WO2021039822A1 - Container - Google Patents
Container Download PDFInfo
- Publication number
- WO2021039822A1 WO2021039822A1 PCT/JP2020/032128 JP2020032128W WO2021039822A1 WO 2021039822 A1 WO2021039822 A1 WO 2021039822A1 JP 2020032128 W JP2020032128 W JP 2020032128W WO 2021039822 A1 WO2021039822 A1 WO 2021039822A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- container
- polyethylene terephthalate
- terephthalate resin
- resin
- base material
- Prior art date
Links
Images
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B27/00—Layered products comprising a layer of synthetic resin
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B27/00—Layered products comprising a layer of synthetic resin
- B32B27/06—Layered products comprising a layer of synthetic resin as the main or only constituent of a layer, which is next to another layer of the same or of a different material
- B32B27/10—Layered products comprising a layer of synthetic resin as the main or only constituent of a layer, which is next to another layer of the same or of a different material of paper or cardboard
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B27/00—Layered products comprising a layer of synthetic resin
- B32B27/36—Layered products comprising a layer of synthetic resin comprising polyesters
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B65—CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
- B65D—CONTAINERS FOR STORAGE OR TRANSPORT OF ARTICLES OR MATERIALS, e.g. BAGS, BARRELS, BOTTLES, BOXES, CANS, CARTONS, CRATES, DRUMS, JARS, TANKS, HOPPERS, FORWARDING CONTAINERS; ACCESSORIES, CLOSURES, OR FITTINGS THEREFOR; PACKAGING ELEMENTS; PACKAGES
- B65D3/00—Rigid or semi-rigid containers having bodies or peripheral walls of curved or partially-curved cross-section made by winding or bending paper without folding along defined lines
- B65D3/22—Rigid or semi-rigid containers having bodies or peripheral walls of curved or partially-curved cross-section made by winding or bending paper without folding along defined lines with double walls; with walls incorporating air-chambers; with walls made of laminated material
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B65—CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
- B65D—CONTAINERS FOR STORAGE OR TRANSPORT OF ARTICLES OR MATERIALS, e.g. BAGS, BARRELS, BOTTLES, BOXES, CANS, CARTONS, CRATES, DRUMS, JARS, TANKS, HOPPERS, FORWARDING CONTAINERS; ACCESSORIES, CLOSURES, OR FITTINGS THEREFOR; PACKAGING ELEMENTS; PACKAGES
- B65D65/00—Wrappers or flexible covers; Packaging materials of special type or form
- B65D65/38—Packaging materials of special type or form
- B65D65/40—Applications of laminates for particular packaging purposes
Definitions
- the present invention relates to a container, and more particularly to a container used as a paper cup, a case, etc. for storing beverages, foods, etc.
- Japanese Patent No. 4750909 discloses a container using homopolyethylene terephthalate (PET) as a resin.
- Japanese Patent No. 5680917 discloses a container using a copolymerized PET resin (copolymerization component ratio is 10 mol% to 40 mol%) as a resin.
- Homo PET as used in Japanese Patent No. 4750909 has a relatively high melting point of about 255 ° C., and the extrusion temperature of the resin is required to uniformly form a film on the surface of a paper substrate by extrusion lamination. It is necessary to extrude at a high temperature exceeding 310 ° C.
- PET resin is prone to hydrolysis under high temperature conditions. Therefore, it is often assumed that a homo-PET resin having a high melting point originally has higher heat resistance, but if the extrusion temperature is too high, a part of the PET resin on the surface of the container formed after extrusion lamination will be hydrolyzed. As a result, the heat resistance of the portion and the container as a whole is lowered.
- the copolymerized PET resin of Japanese Patent No. 5680917 has a relatively low melting point of 230 ° C. or lower, the extrusion temperature of the resin can be suppressed to a low level, and hydrolysis under high temperature conditions is less likely to occur. The decrease in adhesion to the paper during extrusion to the paper surface can be reduced.
- the melting point is as low as 230 ° C. or lower, the heat resistance of the container after molding is inferior.
- the container is also required to have high heat resistance because the container becomes hot even when it is distributed to the market as a food product after being packaged through a baking process and is heated by a general consumer for eating.
- the container of Japanese Patent No. 5680917 which is inferior in heat resistance, could not sufficiently satisfy such a requirement.
- the present invention has been made to solve the above problems, and an object of the present invention is to provide a container having high adhesion between a base material layer and a resin layer and high heat resistance.
- the container in the first aspect of the present invention comprises a base material layer made of paper and a resin layer laminated on at least one surface of the base material layer and made of a copolymerized polyethylene terephthalate resin.
- the copolymerized polyethylene terephthalate resin is a copolymerized polyethylene terephthalate resin obtained by copolymerization with isophthalic acid, and is a copolymer of isophthalic acid in the copolymerized polyethylene terephthalate resin.
- the polymerization ratio is 1 mol% or more and less than 10 mol%.
- the container has high adhesion between the base material layer and the resin layer and high heat resistance.
- the container in the second aspect of the present invention has a melting point of 235 ° C. or higher and 250 ° C. or lower in the copolymerized polyethylene terephthalate resin in the configuration of the invention in the first aspect.
- the melting point is within a suitable numerical range.
- the container in the third aspect of the present invention has a resin layer adhesion to the base material layer of 4N / 50 mm or more in the configuration of the invention in the first aspect or the second aspect.
- the container in the fourth aspect of the present invention has an isophthalic acid copolymerization ratio of 1.5 mol% or more in the copolymerized polyethylene terephthalate resin in the constitution of the invention in any of the first to third aspects. It is 2.2 mol% or less.
- the container according to the fifth aspect of the present invention is the composition of the invention according to any one of the first to fourth aspects, wherein the copolymerized polyethylene terephthalate resin is of biological origin having a biobase carbon content of 5% or more. It is a biomass polyethylene terephthalate resin.
- the container according to the sixth aspect of the present invention includes a bottom portion and a side wall portion rising from the peripheral edge of the bottom portion in the configuration of the invention in any one of the first to fifth aspects. It is connected by heat bonding.
- the container in the seventh aspect of the present invention is formed by press molding or bending molding of a single base paper obtained from a composite base material in the constitution of the invention in any of the first to fifth aspects. It is an invention.
- the container becomes a press-molded product or a bent-molded product.
- the container in the first aspect of the present invention is a container having high adhesion between the base material layer and the resin layer and high heat resistance, so that it is possible to prevent molding defects of the container and also to prevent molding defects. It is also suitable for use when the contents become hot or undergo a firing process.
- the container in the second aspect of the present invention has a melting point within a suitable numerical range, so that the adhesion between the base material layer and the resin layer and the heat resistance of the container are improved. It becomes suitable.
- the container in the third aspect of the present invention has favorable adhesion in addition to the effects of the invention in the first or second aspect, so that molding defects of the container can be suitably prevented.
- the adhesion between the base material layer and the resin layer and the heat resistance of the container are more preferable. Therefore, it is more convenient to use.
- the container in the fifth aspect of the present invention is sustainable because, in addition to the effect of the invention in any of the first to fourth aspects, the amount of fossil resource-derived material used can be reduced and the carbon neutrality is improved. The possibility is improved and it helps to protect the environment.
- the container in the sixth aspect of the present invention was stably molded because the bottom portion and the side wall portion were firmly adhered to each other in addition to the effect of the invention in any of the first to fifth aspects. It becomes a container.
- the container in the seventh aspect of the present invention is stably molded because the container is a press-molded product or a bent molded product in addition to the effects of the invention in any of the first to fifth aspects. It becomes a container.
- FIG. 5 is an enlarged cross-sectional view of the “X” portion shown in FIG. It is sectional drawing which shows the whole structure of the container of the 2nd Embodiment of this invention.
- FIG. 1 is a cross-sectional view showing the entire structure of the container according to the first embodiment of the present invention
- FIG. 2 is an enlarged cross-sectional view of the “X” portion shown in FIG.
- the container 1 is mainly composed of a bottom portion 2 and a side wall portion 3 rising from the peripheral edge of the bottom portion 2.
- the side wall portion 3 is made of a base material layer 10 made of paper and a copolymerized polyethylene terephthalate resin laminated on the inner side (the surface in the direction in which the contents are stored) of the base material layer 10. It is composed of a composite base material 7 provided with a resin layer 11.
- the bottom portion 2 is also made of a composite base material 7 having the same structure as the side wall portion 3, and the bottom portion 2 and the side wall portion 3 are connected by heat adhesion. Specifically, after punching a side wall member (expanded shape of the side wall portion 3) and a bottom surface member (expanded shape of the bottom portion 2) having a predetermined shape from the composite base material 7, the ends of both members are known to be thermally bonded to each other.
- the container shape is formed by adhering by the method of.
- the copolymerized polyethylene terephthalate resin in the present invention is a copolymerized polyethylene terephthalate resin obtained by copolymerization with isophthalic acid (IPA), and the copolymerization ratio of isophthalic acid in the copolymerized polyethylene terephthalate resin is 1 mol% or more. It is less than 10 mol%.
- IPA isophthalic acid
- the container has high adhesion between the base material layer 10 and the resin layer 11 and high heat resistance, so that it is possible to prevent molding defects in the container 1 and the contents become hot. It is also suitable for use in cases and when undergoing a firing process.
- the copolymerization ratio of isophthalic acid is preferably 1.5 mol% or more and 8 mol% or less, and more preferably 1.5 mol% or more and 2.2 mol% or less. In this way, the effects of improving adhesion and heat resistance are more preferably compatible.
- a polyethylene terephthalate resin is obtained by polycondensing an acid component containing terephthalic acid as a main component and a glycol component containing ethylene glycol as a main component, but the copolymerized polyethylene terephthalate resin used in the present invention has an acid component.
- a copolymerized polyethylene terephthalate resin can be obtained by containing isophthalic acid in addition to terephthalic acid and copolymerizing this isophthalic acid at a predetermined ratio. It should be noted that other acid components may be contained as long as the effects of the present invention are not impaired, and the glycol component may also contain a component such as diethylene glycol in addition to ethylene glycol. Further, as the copolymerized polyethylene terephthalate resin used in the present invention, a plurality of polyethylene terephthalate resins having different copolymerization ratios are mixed and adjusted to a predetermined copolymerization ratio suitable for the present invention.
- the present invention may be prepared by mixing a homopolyethylene terephthalate resin and a copolymerized polyethylene terephthalate resin in a predetermined ratio to adjust the copolymerization ratio suitable for the present invention, or by mixing polyethylene terephthalate resins having different copolymerization ratios in a predetermined ratio. It is also possible to use a product adjusted to a predetermined copolymerization ratio suitable for the above.
- the copolymerization ratio of isophthalic acid can be calculated by subjecting the copolymerized polyethylene terephthalate resin to qualitative / quantitative analysis by 1 H-NMR spectrum measurement.
- the composition ratio (molar ratio) of each monomer unit in the copolymerized polyethylene terephthalate resin is calculated from the area ratio, and the "isophthalic acid monomer unit molar ratio" to the "total of the terephthalic acid monomer unit molar ratio and the isophthalic acid monomer unit molar ratio". It can be obtained by calculating the ratio (%) of.
- the copolymerized polyethylene terephthalate resin in the present invention preferably has a melting point of 235 ° C. or higher and 250 ° C. or lower.
- the melting point is within a suitable numerical range, and the melting point itself is sufficiently high while keeping the extrusion temperature at the time of extrusion lamination relatively low. Therefore, the base material layer 10 and the resin layer 11 are combined. Adhesion and heat resistance of the container 1 are preferable.
- the melting point can be measured by differential scanning calorimetry (DSC).
- the adhesion of the resin layer 11 to the base material layer 10 in the present invention is preferably 4N / 50 mm or more.
- the adhesiveness becomes preferable, so that molding defects of the container 1 can be preferably prevented.
- the adhesion can be measured by the measuring method in the examples described later.
- the polyethylene terephthalate resin in the present invention is preferably a biomass polyethylene terephthalate resin derived from a living organism (derived from a biomass resource) having a biobase carbon content of 5% or more.
- the polyethylene terephthalate resin is a resin obtained by polycondensing ethylene glycol and terephthalic acid as main components, and most of them (the above-mentioned Japanese Patent No. 4750909 and Japanese Patent No. 5680917). ) Is derived from fossil resources.
- a biomass polyethylene terephthalate resin obtained from a biological raw material such as sugar cane the amount of fossil resource-derived material used can be reduced and carbon neutrality is improved, which improves sustainability and contributes to environmental conservation.
- the biobase carbon content which is an index indicating the proportion of the biological raw material in the copolymerized polyethylene terephthalate resin, is preferably 5% or more, and more preferably 15% or more.
- the higher the bio-based carbon content the smaller the proportion of fossil resource-derived raw materials, making the container useful for environmental conservation.
- the proportion of the biobase carbon content increases, so that it is more preferably within an appropriate range.
- the bio-based carbon content can be indicated by the value of the C14 content obtained by the radiocarbon (C14) measurement method conforming to ISO-16620-2 (equivalent to the ASTM-D6866 standard).
- the biobase carbon content can be calculated by the following formula.
- FIG. 3 is a cross-sectional view showing the entire structure of the container according to the second embodiment of the present invention.
- the container 21 according to the second embodiment of the present invention has basically the same configuration as the container 1 according to the first embodiment described above, the differences will be mainly described below.
- the container 21 is formed by press molding a single base paper obtained from the composite base material 27 (similar to the composite base material 7 in the first embodiment described above). Is. Specifically, a container 21 having a bottom portion 22 and a side wall portion 23 rising from the peripheral edge of the bottom portion 22 is formed by punching a sheet of base paper having a predetermined shape obtained from the composite base material 27 and then press-molding the base paper. Will be done.
- the container according to the third embodiment is determined by bending a single base paper obtained from the composite base material (similar to the composite base material 7 in the first embodiment described above). It is formed by molding into the shape of a container. Specifically, the bottom and the bottom are formed by punching out a sheet of base paper having a predetermined shape obtained from the composite base material and then bending the base paper so as to form a side wall portion that rises from the periphery of the bottom and the bottom.
- a container is configured with a side wall that rises from the periphery of the.
- the container according to each embodiment of the present invention can be used for various purposes, and the use is not limited, but can be used, for example, for storing food. Further, it is particularly suitable for storing foods that are heated under high temperature conditions after filling the container with foods. Specifically, it can be used even under high-temperature heating conditions of 100 ° C. or higher, and can be rephrased as a heat-resistant paper container. It can also be used for cooking in an oven (including a toaster, grill, etc.) at 200 ° C. or higher.
- the composition of the paper constituting the composite base material is not particularly limited, and pure white roll paper, kraft paper, parchment paper, ivory paper, depending on the desired application. , Manila paper, card paper, cup paper and the like can be used.
- the basis weight of the paper is preferably 150 g / m 2 to 500 g / m 2.
- the method of laminating the polyethylene terephthalate resin on paper is not particularly limited, and extrusion lamination, thermal lamination, dry lamination, wet lamination and the like can be exemplified.
- extrusion lamination because it is suitable for mass production, is excellent in terms of cost, and can be directly laminated without using an anchor coat or the like.
- the thickness of the resin layer is not particularly limited, but is preferably 6 ⁇ m to 50 ⁇ m. Within this range, the container can be imparted with desired heat resistance. Further, when the resin layers of the composite base material are heat-bonded to each other in container molding, the temperature of the resin can be easily raised uniformly, and the adhesion can be made uniform. Further, it is possible to suppress the occurrence of tunneling and pinholes in the resin layer during thermal adhesion.
- the resin layer is formed on the inner side of the base material layer, but it suffices if it is formed on at least one side, and is formed on both sides. You may.
- an anchor coat layer may be interposed between the base material layer and the resin layer as described above as long as the object of the present invention is not impaired.
- a print layer may be formed. Further, the paper of the base material layer may be subjected to corona treatment.
- a chain extender an ultraviolet absorber, a lubricant, an antistatic agent, and a heat stabilizer are used in the copolymerized polyethylene terephthalate resin as long as the object of the present invention is not impaired.
- Antioxidants, pigments, dyes, antioxidants, light stabilizers, plasticizers and other various additives may be contained in appropriate amounts.
- the method for producing the copolymerized polyethylene terephthalate resin obtained by copolymerization with isophthalic acid is not particularly limited, and if copolymerization is carried out under known methods and conditions. As described above, a plurality of polyethylene terephthalate resins may be mixed to adjust the copolymerization ratio.
- the copolymerization ratio of isophthalic acid in the homopolyethylene terephthalate resin was 0% (Comparative Example 1). Moreover, each melting point was measured by a commercially available differential scanning calorimeter. Further, the biobase carbon content was measured by a radiocarbon (C14) measurement method compliant with ISO-16620-2 (equivalent to the ASTM-D6866 standard), and was determined by the above-mentioned biobase carbon content calculation formula.
- a paper having a basis weight of 230 g / m 2 is used as a base material layer, and each type of polyethylene terephthalate resin described above is applied to one surface thereof by an extrusion lamination method in Example 1, Example 2, Example 4, and Comparative Examples 1 to 3.
- Each composite substrate was prepared by coating with a thickness of 30 ⁇ m, a thickness of 40 ⁇ m in Example 3, and a thickness of 20 ⁇ m in Example 5. The thickness of the polyethylene terephthalate resin was measured by observing the cross section of the composite base material with a commercially available microscope.
- Containers of Examples 1 to 5 and Comparative Examples 1 to 3 were prepared.
- Adhesion test A test piece having a size of 50 mm ⁇ 150 mm is cut out from each of the composite base materials of each type prepared above, and a peeling test is performed at a speed of 100 mm / min with 180 ° peeling to obtain a base material layer and resin of the composite base material. Adhesion with the layer was tested.
- a product number MAX-R2KN-B manufactured by Japan Measurement System Co., Ltd. was used as a measuring device.
- the ideal adhesion is complete delamination of paper, but it was judged that there would be no problem if there was strength to delaminate some paper.
- the adhesion was evaluated as ⁇ (unsuitable) for less than 4N / 50 mm, ⁇ (available) for 4N / 50 mm or more and less than 7N / 50 mm, and ⁇ (suitable) for 7N / 50 mm or more.
- Heat resistance test The following two types of heat resistance tests were performed using each type of container prepared above.
- Table 1 below shows the composition of each type of container (resin, composite base material) and the results of each test.
- Example 1 having a biobase carbon content of 17% and Example 3 having a biobase carbon content of 6.2%, adhesion and heat resistance are preferable as in the other examples having a biobase carbon content of 0%. It was confirmed that.
- the container according to the present invention is suitable as, for example, a paper cup or a case for storing beverages, foods, and the like.
Landscapes
- Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- Laminated Bodies (AREA)
Abstract
This container (1) mainly comprises a paper-made substrate layer (10) and a resin layer (11) laminated on an inner surface of the substrate layer (10). A copolymerized polyethylene terephthalate resin constituting the resin layer (11) is a copolymerized polyethylene terephthalate resin obtained by copolymerization with an isophthalic acid, and the copolymerization ratio of the isophthalic acid in the copolymerized polyethylene terephthalate resin is 1 mol% or more and less than 10 mol%. Due to the above configuration, a container having high adhesion between the substrate layer (10) and the resin layer (11) and high heat resistance can be obtained, and thus, molding defect of the container (1) can be prevented and the container is also suitable for use even in a case in which an object in the container has high temperature or in a case in which the object undergoes a firing step.
Description
この発明は容器に関し、特に、飲料や食品等を収納する紙コップやケース等として用いられる容器に関するものである。
The present invention relates to a container, and more particularly to a container used as a paper cup, a case, etc. for storing beverages, foods, etc.
従来から、飲料や食品等を収納する容器として、紙基材の一方面又は両面に合成樹脂を積層した複合基材を用いたものが存在する。
Conventionally, as a container for storing beverages, foods, etc., there has been a container using a composite base material in which a synthetic resin is laminated on one side or both sides of a paper base material.
日本国特許第4750909号公報には、樹脂としてホモポリエチレンテレフタレート(PET)を用いた容器が開示されている。
Japanese Patent No. 4750909 discloses a container using homopolyethylene terephthalate (PET) as a resin.
又、日本国特許第5680917号公報には、樹脂として共重合PET樹脂(共重合成分比率が10モル%~40モル%)を用いた容器が開示されている。
Further, Japanese Patent No. 5680917 discloses a container using a copolymerized PET resin (copolymerization component ratio is 10 mol% to 40 mol%) as a resin.
日本国特許第4750909号公報に用いられるようなホモPETは、融点が一般的に255℃程度と比較的高く、押出ラミネートにより紙基材表面に均一に製膜するには当該樹脂の押出温度を310℃を超えるほどの高い温度として押出する必要がある。しかし、PET樹脂は高温条件下では加水分解が生じやすくなる。そのため、本来融点が高いホモPET樹脂であれば耐熱性がより高くなると想定されがちであるが、押出温度が高すぎると押出ラミネート後に成形した容器表面のPET樹脂の一部に加水分解が生じ、その結果、当該部分ひいては容器全体としての耐熱性が低下してしまう。一方、加水分解の影響を少なくするため押出温度を低くすると耐熱性は高くなるが、押出ラミネート時の溶融粘度が高くなるため紙表面への均一な製膜がし難くなる。うまく製膜できたとしても、樹脂の溶融粘度が高いため紙表面への押出における紙との密着性が悪くなり、このような複合基材を用いて容器を成形すると、密着性の低下による容器の成形不良や、紙とPET樹脂との層間剥離が発生しやすいものであった。
Homo PET as used in Japanese Patent No. 4750909 has a relatively high melting point of about 255 ° C., and the extrusion temperature of the resin is required to uniformly form a film on the surface of a paper substrate by extrusion lamination. It is necessary to extrude at a high temperature exceeding 310 ° C. However, PET resin is prone to hydrolysis under high temperature conditions. Therefore, it is often assumed that a homo-PET resin having a high melting point originally has higher heat resistance, but if the extrusion temperature is too high, a part of the PET resin on the surface of the container formed after extrusion lamination will be hydrolyzed. As a result, the heat resistance of the portion and the container as a whole is lowered. On the other hand, if the extrusion temperature is lowered in order to reduce the influence of hydrolysis, the heat resistance is increased, but the melt viscosity at the time of extrusion lamination is increased, which makes it difficult to form a uniform film on the paper surface. Even if the film can be formed successfully, the high melt viscosity of the resin causes poor adhesion to the paper when extruded to the paper surface, and when a container is molded using such a composite base material, the container is deteriorated in adhesion. Molding defects and delamination between the paper and the PET resin were likely to occur.
又、日本国特許第5680917号公報の共重合PET樹脂は、融点が230℃以下と比較的低いので、樹脂の押出温度を低く抑えることができ、高温条件下での加水分解が生じにくくなり、紙表面への押出における紙との密着性の低下は低減することができる。しかし、融点が230℃以下と低いことから、成形後の容器の耐熱性に劣る。特に、容器にグラタン等の加熱調理が必要となる食品を充填する場合には、例えばグラタンであれば容器への充填後に表面に焼き目を付けるために高温条件下での焼成工程を経る必要があり、局所的に高温となるので高い耐熱性が要求される。又、焼成工程を経て包装後に食品商品として市場に流通し、一般消費者が電子レンジで加熱して喫食する際にも容器は高温となるので同様に高い耐熱性が要求される。しかしながら、耐熱性に劣る日本国特許第5680917号公報の容器では、このような要求を十分に満たすことができなかった。
Further, since the copolymerized PET resin of Japanese Patent No. 5680917 has a relatively low melting point of 230 ° C. or lower, the extrusion temperature of the resin can be suppressed to a low level, and hydrolysis under high temperature conditions is less likely to occur. The decrease in adhesion to the paper during extrusion to the paper surface can be reduced. However, since the melting point is as low as 230 ° C. or lower, the heat resistance of the container after molding is inferior. In particular, when filling a container with foods that require cooking such as gratin, for example, in the case of gratin, it is necessary to go through a baking step under high temperature conditions in order to brown the surface after filling the container. Therefore, high heat resistance is required because the temperature is locally high. In addition, the container is also required to have high heat resistance because the container becomes hot even when it is distributed to the market as a food product after being packaged through a baking process and is heated by a general consumer for eating. However, the container of Japanese Patent No. 5680917, which is inferior in heat resistance, could not sufficiently satisfy such a requirement.
この発明は、上記のような課題を解決するためになされたもので、基材層と樹脂層との密着性が高く、且つ、耐熱性が高い容器を提供することを目的とする。
The present invention has been made to solve the above problems, and an object of the present invention is to provide a container having high adhesion between a base material layer and a resin layer and high heat resistance.
上記の目的を達成するために、この発明の第1の局面における容器は、紙からなる基材層と、基材層の少なくとも一方面に積層され、共重合ポリエチレンテレフタレート樹脂からなる樹脂層とを備えた複合基材から構成される容器であって、共重合ポリエチレンテレフタレート樹脂は、イソフタル酸との共重合により得られた共重合ポリエチレンテレフタレート樹脂であり、共重合ポリエチレンテレフタレート樹脂中におけるイソフタル酸の共重合割合は、1モル%以上10モル%未満であるものである。
In order to achieve the above object, the container in the first aspect of the present invention comprises a base material layer made of paper and a resin layer laminated on at least one surface of the base material layer and made of a copolymerized polyethylene terephthalate resin. The copolymerized polyethylene terephthalate resin is a copolymerized polyethylene terephthalate resin obtained by copolymerization with isophthalic acid, and is a copolymer of isophthalic acid in the copolymerized polyethylene terephthalate resin. The polymerization ratio is 1 mol% or more and less than 10 mol%.
このように構成すると、基材層と樹脂層との密着性が高く、且つ、耐熱性が高い容器となる。
With this configuration, the container has high adhesion between the base material layer and the resin layer and high heat resistance.
この発明の第2の局面における容器は、第1の局面における発明の構成において、共重合ポリエチレンテレフタレート樹脂は、融点が235℃以上250℃以下であるものである。
The container in the second aspect of the present invention has a melting point of 235 ° C. or higher and 250 ° C. or lower in the copolymerized polyethylene terephthalate resin in the configuration of the invention in the first aspect.
このように構成すると、融点が好適な数値範囲内となる。
With this configuration, the melting point is within a suitable numerical range.
この発明の第3の局面における容器は、第1の局面又は第2の局面における発明の構成において、樹脂層の基材層に対する密着性は、4N/50mm以上であるものである。
The container in the third aspect of the present invention has a resin layer adhesion to the base material layer of 4N / 50 mm or more in the configuration of the invention in the first aspect or the second aspect.
このように構成すると、密着性が好適となる。
With such a configuration, the adhesion becomes suitable.
この発明の第4の局面における容器は、第1の局面から第3の局面のいずれかにおける発明の構成において、共重合ポリエチレンテレフタレート樹脂中におけるイソフタル酸の共重合割合は、1.5モル%以上2.2モル%以下であるものである。
The container in the fourth aspect of the present invention has an isophthalic acid copolymerization ratio of 1.5 mol% or more in the copolymerized polyethylene terephthalate resin in the constitution of the invention in any of the first to third aspects. It is 2.2 mol% or less.
このように構成すると、基材層と樹脂層との密着性及び容器の耐熱性がより好適となる。
With this configuration, the adhesion between the base material layer and the resin layer and the heat resistance of the container become more preferable.
この発明の第5の局面における容器は、第1の局面から第4の局面のいずれかにおける発明の構成において、共重合ポリエチレンテレフタレート樹脂は、バイオベース炭素含有率が5%以上の、生物由来のバイオマスポリエチレンテレフタレート樹脂であるものである。
The container according to the fifth aspect of the present invention is the composition of the invention according to any one of the first to fourth aspects, wherein the copolymerized polyethylene terephthalate resin is of biological origin having a biobase carbon content of 5% or more. It is a biomass polyethylene terephthalate resin.
このように構成すると、化石資源由来の使用量を削減でき、カーボンニュートラル性が向上する。
With this configuration, the amount of fossil resources used can be reduced and carbon neutrality is improved.
この発明の第6の局面における容器は、第1の局面から第5の局面のいずれかにおける発明の構成において、底部と、底部の周縁から立ち上がる側壁部とを備え、底部と側壁部とは、熱接着により接続されたものである。
The container according to the sixth aspect of the present invention includes a bottom portion and a side wall portion rising from the peripheral edge of the bottom portion in the configuration of the invention in any one of the first to fifth aspects. It is connected by heat bonding.
このように構成すると、底部と側壁部とが強固に接着される。
With this configuration, the bottom and side walls are firmly adhered.
この発明の第7の局面における容器は、第1の局面から第5の局面のいずれかにおける発明の構成において、複合基材から得られた1枚の原紙のプレス成形又は折り曲げによる成形によって形成されたものである。
The container in the seventh aspect of the present invention is formed by press molding or bending molding of a single base paper obtained from a composite base material in the constitution of the invention in any of the first to fifth aspects. It is an invention.
このように構成すると、容器がプレス成形品又は折り曲げによる成形品となる。
With this configuration, the container becomes a press-molded product or a bent-molded product.
以上説明したように、この発明の第1の局面における容器は、基材層と樹脂層との密着性が高く、且つ、耐熱性が高い容器となるため、容器の成形不良を防止できると共に、内容物が高温となる場合や焼成工程を経る場合の使用にも好適となる。
As described above, the container in the first aspect of the present invention is a container having high adhesion between the base material layer and the resin layer and high heat resistance, so that it is possible to prevent molding defects of the container and also to prevent molding defects. It is also suitable for use when the contents become hot or undergo a firing process.
この発明の第2の局面における容器は、第1の局面における発明の効果に加えて、融点が好適な数値範囲内となるため、基材層と樹脂層との密着性及び容器の耐熱性が好適となる。
In addition to the effects of the invention in the first aspect, the container in the second aspect of the present invention has a melting point within a suitable numerical range, so that the adhesion between the base material layer and the resin layer and the heat resistance of the container are improved. It becomes suitable.
この発明の第3の局面における容器は、第1の局面又は第2の局面における発明の効果に加えて、密着性が好適となるため、容器の成形不良が好適に防止できる。
The container in the third aspect of the present invention has favorable adhesion in addition to the effects of the invention in the first or second aspect, so that molding defects of the container can be suitably prevented.
この発明の第4の局面における容器は、第1の局面から第3の局面のいずれかにおける発明の効果に加えて、基材層と樹脂層との密着性及び容器の耐熱性がより好適となるため、使用がより便宜となる。
In the container in the fourth aspect of the present invention, in addition to the effect of the invention in any of the first to third aspects, the adhesion between the base material layer and the resin layer and the heat resistance of the container are more preferable. Therefore, it is more convenient to use.
この発明の第5の局面における容器は、第1の局面から第4の局面のいずれかにおける発明の効果に加えて、化石資源由来の使用量を削減でき、カーボンニュートラル性が向上するため、持続可能性が向上し環境保全に役立つ。
The container in the fifth aspect of the present invention is sustainable because, in addition to the effect of the invention in any of the first to fourth aspects, the amount of fossil resource-derived material used can be reduced and the carbon neutrality is improved. The possibility is improved and it helps to protect the environment.
この発明の第6の局面における容器は、第1の局面から第5の局面のいずれかにおける発明の効果に加えて、底部と側壁部とが強固に接着されるため、安定的に成形された容器となる。
The container in the sixth aspect of the present invention was stably molded because the bottom portion and the side wall portion were firmly adhered to each other in addition to the effect of the invention in any of the first to fifth aspects. It becomes a container.
この発明の第7の局面における容器は、第1の局面から第5の局面のいずれかにおける発明の効果に加えて、容器がプレス成形品又は折り曲げによる成形品となるため、安定的に成形された容器となる。
The container in the seventh aspect of the present invention is stably molded because the container is a press-molded product or a bent molded product in addition to the effects of the invention in any of the first to fifth aspects. It becomes a container.
図1はこの発明の第1の実施の形態の容器の全体構造を示す断面図であり、図2は図1で示した“X”部分の拡大断面図である。
FIG. 1 is a cross-sectional view showing the entire structure of the container according to the first embodiment of the present invention, and FIG. 2 is an enlarged cross-sectional view of the “X” portion shown in FIG.
これらの図を参照して、容器1は、底部2と、底部2の周縁から立ち上がる側壁部3とから主に構成されている。
With reference to these figures, the container 1 is mainly composed of a bottom portion 2 and a side wall portion 3 rising from the peripheral edge of the bottom portion 2.
図2を参照して、側壁部3は、紙からなる基材層10と、基材層10の内方面(内容物が収納される方向の面)に積層された共重合ポリエチレンテレフタレート樹脂からなる樹脂層11とを備えた複合基材7から構成されている。
With reference to FIG. 2, the side wall portion 3 is made of a base material layer 10 made of paper and a copolymerized polyethylene terephthalate resin laminated on the inner side (the surface in the direction in which the contents are stored) of the base material layer 10. It is composed of a composite base material 7 provided with a resin layer 11.
尚、底部2も側壁部3と同様の構成の複合基材7からなり、底部2と側壁部3とは、熱接着により接続されている。具体的には、複合基材7から所定形状の側壁部材(側壁部3の展開形状)及び底面部材(底部2の展開形状)を打ち抜いた後に、両部材の端部同士を熱接着等の公知の方法により接着することで容器形状を構成している。
The bottom portion 2 is also made of a composite base material 7 having the same structure as the side wall portion 3, and the bottom portion 2 and the side wall portion 3 are connected by heat adhesion. Specifically, after punching a side wall member (expanded shape of the side wall portion 3) and a bottom surface member (expanded shape of the bottom portion 2) having a predetermined shape from the composite base material 7, the ends of both members are known to be thermally bonded to each other. The container shape is formed by adhering by the method of.
本発明における共重合ポリエチレンテレフタレート樹脂は、イソフタル酸(IPA)との共重合により得られた共重合ポリエチレンテレフタレート樹脂であり、共重合ポリエチレンテレフタレート樹脂中におけるイソフタル酸の共重合割合は、1モル%以上10モル%未満である。
The copolymerized polyethylene terephthalate resin in the present invention is a copolymerized polyethylene terephthalate resin obtained by copolymerization with isophthalic acid (IPA), and the copolymerization ratio of isophthalic acid in the copolymerized polyethylene terephthalate resin is 1 mol% or more. It is less than 10 mol%.
このように構成することで、基材層10と樹脂層11との密着性が高く、且つ、耐熱性が高い容器となるため、容器1の成形不良を防止できると共に、内容物が高温となる場合や焼成工程を経る場合の使用にも好適となる。
With this configuration, the container has high adhesion between the base material layer 10 and the resin layer 11 and high heat resistance, so that it is possible to prevent molding defects in the container 1 and the contents become hot. It is also suitable for use in cases and when undergoing a firing process.
尚、イソフタル酸の共重合割合は、1.5モル%以上8モル%以下が好ましく、1.5モル%以上2.2モル%以下であることが更に好ましい。このようにすると、密着性向上及び耐熱性向上の効果がより好適に両立される。一般に、ポリエチレンテレフタレート樹脂は、テレフタル酸を主成分とする酸成分と、エチレングリコールを主成分とするグリコール成分とを重縮合することで得られるが、本発明で用いる共重合ポリエチレンテレフタレート樹脂は酸成分としてテレフタル酸以外にイソフタル酸を含み、このイソフタル酸を所定割合で共重合させることで共重合ポリエチレンテレフタレート樹脂が得られる。尚、本発明の効果を損なわない範囲内であれば他の酸成分を含んでいても良く、グリコール成分としてもエチレングリコール以外にジエチレングリコール等の成分を含んでいても良い。又、本発明で用いる共重合ポリエチレンテレフタレート樹脂は、共重合割合の異なるポリエチレンテレフタレート樹脂を複数混合して本発明に適した所定の共重合割合に調整したものも使用可能である。例えば、ホモポリエチレンテレフタレート樹脂と共重合ポリエチレンテレフタレート樹脂とを所定割合混合して本発明に適した所定の共重合割合に調整したり、共重合割合の異なるポリエチレンテレフタレート樹脂を所定割合混合して本発明に適した所定の共重合割合に調整したものも使用可能である。尚、イソフタル酸の共重合割合は、共重合ポリエチレンテレフタレート樹脂を1H-NMRスペクトル測定による定性・定量分析に供することで算出することができる。具体的には、1H-NMRスペクトル測定により得られたスペクトルから共重合ポリエチレンテレフタレート樹脂中のテレフタル酸から構成されるモノマーユニットとイソフタル酸から構成されるモノマーユニットをそれぞれ推定すると共に、スペクトルのピーク面積比から共重合ポリエチレンテレフタレート樹脂中の各モノマーユニットの組成比(モル比)を算出し、「テレフタル酸モノマーユニットモル比とイソフタル酸モノマーユニットモル比との合計」に対する「イソフタル酸モノマーユニットモル比」の割合(%)を算出することで求めることができる。
The copolymerization ratio of isophthalic acid is preferably 1.5 mol% or more and 8 mol% or less, and more preferably 1.5 mol% or more and 2.2 mol% or less. In this way, the effects of improving adhesion and heat resistance are more preferably compatible. Generally, a polyethylene terephthalate resin is obtained by polycondensing an acid component containing terephthalic acid as a main component and a glycol component containing ethylene glycol as a main component, but the copolymerized polyethylene terephthalate resin used in the present invention has an acid component. A copolymerized polyethylene terephthalate resin can be obtained by containing isophthalic acid in addition to terephthalic acid and copolymerizing this isophthalic acid at a predetermined ratio. It should be noted that other acid components may be contained as long as the effects of the present invention are not impaired, and the glycol component may also contain a component such as diethylene glycol in addition to ethylene glycol. Further, as the copolymerized polyethylene terephthalate resin used in the present invention, a plurality of polyethylene terephthalate resins having different copolymerization ratios are mixed and adjusted to a predetermined copolymerization ratio suitable for the present invention. For example, the present invention may be prepared by mixing a homopolyethylene terephthalate resin and a copolymerized polyethylene terephthalate resin in a predetermined ratio to adjust the copolymerization ratio suitable for the present invention, or by mixing polyethylene terephthalate resins having different copolymerization ratios in a predetermined ratio. It is also possible to use a product adjusted to a predetermined copolymerization ratio suitable for the above. The copolymerization ratio of isophthalic acid can be calculated by subjecting the copolymerized polyethylene terephthalate resin to qualitative / quantitative analysis by 1 H-NMR spectrum measurement. More specifically, the estimated 1 H-NMR from the spectrum obtained by the spectrum measurement during copolymerization polyethylene terephthalate resin monomer units composed of monomer units and isophthalic acid composed of terephthalic acid, respectively, the peak of the spectrum The composition ratio (molar ratio) of each monomer unit in the copolymerized polyethylene terephthalate resin is calculated from the area ratio, and the "isophthalic acid monomer unit molar ratio" to the "total of the terephthalic acid monomer unit molar ratio and the isophthalic acid monomer unit molar ratio". It can be obtained by calculating the ratio (%) of.
更に、本発明における共重合ポリエチレンテレフタレート樹脂は、融点が235℃以上250℃以下であることが好ましい。このように構成すると、融点が好適な数値範囲内となるため、押出ラミネート時における押出温度を比較的低く抑えながら融点自体も十分に高いものとなるため、基材層10と樹脂層11との密着性及び容器1の耐熱性が好適となる。尚、融点は、示差走査熱量測定(DSC)にて測定することができる。
Further, the copolymerized polyethylene terephthalate resin in the present invention preferably has a melting point of 235 ° C. or higher and 250 ° C. or lower. With this configuration, the melting point is within a suitable numerical range, and the melting point itself is sufficiently high while keeping the extrusion temperature at the time of extrusion lamination relatively low. Therefore, the base material layer 10 and the resin layer 11 are combined. Adhesion and heat resistance of the container 1 are preferable. The melting point can be measured by differential scanning calorimetry (DSC).
更に、本発明における樹脂層11の基材層10に対する密着性は、4N/50mm以上であることが好ましい。このように構成すると、密着性が好適となるため、容器1の成形不良が好適に防止できる。成形不良の観点からは密着性の数値が高いほど良いので密着性の好ましい上限値は特にないが、容器として使用した後にゴミの減容化のために容器を分解や解体のしやすさを考慮すると20N/50mm以下程度であれば良い。尚、密着性は、後述する実施例における測定方法にて測定することができる。
Further, the adhesion of the resin layer 11 to the base material layer 10 in the present invention is preferably 4N / 50 mm or more. With such a configuration, the adhesiveness becomes preferable, so that molding defects of the container 1 can be preferably prevented. From the viewpoint of molding defects, the higher the value of adhesion is, the better, so there is no particular preferable upper limit of adhesion, but considering the ease of disassembling and disassembling the container to reduce the volume of dust after using it as a container. Then, it may be about 20 N / 50 mm or less. The adhesion can be measured by the measuring method in the examples described later.
更に、本発明におけるポリエチレンテレフタレート樹脂は、バイオベース炭素含有率が5%以上の、生物由来(バイオマス資源由来)のバイオマスポリエチレンテレフタレート樹脂であることが好ましい。ポリエチレンテレフタレート樹脂は、エチレングリコール及びテレフタル酸を主成分とし、これらを重縮合して得られる樹脂であるが、その大半(上述した日本国特許第4750909号公報及び日本国特許第5680917号公報のものも含む。)は化石資源に由来するものである。これをサトウキビ等の生物由来原料から得られたバイオマスポリエチレンテレフタレート樹脂とすることで、化石資源由来の使用量を削減でき、カーボンニュートラル性が向上するため、持続可能性が向上し環境保全に役立つ。
Further, the polyethylene terephthalate resin in the present invention is preferably a biomass polyethylene terephthalate resin derived from a living organism (derived from a biomass resource) having a biobase carbon content of 5% or more. The polyethylene terephthalate resin is a resin obtained by polycondensing ethylene glycol and terephthalic acid as main components, and most of them (the above-mentioned Japanese Patent No. 4750909 and Japanese Patent No. 5680917). ) Is derived from fossil resources. By using this as a biomass polyethylene terephthalate resin obtained from a biological raw material such as sugar cane, the amount of fossil resource-derived material used can be reduced and carbon neutrality is improved, which improves sustainability and contributes to environmental conservation.
本発明において、共重合ポリエチレンテレフタレート樹脂中の生物由来原料の占める割合を示す指標であるバイオベース炭素含有率は、5%以上であることが好ましく、15%以上であることが更に好ましい。バイオベース炭素含有率が高いほど、化石資源由来原料の割合が少なくなるため環境保全に役立つ容器となる。他方でバイオベース炭素含有率の割合が高くなるとコストも増加するため、適正な範囲内であることがより好ましい。尚、バイオベース炭素含有率は、ISO-16620-2(ASTM-D6866標準規格と同等)に準拠した放射性炭素(C14)測定法によって得られたC14含有量の値で示すことができる。即ち、化石資源中にはC14がほとんど含まれず、一方で生物資源中にはC14が一定割合(105.5pMC)で含まれるため、共重合ポリエチレンテレフタレート樹脂中のC14の含有量をPC14とすると、下記式でバイオベース炭素含有率を算出することができる。
In the present invention, the biobase carbon content, which is an index indicating the proportion of the biological raw material in the copolymerized polyethylene terephthalate resin, is preferably 5% or more, and more preferably 15% or more. The higher the bio-based carbon content, the smaller the proportion of fossil resource-derived raw materials, making the container useful for environmental conservation. On the other hand, as the proportion of the biobase carbon content increases, the cost also increases, so that it is more preferably within an appropriate range. The bio-based carbon content can be indicated by the value of the C14 content obtained by the radiocarbon (C14) measurement method conforming to ISO-16620-2 (equivalent to the ASTM-D6866 standard). That is, since C14 is hardly contained in fossil resources, while C14 is contained in a certain ratio (105.5 pMC) in biological resources, assuming that the content of C14 in the copolymerized polyethylene terephthalate resin is PC14, The biobase carbon content can be calculated by the following formula.
バイオベース炭素含有率(%)=PC14/105.5×100
次に、図3はこの発明の第2の実施の形態の容器の全体構造を示す断面図である。 Bio-based carbon content (%) = PC14 / 105.5 × 100
Next, FIG. 3 is a cross-sectional view showing the entire structure of the container according to the second embodiment of the present invention.
次に、図3はこの発明の第2の実施の形態の容器の全体構造を示す断面図である。 Bio-based carbon content (%) = PC14 / 105.5 × 100
Next, FIG. 3 is a cross-sectional view showing the entire structure of the container according to the second embodiment of the present invention.
尚、この発明の第2の実施の形態による容器21は、上述した第1の実施の形態による容器1と基本的に構成が同様であるため、差異点を中心に以下説明する。
Since the container 21 according to the second embodiment of the present invention has basically the same configuration as the container 1 according to the first embodiment described above, the differences will be mainly described below.
同図を参照して、容器21は、複合基材27(上述した第1の実施の形態における複合基材7と同様の構成)から得られた1枚の原紙のプレス成形によって形成されたものである。具体的には、複合基材27から得られた1枚の所定形状の原紙を打ち抜いた後にプレス成形することで、底部22と底部22の周縁から立ち上がる側壁部23とを備えた容器21が構成される。
With reference to the figure, the container 21 is formed by press molding a single base paper obtained from the composite base material 27 (similar to the composite base material 7 in the first embodiment described above). Is. Specifically, a container 21 having a bottom portion 22 and a side wall portion 23 rising from the peripheral edge of the bottom portion 22 is formed by punching a sheet of base paper having a predetermined shape obtained from the composite base material 27 and then press-molding the base paper. Will be done.
更に、図示しないが、第3の実施の形態による容器は、複合基材(上述した第1の実施の形態における複合基材7と同様の構成)から得られた1枚の原紙を折り曲げて所定の容器形状に成形することによって形成されたものである。具体的には、複合基材から得られた1枚の所定形状の原紙を打ち抜いた後に原紙を折り曲げるなどして底部と底部の周縁から立ち上がる側壁部となるように成形することで、底部と底部の周縁から立ち上がる側壁部とを備えた容器が構成される。
Further, although not shown, the container according to the third embodiment is determined by bending a single base paper obtained from the composite base material (similar to the composite base material 7 in the first embodiment described above). It is formed by molding into the shape of a container. Specifically, the bottom and the bottom are formed by punching out a sheet of base paper having a predetermined shape obtained from the composite base material and then bending the base paper so as to form a side wall portion that rises from the periphery of the bottom and the bottom. A container is configured with a side wall that rises from the periphery of the.
尚、本発明の各実施の形態による容器は、種々の用途に用いることができ、その用途は限定されるものではないが、例えば食品の収納用途に用いることができる。又、特に容器に食品を充填した後に高温条件下で加熱される食品の収納用途に好適である。具体的には、100℃以上の高温加熱条件下でも使用可能であり、耐熱紙容器と換言することもできる。又、200℃以上のオーブン(トースター、グリル等を含む)加熱調理にも使用可能である。
The container according to each embodiment of the present invention can be used for various purposes, and the use is not limited, but can be used, for example, for storing food. Further, it is particularly suitable for storing foods that are heated under high temperature conditions after filling the container with foods. Specifically, it can be used even under high-temperature heating conditions of 100 ° C. or higher, and can be rephrased as a heat-resistant paper container. It can also be used for cooking in an oven (including a toaster, grill, etc.) at 200 ° C. or higher.
又、本発明の各実施の形態による容器にあっては、複合基材を構成する紙の構成は特に限定されず、所望の用途に応じて、純白ロール紙、クラフト紙、パーチメント紙、アイボリー紙、マニラ紙、カード紙、カップ紙等を用いることができる。又、紙の坪量は150g/m2~500g/m2であることが好ましい。このように構成することで、容器の成形が容易となると共に容器のコストを抑制することができる。
Further, in the container according to each embodiment of the present invention, the composition of the paper constituting the composite base material is not particularly limited, and pure white roll paper, kraft paper, parchment paper, ivory paper, depending on the desired application. , Manila paper, card paper, cup paper and the like can be used. The basis weight of the paper is preferably 150 g / m 2 to 500 g / m 2. With such a configuration, the molding of the container can be facilitated and the cost of the container can be suppressed.
更に、本発明の各実施の形態による容器にあっては、紙へのポリエチレンテレフタレート樹脂の積層方法は特に限定されず、押出ラミネーション、熱ラミネーション、ドライラミネーション、ウェットラミネーション等が例示できる。尚、本発明では押出ラミネーションを用いることが、大量生産に適しておりコスト面で優れており、アンカーコート等を介することなく直接積層することができるため好ましい。但し、押出ラミネーションの際に紙へ事前にアンカーコート層を形成することを排除するものではない。
Further, in the container according to each embodiment of the present invention, the method of laminating the polyethylene terephthalate resin on paper is not particularly limited, and extrusion lamination, thermal lamination, dry lamination, wet lamination and the like can be exemplified. In the present invention, it is preferable to use extrusion lamination because it is suitable for mass production, is excellent in terms of cost, and can be directly laminated without using an anchor coat or the like. However, it does not exclude the formation of an anchor coat layer on the paper in advance during extrusion lamination.
更に、本発明の各実施の形態による容器にあっては、樹脂層の厚みは特に限定されないが、6μm~50μmであることが好ましい。この範囲内であれば、容器に所望の耐熱性を付与することができる。又、容器成形における複合基材の樹脂層同士を熱接着する際に、樹脂の温度を均一に上昇させやすくなり、密着性を均一にすることが可能となる。更に、熱接着する際に樹脂層にトンネリングやピンホールが発生することを抑制できる。
Further, in the container according to each embodiment of the present invention, the thickness of the resin layer is not particularly limited, but is preferably 6 μm to 50 μm. Within this range, the container can be imparted with desired heat resistance. Further, when the resin layers of the composite base material are heat-bonded to each other in container molding, the temperature of the resin can be easily raised uniformly, and the adhesion can be made uniform. Further, it is possible to suppress the occurrence of tunneling and pinholes in the resin layer during thermal adhesion.
更に、本発明の各実施の形態による容器にあっては、樹脂層が基材層の内方面に形成されていたが、少なくとも一方面に形成されていれば良く、又、両面に形成されていても良い。
Further, in the container according to each embodiment of the present invention, the resin layer is formed on the inner side of the base material layer, but it suffices if it is formed on at least one side, and is formed on both sides. You may.
更に、本発明の各実施の形態による容器にあっては、本発明の目的を損なわない範囲で、基材層と樹脂層との間に上述したようにアンカーコート層が介していても良いし、印刷層が形成されていても良い。又、基材層の紙にコロナ処理が施されていても良い。
Further, in the container according to each embodiment of the present invention, an anchor coat layer may be interposed between the base material layer and the resin layer as described above as long as the object of the present invention is not impaired. , A print layer may be formed. Further, the paper of the base material layer may be subjected to corona treatment.
更に、本発明の各実施の形態による容器にあっては、本発明の目的を損なわない範囲で、共重合ポリエチレンテレフタレート樹脂において、鎖延長剤、紫外線吸収剤、滑剤、帯電防止剤、熱安定剤、酸化防止剤、顔料、染料、加水分解防止剤、光安定剤、可塑剤等の各種添加剤を適当な量含有していても良い。
Further, in the container according to each embodiment of the present invention, a chain extender, an ultraviolet absorber, a lubricant, an antistatic agent, and a heat stabilizer are used in the copolymerized polyethylene terephthalate resin as long as the object of the present invention is not impaired. , Antioxidants, pigments, dyes, antioxidants, light stabilizers, plasticizers and other various additives may be contained in appropriate amounts.
更に、本発明の各実施の形態による容器にあっては、イソフタル酸との共重合により得られた共重合ポリエチレンテレフタレート樹脂の製造方法は特に限定されず、公知の方法及び条件で共重合すれば良く、前述の通り複数のポリエチレンテレフタレート樹脂を混合して共重合割合を調整しても良い。
Further, in the container according to each embodiment of the present invention, the method for producing the copolymerized polyethylene terephthalate resin obtained by copolymerization with isophthalic acid is not particularly limited, and if copolymerization is carried out under known methods and conditions. As described above, a plurality of polyethylene terephthalate resins may be mixed to adjust the copolymerization ratio.
以下、実施例に基づいて本発明について具体的に説明する。尚、本発明の実施の形態は実施例に限定されるものではない。
Hereinafter, the present invention will be specifically described based on Examples. The embodiment of the present invention is not limited to the examples.
(実施例の作製)
まず、それぞれ異なる割合でイソフタル酸と共重合、又は共重合割合の異なるポリエチレンテレフタレート樹脂を複数混合して所定の共重合割合に調整するなどの方法により得られた複数種類の共重合ポリエチレンテレフタレート樹脂を準備した。尚、実施例1及び実施例3に用いる樹脂としてはバイオマスポリエチレンテレフタレート樹脂を準備し、比較例1に用いる樹脂としてはホモポリエチレンテレフタレート樹脂を準備した。1H-NMR測定による定性・定量分析に供することで「テレフタル酸モノマーユニットモル比とイソフタル酸モノマーユニットモル比との合計」に対する「イソフタル酸モノマーユニットモル比」の割合(%)を算出した結果、それぞれの共重合ポリエチレンテレフタレート樹脂におけるイソフタル酸の共重合割合はそれぞれ2.0%(実施例1)、1.6%(実施例2)、5.0%(実施例3)、7.5%(実施例4)、9.2%(実施例5)、14.1%(比較例2)及び10.5%(比較例3)であった。尚、ホモポリエチレンテレフタレート樹脂におけるイソフタル酸の共重合割合は0%(比較例1)であった。又、それぞれの融点を市販の示差走査熱量計により測定した。更に、バイオベース炭素含有率についてISO-16620-2(ASTM-D6866標準規格と同等)に準拠した放射性炭素(C14)測定法により測定し、上述したバイオベース炭素含有率算出式により求めた。 (Preparation of Examples)
First, a plurality of types of copolymerized polyethylene terephthalate resins obtained by copolymerizing with isophthalic acid at different ratios or mixing a plurality of polyethylene terephthalate resins having different copolymerization ratios to adjust the copolymerization ratio to a predetermined value are obtained. Got ready. Biomass polyethylene terephthalate resin was prepared as the resin used in Examples 1 and 3, and homopolyethylene terephthalate resin was prepared as the resin used in Comparative Example 1. 1 Results of calculating the ratio (%) of "isophthalic acid monomer unit molar ratio" to "total of terephthalic acid monomer unit molar ratio and isophthalic acid monomer unit molar ratio" by subjecting to qualitative and quantitative analysis by H-NMR measurement. The copolymerization ratios of isophthalic acid in each of the copolymerized polyethylene terephthalate resins were 2.0% (Example 1), 1.6% (Example 2), 5.0% (Example 3), and 7.5, respectively. % (Example 4), 9.2% (Example 5), 14.1% (Comparative Example 2) and 10.5% (Comparative Example 3). The copolymerization ratio of isophthalic acid in the homopolyethylene terephthalate resin was 0% (Comparative Example 1). Moreover, each melting point was measured by a commercially available differential scanning calorimeter. Further, the biobase carbon content was measured by a radiocarbon (C14) measurement method compliant with ISO-16620-2 (equivalent to the ASTM-D6866 standard), and was determined by the above-mentioned biobase carbon content calculation formula.
まず、それぞれ異なる割合でイソフタル酸と共重合、又は共重合割合の異なるポリエチレンテレフタレート樹脂を複数混合して所定の共重合割合に調整するなどの方法により得られた複数種類の共重合ポリエチレンテレフタレート樹脂を準備した。尚、実施例1及び実施例3に用いる樹脂としてはバイオマスポリエチレンテレフタレート樹脂を準備し、比較例1に用いる樹脂としてはホモポリエチレンテレフタレート樹脂を準備した。1H-NMR測定による定性・定量分析に供することで「テレフタル酸モノマーユニットモル比とイソフタル酸モノマーユニットモル比との合計」に対する「イソフタル酸モノマーユニットモル比」の割合(%)を算出した結果、それぞれの共重合ポリエチレンテレフタレート樹脂におけるイソフタル酸の共重合割合はそれぞれ2.0%(実施例1)、1.6%(実施例2)、5.0%(実施例3)、7.5%(実施例4)、9.2%(実施例5)、14.1%(比較例2)及び10.5%(比較例3)であった。尚、ホモポリエチレンテレフタレート樹脂におけるイソフタル酸の共重合割合は0%(比較例1)であった。又、それぞれの融点を市販の示差走査熱量計により測定した。更に、バイオベース炭素含有率についてISO-16620-2(ASTM-D6866標準規格と同等)に準拠した放射性炭素(C14)測定法により測定し、上述したバイオベース炭素含有率算出式により求めた。 (Preparation of Examples)
First, a plurality of types of copolymerized polyethylene terephthalate resins obtained by copolymerizing with isophthalic acid at different ratios or mixing a plurality of polyethylene terephthalate resins having different copolymerization ratios to adjust the copolymerization ratio to a predetermined value are obtained. Got ready. Biomass polyethylene terephthalate resin was prepared as the resin used in Examples 1 and 3, and homopolyethylene terephthalate resin was prepared as the resin used in Comparative Example 1. 1 Results of calculating the ratio (%) of "isophthalic acid monomer unit molar ratio" to "total of terephthalic acid monomer unit molar ratio and isophthalic acid monomer unit molar ratio" by subjecting to qualitative and quantitative analysis by H-NMR measurement. The copolymerization ratios of isophthalic acid in each of the copolymerized polyethylene terephthalate resins were 2.0% (Example 1), 1.6% (Example 2), 5.0% (Example 3), and 7.5, respectively. % (Example 4), 9.2% (Example 5), 14.1% (Comparative Example 2) and 10.5% (Comparative Example 3). The copolymerization ratio of isophthalic acid in the homopolyethylene terephthalate resin was 0% (Comparative Example 1). Moreover, each melting point was measured by a commercially available differential scanning calorimeter. Further, the biobase carbon content was measured by a radiocarbon (C14) measurement method compliant with ISO-16620-2 (equivalent to the ASTM-D6866 standard), and was determined by the above-mentioned biobase carbon content calculation formula.
坪量230g/m2の紙を基材層とし、その一方面に押出ラミネート法により上述した各種類のポリエチレンテレフタレート樹脂を実施例1、実施例2、実施例4及び比較例1から比較例3では厚さ30μm、実施例3では厚さ40μm、実施例5では厚さ20μmでそれぞれコートして、それぞれの複合基材を作製した。尚、ポリエチレンテレフタレート樹脂の厚さは、複合基材の断面を市販の顕微鏡により観察することで測定した。
A paper having a basis weight of 230 g / m 2 is used as a base material layer, and each type of polyethylene terephthalate resin described above is applied to one surface thereof by an extrusion lamination method in Example 1, Example 2, Example 4, and Comparative Examples 1 to 3. Each composite substrate was prepared by coating with a thickness of 30 μm, a thickness of 40 μm in Example 3, and a thickness of 20 μm in Example 5. The thickness of the polyethylene terephthalate resin was measured by observing the cross section of the composite base material with a commercially available microscope.
各種類の複合基材の各々から後述するホワイトソース300gを収容可能な程度の大きさの容器となるような所定形状の側壁部材及び底面部材を打ち抜き、これらを組み合わせ熱接着して接合することで実施例1から実施例5、及び比較例1から比較例3の容器を作製した。
By punching out a side wall member and a bottom surface member having a predetermined shape so as to form a container having a size capable of accommodating 300 g of white sauce, which will be described later, from each of the composite base materials of each type, and combining these and heat-bonding them together. Containers of Examples 1 to 5 and Comparative Examples 1 to 3 were prepared.
(密着性試験)
上記で準備した各種類の複合基材の各々から、50mm×150mmのサイズの試験片を切り出し、180°剥離で速度100mm/minで剥離試験を行うことで、複合基材の基材層と樹脂層との密着性を試験した。 (Adhesion test)
A test piece having a size of 50 mm × 150 mm is cut out from each of the composite base materials of each type prepared above, and a peeling test is performed at a speed of 100 mm / min with 180 ° peeling to obtain a base material layer and resin of the composite base material. Adhesion with the layer was tested.
上記で準備した各種類の複合基材の各々から、50mm×150mmのサイズの試験片を切り出し、180°剥離で速度100mm/minで剥離試験を行うことで、複合基材の基材層と樹脂層との密着性を試験した。 (Adhesion test)
A test piece having a size of 50 mm × 150 mm is cut out from each of the composite base materials of each type prepared above, and a peeling test is performed at a speed of 100 mm / min with 180 ° peeling to obtain a base material layer and resin of the composite base material. Adhesion with the layer was tested.
測定装置として、日本計測システム株式会社製、品番MAX-R2KN-Bを用いた。理想的な密着性は完全な紙層間剥離であるが、一部紙層間剥離する強度があれば問題ないものと判断した。又、密着性は、4N/50mm未満を×(不適)、4N/50mm以上7N/50mm未満を△(採用可能)、7N/50mm以上を○(好適)と評価した。
As a measuring device, a product number MAX-R2KN-B manufactured by Japan Measurement System Co., Ltd. was used. The ideal adhesion is complete delamination of paper, but it was judged that there would be no problem if there was strength to delaminate some paper. The adhesion was evaluated as × (unsuitable) for less than 4N / 50 mm, Δ (available) for 4N / 50 mm or more and less than 7N / 50 mm, and ○ (suitable) for 7N / 50 mm or more.
(耐熱性試験)
上記で準備した各種類の容器を用いて、下記2種の耐熱性試験を行った。 (Heat resistance test)
The following two types of heat resistance tests were performed using each type of container prepared above.
上記で準備した各種類の容器を用いて、下記2種の耐熱性試験を行った。 (Heat resistance test)
The following two types of heat resistance tests were performed using each type of container prepared above.
(1)電子レンジによる加熱試験
それぞれの容器に水100gを入れ、電子レンジ(三洋電機株式会社製、機種型番:EMO-FM23C、ターンテーブル無し)にて500Wで3分間加熱後に取り出し、容器に水を入れたままで12時間放置した後の容器からの水漏れの有無及び容器を構成する樹脂層の表面状態を目視で確認した。尚、試験は各容器n数=5で行った。水漏れ評価は、5個中いずれも水漏れが生じなかった場合を〇(好適)、5個中1個でも水漏れが生じた場合は×(不適)と判断した。又、樹脂層の表面状態の評価は、5個とも容器を構成する樹脂層表面に気泡や破れ等の異常が発見されなかった場合は〇(好適)、5個中1個でも容器を構成する樹脂層表面に気泡や破れ等の異常が発見された場合は×(不適)と判断した。 (1) Heating test using a microwave oven Put 100 g of water in each container, heat it in a microwave oven (manufactured by Sanyo Electric Co., Ltd., model number: EMO-FM23C, without turntable) at 500 W for 3 minutes, then take it out and put water in the container. After leaving the container for 12 hours with the container in place, the presence or absence of water leakage from the container and the surface condition of the resin layer constituting the container were visually confirmed. The test was performed with the number of n in each container = 5. In the water leakage evaluation, it was judged as 〇 (suitable) when no water leakage occurred in any of the five, and × (inappropriate) when water leakage occurred in even one of the five. In addition, in the evaluation of the surface condition of the resin layer, if no abnormality such as air bubbles or tears is found on the surface of the resin layer that constitutes the container, 〇 (suitable), even one out of five constitutes the container. When an abnormality such as air bubbles or tears was found on the surface of the resin layer, it was judged as × (inappropriate).
それぞれの容器に水100gを入れ、電子レンジ(三洋電機株式会社製、機種型番:EMO-FM23C、ターンテーブル無し)にて500Wで3分間加熱後に取り出し、容器に水を入れたままで12時間放置した後の容器からの水漏れの有無及び容器を構成する樹脂層の表面状態を目視で確認した。尚、試験は各容器n数=5で行った。水漏れ評価は、5個中いずれも水漏れが生じなかった場合を〇(好適)、5個中1個でも水漏れが生じた場合は×(不適)と判断した。又、樹脂層の表面状態の評価は、5個とも容器を構成する樹脂層表面に気泡や破れ等の異常が発見されなかった場合は〇(好適)、5個中1個でも容器を構成する樹脂層表面に気泡や破れ等の異常が発見された場合は×(不適)と判断した。 (1) Heating test using a microwave oven Put 100 g of water in each container, heat it in a microwave oven (manufactured by Sanyo Electric Co., Ltd., model number: EMO-FM23C, without turntable) at 500 W for 3 minutes, then take it out and put water in the container. After leaving the container for 12 hours with the container in place, the presence or absence of water leakage from the container and the surface condition of the resin layer constituting the container were visually confirmed. The test was performed with the number of n in each container = 5. In the water leakage evaluation, it was judged as 〇 (suitable) when no water leakage occurred in any of the five, and × (inappropriate) when water leakage occurred in even one of the five. In addition, in the evaluation of the surface condition of the resin layer, if no abnormality such as air bubbles or tears is found on the surface of the resin layer that constitutes the container, 〇 (suitable), even one out of five constitutes the container. When an abnormality such as air bubbles or tears was found on the surface of the resin layer, it was judged as × (inappropriate).
(2)容器へのホワイトソース充填後の焼成試験
それぞれの容器にハインツ日本株式会社製のホワイトソース300gを充填した後、充填後の容器を株式会社フジマック製のオーブン(機種型番:FSCC101)にて、加熱温度200℃及び260℃、いずれも加熱時間5分の条件にて加熱することで焼成試験を行った。尚、試験はそれぞれの温度でn数=5で行った。焼成試験後に容器からホワイトソースを取り出し、容器を構成する複合基材の基材層(紙)と樹脂層とのデラミネーション(基材層である紙と樹脂層との界面での剥離)の有無を目視で確認した。容器のいずれの箇所にもデラミネーションが生じていない場合を〇(好適)、容器のいずれかの箇所にデラミネーションが生じた場合を×(不適)と判断した。 (2) Baking test after filling the container with white sauce After filling each container with 300 g of white sauce manufactured by Heinz Japan Ltd., the filled container is placed in an oven (model number: FSCC101) manufactured by Fujimac Co., Ltd. The baking test was carried out by heating at heating temperatures of 200 ° C. and 260 ° C. under the condition of heating time of 5 minutes. The test was carried out at each temperature with n number = 5. After the firing test, the white sauce is taken out from the container, and the presence or absence of delamination (peeling at the interface between the paper and the resin layer, which is the base material layer) between the base material layer (paper) and the resin layer of the composite base material constituting the container is present. Was visually confirmed. The case where delamination did not occur in any part of the container was judged as 〇 (suitable), and the case where delamination occurred in any part of the container was judged as × (unsuitable).
それぞれの容器にハインツ日本株式会社製のホワイトソース300gを充填した後、充填後の容器を株式会社フジマック製のオーブン(機種型番:FSCC101)にて、加熱温度200℃及び260℃、いずれも加熱時間5分の条件にて加熱することで焼成試験を行った。尚、試験はそれぞれの温度でn数=5で行った。焼成試験後に容器からホワイトソースを取り出し、容器を構成する複合基材の基材層(紙)と樹脂層とのデラミネーション(基材層である紙と樹脂層との界面での剥離)の有無を目視で確認した。容器のいずれの箇所にもデラミネーションが生じていない場合を〇(好適)、容器のいずれかの箇所にデラミネーションが生じた場合を×(不適)と判断した。 (2) Baking test after filling the container with white sauce After filling each container with 300 g of white sauce manufactured by Heinz Japan Ltd., the filled container is placed in an oven (model number: FSCC101) manufactured by Fujimac Co., Ltd. The baking test was carried out by heating at heating temperatures of 200 ° C. and 260 ° C. under the condition of heating time of 5 minutes. The test was carried out at each temperature with n number = 5. After the firing test, the white sauce is taken out from the container, and the presence or absence of delamination (peeling at the interface between the paper and the resin layer, which is the base material layer) between the base material layer (paper) and the resin layer of the composite base material constituting the container is present. Was visually confirmed. The case where delamination did not occur in any part of the container was judged as 〇 (suitable), and the case where delamination occurred in any part of the container was judged as × (unsuitable).
以下の表1は、各種類の容器(樹脂、複合基材)の構成と、各試験の結果を示すものである。
Table 1 below shows the composition of each type of container (resin, composite base material) and the results of each test.
又、バイオベース炭素含有率が17%の実施例1及び6.2%の実施例3でも、バイオベース炭素含有率が0%の他の実施例と同様に密着性及び耐熱性が好適となることが確認された。
Further, in Example 1 having a biobase carbon content of 17% and Example 3 having a biobase carbon content of 6.2%, adhesion and heat resistance are preferable as in the other examples having a biobase carbon content of 0%. It was confirmed that.
以上のように、本発明に係る容器は、例えば飲料や食品等を収納する紙コップやケース等として適している。
As described above, the container according to the present invention is suitable as, for example, a paper cup or a case for storing beverages, foods, and the like.
Claims (7)
- 紙からなる基材層(10)と、前記基材層の少なくとも一方面に積層され、共重合ポリエチレンテレフタレート樹脂からなる樹脂層(11)とを備えた複合基材(7)から構成される容器(1)であって、
前記共重合ポリエチレンテレフタレート樹脂は、イソフタル酸との共重合により得られた共重合ポリエチレンテレフタレート樹脂であり、
前記共重合ポリエチレンテレフタレート樹脂中における前記イソフタル酸の共重合割合は、1モル%以上10モル%未満である、容器。 A container composed of a composite base material (7) having a base material layer (10) made of paper and a resin layer (11) laminated on at least one surface of the base material layer and made of a copolymerized polyethylene terephthalate resin. (1)
The copolymerized polyethylene terephthalate resin is a copolymerized polyethylene terephthalate resin obtained by copolymerization with isophthalic acid.
A container in which the copolymerization ratio of the isophthalic acid in the copolymerized polyethylene terephthalate resin is 1 mol% or more and less than 10 mol%. - 前記共重合ポリエチレンテレフタレート樹脂は、融点が235℃以上250℃以下である、請求項1記載の容器。 The container according to claim 1, wherein the copolymerized polyethylene terephthalate resin has a melting point of 235 ° C. or higher and 250 ° C. or lower.
- 前記樹脂層の前記基材層に対する密着性は、4N/50mm以上である、請求項1又は請求項2記載の容器。 The container according to claim 1 or 2, wherein the adhesion of the resin layer to the base material layer is 4N / 50 mm or more.
- 前記共重合ポリエチレンテレフタレート樹脂中における前記イソフタル酸の共重合割合は、1.5モル%以上2.2モル%以下である、請求項1から請求項3のいずれかに記載の容器。 The container according to any one of claims 1 to 3, wherein the copolymerization ratio of the isophthalic acid in the copolymerized polyethylene terephthalate resin is 1.5 mol% or more and 2.2 mol% or less.
- 前記共重合ポリエチレンテレフタレート樹脂は、バイオベース炭素含有率が5%以上の、生物由来のバイオマスポリエチレンテレフタレート樹脂である、請求項1から請求項4のいずれかに記載の容器。 The container according to any one of claims 1 to 4, wherein the copolymerized polyethylene terephthalate resin is a biological biomass polyethylene terephthalate resin having a biobase carbon content of 5% or more.
- 底部(2)と、前記底部の周縁から立ち上がる側壁部(3)とを備え、
前記底部と前記側壁部とは、熱接着により接続された、請求項1から請求項5のいずれかに記載の容器。 The bottom portion (2) and the side wall portion (3) rising from the peripheral edge of the bottom portion are provided.
The container according to any one of claims 1 to 5, wherein the bottom portion and the side wall portion are connected by thermal adhesion. - 前記複合基材から得られた1枚の原紙のプレス成形又は折り曲げによる成形によって形成された、請求項1から請求項5のいずれかに記載の容器。 The container according to any one of claims 1 to 5, which is formed by press molding or bending molding of one base paper obtained from the composite base material.
Priority Applications (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2021542953A JPWO2021039822A1 (en) | 2019-08-26 | 2020-08-26 | |
CN202180057586.3A CN116096647A (en) | 2019-08-26 | 2021-02-25 | Container |
PCT/JP2021/007147 WO2022044377A1 (en) | 2019-08-26 | 2021-02-25 | Container |
JP2022545279A JPWO2022044377A1 (en) | 2019-08-26 | 2021-02-25 |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2019-153927 | 2019-08-26 | ||
JP2019153927 | 2019-08-26 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2021039822A1 true WO2021039822A1 (en) | 2021-03-04 |
Family
ID=74684779
Family Applications (2)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2020/032128 WO2021039822A1 (en) | 2019-08-26 | 2020-08-26 | Container |
PCT/JP2021/007147 WO2022044377A1 (en) | 2019-08-26 | 2021-02-25 | Container |
Family Applications After (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2021/007147 WO2022044377A1 (en) | 2019-08-26 | 2021-02-25 | Container |
Country Status (3)
Country | Link |
---|---|
JP (2) | JPWO2021039822A1 (en) |
CN (1) | CN116096647A (en) |
WO (2) | WO2021039822A1 (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2022044377A1 (en) * | 2019-08-26 | 2022-03-03 | 東洋アルミエコープロダクツ株式会社 | Container |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2002337840A (en) * | 2001-05-10 | 2002-11-27 | Jujo Central Co Ltd | Packaging container |
JP2004018101A (en) * | 2002-06-20 | 2004-01-22 | Dainippon Printing Co Ltd | Paper cup and its manufacturing method |
JP2012062099A (en) * | 2010-09-17 | 2012-03-29 | Nippon Dekishii:Kk | Paper container |
JP2014061663A (en) * | 2012-09-21 | 2014-04-10 | Toyo Seikan Kaisha Ltd | Packaging material and packaging structure using the same |
JP2018001611A (en) * | 2016-07-01 | 2018-01-11 | 大日本印刷株式会社 | Laminate equipped with polyester resin layer and packing product equipped with the same |
Family Cites Families (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2021039822A1 (en) * | 2019-08-26 | 2021-03-04 | 東洋アルミエコープロダクツ株式会社 | Container |
-
2020
- 2020-08-26 WO PCT/JP2020/032128 patent/WO2021039822A1/en active Application Filing
- 2020-08-26 JP JP2021542953A patent/JPWO2021039822A1/ja active Pending
-
2021
- 2021-02-25 JP JP2022545279A patent/JPWO2022044377A1/ja active Pending
- 2021-02-25 CN CN202180057586.3A patent/CN116096647A/en active Pending
- 2021-02-25 WO PCT/JP2021/007147 patent/WO2022044377A1/en active Application Filing
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2002337840A (en) * | 2001-05-10 | 2002-11-27 | Jujo Central Co Ltd | Packaging container |
JP2004018101A (en) * | 2002-06-20 | 2004-01-22 | Dainippon Printing Co Ltd | Paper cup and its manufacturing method |
JP2012062099A (en) * | 2010-09-17 | 2012-03-29 | Nippon Dekishii:Kk | Paper container |
JP2014061663A (en) * | 2012-09-21 | 2014-04-10 | Toyo Seikan Kaisha Ltd | Packaging material and packaging structure using the same |
JP2018001611A (en) * | 2016-07-01 | 2018-01-11 | 大日本印刷株式会社 | Laminate equipped with polyester resin layer and packing product equipped with the same |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2022044377A1 (en) * | 2019-08-26 | 2022-03-03 | 東洋アルミエコープロダクツ株式会社 | Container |
Also Published As
Publication number | Publication date |
---|---|
WO2022044377A1 (en) | 2022-03-03 |
JPWO2022044377A1 (en) | 2022-03-03 |
CN116096647A (en) | 2023-05-09 |
JPWO2021039822A1 (en) | 2021-03-04 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP4574855B2 (en) | Coated cardboard, process for its production and products obtained therefrom | |
CN111133064B (en) | Coating compositions, articles, and methods of coating comprising furan-containing polyesters | |
CN103619586B (en) | Heat-sealable biodegradable packaging material, the packaging being made from and resin application in extrusion coating | |
CN109593217A (en) | Cold formability polyester film and its manufacturing method | |
JP2009543718A (en) | Multilayer sealant film | |
WO2021039822A1 (en) | Container | |
JP6706428B2 (en) | Laminate | |
JP2018144852A (en) | Adhesion prevention member, container, and manufacturing method of adhesion prevention member | |
TW202113021A (en) | Two-pack type adhesive, multilayer body, molded body and packaging material | |
JP5321297B2 (en) | Polybutylene terephthalate laminated paper and paper container | |
JPH08510289A (en) | Polyester for metal lamination | |
JP6727366B2 (en) | Polyester film and manufacturing method thereof | |
JPS5934580B2 (en) | Side seamless metal container and manufacturing method thereof | |
EP4029801B1 (en) | Polyester film and method for producing same | |
JP3996619B1 (en) | Food container manufacturing method and food container | |
JP6763499B1 (en) | Reactive adhesives, laminates, and packaging | |
JP3624709B2 (en) | Heat-resistant paper container for cooking | |
JP6887282B2 (en) | Paper container, manufacturing method of paper container, and joint structure | |
JP5875830B2 (en) | Corrugated board manufacturing method and paper container using the same | |
JP4128437B2 (en) | Method for producing heat-resistant paper container for cooking | |
JP6706427B2 (en) | Laminate | |
JP2006130676A (en) | Film for metal sheet laminating and molding processing | |
TWI850198B (en) | Resin coated metal sheet, metal can made by processing the resin coated metal sheet | |
JPWO2020054774A1 (en) | Heat-resistant paper materials and heat-resistant paper containers | |
JP2018079945A (en) | Paper container and manufacturing method of food in paper container |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 20857220 Country of ref document: EP Kind code of ref document: A1 |
|
DPE1 | Request for preliminary examination filed after expiration of 19th month from priority date (pct application filed from 20040101) | ||
ENP | Entry into the national phase |
Ref document number: 2021542953 Country of ref document: JP Kind code of ref document: A |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 20857220 Country of ref document: EP Kind code of ref document: A1 |