WO2021039806A1 - Salt concentration-measuring device, head-mounted device, and salt concentration measurement method - Google Patents

Salt concentration-measuring device, head-mounted device, and salt concentration measurement method Download PDF

Info

Publication number
WO2021039806A1
WO2021039806A1 PCT/JP2020/032074 JP2020032074W WO2021039806A1 WO 2021039806 A1 WO2021039806 A1 WO 2021039806A1 JP 2020032074 W JP2020032074 W JP 2020032074W WO 2021039806 A1 WO2021039806 A1 WO 2021039806A1
Authority
WO
WIPO (PCT)
Prior art keywords
pair
electrodes
electrode
salt concentration
sweat
Prior art date
Application number
PCT/JP2020/032074
Other languages
French (fr)
Japanese (ja)
Inventor
橋元 伸晃
組田 良則
敏仁 近藤
佳奈子 皆内
Original Assignee
公立大学法人公立諏訪東京理科大学
株式会社フジタ
株式会社高環境エンジニアリング
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 公立大学法人公立諏訪東京理科大学, 株式会社フジタ, 株式会社高環境エンジニアリング filed Critical 公立大学法人公立諏訪東京理科大学
Publication of WO2021039806A1 publication Critical patent/WO2021039806A1/en

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A42HEADWEAR
    • A42BHATS; HEAD COVERINGS
    • A42B3/00Helmets; Helmet covers ; Other protective head coverings
    • A42B3/04Parts, details or accessories of helmets
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N27/00Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
    • G01N27/02Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating impedance
    • G01N27/04Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating impedance by investigating resistance
    • G01N27/06Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating impedance by investigating resistance of a liquid

Definitions

  • the present invention relates to a salt concentration measuring device, a head-mounted device, and a salt concentration measuring method.
  • Patent Document 1 describes an example of a head-mounted device capable of measuring the amount of sweating.
  • Patent Document 2 describes a salt sensor capable of measuring the salt concentration of urine. The salt sensor of Patent Document 2 calculates the salinity of urine based on the conductivity between a pair of electrodes.
  • the present disclosure has been made in view of the above problems, and provides a salt concentration measuring device, a head wearing device, and a salt concentration measuring method capable of improving the measurement accuracy of the salt concentration of sweat.
  • the purpose is to improve the measurement accuracy of the salt concentration of sweat.
  • the salinity measuring device of one aspect of the present disclosure comprises a substrate and a salt sensor including a pair of comb-shaped electrodes arranged on the substrate, and electricity between the pair of electrodes. It includes an electric conductivity measuring unit for measuring conductivity and a calculation unit for calculating the salt concentration of sweat between the pair of electrodes based on the electric conductivity.
  • a storage unit for storing cell constants related to the pair of electrodes obtained in advance by an experiment using a standard solution is provided, and the calculation unit is based on the electrical conductivity and the cell constants. Calculate the salt concentration of sweat.
  • the electric conductivity measuring unit measures the electric conductivity based on the AC resistance between the pair of electrodes when an AC voltage is applied to the pair of electrodes, and the AC is measured.
  • the frequency of the voltage is 0.5 kHz or more and 15 kHz or less.
  • a temperature sensor for measuring the temperature of the sweat is provided.
  • the electrode is provided with a film containing gold or platinum on the surface opposite to the substrate.
  • the salinity sensor includes a spacer thicker than the height of the electrode.
  • the electrode includes a plurality of teeth arranged at intervals in one direction, and a base connecting the plurality of teeth, and the spacer is one of the electrodes.
  • the spacer is longer than the base in the direction in which the plurality of teeth are arranged on the base side of the other electrode with respect to the tip of the tooth.
  • the head-mounted device of one aspect of the present disclosure includes an outer shell, an inner shell arranged inside the outer shell and facing the wearer's skin, and a salinity measuring device.
  • the salinity measuring device includes a substrate and a pair of comb-shaped electrodes arranged on the substrate, and measures the electrical conductivity between the salt sensor arranged in the inner shell and the pair of electrodes. It includes an electric conductivity measuring unit for measuring, and a calculation unit for calculating the salt concentration of sweat between the pair of electrodes based on the electric conductivity.
  • the salt sensor is arranged at a position in the inner shell that faces the forehead of the wearer.
  • the electrodes include a plurality of teeth arranged at intervals in one direction and a base connecting the plurality of teeth, and the pair of electrodes includes a plurality of electrodes.
  • the tooth portions are arranged so that the direction in which the teeth are aligned is along the direction from the edge of the outer shell to the apex.
  • the salinity concentration measuring method of one aspect of the present disclosure is based on the electric conductivity measuring step for measuring the electric conductivity between a pair of comb-shaped electrodes and the electric conductivity.
  • a salt concentration calculation step for calculating the salt concentration of sweat between the pair of electrodes is provided.
  • the measurement accuracy of the salt concentration of sweat can be improved.
  • FIG. 1 is a bottom view of a head-mounted device including the salinity measuring device of the embodiment.
  • FIG. 2 is a cross-sectional view taken along the line AA in FIG.
  • FIG. 3 is a schematic view showing the salinity concentration measuring device of the embodiment.
  • FIG. 4 is a front view of the salt sensor of the embodiment.
  • FIG. 5 is a cross-sectional view taken along the line BB in FIG.
  • FIG. 6 is a cross-sectional view taken along the line CC in FIG.
  • FIG. 7 is a graph comparing the conductivity of the standard solution measured by the salt sensor of the embodiment with the actual conductivity of the standard solution.
  • FIG. 8 is a flowchart showing the salt concentration measuring method of the embodiment.
  • the present invention will be described in detail with reference to the drawings.
  • the present invention is not limited to the embodiment for carrying out the present invention (hereinafter referred to as the embodiment).
  • the components in the following embodiments include those that can be easily assumed by those skilled in the art, those that are substantially the same, that is, those in a so-called equal range. Further, the components disclosed in the following embodiments can be appropriately combined.
  • FIG. 1 is a bottom view of a head-mounted device including the salinity measuring device of the embodiment.
  • FIG. 2 is a cross-sectional view taken along the line AA in FIG.
  • FIG. 3 is a schematic showing the salt concentration measuring device of the embodiment.
  • FIG. 4 is a front view of the salt sensor of the embodiment.
  • FIG. 5 is a cross-sectional view taken along the line BB in FIG.
  • FIG. 6 is a cross-sectional view taken along the line CC in FIG.
  • the head mounting device 10 is a device mounted on the head of the wearer 90.
  • the head-mounted device 10 of the present embodiment is a helmet.
  • the head-mounted device 10 includes an outer shell 11, an inner shell 12, and a salinity concentration measuring device 100.
  • the outer shell 11 is a hemispherical member.
  • the outer shell 11 is made of, for example, a synthetic resin.
  • the inner shell 12 is arranged inside the outer shell 11.
  • the inner shell 12 faces the skin 91 of the wearer 90.
  • the inner shell 12 includes a band portion 121, a hammock portion 125, and a belt portion 123.
  • the band portion 121 is an annular member along the edge of the outer shell 11.
  • the hammock portion 125 is arranged at a position corresponding to the top of the outer shell 11.
  • the belt portion 123 connects the band portion 121 and the hammock portion 125.
  • the salinity concentration measuring device 100 controls the salt sensor 31, the electric conductivity measuring unit 39, the battery 101, the temperature sensor 33, the photoelectric pulse wave sensor 35, and the sweating amount sensor 37.
  • a device 50 and an output device 70 are provided.
  • the salt sensor 31 is a sensor that detects information necessary for measuring the salt concentration of sweat of the wearer 90.
  • the salt sensor 31 is arranged so as to be in contact with the skin 91 of the wearer 90. As shown in FIG. 1, the salt sensor 31 is arranged in the band portion 121 of the inner shell 12. As shown in FIG. 2, the salt sensor 31 is arranged at a position of the band portion 121 that faces the forehead 95 of the wearer 90. Therefore, when the wearer 90 wears the head wearing device 10, the salt sensor 31 comes into contact with the forehead 95 of the wearer 90.
  • the salt sensor 31 includes a substrate 40, a first electrode 41, a second electrode 42, a first land 43, a second land 44, and a first protective film 45.
  • a second protective film 46, a first spacer 47, and a second spacer 48 are provided.
  • the substrate 40 is a plate formed of an insulator.
  • the substrate 40 is a flexible substrate.
  • the substrate 40 is made of, for example, polyimide (PI).
  • the first electrode 41 and the second electrode 42 are conductors provided on the surface of the substrate 40.
  • the first electrode 41 and the second electrode 42 are made of, for example, copper.
  • the first electrode 41 and the second electrode 42 have a film on the surface opposite to the substrate 40.
  • the coating preferably contains gold or platinum.
  • the film is formed of, for example, Ni—Au (nickel gold).
  • the first electrode 41 and the second electrode 42 are comb-shaped electrodes.
  • the first electrode 41 includes a plurality of tooth portions 411 and a base portion 413.
  • the plurality of tooth portions 411 are arranged at equal intervals in one direction.
  • the first electrode 41 is arranged so that the direction in which the tooth portions 411 are arranged is along the direction from the edge 111 of the outer shell 11 to the top 113 (the vertical direction of the paper surface in FIG. 2).
  • the base 413 connects all the teeth 411.
  • the second electrode 42 includes a plurality of tooth portions 421 and a base portion 423.
  • the plurality of tooth portions 421 are arranged at equal intervals in one direction.
  • the second electrode 42 is arranged so that the direction in which the tooth portions 421 are aligned is along the direction from the edge 111 of the outer shell 11 to the top 113 (the vertical direction of the paper surface in FIG. 2).
  • One tooth 421 is arranged between the two teeth 411. That is, the tooth portions 411 and the tooth portions 421 are arranged alternately. A gap is provided between the tooth portion 411 and the tooth portion 421.
  • the base 423 connects all the teeth 421.
  • the XYZ orthogonal coordinate axes are used.
  • the X-axis is orthogonal to the substrate 40.
  • the Y-axis is parallel to the longitudinal direction of the tooth portion 411.
  • the Z axis is parallel to the direction in which the plurality of tooth portions 411 are lined up.
  • the direction parallel to the X axis is simply described as the X direction.
  • the direction parallel to the Y axis is simply described as the Y direction.
  • the direction parallel to the Z axis is simply described as the Z direction.
  • the direction from the back surface of the substrate 40 toward the front surface on which the first electrode 41 is arranged is defined as the + X direction.
  • the direction from the first electrode 41 to the second electrode 42 is defined as the + Y direction.
  • the left direction when the + X direction is up and the + Y direction is front is the + Z direction.
  • the first land 43 is arranged in the ⁇ Y direction of the first electrode 41.
  • the first land 43 is connected to the base 413.
  • the first land 43 is connected to the electric conductivity measuring unit 39 via a lead wire or the like.
  • the second land 44 is arranged in the + Y direction of the second electrode 42.
  • the second land 44 is connected to the base 423.
  • the second land 44 is connected to the electric conductivity measuring unit 39 via a lead wire or the like.
  • the first protective film 45 is an insulating film laminated in the + X direction of the first electrode 41.
  • the first protective film 45 is made of, for example, polyimide.
  • the first protective film 45 is provided over the entire length of the substrate 40 in the Z direction.
  • the first protective film 45 covers all of the base portion 413 of the first electrode 41 and a part of the tooth portion 411. The portion of the tooth portion 411 facing the tooth portion 421 in the Z direction is exposed.
  • the second protective film 46 is an insulating film that is overlapped in the + X direction of the second electrode 42.
  • the second protective film 46 is made of, for example, polyimide.
  • the second protective film 46 is provided over the entire length of the substrate 40 in the Z direction.
  • the second protective film 46 covers all of the base 423 of the second electrode 42 and a part of the tooth portion 421. The portion of the tooth portion 421 facing the tooth portion 411 in the Z direction is exposed.
  • the first spacer 47 is a member for providing a gap between the skin 91 of the wearer 90 and the first electrode 41, and between the skin 91 and the second electrode 42.
  • the first spacer 47 is formed of, for example, a synthetic resin or the like.
  • the first spacer 47 is arranged in the + X direction of the first protective film 45.
  • the first spacer 47 is arranged in the ⁇ Y direction (base 413 side) with respect to the tip of the tooth portion 421.
  • the length of the first spacer 47 in the Z direction is larger than the length of the base 413 in the Z direction.
  • the length of the first spacer 47 in the X direction is larger than the length of the first electrode 41 and the second electrode 42 in the X direction.
  • the first spacer 47 is thicker than the first electrode 41 and the second electrode 42 in the X direction.
  • the length of the first electrode 41 and the second electrode 42 in the X direction can be said to be the height of the first electrode 41 and the second electrode 42.
  • the first spacer 47 is thicker than the heights of the first electrode 41 and the second electrode 42.
  • the second spacer 48 is a member for providing a gap between the skin 91 of the wearer 90 and the first electrode 41, and between the skin 91 and the second electrode 42.
  • the second spacer 48 is formed of, for example, a synthetic resin or the like.
  • the second spacer 48 is arranged in the + X direction of the second protective film 46.
  • the second spacer 48 is arranged in the + Y direction (base 423 side) with respect to the tip of the tooth portion 411.
  • the length of the second spacer 48 in the Z direction is larger than the length of the base 423 in the Z direction.
  • the length of the second spacer 48 in the X direction is larger than the length of the first electrode 41 and the second electrode 42 in the X direction.
  • the second spacer 48 is thicker than the first electrode 41 and the second electrode 42 in the X direction.
  • the second spacer 48 is thicker than the heights of the first electrode 41 and the second electrode 42.
  • the electric conductivity measuring unit 39 measures the electric conductivity of the sweat of the wearer 90 by using the information detected by the salt sensor 31.
  • the electric conductivity measuring unit 39 applies an AC voltage to the salt sensor 31 using the battery 101 as a power source.
  • the electric conductivity measuring unit 39 applies an AC voltage to the first electrode 41 and the second electrode 42.
  • the frequency of the AC voltage is preferably 0.5 kHz or more and 15 kHz or less.
  • the electric conductivity measuring unit 39 calculates the electric conductivity based on the AC resistance (impedance) when the AC voltage is applied to the salt sensor 31. Electrical conductivity is the reciprocal of AC resistance.
  • the temperature sensor 33 is a sensor that detects the sweat temperature of the wearer 90.
  • the temperature sensor 33 is arranged so as to be in contact with the skin 91 of the wearer 90. As shown in FIG. 1, the temperature sensor 33 is arranged in the band portion 121 of the inner shell 12. It is known that the electrical conductivity changes with temperature. Therefore, it is desirable to measure the correction value of the electrical conductivity with temperature in advance using a standard solution or the like. It is desirable that the correction value of the electric conductivity is stored in the storage unit 53 of the control device 50 described later. As a result, the calculation unit 51 of the control device 50, which will be described later, can correct the electric conductivity based on the stored correction value of the electric conductivity.
  • the photoelectric pulse wave sensor 35 is a sensor that detects the pulse wave of the wearer 90.
  • the photoelectric pulse wave sensor 35 is arranged so as to be in contact with the skin 91 of the wearer 90. As shown in FIG. 1, the photoelectric pulse wave sensor 35 is arranged in the band portion 121 of the inner shell 12.
  • the sweating amount sensor 37 is a sensor that detects information necessary for measuring the sweating amount of the wearer 90.
  • the information required to measure the amount of sweating is not particularly limited.
  • the sweating amount sensor 37 may include two humidity sensors and an air volume sensor. The sweating amount sensor 37 transmits the humidity detected by the humidity sensor and the air volume to the control device 50.
  • the control device 50 is a computer, and includes, for example, a CPU (Central Processing Unit), a ROM (Read Only Memory), a RAM (Random Access Memory), an input interface, and an output interface.
  • the CPU, ROM, RAM, input interface, and output interface are connected by an internal bus.
  • the control device 50 includes a calculation unit 51 and a storage unit 53. Each function of the calculation unit 51 and the storage unit 53 is realized by linking the CPU, ROM, RAM, input interface, and output interface.
  • the control device 50 is electrically connected to the electrical conductivity measuring unit 39, the temperature sensor 33, the photoelectric pulse wave sensor 35, and the sweating amount sensor 37, and receives the measured value.
  • the calculation unit 51 calculates the salt concentration of sweat of the wearer 90 based on the electric conductivity received from the electric conductivity measuring unit 39.
  • the calculation unit 51 calculates the salinity based on the following formula (3).
  • be the conductivity (S / cm) of sweat.
  • the sum of the products of Ci and ⁇ i for all the ions contained in sweat is defined as ⁇ Ci ⁇ i. In this case, the following equation (1) holds.
  • sweat contains sodium ion, chlorine ion, potassium ion, calcium ion, lactic acid ion and the like.
  • G be the degree of electrical tradition (S) of sweat.
  • d be the distance (cm) between the tooth portion 411 of the first electrode 41 and the tooth portion 421 of the second electrode 42.
  • A be the surface area (cm 2 ) of the tooth portion 411 and the tooth portion 421.
  • K be the cell constant (1 / cm) of the first electrode 41 and the second electrode 42. In this case, the following equation (2) holds.
  • Equation (3) is derived from equations (1) and (2).
  • ⁇ Ci is the sum of Ci for all ions contained in sweat.
  • ⁇ i is the sum of ⁇ i for all ions contained in sweat.
  • ⁇ Ci K ⁇ G / (1000 ⁇ ⁇ i) ⁇ ⁇ ⁇ (3)
  • the storage unit 53 stores the sum of ⁇ i ( ⁇ i) and the cell constant (K) for all the ions contained in sweat.
  • the cell constant (K) is determined by an experiment using a standard solution performed in advance.
  • the standard solution is a liquid whose physical characteristics are known. That is, the concentration (Ci) of each ion contained in the standard solution and the molar conductivity ( ⁇ i) of each ion contained in the standard solution are known.
  • the electrical conductivity (G) of the standard solution is measured using the salt sensor 31.
  • ⁇ Ci, ⁇ i, and G of the standard solution are derived.
  • the cell constant (K) derived in this way is stored in the storage unit 53.
  • FIG. 7 is a graph comparing the conductivity of the standard solution measured by the salt sensor of the embodiment with the actual conductivity of the standard solution.
  • the correlation coefficient (R) with the actual conductivity is 0.9999. That is, by changing the frequency of the AC voltage applied to the salt sensor 31 by the electric conductivity measuring unit 39, the electric conductivity measuring unit 39 can measure the conductivity of the standard solution with high accuracy.
  • the conductivity of sweat is generally about 10 mS / cm or more and 20 mS / cm or less.
  • the frequency of the AC voltage applied by the electric conductivity measuring unit 39 to the salt sensor 31 is 0.5 kHz or more. It is desirable that it is 15 kHz or less. If such an optimum measurement frequency (frequency of the AC voltage applied by the electric conductivity measuring unit 39 to the salt sensor 31) is determined in advance, even if the measurement frequency of the electric conductivity measuring unit 39 cannot be changed, sweat It is possible to accurately measure the electrical conductivity of. Therefore, even if the measurement frequency of the electric conductivity measuring unit 39 cannot be changed, the concentration of each ion contained in sweat (average ion equivalent concentration) can be obtained.
  • the calculation unit 51 corrects the G received from the electric conductivity measuring unit 39 based on the sweat temperature received from the temperature sensor 33.
  • the calculation unit 51 calculates ⁇ Ci by substituting the ⁇ i and K stored in the storage unit 53 and the corrected G into the equation (3).
  • the calculation unit 51 regards the calculated ⁇ Ci as the salt concentration of sweat.
  • the calculation unit 51 stores ⁇ Ci as a salt concentration in the storage unit 53.
  • the calculation unit 51 may calculate the salinity concentration based on ⁇ Ci and a predetermined coefficient.
  • the calculation unit 51 calculates the sweating amount of the wearer 90 based on the information received from the sweating amount sensor 37.
  • the calculation unit 51 calculates the amount of sweating based on, for example, the relative humidity of the air flowing into the outer shell 11, the relative humidity of the air flowing out of the outer shell 11, and the amount of air flowing into (or flowing out of) the outer shell 11. To do.
  • the calculation unit 51 may calculate the amount of sweating by another method.
  • the calculation unit 51 calculates the amount of lost salt (g) of the wearer 90 based on the following formula (4). Therefore, the salinity concentration measuring device 100 can be said to be a lost salt amount measuring device.
  • M in formula (4) is the amount of salt lost.
  • P in the formula (4) is the amount of sweating (L).
  • C in the formula (4) is a salinity (mol / L).
  • the value of 58.5 in the formula (4) is the molar mass (g / mol) of sodium chloride.
  • Sweat is a mixture of ions such as sodium, potassium, magnesium and chlorine. Since sodium chloride is the main component of sweat, the formula (4) holds when the molar mass is represented by sodium chloride. More specifically, the value of the amount of lost salt can be calculated more accurately if the molar mass is proportionally corrected by the value of another substance (for example, potassium chloride) according to the mixture ratio of sweat.
  • another substance for example, potassium chloride
  • the calculation unit 51 changes the state of the output device 70 according to the calculated amount of lost salt.
  • the output device 70 is, for example, an alarm device that emits sound, light, or the like.
  • the calculation unit 51 causes the output device 70 to generate an alarm when the calculated amount of lost salt exceeds the threshold value stored in the storage unit 53.
  • the output device 70 may be a display device that displays numerical values, images, or the like.
  • the calculation unit 51 displays the calculated amount of lost salt on the output device 70.
  • the salinity concentration measuring device 100 does not necessarily have to be applied to the head-mounted device 10.
  • the salinity measuring device 100 may be applied to clothes, for example.
  • the salinity concentration measuring device 100 may be applied to, for example, a wearable terminal.
  • the head wearing device 10 is not limited to a helmet, but may be a hat.
  • the cell constants for the first electrode 41 and the second electrode 42 do not necessarily have to be measured by an experiment using a standard solution.
  • the calculation unit 51 determines the cell constant based on the distance (cm) between the tooth portion 411 of the first electrode 41 and the tooth portion 421 of the second electrode 42, and the surface area of the tooth portion 411 and the tooth portion 421. It may be calculated.
  • the salt sensor 31, the temperature sensor 33, the photoelectric pulse wave sensor 35, and the sweating amount sensor 37 do not necessarily have to be arranged in the band portion 121 of the inner shell 12.
  • the position where the salt sensor 31, the temperature sensor 33, the photoelectric pulse wave sensor 35, and the sweating amount sensor 37 are arranged is not particularly limited.
  • the arrangement and shape of the first spacer 47 and the second spacer 48 of the salt sensor 31 are not particularly limited.
  • the first spacer 47 and the second spacer 48 may be arranged, for example, on the surface of the substrate 40, or may be arranged so as to overlap the tooth portions 411 and the tooth portions 421.
  • the first spacer 47 and the second spacer 48 do not have to have a shape extending in the Z direction, and may be, for example, substantially cylindrical or substantially spherical.
  • FIG. 8 is a flowchart showing the salt concentration measuring method of the embodiment.
  • the salt concentration measuring method of the embodiment is a method of measuring the salt concentration of sweat using the above-mentioned salt sensor 31.
  • the salinity concentration measuring method of the embodiment includes steps S1 to S4.
  • step S1 the cell constants related to the pair of electrodes (first electrode 41 and second electrode 42) of the salt sensor 31 are measured.
  • the cell constant is determined, for example, by an experiment using a standard solution.
  • Step S1 can be said to be a cell constant measurement step.
  • step S2 the electrical conductivity of the pair of electrodes (first electrode 41 and second electrode 42) is calculated in a state where sweat is in contact with the pair of electrodes.
  • the electrical conductivity is calculated based on the AC resistance when an AC voltage is applied to the first electrode 41 and the second electrode 42.
  • Step S2 can be said to be an electrical conductivity measurement step.
  • step S3 the salt concentration of sweat is calculated based on the cell constant and the electrical conductivity.
  • the salt concentration of sweat is calculated based on the above formula (3).
  • Step S3 can be said to be a salinity calculation step.
  • step S4 the amount of lost salt of the subject is calculated based on the salt concentration of sweat and the amount of sweating of the subject.
  • the amount of salt lost in the subject is calculated based on the above formula (4).
  • Step S4 can be said to be a step of calculating the amount of lost salt.
  • the salt concentration measuring method of the embodiment can be said to be a lost salt amount measuring method.
  • the salinity concentration measuring device 100 of the present embodiment includes a salinity sensor 31, an electric conductivity measuring unit 39, and a calculation unit 51.
  • the salt sensor 31 includes a substrate 40 and a pair of comb-shaped electrodes (first electrode 41 and second electrode 42) arranged on the substrate 40.
  • the electric conductivity measuring unit 39 measures the electric conductivity between a pair of electrodes.
  • the calculation unit 51 calculates the salt concentration of sweat between the pair of electrodes based on the electrical conductivity.
  • the salinity measuring device 100 since the electrodes are comb-shaped, it is easy to arrange the pair of electrodes in a wide range. Therefore, sweat secreted from a large number of sweat glands enters between the pair of electrodes in a mixed state.
  • the salinity measuring device 100 can measure the average salinity of sweat secreted from many sweat glands. Therefore, the salt concentration measuring device 100 can improve the measurement accuracy of the salt concentration of sweat.
  • the salinity concentration measuring device 100 includes a storage unit 53 that stores cell constants related to a pair of electrodes (first electrode 41 and second electrode 42) obtained in advance by an experiment using a standard solution.
  • the calculation unit 51 calculates the salt concentration of sweat based on the electrical conductivity and the cell constant.
  • the salt concentration measuring device 100 can further improve the measurement accuracy of the salt concentration of sweat.
  • the electric conductivity measuring unit 39 measures the electric conductivity based on the AC resistance between the pair of electrodes when the AC voltage is applied to the pair of electrodes.
  • the frequency of the AC voltage is 0.5 kHz or more and 15 kHz or less.
  • the electric conductivity measuring unit 39 can measure the electric conductivity of sweat with higher accuracy. Therefore, the salt concentration measuring device 100 can further improve the measurement accuracy of the salt concentration of sweat.
  • the salinity concentration measuring device 100 includes a temperature sensor 33 that measures the temperature of sweat.
  • the electrical conductivity of sweat changes depending on the temperature of the sweat.
  • the calculation unit 51 can correct the electrical conductivity of sweat based on the temperature of sweat. Therefore, the salt concentration measuring device 100 can further improve the measurement accuracy of the salt concentration of sweat.
  • the electrodes are provided with a film containing gold or platinum on the surface opposite to the substrate 40.
  • the salinity measuring device 100 can suppress corrosion of the electrode.
  • the salinity sensor 31 includes a spacer (first spacer 47 or second spacer 48) that is thicker than the height of the electrodes (first electrode 41 and second electrode 42).
  • the salt concentration measuring device 100 can further improve the measurement accuracy of the salt concentration of sweat.
  • the electrode (first electrode 41) includes a plurality of tooth portions 411 arranged at intervals in one direction (Z direction), and a base portion 413 connecting the plurality of tooth portions 411. ..
  • the spacer (for example, the first spacer 47) is arranged closer to the base portion 413 of the other electrode (first electrode 41) than the tip of the tooth portion 421 of one electrode (second electrode 42). The spacer is longer than the base 413 in the direction in which the plurality of teeth 411 are lined up.
  • the spacer makes it easier for sweat to be guided to the region where the teeth of the pair of electrodes face each other.
  • the amount of sweat flowing into the region where the teeth of the pair of electrodes face each other increases. Therefore, the state in which new sweat is in contact with the pair of electrodes is easily maintained. Therefore, the salt concentration measuring device 100 can further improve the measurement accuracy of the salt concentration of sweat.
  • the head-mounted device 10 of the present embodiment includes an outer shell 11, an inner shell 12, and a salinity concentration measuring device 100.
  • the inner shell 12 is arranged inside the outer shell 11 and faces the skin 91 of the wearer 90.
  • the salinity concentration measuring device 100 includes a salinity sensor 31, an electric conductivity measuring unit 39, and a calculation unit 51.
  • the salt sensor 31 includes a substrate 40 and a pair of comb-shaped electrodes (first electrode 41 and second electrode 42) arranged on the substrate 40, and is arranged on the inner shell 12.
  • the electric conductivity measuring unit 39 measures the electric conductivity between a pair of electrodes.
  • the calculation unit 51 calculates the salt concentration of sweat between the pair of electrodes based on the electrical conductivity.
  • the salt concentration measuring device 100 can improve the measurement accuracy of the salt concentration of sweat.
  • the salt sensor 31 is arranged at a position of the inner shell 12 facing the forehead 95 of the wearer 90.
  • the salt sensor 31 comes into contact with the forehead 95 while the wearer 90 is wearing the head wearing device 10.
  • the salt sensor 31 By arranging the salt sensor 31 on the forehead 95, which is a portion where sweat is likely to occur, the amount of sweat flowing into the region where the tooth portions of the pair of electrodes face each other increases. Therefore, the state in which new sweat is in contact with the pair of electrodes is easily maintained. Therefore, the head-mounted device 10 can further improve the measurement accuracy of the salt concentration of sweat.
  • the electrode (first electrode 41) includes a plurality of tooth portions 411 arranged at intervals in one direction (Z direction), and a base portion 413 connecting the plurality of tooth portions 411. ..
  • the pair of electrodes are arranged so that the direction in which the plurality of tooth portions 411 are lined up is along the direction from the edge 111 of the outer shell 11 to the top 113.
  • the lead wires connected to the electrodes are arranged so as to extend above and below the electrodes when viewed from the wearer 90. Tooth. Therefore, the lead wire may obstruct the view of the wearer 90.
  • the lead wires are arranged so as to extend to the right side and the left side of the electrode when viewed from the wearer 90 by arranging the tooth portions 411 along the direction from the edge of the outer shell 11 to the top portion. Therefore, the head wearing device 10 can prevent the wearer 90 from being obstructed by the lead wire.
  • the salinity measurement method of the present embodiment includes an electrical conductivity measurement step (step S2) for measuring the electrical conductivity between a pair of comb-shaped electrodes (first electrode 41 and second electrode 42), and electrical conductivity.
  • a salt concentration calculation step (step S3) for calculating the salt concentration of sweat between the pair of electrodes based on the degree is provided.
  • the salt concentration measuring method of the present embodiment since the electrodes are comb-shaped, it is easy to arrange the pair of electrodes in a wide range. Therefore, sweat secreted from a large number of sweat glands enters between the pair of electrodes in a mixed state.
  • the salinity measuring method of the present embodiment can measure the average salinity of sweat secreted from a large number of sweat glands. Therefore, the salt concentration measuring method of the present embodiment can improve the measurement accuracy of the salt concentration of sweat.
  • the salt sensor 31 includes a substrate having an electrode and a land formed on one side thereof, but even if the land has a through hole and the lead wire is taken out from the back surface of the substrate. Good. By doing so, the head wearing device 10 can further prevent the wearer 90 from being obstructed by the lead wire.

Abstract

A salt concentration-measuring device comprising: a salt sensor with a substrate and a pair of comb teeth-shaped electrodes disposed on the substrate; an electrical conductivity-measuring unit for measuring the electrical conductivity between the pair of electrodes; and a calculation section for calculating the salt concentration of sweat between the pair of electrodes on the basis of the electrical conductivity.

Description

塩分濃度計測装置、頭部装着装置、及び塩分濃度計測方法Salinity measuring device, head wearing device, and salinity measuring method
 本発明は、塩分濃度計測装置、頭部装着装置、及び塩分濃度計測方法に関する。 The present invention relates to a salt concentration measuring device, a head-mounted device, and a salt concentration measuring method.
 熱中症を防止するために、発汗量を計測する装置が知られている。例えば、特許文献1には、発汗量を計測できる頭部装着装置の一例が記載されている。熱中症になる可能性の推定精度を向上させるためには、発汗量に加え汗の塩分濃度が計測されることが望ましい。例えば、特許文献2には、尿の塩分濃度を計測できる塩分センサが記載されている。特許文献2の塩分センサは、一対の電極間の導電率に基づいて尿の塩分濃度を算出する。 A device for measuring the amount of sweating is known to prevent heat stroke. For example, Patent Document 1 describes an example of a head-mounted device capable of measuring the amount of sweating. In order to improve the estimation accuracy of the possibility of heat stroke, it is desirable to measure the salt concentration of sweat in addition to the amount of sweating. For example, Patent Document 2 describes a salt sensor capable of measuring the salt concentration of urine. The salt sensor of Patent Document 2 calculates the salinity of urine based on the conductivity between a pair of electrodes.
国際公開第2019/078308号International Publication No. 2019/078308 特開2004-226273号公報Japanese Unexamined Patent Publication No. 2004-226273
 ところで、汗は、広い面積に亘る多数の汗腺から分泌される。熱中症になる可能性の推定に必要な汗の塩分濃度の計測精度を向上させるためには、多数の汗腺から分泌される汗の平均的な塩分濃度を計測することが望ましい。特許文献2の塩分センサを用いる場合、多数の汗腺から分泌される汗の平均的な塩分濃度を計測することは困難である。このため、特許文献2の塩分センサを用いる場合、汗の塩分濃度の計測精度を向上させることには限界がある。 By the way, sweat is secreted from a large number of sweat glands over a large area. In order to improve the measurement accuracy of sweat salinity required for estimating the possibility of heat stroke, it is desirable to measure the average salinity of sweat secreted from many sweat glands. When the salt sensor of Patent Document 2 is used, it is difficult to measure the average salinity of sweat secreted from many sweat glands. Therefore, when the salt sensor of Patent Document 2 is used, there is a limit to improving the measurement accuracy of the salt concentration of sweat.
 本開示は、上記の課題に鑑みてなされたものであって、汗の塩分濃度の計測精度を向上させることができる塩分濃度計測装置、頭部装着装置、及び塩分濃度計測方法を提供することを目的とする。 The present disclosure has been made in view of the above problems, and provides a salt concentration measuring device, a head wearing device, and a salt concentration measuring method capable of improving the measurement accuracy of the salt concentration of sweat. The purpose.
 上記の目的を達成するため、本開示の一態様の塩分濃度計測装置は、基板、及び前記基板に配置される櫛歯状の一対の電極を備える塩分センサと、前記一対の電極の間の電気伝導度を計測する電気伝導度計測部と、前記電気伝導度に基づき、前記一対の電極の間にある汗の塩分濃度を算出する演算部と、を備える。 In order to achieve the above object, the salinity measuring device of one aspect of the present disclosure comprises a substrate and a salt sensor including a pair of comb-shaped electrodes arranged on the substrate, and electricity between the pair of electrodes. It includes an electric conductivity measuring unit for measuring conductivity and a calculation unit for calculating the salt concentration of sweat between the pair of electrodes based on the electric conductivity.
 塩分濃度計測装置の望ましい態様として、標準溶液を用いた実験によって予め求められた前記一対の電極に関するセル定数を記憶する記憶部を備え、前記演算部は、前記電気伝導度及び前記セル定数に基づいて汗の塩分濃度を算出する。 As a desirable embodiment of the salinity measuring device, a storage unit for storing cell constants related to the pair of electrodes obtained in advance by an experiment using a standard solution is provided, and the calculation unit is based on the electrical conductivity and the cell constants. Calculate the salt concentration of sweat.
 塩分濃度計測装置の望ましい態様として、前記電気伝導度計測部は、前記一対の電極に交流電圧を印加した時の前記一対の電極の間の交流抵抗に基づいて電気伝導度を計測し、前記交流電圧の周波数は、0.5kHz以上15kHz以下である。 As a desirable embodiment of the salinity measuring device, the electric conductivity measuring unit measures the electric conductivity based on the AC resistance between the pair of electrodes when an AC voltage is applied to the pair of electrodes, and the AC is measured. The frequency of the voltage is 0.5 kHz or more and 15 kHz or less.
 塩分濃度計測装置の望ましい態様として、前記汗の温度を計測する温度センサを備える。 As a desirable embodiment of the salt concentration measuring device, a temperature sensor for measuring the temperature of the sweat is provided.
 塩分濃度計測装置の望ましい態様として、前記電極は、前記基板とは反対側の表面に、金又は白金を含む皮膜を備える。 As a desirable embodiment of the salinity measuring device, the electrode is provided with a film containing gold or platinum on the surface opposite to the substrate.
 塩分濃度計測装置の望ましい態様として、前記塩分センサは、前記電極の高さより厚いスペーサを備える。 As a desirable embodiment of the salinity measuring device, the salinity sensor includes a spacer thicker than the height of the electrode.
 塩分濃度計測装置の望ましい態様として、前記電極は、一方向に間隔を空けて並べられる複数の歯部と、複数の前記歯部を連結する基部と、を備え、前記スペーサは、一方の前記電極の前記歯部の先端よりも、他方の前記電極の前記基部側に配置され、複数の前記歯部が並ぶ方向において、前記スペーサは、前記基部よりも長い。 As a preferred embodiment of the salinity measuring device, the electrode includes a plurality of teeth arranged at intervals in one direction, and a base connecting the plurality of teeth, and the spacer is one of the electrodes. The spacer is longer than the base in the direction in which the plurality of teeth are arranged on the base side of the other electrode with respect to the tip of the tooth.
 上記の目的を達成するため、本開示の一態様の頭部装着装置は、外殻と、前記外殻の内側に配置され装着者の皮膚に面する内殻と、塩分濃度計測装置と、を備え、前記塩分濃度計測装置は、基板、及び前記基板に配置される櫛歯状の一対の電極を備え、前記内殻に配置される塩分センサと、前記一対の電極の間の電気伝導度を計測する電気伝導度計測部と、前記電気伝導度に基づき、前記一対の電極の間にある汗の塩分濃度を算出する演算部と、を備える。 In order to achieve the above object, the head-mounted device of one aspect of the present disclosure includes an outer shell, an inner shell arranged inside the outer shell and facing the wearer's skin, and a salinity measuring device. The salinity measuring device includes a substrate and a pair of comb-shaped electrodes arranged on the substrate, and measures the electrical conductivity between the salt sensor arranged in the inner shell and the pair of electrodes. It includes an electric conductivity measuring unit for measuring, and a calculation unit for calculating the salt concentration of sweat between the pair of electrodes based on the electric conductivity.
 頭部装着装置の望ましい態様として、前記塩分センサは、前記内殻のうち前記装着者の額に面することになる位置に配置される。 As a desirable embodiment of the head-mounted device, the salt sensor is arranged at a position in the inner shell that faces the forehead of the wearer.
 頭部装着装置の望ましい態様として、前記電極は、一方向に間隔を空けて並べられる複数の歯部と、複数の前記歯部を連結する基部と、を備え、前記一対の電極は、複数の前記歯部が並ぶ方向が前記外殻の縁から頂部に向かう方向に沿うように配置される。 As a preferred embodiment of the head-mounted device, the electrodes include a plurality of teeth arranged at intervals in one direction and a base connecting the plurality of teeth, and the pair of electrodes includes a plurality of electrodes. The tooth portions are arranged so that the direction in which the teeth are aligned is along the direction from the edge of the outer shell to the apex.
 上記の目的を達成するため、本開示の一態様の塩分濃度計測方法は、櫛歯状の一対の電極の間の電気伝導度を計測する電気伝導度計測ステップと、前記電気伝導度に基づき、前記一対の電極の間にある汗の塩分濃度を算出する塩分濃度算出ステップと、を備える。 In order to achieve the above object, the salinity concentration measuring method of one aspect of the present disclosure is based on the electric conductivity measuring step for measuring the electric conductivity between a pair of comb-shaped electrodes and the electric conductivity. A salt concentration calculation step for calculating the salt concentration of sweat between the pair of electrodes is provided.
 本開示の塩分濃度計測装置、頭部装着装置、及び塩分濃度計測方法によれば、汗の塩分濃度の計測精度を向上させることができる。 According to the salt concentration measuring device, the head wearing device, and the salt concentration measuring method of the present disclosure, the measurement accuracy of the salt concentration of sweat can be improved.
図1は、実施形態の塩分濃度計測装置を備える頭部装着装置の底面図である。FIG. 1 is a bottom view of a head-mounted device including the salinity measuring device of the embodiment. 図2は、図1におけるA-A断面図である。FIG. 2 is a cross-sectional view taken along the line AA in FIG. 図3は、実施形態の塩分濃度計測装置を示す模式図である。FIG. 3 is a schematic view showing the salinity concentration measuring device of the embodiment. 図4は、実施形態の塩分センサの正面図である。FIG. 4 is a front view of the salt sensor of the embodiment. 図5は、図4におけるB-B断面図である。FIG. 5 is a cross-sectional view taken along the line BB in FIG. 図6は、図4におけるC-C断面図である。FIG. 6 is a cross-sectional view taken along the line CC in FIG. 図7は、実施形態の塩分センサで計測された標準溶液の導電率と、標準溶液の実際の導電率とを比較するグラフである。FIG. 7 is a graph comparing the conductivity of the standard solution measured by the salt sensor of the embodiment with the actual conductivity of the standard solution. 図8は、実施形態の塩分濃度計測方法を示すフローチャートである。FIG. 8 is a flowchart showing the salt concentration measuring method of the embodiment.
 以下、本発明につき図面を参照しつつ詳細に説明する。なお、本発明を実施するための形態(以下、実施形態という)により本発明が限定されるものではない。また、下記実施形態における構成要素には、当業者が容易に想定できるもの、実質的に同一のもの、いわゆる均等の範囲のものが含まれる。さらに、下記実施形態で開示した構成要素は適宜組み合わせることが可能である。 Hereinafter, the present invention will be described in detail with reference to the drawings. The present invention is not limited to the embodiment for carrying out the present invention (hereinafter referred to as the embodiment). Further, the components in the following embodiments include those that can be easily assumed by those skilled in the art, those that are substantially the same, that is, those in a so-called equal range. Further, the components disclosed in the following embodiments can be appropriately combined.
(実施形態)
 図1は、実施形態の塩分濃度計測装置を備える頭部装着装置の底面図である。図2は、図1におけるA-A断面図である。図3は、実施形態の塩分濃度計測装置を示す模式である。図4は、実施形態の塩分センサの正面図である。図5は、図4におけるB-B断面図である。図6は、図4におけるC-C断面図である。
(Embodiment)
FIG. 1 is a bottom view of a head-mounted device including the salinity measuring device of the embodiment. FIG. 2 is a cross-sectional view taken along the line AA in FIG. FIG. 3 is a schematic showing the salt concentration measuring device of the embodiment. FIG. 4 is a front view of the salt sensor of the embodiment. FIG. 5 is a cross-sectional view taken along the line BB in FIG. FIG. 6 is a cross-sectional view taken along the line CC in FIG.
 図2に示すように、頭部装着装置10は、装着者90の頭部に装着される装置である。本実施形態の頭部装着装置10は、ヘルメットである。図1及び図2に示すように、頭部装着装置10は、外殻11と、内殻12と、塩分濃度計測装置100と、を備える。 As shown in FIG. 2, the head mounting device 10 is a device mounted on the head of the wearer 90. The head-mounted device 10 of the present embodiment is a helmet. As shown in FIGS. 1 and 2, the head-mounted device 10 includes an outer shell 11, an inner shell 12, and a salinity concentration measuring device 100.
 図2に示すように、外殻11は、半球状の部材である。外殻11は、例えば合成樹脂で形成されている。内殻12は、外殻11の内側に配置される。内殻12は、装着者90の皮膚91に面する。内殻12は、バンド部121と、ハンモック部125と、ベルト部123と、を備える。バンド部121は、外殻11の縁に沿う環状の部材である。ハンモック部125は、外殻11の頂部に対応する位置に配置される。ベルト部123は、バンド部121とハンモック部125とを連結している。 As shown in FIG. 2, the outer shell 11 is a hemispherical member. The outer shell 11 is made of, for example, a synthetic resin. The inner shell 12 is arranged inside the outer shell 11. The inner shell 12 faces the skin 91 of the wearer 90. The inner shell 12 includes a band portion 121, a hammock portion 125, and a belt portion 123. The band portion 121 is an annular member along the edge of the outer shell 11. The hammock portion 125 is arranged at a position corresponding to the top of the outer shell 11. The belt portion 123 connects the band portion 121 and the hammock portion 125.
 図3に示すように、塩分濃度計測装置100は、塩分センサ31と、電気伝導度計測部39と、バッテリ101と、温度センサ33と、光電脈波センサ35と、発汗量センサ37と、制御装置50と、出力装置70と、を備える。 As shown in FIG. 3, the salinity concentration measuring device 100 controls the salt sensor 31, the electric conductivity measuring unit 39, the battery 101, the temperature sensor 33, the photoelectric pulse wave sensor 35, and the sweating amount sensor 37. A device 50 and an output device 70 are provided.
 塩分センサ31は、装着者90の汗の塩分濃度を計測するために必要な情報を検出するセンサである。塩分センサ31は、装着者90の皮膚91に接するように配置される。図1に示すように、塩分センサ31は、内殻12のバンド部121に配置される。図2に示すように、塩分センサ31は、バンド部121のうち装着者90の額95に面することになる位置に配置される。このため、装着者90が頭部装着装置10を装着した状態において、塩分センサ31は、装着者90の額95に接する。 The salt sensor 31 is a sensor that detects information necessary for measuring the salt concentration of sweat of the wearer 90. The salt sensor 31 is arranged so as to be in contact with the skin 91 of the wearer 90. As shown in FIG. 1, the salt sensor 31 is arranged in the band portion 121 of the inner shell 12. As shown in FIG. 2, the salt sensor 31 is arranged at a position of the band portion 121 that faces the forehead 95 of the wearer 90. Therefore, when the wearer 90 wears the head wearing device 10, the salt sensor 31 comes into contact with the forehead 95 of the wearer 90.
 図4から図6に示すように、塩分センサ31は、基板40と、第1電極41と、第2電極42と、第1ランド43と、第2ランド44と、第1保護膜45と、第2保護膜46と、第1スペーサ47と、第2スペーサ48と、を備える。 As shown in FIGS. 4 to 6, the salt sensor 31 includes a substrate 40, a first electrode 41, a second electrode 42, a first land 43, a second land 44, and a first protective film 45. A second protective film 46, a first spacer 47, and a second spacer 48 are provided.
 基板40は、絶縁体で形成された板である。基板40は、フレキシブル基板である。基板40は、例えばポリイミド(PI)で形成される。第1電極41及び第2電極42は、基板40の表面に設けられる導体である。第1電極41及び第2電極42は、例えば銅で形成される。第1電極41及び第2電極42は、基板40とは反対側の表面に皮膜を備える。皮膜は、金又は白金を含むことが望ましい。皮膜は、例えばNi-Au(ニッケル金)で形成される。第1電極41及び第2電極42は、櫛歯状の電極である。 The substrate 40 is a plate formed of an insulator. The substrate 40 is a flexible substrate. The substrate 40 is made of, for example, polyimide (PI). The first electrode 41 and the second electrode 42 are conductors provided on the surface of the substrate 40. The first electrode 41 and the second electrode 42 are made of, for example, copper. The first electrode 41 and the second electrode 42 have a film on the surface opposite to the substrate 40. The coating preferably contains gold or platinum. The film is formed of, for example, Ni—Au (nickel gold). The first electrode 41 and the second electrode 42 are comb-shaped electrodes.
 図4に示すように、第1電極41は、複数の歯部411と、基部413と、を備える。複数の歯部411は一方向に向かって等間隔に並べられる。第1電極41は、歯部411の並ぶ方向が外殻11の縁111から頂部113に向かう方向(図2における紙面の上下方向)に沿うように配置される。基部413は、全ての歯部411を連結する。 As shown in FIG. 4, the first electrode 41 includes a plurality of tooth portions 411 and a base portion 413. The plurality of tooth portions 411 are arranged at equal intervals in one direction. The first electrode 41 is arranged so that the direction in which the tooth portions 411 are arranged is along the direction from the edge 111 of the outer shell 11 to the top 113 (the vertical direction of the paper surface in FIG. 2). The base 413 connects all the teeth 411.
 図4に示すように、第2電極42は、複数の歯部421と、基部423と、を備える。複数の歯部421は一方向に向かって等間隔に並べられる。第2電極42は、歯部421の並ぶ方向が外殻11の縁111から頂部113に向かう方向(図2における紙面の上下方向)に沿うように配置される。1つの歯部421が、2つの歯部411の間に配置される。すなわち、歯部411及び歯部421は、交互に配置される。歯部411と歯部421との間には、隙間が設けられる。基部423は、全ての歯部421を連結する。 As shown in FIG. 4, the second electrode 42 includes a plurality of tooth portions 421 and a base portion 423. The plurality of tooth portions 421 are arranged at equal intervals in one direction. The second electrode 42 is arranged so that the direction in which the tooth portions 421 are aligned is along the direction from the edge 111 of the outer shell 11 to the top 113 (the vertical direction of the paper surface in FIG. 2). One tooth 421 is arranged between the two teeth 411. That is, the tooth portions 411 and the tooth portions 421 are arranged alternately. A gap is provided between the tooth portion 411 and the tooth portion 421. The base 423 connects all the teeth 421.
 以下の説明において、XYZ直交座標軸が用いられる。X軸は、基板40に対して直交する。Y軸は、歯部411の長手方向と平行である。Z軸は、複数の歯部411が並ぶ方向と平行である。X軸と平行な方向は、単にX方向と記載される。Y軸と平行な方向は、単にY方向と記載される。Z軸と平行な方向は、単にZ方向と記載される。基板40の裏面から第1電極41が配置される表面に向かう方向を、+X方向とする。第1電極41から第2電極42に向かう方向を、+Y方向とする。+X方向を上とし且つ+Y方向を前とした場合の左方向を、+Z方向とする。 In the following description, the XYZ orthogonal coordinate axes are used. The X-axis is orthogonal to the substrate 40. The Y-axis is parallel to the longitudinal direction of the tooth portion 411. The Z axis is parallel to the direction in which the plurality of tooth portions 411 are lined up. The direction parallel to the X axis is simply described as the X direction. The direction parallel to the Y axis is simply described as the Y direction. The direction parallel to the Z axis is simply described as the Z direction. The direction from the back surface of the substrate 40 toward the front surface on which the first electrode 41 is arranged is defined as the + X direction. The direction from the first electrode 41 to the second electrode 42 is defined as the + Y direction. The left direction when the + X direction is up and the + Y direction is front is the + Z direction.
 図4に示すように、第1ランド43は、第1電極41の-Y方向に配置される。第1ランド43は、基部413と接続される。第1ランド43は、リード線等を介して電気伝導度計測部39と接続される。 As shown in FIG. 4, the first land 43 is arranged in the −Y direction of the first electrode 41. The first land 43 is connected to the base 413. The first land 43 is connected to the electric conductivity measuring unit 39 via a lead wire or the like.
 図4に示すように、第2ランド44は、第2電極42の+Y方向に配置される。第2ランド44は、基部423と接続される。第2ランド44は、リード線等を介して電気伝導度計測部39と接続される。 As shown in FIG. 4, the second land 44 is arranged in the + Y direction of the second electrode 42. The second land 44 is connected to the base 423. The second land 44 is connected to the electric conductivity measuring unit 39 via a lead wire or the like.
 第1保護膜45は、第1電極41の+X方向に重ねられる絶縁膜である。第1保護膜45は、例えばポリイミドで形成される。第1保護膜45は、基板40のZ方向の全長に亘って設けられる。第1保護膜45は、第1電極41の基部413の全て、及び歯部411の一部を覆う。歯部411のうち歯部421とZ方向に対向する部分は、露出している。 The first protective film 45 is an insulating film laminated in the + X direction of the first electrode 41. The first protective film 45 is made of, for example, polyimide. The first protective film 45 is provided over the entire length of the substrate 40 in the Z direction. The first protective film 45 covers all of the base portion 413 of the first electrode 41 and a part of the tooth portion 411. The portion of the tooth portion 411 facing the tooth portion 421 in the Z direction is exposed.
 第2保護膜46は、第2電極42の+X方向に重ねられる絶縁膜である。第2保護膜46は、例えばポリイミドで形成される。第2保護膜46は、基板40のZ方向の全長に亘って設けられる。第2保護膜46は、第2電極42の基部423の全て、及び歯部421の一部を覆う。歯部421のうち歯部411とZ方向に対向する部分は、露出している。 The second protective film 46 is an insulating film that is overlapped in the + X direction of the second electrode 42. The second protective film 46 is made of, for example, polyimide. The second protective film 46 is provided over the entire length of the substrate 40 in the Z direction. The second protective film 46 covers all of the base 423 of the second electrode 42 and a part of the tooth portion 421. The portion of the tooth portion 421 facing the tooth portion 411 in the Z direction is exposed.
 第1スペーサ47は、装着者90の皮膚91と第1電極41との間、及び皮膚91と第2電極42との間に隙間を設けるための部材である。第1スペーサ47は、例えば合成樹脂等で形成される。第1スペーサ47は、第1保護膜45の+X方向に配置される。第1スペーサ47は、歯部421の先端よりも、-Y方向(基部413側)に配置される。第1スペーサ47のZ方向の長さは、基部413のZ方向の長さよりも大きい。第1スペーサ47のX方向の長さは、第1電極41及び第2電極42のX方向の長さよりも大きい。すなわち、X方向において第1スペーサ47は、第1電極41及び第2電極42よりも厚い。第1電極41及び第2電極42のX方向の長さは、第1電極41及び第2電極42の高さともいえる。第1スペーサ47は、第1電極41及び第2電極42の高さよりも厚い。装着者90が頭部装着装置10を装着した状態において、第1スペーサ47は、装着者90の皮膚91に接する。 The first spacer 47 is a member for providing a gap between the skin 91 of the wearer 90 and the first electrode 41, and between the skin 91 and the second electrode 42. The first spacer 47 is formed of, for example, a synthetic resin or the like. The first spacer 47 is arranged in the + X direction of the first protective film 45. The first spacer 47 is arranged in the −Y direction (base 413 side) with respect to the tip of the tooth portion 421. The length of the first spacer 47 in the Z direction is larger than the length of the base 413 in the Z direction. The length of the first spacer 47 in the X direction is larger than the length of the first electrode 41 and the second electrode 42 in the X direction. That is, the first spacer 47 is thicker than the first electrode 41 and the second electrode 42 in the X direction. The length of the first electrode 41 and the second electrode 42 in the X direction can be said to be the height of the first electrode 41 and the second electrode 42. The first spacer 47 is thicker than the heights of the first electrode 41 and the second electrode 42. With the wearer 90 wearing the head wearing device 10, the first spacer 47 comes into contact with the skin 91 of the wearer 90.
 第2スペーサ48は、装着者90の皮膚91と第1電極41との間、及び皮膚91と第2電極42との間に隙間を設けるための部材である。第2スペーサ48は、例えば合成樹脂等で形成される。第2スペーサ48は、第2保護膜46の+X方向に配置される。第2スペーサ48は、歯部411の先端よりも、+Y方向(基部423側)に配置される。第2スペーサ48のZ方向の長さは、基部423のZ方向の長さよりも大きい。第2スペーサ48のX方向の長さは、第1電極41及び第2電極42のX方向の長さよりも大きい。すなわち、X方向において第2スペーサ48は、第1電極41及び第2電極42よりも厚い。第2スペーサ48は、第1電極41及び第2電極42の高さよりも厚い。装着者90が頭部装着装置10を装着した状態において、第2スペーサ48は、装着者90の皮膚91に接する。 The second spacer 48 is a member for providing a gap between the skin 91 of the wearer 90 and the first electrode 41, and between the skin 91 and the second electrode 42. The second spacer 48 is formed of, for example, a synthetic resin or the like. The second spacer 48 is arranged in the + X direction of the second protective film 46. The second spacer 48 is arranged in the + Y direction (base 423 side) with respect to the tip of the tooth portion 411. The length of the second spacer 48 in the Z direction is larger than the length of the base 423 in the Z direction. The length of the second spacer 48 in the X direction is larger than the length of the first electrode 41 and the second electrode 42 in the X direction. That is, the second spacer 48 is thicker than the first electrode 41 and the second electrode 42 in the X direction. The second spacer 48 is thicker than the heights of the first electrode 41 and the second electrode 42. When the wearer 90 wears the head wearing device 10, the second spacer 48 comes into contact with the skin 91 of the wearer 90.
 電気伝導度計測部39は、塩分センサ31で検出される情報を用いて、装着者90の汗の電気伝導度を計測する。電気伝導度計測部39は、バッテリ101を電源として、塩分センサ31に交流電圧を印加する。電気伝導度計測部39は、第1電極41及び第2電極42に交流電圧を印加する。交流電圧の周波数は、0.5kHz以上15kHz以下であることが望ましい。電気伝導度計測部39は、塩分センサ31に交流電圧を印加した時の交流抵抗(インピーダンス)に基づいて電気伝導度を算出する。電気伝導度は、交流抵抗の逆数である。 The electric conductivity measuring unit 39 measures the electric conductivity of the sweat of the wearer 90 by using the information detected by the salt sensor 31. The electric conductivity measuring unit 39 applies an AC voltage to the salt sensor 31 using the battery 101 as a power source. The electric conductivity measuring unit 39 applies an AC voltage to the first electrode 41 and the second electrode 42. The frequency of the AC voltage is preferably 0.5 kHz or more and 15 kHz or less. The electric conductivity measuring unit 39 calculates the electric conductivity based on the AC resistance (impedance) when the AC voltage is applied to the salt sensor 31. Electrical conductivity is the reciprocal of AC resistance.
 温度センサ33は、装着者90の汗の温度を検出するセンサである。温度センサ33は、装着者90の皮膚91に接するように配置される。図1に示すように、温度センサ33は、内殻12のバンド部121に配置される。電気伝導度は、温度によって変化することが知られている。このため、標準溶液等を用いて、温度による電気伝導度の補正値が予め計測されることが望ましい。電気伝導度の補正値は、後述する制御装置50の記憶部53に記憶されることが望ましい。これにより、後述する制御装置50の演算部51は、記憶された電気伝導度の補正値に基づいて電気伝導度を補正できる。 The temperature sensor 33 is a sensor that detects the sweat temperature of the wearer 90. The temperature sensor 33 is arranged so as to be in contact with the skin 91 of the wearer 90. As shown in FIG. 1, the temperature sensor 33 is arranged in the band portion 121 of the inner shell 12. It is known that the electrical conductivity changes with temperature. Therefore, it is desirable to measure the correction value of the electrical conductivity with temperature in advance using a standard solution or the like. It is desirable that the correction value of the electric conductivity is stored in the storage unit 53 of the control device 50 described later. As a result, the calculation unit 51 of the control device 50, which will be described later, can correct the electric conductivity based on the stored correction value of the electric conductivity.
 光電脈波センサ35は、装着者90の脈波を検出するセンサである。光電脈波センサ35は、装着者90の皮膚91に接するように配置される。図1に示すように、光電脈波センサ35は、内殻12のバンド部121に配置される。 The photoelectric pulse wave sensor 35 is a sensor that detects the pulse wave of the wearer 90. The photoelectric pulse wave sensor 35 is arranged so as to be in contact with the skin 91 of the wearer 90. As shown in FIG. 1, the photoelectric pulse wave sensor 35 is arranged in the band portion 121 of the inner shell 12.
 発汗量センサ37は、装着者90の発汗量を計測するために必要な情報を検出するセンサである。発汗量を計測するために必要な情報は、特に限定されない。例えば、発汗量センサ37は、2つの湿度センサと、風量センサとを備えていてもよい。発汗量センサ37は、湿度センサによって検出された湿度、及び風量を制御装置50に送信する。 The sweating amount sensor 37 is a sensor that detects information necessary for measuring the sweating amount of the wearer 90. The information required to measure the amount of sweating is not particularly limited. For example, the sweating amount sensor 37 may include two humidity sensors and an air volume sensor. The sweating amount sensor 37 transmits the humidity detected by the humidity sensor and the air volume to the control device 50.
 制御装置50は、コンピュータであり、例えばCPU(Central Processing Unit)、ROM(Read Only Memory)、RAM(Random Access Memory)、入力インターフェース、及び出力インターフェースを含む。CPU、ROM、RAM、入力インターフェース、及び出力インターフェースは、内部バスによって接続されている。図3に示すように、制御装置50は、演算部51と、記憶部53と、を備える。演算部51及び記憶部53の各機能は、CPU、ROM、RAM、入力インターフェース、及び出力インターフェースが連携されることによって実現される。制御装置50は、電気伝導度計測部39、温度センサ33、光電脈波センサ35、及び発汗量センサ37と電気的に接続されており、計測値を受信する。 The control device 50 is a computer, and includes, for example, a CPU (Central Processing Unit), a ROM (Read Only Memory), a RAM (Random Access Memory), an input interface, and an output interface. The CPU, ROM, RAM, input interface, and output interface are connected by an internal bus. As shown in FIG. 3, the control device 50 includes a calculation unit 51 and a storage unit 53. Each function of the calculation unit 51 and the storage unit 53 is realized by linking the CPU, ROM, RAM, input interface, and output interface. The control device 50 is electrically connected to the electrical conductivity measuring unit 39, the temperature sensor 33, the photoelectric pulse wave sensor 35, and the sweating amount sensor 37, and receives the measured value.
 演算部51は、電気伝導度計測部39から受信した電気伝導度に基づいて、装着者90の汗の塩分濃度を算出する。演算部51は、下記式(3)に基づいて、塩分濃度を算出する。汗の導電率(S/cm)をκとする。汗に含まれる各イオン(i)の濃度(mol/L)を、Ci(i=1、2、3、・・・)とする。汗に含まれる各イオン(i)のモル伝導率(S・cm/mol)を、λi(i=1、2、3、・・・)とする。汗に含まれる全てのイオンに関するCiとλiの積の和を、ΣCiλiとする。この場合、下記式(1)が成り立つ。なお、汗には、ナトリウムイオン、塩素イオン、カリウムイオン、カルシウムイオン、乳酸イオン等が含まれる。 The calculation unit 51 calculates the salt concentration of sweat of the wearer 90 based on the electric conductivity received from the electric conductivity measuring unit 39. The calculation unit 51 calculates the salinity based on the following formula (3). Let κ be the conductivity (S / cm) of sweat. Let the concentration (mol / L) of each ion (i) contained in sweat be Ci (i = 1, 2, 3, ...). The molar conductivity (S · cm 2 / mol) of each ion (i) contained in sweat is λi (i = 1, 2, 3, ...). The sum of the products of Ci and λi for all the ions contained in sweat is defined as ΣCiλi. In this case, the following equation (1) holds. In addition, sweat contains sodium ion, chlorine ion, potassium ion, calcium ion, lactic acid ion and the like.
 κ=1000×ΣCi×Σλi  ・・・(1) Κ = 1000 x ΣCi x Σλi ... (1)
 汗の電気伝統度(S)をGとする。第1電極41の歯部411と第2電極42の歯部421との間の距離(cm)をdとする。歯部411及び歯部421の表面積(cm)を、Aとする。第1電極41及び第2電極42に関するセル定数(1/cm)を、Kとする。この場合、下記式(2)が成り立つ。 Let G be the degree of electrical tradition (S) of sweat. Let d be the distance (cm) between the tooth portion 411 of the first electrode 41 and the tooth portion 421 of the second electrode 42. Let A be the surface area (cm 2 ) of the tooth portion 411 and the tooth portion 421. Let K be the cell constant (1 / cm) of the first electrode 41 and the second electrode 42. In this case, the following equation (2) holds.
 κ=G×(d/A)=G×K  ・・・(2) Κ = G × (d / A) = G × K ... (2)
 式(1)及び式(2)から、下記式(3)が導出される。ΣCiは、汗に含まれる全てのイオンに関するCiの和である。Σλiは、汗に含まれる全てのイオンに関するλiの和である。 The following equation (3) is derived from equations (1) and (2). ΣCi is the sum of Ci for all ions contained in sweat. Σλi is the sum of λi for all ions contained in sweat.
 ΣCi=K×G/(1000×Σλi)  ・・・(3) ΣCi = K × G / (1000 × Σλi) ・ ・ ・ (3)
 記憶部53は、汗に含まれる全てのイオンに関するλiの和(Σλi)、及びセル定数(K)を記憶している。セル定数(K)は、予め行われる標準溶液を用いた実験によって決められる。標準溶液は、物性が既知の液体である。すなわち、標準溶液に含まれる各イオンの濃度(Ci)、及び標準溶液に含まれる各イオンのモル伝導率(λi)は、既知である。塩分センサ31を用いて標準溶液の電気伝導度(G)が計測される。標準溶液のΣCi、Σλi、及びGを式(3)に代入することによって、第1電極41及び第2電極42に関するセル定数(K)が導出される。このように導出されたセル定数(K)が、記憶部53に記憶される。 The storage unit 53 stores the sum of λi (Σλi) and the cell constant (K) for all the ions contained in sweat. The cell constant (K) is determined by an experiment using a standard solution performed in advance. The standard solution is a liquid whose physical characteristics are known. That is, the concentration (Ci) of each ion contained in the standard solution and the molar conductivity (λi) of each ion contained in the standard solution are known. The electrical conductivity (G) of the standard solution is measured using the salt sensor 31. By substituting ΣCi, Σλi, and G of the standard solution into the equation (3), the cell constants (K) for the first electrode 41 and the second electrode 42 are derived. The cell constant (K) derived in this way is stored in the storage unit 53.
 図7は、実施形態の塩分センサで計測された標準溶液の導電率と、標準溶液の実際の導電率とを比較するグラフである。図7に示すように、電気伝導度計測部39が塩分センサ31に印加する交流電圧の周波数を変化させることによって、電気伝導度計測部39で計測される標準溶液の導電率と、標準溶液の実際の導電率との相関係数(R)は0.9999となる。すなわち、電気伝導度計測部39が塩分センサ31に印加する交流電圧の周波数を変化させることによって、電気伝導度計測部39は、標準溶液の導電率を高精度に計測できる。汗の導電率は、一般的に10mS/cm以上20mS/cm以下程度である。このため、電気伝導度計測部39による汗の電気伝導度(G)の計測精度を高めるためには、電気伝導度計測部39が塩分センサ31に印加する交流電圧の周波数は、0.5kHz以上15kHz以下であることが望ましい。このような最適な計測周波数(電気伝導度計測部39が塩分センサ31に印加する交流電圧の周波数)を予め決めておけば、電気伝導度計測部39の計測周波数を変えられない場合でも、汗の電気伝導度を正確に計測することができる。したがって、電気伝導度計測部39の計測周波数を変えられない場合でも、汗中に含まれる各イオンの濃度(平均イオン換算濃度)が求めることができる。 FIG. 7 is a graph comparing the conductivity of the standard solution measured by the salt sensor of the embodiment with the actual conductivity of the standard solution. As shown in FIG. 7, the conductivity of the standard solution measured by the electric conductivity measuring unit 39 and the standard solution by changing the frequency of the AC voltage applied by the electric conductivity measuring unit 39 to the salt sensor 31. The correlation coefficient (R) with the actual conductivity is 0.9999. That is, by changing the frequency of the AC voltage applied to the salt sensor 31 by the electric conductivity measuring unit 39, the electric conductivity measuring unit 39 can measure the conductivity of the standard solution with high accuracy. The conductivity of sweat is generally about 10 mS / cm or more and 20 mS / cm or less. Therefore, in order to improve the measurement accuracy of the electric conductivity (G) of sweat by the electric conductivity measuring unit 39, the frequency of the AC voltage applied by the electric conductivity measuring unit 39 to the salt sensor 31 is 0.5 kHz or more. It is desirable that it is 15 kHz or less. If such an optimum measurement frequency (frequency of the AC voltage applied by the electric conductivity measuring unit 39 to the salt sensor 31) is determined in advance, even if the measurement frequency of the electric conductivity measuring unit 39 cannot be changed, sweat It is possible to accurately measure the electrical conductivity of. Therefore, even if the measurement frequency of the electric conductivity measuring unit 39 cannot be changed, the concentration of each ion contained in sweat (average ion equivalent concentration) can be obtained.
 演算部51は、温度センサ33から受信した汗の温度に基づいて、電気伝導度計測部39から受信したGを補正する。演算部51は、記憶部53に記憶されたΣλi、及びK、並びに補正したGを、式(3)に代入することによって、ΣCiを算出する。演算部51は、算出したΣCiを、汗の塩分濃度とみなす。演算部51は、ΣCiを塩分濃度として記憶部53に記憶する。なお、演算部51は、ΣCiと所定の係数とに基づいて、塩分濃度を算出してもよい。 The calculation unit 51 corrects the G received from the electric conductivity measuring unit 39 based on the sweat temperature received from the temperature sensor 33. The calculation unit 51 calculates ΣCi by substituting the Σλi and K stored in the storage unit 53 and the corrected G into the equation (3). The calculation unit 51 regards the calculated ΣCi as the salt concentration of sweat. The calculation unit 51 stores ΣCi as a salt concentration in the storage unit 53. The calculation unit 51 may calculate the salinity concentration based on ΣCi and a predetermined coefficient.
 演算部51は、発汗量センサ37から受信した情報に基づいて、装着者90の発汗量を算出する。演算部51は、例えば、外殻11に流入する空気の相対湿度、外殻11から流出する空気の相対湿度、及び外殻11に流入する(又は流出する)風量等に基づいて発汗量を算出する。なお、演算部51は、他の方法によって発汗量を算出してもよい。 The calculation unit 51 calculates the sweating amount of the wearer 90 based on the information received from the sweating amount sensor 37. The calculation unit 51 calculates the amount of sweating based on, for example, the relative humidity of the air flowing into the outer shell 11, the relative humidity of the air flowing out of the outer shell 11, and the amount of air flowing into (or flowing out of) the outer shell 11. To do. The calculation unit 51 may calculate the amount of sweating by another method.
 演算部51は、下記式(4)に基づいて、装着者90の喪失塩分量(g)を算出する。このため、塩分濃度計測装置100は、喪失塩分量計測装置ともいえる。式(4)のMは、喪失塩分量である。式(4)のPは、発汗量(L)である。式(4)のCは、塩分濃度(mol/L)である。式(4)の58.5との値は、塩化ナトリウムのモル質量(g/mol)である。 The calculation unit 51 calculates the amount of lost salt (g) of the wearer 90 based on the following formula (4). Therefore, the salinity concentration measuring device 100 can be said to be a lost salt amount measuring device. M in formula (4) is the amount of salt lost. P in the formula (4) is the amount of sweating (L). C in the formula (4) is a salinity (mol / L). The value of 58.5 in the formula (4) is the molar mass (g / mol) of sodium chloride.
 M=P×C×58.5  ・・・(4) M = P x C x 58.5 ... (4)
 汗は、ナトリウム、カリウム、マグネシウム、塩素等のイオンの混合物である。塩化ナトリウムが汗の主成分なので、モル質量を塩化ナトリウムで代表させる場合に式(4)が成立する。より詳細には、汗の混合物比によって、モル質量を他の物質(例えば塩化カリウム)等の値で案分して補正すれば、喪失塩分量の値は、より正確に算出することができる。 Sweat is a mixture of ions such as sodium, potassium, magnesium and chlorine. Since sodium chloride is the main component of sweat, the formula (4) holds when the molar mass is represented by sodium chloride. More specifically, the value of the amount of lost salt can be calculated more accurately if the molar mass is proportionally corrected by the value of another substance (for example, potassium chloride) according to the mixture ratio of sweat.
 演算部51は、算出した喪失塩分量によって、出力装置70の状態を変化させる。出力装置70は、例えば、音又は光等を発する警報装置である。例えば、演算部51は、算出した喪失塩分量が記憶部53に記憶された閾値を超えた場合に、出力装置70に警報を発生させる。なお、出力装置70は、数値又は画像等を表示する表示装置であってもよい。例えば、演算部51は、算出した喪失塩分量を出力装置70に表示する。これにより、頭部装着装置10は、装着者に自身が熱中症になる可能性があることを認識させることができる。 The calculation unit 51 changes the state of the output device 70 according to the calculated amount of lost salt. The output device 70 is, for example, an alarm device that emits sound, light, or the like. For example, the calculation unit 51 causes the output device 70 to generate an alarm when the calculated amount of lost salt exceeds the threshold value stored in the storage unit 53. The output device 70 may be a display device that displays numerical values, images, or the like. For example, the calculation unit 51 displays the calculated amount of lost salt on the output device 70. As a result, the head wearing device 10 can make the wearer recognize that he / she may suffer from heat stroke.
 なお、塩分濃度計測装置100は、必ずしも頭部装着装置10に適用されなくてもよい。塩分濃度計測装置100は、例えば衣服に適用されてもよい。塩分濃度計測装置100は、例えばウェアラブル端末に適用されてもよい。また、頭部装着装置10は、ヘルメットに限定されず、帽子であってもよい。 The salinity concentration measuring device 100 does not necessarily have to be applied to the head-mounted device 10. The salinity measuring device 100 may be applied to clothes, for example. The salinity concentration measuring device 100 may be applied to, for example, a wearable terminal. Further, the head wearing device 10 is not limited to a helmet, but may be a hat.
 第1電極41及び第2電極42に関するセル定数は、必ずしも標準溶液を用いた実験によって計測されなくてもよい。例えば、演算部51は、第1電極41の歯部411と第2電極42の歯部421との間の距離(cm)、及び歯部411及び歯部421の表面積に基づいて、セル定数を算出してもよい。 The cell constants for the first electrode 41 and the second electrode 42 do not necessarily have to be measured by an experiment using a standard solution. For example, the calculation unit 51 determines the cell constant based on the distance (cm) between the tooth portion 411 of the first electrode 41 and the tooth portion 421 of the second electrode 42, and the surface area of the tooth portion 411 and the tooth portion 421. It may be calculated.
 塩分センサ31、温度センサ33、光電脈波センサ35、及び発汗量センサ37は、必ずしも内殻12のバンド部121に配置されなくてもよい。塩分センサ31、温度センサ33、光電脈波センサ35、及び発汗量センサ37が配置される位置は、特に限定されない。 The salt sensor 31, the temperature sensor 33, the photoelectric pulse wave sensor 35, and the sweating amount sensor 37 do not necessarily have to be arranged in the band portion 121 of the inner shell 12. The position where the salt sensor 31, the temperature sensor 33, the photoelectric pulse wave sensor 35, and the sweating amount sensor 37 are arranged is not particularly limited.
 塩分センサ31の第1スペーサ47及び第2スペーサ48の配置及び形状は、特に限定されない。第1スペーサ47及び第2スペーサ48は、例えば基板40の表面に配置されてもよいし、歯部411及び歯部421に重なるように配置されてもよい。第1スペーサ47及び第2スペーサ48は、Z方向に延びる形状を有していなくてもよく、例えば略円柱状、略球状等であってもよい。 The arrangement and shape of the first spacer 47 and the second spacer 48 of the salt sensor 31 are not particularly limited. The first spacer 47 and the second spacer 48 may be arranged, for example, on the surface of the substrate 40, or may be arranged so as to overlap the tooth portions 411 and the tooth portions 421. The first spacer 47 and the second spacer 48 do not have to have a shape extending in the Z direction, and may be, for example, substantially cylindrical or substantially spherical.
 図8は、実施形態の塩分濃度計測方法を示すフローチャートである。図8に示すように、実施形態の塩分濃度計測方法は、上述した塩分センサ31を用いた、汗の塩分濃度の計測方法である。実施形態の塩分濃度計測方法は、ステップS1からステップS4を備える。 FIG. 8 is a flowchart showing the salt concentration measuring method of the embodiment. As shown in FIG. 8, the salt concentration measuring method of the embodiment is a method of measuring the salt concentration of sweat using the above-mentioned salt sensor 31. The salinity concentration measuring method of the embodiment includes steps S1 to S4.
 ステップS1において、塩分センサ31の一対の電極(第1電極41及び第2電極42)に関するセル定数が計測される。セル定数は、例えば標準溶液を用いた実験によって決められる。ステップS1は、セル定数計測ステップともいえる。 In step S1, the cell constants related to the pair of electrodes (first electrode 41 and second electrode 42) of the salt sensor 31 are measured. The cell constant is determined, for example, by an experiment using a standard solution. Step S1 can be said to be a cell constant measurement step.
 ステップS1の後、ステップS2において、一対の電極に汗が接した状態で、一対の電極(第1電極41及び第2電極42)の電気伝導度が算出される。第1電極41及び第2電極42に交流電圧を印加した時の交流抵抗に基づいて、電気伝導度が算出される。ステップS2は、電気伝導度計測ステップともいえる。 After step S1, in step S2, the electrical conductivity of the pair of electrodes (first electrode 41 and second electrode 42) is calculated in a state where sweat is in contact with the pair of electrodes. The electrical conductivity is calculated based on the AC resistance when an AC voltage is applied to the first electrode 41 and the second electrode 42. Step S2 can be said to be an electrical conductivity measurement step.
 ステップS2の後、ステップS3において、セル定数及び電気伝導度に基づき、汗の塩分濃度が算出される。例えば、上述した式(3)に基づいて、汗の塩分濃度を算出する。ステップS3は、塩分濃度算出ステップともいえる。 After step S2, in step S3, the salt concentration of sweat is calculated based on the cell constant and the electrical conductivity. For example, the salt concentration of sweat is calculated based on the above formula (3). Step S3 can be said to be a salinity calculation step.
 ステップS3の後、ステップS4において、汗の塩分濃度及び被験者の発汗量に基づき、被験者の喪失塩分量が算出される。例えば、上述した式(4)に基づいて、被験者の喪失塩分量が算出される。ステップS4は、喪失塩分量算出ステップともいえる。実施形態の塩分濃度計測方法は、喪失塩分量計測方法ともいえる。 After step S3, in step S4, the amount of lost salt of the subject is calculated based on the salt concentration of sweat and the amount of sweating of the subject. For example, the amount of salt lost in the subject is calculated based on the above formula (4). Step S4 can be said to be a step of calculating the amount of lost salt. The salt concentration measuring method of the embodiment can be said to be a lost salt amount measuring method.
 以上で説明したように、本実施形態の塩分濃度計測装置100は、塩分センサ31と、電気伝導度計測部39と、演算部51と、を備える。塩分センサ31は、基板40、及び基板40に配置される櫛歯状の一対の電極(第1電極41及び第2電極42)を備える。電気伝導度計測部39は、一対の電極の間の電気伝導度を計測する。演算部51は、電気伝導度に基づき、一対の電極の間にある汗の塩分濃度を算出する。 As described above, the salinity concentration measuring device 100 of the present embodiment includes a salinity sensor 31, an electric conductivity measuring unit 39, and a calculation unit 51. The salt sensor 31 includes a substrate 40 and a pair of comb-shaped electrodes (first electrode 41 and second electrode 42) arranged on the substrate 40. The electric conductivity measuring unit 39 measures the electric conductivity between a pair of electrodes. The calculation unit 51 calculates the salt concentration of sweat between the pair of electrodes based on the electrical conductivity.
 塩分濃度計測装置100によれば、電極が櫛歯状であるため、一対の電極を広い範囲に配置することが容易である。このため、多数の汗腺から分泌される汗が、混合された状態で一対の電極の間に入ることになる。塩分濃度計測装置100は、多数の汗腺から分泌される汗の平均的な塩分濃度を計測できる。したがって、塩分濃度計測装置100は、汗の塩分濃度の計測精度を向上させることができる。 According to the salinity measuring device 100, since the electrodes are comb-shaped, it is easy to arrange the pair of electrodes in a wide range. Therefore, sweat secreted from a large number of sweat glands enters between the pair of electrodes in a mixed state. The salinity measuring device 100 can measure the average salinity of sweat secreted from many sweat glands. Therefore, the salt concentration measuring device 100 can improve the measurement accuracy of the salt concentration of sweat.
 塩分濃度計測装置100は、標準溶液を用いた実験によって予め求められた一対の電極(第1電極41及び第2電極42)に関するセル定数を記憶する記憶部53を備える。演算部51は、電気伝導度及びセル定数に基づいて汗の塩分濃度を算出する。 The salinity concentration measuring device 100 includes a storage unit 53 that stores cell constants related to a pair of electrodes (first electrode 41 and second electrode 42) obtained in advance by an experiment using a standard solution. The calculation unit 51 calculates the salt concentration of sweat based on the electrical conductivity and the cell constant.
 これにより、一対の電極の形状及び配置等からセル定数を算出する場合と比較して、セル定数の精度が高くなる。したがって、塩分濃度計測装置100は、汗の塩分濃度の計測精度をより向上させることができる。 As a result, the accuracy of the cell constant is higher than when the cell constant is calculated from the shape and arrangement of the pair of electrodes. Therefore, the salt concentration measuring device 100 can further improve the measurement accuracy of the salt concentration of sweat.
 また、塩分濃度計測装置100において、電気伝導度計測部39は、一対の電極に交流電圧を印加した時の一対の電極の間の交流抵抗に基づいて電気伝導度を計測する。交流電圧の周波数は、0.5kHz以上15kHz以下である。 Further, in the salinity concentration measuring device 100, the electric conductivity measuring unit 39 measures the electric conductivity based on the AC resistance between the pair of electrodes when the AC voltage is applied to the pair of electrodes. The frequency of the AC voltage is 0.5 kHz or more and 15 kHz or less.
 これにより、電気伝導度計測部39は、汗の電気伝導度をより高精度に計測できるようになる。このため、塩分濃度計測装置100は、汗の塩分濃度の計測精度をより向上させることができる。 As a result, the electric conductivity measuring unit 39 can measure the electric conductivity of sweat with higher accuracy. Therefore, the salt concentration measuring device 100 can further improve the measurement accuracy of the salt concentration of sweat.
 塩分濃度計測装置100は、汗の温度を計測する温度センサ33を備える。 The salinity concentration measuring device 100 includes a temperature sensor 33 that measures the temperature of sweat.
 汗の電気伝導度は、汗の温度によって変化する。温度センサ33が設けられることによって、演算部51は、汗の温度に基づいて汗の電気伝導度を補正することができる。このため、塩分濃度計測装置100は、汗の塩分濃度の計測精度をより向上させることができる。 The electrical conductivity of sweat changes depending on the temperature of the sweat. By providing the temperature sensor 33, the calculation unit 51 can correct the electrical conductivity of sweat based on the temperature of sweat. Therefore, the salt concentration measuring device 100 can further improve the measurement accuracy of the salt concentration of sweat.
 塩分濃度計測装置100において、電極(第1電極41及び第2電極42)は、基板40とは反対側の表面に、金又は白金を含む皮膜を備える。 In the salinity measuring device 100, the electrodes (first electrode 41 and second electrode 42) are provided with a film containing gold or platinum on the surface opposite to the substrate 40.
 電極が汗に触れるので、電極の表面が腐食する可能性がある。電極の表面に金又は白金を含む皮膜が設けられることによって、塩分濃度計測装置100は、電極の腐食を抑制できる。 Since the electrodes come into contact with sweat, the surface of the electrodes may corrode. By providing a film containing gold or platinum on the surface of the electrode, the salinity measuring device 100 can suppress corrosion of the electrode.
 塩分濃度計測装置100において、塩分センサ31は、電極(第1電極41及び第2電極42)の高さよりも厚いスペーサ(第1スペーサ47又は第2スペーサ48)を備える。 In the salinity measuring device 100, the salinity sensor 31 includes a spacer (first spacer 47 or second spacer 48) that is thicker than the height of the electrodes (first electrode 41 and second electrode 42).
 これにより、塩分センサ31を装着者90の皮膚91に当てる時、スペーサが皮膚91に接する。電極と皮膚91との間には、隙間が生じる。このため、一対の電極間において汗が流動しやすくなる。一対の電極間における汗の滞留が抑制される。したがって、塩分濃度計測装置100は、汗の塩分濃度の計測精度をより向上させることができる。 As a result, when the salt sensor 31 is applied to the skin 91 of the wearer 90, the spacer comes into contact with the skin 91. A gap is created between the electrode and the skin 91. Therefore, sweat easily flows between the pair of electrodes. Perspiration retention between the pair of electrodes is suppressed. Therefore, the salt concentration measuring device 100 can further improve the measurement accuracy of the salt concentration of sweat.
 塩分濃度計測装置100において、電極(第1電極41)は、一方向(Z方向)に間隔を空けて並べられる複数の歯部411と、複数の歯部411を連結する基部413と、を備える。スペーサ(例えば第1スペーサ47)は、一方の電極(第2電極42)の歯部421の先端よりも、他方の電極(第1電極41)の基部413側に配置される。複数の歯部411が並ぶ方向において、スペーサは、基部413よりも長い。 In the salinity measuring device 100, the electrode (first electrode 41) includes a plurality of tooth portions 411 arranged at intervals in one direction (Z direction), and a base portion 413 connecting the plurality of tooth portions 411. .. The spacer (for example, the first spacer 47) is arranged closer to the base portion 413 of the other electrode (first electrode 41) than the tip of the tooth portion 421 of one electrode (second electrode 42). The spacer is longer than the base 413 in the direction in which the plurality of teeth 411 are lined up.
 これにより、スペーサによって、一対の電極の歯部が対向する領域に汗が導かれやすくなる。一対の電極の歯部が対向する領域に流入する汗の量が増加する。このため、一対の電極に新しい汗が接している状態が保持されやすくなる。したがって、塩分濃度計測装置100は、汗の塩分濃度の計測精度をより向上させることができる。 As a result, the spacer makes it easier for sweat to be guided to the region where the teeth of the pair of electrodes face each other. The amount of sweat flowing into the region where the teeth of the pair of electrodes face each other increases. Therefore, the state in which new sweat is in contact with the pair of electrodes is easily maintained. Therefore, the salt concentration measuring device 100 can further improve the measurement accuracy of the salt concentration of sweat.
 本実施形態の頭部装着装置10は、外殻11と、内殻12と、塩分濃度計測装置100と、を備える。内殻12は、外殻11の内側に配置され装着者90の皮膚91に面する。塩分濃度計測装置100は、塩分センサ31と、電気伝導度計測部39と、演算部51と、を備える。塩分センサ31は、基板40、及び基板40に配置される櫛歯状の一対の電極(第1電極41及び第2電極42)を備え、内殻12に配置される。電気伝導度計測部39は、一対の電極の間の電気伝導度を計測する。演算部51は、電気伝導度に基づき、一対の電極の間にある汗の塩分濃度を算出する。 The head-mounted device 10 of the present embodiment includes an outer shell 11, an inner shell 12, and a salinity concentration measuring device 100. The inner shell 12 is arranged inside the outer shell 11 and faces the skin 91 of the wearer 90. The salinity concentration measuring device 100 includes a salinity sensor 31, an electric conductivity measuring unit 39, and a calculation unit 51. The salt sensor 31 includes a substrate 40 and a pair of comb-shaped electrodes (first electrode 41 and second electrode 42) arranged on the substrate 40, and is arranged on the inner shell 12. The electric conductivity measuring unit 39 measures the electric conductivity between a pair of electrodes. The calculation unit 51 calculates the salt concentration of sweat between the pair of electrodes based on the electrical conductivity.
 これにより、塩分センサ31が内殻12に配置されているので、塩分センサ31が皮膚91に押し付けられる。その結果、一対の電極の間に汗がある状態が保持されやすくなる。したがって、塩分濃度計測装置100は、汗の塩分濃度の計測精度を向上させることができる。 As a result, since the salt sensor 31 is arranged on the inner shell 12, the salt sensor 31 is pressed against the skin 91. As a result, the state in which sweat is present between the pair of electrodes is likely to be maintained. Therefore, the salt concentration measuring device 100 can improve the measurement accuracy of the salt concentration of sweat.
 頭部装着装置10において、塩分センサ31は、内殻12のうち装着者90の額95に面することになる位置に配置される。 In the head mounting device 10, the salt sensor 31 is arranged at a position of the inner shell 12 facing the forehead 95 of the wearer 90.
 これにより、装着者90が頭部装着装置10を装着した状態において、塩分センサ31が額95に接する。汗が生じやすい部分である額95に塩分センサ31が配置されることによって、一対の電極の歯部が対向する領域に流入する汗の量が増加する。このため、一対の電極に新しい汗が接している状態が保持されやすくなる。したがって、頭部装着装置10は、汗の塩分濃度の計測精度をより向上させることができる。 As a result, the salt sensor 31 comes into contact with the forehead 95 while the wearer 90 is wearing the head wearing device 10. By arranging the salt sensor 31 on the forehead 95, which is a portion where sweat is likely to occur, the amount of sweat flowing into the region where the tooth portions of the pair of electrodes face each other increases. Therefore, the state in which new sweat is in contact with the pair of electrodes is easily maintained. Therefore, the head-mounted device 10 can further improve the measurement accuracy of the salt concentration of sweat.
 頭部装着装置10において、電極(第1電極41)は、一方向(Z方向)に間隔を空けて並べられる複数の歯部411と、複数の歯部411を連結する基部413と、を備える。一対の電極は、複数の歯部411が並ぶ方向が外殻11の縁111から頂部113に向かう方向に沿うように配置される。 In the head mounting device 10, the electrode (first electrode 41) includes a plurality of tooth portions 411 arranged at intervals in one direction (Z direction), and a base portion 413 connecting the plurality of tooth portions 411. .. The pair of electrodes are arranged so that the direction in which the plurality of tooth portions 411 are lined up is along the direction from the edge 111 of the outer shell 11 to the top 113.
 仮に、歯部411の並ぶ方向が外殻11の縁に沿う方向と同じである場合、電極と接続されるリード線は、装着者90から見て電極の上側及び下側に延びるように配置される。このため、リード線が装着者90の視界を妨げる可能性がある。これに対して、歯部411の並ぶ方向が外殻11の縁から頂部に向かう方向に沿うことによって、リード線は、装着者90から見て電極の右側及び左側に延びるように配置される。したがって、頭部装着装置10は、リード線によって装着者90が視界を妨げられることを抑制できる。 If the direction in which the tooth portions 411 are lined up is the same as the direction along the edge of the outer shell 11, the lead wires connected to the electrodes are arranged so as to extend above and below the electrodes when viewed from the wearer 90. Tooth. Therefore, the lead wire may obstruct the view of the wearer 90. On the other hand, the lead wires are arranged so as to extend to the right side and the left side of the electrode when viewed from the wearer 90 by arranging the tooth portions 411 along the direction from the edge of the outer shell 11 to the top portion. Therefore, the head wearing device 10 can prevent the wearer 90 from being obstructed by the lead wire.
 本実施形態の塩分濃度計測方法は、櫛歯状の一対の電極(第1電極41及び第2電極42)の間の電気伝導度を計測する電気伝導度計測ステップ(ステップS2)と、電気伝導度に基づき、一対の電極の間にある汗の塩分濃度を算出する塩分濃度算出ステップ(ステップS3)と、を備える。 The salinity measurement method of the present embodiment includes an electrical conductivity measurement step (step S2) for measuring the electrical conductivity between a pair of comb-shaped electrodes (first electrode 41 and second electrode 42), and electrical conductivity. A salt concentration calculation step (step S3) for calculating the salt concentration of sweat between the pair of electrodes based on the degree is provided.
 本実施形態の塩分濃度計測方法によれば、電極が櫛歯状であるため、一対の電極を広い範囲に配置することが容易である。このため、多数の汗腺から分泌される汗が、混合された状態で一対の電極の間に入ることになる。本実施形態の塩分濃度計測方法は、多数の汗腺から分泌される汗の平均的な塩分濃度を計測できる。したがって、本実施形態の塩分濃度計測方法は、汗の塩分濃度の計測精度を向上させることができる。 According to the salt concentration measuring method of the present embodiment, since the electrodes are comb-shaped, it is easy to arrange the pair of electrodes in a wide range. Therefore, sweat secreted from a large number of sweat glands enters between the pair of electrodes in a mixed state. The salinity measuring method of the present embodiment can measure the average salinity of sweat secreted from a large number of sweat glands. Therefore, the salt concentration measuring method of the present embodiment can improve the measurement accuracy of the salt concentration of sweat.
 本実施形態では、塩分センサ31は、片面に電極とランドが形成された基板を備えていたが、ランドにスルーホールを有し且つ基板の裏面からリード線が取り出される構造を有していてもよい。こうすることで、頭部装着装置10は、リード線によって装着者90が視界を妨げられることをより抑制できる。 In the present embodiment, the salt sensor 31 includes a substrate having an electrode and a land formed on one side thereof, but even if the land has a through hole and the lead wire is taken out from the back surface of the substrate. Good. By doing so, the head wearing device 10 can further prevent the wearer 90 from being obstructed by the lead wire.
10 頭部装着装置
11 外殻
12 内殻
31 塩分センサ
33 温度センサ
35 光電脈波センサ
37 発汗量センサ
39 電気伝導度計測部
40 基板
41 第1電極
42 第2電極
43 第1ランド
44 第2ランド
45 第1保護膜
46 第2保護膜
47 第1スペーサ
48 第2スペーサ
50 制御装置
51 演算部
53 記憶部
70 出力装置
90 装着者
91 皮膚
95 額
100 塩分濃度計測装置
101 バッテリ
111 縁
113 頂部
121 バンド部
123 ベルト部
125 ハンモック部
411 歯部
413 基部
421 歯部
423 基部
10 Head-mounted device 11 Outer shell 12 Inner shell 31 Salinity sensor 33 Temperature sensor 35 Photoelectric pulse wave sensor 37 Sweating amount sensor 39 Electrical conductivity measurement unit 40 Substrate 41 First electrode 42 Second electrode 43 First land 44 Second land 45 1st protective film 46 2nd protective film 47 1st spacer 48 2nd spacer 50 Control device 51 Calculation unit 53 Storage unit 70 Output device 90 Wearer 91 Skin 95 Forehead 100 Salinity concentration measuring device 101 Battery 111 Edge 113 Top 121 Band Part 123 Belt part 125 Hammock part 411 Tooth part 413 Base part 421 Toe part 423 Base part

Claims (11)

  1.  基板、及び前記基板に配置される櫛歯状の一対の電極を備える塩分センサと、
     前記一対の電極の間の電気伝導度を計測する電気伝導度計測部と、
     前記電気伝導度に基づき、前記一対の電極の間にある汗の塩分濃度を算出する演算部と、
     を備える塩分濃度計測装置。
    A substrate and a salt sensor having a pair of comb-shaped electrodes arranged on the substrate,
    An electrical conductivity measuring unit that measures the electrical conductivity between the pair of electrodes,
    A calculation unit that calculates the salt concentration of sweat between the pair of electrodes based on the electrical conductivity.
    A salinity measuring device equipped with.
  2.  標準溶液を用いた実験によって予め求められた前記一対の電極に関するセル定数を記憶する記憶部を備え、
     前記演算部は、前記電気伝導度及び前記セル定数に基づいて汗の塩分濃度を算出する
     請求項1に記載の塩分濃度計測装置。
    A storage unit for storing cell constants related to the pair of electrodes obtained in advance by an experiment using a standard solution is provided.
    The salt concentration measuring device according to claim 1, wherein the calculation unit calculates a salt concentration of sweat based on the electric conductivity and the cell constant.
  3.  前記電気伝導度計測部は、前記一対の電極に交流電圧を印加した時の前記一対の電極の間の交流抵抗に基づいて電気伝導度を計測し、
     前記交流電圧の周波数は、0.5kHz以上15kHz以下である
     請求項1又は2に記載の塩分濃度計測装置。
    The electric conductivity measuring unit measures the electric conductivity based on the AC resistance between the pair of electrodes when an AC voltage is applied to the pair of electrodes.
    The salt concentration measuring device according to claim 1 or 2, wherein the frequency of the AC voltage is 0.5 kHz or more and 15 kHz or less.
  4.  前記汗の温度を計測する温度センサを備える
     請求項1から3のいずれか1項に記載の塩分濃度計測装置。
    The salt concentration measuring device according to any one of claims 1 to 3, further comprising a temperature sensor for measuring the temperature of sweat.
  5.  前記電極は、前記基板とは反対側の表面に、金又は白金を含む皮膜を備える
     請求項1から4のいずれか1項に記載の塩分濃度計測装置。
    The salt concentration measuring device according to any one of claims 1 to 4, wherein the electrode is provided with a film containing gold or platinum on a surface opposite to the substrate.
  6.  前記塩分センサは、前記電極の高さより厚いスペーサを備える
     請求項1から5のいずれか1項に記載の塩分濃度計測装置。
    The salt concentration measuring device according to any one of claims 1 to 5, wherein the salt sensor includes a spacer thicker than the height of the electrode.
  7.  前記電極は、一方向に間隔を空けて並べられる複数の歯部と、複数の前記歯部を連結する基部と、を備え、
     前記スペーサは、一方の前記電極の前記歯部の先端よりも、他方の前記電極の前記基部側に配置され、
     複数の前記歯部が並ぶ方向において、前記スペーサは、前記基部よりも長い
     請求項6に記載の塩分濃度計測装置。
    The electrode includes a plurality of tooth portions arranged at intervals in one direction, and a base portion connecting the plurality of the tooth portions.
    The spacer is arranged on the base side of the other electrode rather than the tip of the tooth portion of the one electrode.
    The salt concentration measuring device according to claim 6, wherein the spacer is longer than the base portion in the direction in which the plurality of the tooth portions are lined up.
  8.  外殻と、
     前記外殻の内側に配置され装着者の皮膚に面する内殻と、
     塩分濃度計測装置と、
     を備え、
     前記塩分濃度計測装置は、
     基板、及び前記基板に配置される櫛歯状の一対の電極を備え、前記内殻に配置される塩分センサと、
     前記一対の電極の間の電気伝導度を計測する電気伝導度計測部と、
     前記電気伝導度に基づき、前記一対の電極の間にある汗の塩分濃度を算出する演算部と、を備える
     頭部装着装置。
    With the outer shell
    The inner shell, which is placed inside the outer shell and faces the wearer's skin,
    Salinity measuring device and
    With
    The salinity measuring device is
    A substrate and a pair of comb-shaped electrodes arranged on the substrate, and a salt sensor arranged on the inner shell,
    An electrical conductivity measuring unit that measures the electrical conductivity between the pair of electrodes,
    A head-mounted device including a calculation unit for calculating the salt concentration of sweat between the pair of electrodes based on the electrical conductivity.
  9.  前記塩分センサは、前記内殻のうち前記装着者の額に面することになる位置に配置される
     請求項8に記載の頭部装着装置。
    The head-mounted device according to claim 8, wherein the salt sensor is arranged at a position of the inner shell facing the forehead of the wearer.
  10.  前記電極は、一方向に間隔を空けて並べられる複数の歯部と、複数の前記歯部を連結する基部と、を備え、
     前記一対の電極は、複数の前記歯部が並ぶ方向が前記外殻の縁から頂部に向かう方向に沿うように配置される
     請求項8又は9に記載の頭部装着装置。
    The electrode includes a plurality of tooth portions arranged at intervals in one direction, and a base portion connecting the plurality of the tooth portions.
    The head-mounted device according to claim 8 or 9, wherein the pair of electrodes are arranged so that the direction in which the plurality of teeth are arranged is along the direction from the edge of the outer shell to the apex.
  11.  櫛歯状の一対の電極の間の電気伝導度を計測する電気伝導度計測ステップと、
     前記電気伝導度に基づき、前記一対の電極の間にある汗の塩分濃度を算出する塩分濃度算出ステップと、
     を備える塩分濃度計測方法。
    An electrical conductivity measurement step that measures the electrical conductivity between a pair of comb-shaped electrodes,
    A salinity calculation step for calculating the salinity of sweat between the pair of electrodes based on the electrical conductivity,
    A method for measuring salinity.
PCT/JP2020/032074 2019-08-26 2020-08-25 Salt concentration-measuring device, head-mounted device, and salt concentration measurement method WO2021039806A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2019153960A JP7412694B2 (en) 2019-08-26 2019-08-26 Salinity measuring device, head-mounted device, and salinity measuring method
JP2019-153960 2019-08-26

Publications (1)

Publication Number Publication Date
WO2021039806A1 true WO2021039806A1 (en) 2021-03-04

Family

ID=74675945

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/032074 WO2021039806A1 (en) 2019-08-26 2020-08-25 Salt concentration-measuring device, head-mounted device, and salt concentration measurement method

Country Status (2)

Country Link
JP (2) JP7412694B2 (en)
WO (1) WO2021039806A1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023243535A1 (en) * 2022-06-17 2023-12-21 パナソニックIpマネジメント株式会社 Device for measuring hypochlorite concentration, and device for generating hypochlorite

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014206516A (en) * 2013-04-16 2014-10-30 大日本印刷株式会社 Biosensor electrode, biosensor electrode member, and biosensor
JP2017198577A (en) * 2016-04-28 2017-11-02 セイコーエプソン株式会社 Biological information measurement device
JP2017202138A (en) * 2016-05-12 2017-11-16 セイコーエプソン株式会社 measuring device
JP2018029696A (en) * 2016-08-23 2018-03-01 セイコーエプソン株式会社 Gel sensor and method for estimating component concentration
WO2018112198A1 (en) * 2016-12-14 2018-06-21 Eccrine Systems, Inc. Sweat sensing device kidney biomarker measurement
WO2019078308A1 (en) * 2017-10-18 2019-04-25 学校法人東京理科大学 Head-mounted device, heat stroke prevention system, and rehydration alarm system

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101412594B1 (en) 2012-11-13 2014-06-26 한국수력원자력 주식회사 Method for measuring electric conductivity and electric conductivity measuring system using the same
JP2016533227A (en) * 2013-10-18 2016-10-27 ユニバーシティ・オブ・シンシナティ Sweat perception with a guarantee over time

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014206516A (en) * 2013-04-16 2014-10-30 大日本印刷株式会社 Biosensor electrode, biosensor electrode member, and biosensor
JP2017198577A (en) * 2016-04-28 2017-11-02 セイコーエプソン株式会社 Biological information measurement device
JP2017202138A (en) * 2016-05-12 2017-11-16 セイコーエプソン株式会社 measuring device
JP2018029696A (en) * 2016-08-23 2018-03-01 セイコーエプソン株式会社 Gel sensor and method for estimating component concentration
WO2018112198A1 (en) * 2016-12-14 2018-06-21 Eccrine Systems, Inc. Sweat sensing device kidney biomarker measurement
WO2019078308A1 (en) * 2017-10-18 2019-04-25 学校法人東京理科大学 Head-mounted device, heat stroke prevention system, and rehydration alarm system

Also Published As

Publication number Publication date
JP2021032738A (en) 2021-03-01
JP7412694B2 (en) 2024-01-15
JP2024029025A (en) 2024-03-05

Similar Documents

Publication Publication Date Title
JP2024029025A (en) Salt loss measuring device and alarm device
US10694969B2 (en) Dry skin conductance electrode
CN103654765B (en) potential mapping
TWI674880B (en) Physiological sensor device and system, correction method, and wearable device
US11751768B2 (en) Biological data measuring device
WO2017101713A1 (en) Continuous body temperature monitor
CN109640811B (en) Device for assessing psychophysiological reactivity
US10980465B2 (en) Sensor assembly
CN106343972B (en) A kind of intelligent glasses and terminal device
JP2014523782A (en) Wearable device and method of manufacturing the device
US20120190994A1 (en) Apparatus and method for measuring biological signal with multiple unit measurers
JP6761765B2 (en) Heat stroke prevention device
JP6084361B2 (en) Breath sensor
CN112414596A (en) Optical fiber sensor, system and monitoring method
CN110151150B (en) Physiological sensor device and system, correction method and wearable device
JP6677620B2 (en) Chewing meter and system
CN112450889B (en) Body temperature measuring circuit, method, device and storage medium
JP2019190884A (en) Temperature calibration device and temperature measuring device
JP2018061752A5 (en)
KR101603764B1 (en) Measuring device human body impedance
JP2024067287A (en) Sweat Sensor
US20220133182A1 (en) Portable device for measuring the state of health of a user
CN215227516U (en) Intelligent health pillow capable of monitoring sleep state
JP3667824B2 (en) Electric resistance measurement device for antistatic shoes
WO2020203495A1 (en) Wearable tool, measurement system, and determination method

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20857949

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20857949

Country of ref document: EP

Kind code of ref document: A1