT(t)と定義する。ここで、tは、浸炭工程の開始時からの時間である。浸炭工程の開始時とは、後述するとおり、浸炭ガスを炉内に供給を開始した時を意味する。FT(t)は、鋼材表面に侵入する炭素流量をアセチレンガス流量に換算した値に対応する。なお、以降の説明では、理論ガス流量を単に「FT」とも表記する。 In the vacuum carburizing process, carbon diffuses in the steel material, that is, the first law of Fick is established. The flow rate of carburized gas (acetylene gas) required to bring the carbon concentration at a predetermined depth from the surface of the steel material to the desired concentration by vacuum carburizing, and all the carburized gas is used for the carburizing reaction. The carburized gas flow rate on the premise of this is defined as the theoretical carburized gas flow rate FT (t). Here, t is the time from the start of the carburizing process. The start time of the carburizing process means the time when the carburizing gas is started to be supplied into the furnace as described later. FT (t) corresponds to a value obtained by converting the flow rate of carbon invading the surface of the steel material into the flow rate of acetylene gas. In the following description, the theoretical gas flow rate is also simply referred to as "FT".
 理論浸炭ガス流量FTは、例えば、鋼材表面から侵入する炭素の拡散流束J(mm・質量%/s)と、単位時間当たりの炭素濃度の変化量(∂C/∂t)とを、拡散方程式を用いた周知の拡散シミュレーションに基づいて計算することにより、算出可能である。具体的には、理論浸炭ガス流量は、次の方法で求めることができる。 The theoretical carburized gas flow rate FT diffuses, for example, the diffusion flux J (mm · mass% / s) of carbon entering from the surface of the steel material and the amount of change in carbon concentration per unit time (∂C / ∂t). It can be calculated by calculating based on a well-known diffusion simulation using an equation. Specifically, the theoretical carburized gas flow rate can be obtained by the following method.
 拡散が起こる場合(つまり、Fickの第1法則が成立している場合)、鋼材表面から侵入する炭素の拡散流束Jは式(1)で定義され、単位時間当たりの炭素濃度の変化量(∂C/∂t)は式(2)で定義される。
 J=-D(∂C/∂z) (1)
 ∂C/∂t=-∂J/∂z (2)
 ここで、Dは鋼材中の炭素の拡散係数(mm/s)である。Cは炭素の質量濃度(質量%)である。zは鋼材表面からの深さ方向への変位(mm)である。tは浸炭工程を開始してからの時間(秒)である。∂は偏微分記号である。
When diffusion occurs (that is, when the first law of Fick is established), the diffusion flux J of carbon invading from the surface of the steel material is defined by the equation (1), and the amount of change in carbon concentration per unit time (that is, when the first law of Fick is established) ∂C / ∂t) is defined by equation (2).
J = -D (∂C / ∂z) (1)
∂C / ∂t = -∂J / ∂z (2)
Here, D is the diffusion coefficient (mm 2 / s) of carbon in the steel material. C is the mass concentration (mass%) of carbon. z is the displacement (mm) in the depth direction from the surface of the steel material. t is the time (seconds) from the start of the carburizing process. ∂ is a partial derivative symbol.
 炭素濃度の変化量を化学ポテンシャルの勾配に基づいて計算すれば、炭素の拡散駆動力を厳密に取り扱うことになる。この場合、炭素の拡散流束J(mm・mol%/s)は式(3)で定義され、炭素濃度の時間変化は式(4)で定義される。
 J=-mx(∂μ/∂z) (3)
 ∂x/∂t=-∂J/∂z (4)
 ここでmは炭素の易動度(mm・mol/J・s)である。xは炭素のモル濃度(mol%)である。μは炭素の化学ポテンシャル(J/mol)である。zは深さ方向への変位(mm)である。式(4)中のtは浸炭工程を開始してからの時間(s)である。∂は偏微分記号である。
If the amount of change in carbon concentration is calculated based on the gradient of the chemical potential, the diffusion driving force of carbon will be treated strictly. In this case, the diffusion flux J (mm · mol% / s) of carbon is defined by the formula (3), and the time change of the carbon concentration is defined by the formula (4).
J = -mx (∂μ / ∂z) (3)
∂x / ∂t = -∂J / ∂z (4)
Here, m is the mobility of carbon (mm 2 · mol / J · s). x is the molar concentration of carbon (mol%). μ is the chemical potential (J / mol) of carbon. z is the displacement (mm) in the depth direction. T in the formula (4) is the time (s) from the start of the carburizing step. ∂ is a partial derivative symbol.
 ここで、炭素の拡散の駆動力は式(3)中の(∂μ/∂z)の部分である。また、真空浸炭処理におけるオーステナイト(γ)中の炭素濃度は2%以下と小さく、モル濃度と質量濃度とはほぼ比例関係にある。したがって、式(3)を質量濃度(質量%)で表記してもよい。式(3)を質量%で表記する場合、炭素の拡散流束J(mm・質量%/s)は式(5)で定義され、炭素濃度の時間変化は式(2)で定義される。
 J=-mC(∂μ/∂z) (5)
 式(5)中のCは、炭素濃度(質量%)である。
Here, the driving force for carbon diffusion is the part of (∂μ / ∂z) in the equation (3). Further, the carbon concentration in austenite (γ) in the vacuum carburizing treatment is as small as 2% or less, and the molar concentration and the mass concentration are almost proportional to each other. Therefore, the formula (3) may be expressed in terms of mass concentration (mass%). When the formula (3) is expressed in% by mass, the diffusion flux J (mm · mass% / s) of carbon is defined by the formula (5), and the time change of the carbon concentration is defined by the formula (2).
J = -mC (∂μ / ∂z) (5)
C in the formula (5) is a carbon concentration (mass%).
 上記のFickの第1法則(式(1)、(3)及び式(5))、及び、Fickの第2法則(式(2)及び式(4))を用いて、理論浸炭ガス流量FTを算出するための拡散シミュレーションを、次の方法で行う。 Theoretical carburized gas flow rate FT using the first law of Fick (formulas (1), (3) and (5)) and the second law of Fick (formulas (2) and (4)). The diffusion simulation for calculating is performed by the following method.
 浸炭ガスにアセチレンを用いた真空浸炭処理では、鋼材の表面において、浸炭ガスの分解により、鋼材の表面から鋼材に炭素が侵入する。浸炭工程時の鋼材表面では、黒鉛と平衡するまで鋼材中の炭素濃度が上昇すると仮定する。そこで、真空浸炭処理での鋼材表面の炭素の拡散シミュレーションでの境界条件を、「鋼材表面の炭素濃度が黒鉛と平衡する」と定義する。以上の前提で次のとおり拡散シミュレーションを実施する。 In the vacuum carburizing treatment using acetylene as the carburizing gas, carbon invades the steel material from the surface of the steel material due to the decomposition of the carburizing gas. On the surface of the steel during the carburizing process, it is assumed that the carbon concentration in the steel increases until it is in equilibrium with graphite. Therefore, the boundary condition in the carbon diffusion simulation on the steel surface in the vacuum carburizing treatment is defined as "the carbon concentration on the steel surface is in equilibrium with graphite". Based on the above assumptions, the diffusion simulation is carried out as follows.
 [拡散シミュレーションでの計算方法]
 始めに、真空浸炭処理の対象となる鋼材の表層を複数のセルで区分したメッシュデータを作成する。各セルのサイズは周知のサイズで足りる。セルのサイズはたとえば、1~500μmである。セルのサイズは鋼材の表面から深さ方向に徐々に拡大してもよい。その場合、隣り合うセルのサイズの比は0.80~1.25であり、好ましくは0.90~1.10である。ただし、セルのサイズはこれに限定されない。拡散シミュレーションを行う対象は一次元としてよい。鋼材の形状が丸棒又は円筒である場合、メッシュデータを円筒座標系とすることで一次元として取り扱うことができる。さらに、鋼材(丸棒又は円筒)の直径が鋼中の炭素の拡散距離の50倍以上であれば、平面と同じ取扱いをしてよい。ここでいう拡散距離とは√Dtである。拡散係数Dは鋼材の炭素濃度と浸炭温度とから計算する。時間t(秒)は浸炭時間(浸炭工程の実施時間)である。たとえば、JIS G 4053(2008)に規定されたSCM415を鋼材として用い、浸炭温度が950℃で浸炭時間が51分の場合、拡散距離√Dtは0.20mmとなる。この場合、鋼材の直径が10mm以上であれば、平面と同じ取扱いをしてよい。なお、JIS G 4053(2008)に規定されたSCM420を鋼材として用い、浸炭温度が950℃で浸炭時間が51分の場合、拡散距離√Dtは0.21mmとなる。また、拡散シミュレーションの解析時間(ステップ時間)を設定する。ステップ時間は特に限定されないが、たとえば、0.001~1.0秒とする。
[Calculation method in diffusion simulation]
First, mesh data is created in which the surface layer of the steel material to be vacuum carburized is divided by a plurality of cells. A well-known size is sufficient for the size of each cell. The cell size is, for example, 1 to 500 μm. The size of the cell may be gradually increased from the surface of the steel material in the depth direction. In that case, the size ratio of adjacent cells is 0.80 to 1.25, preferably 0.90 to 1.10. However, the cell size is not limited to this. The object for which the diffusion simulation is performed may be one-dimensional. When the shape of the steel material is a round bar or a cylinder, it can be treated as one dimension by using the mesh data as a cylindrical coordinate system. Further, if the diameter of the steel material (round bar or cylinder) is 50 times or more the diffusion distance of carbon in the steel, it may be treated in the same way as a flat surface. The diffusion distance here is √Dt. The diffusion coefficient D is calculated from the carbon concentration of the steel material and the carburizing temperature. The time t (seconds) is the carburizing time (carburizing step implementation time). For example, when SCM415 specified in JIS G 4053 (2008) is used as a steel material and the carburizing temperature is 950 ° C. and the carburizing time is 51 minutes, the diffusion distance √Dt is 0.20 mm. In this case, if the diameter of the steel material is 10 mm or more, it may be handled in the same way as a flat surface. When SCM420 specified in JIS G 4053 (2008) is used as a steel material and the carburizing temperature is 950 ° C. and the carburizing time is 51 minutes, the diffusion distance √Dt is 0.21 mm. In addition, the analysis time (step time) of the diffusion simulation is set. The step time is not particularly limited, but is, for example, 0.001 to 1.0 second.
 真空浸炭処理では、浸炭工程が実施され、その後、拡散工程が実施される。浸炭工程及び拡散工程のセットは、複数回実施する場合もある。たとえば、浸炭工程及び拡散工程のセットを2回実施する場合、1回目の浸炭工程を実施し、1回目の浸炭工程後に1回目の拡散工程を実施する。さらに、1回目の拡散工程後に2回目の浸炭工程を実施し、2回目の浸炭工程後に2回目の拡散工程を実施する。このように浸炭工程及び拡散工程を複数回実施する場合、各浸炭工程ごとに、前回の浸炭工程での理論浸炭ガス流量をリセットし、次の浸炭工程での理論浸炭ガス流量を新たに設定する。 In the vacuum carburizing process, a carburizing step is carried out, and then a diffusion step is carried out. The carburizing step and the diffusion step may be set multiple times. For example, when the carburizing step and the diffusion step are set twice, the first carburizing step is carried out, and the first diffusion step is carried out after the first carburizing step. Further, the second carburizing step is carried out after the first diffusion step, and the second diffusion step is carried out after the second carburizing step. When the carburizing step and the diffusion step are carried out a plurality of times in this way, the theoretical carburized gas flow rate in the previous carburizing step is reset and the theoretical carburized gas flow rate in the next carburizing step is newly set for each carburizing step. ..
 なお、n回目(nは1以上の自然数)の浸炭工程を実施した後、n回目の浸炭工程時間の1/10未満の拡散工程を挟んでn+1回目の浸炭工程を実施した場合、n回目の浸炭工程とn+1回目の浸炭工程とは、1回の浸炭工程と考える。つまり、この場合、n回目の浸炭工程で設定した理論ガス流量をリセットせずにそのままn+1回目の浸炭工程に用いる。換言すれば、n回目の浸炭工程とn+1回目の浸炭工程の間の拡散工程時間が、n回目の浸炭工程時間の1/10以上であれば、n+1回目の浸炭工程では、n回目の浸炭工程の理論浸炭ガス流量をリセットして、新たな理論浸炭ガス流量を設定する。 When the nth carburizing step (n is a natural number of 1 or more) is carried out and then the n + 1th carburizing step is carried out with a diffusion step of less than 1/10 of the nth carburizing step time, the nth time is carried out. The carburizing step and the n + 1th carburizing step are considered to be one carburizing step. That is, in this case, the theoretical gas flow rate set in the nth carburizing step is used as it is in the n + 1th carburizing step without being reset. In other words, if the diffusion process time between the nth carburizing step and the n + 1th carburizing step is 1/10 or more of the nth carburizing step time, the n + 1th carburizing step is the nth carburizing step. Reset the theoretical carburized gas flow rate of and set a new theoretical carburized gas flow rate.
 上述のとおり、鋼材表面の炭素濃度は黒鉛と平衡状態であるとする。そこで、真空浸炭処理の対象となる鋼材の化学組成に基づいて、浸炭温度における、黒鉛と平衡状態での平衡相及び平衡組成を、周知の熱力学計算により求める。真空浸炭処理の対象となる鋼材の化学組成は、C濃度の増加によって希釈されることを考慮した上で、黒鉛が平衡相として現れるまでC濃度を増加させて熱力学計算を行う。たとえば、C濃度が7質量%増加すると、鋼材自体の質量が1.07倍になる。そのため、C以外の他の元素の濃度は1/1.07倍とした化学組成に基づいて熱力学計算を行う。熱力学計算により求めた平衡相及び平衡組成により、鋼材中のC含有量、Cの化学ポテンシャル、及び、オーステナイト中に固溶する固溶C濃度を特定できる。熱力学計算には周知の熱力学計算ソフトを用いることができる。周知の熱力学計算ソフトとはたとえば、商品名Pandat(商標)である。 As mentioned above, it is assumed that the carbon concentration on the surface of the steel material is in equilibrium with graphite. Therefore, based on the chemical composition of the steel material to be vacuum carburized, the equilibrium phase and equilibrium composition in an equilibrium state with graphite at the carburizing temperature are obtained by a well-known thermodynamic calculation. The chemical composition of the steel material to be vacuum carburized is thermodynamically calculated by increasing the C concentration until graphite appears as an equilibrium phase, taking into consideration that it is diluted by an increase in the C concentration. For example, when the C concentration increases by 7% by mass, the mass of the steel material itself increases 1.07 times. Therefore, the thermodynamic calculation is performed based on the chemical composition in which the concentrations of the elements other than C are 1 / 1.07 times. From the equilibrium phase and the equilibrium composition obtained by thermodynamic calculation, the C content in the steel material, the chemical potential of C, and the solid solution C concentration dissolved in austenite can be specified. Well-known thermodynamic calculation software can be used for thermodynamic calculation. The well-known thermodynamic calculation software is, for example, the trade name Pandat ™.
 同様に、鋼材表面以外の鋼材内部においては、真空浸炭の場合、セメンタイト(θ)が析出する場合がある。この場合、鋼材中の炭素(C)が、セメンタイトとオーステナイトとに分配される。そこで、浸炭温度における、鋼材表面以外の鋼材内部の平衡相及び平衡組成を、上述の熱力学計算により求める。鋼材表面と同様に、鋼材内部においても、平衡相、平衡組成、鋼材中のC含有量、Cの化学ポテンシャル、及び、オーステナイト中に固溶する固溶C濃度を特定できる。 Similarly, cementite (θ) may precipitate inside the steel material other than the surface of the steel material in the case of vacuum carburizing. In this case, carbon (C) in the steel material is distributed to cementite and austenite. Therefore, the equilibrium phase and the equilibrium composition inside the steel material other than the steel material surface at the carburizing temperature are obtained by the above-mentioned thermodynamic calculation. Similar to the surface of the steel material, the equilibrium phase, the equilibrium composition, the C content in the steel material, the chemical potential of C, and the solid solution C concentration dissolved in austenite can be specified inside the steel material.
 鋼材中のオーステナイト中の炭素の拡散係数Dは、真空浸炭処理の対象となる鋼材を用いて予め実験により求めた数値を利用してもよいし、実験データとして報告されているデータを用いてもよい。たとえば、オーステナイト中のCの拡散係数D(m/s)として、Gray G.Tibbettsらにより提唱されたものを参考に、以下の式を用いてもよい。
 D=4.7×10-5×exp(-1.6×C-(37000-6600×C)/1.987/T)
 ここで、式中の「C」はオーステナイト中の固溶C濃度(質量%)であり、Tは浸炭温度(K)である。
For the diffusion coefficient D of carbon in austenite in the steel material, a numerical value obtained in advance by an experiment using the steel material to be vacuum carburized may be used, or data reported as experimental data may be used. Good. For example, as the diffusion coefficient D (m 2 / s) of C in austenite, Gray G. et al. The following equation may be used with reference to the one proposed by Tibbetts et al.
D = 4.7 × 10 -5 × exp (-1.6 × C- (37000-6600 × C) /1.987 / T)
Here, "C" in the formula is the solid solution C concentration (mass%) in austenite, and T is the carburizing temperature (K).
 鋼材中のオーステナイト中の炭素の易動度m(m/s)は、拡散係数Dと熱力学計算とから求めることができる。易動度mを定式化したものが以下の式である。
 m=1.54×10-15exp(-1.61×C-(17300-2920×C)/T)
 ここで、式中の「C」はオーステナイト中の固溶C濃度(質量%)であり、Tは浸炭温度(K)である。
The mobility m (m 2 / s) of carbon in austenite in steel can be obtained from the diffusion coefficient D and thermodynamic calculation. The following formula is a formulation of the mobility m.
m = 1.54 × 10 -15 exp (-1.61 × C- (17300-2920 × C) / T)
Here, "C" in the formula is the solid solution C concentration (mass%) in austenite, and T is the carburizing temperature (K).
 次に、真空浸炭処理により得られる表層のC濃度を設定する。具体的には、最表面のセルでの目標とする炭素濃度と、所定深さでの目標とする炭素濃度とを設定する。さらに、初期値として、全てのセルでの固溶C濃度=鋼材(芯部)の化学組成のC濃度(C)とし、全てのセルにおいてセメンタイト析出量を0とする。 Next, the C concentration of the surface layer obtained by the vacuum carburizing treatment is set. Specifically, the target carbon concentration in the outermost cell and the target carbon concentration at a predetermined depth are set. Further, as an initial value, the solid solution C concentration in all cells = the C concentration (C 0 ) of the chemical composition of the steel material (core), and the cementite precipitation amount is 0 in all cells.
 以上の前提条件に基づいて、ステップ時間ごとに、次の計算を実施する。
 (A)各セルでの炭素濃度と、熱力学計算結果とに基づいて、浸炭温度での各セルでのオーステナイト中の固溶C濃度(つまり、拡散するCの濃度)を特定する。このとき、セメンタイト中のCは固定され、オーステナイト中の固溶Cのみが拡散すると仮定する。
 (B)各セルにおいて、特定した固溶C濃度に基づいて、式(1)、式(3)又は式(5)を用いて、差分法により、各セルでの拡散流束Jを求める。このとき、上述のとおり、鋼材表面の固溶炭素濃度は、黒鉛と平衡状態時の固溶限界の固溶炭素濃度(Csat)とする。鋼材表面からの拡散流束Jに基づいて、浸炭効率を100%として、アセチレン流量を求める。求めたアセチレン流量を、そのステップ時間での理論浸炭ガス流量と定義する。
 (C)求めた各セルでの拡散流束Jに基づいて、そのステップ時間経過時点での各セルのC濃度を決定する。
 (D)熱力学計算結果に基づいて、平衡相としてセメンタイトが生成するか判断する。なお、セメンタイトの生成に必要な時間は無視する(つまり、次のステップ時間での(A)を決定する)。
 (E)浸炭工程を2回以上行う場合、浸炭工程の間の拡散工程のシミュレーションを行い、その後浸炭工程のシミュレーションを行う。拡散工程においては、鋼材表面からの拡散流束Jをゼロとして、(A)~(D)の計算を行う。
Based on the above preconditions, the following calculation is performed for each step time.
(A) Based on the carbon concentration in each cell and the thermodynamic calculation result, the solid solution C concentration (that is, the concentration of diffused C) in austenite in each cell at the carburizing temperature is specified. At this time, it is assumed that C in cementite is fixed and only solid solution C in austenite diffuses.
(B) In each cell, the diffusion flux J in each cell is obtained by the difference method using the formula (1), the formula (3) or the formula (5) based on the specified solid solution C concentration. At this time, as described above, the solid solution carbon concentration on the surface of the steel material is set to the solid solution carbon concentration (C sat ) at the solid solution limit in an equilibrium state with graphite. Based on the diffusion flux J 0 from the surface of the steel material, the acetylene flow rate is determined with the carburizing efficiency as 100%. The obtained acetylene flow rate is defined as the theoretical carburized gas flow rate at that step time.
(C) Based on the obtained diffusion flux J in each cell, the C concentration of each cell at the time when the step time elapses is determined.
(D) Based on the thermodynamic calculation result, it is determined whether cementite is generated as an equilibrium phase. The time required for cementite formation is ignored (that is, (A) is determined in the next step time).
(E) When the carburizing step is performed twice or more, the diffusion step between the carburizing steps is simulated, and then the carburizing step is simulated. In the diffusion step, calculations (A) to (D) are performed with the diffusion flux J 0 from the surface of the steel material as zero.
 以上の計算をステップ時間ごとに求め、浸炭工程時における鋼材の単位表面積あたりの鋼材表面からの炭素の拡散流束J(t)を求める。そして、鋼材の単位表面積あたりの拡散流束J(t)をアセチレンガス流量に換算し、さらに、真空浸炭処理の対象となる鋼材の表面積S(m)を乗じて、時間tでの理論浸炭ガス流量FT(t)を求める。横軸を浸炭開始時からの経過時間(浸炭時間)とし、縦軸を理論浸炭ガス流量FTとする図において、各浸炭時間における理論浸炭ガス流量FTをプロットすることにより、理論浸炭ガス流量FTを理論浸炭ガス流量曲線として表すことができる。図1は、上述の拡散シミュレーションで得られた鋼材の表層の炭素の拡散流束により算出された、理論浸炭ガス流量と時間との関係の一例を示す図である。図1中の●は、各時間における理論浸炭ガス流量FTを示す。図1中の曲線C1.00は、理論浸炭ガス流量曲線を示す。 The above calculation is obtained for each step time, and the diffusion flux J 0 (t) of carbon from the surface of the steel material per unit surface area of the steel material during the carburizing step is obtained. Then, the diffusion flux J 0 (t) per unit surface surface of the steel material is converted into the acetylene gas flow rate, and further multiplied by the surface surface S (m 2 ) of the steel material to be vacuum carburized, the theory at time t. The carburized gas flow rate FT (t) is obtained. In the figure in which the horizontal axis is the elapsed time from the start of carburizing (carburizing time) and the vertical axis is the theoretical carburized gas flow rate FT, the theoretical carburized gas flow rate FT is plotted by plotting the theoretical carburized gas flow rate FT at each carburizing time. It can be expressed as a theoretical carburized gas flow rate curve. FIG. 1 is a diagram showing an example of the relationship between the theoretical carburized gas flow rate and time calculated by the diffusion flux of carbon on the surface layer of the steel material obtained by the above diffusion simulation. ● in FIG. 1 indicates the theoretical carburized gas flow rate FT at each time. Curve C 1.00 in FIG. 1 shows a theoretical carburized gas flow rate curve.
 理論浸炭ガス流量曲線C1.00の近似式は、式(6)で表すことができる。
 FT=S×A/√t (6)
 ここで、FTは理論浸炭ガス流量(NL/分)である。式(6)中のAは、式(7)で表現することができる。式(6)中のtは、浸炭工程開始時からの時間(分)である。
 A=a×T+b×T+c (7)
 式(7)中のa、b及びcは鋼材の化学組成によって決まる定数であり、Tは浸炭温度(℃)である。たとえば、鋼材がJIS G 4053(2008)に規定されたSCM420である場合、上述の拡散シミュレーションで求めると、a=8.52×10-5であり、b=-0.140であり、c=58.2である。鋼材がJIS G 4053(2008)に規定されたSCM415である場合、上述の拡散シミュレーションで求めると、a=8.64×10-5であり、b=-0.141、c=59.0である。
The approximate expression of the theoretical carburized gas flow rate curve C 1.00 can be expressed by the equation (6).
FT = S × A / √t (6)
Here, FT is the theoretical carburized gas flow rate (NL / min). A in the formula (6) can be expressed by the formula (7). T in the formula (6) is the time (minutes) from the start of the carburizing process.
A = a × T 2 + b × T + c (7)
In the formula (7), a, b and c are constants determined by the chemical composition of the steel material, and T is the carburizing temperature (° C.). For example, when the steel material is SCM420 specified in JIS G 4053 (2008), a = 8.52 × 10-5 , b = −0.140, and c = as determined by the above diffusion simulation. It is 58.2. When the steel material is SCM415 specified in JIS G 4053 (2008), a = 8.64 × 10-5 , b = −0.141, and c = 59.0 as determined by the above diffusion simulation. is there.
 理論浸炭ガス流量FTの近似式である式(6)も、本明細書では、理論浸炭ガス流量FTとみなす。つまり、式(6)に基づいて、実際の浸炭工程において、各浸炭時間における理論浸炭ガス流量FTを求めてもよい。 Equation (6), which is an approximate expression of the theoretical carburized gas flow rate FT, is also regarded as the theoretical carburized gas flow rate FT in this specification. That is, based on the equation (6), the theoretical carburized gas flow rate FT at each carburizing time may be obtained in the actual carburizing step.
 上述の説明では、理論浸炭ガス流量の決定方法の一例として、拡散方程式を用いた周知の拡散シミュレーションに基づいて、理論浸炭ガス流量を求めた。しかしながら、他の方法により理論浸炭ガス流量を決定してもよい。たとえば、実験により、理論浸炭ガス流量を決定することもできる。 In the above explanation, the theoretical carburized gas flow rate was obtained based on a well-known diffusion simulation using the diffusion equation as an example of the method for determining the theoretical carburized gas flow rate. However, the theoretical carburized gas flow rate may be determined by other methods. For example, the theoretical carburized gas flow rate can be determined experimentally.
 実験により理論ガス流量を求める方法は、例えば、次のとおりである。実際に真空浸炭処理する鋼材と同等の化学組成の鋼材に対して、真空浸炭処理を実施する。真空浸炭炉に供給する浸炭ガス流量を一定とし、浸炭工程中において、真空浸炭炉内のアセチレン分圧と水素分圧とを継続的に測定する。そして、アセチレン分圧が水素分圧の0.8倍以上となる最初の時間t0が浸炭工程の完了時間である時間ta(つまり、全浸炭工程時間)の1/10以下となる浸炭ガス流量の最小値FAminを求める。求めた浸炭ガス流量FAminに基づいて、理論浸炭ガス流量FT=FAmin√(t0/t)とする。 For example, the method of obtaining the theoretical gas flow rate by experiment is as follows. The vacuum carburizing treatment is carried out on the steel material having the same chemical composition as the steel material to be actually vacuum carburized. The flow rate of the carburized gas supplied to the vacuum carburizing furnace is kept constant, and the partial pressure of acetylene and the partial pressure of hydrogen in the vacuum carburizing furnace are continuously measured during the carburizing process. Then, the first time t0 at which the acetylene partial pressure becomes 0.8 times or more the hydrogen partial pressure is 1/10 or less of the time ta (that is, the total carburizing process time) which is the completion time of the carburizing process. Find the minimum value FAmin. Based on the obtained carburized gas flow rate FAmin, the theoretical carburized gas flow rate FT = FAmin√ (t0 / t).
 なお、上述のとおり、理論浸炭ガス流量は、鋼材表面に接触して浸炭反応に用いられる浸炭ガス流量と等しい。したがって、理論浸炭ガス流量は、熱処理炉の大きさや、形状には影響を受けない。 As described above, the theoretical carburized gas flow rate is equal to the carburized gas flow rate used for the carburizing reaction in contact with the surface of the steel material. Therefore, the theoretical carburized gas flow rate is not affected by the size and shape of the heat treatment furnace.
 [本実施の形態の真空浸炭処理方法について]
 真空浸炭処理時における実際に真空浸炭炉に供給される浸炭ガスの流量を「実際浸炭ガス流量」FRと定義する。本発明者らは、図1に示すような、浸炭時間における理論浸炭ガス流量FTの関係から大きく外れた実際浸炭ガス流量FRを用いた場合に想定される事象について、調査及び検討を行った。
[Vacuum carburizing method of this embodiment]
The flow rate of the carburized gas actually supplied to the vacuum carburizing furnace during the vacuum carburizing process is defined as the "actual carburized gas flow rate" FR. The present inventors investigated and examined the events assumed when the actual carburized gas flow rate FR, which greatly deviates from the relationship of the theoretical carburized gas flow rate FT at the carburizing time, as shown in FIG. 1 is used.
 図2は、従来の浸炭工程における実際浸炭ガス流量FRの経時変化と、理論浸炭ガス流量FTの経時変化とを示す図である。図2の縦軸は浸炭ガス流量(NL/分)を示し、横軸は浸炭工程開始からの時間(分)を示す。図2の実線FRは、上述のとおり、従来の浸炭工程における実際浸炭ガス流量FRを示す。図2の破線C1.00は、上述のとおり、理論浸炭ガス流量FTを示す。 FIG. 2 is a diagram showing a time-dependent change in the actual carburized gas flow rate FR in the conventional carburizing step and a time-dependent change in the theoretical carburized gas flow rate FT. The vertical axis of FIG. 2 shows the carburized gas flow rate (NL / min), and the horizontal axis shows the time (minutes) from the start of the carburizing process. As described above, the solid line FR in FIG. 2 shows the actual carburized gas flow rate FR in the conventional carburizing step. The broken line C 1.00 in FIG. 2 indicates the theoretical carburized gas flow rate FT as described above.
 図2を参照して、浸炭工程の開始時間を「0」とし、浸炭工程の完了時間を「ta」と定義する。つまり、浸炭工程は時間0から時間taまで行われる。完了時間taは、浸炭処理後の鋼材の所定深さ位置での炭素濃度の設定値に応じてあらかじめ設定される。また、実際浸炭ガス流量FRが最初に理論浸炭ガス流量FTと等しくなる時間を、「te」と定義する。 With reference to FIG. 2, the start time of the carburizing process is defined as "0", and the completion time of the carburizing process is defined as "ta". That is, the carburizing step is performed from time 0 to time ta. The completion time ta is set in advance according to the set value of the carbon concentration at the predetermined depth position of the steel material after the carburizing treatment. Further, the time during which the actual carburized gas flow rate FR first becomes equal to the theoretical carburized gas flow rate FT is defined as "te".
 浸炭工程の開始から時間teまでの期間を期間S100と定義する。時間teから時間taまでの期間を期間S200と定義する。期間S100では、実際浸炭ガス流量FRは、理論浸炭ガス流量FT(曲線C1.00)よりも低い。そのため、従来の真空浸炭処理方法の浸炭工程では、期間S100における実際浸炭ガス流量FRが足りない。この場合、鋼材表面において、浸炭反応が十分な部分と、浸炭反応が不十分な部分とが生じる。そのため、鋼材表面の浸炭ばらつきが大きくなる。また、鋼材表層において、所望の炭素濃度が得られない場合もある。一方、期間S200では、実際浸炭ガス流量FRは、理論浸炭ガス流量FT(曲線C1.00)よりも高い。そのため、期間S200では、実際浸炭ガス流量FRが過剰となり、真空浸炭炉内に残留する。その結果、期間S200では、残留した浸炭ガスにより煤やタールが発生する。この場合、鋼材表面の浸炭ばらつきが大きくなる。 The period from the start of the carburizing process to the time te is defined as the period S100. The period from time te to time ta is defined as the period S200. In period S100, the actual carburized gas flow rate FR is lower than the theoretical carburized gas flow rate FT (curve C 1.00). Therefore, in the carburizing step of the conventional vacuum carburizing treatment method, the actual carburized gas flow rate FR in the period S100 is insufficient. In this case, on the surface of the steel material, a portion where the carburizing reaction is sufficient and a portion where the carburizing reaction is insufficient occur. Therefore, the carburizing variation on the surface of the steel material becomes large. In addition, the desired carbon concentration may not be obtained on the surface layer of the steel material. On the other hand, in the period S200, the actual carburized gas flow rate FR is higher than the theoretical carburized gas flow rate FT (curve C 1.00). Therefore, in the period S200, the actual carburized gas flow rate FR becomes excessive and remains in the vacuum carburizing furnace. As a result, in period S200, soot and tar are generated by the residual carburized gas. In this case, the carburizing variation on the surface of the steel material becomes large.
 以上の調査結果に基づいて、本発明者らは、浸炭工程中において、理論浸炭ガス流量曲線C1.00に合わせて、実際浸炭ガス流量FRを制御することを考えた。 Based on the above investigation results, the present inventors considered to control the actual carburized gas flow rate FR in accordance with the theoretical carburized gas flow rate curve C 1.00 during the carburizing step.
 しかしながら、図2に示すとおり、浸炭工程初期の期間S100では、その後の期間S200と比較して、理論浸炭ガス流量曲線C1.00の傾きが急峻である。そのため、実際の操業の期間S100において、この理論浸炭ガス流量曲線C1.00の傾きに合わせて実際浸炭ガス流量FRを調整することは非常に困難であることがわかった。 However, as shown in FIG. 2, in the initial period S100 of the carburizing process, the slope of the theoretical carburized gas flow rate curve C 1.00 is steeper than that in the subsequent period S200. Therefore, it was found that it is very difficult to adjust the actual carburized gas flow rate FR according to the slope of the theoretical carburized gas flow rate curve C 1.00 during the actual operation period S100.
 さらに、浸炭工程初期の期間S100において、浸炭工程開始時(t=0)では、上記の式(6)を採用した場合、理論浸炭ガス流量FTは無限大になる。そのため、実際の操業において、理論浸炭ガス流量FTと等しい実際浸炭ガス流量FRを、期間S100の初期に導入することは極めて困難である。 Further, in the initial period S100 of the carburizing process, at the start of the carburizing process (t = 0), when the above equation (6) is adopted, the theoretical carburized gas flow rate FT becomes infinite. Therefore, in actual operation, it is extremely difficult to introduce an actual carburized gas flow rate FR equal to the theoretical carburized gas flow rate FT at the beginning of the period S100.
 そこで、本発明者らは、実際浸炭ガス流量を制御する要素として、理論浸炭ガス流量FTだけを考慮するのではなく、他の要素も検討することを考えた。実際浸炭ガス流量FRに応じて、真空浸炭炉内の雰囲気内のガス成分は変化する。このガス成分の変化が、浸炭ばらつきや煤の発生を引き起こす。そこで、本発明者らは、実際浸炭ガス流量を制御する要素として、理論浸炭ガス流量FTだけでなく、真空浸炭炉の雰囲気内のガス成分にも注目した。 Therefore, the present inventors considered not only considering the theoretical carburized gas flow rate FT as an element for actually controlling the carburized gas flow rate, but also considering other factors. Actually, the gas component in the atmosphere in the vacuum carburizing furnace changes according to the carburized gas flow rate FR. This change in gas composition causes variation in carburizing and generation of soot. Therefore, the present inventors paid attention not only to the theoretical carburized gas flow rate FT but also to the gas component in the atmosphere of the vacuum carburizing furnace as an element for actually controlling the carburized gas flow rate.
 本発明者らは、真空浸炭炉内の雰囲気中の水素分圧とアセチレン分圧とに注目した。真空浸炭炉内の雰囲気中の水素分圧とアセチレン分圧とは、周知の分析器で測定可能である。分析器はたとえば、四重極型質量分析器である。 The present inventors paid attention to the partial pressure of hydrogen and the partial pressure of acetylene in the atmosphere in the vacuum carburizing furnace. The hydrogen partial pressure and the acetylene partial pressure in the atmosphere in the vacuum carburizing furnace can be measured by a well-known analyzer. The analyzer is, for example, a quadrupole mass spectrometer.
 分析された水素分圧は、以下の式に基づく反応により真空浸炭炉内で発生したものである。
 C→2C+H
The analyzed hydrogen partial pressure was generated in the vacuum carburizing furnace by the reaction based on the following formula.
C 2 H 2 → 2 C + H 2
 水素分圧は、浸炭工程における浸炭反応量の指標となる。つまり、水素分圧は、浸炭ばらつきの抑制度合いの指標となる。一方、アセチレン分圧は、浸炭反応を起こさなかった余剰ガス量を意味し、煤及びタールの発生量の指標となる。 Hydrogen partial pressure is an index of the amount of carburizing reaction in the carburizing process. That is, the hydrogen partial pressure is an index of the degree of suppression of carburizing variation. On the other hand, the partial pressure of acetylene means the amount of surplus gas that did not cause a carburizing reaction, and is an index of the amount of soot and tar generated.
 アセチレンを用いた真空浸炭処理では、浸炭工程開始直後、つまり、アセチレンの炉内への供給を開始した直後の化学反応が極めて速い。つまり、浸炭工程開始直後の鋼材表面への炭素の進入速度が極めて速い。そのため、炉内に供給されるアセチレン流量(浸炭ガス流量)が少なければ、炉内雰囲気のほとんどが水素ガスとなる。その結果、炉内での水素分圧が高くなり、アセチレン分圧が低くなる。一方、炉内に供給されるアセチレンガス流量(真空浸炭ガス流量)が多ければ、浸炭反応を起こさないアセチレンガスが炉内に残留する。この場合、炉内での水素分圧が低くなり、アセチレン分圧が高くなる。したがって、炉内での水素分圧とアセチレン分圧とをモニタリングすることにより、鋼材表面での浸炭反応量を推測することができる。 In the vacuum carburizing treatment using acetylene, the chemical reaction is extremely fast immediately after the start of the carburizing process, that is, immediately after the start of supply of acetylene into the furnace. That is, the rate of carbon entering the surface of the steel material immediately after the start of the carburizing process is extremely high. Therefore, if the flow rate of acetylene (carburized gas flow rate) supplied into the furnace is small, most of the atmosphere in the furnace becomes hydrogen gas. As a result, the hydrogen partial pressure in the furnace becomes high and the acetylene partial pressure becomes low. On the other hand, if the flow rate of acetylene gas supplied into the furnace (vacuum carburizing gas flow rate) is large, acetylene gas that does not cause a carburizing reaction remains in the furnace. In this case, the hydrogen partial pressure in the furnace becomes low, and the acetylene partial pressure becomes high. Therefore, the amount of carburizing reaction on the surface of the steel material can be estimated by monitoring the partial pressure of hydrogen and the partial pressure of acetylene in the furnace.
 本発明者らは、理論浸炭ガス流量FTと、真空浸炭炉内の雰囲気中の水素分圧及びアセチレン分圧とに基づいて、実際浸炭ガス流量FRを制御できれば、真空浸炭処理において、浸炭ばらつきを抑え、かつ、煤の発生も抑制できると考えた。そこで、本発明者らはさらに検討を行い、次の知見を得た。 If the actual carburized gas flow rate FR can be controlled based on the theoretical carburized gas flow rate FT and the hydrogen partial pressure and the acetylene partial pressure in the atmosphere in the vacuum carburizing furnace, the present inventors can reduce the carburizing variation in the vacuum carburizing treatment. It was thought that it could be suppressed and the generation of soot could be suppressed. Therefore, the present inventors further investigated and obtained the following findings.
 (a)浸炭工程の初期(期間S100付近)において浸炭ガス流量が少なければ、浸炭反応量が少ない。そのため、アセチレン分圧が上昇する速度が遅い。その結果、浸炭ばらつきが大きくなり、浸炭部品の表層の炭素濃度も低くなる。 (A) If the carburizing gas flow rate is small at the initial stage of the carburizing process (around period S100), the carburizing reaction amount is small. Therefore, the rate at which the acetylene partial pressure rises is slow. As a result, the variation in carburizing becomes large, and the carbon concentration in the surface layer of the carburized parts also becomes low.
 (b)浸炭工程の完了時間をtaと定義する。上述のとおり、完了時間taは、浸炭処理後の鋼材の表面炭素濃度及び浸炭深さの設定値に応じてあらかじめ設定される。そして、浸炭工程の開始時間から完了時間taの1/10の時間をta/10と定義する。時間ta/10での理論浸炭ガス流量をFTta/10と定義する。浸炭工程初期での実際浸炭ガス流量FRを、時間ta/10での理論浸炭ガス流量FTta/10以上とすれば、真空浸炭炉内の雰囲気中の水素分圧が急速に上昇するものの、早期に減少し、アセチレン分圧の上昇速度が速くなる。その結果、浸炭工程初期での浸炭反応量の不足を抑制でき、浸炭ばらつきを低減できる。 (B) The completion time of the carburizing process is defined as ta. As described above, the completion time ta is set in advance according to the set values of the surface carbon concentration and the carburizing depth of the steel material after the carburizing treatment. Then, the time from the start time of the carburizing process to 1/10 of the completion time ta is defined as ta / 10. The theoretical carburized gas flow rate at time ta / 10 is defined as FT ta / 10. If the actual carburized gas flow rate FR at the initial stage of the carburizing process is set to the theoretical carburized gas flow rate FT ta / 10 or more at time ta / 10, the hydrogen partial pressure in the atmosphere in the vacuum carburizing furnace rises rapidly, but it is early. The rate of increase in acetylene partial pressure increases. As a result, the shortage of the carburizing reaction amount at the initial stage of the carburizing process can be suppressed, and the carburizing variation can be reduced.
 (c)一方、浸炭工程の初期での実際浸炭ガス流量FRが多すぎれば、炉内でのアセチレン分圧が過剰に速く上昇する。この場合、炉内にアセチレンガスが過剰に残存する。その結果、煤又はタールが発生し、浸炭ばらつきが発生する。浸炭工程開始から4秒時点での理論浸炭ガス流量をFTと定義する。浸炭工程初期において、実際浸炭ガス流量FRがFT以下であれば、炉内での実際浸炭ガス流量FRが過剰に多くなるのを抑制できる。そのため、浸炭ばらつきを抑制できる。 (C) On the other hand, if the actual carburized gas flow rate FR at the initial stage of the carburizing process is too large, the partial pressure of acetylene in the furnace rises excessively quickly. In this case, excess acetylene gas remains in the furnace. As a result, soot or tar is generated, and carburizing variation occurs. The theoretical carburized gas flow rate 4 seconds after the start of the carburizing process is defined as FT 4. If the actual carburized gas flow rate FR is FT 4 or less at the initial stage of the carburizing process, it is possible to prevent the actual carburized gas flow rate FR in the furnace from becoming excessively large. Therefore, the variation in carburizing can be suppressed.
 (d)実際浸炭ガス流量FRを多いまま維持すると、徐々にアセチレン分圧が増加する。そのため、いずれかの時点でアセチレン分圧が水素分圧を大幅に超えてしまう。この場合、真空浸炭炉内の雰囲気中において、浸炭反応を起こさない余剰ガスが過剰に存在することになる。そのため、余剰ガスに起因した煤が発生して浸炭部品の表面に付着する。その結果、浸炭ばらつきが大きくなる。 (D) If the actual carburized gas flow rate FR is maintained at a high level, the acetylene partial pressure gradually increases. Therefore, the partial pressure of acetylene greatly exceeds the partial pressure of hydrogen at any time. In this case, in the atmosphere inside the vacuum carburizing furnace, excess gas that does not cause a carburizing reaction is excessively present. Therefore, soot generated by the surplus gas is generated and adheres to the surface of the carburized parts. As a result, the carburizing variation becomes large.
 (e)浸炭工程において、アセチレン分圧が水素分圧の0.8倍以上となったとき、実際浸炭ガス流量FRを維持又は低減すれば、真空浸炭炉内の雰囲気中において、余剰ガスを抑制することができる。そのため、浸炭ばらつきを抑制することができる。 (E) In the carburizing step, when the partial pressure of acetylene becomes 0.8 times or more the partial pressure of hydrogen, if the actual carburized gas flow rate FR is maintained or reduced, excess gas is suppressed in the atmosphere in the vacuum carburizing furnace. can do. Therefore, the variation in carburizing can be suppressed.
 以上の知見に基づいて、本発明者らは浸炭工程での実際浸炭ガス流量FRを、下記の(I)~(III)のように調整すれば、浸炭工程初期に十分な浸炭反応量を確保でき、かつ、その後において、余剰ガスを抑制して煤やタールの発生を抑制し、浸炭ばらつきを低減できると考えた。 Based on the above findings, the present inventors can secure a sufficient amount of carburizing reaction at the initial stage of the carburizing process by adjusting the actual carburized gas flow rate FR in the carburizing process as shown in (I) to (III) below. It was thought that it could be done, and after that, excess gas could be suppressed to suppress the generation of soot and tar, and the variation in carburizing could be reduced.
 ここで、各用語について、次のとおり定義する。
 時間ta:浸炭工程の完了時間
 時間t0:浸炭工程の開始後、アセチレン分圧が水素分圧の0.8倍以上となる最初の時間
 時間ta/10:浸炭工程の開始時間から完了時間taの1/10の時間
 時間4t0:浸炭工程の開始後、浸炭工程開始から時間t0までの期間の4倍の期間が経過する時間
 前期浸炭工程S1:浸炭工程開始から時間t0までの期間
 後期浸炭工程S2:時間t0から時間taまでの期間
 実際浸炭ガス流量FR:真空浸炭炉に実際に供給される浸炭ガス(アセチレン)流量
 理論浸炭ガス流量FTta/10:時間ta/10での理論浸炭ガス流量
 理論浸炭ガス流量FT:浸炭工程開始から4秒時点での理論浸炭ガス流量
Here, each term is defined as follows.
Time ta: Completion time of carburizing process Time t0: First time when the partial pressure of acetylene becomes 0.8 times or more of the partial pressure of hydrogen after the start of the carburizing process Time ta / 10: From the start time of the carburizing process to the completion time ta 1/10 time Time 4t0: Time when four times the period from the start of the carburizing process to the time t0 elapses after the start of the carburizing process Early carburizing step S1: Period from the start of the carburizing process to time t0 Late carburizing step S2 : Period from time t0 to time ta Actual carburizing gas flow rate FR: Carburizing gas (acetylene) flow rate actually supplied to the vacuum carburizing furnace Theoretical carburizing gas flow rate FT ta / 10 : Theoretical carburizing gas flow rate theory at time ta / 10 Carburizing gas flow rate FT 4 : Theoretical carburizing gas flow rate 4 seconds after the start of the carburizing process
 上記用語を定義した場合、図3に示すとおり、実際浸炭ガス流量FRを、下記の(I)~(III)のように調整する。
 (I)前期浸炭工程S1において、実際浸炭ガス流量FRをFTta/10以上、かつ、FT以下とする。前期浸炭工程S1にて実際浸炭ガス流量FRを一定とした場合には、その値を実際浸炭ガス流量FAとする。
 (II)後期浸炭工程S2のうち、時間t0~4t0の期間において、実際浸炭ガス流量FRを、FA×√(t0/t)以上、かつ、FA以下とする。
 (III)後期浸炭工程S2のうち、時間4t0~時間taの期間において、実際浸炭ガス流量FRをFA×√(t0/t)以上、かつ、2FA×√(t0/t)以下、とする。
 ここで、tは浸炭開始時からの時間である。
When the above terms are defined, the actual carburized gas flow rate FR is adjusted as shown in (I) to (III) below, as shown in FIG.
(I) In the first stage carburizing step S1, the actual carburized gas flow rate FR is set to FT ta / 10 or more and FT 4 or less. When the actual carburized gas flow rate FR is constant in the first carburizing step S1, that value is taken as the actual carburized gas flow rate FA.
(II) In the late carburizing step S2, the actual carburized gas flow rate FR is set to FA × √ (t0 / t) or more and FA or less in the period of time t0 to 4t0.
(III) In the late carburizing step S2, the actual carburized gas flow rate FR is set to FA × √ (t0 / t) or more and 2FA × √ (t0 / t) or less in the period from time 4t0 to time ta.
Here, t is the time from the start of carburizing.
 図3は、本実施形態による真空浸炭処理方法の浸炭工程における、実際浸炭ガス流量の経時変化(下図)と、浸炭工程における真空浸炭炉の雰囲気中のアセチレン分圧及び水素分圧の経時変化(上図)とを示す図である。図3を参照して、本実施形態では、時間t0~時間taの期間において、実際浸炭ガス流量FRを、図3中のハッチングの領域の範囲内に調整する。ハッチング領域の下限となる曲線は、浸炭ガス流量=FA×√(t0/t)の曲線である。ハッチング領域の上限は、浸炭ガス流量=2FA×√(t0/t)の曲線である。FA×√(t0/t)及び2FA×√(t0/t)はともに、理論浸炭ガス流量FTの式(6)に比例する式である。 FIG. 3 shows the time course of the actual carburized gas flow rate in the carburizing step of the vacuum carburizing treatment method according to the present embodiment (see the figure below) and the time course of the acetylene partial pressure and the hydrogen partial pressure in the atmosphere of the vacuum carburizing furnace in the carburizing step (see the figure below). It is a figure which shows (the above figure). With reference to FIG. 3, in the present embodiment, the actual carburized gas flow rate FR is adjusted within the range of the hatched region in FIG. 3 during the period from time t0 to time ta. The curve that is the lower limit of the hatching region is a curve of carburized gas flow rate = FA × √ (t0 / t). The upper limit of the hatching region is a curve of carburized gas flow rate = 2FA × √ (t0 / t). Both FA × √ (t0 / t) and 2FA × √ (t0 / t) are equations proportional to the equation (6) of the theoretical carburized gas flow rate FT.
 なお、上述のとおり、時間t0は、浸炭工程の開始後、アセチレン分圧が水素分圧の0.8倍以上となる最初の時間とする。図3に示すとおり、前期浸炭工程S1の初期では、水素分圧がアセチレン分圧よりも急速に上昇する。浸炭反応が活発に発生するからである。水素分圧は急速に上昇した後、アセチレン分圧より先に、降下し始める。そして、水素分圧が降下した結果、アセチレン分圧が水素分圧の0.8倍以上となる。この時点、つまり、浸炭工程の開始後、アセチレン分圧が水素分圧の0.8倍以上となる最初の時間を、時間t0と定義する。なお、ここでいう「0.8」倍は、アセチレン分圧/水素分圧の比の計算値の小数第2位を切り捨てた値である。 As described above, the time t0 is the first time after the start of the carburizing step, when the acetylene partial pressure becomes 0.8 times or more the hydrogen partial pressure. As shown in FIG. 3, in the initial stage of the early carburizing step S1, the hydrogen partial pressure rises more rapidly than the acetylene partial pressure. This is because the carburizing reaction occurs actively. The hydrogen partial pressure rises rapidly and then begins to fall before the acetylene partial pressure. Then, as a result of the decrease in the hydrogen partial pressure, the acetylene partial pressure becomes 0.8 times or more the hydrogen partial pressure. At this point, that is, after the start of the carburizing step, the first time when the acetylene partial pressure becomes 0.8 times or more the hydrogen partial pressure is defined as the time t0. The "0.8" times referred to here is a value obtained by rounding down the second decimal place of the calculated value of the acetylene partial pressure / hydrogen partial pressure ratio.
 以上の知見に基づいて完成した本実施の形態による真空浸炭処理方法は、次の構成を備える。 The vacuum carburizing treatment method according to the present embodiment completed based on the above knowledge has the following configuration.
 [1]
 真空浸炭炉内で鋼材に対して真空浸炭処理を実施する真空浸炭処理方法であって、
 前記鋼材を浸炭温度に加熱する加熱工程と、
 前記加熱工程後、前記鋼材を前記浸炭温度で均熱する均熱工程と、
 前記均熱工程後、アセチレンガスである浸炭ガスを前記真空浸炭炉内に供給しながら、前記鋼材を前記浸炭温度で保持する浸炭工程と、
 前記浸炭工程後、前記真空浸炭炉内への前記浸炭ガスの供給を停止し、前記鋼材を前記浸炭温度で保持する拡散工程と、
 前記拡散工程後の前記鋼材に対して焼入れを実施する焼入れ工程と、
 を備え、
 前記浸炭工程において、
 前記真空浸炭炉内に供給される前記浸炭ガスの流量を、実際浸炭ガス流量と定義し、
 前記鋼材の前記真空浸炭処理に必要な前記浸炭ガスの流量を、理論浸炭ガス流量と定義し、
 前記浸炭工程の完了時間をtaと定義し、
 前記浸炭工程の開始後、アセチレン分圧が水素分圧の0.8倍以上となる最初の時間をt0と定義したとき、
 前記浸炭工程は、
 前記真空浸炭炉内の雰囲気中の前記水素分圧及び前記アセチレン分圧を継続的に測定して前記時間t0を特定する分圧測定工程と、
 前記浸炭工程の開始から時間t0までの前期浸炭工程と、
 前記時間t0から時間taまでの後期浸炭工程と、
 を含み、
 前記前期浸炭工程では、
 前記実際浸炭ガス流量を、時間ta/10での前記理論浸炭ガス流量以上、かつ、前記浸炭工程の開始から4秒時点での前記理論浸炭ガス流量以下とし、
 前記後期浸炭工程では、
 前記前期浸炭工程の前記実際浸炭ガス流量をFAと定義し、前記浸炭工程の開始時からの時間を時間tと定義したとき、
 前記時間t0~時間4t0の期間における前記実際浸炭ガス流量を、FA√(t0/t)以上、かつ、FA以下とし、
 前記時間4t0~前記時間taまでの前記実際浸炭ガス流量を、FA√(t0/t)以上、かつ、2FA√(t0/t)以下、とする、
 真空浸炭処理方法。
[1]
This is a vacuum carburizing method that performs vacuum carburizing treatment on steel materials in a vacuum carburizing furnace.
A heating process that heats the steel material to the carburizing temperature,
After the heating step, a heat equalizing step of soaking the steel material at the carburizing temperature and
After the heat soaking step, a carburizing step of holding the steel material at the carburizing temperature while supplying a carburizing gas which is an acetylene gas into the vacuum carburizing furnace.
After the carburizing step, a diffusion step of stopping the supply of the carburized gas into the vacuum carburizing furnace and holding the steel material at the carburizing temperature,
A quenching step of performing quenching on the steel material after the diffusion step, and
With
In the carburizing step
The flow rate of the carburized gas supplied into the vacuum carburizing furnace is defined as the actual carburized gas flow rate.
The flow rate of the carburized gas required for the vacuum carburizing treatment of the steel material is defined as the theoretical carburized gas flow rate.
The completion time of the carburizing process is defined as ta.
When the first time after the start of the carburizing step that the acetylene partial pressure becomes 0.8 times or more the hydrogen partial pressure is defined as t0,
The carburizing step is
A partial pressure measuring step of continuously measuring the hydrogen partial pressure and the acetylene partial pressure in the atmosphere in the vacuum carburizing furnace to specify the time t0.
The early carburizing process from the start of the carburizing process to the time t0, and
The late carburizing step from time t0 to time ta,
Including
In the early carburizing process,
The actual carburized gas flow rate is set to be equal to or more than the theoretical carburized gas flow rate at time ta/10 and equal to or less than the theoretical carburized gas flow rate 4 seconds after the start of the carburizing step.
In the late carburizing step,
When the actual carburized gas flow rate of the early carburizing step is defined as FA and the time from the start of the carburizing step is defined as time t.
The actual carburized gas flow rate during the period from time t0 to time 4t0 is set to FA√ (t0 / t) or more and FA or less.
The actual carburized gas flow rate from the time 4t0 to the time ta is set to FA√ (t0 / t) or more and 2FA√ (t0 / t) or less.
Vacuum carburizing method.
 [2]
 [1]に記載の真空浸炭処理方法であって、
 前記後期浸炭工程では、
 前記時間4t0~時間taの期間において、時間の経過とともに、(A)又は(B)の方法で前記実際ガス浸炭流量を低減する、
 真空浸炭処理方法。
 (A)前記実際浸炭ガス流量の維持と低減とを繰り返し、段階的に前記実際浸炭ガス流量を低減する、
 (B)前記実際浸炭ガス流量を、時間の経過とともに漸減する。
[2]
The vacuum carburizing method according to [1].
In the late carburizing step,
In the period of time 4t0 to time ta, the actual gas carburizing flow rate is reduced by the method (A) or (B) with the passage of time.
Vacuum carburizing method.
(A) The actual carburized gas flow rate is gradually reduced by repeating the maintenance and reduction of the actual carburized gas flow rate.
(B) The actual carburized gas flow rate is gradually reduced with the passage of time.
 [3]
 [1]又は[2]に記載の真空浸炭処理方法であって、
 前記理論浸炭ガス流量は、拡散方程式を用いた拡散シミュレーションに基づいて決定される、
 真空浸炭処理方法。
[3]
The vacuum carburizing treatment method according to [1] or [2].
The theoretical carburized gas flow rate is determined based on a diffusion simulation using a diffusion equation.
Vacuum carburizing method.
 [4]
 浸炭部品の製造方法であって、
 前記鋼材に対して、[1]~[3]のいずれか1項に記載の真空浸炭処理方法を実施する工程を備える、
 浸炭部品の製造方法。
[4]
It is a method of manufacturing carburized parts.
A step of carrying out the vacuum carburizing treatment method according to any one of [1] to [3] is provided on the steel material.
Manufacturing method of carburized parts.
 以下、本実施形態による真空浸炭処理方法及び浸炭部品の製造方法について詳述する。 Hereinafter, the vacuum carburizing treatment method and the manufacturing method of carburized parts according to the present embodiment will be described in detail.
 [真空浸炭処理方法]
 図4は、本実施形態の真空浸炭処理方法のヒートパターンの一例を示す図である。図4を参照して、本実施形態の真空浸炭処理方法は、加熱工程(S10)と、均熱工程(S20)と、浸炭工程(S30)と、拡散工程(S40)と、焼入れ工程(S50)とを備える。以下、各工程の詳細を説明する。
[Vacuum carburizing method]
FIG. 4 is a diagram showing an example of a heat pattern of the vacuum carburizing treatment method of the present embodiment. With reference to FIG. 4, the vacuum carburizing treatment method of the present embodiment includes a heating step (S10), a soaking step (S20), a carburizing step (S30), a diffusion step (S40), and a quenching step (S50). ) And. The details of each step will be described below.
 [加熱工程(S10)]
 加熱工程(S10)では、鋼材を浸炭温度に加熱する。真空浸炭処理の対象となる鋼材は、第三者から提供されたものであってもよいし、真空浸炭処理方法を実施する者が製造したものであってもよい。鋼材の化学組成は特に限定されない。浸炭処理が実施される周知の鋼材を用いれば足りる。鋼材はたとえば、JIS G 4053(2008)で規定された、機械構造用合金鋼鋼材である。より具体的には、鋼材はたとえば、JIS G 4053(2008)規定された、SCr415、SCr420及びSCM415等である。
[Heating step (S10)]
In the heating step (S10), the steel material is heated to the carburizing temperature. The steel material to be subjected to the vacuum carburizing treatment may be provided by a third party or may be manufactured by a person who implements the vacuum carburizing treatment method. The chemical composition of the steel material is not particularly limited. It is sufficient to use a well-known steel material to be carburized. The steel material is, for example, an alloy steel material for machine structure specified in JIS G 4053 (2008). More specifically, the steel material is, for example, SCr415, SCr420, SCM415, etc. specified in JIS G 4053 (2008).
 準備される鋼材は熱間加工された鋼材であってもよいし、冷間加工された鋼材であってもよい。熱間加工はたとえば、熱間圧延、熱間押出、熱間鍛造等である。冷間加工はたとえば、冷間圧延、冷間抽伸、冷間鍛造等である。鋼材は、熱間加工又は冷間加工された後、切削加工に代表される機械加工を施されたものであってもよい。 The steel material to be prepared may be a hot-worked steel material or a cold-worked steel material. Hot working is, for example, hot rolling, hot extrusion, hot forging and the like. Cold working includes, for example, cold rolling, cold drawing, cold forging and the like. The steel material may be one that has been subjected to machining typified by cutting after being hot-worked or cold-worked.
 加熱工程(S10)では、真空浸炭炉内に鋼材を装入して、鋼材を浸炭温度Tcまで加熱する。加熱工程(S10)は、真空浸炭処理方法では周知の工程である。浸炭温度Tcは周知の温度で足りる。浸炭温度TcはAc3変態点以上である。浸炭温度Tcの好ましい範囲は、900~1130℃である。浸炭温度Tcが900℃以上であれば、輻射による熱伝達が高くなり、真空浸炭炉内の温度が均一になりやすい。その結果、鋼材の浸炭ばらつきが小さくなりやすい。浸炭温度が1130℃以下であれば、鋼材の結晶粒径が粗大になるのを防ぐことができ、鋼材の強度の低下を抑制できる。浸炭温度Tcのさらに好ましい下限は910℃であり、さらに好ましくは920℃である。浸炭温度Tcのさらに好ましい上限は1100℃であり、さらに好ましくは1080℃である。 In the heating step (S10), the steel material is charged into the vacuum carburizing furnace and the steel material is heated to the carburizing temperature Tc. The heating step (S10) is a well-known step in the vacuum carburizing treatment method. A well-known temperature is sufficient for the carburizing temperature Tc. The carburizing temperature Tc is equal to or higher than the Ac3 transformation point. The preferred range of carburizing temperature Tc is 900 to 1130 ° C. When the carburizing temperature Tc is 900 ° C. or higher, heat transfer due to radiation becomes high, and the temperature in the vacuum carburizing furnace tends to be uniform. As a result, the carburizing variation of the steel material tends to be small. When the carburizing temperature is 1130 ° C. or lower, it is possible to prevent the crystal grain size of the steel material from becoming coarse, and it is possible to suppress a decrease in the strength of the steel material. A more preferable lower limit of the carburizing temperature Tc is 910 ° C, and even more preferably 920 ° C. A more preferable upper limit of the carburizing temperature Tc is 1100 ° C., and even more preferably 1080 ° C.
 [均熱工程(S20)]
 均熱工程(S20)では、浸炭温度Tcで鋼材を所定時間保持する。以下、均熱工程(S20)での保持時間を均熱時間ともいう。均熱工程(S20)は、真空浸炭処理方法では周知の工程である。均熱時間は、鋼材の形状及び/又はサイズにより、適宜調整可能である。好ましくは、均熱時間は10分以上である。より具体的には、鋼材の長手方向に垂直な断面を円に換算した場合、好ましい均熱時間は、円相当径25mm当たり30分以上である。たとえば、円相当径が30mmである場合、均熱時間は36分以上が好ましい。均熱時間の好ましい上限は、好ましくは120分であり、さらに好ましくは60分である。
[Heat soaking step (S20)]
In the heat equalizing step (S20), the steel material is held for a predetermined time at the carburizing temperature Tc. Hereinafter, the holding time in the heat equalizing step (S20) is also referred to as a heat equalizing time. The heat soaking step (S20) is a well-known step in the vacuum carburizing treatment method. The soaking time can be appropriately adjusted depending on the shape and / or size of the steel material. Preferably, the soaking time is 10 minutes or more. More specifically, when the cross section perpendicular to the longitudinal direction of the steel material is converted into a circle, the preferable heat equalization time is 30 minutes or more per 25 mm of the equivalent diameter of the circle. For example, when the equivalent circle diameter is 30 mm, the soaking time is preferably 36 minutes or more. The preferable upper limit of the soaking time is preferably 120 minutes, more preferably 60 minutes.
 加熱工程(S10)及び均熱工程(S20)における炉内の圧力は、特に限定されない。加熱工程(S10)及び均熱工程(S20)における炉内の圧力は、例えば、100Pa以下であってもよい。加熱工程(S10)及び/又は均熱工程(S20)において、窒素ガスの導入と真空ポンプによる真空排気とを行って、1000Pa以下の窒素雰囲気としてもよい。均熱工程(S20)において、少なくとも浸炭工程(S30)の開始までに、真空浸炭炉内を低圧又は真空とする。たとえば、均熱工程(S20)において、浸炭工程(S30)の開始までに、真空浸炭炉内を10Pa以下とする。 The pressure in the furnace in the heating step (S10) and the soaking step (S20) is not particularly limited. The pressure in the furnace in the heating step (S10) and the soaking step (S20) may be, for example, 100 Pa or less. In the heating step (S10) and / or the soaking step (S20), nitrogen gas may be introduced and vacuum exhausted by a vacuum pump to create a nitrogen atmosphere of 1000 Pa or less. In the soaking step (S20), the inside of the vacuum carburizing furnace is made low pressure or vacuum by at least the start of the carburizing step (S30). For example, in the soaking step (S20), the inside of the vacuum carburizing furnace is set to 10 Pa or less by the start of the carburizing step (S30).
 [浸炭工程(S30)]
 本明細書において、浸炭工程(S30)は、減圧下又は真空下の炉内で浸炭ガスを供給する工程を意味する。つまり、均熱工程(S20)後、減圧又は真空下の炉内に浸炭ガスの供給を開始した時が、浸炭工程(S30)の開始時である。浸炭工程(S30)では、炉内を低圧に維持しながら、浸炭ガスを炉内に供給する。炉内が低圧であるため、浸炭ガスの分子同士が衝突する頻度が少なくなる。つまり、炉内の雰囲気で浸炭ガスが分解する頻度が少なくなる。したがって、低圧下において浸炭ガスを鋼材表面に供給することにより、煤やタールの発生を抑制できる。その結果、鋼材の表面炭素濃度を迅速に上昇させることができる。浸炭開始から浸炭終了(時間ta)までの浸炭工程(S30)中においては、例えば、炉内を1~1000Paとする。ただし、浸炭工程(S30)での炉内圧は上記範囲に限定されない。
[Carburizing step (S30)]
In the present specification, the carburizing step (S30) means a step of supplying carburizing gas in a furnace under reduced pressure or vacuum. That is, the time when the carburizing gas is started to be supplied into the furnace under reduced pressure or vacuum after the soaking step (S20) is the start of the carburizing step (S30). In the carburizing step (S30), the carburized gas is supplied into the furnace while maintaining the inside of the furnace at a low pressure. Since the pressure inside the furnace is low, the frequency of collision between carburized gas molecules is reduced. That is, the frequency of decomposition of the carburized gas in the atmosphere inside the furnace is reduced. Therefore, by supplying the carburized gas to the surface of the steel material under low pressure, the generation of soot and tar can be suppressed. As a result, the surface carbon concentration of the steel material can be rapidly increased. In the carburizing step (S30) from the start of carburizing to the end of carburizing (time ta), for example, the inside of the furnace is set to 1 to 1000 Pa. However, the pressure inside the furnace in the carburizing step (S30) is not limited to the above range.
 浸炭工程(S30)では、真空浸炭炉内に浸炭ガスを導入し、浸炭温度Tcで鋼材を所定時間保持する。 In the carburizing step (S30), a carburized gas is introduced into the vacuum carburizing furnace, and the steel material is held at the carburizing temperature Tc for a predetermined time.
 [浸炭ガス]
 本実施形態では、真空浸炭処理方法の浸炭工程(S30)で使用する浸炭ガスは、アセチレンガスである。
[Carburized gas]
In the present embodiment, the carburizing gas used in the carburizing step (S30) of the vacuum carburizing treatment method is acetylene gas.
 従前の真空浸炭処理においては、プロパンガスが用いられることが多い。しかしながら、プロパンガスは、浸炭反応以外に、メタン、エチレン、アセチレン、水素等への分解反応も起こす。分解反応により生じるメタン及びエチレンの多くは、浸炭反応に寄与せず、真空浸炭炉から排気される。したがって、プロパンガスを用いた場合、拡散方程式により求めた炭素の拡散流束を利用した拡散シミュレーションにより理論浸炭ガス流量FTを計算することができない。一方、アセチレンは、浸炭以外の反応が起こり難い。そのため、拡散方程式により求めた炭素の拡散流束を利用した拡散シミュレーションにより理論浸炭ガス流量FTを算出可能である。 Propane gas is often used in the conventional vacuum carburizing treatment. However, in addition to the carburizing reaction, propane gas also causes a decomposition reaction into methane, ethylene, acetylene, hydrogen and the like. Most of the methane and ethylene produced by the decomposition reaction do not contribute to the carburizing reaction and are exhausted from the vacuum carburizing furnace. Therefore, when propane gas is used, the theoretical carburized gas flow rate FT cannot be calculated by diffusion simulation using the diffusion flux of carbon obtained by the diffusion equation. On the other hand, acetylene is unlikely to cause reactions other than carburizing. Therefore, the theoretical carburized gas flow rate FT can be calculated by a diffusion simulation using the diffusion flux of carbon obtained by the diffusion equation.
 本実施形態において、浸炭ガスであるアセチレンの純度は98%以上であればよい。アセチレンは、たとえば、アセトンに溶解したアセチレンや、ジメチルホルムアミド(DMF)に溶解したアセチレンを浸炭ガスとして用いてもよい。好ましくは、浸炭ガスとして、DMFに溶解したアセチレンを用いる。この場合、炉内雰囲気への溶媒の混入を抑制することができる。真空浸炭炉へのアセチレンの供給源をボンベとする場合、ボンベからアセチレンを真空浸炭炉内に供給するときの一次圧は、好ましくは、0.5MPa以上である。真空浸炭炉に供給する場合、好ましくは、減圧弁を用いて、0.20MPa以下に減圧して供給する。 In this embodiment, the purity of acetylene, which is a carburized gas, may be 98% or more. As the acetylene, for example, acetylene dissolved in acetone or acetylene dissolved in dimethylformamide (DMF) may be used as the carburizing gas. Preferably, acetylene dissolved in DMF is used as the carburizing gas. In this case, it is possible to suppress the mixing of the solvent into the atmosphere inside the furnace. When the supply source of acetylene to the vacuum carburizing furnace is a cylinder, the primary pressure when supplying acetylene from the cylinder into the vacuum carburizing furnace is preferably 0.5 MPa or more. When supplying to a vacuum carburizing furnace, preferably, the pressure is reduced to 0.20 MPa or less by using a pressure reducing valve.
 [浸炭工程(S30)の詳細]
 浸炭工程(S30)は、分圧測定工程S0と、前期浸炭工程S1と、後期浸炭工程S2とを含む。以下、各工程の詳細を説明する。
[Details of carburizing process (S30)]
The carburizing step (S30) includes a partial pressure measuring step S0, an early carburizing step S1, and a late carburizing step S2. The details of each step will be described below.
 [事前準備]
 真空浸炭処理方法を実施する前に、事前準備として、対象となる鋼材に応じた理論浸炭ガス流量FTを決定しておき、図1に示すような、浸炭工程(S30)の完了時間taまでの理論浸炭ガス流量FTの経時変化を求めておく。理論浸炭ガス流量FTは、拡散シミュレーションに基づいて決定してもよいし、実験に基づいて決定してもよい。
[Advance preparation]
Before implementing the vacuum carburizing treatment method, the theoretical carburized gas flow rate FT according to the target steel material is determined as a preliminary preparation, and the carburizing step (S30) is completed up to the completion time ta as shown in FIG. The time course of the theoretical carburized gas flow rate FT is obtained. The theoretical carburized gas flow rate FT may be determined based on a diffusion simulation or an experiment.
 [分圧測定工程S0]
 分圧測定工程S0では、浸炭工程(S30)中において、真空浸炭炉内の雰囲気中の水素分圧及びアセチレン分圧を測定する。具体的には、真空浸炭炉内の雰囲気中の水素分圧及びアセチレン分圧を継続的に測定する。ここで、「継続的に」とは、経時的に複数回水素分圧及びアセチレン分圧を測定することを意味する。水素分圧及びアセチレン分圧を連続的に測定してもよいし、所定の時間間隔で測定してもよい。測定は周知の分圧測定器を用いて行う。分圧測定器はたとえば、四重極型質量分析器である。ただし、分圧測定器として、四重極型質量分析器以外の他の分圧測定器を用いてもよい。
[Partial pressure measurement step S0]
In the partial pressure measurement step S0, the hydrogen partial pressure and the acetylene partial pressure in the atmosphere in the vacuum carburizing furnace are measured during the carburizing step (S30). Specifically, the partial pressure of hydrogen and the partial pressure of acetylene in the atmosphere in the vacuum carburizing furnace are continuously measured. Here, "continuously" means measuring the hydrogen partial pressure and the acetylene partial pressure a plurality of times over time. The hydrogen partial pressure and the acetylene partial pressure may be measured continuously, or may be measured at predetermined time intervals. The measurement is performed using a well-known partial pressure measuring device. The partial pressure measuring instrument is, for example, a quadrupole mass spectrometer. However, as the partial pressure measuring instrument, a partial pressure measuring instrument other than the quadrupole mass spectrometer may be used.
 分圧測定工程S0では、真空浸炭炉内の雰囲気中の水素分圧及びアセチレン分圧を経時的に測定する。つまり、真空浸炭炉内の雰囲気中の水素分圧及びアセチレン分圧をモニタリングする。経時的に測定された水素分圧及びアセチレン分圧に基づいて、時間t0(浸炭工程の開始後、アセチレン分圧が水素分圧の0.8倍以上となる最初の時間)が決定される。 In the partial pressure measurement step S0, the hydrogen partial pressure and the acetylene partial pressure in the atmosphere in the vacuum carburizing furnace are measured over time. That is, the hydrogen partial pressure and the acetylene partial pressure in the atmosphere in the vacuum carburizing furnace are monitored. The time t0 (the first time after the start of the carburizing step that the acetylene partial pressure becomes 0.8 times or more the hydrogen partial pressure) is determined based on the hydrogen partial pressure and the acetylene partial pressure measured over time.
 分圧測定器として四重極型質量分析器を使用する場合、四重極型質量分析器は、各成分ガス(水素、アセチレン)を順に測定する。そのため、水素分圧の測定時間と、アセチレンの測定時間とがずれる。四重極型質量分析器の各成分(水素、アセチレン)の分析時間は0.2秒以上2.0秒以下が好ましく、分析間隔は4.0秒以下が好ましい。 When using a quadrupole mass analyzer as a partial pressure measuring instrument, the quadrupole mass analyzer measures each component gas (hydrogen, acetylene) in order. Therefore, the measurement time of hydrogen partial pressure and the measurement time of acetylene are different. The analysis time of each component (hydrogen, acetylene) of the quadrupole mass analyzer is preferably 0.2 seconds or more and 2.0 seconds or less, and the analysis interval is preferably 4.0 seconds or less.
 たとえば、分圧測定器として四重極型質量分析器を用いる場合であって、水素を0.5秒で分析した後、アセチレンを0.5秒で分析し、水素の分析開始から2.0秒後に、再び水素を0.5秒で分析し、次いで、アセチレンを0.5秒で分析すると仮定する。この場合、各成分(水素、アセチレン)の分析時間は0.5秒であり、分析間隔は2.0秒である。以降の説明において、各成分の分析期間を「分析ステップ」と定義する。また、測定ステップの開始時間から次の測定ステップの開始時間までの期間を、「分析間隔」と定義する。上述の例の場合、分析ステップは1.0秒(水素の分析時間0.5秒+アセチレンの分析時間0.5秒)であり、分析間隔は2.0秒である。 For example, in the case of using a quadrupole mass analyzer as a voltage division measuring instrument, hydrogen is analyzed in 0.5 seconds, acetylene is analyzed in 0.5 seconds, and 2.0 from the start of hydrogen analysis. After a second, assume that hydrogen is analyzed again in 0.5 seconds and then acetylene is analyzed in 0.5 seconds. In this case, the analysis time of each component (hydrogen, acetylene) is 0.5 seconds, and the analysis interval is 2.0 seconds. In the following description, the analysis period of each component is defined as "analysis step". Further, the period from the start time of the measurement step to the start time of the next measurement step is defined as "analysis interval". In the case of the above example, the analysis step is 1.0 second (hydrogen analysis time 0.5 seconds + acetylene analysis time 0.5 seconds), and the analysis interval is 2.0 seconds.
 分圧測定器として四重極型質量分析器を用いる場合、アセチレン分圧が水素分圧の0.8倍以上となる時間、つまり、図3における時間t0の判断は、次の方法で行う。ある分析ステップの開始時間をt1とし、その分析ステップの完了時間をt2とする。分析ステップ中において、水素分圧を先に測定してもよいし、アセチレン分圧を先に測定してもよい。さらに、次の分析ステップの開始時間をt3とし、その分析ステップの完了時間をt4と定義する。このとき、分析期間は、時間t1~時間t3の間の時間となる。 When a quadrupole mass analyzer is used as the partial pressure measuring instrument, the time when the acetylene partial pressure becomes 0.8 times or more the hydrogen partial pressure, that is, the time t0 in FIG. 3 is determined by the following method. Let t1 be the start time of an analysis step and t2 be the completion time of that analysis step. During the analysis step, the hydrogen partial pressure may be measured first, or the acetylene partial pressure may be measured first. Further, the start time of the next analysis step is defined as t3, and the completion time of the analysis step is defined as t4. At this time, the analysis period is a time between time t1 and time t3.
 この場合、時間t1~時間t2での分析ステップで得られたアセチレン分圧が、同じ分析ステップ(つまり、時間t1~時間t2での分析ステップ)で得られた水素分圧の0.8倍以上であり、かつ、分析間隔経過後の次の時間t3~時間t4での分析ステップで得られた水素分圧が、時間t1~時間t2での分析ステップで得られたアセチレン分圧の1.25倍以下である場合、そのアセチレン分圧を測定した分析ステップの完了時間t2を、時間t0と定義する。 In this case, the acetylene partial pressure obtained in the analysis step at time t1 to time t2 is 0.8 times or more the hydrogen partial pressure obtained in the same analysis step (that is, the analysis step at time t1 to time t2). And the hydrogen partial pressure obtained in the analysis step at the next time t3 to time t4 after the lapse of the analysis interval is 1.25 of the acetylene partial pressure obtained in the analysis step at time t1 to time t2. When it is double or less, the completion time t2 of the analysis step in which the acetylene partial pressure is measured is defined as the time t0.
 アセチレン分圧が同じ分析ステップで得られた水素分圧の0.8倍以上であるだけでなく、次の分析ステップで得られた水素分圧が、1つ前の分析ステップで得られたアセチレン分圧の1.25倍以下であることも条件とした理由は次のとおりである。仮に、浸炭ガスが炉内に流れ始めたのが、時間t1~時間t2の分析ステップのうち、水素分圧の測定が完了した後であって、アセチレン分圧の測定前であった場合、この分析ステップで得られる水素分圧は0となる。そのため、この分析ステップで得られたアセチレン分圧は必ず水素分圧の0.8倍以上となる。この分析ステップの完了時間を時間t0と認定した場合、実際には、アセチレンガスが炉内に十分に導入されたことにはなっていない。そこで、このようなケースを時間t0と認定しないようにする必要がある。上記ケースの場合、分析間隔経過後の次の分析ステップ(時間t3~時間t4)で測定される水素分圧が、1つ前の分析ステップで得られたアセチレン分圧の1.25倍を大きく超える。アセチレンガスが導入されたことにより、水素分圧が急激に高くなるためである。 Not only is the partial pressure of acetylene more than 0.8 times the partial pressure of hydrogen obtained in the same analysis step, but the partial pressure of hydrogen obtained in the next analysis step is the acetylene obtained in the previous analysis step. The reason for the condition that the partial pressure is 1.25 times or less is as follows. If the carburized gas starts to flow into the furnace after the hydrogen partial pressure measurement is completed and before the acetylene partial pressure measurement in the analysis steps of time t1 to time t2, this is the case. The hydrogen partial pressure obtained in the analysis step is zero. Therefore, the acetylene partial pressure obtained in this analysis step is always 0.8 times or more the hydrogen partial pressure. When the completion time of this analysis step is determined to be time t0, it does not mean that the acetylene gas is actually sufficiently introduced into the furnace. Therefore, it is necessary not to recognize such a case as time t0. In the above case, the hydrogen partial pressure measured in the next analysis step (time t3 to time t4) after the lapse of the analysis interval is 1.25 times larger than the acetylene partial pressure obtained in the previous analysis step. Exceed. This is because the partial pressure of hydrogen rises sharply due to the introduction of acetylene gas.
 一方で、浸炭ガスが炉内に十分に導入された結果、得られたアセチレン分圧が、同じ分析ステップで得られた水素分圧の0.8倍以上となった場合、分析間隔経過後の次の分析ステップで得られた水素分圧は、前回の分析ステップで得られたアセチレン分圧の1.25倍以下となる。図3に示すとおり、浸炭ガスが炉内に十分に導入された場合、水素分圧は時間の経過とともに増加せず、むしろ減少するためである。 On the other hand, if the acetylene partial pressure obtained as a result of sufficient introduction of the carbonized gas into the furnace is 0.8 times or more the hydrogen partial pressure obtained in the same analysis step, after the analysis interval has elapsed. The partial pressure of hydrogen obtained in the next analysis step is 1.25 times or less the partial pressure of acetylene obtained in the previous analysis step. This is because, as shown in FIG. 3, when the carburized gas is sufficiently introduced into the furnace, the hydrogen partial pressure does not increase with the passage of time, but rather decreases.
 そこで、分圧測定器として四重極型質量分析器を用いる場合、得られたアセチレン分圧が、同じ分析ステップで得られた水素分圧の0.8倍以上であり、かつ、分析間隔経過後の次の分析ステップで得られた水素分圧が、1つ前の分析ステップで得られたアセチレン分圧の1.25倍以下である場合、そのアセチレン分圧を測定した分析ステップの完了時間t2を、時間t0と定義する。 Therefore, when a quadrupole mass analyzer is used as the partial pressure measuring instrument, the obtained acetylene partial pressure is 0.8 times or more the hydrogen partial pressure obtained in the same analysis step, and the analysis interval elapses. If the hydrogen partial pressure obtained in the subsequent next analysis step is 1.25 times or less the acetylene partial pressure obtained in the previous analysis step, the completion time of the analysis step in which the acetylene partial pressure is measured is measured. t2 is defined as time t0.
 なお、炉内ガス(水素、アセチレン)は炉内で分析してもよいし、炉外に抽出して分析してもよい。炉内ガスを炉内で分析する場合、炉内に設置された分圧測定器を用いる。分圧測定器は上述の四重極型質量分析器以外の測定器であってもよい。また、各成分ガスごとに、分圧測定器を使い分けてもよい。例えば、アセチレン分圧を四重極型質量分析器で分析し、水素分圧は他の分圧測定器で分析してもよい。 The gas in the furnace (hydrogen, acetylene) may be analyzed in the furnace, or may be extracted and analyzed outside the furnace. When analyzing the gas in the furnace, a partial pressure measuring device installed in the furnace is used. The partial pressure measuring device may be a measuring device other than the above-mentioned quadrupole mass spectrometer. Further, the partial pressure measuring device may be used properly for each component gas. For example, the acetylene partial pressure may be analyzed by a quadrupole mass analyzer, and the hydrogen partial pressure may be analyzed by another pressure dividing measuring instrument.
 浸炭工程(S30)は上述の減圧下で浸炭ガスを供給する。そのため、浸炭ガスは炉内全体で速やかに浸炭反応する。そのため、炉内ガスの分圧測定結果は、炉内でばらつきにくい。つまり、炉内ガスの分析結果は、炉内でほぼ均一をみなすことができる。 In the carburizing step (S30), the carburizing gas is supplied under the above-mentioned reduced pressure. Therefore, the carburized gas rapidly undergoes a carburizing reaction in the entire furnace. Therefore, the measurement result of the partial pressure of the gas in the furnace is unlikely to vary in the furnace. That is, the analysis result of the gas in the furnace can be regarded as almost uniform in the furnace.
 [前期浸炭工程S1]
 図3に示すとおり、浸炭工程(S30)の開始から、アセチレン分圧が水素分圧の0.8倍以上となる最初の時間t0までの期間を、前期浸炭工程S1と定義する。前期浸炭工程S1では、次の条件Iを満たす様に、実際浸炭ガス流量FRを調整する。
 (I)前期浸炭工程S1において、実際浸炭ガス流量FRを理論浸炭ガス流量FTta/10以上、かつ、理論浸炭ガス流量FT以下とする。
[First term carburizing process S1]
As shown in FIG. 3, the period from the start of the carburizing step (S30) to the first time t0 when the acetylene partial pressure becomes 0.8 times or more the hydrogen partial pressure is defined as the early carburizing step S1. In the early carburizing step S1, the actual carburized gas flow rate FR is adjusted so as to satisfy the following condition I.
(I) In the first stage carburizing step S1, the actual carburizing gas flow rate FR is set to be the theoretical carburizing gas flow rate FT ta / 10 or more and the theoretical carburizing gas flow rate FT 4 or less.
 図5は、本実施形態の真空浸炭処理方法の前期浸炭工程S1でのガス流量設定値の一例を示す図である。前期浸炭工程S1では、実際浸炭ガス流量FRを、図5中のハッチング領域の範囲内(FTta/10以上、かつ、FT以下)とする。 FIG. 5 is a diagram showing an example of a gas flow rate set value in the early carburizing step S1 of the vacuum carburizing treatment method of the present embodiment. In the early carburizing step S1, the actual carburized gas flow rate FR is set within the range of the hatching region in FIG. 5 (FT ta / 10 or more and FT 4 or less).
 前期浸炭工程S1中の実際浸炭ガス流量FRが、時間ta/10での理論浸炭ガス流量FTta/10未満であれば、前期浸炭工程S1において、浸炭ガスの供給が不足し過ぎている。この場合、真空浸炭処理方法を実施した鋼材(浸炭部品)において、浸炭ばらつきが大きくなる。一方、前期浸炭工程S1中の実際浸炭ガス流量FRが、浸炭工程開始から4秒時点での理論浸炭ガス流量FTを超えれば、実際浸炭ガス流量FRが多すぎる。この場合、時間t0経過後、時間4t0までに、実際浸炭ガス流量FRをFA×√(t0/t)以上、かつ、2FA√(t0/t)以下に調整するのに時間が掛かる。そのため、真空浸炭炉内に余剰ガス(アセチレンガス)が過剰に残存してしまい、煤が発生しやすくなる。その結果、真空浸炭処理方法を実施して製造された浸炭部品(鋼材)において、浸炭ばらつきが大きくなる。 If the actual carburized gas flow rate FR in the early carburizing step S1 is less than the theoretical carburized gas flow rate FT ta / 10 at time ta / 10, the supply of carburized gas is too insufficient in the early carburizing step S1. In this case, the carburizing variation becomes large in the steel material (carburized parts) subjected to the vacuum carburizing treatment method. On the other hand, if the actual carburized gas flow rate FR in the first carburizing step S1 exceeds the theoretical carburized gas flow rate FT 4 at 4 seconds from the start of the carburizing process, the actual carburized gas flow rate FR is too large. In this case, it takes time to adjust the actual carburized gas flow rate FR to FA × √ (t0 / t) or more and 2FA√ (t0 / t) or less by time 4t0 after the lapse of time t0. Therefore, excess gas (acetylene gas) remains excessively in the vacuum carburizing furnace, and soot is likely to be generated. As a result, the carburizing variation becomes large in the carburized parts (steel materials) manufactured by carrying out the vacuum carburizing treatment method.
 前期浸炭工程S1において実際浸炭ガス流量FRを、時間ta/10での理論浸炭ガス流量FTta/10以上、かつ、浸炭工程開始から4秒時点での理論浸炭ガス流量FT以下とすれば、後述の後期浸炭工程S2での実際浸炭ガス流量FRの条件II及びIIIを満たすことを前提として、真空浸炭処理後の浸炭部品(鋼材)の浸炭ばらつきを十分に抑制できる。前期浸炭工程S1での実際浸炭ガス流量FRの調整は、周知の方法で可能である。たとえば、真空浸炭炉に供給される浸炭ガスの流量を供給弁により調整して、実際浸炭ガス流量FRを調整してもよいし、他の周知の方法により、実際浸炭ガス流量FRを調整してもよい。実際浸炭ガス流量FRの調整は、真空浸炭炉の周知の制御装置により実施してもよい。制御装置はたとえば、上述の供給弁の開度を調整することにより、実際浸炭ガス流量FRを調整する。 If the actual carburizing gas flow rate FR in the first carburizing step S1 is the theoretical carburizing gas flow rate FT ta / 10 or more at time ta / 10 and the theoretical carburizing gas flow rate FT 4 or less at 4 seconds from the start of the carburizing process, On the premise that the conditions II and III of the actual carburizing gas flow rate FR in the late carburizing step S2 described later are satisfied, the carburizing variation of the carburized parts (steel material) after the vacuum carburizing treatment can be sufficiently suppressed. The actual carburized gas flow rate FR in the early carburizing step S1 can be adjusted by a well-known method. For example, the flow rate of the carburized gas supplied to the vacuum carburizing furnace may be adjusted by the supply valve to adjust the actual carburized gas flow rate FR, or the actual carburized gas flow rate FR may be adjusted by another well-known method. May be good. In fact, the adjustment of the carburized gas flow rate FR may be carried out by a well-known control device of the vacuum carburizing furnace. The control device actually adjusts the carburized gas flow rate FR by adjusting the opening degree of the supply valve described above, for example.
 前期浸炭工程S1での実際浸炭ガス流量FRは一定であるのが好ましい。実際浸炭ガス流量FRが一定であれば、炉中の水素分圧とアセチレン分圧の変動を精度高く測定できる。前期浸炭工程S1中の実際浸炭ガス流量FRが変動すれば、炉中の水素分圧の変動と、アセチレン分圧の変動とが、実際浸炭ガス流量FRの変動の影響を受ける。前期浸炭工程S1中の実際浸炭ガス流量FRが一定であれば、炉中の水素分圧とアセチレン分圧の変動を精度高く測定できる。したがって、前期浸炭工程S1中の実際浸炭ガス流量FRは一定であるのが好ましい。たとえば、図3に示すとおり、前期浸炭工程S1での実際浸炭ガス流量FRは、一定であるのが好ましい。この場合、前期浸炭工程S1を通じて一定であった実際浸炭ガス流量FRの値が、前期浸炭工程S1での実際浸炭ガス流量FAとなる。しかしながら、実際の操業において、実際浸炭ガス流量は設定値どおりに完全に一定とはならず、設定値からある程度の範囲内に振れることは、当業者に周知の技術常識である。したがって、前期浸炭工程S1での実際浸炭ガス流量FRを一定とする場合、実際浸炭ガス流量FRは設定値の±10%のマージンを許容する。つまり、前期浸炭工程S1を通じて実際浸炭ガス流量FRが特定の設定値の±10%内を推移した場合、当該設定値を前期浸炭工程での実際浸炭ガス流量FAの値とする。つまり、本明細書において、FAは、前期浸炭工程S1での設定値±10%の範囲内の浸炭ガス流量を意味する。好ましくは、FAは、前期浸炭工程S1での設定値±5%の範囲内である。 It is preferable that the actual carburized gas flow rate FR in the first carburizing step S1 is constant. If the actual carburized gas flow rate FR is constant, the fluctuations of the hydrogen partial pressure and the acetylene partial pressure in the furnace can be measured with high accuracy. If the actual carburized gas flow rate FR in the early carburizing step S1 fluctuates, the fluctuation of the hydrogen partial pressure in the furnace and the fluctuation of the acetylene partial pressure are affected by the fluctuation of the actual carburized gas flow rate FR. If the actual carburized gas flow rate FR in the first carburizing step S1 is constant, the fluctuations of the hydrogen partial pressure and the acetylene partial pressure in the furnace can be measured with high accuracy. Therefore, it is preferable that the actual carburized gas flow rate FR in the early carburizing step S1 is constant. For example, as shown in FIG. 3, the actual carburized gas flow rate FR in the early carburizing step S1 is preferably constant. In this case, the value of the actual carburized gas flow rate FR that was constant throughout the previous carburizing step S1 becomes the actual carburized gas flow rate FA in the first carburizing step S1. However, in actual operation, it is a well-known technical common sense to those skilled in the art that the actual carburized gas flow rate does not become completely constant according to the set value and fluctuates within a certain range from the set value. Therefore, when the actual carburized gas flow rate FR in the previous carburizing step S1 is constant, the actual carburized gas flow rate FR allows a margin of ± 10% of the set value. That is, when the actual carburized gas flow rate FR changes within ± 10% of the specific set value through the previous carburizing step S1, the set value is set as the value of the actual carburized gas flow rate FA in the previous carburizing step. That is, in the present specification, FA means the carburized gas flow rate within the range of ± 10% of the set value in the early carburizing step S1. Preferably, FA is within the range of ± 5% of the set value in the early carburizing step S1.
 [後期浸炭工程S2]
 図3に示すとおり、時間t0から浸炭工程の完了時間taまでの期間を、後期浸炭工程S2と定義する。後期浸炭工程S2では、次の条件II及びIIIを満たすように、実際浸炭ガス流量FRを調整する。
 (II)後期浸炭工程S2のうち、時間t0~4t0の期間において、実際浸炭ガス流量FRを、FA×√(t0/t)以上、かつ、FA以下とする。
 (III)後期浸炭工程S2のうち、時間4t0~時間taの期間において、実際浸炭ガス流量FRをFA×√(t0/t)以上、かつ、2FA×√(t0/t)以下、とする。
 ここで、tは浸炭開始時からの時間である。
[Late carburizing process S2]
As shown in FIG. 3, the period from the time t0 to the completion time ta of the carburizing step is defined as the late carburizing step S2. In the late carburizing step S2, the actual carburized gas flow rate FR is adjusted so as to satisfy the following conditions II and III.
(II) In the late carburizing step S2, the actual carburized gas flow rate FR is set to FA × √ (t0 / t) or more and FA or less in the period of time t0 to 4t0.
(III) In the late carburizing step S2, the actual carburized gas flow rate FR is set to FA × √ (t0 / t) or more and 2FA × √ (t0 / t) or less in the period from time 4t0 to time ta.
Here, t is the time from the start of carburizing.
 要するに、後期浸炭工程S2では、実際浸炭ガス流量FRを、図3中のハッチングの範囲内になるように調整する。これにより、後期浸炭工程S2において、過剰な浸炭ガスが真空浸炭炉内に残存するのを抑制することができる。その結果、煤やタールの発生を低減でき、真空浸炭処理方法を実施した後の浸炭部品(鋼材)の浸炭ばらつきを抑制できる。 In short, in the late carburizing step S2, the actual carburized gas flow rate FR is adjusted so as to be within the hatching range in FIG. As a result, it is possible to prevent excess carburizing gas from remaining in the vacuum carburizing furnace in the late carburizing step S2. As a result, the generation of soot and tar can be reduced, and the carburizing variation of the carburized parts (steel material) after the vacuum carburizing treatment method can be suppressed.
 [条件IIについて]
 後期浸炭工程S2の時間t0~4t0の期間において、実際浸炭ガス流量がFA×√(t0/t)未満であれば、ガス流量が不足する。この場合、真空浸炭炉内で浸炭ガスの分布にばらつきが生じる。たとえば、浸炭ガスの供給ノズル近傍では、浸炭ガスの濃度が高く、供給ノズルから離れた領域では、浸炭ガスの濃度が低い。その結果、真空浸炭処理工程後の鋼材において、浸炭ばらつきが大きくなる。
[Condition II]
If the actual carburized gas flow rate is less than FA × √ (t0 / t) in the period t0 to 4t0 of the late carburizing step S2, the gas flow rate is insufficient. In this case, the distribution of the carburized gas varies in the vacuum carburizing furnace. For example, the concentration of carburized gas is high in the vicinity of the carburized gas supply nozzle, and the concentration of carburized gas is low in the region away from the supply nozzle. As a result, the carburizing variation becomes large in the steel material after the vacuum carburizing treatment step.
 一方、後期浸炭工程S2の時間t0~4t0の期間において、実際浸炭ガス流量がFAを超えれば、浸炭ガスが過剰に供給されている。この場合、この余剰ガスにより煤やタールが発生する。その結果、真空浸炭処理後の浸炭部品(鋼材)の浸炭ばらつきが大きくなる。 On the other hand, if the actual carburized gas flow rate exceeds FA in the period of time t0 to 4t0 in the late carburizing step S2, the carburized gas is excessively supplied. In this case, soot and tar are generated by this surplus gas. As a result, the carburizing variation of the carburized parts (steel material) after the vacuum carburizing treatment becomes large.
 したがって、後期浸炭工程S2の時間t0~4t0の期間において、実際浸炭ガス流量FRを、FA×√(t0/t)以上、かつ、FA以下とする。この場合、条件I及び条件IIIを満たすことを条件として、浸炭反応に必要な浸炭ガス流量を十分に確保でき、かつ、煤やタールの発生を抑制できる。その結果、浸炭部品の浸炭ばらつきの発生を抑制できる。なお、上述のとおり、実際浸炭ガス流量FRは設定値の±10%のマージンを許容する。そのため、上述のとおり、前期浸炭工程S1での実際浸炭ガス流量FAについても同様のマージンが存在する。つまり、本明細書において、前期浸炭工程での実際浸炭ガス流量FAは、前期浸炭工程S1での実際浸炭ガスFRの設定値±10%の範囲内の浸炭ガス流量を意味する。また、後期浸炭工程S2の時間t0~4t0の期間の途中まで、前期浸炭工程S1に引き続いて実際ガス浸炭流量FRをFAで維持し、その後、実際浸炭ガス流量をFA~FA×√(t0/t)の範囲内に調整してもよい。 Therefore, the actual carburized gas flow rate FR is set to FA × √ (t0 / t) or more and FA or less in the period of time t0 to 4t0 in the late carburizing step S2. In this case, the carburized gas flow rate required for the carburizing reaction can be sufficiently secured and the generation of soot and tar can be suppressed, provided that the conditions I and III are satisfied. As a result, it is possible to suppress the occurrence of carburizing variation of carburized parts. As described above, the actual carburized gas flow rate FR allows a margin of ± 10% of the set value. Therefore, as described above, there is a similar margin for the actual carburized gas flow rate FA in the early carburizing step S1. That is, in the present specification, the actual carburized gas flow rate FA in the early carburizing step means the carburized gas flow rate within the range of ± 10% of the set value of the actual carburized gas FR in the early carburizing step S1. Further, until the middle of the time t0 to 4t0 of the late carburizing step S2, the actual carburized gas flow rate FR is maintained by FA following the early carburizing step S1, and then the actual carburized gas flow rate is FA to FA × √ (t0 /). It may be adjusted within the range of t).
 [条件IIIについて]
 後期浸炭工程S2の時間4t0~taの期間において、実際浸炭ガス流量がFA×√(t0/t)未満であれば、ガス流量が不足する。この場合、真空浸炭炉内で浸炭ガスの分布にばらつきが生じる。たとえば、浸炭ガスの供給ノズル近傍では、浸炭ガスの濃度が高く、供給ノズルから離れた領域では、浸炭ガスの濃度が低い。その結果、真空浸炭処理工程後の鋼材において、浸炭ばらつきが大きくなる。
[About Condition III]
If the actual carburized gas flow rate is less than FA × √ (t0 / t) in the period of time 4t0 to ta in the late carburizing step S2, the gas flow rate is insufficient. In this case, the distribution of the carburized gas varies in the vacuum carburizing furnace. For example, the concentration of carburized gas is high in the vicinity of the carburized gas supply nozzle, and the concentration of carburized gas is low in the region away from the supply nozzle. As a result, the carburizing variation becomes large in the steel material after the vacuum carburizing treatment step.
 一方、後期浸炭工程S2の時間4t0~taの期間において、実際浸炭ガス流量が2FA×√(t0/t)を超えれば、浸炭ガスが過剰に供給されている。この場合、この余剰ガスにより煤やタールが発生する。その結果、真空浸炭処理後の浸炭部品(鋼材)の浸炭ばらつきが大きくなる。 On the other hand, if the actual carburized gas flow rate exceeds 2FA × √ (t0 / t) in the period of 4t0 to ta in the late carburizing step S2, the carburized gas is excessively supplied. In this case, soot and tar are generated by this surplus gas. As a result, the carburizing variation of the carburized parts (steel material) after the vacuum carburizing treatment becomes large.
 したがって、後期浸炭工程S2の時間4t0~taの期間において、実際浸炭ガス流量FRをFA×√(t0/t)以上、かつ、2FA×√(t0/t)以下、とする。この場合、条件I及び条件IIを満たすことを条件として、浸炭反応に必要な浸炭ガス流量を十分に確保でき、かつ、煤やタールの発生を抑制できる。その結果、浸炭部品の浸炭ばらつきの発生を抑制できる。 Therefore, the actual carburized gas flow rate FR is set to FA × √ (t0 / t) or more and 2FA × √ (t0 / t) or less in the period of time 4t0 to ta in the late carburizing step S2. In this case, the carburized gas flow rate required for the carburizing reaction can be sufficiently secured and the generation of soot and tar can be suppressed, provided that the conditions I and II are satisfied. As a result, it is possible to suppress the occurrence of carburizing variation of carburized parts.
 後期浸炭工程S2において、実際浸炭ガス流量FRが条件II及び条件IIIを満たせば、実際浸炭ガス流量FRの経時変化は特に限定されない。たとえば、図6に示すとおり、後期浸炭工程S2の時間4t0~taの期間内において、実際浸炭ガス流量FRの低減を開始してもよい。 In the late carburizing step S2, if the actual carburized gas flow rate FR satisfies the conditions II and III, the change with time of the actual carburized gas flow rate FR is not particularly limited. For example, as shown in FIG. 6, the reduction of the actual carburized gas flow rate FR may be started within the period of time 4t0 to ta in the late carburizing step S2.
 後期浸炭工程S2において、図6に示すとおり、時間の経過とともに、実際浸炭ガス流量FRの維持と低減とを繰り返し、段階的に実際浸炭ガス流量FRを低減してもよい。また、図7に示すとおり、後期浸炭工程S2において、時間の経過とともに、実際浸炭ガス流量FRを漸減してもよい。さらに、図8に示すとおり、時間の経過とともに、実際浸炭ガス流量FRを漸減した後、上昇させてもよい。要するに、後期浸炭工程S2において、条件II及び条件IIIを満たせば、実際浸炭ガス流量FRの経時変動は特に限定されない。 In the late carburizing step S2, as shown in FIG. 6, the actual carburized gas flow rate FR may be maintained and reduced repeatedly with the passage of time to gradually reduce the actual carburized gas flow rate FR. Further, as shown in FIG. 7, in the late carburizing step S2, the actual carburized gas flow rate FR may be gradually reduced with the passage of time. Further, as shown in FIG. 8, the actual carburized gas flow rate FR may be gradually decreased and then increased with the passage of time. In short, if the conditions II and III are satisfied in the late carburizing step S2, the time-dependent fluctuation of the actual carburized gas flow rate FR is not particularly limited.
 [浸炭工程(S30)における浸炭ガス圧]
 浸炭工程(S30)における浸炭ガスの圧力(浸炭ガス圧)は特に限定されない。好ましくは、前期浸炭工程S1での浸炭ガス圧を、後期浸炭工程S2での浸炭ガス圧よりも高くする。この場合、後期浸炭工程S2において、煤の発生がさらに抑制される。さらに好ましくは、後期浸炭工程S2での浸炭ガス圧を、時間の経過にともない低下する。浸炭工程(S30)での好ましい浸炭ガス圧は1kPa以下である。
[Carburizing gas pressure in carburizing step (S30)]
The carburizing gas pressure (carburizing gas pressure) in the carburizing step (S30) is not particularly limited. Preferably, the carburized gas pressure in the early carburizing step S1 is made higher than the carburized gas pressure in the late carburizing step S2. In this case, the generation of soot is further suppressed in the late carburizing step S2. More preferably, the carburized gas pressure in the late carburizing step S2 is lowered with the passage of time. The preferable carburizing gas pressure in the carburizing step (S30) is 1 kPa or less.
 [浸炭工程(S30)の時間ta]
 浸炭工程(S30)の開始(t=0)から完了するまでの時間である時間taは、真空浸炭処理工程後の鋼材の表層の目標とする炭素濃度に応じて、真空浸炭処理の開始前に適宜設定される。時間taは、拡散方程式を用いた上述の拡散シミュレーションにより決定してもよい。時間taは、事前に真空拡散処理試験を実施して、実験データから決定してもよい。時間taは長い方が好ましい。時間taが長い方が、実際浸炭ガス流量FRの調整が容易になる。時間taの好ましい下限は50秒であり、さらに好ましくは1分(60秒)であり、さらに好ましくは3分(180秒)である。時間taの好ましい上限は120分であり、さらに好ましくは60分である。
[Time ta of carburizing step (S30)]
The time ta, which is the time from the start (t = 0) of the carburizing step (S30) to the completion, is before the start of the vacuum carburizing treatment according to the target carbon concentration of the surface layer of the steel material after the vacuum carburizing treatment step. It is set as appropriate. The time ta may be determined by the above-mentioned diffusion simulation using the diffusion equation. The time ta may be determined from experimental data by conducting a vacuum diffusion treatment test in advance. The longer the time ta, the better. The longer the time ta, the easier it is to actually adjust the carburized gas flow rate FR. The preferred lower limit of the time ta is 50 seconds, more preferably 1 minute (60 seconds), and even more preferably 3 minutes (180 seconds). The preferred upper limit of the time ta is 120 minutes, more preferably 60 minutes.
 [拡散工程(S40)]
 拡散工程(S40)は、真空浸炭処理方法において周知の工程である。拡散工程(S40)では、真空浸炭炉への浸炭ガスの供給を停止し、浸炭温度Tcで鋼材を所定時間保持する。拡散工程(S40)では、浸炭工程(S30)により鋼材に侵入した炭素を、鋼材内部に拡散させる。これにより、浸炭工程(S30)で高くなった表層の炭素濃度が低下し、所定の深さの炭素濃度が上昇する。拡散工程(S40)では、真空浸炭炉内を窒素ガスの導入と真空ポンプによる真空排気とを行って、1000Pa以下の窒素雰囲気とする、又は、真空とする。真空とはたとえば、10Pa以下である。真空浸炭炉内を1000Pa以下の窒素雰囲気又は真空状態とすることにより、鋼材表面からの炭素の侵入かつ脱離を抑制する。
[Diffusion step (S40)]
The diffusion step (S40) is a well-known step in the vacuum carburizing treatment method. In the diffusion step (S40), the supply of the carburized gas to the vacuum carburizing furnace is stopped, and the steel material is held at the carburizing temperature Tc for a predetermined time. In the diffusion step (S40), the carbon that has entered the steel material in the carburizing step (S30) is diffused inside the steel material. As a result, the carbon concentration of the surface layer increased in the carburizing step (S30) decreases, and the carbon concentration of a predetermined depth increases. In the diffusion step (S40), nitrogen gas is introduced into the vacuum carburizing furnace and vacuum exhaust is performed by a vacuum pump to create a nitrogen atmosphere of 1000 Pa or less, or to create a vacuum. The vacuum is, for example, 10 Pa or less. By setting the inside of the vacuum carburizing furnace to a nitrogen atmosphere of 1000 Pa or less or a vacuum state, the invasion and desorption of carbon from the surface of the steel material is suppressed.
 なお、拡散工程(S40)での保持時間は、真空浸炭処理工程後の鋼材の表層の目標とする炭素濃度に応じて適宜設定される。したがって、拡散工程(S40)での保持時間は特に限定されない。 The holding time in the diffusion step (S40) is appropriately set according to the target carbon concentration of the surface layer of the steel material after the vacuum carburizing treatment step. Therefore, the holding time in the diffusion step (S40) is not particularly limited.
 [焼入れ工程(S50)]
 焼入れ工程(S50)では、浸炭工程(S30)及び拡散工程(S40)が完了した鋼材を、焼入れ温度(Ts)で所定時間保持し、その後、急冷(焼入れ)する。これにより、C濃度が高まった鋼材表層部分がマルテンサイトに変態して硬化層を形成する。焼入れ工程(S50)は、真空浸炭処理方法で周知の工程である。
[Quenching process (S50)]
In the quenching step (S50), the steel material for which the carburizing step (S30) and the diffusion step (S40) have been completed is held at the quenching temperature (Ts) for a predetermined time, and then rapidly cooled (quenched). As a result, the surface layer portion of the steel material having an increased C concentration is transformed into martensite to form a hardened layer. The quenching step (S50) is a well-known step in the vacuum carburizing treatment method.
 図4に示すとおり、焼入れ温度Tsが浸炭温度Tcよりも低い場合、拡散工程(S40)後の鋼材を、焼入れ温度Tsまで冷却する。この場合の冷却速度は特に限定されない。真空浸炭処理工程の処理時間を考慮すれば、冷却速度は速い方が好ましい。好ましい冷却速度は、0.02~30.00℃/秒である。ここでいう冷却速度とは、浸炭温度Tcと焼入れ温度Tsとの温度差を冷却時間で除したものである。 As shown in FIG. 4, when the quenching temperature Ts is lower than the carburizing temperature Tc, the steel material after the diffusion step (S40) is cooled to the quenching temperature Ts. The cooling rate in this case is not particularly limited. Considering the processing time of the vacuum carburizing process, it is preferable that the cooling rate is high. The preferred cooling rate is 0.02 to 30.00 ° C./sec. The cooling rate referred to here is the temperature difference between the carburizing temperature Tc and the quenching temperature Ts divided by the cooling time.
 焼入れ温度Tsを浸炭温度Tc未満とする場合の鋼材の冷却方法は、公知の冷却方法を用いれば足りる。たとえば、真空下で鋼材を放冷して冷却してもよいし、ガス冷却により鋼材を冷却してもよい。真空下での鋼材を放冷する場合、100Pa以下の圧力で放冷することが好ましい。冷却においてガス冷却を用いて鋼材を冷却する場合、冷却ガスとして不活性ガスを用いることが好ましい。不活性ガスとしては、たとえば、窒素ガス及び/又はヘリウムガスを用いることが好ましい。不活性ガスとしては、特に、安価で入手可能な窒素ガスを用いることが好ましい。冷却ガスとして不活性ガスを用いることで、鋼材の酸化を抑制できる。 When the quenching temperature Ts is less than the carburizing temperature Tc, a known cooling method may be used as the cooling method for the steel material. For example, the steel material may be cooled by allowing it to cool under vacuum, or the steel material may be cooled by gas cooling. When the steel material is allowed to cool under vacuum, it is preferably allowed to cool at a pressure of 100 Pa or less. When the steel material is cooled by using gas cooling in cooling, it is preferable to use an inert gas as the cooling gas. As the inert gas, for example, nitrogen gas and / or helium gas is preferably used. As the inert gas, it is particularly preferable to use inexpensively available nitrogen gas. By using an inert gas as the cooling gas, oxidation of the steel material can be suppressed.
 焼入れ温度Tsで鋼材を所定時間保持した後、鋼材を急冷する。焼入れ温度TsはA変態点(Ar3変態点)以上であれば特に限定されない。焼入れ温度Tsの好ましい下限は800℃であり、さらに好ましくは820℃であり、さらに好ましくは850℃である。焼入れ温度Tsの好ましい上限は1130℃であり、さらに好ましくは1100℃であり、さらに好ましくは950℃であり、さらに好ましくは900℃であり、さらに好ましくは880℃である。 After holding the steel material at the quenching temperature Ts for a predetermined time, the steel material is rapidly cooled. Quenching temperature Ts is not particularly limited as long as A 3 transformation point (A r3 transformation point) or more. The preferred lower limit of the quenching temperature Ts is 800 ° C., more preferably 820 ° C., and even more preferably 850 ° C. The preferred upper limit of the quenching temperature Ts is 1130 ° C., more preferably 1100 ° C., still more preferably 950 ° C., still more preferably 900 ° C., still more preferably 880 ° C.
 焼入れ工程(S50)における急冷方法としては、公知の急冷方法を用いる。急冷方法はたとえば、ガス冷、水冷、油冷である。 A known quenching method is used as the quenching method in the quenching step (S50). The quenching method is, for example, gas cooling, water cooling, or oil cooling.
 以上の真空浸炭処理方法を実施して、鋼材を浸炭部品とする。本実施形態の真空浸炭処理方法では、真空浸炭処理の対象となる鋼材に対する、理論浸炭ガス流量FTを用いる。そして、浸炭工程(S30)を、浸炭工程開始後アセチレン分圧が水素分圧の0.8倍以上となる最初の時間で、前期浸炭工程S1と後期浸炭工程S2とに区分する。そして、前期浸炭工程S1では、条件Iを満たし、かつ、後期浸炭工程S2では条件II及び条件IIIを満たすように、実際浸炭ガス流量FRを調整する。これにより、真空浸炭処理後の鋼材において、浸炭ばらつきが発生するのを抑制することができる。 Implement the above vacuum carburizing method and use steel as a carburized part. In the vacuum carburizing treatment method of the present embodiment, the theoretical carburized gas flow rate FT for the steel material to be vacuum carburized is used. Then, the carburizing step (S30) is divided into an early carburizing step S1 and a late carburizing step S2 at the first time after the start of the carburizing step when the acetylene partial pressure becomes 0.8 times or more the hydrogen partial pressure. Then, the actual carburized gas flow rate FR is adjusted so that the condition I is satisfied in the early carburizing step S1 and the conditions II and III are satisfied in the late carburizing step S2. As a result, it is possible to suppress the occurrence of carburizing variation in the steel material after the vacuum carburizing treatment.
 なお、本実施形態の真空浸炭処理方法はさらに、他の工程を含んでもよい。たとえば、真空浸炭処理方法は、焼入れ工程(S50)後に焼戻し工程を含んでいてもよい。焼戻し工程は、周知の条件で実施すれば足りる。たとえば、焼戻し工程では、Ac1変態点以下の温度で鋼材を所定時間保持し、その後、冷却する。 In addition, the vacuum carburizing treatment method of this embodiment may further include other steps. For example, the vacuum carburizing treatment method may include a tempering step after the quenching step (S50). It suffices to carry out the tempering process under well-known conditions. For example, in the tempering step, the steel material is held at a temperature equal to or lower than the Ac1 transformation point for a predetermined time, and then cooled.
 また、本実施形態の真空浸炭処理方法では、浸炭工程(S30)と拡散工程(S40)とを繰り返し複数回実施してもよい。この場合、上述のとおり、各浸炭工程(S30)ごとに、時間ta及び理論浸炭ガス流量FTが決定される。 Further, in the vacuum carburizing treatment method of the present embodiment, the carburizing step (S30) and the diffusion step (S40) may be repeated a plurality of times. In this case, as described above, the time ta and the theoretical carburized gas flow rate FT are determined for each carburizing step (S30).
 [浸炭部品の製造方法]
 本実施形態の浸炭部品の製造方法は、鋼材に対して、上述の真空浸炭処理方法を実施して浸炭部品を製造する工程を備える。以上の工程により製造された浸炭部品では、浸炭ばらつきを抑制することができる。
[Manufacturing method of carburized parts]
The method for manufacturing a carburized part of the present embodiment includes a step of manufacturing a carburized part by carrying out the above-mentioned vacuum carburizing treatment method on a steel material. In the carburized parts manufactured by the above steps, variations in carburizing can be suppressed.
 以下、実施例により本実施形態の真空浸炭処理方法の効果をさらに具体的に説明する。以下の実施例での条件は、本実施形態の真空浸炭処理方法の実施可能性及び効果を確認するために採用した一条件例である。したがって、本実施形態の真空浸炭処理方法はこの一条件例に限定されない。 Hereinafter, the effect of the vacuum carburizing treatment method of the present embodiment will be described more specifically by way of examples. The conditions in the following examples are one condition example adopted for confirming the feasibility and effect of the vacuum carburizing treatment method of the present embodiment. Therefore, the vacuum carburizing treatment method of the present embodiment is not limited to this one-condition example.
 JIS G 4053(2008)に規定されたSCM415に相当する化学組成を有する機械構造用鋼管(以下、鋼管という)、及び、SCM415に相当する丸棒を準備した。各試験番号の鋼管及び丸棒のC含有量はいずれも0.15質量%であった。鋼管の直径は34mmであり、肉厚は4.5mmであり、長さは110mmであった。丸棒の直径は26mmであり、長さは70mmであった。真空浸炭処理の評価は丸棒で行い、鋼管は、丸棒が真空浸炭炉内での配置位置による浸炭ばらつきを調査するための、ダミー材として使用した。 A steel pipe for mechanical structure (hereinafter referred to as a steel pipe) having a chemical composition corresponding to SCM415 specified in JIS G 4053 (2008) and a round bar corresponding to SCM415 were prepared. The C content of the steel pipe and the round bar of each test number was 0.15% by mass. The diameter of the steel pipe was 34 mm, the wall thickness was 4.5 mm, and the length was 110 mm. The diameter of the round bar was 26 mm and the length was 70 mm. The evaluation of the vacuum carburizing treatment was performed with a round bar, and the steel pipe was used as a dummy material for investigating the variation in carburizing depending on the position of the round bar in the vacuum carburizing furnace.
 各試験番号で真空浸炭処理された丸棒及び鋼管の総表面積(m)を、鋼材表面積(m)と定義した。鋼材表面積は次の式により求めた。
 鋼材表面積=鋼管1個あたりの表面積×鋼管個数+丸棒1個あたりの表面積×丸棒個数
 得られた鋼材表面積を表1に示す。試験番号1~5、10~13、15及び16、18~21では、248本の鋼管と、3本の丸棒とを用いた。試験番号6では、496本の鋼管と、3本の丸棒とを用いた。試験番号7~9、14及び17では、124本の鋼管と、3本の丸棒とを用いた。
The total surface area (m 2 ) of the round bar and steel pipe vacuum carburized in each test number was defined as the surface area of the steel material (m 2). The surface area of the steel material was calculated by the following formula.
Surface area of steel material = surface area per steel pipe x number of steel pipes + surface area per round bar x number of round bars Table 1 shows the surface area of the obtained steel material. In test numbers 1 to 5, 10 to 13, 15 and 16, 18 to 21, 248 steel pipes and 3 round bars were used. In test number 6, 496 steel pipes and 3 round bars were used. In test numbers 7-9, 14 and 17, 124 steel pipes and 3 round bars were used.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
 始めに、拡散方程式を用いた拡散シミュレーションを実施して、理論浸炭ガス流量を求めた。具体的には、丸棒及び鋼管の厚さ方向に2μm以上の複数のセルに区分した。また、拡散シミュレーションでのステップ時間を0.002~0.02秒とした。鋼管及び丸棒の化学組成(SCM415)において、浸炭温度での表面における黒鉛との平衡状態での平衡組成を熱力学計算により求めた。さらに、浸炭温度での鋼材内部の平衡組成、炭素の化学ポテンシャル、及び炭素の易動度を求めた。熱力学計算は商品名Pandat(商標)を用いた。さらに、データベースは商品名PanFe(商標)を用いた。また、炭素の易動度(m/s)には、以下の式を用いた。
 m=1.54×10-15exp(-1.61×C-(17300-2920×C)/T)
 ここで、式中のCはオーステナイト中の固溶C濃度(質量%)であり、Tは浸炭温度(K)である。
First, a diffusion simulation using the diffusion equation was performed to obtain the theoretical carburized gas flow rate. Specifically, it was divided into a plurality of cells having a thickness of 2 μm or more in the thickness direction of the round bar and the steel pipe. The step time in the diffusion simulation was set to 0.002 to 0.02 seconds. In the chemical composition of the steel pipe and the round bar (SCM415), the equilibrium composition in the equilibrium state with graphite on the surface at the carburizing temperature was obtained by thermodynamic calculation. Furthermore, the equilibrium composition inside the steel material at the carburizing temperature, the chemical potential of carbon, and the mobility of carbon were determined. The trade name Pandat ™ was used for the thermodynamic calculation. Further, the database used the trade name PanFe ™. The following formula was used for the mobility of carbon (m 2 / s).
m = 1.54 × 10 -15 exp (-1.61 × C- (17300-2920 × C) / T)
Here, C in the formula is the solid solution C concentration (mass%) in austenite, and T is the carburizing temperature (K).
 鋼管及び丸棒の表面での炭素濃度の目標値を0.70質量%とし、表面から深さ1.0mmでの炭素濃度の目標値を0.40質量%とした。以上を前提条件として、ステップ時間ごとに、上述の(A)~(D)の拡散シミュレーションを実施して、各ステップ時間ごとの理論浸炭ガス流量FTを求めた。 The target value of carbon concentration on the surface of the steel pipe and round bar was set to 0.70% by mass, and the target value of carbon concentration at a depth of 1.0 mm from the surface was set to 0.40% by mass. With the above as a precondition, the diffusion simulations (A) to (D) described above were carried out for each step time, and the theoretical carburized gas flow rate FT for each step time was obtained.
 理論浸炭ガス流量FTを算出した結果、理論浸炭ガス流量FTは次の式に近似可能であった。
 FT=S×A/√t (6)
 ここで、Aは、式(7)で定義される1mあたりの浸炭ガス流量(NL/分)であり、tは浸炭開始時からの時間(分)を示す。また、Sは鋼材表面積(m)を示す。
 A=a×T+b×T+c (7)
 本実施例(SCM415)の場合、a=8.64×10-5であり、b=-0.141であり、c=59.0であった。
As a result of calculating the theoretical carburized gas flow rate FT, the theoretical carburized gas flow rate FT could be approximated to the following equation.
FT = S × A / √t (6)
Here, A is the carburized gas flow rate (NL / min) per 1 m 2 defined by the formula (7), and t is the time (minute) from the start of carburizing. Further, S indicates the surface area of the steel material (m 2 ).
A = a × T 2 + b × T + c (7)
In the case of this example (SCM415), a = 8.64 × 10-5 , b = −0.141, and c = 59.0.
 理論浸炭ガス流量FTを算出した後、実際の真空浸炭処理を次の方法で実施した。初めに、十分に浸炭処理されたステンレス鋼材(JIS G 4303(2012)に規定のSUS316)からなるかごを準備した。かごに上述の本数の鋼管を立てた状態で均等に並べ、さらに、3個の丸棒を、立てた状態で、かご中央、かご左手前、かご右奥に配置した。上述のとおり、丸棒を試験材とし、鋼管は、丸棒の配置場所に起因した浸炭ばらつきの発生を確認するためのダミー材とした。 After calculating the theoretical carburizing gas flow rate FT, the actual vacuum carburizing treatment was carried out by the following method. First, a basket made of a fully carburized stainless steel material (SUS316 specified in JIS G 4303 (2012)) was prepared. The above-mentioned number of steel pipes were arranged evenly in an upright position in the car, and three round bars were placed in an upright state in the center of the car, in front of the left side of the car, and in the back right of the car. As described above, the round bar was used as a test material, and the steel pipe was used as a dummy material for confirming the occurrence of carburizing variation due to the arrangement location of the round bar.
 鋼材(鋼管及び丸棒)を配置したかごを真空浸炭炉に挿入して、真空浸炭処理を実施した。そして、試験番号1~21の浸炭部品を得た。真空浸炭処理での条件は、表1に示すとおりとした。 A car with steel materials (steel pipes and round bars) was inserted into a vacuum carburizing furnace, and vacuum carburizing was performed. Then, carburized parts of test numbers 1 to 21 were obtained. The conditions for the vacuum carburizing treatment were as shown in Table 1.
 具体的には、各試験番号において、次のとおり真空浸炭処理を実施した。各試験番号での真空浸炭処理は、炉内の圧力を10Pa以下に保持した。加熱工程では、各試験番号の丸棒を、表1に示す浸炭温度Tcに加熱した。加熱工程後、均熱工程を実施した。均熱工程では、浸炭温度Tcで鋼材(丸棒)を60分保持した。 Specifically, in each test number, vacuum carburizing treatment was carried out as follows. In the vacuum carburizing treatment at each test number, the pressure in the furnace was kept below 10 Pa. In the heating step, the round bars of each test number were heated to the carburizing temperature Tc shown in Table 1. After the heating step, a soaking step was carried out. In the soaking step, the steel material (round bar) was held for 60 minutes at the carburizing temperature Tc.
 均熱工程後、浸炭工程を実施した。浸炭工程では、真空浸炭炉内に、浸炭ガスとして、アセチレンを供給した。浸炭工程での浸炭ガス圧は1kPa以下に保持した。浸炭工程の完了時間ta(分)は表1に記載のとおりであった。 After the heat soaking process, a carburizing process was carried out. In the carburizing step, acetylene was supplied as a carburizing gas into the vacuum carburizing furnace. The carburized gas pressure in the carburizing step was kept below 1 kPa. The completion time ta (minutes) of the carburizing step was as shown in Table 1.
 上述のとおり、丸棒の1.0mm深さにおける炭素濃度が0.40質量%とすることを目標として、浸炭工程での浸炭時間と拡散工程での拡散時間とを調整した。 As described above, the carburizing time in the carburizing step and the diffusion time in the diffusion step were adjusted with the goal of setting the carbon concentration of the round bar to 0.40% by mass at a depth of 1.0 mm.
 なお、浸炭工程において、真空浸炭炉内の雰囲気中のガスを四重極型質量分析器で分析して、水素分圧及びアセチレン分圧を継続的に測定した。水素の質量電荷比(m/z)を2とし、アセチレンの質量電荷比を26とした。分析時間は0.5秒であり、分析間隔は4秒であった。求めた水素分圧及びアセチレン分圧に基づいて、時間t0(アセチレン分圧が水素分圧の0.8倍以上となる最初の時間)を求めた。 In the carburizing step, the gas in the atmosphere in the vacuum carburizing furnace was analyzed with a quadrupole mass analyzer to continuously measure the hydrogen partial pressure and the acetylene partial pressure. The mass-to-charge ratio (m / z) of hydrogen was set to 2, and the mass-to-charge ratio of acetylene was set to 26. The analysis time was 0.5 seconds and the analysis interval was 4 seconds. Based on the obtained hydrogen partial pressure and acetylene partial pressure, the time t0 (the first time when the acetylene partial pressure becomes 0.8 times or more the hydrogen partial pressure) was determined.
 各試験番号の実際浸炭ガス流量の経時変化は、図9~16に示すとおりとした。以下、試験番号1~21の実際浸炭ガス流量FRの設定値について、図9~図16を用いて説明する。 The changes over time in the actual carburized gas flow rate of each test number were as shown in FIGS. 9 to 16. Hereinafter, the set values of the actual carburized gas flow rate FR of test numbers 1 to 21 will be described with reference to FIGS. 9 to 16.
 図9は、試験番号1、5、7~12の浸炭工程での、実際浸炭ガス流量FRの経時変化を示す図である。図9を参照して、試験番号1、5、7~12では、浸炭工程開始時間(t=0)での実際浸炭ガス流量FRを、FAとした。FAは、FTta/10以上であり、かつ、FT以下であった。時間t0を超え、かつ、時間4t0に至る前の時間tsまで、実際浸炭ガス流量FRをFAのまま一定とした。時間ts後、実際浸炭ガス流量を曲線C2(=FA×√(ts/t))で漸減した。その結果、実際浸炭ガス流量FRは、前期浸炭工程S1中では、FTta/10以上であり、かつ、FT以下であった。また、後期浸炭工程S2のうち、時間t0~時間4t0の期間における実際浸炭ガス流量FRは、FA√(t0/t)以上、かつ、FA以下であった。さらに、時間4t0~時間taまでの実際浸炭ガス流量FRは、FA√(t0/t)以上、かつ、2FA√(t0/t)以下であった。 FIG. 9 is a diagram showing changes over time in the actual carburized gas flow rate FR in the carburizing steps of test numbers 1, 5, 7 to 12. With reference to FIG. 9, in test numbers 1, 5, 7 to 12, the actual carburized gas flow rate FR at the carburizing process start time (t = 0) was defined as FA. FA was FT ta / 10 or more and FT 4 or less. The actual carburized gas flow rate FR was kept constant as FA until the time ts before the time t0 was exceeded and the time 4t0 was reached. After time ts, the actual carburized gas flow rate was gradually reduced along the curve C2 (= FA × √ (ts / t)). As a result, the actual carburized gas flow rate FR was FT ta / 10 or more and FT 4 or less in the early carburizing step S1. Further, in the late carburizing step S2, the actual carburized gas flow rate FR in the period from time t0 to time 4t0 was FA√ (t0 / t) or more and FA or less. Further, the actual carburized gas flow rate FR from time 4t0 to time ta was FA√ (t0 / t) or more and 2FA√ (t0 / t) or less.
 図10は、試験番号2~4、6の浸炭工程での、実際浸炭ガス流量FRの経時変化を示す図である。図10を参照して、試験番号2~4、6では、浸炭工程開始時間(t=0)での実際浸炭ガス流量FRを、FAとした。FAは、FTta/10以上であり、かつ、FT以下であった。時間t0を超え、かつ、時間4t0に至る前の時間tsまで、実際浸炭ガス流量FRをFAのまま一定とした。なお、図10の時間t0~時間4t0の期間中での時間tsは、図9の時間t0~時間4t0の期間中での時間tsよりも遅いタイミングであった。時間ts後、実際浸炭ガス流量FRを曲線C2(=FA×√(ts/t))で漸減した。その結果、実際浸炭ガス流量FRは、前期浸炭工程S1中では、FTta/10以上であり、かつ、FT以下であった。また、後期浸炭工程S2のうち、時間t0~時間4t0の期間における実際浸炭ガス流量FRは、FA√(t0/t)以上、かつ、FA以下であった。さらに、時間4t0~時間taまでの実際浸炭ガス流量FRは、FA√(t0/t)以上、かつ、2FA√(t0/t)以下であった。 FIG. 10 is a diagram showing changes over time in the actual carburized gas flow rate FR in the carburizing steps of test numbers 2 to 4 and 6. With reference to FIG. 10, in test numbers 2 to 4 and 6, the actual carburized gas flow rate FR at the carburizing process start time (t = 0) was defined as FA. FA was FT ta / 10 or more and FT 4 or less. The actual carburized gas flow rate FR was kept constant as FA until the time ts before the time t0 was exceeded and the time 4t0 was reached. The time ts in the period from time t0 to time 4t0 in FIG. 10 was later than the time ts in the period from time t0 to time 4t0 in FIG. After time ts, the actual carburized gas flow rate FR was gradually reduced along the curve C2 (= FA × √ (ts / t)). As a result, the actual carburized gas flow rate FR was FT ta / 10 or more and FT 4 or less in the early carburizing step S1. Further, in the late carburizing step S2, the actual carburized gas flow rate FR in the period from time t0 to time 4t0 was FA√ (t0 / t) or more and FA or less. Further, the actual carburized gas flow rate FR from time 4t0 to time ta was FA√ (t0 / t) or more and 2FA√ (t0 / t) or less.
 図11は、試験番号13及び14の浸炭工程での、実際浸炭ガス流量FRの経時変化を示す図である。図11を参照して、試験番号13及び14では、浸炭工程開始時間(t=0)での実際浸炭ガス流量FRであるFAが、FTta/10未満であった。そして、時間ta/10よりも遅い時間tsで、実際浸炭ガス流量FRを、理論浸炭ガス流量FTと同様に漸減した。なお、浸炭工程中において、真空浸炭炉内のアセチレン分圧が、水素分圧の0.8倍以上となることはなかった。そのため、真空浸炭処理中に、t0を特定することはなかった。 FIG. 11 is a diagram showing changes over time in the actual carburized gas flow rate FR in the carburizing steps of test numbers 13 and 14. With reference to FIGS. 11, in test numbers 13 and 14, the FA, which is the actual carburized gas flow rate FR at the carburizing process start time (t = 0), was less than FT ta / 10. Then, at a time ts later than the time ta/10, the actual carburized gas flow rate FR was gradually reduced in the same manner as the theoretical carburized gas flow rate FT. During the carburizing step, the partial pressure of acetylene in the vacuum carburizing furnace was not more than 0.8 times the partial pressure of hydrogen. Therefore, t0 was not specified during the vacuum carburizing treatment.
 図12は、試験番号15~17の浸炭工程での、実際浸炭ガス流量FRの経時変化を示す図である。図12を参照して、試験番号15~17では、浸炭工程開始時間(t=0)での実際浸炭ガス流量FRであるFAが、FTta/10以上であり、かつ、FT以下であった。しかしながら、アセチレン分圧が、水素分圧の0.8倍以上となる前の時間tsで、実際浸炭ガス流量FRの漸減を開始して、実際浸炭ガス流量FRがFA×√(ts/t)となるように調整した。したがって、浸炭工程中において、真空浸炭炉内のアセチレン分圧が、水素分圧の0.8倍以上となることはなかった。そのため、真空浸炭処理中に、t0を特定することはなかった。 FIG. 12 is a diagram showing changes over time in the actual carburized gas flow rate FR in the carburizing steps of test numbers 15 to 17. With reference to FIG. 12, in test numbers 15 to 17, the FA, which is the actual carburized gas flow rate FR at the carburizing process start time (t = 0), is FT ta / 10 or more and FT 4 or less. It was. However, at the time ts before the acetylene partial pressure becomes 0.8 times or more the hydrogen partial pressure, the actual carburized gas flow rate FR starts to gradually decrease, and the actual carburized gas flow rate FR becomes FA × √ (ts / t). It was adjusted to be. Therefore, during the carburizing step, the partial pressure of acetylene in the vacuum carburizing furnace did not become 0.8 times or more the partial pressure of hydrogen. Therefore, t0 was not specified during the vacuum carburizing treatment.
 図13は、試験番号18の浸炭工程での、実際浸炭ガス流量FRの経時変化を示す図である。図13を参照して、試験番号18では、浸炭工程開始時間(t=0)での実際浸炭ガス流量FRであるFAが、FTta/10以上であり、かつ、FT以下であった。そして、時間t0を超え、かつ、時間4t0を超えた時間tsまで、実際浸炭ガス流量FRをFAのまま一定とした。時間ts後、実際浸炭ガス流量FRを曲線C2(=FA×√(ts/t))で漸減した。その結果、実際浸炭ガス流量FRは、前期浸炭工程S1中では、FTta/10以上であり、かつ、FT以下であり、後期浸炭工程S2のうち、時間t0~時間4t0の期間における実際浸炭ガス流量FRは、FA√(t0/t)以上、かつ、FA以下であった。しかしながら、時間4t0~時間taまでの実際浸炭ガス流量FRは、2FA√(t0/t)を超えた。 FIG. 13 is a diagram showing the time course of the actual carburized gas flow rate FR in the carburizing step of test number 18. With reference to FIG. 13, in test number 18, the FA, which is the actual carburized gas flow rate FR at the carburizing process start time (t = 0), was FT ta / 10 or more and FT 4 or less. Then, the actual carburized gas flow rate FR was kept constant as FA until the time ts that exceeded the time t0 and exceeded the time 4t0. After time ts, the actual carburized gas flow rate FR was gradually reduced along the curve C2 (= FA × √ (ts / t)). As a result, the actual carburizing gas flow rate FR is FT ta / 10 or more and FT 4 or less in the early carburizing step S1, and the actual carburizing in the period from time t0 to time 4t0 in the late carburizing step S2. The gas flow rate FR was FA√ (t0 / t) or more and FA or less. However, the actual carburized gas flow rate FR from time 4t0 to time ta exceeded 2FA√ (t0 / t).
 図14は、試験番号19の浸炭工程での、実際浸炭ガス流量FRの経時変化を示す図である。図14を参照して、試験番号19では、浸炭工程開始時間(t=0)での実際浸炭ガス流量FRであるFAが、FTta/10未満であった。さらに、その後の実際浸炭ガス流量FRを、FAで一定とした。試験番号19では、浸炭工程中において、真空浸炭炉内のアセチレン分圧が、水素分圧の0.8倍以上となることはなかった。そのため、真空浸炭処理中に、t0を特定することはなかった。 FIG. 14 is a diagram showing the time course of the actual carburized gas flow rate FR in the carburizing step of test number 19. With reference to FIG. 14, in test number 19, FA, which is the actual carburized gas flow rate FR at the carburizing process start time (t = 0), was less than FT ta / 10. Further, the actual carburized gas flow rate FR after that was made constant by FA. In Test No. 19, the partial pressure of acetylene in the vacuum carburizing furnace did not become 0.8 times or more the partial pressure of hydrogen during the carburizing step. Therefore, t0 was not specified during the vacuum carburizing treatment.
 図15は、試験番号20の浸炭工程での、実際浸炭ガス流量FRの経時変化を示す図である。図15を参照して、試験番号20では、浸炭工程開始時間(t=0)での実際浸炭ガス流量FRであるFAが、FTta/10以上であり、かつ、FT以下であった。そして、時間t0を超え、かつ、時間4ta未満の時間tsまで、実際浸炭ガス流量FRをFAのまま一定とした。時間ts後、実際浸炭ガス流量FRを、時間tsにおける理論浸炭ガス流量FTよりも低いFB(図15参照)を用いて、曲線C2(=FB×√(ts/t))で漸減した。その結果、実際浸炭ガス流量FRは、後期浸炭工程S2では、実際浸炭ガス流量FRがFA√(t0/t)未満であった。 FIG. 15 is a diagram showing the time course of the actual carburized gas flow rate FR in the carburizing step of test number 20. With reference to FIG. 15, in test number 20, FA, which is the actual carburized gas flow rate FR at the carburizing process start time (t = 0), was FT ta / 10 or more and FT 4 or less. Then, the actual carburized gas flow rate FR was kept constant as FA until the time ts exceeding the time t0 and less than the time 4ta. After time ts, the actual carburized gas flow rate FR was gradually reduced along a curve C2 (= FB × √ (ts / t)) using an FB (see FIG. 15) lower than the theoretical carburized gas flow rate FT at time ts. As a result, the actual carburized gas flow rate FR was less than FA√ (t0 / t) in the late carburizing step S2.
 図16は、試験番号21の浸炭工程での、実際浸炭ガス流量FRの経時変化を示す図である。図16を参照して、試験番号21では、浸炭工程開始時間(t=0)での実際浸炭ガス流量FRであるFAが、FTta/10以上であり、かつ、FT以下であった。そして、時間t0を超え、かつ、時間4ta未満の時間tsまで、実際浸炭ガス流量FRをFAのまま一定とした。時間ts後、実際浸炭ガス流量FRを低減した。しかしながら、時間4taから時間taまでの間において、実際浸炭ガス流量FRは、2FA√(t0/t)を超えた期間が存在した。 FIG. 16 is a diagram showing the time course of the actual carburized gas flow rate FR in the carburizing step of test number 21. With reference to FIG. 16, in test number 21, the FA, which is the actual carburized gas flow rate FR at the carburizing process start time (t = 0), was FT ta / 10 or more and FT 4 or less. Then, the actual carburized gas flow rate FR was kept constant as FA until the time ts exceeding the time t0 and less than the time 4ta. After time ts, the actual carburized gas flow rate FR was reduced. However, between the time 4ta and the time ta, there was a period in which the actual carburized gas flow rate FR exceeded 2FA√ (t0 / t).
 なお、実際浸炭ガス流量の調整及び測定は、流量計(コフロック株式会社製、商品名:マスフローコントローラーD3665)を用いて実施した。 The actual carburized gas flow rate was adjusted and measured using a flow meter (manufactured by Cofflock Co., Ltd., trade name: mass flow controller D3665).
 浸炭工程後、表1に示す拡散時間(分)で丸棒に対して拡散工程を実施して、丸棒に侵入した炭素を丸棒中に拡散させた。拡散工程は、浸炭温度を維持した状態で10Pa以下の炉内の圧力で実施した。拡散時間(分)は、表1に示すとおりであった。 After the carburizing step, the diffusion step was carried out on the round bar at the diffusion time (minutes) shown in Table 1, and the carbon that had penetrated into the round bar was diffused into the round bar. The diffusion step was carried out at a pressure in the furnace of 10 Pa or less while maintaining the carburizing temperature. The diffusion time (minutes) was as shown in Table 1.
 なお、表1中の「FTta/10」欄には、時間ta/10での理論浸炭ガス流量(NL/分)が記載されている。「FT」欄には、浸炭工程開始から4秒時点での理論浸炭ガス流量(NL/分)が記載されている。「時間t0(分)」欄には、時間t0(分)が記載されている。「時間4t0(分)」欄には、時間4t0(分)が記載されている。「時間ts(分)」欄には、実際浸炭ガス流量FRの漸減を開始した時間ts(分)が記載されている。「FR≧FA×√(t0/t)?」欄には、時間4t0~時間taにおいて、実際浸炭ガス流量がFA×√(t0/t)以上であったか否かを記載している。「YES」である場合、実際浸炭ガス流量FRがFA×√(t0/t)以上であったことを示す。「NO」である場合、実際浸炭ガス流量FRがFA×√(t0/t)未満であったことを示す。「FR≦2FA×√(t0/t)?」欄には、時間4t0~時間taにおいて、実際浸炭ガス流量FRが2FA×√(t0/t)以下であったか否かを記載している。「YES」である場合、実際浸炭ガス流量FRが2FA×√(t0/t)以下であったことを示す。「NO」である場合、実際浸炭ガス流量FRが2FA×√(t0/t)を超えたことを示す。「拡散時間(分)」は、拡散工程での拡散時間(分)を示す。 In the "FT ta / 10 " column in Table 1, the theoretical carburized gas flow rate (NL / min) at the time ta / 10 is described. In the "FT 4 " column, the theoretical carburized gas flow rate (NL / min) at 4 seconds from the start of the carburizing process is described. In the "hour t0 (minute)" column, the hour t0 (minute) is described. In the "hour 4t0 (minutes)" column, the time 4t0 (minutes) is described. In the "hours ts (minutes)" column, the time ts (minutes) at which the carburizing gas flow rate FR actually started to gradually decrease is described. In the "FR ≧ FA × √ (t0 / t)?" Column, it is described whether or not the actual carburized gas flow rate was FA × √ (t0 / t) or more in the time 4t0 to the time ta. When "YES", it means that the actual carburized gas flow rate FR was FA × √ (t0 / t) or more. When it is "NO", it means that the actual carburized gas flow rate FR was less than FA × √ (t0 / t). In the "FR ≦ 2FA × √ (t0 / t)?" Column, it is described whether or not the actual carburized gas flow rate FR was 2FA × √ (t0 / t) or less in the time 4t0 to the time ta. When "YES", it means that the actual carburized gas flow rate FR was 2FA × √ (t0 / t) or less. When it is "NO", it means that the actual carburized gas flow rate FR exceeds 2FA × √ (t0 / t). "Diffusion time (minutes)" indicates the diffusion time (minutes) in the diffusion step.
 拡散工程後、丸棒を860℃まで冷却した。そして、焼入れ温度(860℃)で30分保持した。保持した後、丸棒を120℃の油に浸漬して、油焼入れを実施した。焼入れ後の丸棒に対して焼戻しを実施した。焼戻し温度を170℃とし、焼戻し温度での保持時間を2時間とした。 After the diffusion step, the round bar was cooled to 860 ° C. Then, it was held at the quenching temperature (860 ° C.) for 30 minutes. After holding, the round bar was immersed in oil at 120 ° C. and oil-quenched. The round bar after quenching was tempered. The tempering temperature was 170 ° C., and the holding time at the tempering temperature was 2 hours.
 以上の製造工程により、真空浸炭処理を実施して、浸炭部品(丸棒)を製造した。 By the above manufacturing process, vacuum carburizing treatment was carried out to manufacture carburized parts (round bars).
 [評価試験]
 各試験番号の浸炭部品(丸棒)の表層の炭素濃度と、炭素濃度が0.40質量%となる深さ(以下、浸炭深さという)とを測定して、浸炭ばらつきを評価した。
[Evaluation test]
The carbon concentration of the surface layer of the carburized part (round bar) of each test number and the depth at which the carbon concentration was 0.40% by mass (hereinafter referred to as the carburized depth) were measured to evaluate the carburizing variation.
 [浸炭部品の表層の炭素濃度測定試験]
 真空浸炭炉に挿入した状態の各試験番号の浸炭部品(丸棒)において、上端面から浸炭部品の長手方向に20mmの範囲、及び、下端面から浸炭部品の長手方向に5mmの範囲を切断した。以下、上端面から20mmの範囲を「上端面試験片」と称し、下端面から5mm範囲の部分を「下端部分」という。
[Carburized parts surface carbon concentration measurement test]
In the carburized parts (round bars) of each test number in the state of being inserted into the vacuum carburizing furnace, a range of 20 mm in the longitudinal direction of the carburized parts from the upper end surface and a range of 5 mm in the longitudinal direction of the carburized parts from the lower end surface were cut. .. Hereinafter, the range of 20 mm from the upper end surface is referred to as an "upper end surface test piece", and the portion within a range of 5 mm from the lower end surface is referred to as a "lower end portion".
 上端面試験片及び下端部分が切断された残りの部分(以下、本体部分という)の円周面に対して、旋削加工を実施した。旋削加工では、丸棒の表面から0.30mm深さまでの表層部分の切粉を、0.05mm深さピッチごとに採取した。採取された0.05mmピッチの各深さ位置での切粉の炭素濃度を測定した。以上の工程により、各試験番号の3つの浸炭部品(かごの中央位置、かごの左手前位置、及び、かご右奥位置)において、表面から0.30mm深さまでの表層領域において、0.05mmピッチでの炭素濃度を求めた。かご中央位置に配置された浸炭部品の表面から0.30mmまでの6つの炭素濃度を、表面から順に、炭素濃度A1~A6(質量%)と定義した。かご左手前位置に配置された浸炭部品の表面から0.30mmまでの6つの炭素濃度を、表面から順に、炭素濃度B1~B6(質量%)と定義した。かご右奥位置に配置された浸炭部品の表面から0.30mmまでの6つの炭素濃度を、表面から順に、炭素濃度C1~C6(質量%)と定義した。そして、3つの浸炭部品において、同じ深さ位置で得られた炭素濃度の最大値と最小値との差を求めた。具体的には、表面から0.05mm深さ位置まで領域の炭素濃度A1、B1、C1のうち、最大値と最小値を選択し、その炭素濃度の差分値をΔ1と定義した。同様に、表面から0.05mm~0.10mm深さ位置までの領域の炭素濃度A2、B2、C2のうち、最大値と最小値を選択し、その炭素濃度の差分値をΔ2と定義した。以上の工程により、Δ1~Δ6を求め、Δ1~Δ6の算術平均値を、「表層炭素濃度差」(質量%)と定義した。得られた結果を表1の「表層炭素濃度差(質量%)」欄に記載する。 Turning was performed on the circumferential surface of the upper end surface test piece and the remaining part where the lower end portion was cut (hereinafter referred to as the main body portion). In the turning process, chips from the surface layer portion from the surface of the round bar to a depth of 0.30 mm were collected at every 0.05 mm depth pitch. The carbon concentration of the chips at each depth position at a pitch of 0.05 mm was measured. Through the above steps, the three carburized parts of each test number (center position of the car, left front position of the car, and right back position of the car) have a 0.05 mm pitch in the surface layer region from the surface to a depth of 0.30 mm. The carbon concentration in was determined. The six carbon concentrations from the surface of the carburized part arranged at the center of the car to 0.30 mm were defined as carbon concentrations A1 to A6 (mass%) in order from the surface. The six carbon concentrations up to 0.30 mm from the surface of the carburized parts arranged at the front left side of the car were defined as carbon concentrations B1 to B6 (mass%) in order from the surface. The six carbon concentrations from the surface of the carburized parts arranged at the back right of the car to 0.30 mm were defined as carbon concentrations C1 to C6 (mass%) in order from the surface. Then, in the three carburized parts, the difference between the maximum value and the minimum value of the carbon concentration obtained at the same depth position was obtained. Specifically, the maximum value and the minimum value were selected from the carbon concentrations A1, B1, and C1 in the region from the surface to a depth of 0.05 mm, and the difference value of the carbon concentration was defined as Δ1. Similarly, the maximum value and the minimum value were selected from the carbon concentrations A2, B2, and C2 in the region from the surface to the depth position of 0.05 mm to 0.10 mm, and the difference value of the carbon concentration was defined as Δ2. By the above steps, Δ1 to Δ6 were obtained, and the arithmetic mean value of Δ1 to Δ6 was defined as “surface carbon concentration difference” (mass%). The obtained results are shown in the "Surface carbon concentration difference (mass%)" column of Table 1.
 さらに、炭素濃度A1~A6、B1~B6、C1~C6の全ての算術平均値を、表層平均炭素濃度(質量%)と定義した。得られた結果を表1の「表層平均炭素濃度(質量%)」欄に記載する。 Furthermore, all arithmetic average values of carbon concentrations A1 to A6, B1 to B6, and C1 to C6 were defined as surface average carbon concentrations (mass%). The obtained results are shown in the "Surface average carbon concentration (mass%)" column of Table 1.
 [浸炭深さ測定試験]
 上述の上端面試験片を用いて、円周面の表層部の炭素濃度を測定した。具体的には、上端面試験片の上端面から20mm位置の横断面(上端面試験片の長手方向に垂直な断面)の炭素濃度を、表面から2mm深さ位置から表面に向かって径方向に測定した。具体的には、EPMA(電子線マイク口アナライザ)による線分析を実施して、径方向(深さ方向)の炭素濃度を測定した。測定結果に基づいて、3つの上端面試験片のそれぞれについて、炭素濃度が0.40質量%以上となる領域の深さ(以下、浸炭深さという)を求めた。各上端面試験片で得られた浸炭深さの最大値と最小値との差の平均を、「0.40質量%深さ差」(mm)と定義した。得られた結果を表1の「0.40質量%深さ差(mm)」欄に記載する。
[Carburizing depth measurement test]
Using the above-mentioned upper end surface test piece, the carbon concentration of the surface layer portion of the circumferential surface was measured. Specifically, the carbon concentration of the cross section (cross section perpendicular to the longitudinal direction of the upper end surface test piece) at a position 20 mm from the upper end surface of the upper end surface test piece is measured in the radial direction from a depth position 2 mm from the surface toward the surface. It was measured. Specifically, line analysis was performed by EPMA (electron probe mouth analyzer) to measure the carbon concentration in the radial direction (depth direction). Based on the measurement results, the depth of the region where the carbon concentration is 0.40% by mass or more (hereinafter referred to as carburizing depth) was determined for each of the three upper end surface test pieces. The average of the difference between the maximum value and the minimum value of the carburizing depth obtained from each upper end surface test piece was defined as "0.40 mass% depth difference" (mm). The obtained results are shown in the "0.40 mass% depth difference (mm)" column of Table 1.
 [評価結果]
 表1を参照して、表層炭素濃度差が0.030質量%以下、かつ、0.40質量%深さ差が0.05mm以下であるものを、浸炭ばらつきが小さい真空浸炭処理方法として優れていると評価した。
[Evaluation results]
With reference to Table 1, a method having a surface carbon concentration difference of 0.030% by mass or less and a depth difference of 0.40% by mass of 0.05 mm or less is excellent as a vacuum carburizing treatment method having a small carburizing variation. I evaluated that it was.
 表1を参照して、試験番号1~試験番号12では、前期浸炭工程S1において、実際浸炭ガス流量FRがFTta/10以上、かつ、FT以下であった。さらに、後期浸炭工程S2のうち、時間t0~4t0の期間において、実際浸炭ガス流量FRが、FA×√(t0/t)以上、かつ、FA以下であった。さらに、後期浸炭工程S2のうち、時間4t0~時間taの期間において、実際浸炭ガス流量FRが、FA×√(t0/t)以上、かつ、2FA×√(t0/t)以下であった。そのため、表層の平均炭素濃度が0.680質量%以上であり、表層炭素濃度差が0.030質量%以下であり、かつ、0.40質量%深さ差が0.05mm以下であった。つまり、浸炭部品の浸炭ばらつきが小さかった。 With reference to Table 1, in test numbers 1 to 12, the actual carburized gas flow rate FR was FT ta / 10 or more and FT 4 or less in the early carburizing step S1. Further, in the late carburizing step S2, the actual carburized gas flow rate FR was FA × √ (t0 / t) or more and FA or less in the period of time t0 to 4t0. Further, in the late carburizing step S2, the actual carburized gas flow rate FR was FA × √ (t0 / t) or more and 2FA × √ (t0 / t) or less in the period from time 4t0 to time ta. Therefore, the average carbon concentration of the surface layer was 0.680 mass% or more, the surface carbon concentration difference was 0.030 mass% or less, and the depth difference of 0.40 mass% was 0.05 mm or less. That is, the carburizing variation of the carburized parts was small.
 一方、試験番号13及び14では、図11及び表1に示すとおり、前期浸炭工程での実際浸炭ガス流量(FA)がFTta/10未満であった。そのため、表層平均炭素濃度が0.680質量%未満であり、浸炭が十分に行われなかった。 On the other hand, in test numbers 13 and 14, as shown in FIGS. 11 and 1, the actual carburized gas flow rate (FA) in the early carburizing step was less than FT ta / 10. Therefore, the average carbon concentration in the surface layer was less than 0.680% by mass, and carburizing was not sufficiently performed.
 試験番号15~17では、図12及び表1に示すとおり、浸炭開始時の実際浸炭ガス流量(FA)がFTta/10以上FT以下であったものの、アセチレン分圧が水素分圧の0.8倍以上となる前に、実際浸炭ガス流量FRを漸減した。そのため、表層平均炭素濃度が0.680質量%未満であり、浸炭が十分に行われなかった。 In test numbers 15 to 17, as shown in FIGS. 12 and 1, the actual carburized gas flow rate (FA) at the start of carburizing was FT ta / 10 or more and FT 4 or less, but the acetylene partial pressure was 0 of the hydrogen partial pressure. The actual carburized gas flow rate FR was gradually reduced before it became more than 0.8 times. Therefore, the average carbon concentration in the surface layer was less than 0.680% by mass, and carburizing was not sufficiently performed.
 試験番号18では、図13及び表1に示すとおり、実際浸炭ガス流量FRを漸減する時間tsが、時間4t0よりも後であった。その結果、漸減後の実際浸炭ガス流量FRが2FA×√(t0/t)を超えた。その結果、表層炭素濃度差が0.030質量%を超え、浸炭部品の浸炭ばらつきが大きかった。 In test number 18, as shown in FIG. 13 and Table 1, the time ts for gradually reducing the actual carburized gas flow rate FR was later than the time 4t0. As a result, the actual carburized gas flow rate FR after the gradual decrease exceeded 2FA × √ (t0 / t). As a result, the difference in carbon concentration in the surface layer exceeded 0.030% by mass, and the carburizing variation of the carburized parts was large.
 試験番号19では、図14及び表1に示すとおり、実際浸炭ガス流量FRがFTta/10未満の値FAで一定であった。そのため、0.40質量%深さ差が0.05mmを超え、浸炭部品の浸炭ばらつきが大きかった。 In test number 19, as shown in FIG. 14 and Table 1, the actual carburized gas flow rate FR was constant at a value FA of less than FT ta / 10. Therefore, the 0.40 mass% depth difference exceeded 0.05 mm, and the carburizing variation of the carburized parts was large.
 試験番号20では、図15及び表1に示すとおり、浸炭開始時の実際浸炭ガス流量の値FAがFTta/10以上FT以下であったものの、時間4t0~時間taの間において、実際浸炭ガス流量FRがFA×√(t0/t)未満となる期間が存在した。そのため、表層平均炭素濃度が0.680質量%未満であり、浸炭が十分に行われなかった。さらに、表層炭素濃度差が0.030質量%を超え、0.40質量%深さ差が0.05mmを超え、浸炭部品の浸炭ばらつきが大きかった。 In test number 20, as shown in FIG. 15 and Table 1, the value FA of the actual carburizing gas flow rate at the start of carburizing was FT ta / 10 or more and FT 4 or less, but the actual carburizing was performed between time 4t0 and time ta. There was a period during which the gas flow rate FR was less than FA × √ (t0 / t). Therefore, the average carbon concentration in the surface layer was less than 0.680% by mass, and carburizing was not sufficiently performed. Further, the difference in surface carbon concentration exceeded 0.030% by mass, the difference in depth of 0.40% by mass exceeded 0.05 mm, and the carburizing variation of the carburized parts was large.
 試験番号21では、図16及び表1に示すとおり、浸炭開始時の実際浸炭ガス流量の値FAがFTta/10以上FT以下であったものの、時間4t0~時間taの間において、実際浸炭ガス流量FRが2FA×√(t0/t)を超える期間が存在した。そのため、表層炭素濃度差が0.030質量%を超え、浸炭部品の浸炭ばらつきが大きかった。 In test number 21, as shown in FIG. 16 and Table 1, the value FA of the actual carburizing gas flow rate at the start of carburizing was FT ta / 10 or more and FT 4 or less, but the actual carburizing was performed between time 4t0 and time ta. There was a period when the gas flow rate FR exceeded 2FA × √ (t0 / t). Therefore, the difference in carbon concentration in the surface layer exceeded 0.030% by mass, and the carburizing variation of the carburized parts was large.
 以上、本発明の実施の形態を説明した。しかしながら、上記した実施の形態は本発明を実施するための例示に過ぎない。したがって、本発明は上記した実施の形態に限定されることなく、その趣旨を逸脱しない範囲内で上記した実施の形態を適宜変更して実施することができる。 The embodiment of the present invention has been described above. However, the above-described embodiment is merely an example for carrying out the present invention. Therefore, the present invention is not limited to the above-described embodiment, and the above-described embodiment can be appropriately modified and implemented without departing from the spirit of the present invention.

Claims (4)

  1.  真空浸炭炉内で鋼材に対して真空浸炭処理を実施する真空浸炭処理方法であって、
     前記鋼材を浸炭温度に加熱する加熱工程と、
     前記加熱工程後、前記鋼材を前記浸炭温度で均熱する均熱工程と、
     前記均熱工程後、アセチレンガスである浸炭ガスを前記真空浸炭炉内に供給しながら、前記鋼材を前記浸炭温度で保持する浸炭工程と、
     前記浸炭工程後、前記真空浸炭炉内への前記浸炭ガスの供給を停止し、前記鋼材を前記浸炭温度で保持する拡散工程と、
     前記拡散工程後の前記鋼材に対して焼入れを実施する焼入れ工程と、
     を備え、
     前記浸炭工程において、
     前記真空浸炭炉内に供給される前記浸炭ガスの流量を、実際浸炭ガス流量と定義し、
     前記鋼材の前記真空浸炭処理に必要な前記浸炭ガスの流量を、理論浸炭ガス流量と定義し、
     前記浸炭工程の完了時間をtaと定義し、
     前記浸炭工程の開始後、アセチレン分圧が水素分圧の0.8倍以上となる最初の時間をt0と定義したとき、
     前記浸炭工程は、
     前記真空浸炭炉内の雰囲気中の前記水素分圧及び前記アセチレン分圧を継続的に測定して前記時間t0を特定する分圧測定工程と、
     前記浸炭工程の開始から時間t0までの前期浸炭工程と、
     前記時間t0から時間taまでの後期浸炭工程と、
     を含み、
     前記前期浸炭工程では、
     前記実際浸炭ガス流量を、時間ta/10での前記理論浸炭ガス流量以上、かつ、前記浸炭工程の開始から4秒時点での前記理論浸炭ガス流量以下とし、
     前記後期浸炭工程では、
     前記前期浸炭工程の前記実際浸炭ガス流量をFAと定義し、前記浸炭工程の開始時からの時間を時間tと定義したとき、
     前記時間t0~時間4t0の期間における前記実際浸炭ガス流量を、FA√(t0/t)以上、かつ、FA以下とし、
     前記時間4t0~前記時間taまでの前記実際浸炭ガス流量を、FA√(t0/t)以上、かつ、2FA√(t0/t)以下、とする、
     真空浸炭処理方法。
    This is a vacuum carburizing method that performs vacuum carburizing treatment on steel materials in a vacuum carburizing furnace.
    A heating process that heats the steel material to the carburizing temperature,
    After the heating step, a heat equalizing step of soaking the steel material at the carburizing temperature and
    After the heat soaking step, a carburizing step of holding the steel material at the carburizing temperature while supplying a carburizing gas which is an acetylene gas into the vacuum carburizing furnace.
    After the carburizing step, a diffusion step of stopping the supply of the carburized gas into the vacuum carburizing furnace and holding the steel material at the carburizing temperature,
    A quenching step of performing quenching on the steel material after the diffusion step, and
    With
    In the carburizing step
    The flow rate of the carburized gas supplied into the vacuum carburizing furnace is defined as the actual carburized gas flow rate.
    The flow rate of the carburized gas required for the vacuum carburizing treatment of the steel material is defined as the theoretical carburized gas flow rate.
    The completion time of the carburizing process is defined as ta.
    When the first time after the start of the carburizing step that the acetylene partial pressure becomes 0.8 times or more the hydrogen partial pressure is defined as t0,
    The carburizing step is
    A partial pressure measuring step of continuously measuring the hydrogen partial pressure and the acetylene partial pressure in the atmosphere in the vacuum carburizing furnace to specify the time t0.
    The early carburizing process from the start of the carburizing process to the time t0, and
    The late carburizing step from time t0 to time ta,
    Including
    In the early carburizing process,
    The actual carburized gas flow rate is set to be equal to or more than the theoretical carburized gas flow rate at time ta/10 and equal to or less than the theoretical carburized gas flow rate 4 seconds after the start of the carburizing step.
    In the late carburizing step,
    When the actual carburized gas flow rate of the early carburizing step is defined as FA and the time from the start of the carburizing step is defined as time t.
    The actual carburized gas flow rate during the period from time t0 to time 4t0 is set to FA√ (t0 / t) or more and FA or less.
    The actual carburized gas flow rate from the time 4t0 to the time ta is set to FA√ (t0 / t) or more and 2FA√ (t0 / t) or less.
    Vacuum carburizing method.
  2.  請求項1に記載の真空浸炭処理方法であって、
     前記後期浸炭工程では、
     前記時間4t0~時間taの期間において、時間の経過とともに、(A)又は(B)の方法で前記実際ガス浸炭流量を低減する、
     真空浸炭処理方法。
     (A)前記実際浸炭ガス流量の維持と低減とを繰り返し、段階的に前記実際浸炭ガス流量を低減する、
     (B)前記実際浸炭ガス流量を、時間の経過とともに漸減する。
    The vacuum carburizing treatment method according to claim 1.
    In the late carburizing step,
    In the period of time 4t0 to time ta, the actual gas carburizing flow rate is reduced by the method (A) or (B) with the passage of time.
    Vacuum carburizing method.
    (A) The actual carburized gas flow rate is gradually reduced by repeating the maintenance and reduction of the actual carburized gas flow rate.
    (B) The actual carburized gas flow rate is gradually reduced with the passage of time.
  3.  請求項1又は請求項2に記載の真空浸炭処理方法であって、
     前記理論浸炭ガス流量は、拡散方程式を用いた拡散シミュレーションに基づいて決定される、
     真空浸炭処理方法。
    The vacuum carburizing treatment method according to claim 1 or 2.
    The theoretical carburized gas flow rate is determined based on a diffusion simulation using a diffusion equation.
    Vacuum carburizing method.
  4.  浸炭部品の製造方法であって、
     前記鋼材に対して、請求項1~請求項3のいずれか1項に記載の真空浸炭処理方法を実施する工程を備える、
     浸炭部品の製造方法。
    It is a method of manufacturing carburized parts.
    A step of carrying out the vacuum carburizing treatment method according to any one of claims 1 to 3 is provided on the steel material.
    Manufacturing method of carburized parts.
PCT/JP2020/032388 2019-08-29 2020-08-27 Vacuum carburization treatment method and production method for carburized component WO2021039911A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2021543006A JP7201092B2 (en) 2019-08-29 2020-08-27 Vacuum carburizing treatment method and carburized part manufacturing method
CN202080060380.1A CN114341392B (en) 2019-08-29 2020-08-27 Vacuum carburization method and carburized component manufacturing method

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2019156250 2019-08-29
JP2019-156250 2019-08-29

Publications (1)

Publication Number Publication Date
WO2021039911A1 true WO2021039911A1 (en) 2021-03-04

Family

ID=74683841

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/032388 WO2021039911A1 (en) 2019-08-29 2020-08-27 Vacuum carburization treatment method and production method for carburized component

Country Status (3)

Country Link
JP (1) JP7201092B2 (en)
CN (1) CN114341392B (en)
WO (1) WO2021039911A1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114790536A (en) * 2022-04-28 2022-07-26 江苏丰东热技术有限公司 Gear product carburizing process

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001081543A (en) * 1999-09-14 2001-03-27 Chugai Ro Co Ltd Vacuum carburizing method
JP2005350729A (en) * 2004-06-10 2005-12-22 Ishikawajima Harima Heavy Ind Co Ltd Vacuum carburization method
JP2007113045A (en) * 2005-10-19 2007-05-10 Ishikawajima Harima Heavy Ind Co Ltd Quality control method in vacuum carburizing and vacuum carburizing furnace
US20080149226A1 (en) * 2006-12-26 2008-06-26 Karen Anne Connery Method of optimizing an oxygen free heat treating process
JP2011026658A (en) * 2009-07-24 2011-02-10 Ihi Corp Method and device for carburization analysis

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3445968B2 (en) * 2000-11-30 2003-09-16 中外炉工業株式会社 Vacuum carburizing method for steel parts
JP2018095963A (en) * 2017-12-07 2018-06-21 國友熱工株式会社 Vacuum hardening method for metal work and manufacturing method for metal work using the same

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001081543A (en) * 1999-09-14 2001-03-27 Chugai Ro Co Ltd Vacuum carburizing method
JP2005350729A (en) * 2004-06-10 2005-12-22 Ishikawajima Harima Heavy Ind Co Ltd Vacuum carburization method
JP2007113045A (en) * 2005-10-19 2007-05-10 Ishikawajima Harima Heavy Ind Co Ltd Quality control method in vacuum carburizing and vacuum carburizing furnace
US20080149226A1 (en) * 2006-12-26 2008-06-26 Karen Anne Connery Method of optimizing an oxygen free heat treating process
JP2011026658A (en) * 2009-07-24 2011-02-10 Ihi Corp Method and device for carburization analysis

Also Published As

Publication number Publication date
CN114341392A (en) 2022-04-12
CN114341392B (en) 2024-03-26
JPWO2021039911A1 (en) 2021-03-04
JP7201092B2 (en) 2023-01-10

Similar Documents

Publication Publication Date Title
RU2518840C2 (en) Case-hardened steel element and method of its production
Edenhofer et al. Carburizing of steels
JP7092500B2 (en) Methods and equipment for carburizing and nitriding one or more steel parts at low pressure and high temperature
JP2008520839A (en) Method of heat treating a part made of fully hardened heat resistant steel and part made of fully hardened heat resistant steel
JP5658934B2 (en) Carburizing and quenching method
JP4876668B2 (en) Heat treatment method for steel members
JP4041602B2 (en) Vacuum carburizing method for steel parts
JP3960697B2 (en) Carburizing and carbonitriding methods
Kula et al. FineCarb-the flexible system for low pressure carburizing. New options and performance
Farivar et al. Microstructural adjustment of carburized steel components towards reducing the quenching-induced distortion
WO2021039911A1 (en) Vacuum carburization treatment method and production method for carburized component
JP6583600B1 (en) Vacuum carburizing treatment method and carburized parts manufacturing method
JP4169864B2 (en) Method of carburizing steel
Palaniradja et al. Optimization of Process Variables in Gas Carburizing Process: A Taguchi Study with Experimental Investigation on SAE 8620 and AISI 3310 Steels.
RU2291227C1 (en) Construction-steel parts surface hardening method
KR101866752B1 (en) Low-Temperature Vacuum Carburizing Method
JP5408465B2 (en) Method of carburizing steel
EP3168314A1 (en) Method for heat treating metallic work pieces
JP2009299122A (en) Nitriding-quenching method, heater for nitriding-quenching and nitriding-quenching apparatus
JPH03126858A (en) Carburizing and heat treating method for high-carbon chromium bearing steel
JP4858071B2 (en) Steel surface treatment method and surface-treated steel material
Todo et al. Development of application technology for vacuum carburizing
JPH01212748A (en) Rapid carburizing treatment for steel
RU2728479C1 (en) Method for resource-saving step cementation of steel
JP2009270155A (en) Nitriding quenching method and nitrided quenched part

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20857335

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2021543006

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20857335

Country of ref document: EP

Kind code of ref document: A1