WO2021039742A1 - Tubular body, wiring member, and channel member - Google Patents

Tubular body, wiring member, and channel member Download PDF

Info

Publication number
WO2021039742A1
WO2021039742A1 PCT/JP2020/031893 JP2020031893W WO2021039742A1 WO 2021039742 A1 WO2021039742 A1 WO 2021039742A1 JP 2020031893 W JP2020031893 W JP 2020031893W WO 2021039742 A1 WO2021039742 A1 WO 2021039742A1
Authority
WO
WIPO (PCT)
Prior art keywords
hole
tubular body
present disclosure
liquid
protrusion
Prior art date
Application number
PCT/JP2020/031893
Other languages
French (fr)
Japanese (ja)
Inventor
修一 飯田
諭史 豊田
友資 吉田
Original Assignee
京セラ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 京セラ株式会社 filed Critical 京セラ株式会社
Priority to JP2021542903A priority Critical patent/JPWO2021039742A1/ja
Publication of WO2021039742A1 publication Critical patent/WO2021039742A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02GINSTALLATION OF ELECTRIC CABLES OR LINES, OR OF COMBINED OPTICAL AND ELECTRIC CABLES OR LINES
    • H02G3/00Installations of electric cables or lines or protective tubing therefor in or on buildings, equivalent structures or vehicles
    • H02G3/02Details

Definitions

  • the present disclosure relates to a tubular body, a wiring member, and a flow path member.
  • the tubular body of the present disclosure is a tubular body containing ceramics as a main component, has a through hole penetrating the wall constituting the tubular body, and the through hole opens in the outer surface of the tubular body. It has a first hole to be formed and a second hole to open on the inner surface of the tubular body, and the opening diameter of the first hole is larger than the opening diameter of the second hole.
  • FIG. 1 is a perspective view showing an example of the wiring member of the present disclosure.
  • FIG. 2 is a side view showing an example of the wiring member of the present disclosure.
  • FIG. 3 is a partially enlarged view showing an example of a cross section taken along the line AA in FIG.
  • FIG. 4 is a partially enlarged view showing an example of a cross section taken along the line AA in FIG.
  • FIG. 5 is a schematic view showing an enlarged cross section of a portion including a protrusion.
  • FIG. 6 is a diagram showing the contour shape of the second hole in the wiring member of the present disclosure.
  • FIG. 7 is a diagram showing the contour shape of the first hole in the wiring member of the present disclosure.
  • FIG. 8 is a schematic view showing an enlarged cross section of a portion including a burr.
  • FIG. 9 is a diagram showing the contour shape of the second hole in the wiring member of the present disclosure.
  • FIG. 10 is a diagram showing the contour shape of the first hole in the wiring member of the present disclosure.
  • FIG. 11 is a perspective view showing an example of the flow path member of the present disclosure.
  • FIG. 12 is a schematic view showing the operation up to the discharge of the liquid in the liquid supply device of the present disclosure.
  • FIG. 13 is a schematic view showing an operation at the time of discharging the liquid in the liquid supply device of the present disclosure.
  • FIG. 14 is a perspective view showing an example of the flow path member of the present disclosure.
  • FIG. 15 is a perspective view showing an example of the plunger of the present disclosure.
  • FIG. 16 is a diagram for explaining the operation of the liquid supply device of the present disclosure.
  • FIG. 17 is a diagram for explaining the operation of the liquid supply device of the present disclosure.
  • FIG. 18 is a diagram for explaining the operation of the liquid supply device of the present disclosure.
  • FIG. 19
  • tubular body the tubular body, the wiring member, and the flow path member of the present disclosure will be described with reference to FIGS. 1 to 10.
  • FIG. 1 is a perspective view showing an example of the wiring member 10 of the present disclosure
  • FIG. 2 is a side view showing an example of the wiring member 10 of the present disclosure.
  • the wiring member 10 has an insertion hole 15, a closing wall 11, a side wall 17, and a through hole 12.
  • the side wall 17 is an example of a wall.
  • the wiring member 10 is made of a tubular body having an inner surface 13 and an outer surface 14, and has a through hole 12 penetrating a side wall 17 constituting the tubular body.
  • the number of through holes 12 may be one or more, and is a portion through which a target wiring member (electrical wiring, tube, etc.) is inserted, and can be said to be an insertion hole.
  • the wiring member 10 is provided with two through holes 12 (hereinafter, also referred to as through holes 12a and 12b).
  • the wiring member 10 made of a tubular body has an insertion hole 15 located at one end and a closing wall 11 located at the other end. That is, the tubular body of the present disclosure includes not only a shape in which both ends are open, but also a shape in which one end is closed and the other end is open.
  • a linear member (not shown) is inserted through the insertion hole 15 and inserted into the space 16 located inside the tubular body and the through hole 12, so that the wiring member 10 is inserted. Supported by.
  • the space 16 is an area surrounded by the inner surface 13 of the side wall 17 and the inner surface 11a of the closed wall 11.
  • FIG. 3 is a partially enlarged view showing an example of a cross section taken along the line AA in FIG.
  • the through holes 12 formed in the wiring member 10 of the present disclosure include a first hole 21 that opens on the outer surface 14 of the tubular body and a second hole 22 that opens on the inner surface 13 of the tubular body. And have.
  • the opening diameter D1 of the first hole 21 is larger than the opening diameter D2 of the second hole 22.
  • the opening diameter is the longest diameter of the target holes.
  • the wiring member 10 of the present disclosure by making the opening diameter D1 of the first hole 21 larger than the opening diameter D2 of the second hole 22, at least the first hole 21 side to the second hole 22 side (opening diameter is large). It is possible to suppress the movement of the linear member from the large outer peripheral side to the inner peripheral side with a small opening diameter). Therefore, in the wiring member 10 of the present disclosure, the position fluctuation of the linear member can be suppressed.
  • the wiring member 10 of the present disclosure is particularly effective when acceleration is applied to the wiring member 10.
  • the difference between the opening diameter D1 of the first hole 21 and the opening diameter D2 of the second hole 22 may be 0.03 mm or more as long as it satisfies D1> D2.
  • the opening area of the first hole 21 may be larger than the opening area of the second hole 22.
  • the inner wall surface 12c of the through hole 12 is located at a position close to the inner surface 13 of the tubular body or the inner surface 13 of the tubular body (that is, a position adjacent to the second hole 22). May have.
  • the protrusion 23 further suppresses the movement of the linear member from the outer peripheral side to the inner peripheral side.
  • FIG. 5 is a schematic view showing an enlarged cross section of a portion including the protrusion 23, and can be said to be an enlarged view of the vicinity of the protrusion 23 in FIG.
  • the protrusion 23 is in the through hole 12.
  • the protrusion 23 is a protrusion 23 that protrudes in a direction orthogonal to the penetration direction of the through hole 12 in a cross-sectional view along the central axis of the through hole 12, and has a height H1 of 0.02 ⁇ H1. It means that / D2 ⁇ 0.1 is satisfied.
  • the height H1 starts from the virtual line segment S of the inner wall surface 12c of the through hole 12 in the cross-sectional view, and reaches the portion 12d that finally intersects the protrusion 23 when it is translated in the direction away from the inner wall surface 12c. It is the distance.
  • FIG. 6 is a diagram showing the contour shape of the second hole 22 in the wiring member of the present disclosure.
  • the width L1 may be larger than the height H1.
  • the width L1 and height H1 of the protrusion 23 can be evaluated based on, for example, the contour of the second hole 22 and the circumscribed circle CC of the contour.
  • the width L1 of the protrusion 23 is, for example, 500 ⁇ m or more.
  • the tip portion of the protrusion 23 may have a wavy contour shape.
  • FIG. 7 is a diagram showing the contour shape of the first hole 21 in the wiring member 10 of the present disclosure
  • FIG. 8 is a schematic diagram showing an enlarged cross section of a portion including a burr 24.
  • the inner wall surface 12c of the through hole 12 is burred at a position close to the outer surface 14 of the tubular body or the outer surface 14 of the tubular body (that is, a position adjacent to the first hole 21). 24 may have. When such a configuration is satisfied, the burr 24 suppresses the movement of the linear member from the inner peripheral side to the outer peripheral side.
  • the burr 24 protrudes in a direction orthogonal to the penetrating direction of the through hole 12 in a cross-sectional view along the central axis of the through hole 12, and the height H2 is 0.02 ⁇ H2. It means that / D1 ⁇ 0.1 is satisfied.
  • the height H2 starts from the virtual line segment S of the inner wall surface 12c of the through hole 12 in the cross-sectional view, and when it is translated in the direction away from the inner wall surface 12c, it becomes the burr 24. It is the distance to the last intersecting part 12e.
  • the height H1 of the protrusion 23 on the inner peripheral side may be larger than the height H2 of the burr 24 on the outer peripheral side.
  • the width L2 of the burr 24 is smaller than the width L1 of the protrusion 23, and is, for example, 300 ⁇ m or less.
  • FIG. 9 is a diagram showing the contour shape of the second hole 22 in the wiring member of the present disclosure.
  • the contour shape of the second hole 22 is formed by four virtual line segment VLs formed by the contour and the virtual line segment VL when two virtual line segment VL passing through the center of gravity C of the contour and orthogonal to each other are drawn.
  • At least one of the figures S1, S2, S3, and S4 may have a different area from the other figures.
  • the figure S2 has a smaller area than the other figures S1, S3, and S4.
  • the contour shape of the second hole 22 may have a contour obtained by deforming a part of an ellipse. When such a configuration is satisfied, this deformed portion restrains the linear member. Therefore, in the wiring member 10 of the present disclosure, the position fluctuation of the linear member can be further suppressed.
  • FIG. 10 is a diagram showing the contour shape of the first hole 21 in the wiring member of the present disclosure.
  • the contour shape of the first hole 21 is formed by four virtual line segment VLs formed by the contour and the virtual line segment VL when two virtual line segment VL passing through the center of gravity C of the contour and orthogonal to each other are drawn.
  • At least one of the figures S1, S2, S3, and S4 may have a different area from the other figures.
  • the figures S3 and S4 have a larger area than the other figures S1 and S2.
  • the contour shape of the first hole 21 may have a contour obtained by deforming a part of an ellipse. When such a configuration is satisfied, this deformed portion restrains the linear member. Therefore, in the wiring member 10 of the present disclosure, the position fluctuation of the linear member can be further suppressed.
  • the inner wall surface 12c (see FIG. 3) of the through hole 12 in the wiring member 10 of the present disclosure may have a negative value of skewness Rsk of the roughness curve in the through direction (arrow direction in FIG. 3). That is, the value of such skewness Rsk may be smaller than zero. When such a configuration is satisfied, the movement of the linear member within the inner wall surface 12c is further suppressed.
  • the lower limit of the value of the skewness Rsk of the roughness curve is, for example, -2, and may be -2 or more and -0.3 or less. When such a configuration is satisfied, the movement of the linear member within the inner wall surface 12c is further suppressed.
  • the inner wall surface 12c of the through hole 12 may have a surface roughness Ra of a roughness curve in the penetration direction of 0.2 ⁇ m or more and 0.4 ⁇ m or less. When such a configuration is satisfied, the movement of the linear member within the inner wall surface 12c is further suppressed.
  • the wiring member 10 in the present disclosure is mainly composed of ceramics. Further, the wiring member 10 in the present disclosure may be made of ceramics.
  • the ceramics include aluminum oxide ceramics, zirconium oxide ceramics, composite ceramics of aluminum oxide and zirconium oxide, silicon nitride ceramics, aluminum nitride ceramics, silicon carbide ceramics and mulite ceramics. ..
  • the wiring member 10 contains aluminum oxide ceramic as the main component, the material is cheaper than other ceramics and the workability is excellent, but the characteristics such as durability required for the wiring member 10 are satisfied.
  • the aluminum oxide ceramics are those containing 70% by mass or more of aluminum oxide out of 100% by mass of all the components constituting the ceramics.
  • the material of the ceramics can be confirmed by the following method. First, a target sample is measured using an X-ray diffractometer (XRD), and identification is performed using a JCPDS card from the obtained 2 ⁇ (2 ⁇ is a diffraction angle) value. Next, a quantitative analysis of the contained components is performed using an ICP (Inductively Coupled Plasma) emission spectroscopic analyzer (ICP) or a fluorescent X-ray analyzer (XRF).
  • ICP Inductively Coupled Plasma
  • XRF fluorescent X-ray analyzer
  • the aluminum oxide ceramics Is. It should be noted that other ceramics can be confirmed by the same method.
  • a method for measuring skewness Rsk and surface roughness Ra on the inner wall surface 12c of the through hole 12 is as follows.
  • the measurement direction is either the direction from the first hole 21 side to the second hole 22 side or the direction from the second hole 22 side to the first hole 21 side.
  • Skewness Rsk and surface roughness Ra are measured according to JIS B0601 (2001).
  • the measurement conditions for skewness Rsk and surface roughness Ra are that the cutoff type is Gaussian, the inclination correction uses the least squares straight line correction, the measurement length is 1.0 mm, and the cutoff wavelength is 0.8 mm.
  • the measurement speed is 0.15 mm / sec.
  • FIG. 11 is a perspective view showing an example of the flow path member 120 of the present disclosure, and is an exploded perspective view of the constituent members of the liquid supply device 100 as a whole.
  • the liquid supply device 100 of the present disclosure includes a ball valve 130, a flow path member 120, and a plunger 110 in this order from the top.
  • the flow path member 120 may also be referred to as a cylinder 120 below.
  • the ball valve 130 is used to flow or stop the target liquid into the cylinder 120. Specifically, when the ball 131 is separated from the inner wall, the liquid is flowing, and when the ball 131 is in contact with the inner wall, the liquid is stopped.
  • the target liquid is a syrup of a stock solution if the liquid supply device 100 for beverages is for beverages.
  • the valve does not have to be a ball valve as long as it can flow or stop the target liquid into the cylinder 120, and other valves can be used.
  • the plunger 110 has a cylindrical shape having an outer peripheral surface 111 including a portion sliding with the inner surface 123 of the cylinder 120 and a first surface 112 in contact with the target liquid.
  • the shape of the plunger 110 is not limited to this shape.
  • the cylinder 120 is made of a tubular body having an inner surface 123 and an outer surface 124, and has a through hole 122 penetrating a wall 121 constituting the tubular body.
  • the number of through holes 122 may be one or more, and is a portion through which the target liquid flows and is discharged, and can be said to be a discharge hole.
  • the inner diameter of the cylinder 120 is slightly larger than the outer diameter of the plunger 110.
  • “small” is an interval at which the target liquid does not leak from the gap between the inner surface 123 of the cylinder 120 and the outer peripheral surface 111 of the plunger 110 and can slide with low frictional resistance.
  • the portion where at least a part of the inner surface 123 of the cylinder 120 and at least a part of the outer peripheral surface 111 of the plunger 110 slide is a sliding surface.
  • the liquid supply device 100 of the present disclosure includes a cylinder 120 and a plunger 110 made of the flow path member 120 of the present disclosure.
  • FIG. 12 is a schematic view showing the operation of the liquid supply device 100 of the present disclosure up to the discharge of the liquid.
  • FIG. 13 is a schematic view showing the operation of the liquid supply device 100 of the present disclosure at the time of discharging the liquid.
  • the liquid can be supplied to the cylinder 120 by separating the ball 131 from the inner wall of the ball valve 130 with the plunger 110 inserted in the cylinder 120.
  • the liquid can be discharged (discharged) from the through hole 122 by sliding the plunger 110 in a state where the ball 131 is in contact with the inner wall of the ball valve 130.
  • the sliding direction of the plunger 110 when discharging the liquid is the upward direction in FIG. 13, in other words, the direction approaching the ball valve 130.
  • the liquid can be supplied to the cylinder 120 by sliding the plunger 110 in the direction away from the ball valve 130 and separating the ball 131 from the inner wall of the ball valve 130. In this way, the operation of the ball 131 and the plunger 110 enables the supply and discharge of the liquid.
  • the opening diameter D1 of the first hole on the outer peripheral side is the opening diameter D2 of the second hole on the inner peripheral side (FIG. 3). 3) is larger than.
  • the opening area of the first hole may be larger than the opening area of the second hole.
  • the inner wall surface of the through hole 122 may have a protrusion at a position close to the inner surface 123 of the tubular body or the inner surface 123 of the tubular body (that is, a position adjacent to the second hole).
  • turbulent flow is generated at the protrusions when the liquid flows into the through hole 122, so that foreign matter is less likely to adhere to the inner wall surface of the through hole 122.
  • the protrusion provided in the through hole 122 of the flow path member 120 has the same shape as the protrusion 23 provided in the through hole 12 of the wiring member 10 described above.
  • the width of the protrusion provided in the through hole 122 may be larger than the height of the protrusion.
  • the tip of the protrusion provided in the through hole 122 may have a wavy contour shape. When such a configuration is satisfied, turbulent flow is generated at the protrusions when the liquid flows into the through hole 122, so that foreign matter is less likely to adhere to the inner wall surface of the through hole 122.
  • the inner wall surface of the through hole 122 may have burrs at a position close to the outer surface 124 of the tubular body or the outer surface 124 of the tubular body (that is, a position adjacent to the first hole).
  • burrs When such a configuration is satisfied, turbulence is generated by burrs when the liquid flows into the through hole 122, so that foreign matter is less likely to adhere to the inner wall surface of the through hole 122.
  • the burr provided in the through hole 122 of the flow path member 120 has the same shape as the burr 24 provided in the through hole 12 of the wiring member 10 described above.
  • the height of the protrusion provided in the through hole 122 may be larger than the height of the burr.
  • the contour shape of the first hole located on the outer peripheral side of the through hole 122 is formed when two virtual line segments VL (see FIG. 9) that pass through the center of gravity C (see FIG. 9) of the contour and are orthogonal to each other are drawn.
  • At least one of the four figures S1, S2, S3, and S4 formed by the contour and the virtual line segment VL may have an area different from that of the other figures.
  • the contour shape of the second hole located on the inner peripheral side of the through hole 122 is the contour and the virtual line segment VL when two virtual line segment VL passing through the center of gravity C of the contour and orthogonal to each other are drawn.
  • At least one of the four figures S1, S2, S3, and S4 formed may have a different area from the other figures.
  • the contour shape of the first hole located on the outer peripheral side of the through hole 122 may have a contour obtained by deforming a part of an ellipse, or the contour shape of the first hole located on the inner peripheral side of the through hole 122 may be formed.
  • the contour shape of the two holes may have a contour obtained by deforming a part of the ellipse.
  • the inner wall surface of the through hole 122 in the flow path member 120 (cylinder 120) of the present disclosure may have a negative skewness Rsk value of the roughness curve in the penetration direction. That is, the value of such skewness Rsk may be smaller than zero.
  • the lower limit of the value of the skewness Rsk of the roughness curve is, for example, -2, and may be -2 or more and -0.3 or less.
  • the inner wall surface of the through hole 122 may have a surface roughness Ra of a roughness curve in the penetration direction of 0.2 ⁇ m or more and 0.4 ⁇ m or less.
  • the surface texture is such that the liquid easily flows, but due to moderate turbulence, there is little adhesion of solid fine particles and microorganisms due to growth and proliferation.
  • the flow path member 120 in the present disclosure is mainly composed of ceramics. Further, the flow path member 120 in the present disclosure may be made of ceramics.
  • the ceramics include aluminum oxide ceramics, zirconium oxide ceramics, composite ceramics of aluminum oxide and zirconium oxide, silicon nitride ceramics, aluminum nitride ceramics, silicon carbide ceramics and mulite ceramics. ..
  • the material is cheaper than other ceramics and the workability is excellent, but the characteristics such as corrosion resistance required for the flow path member 120 are satisfied.
  • cylindrical plunger 110 that slides on the inner surface 123 of the tubular body that is the flow path member 120 of the present disclosure may also be ceramics or aluminum oxide ceramics.
  • FIG. 14 is a perspective view showing the flow path member 210 of the present disclosure.
  • the flow path member 210 has an inflow hole 215, a closing wall 211, a side wall 217, and a through hole 212.
  • the side wall 217 is an example of a wall.
  • the flow path member 210 is made of a tubular body having an inner surface 213 and an outer surface 214, and has a through hole 212 penetrating the side wall 217 constituting the tubular body.
  • the number of through holes 212 may be one or more, and is a portion through which the target liquid L flows and is discharged, and can be said to be a discharge hole.
  • the flow path member 210 is provided with two through holes 212 (hereinafter, also referred to as through holes 212a and 212b).
  • the flow path member 210 made of a tubular body has an inflow hole 215 located at one end and a closing wall 211 located at the other end.
  • a duct (not shown) is connected to the inflow hole 215, and the liquid L is supplied from the conduit to the liquid storage unit 216 via the inflow hole 215. Then, the liquid L supplied to the liquid storage unit 216 is discharged from the through hole 212.
  • the liquid storage portion 216 is an area surrounded by the inner surface 213 of the side wall 217 and the inner surface 211a of the closed wall 211.
  • the opening diameter D1 of the first hole on the outer peripheral side is the opening diameter D2 of the second hole on the inner peripheral side (FIG. 3). 3) is larger than.
  • the opening area of the first hole may be larger than the opening area of the second hole.
  • the inner wall surface of the through hole 212 may have a protrusion at a position close to the inner surface 213 of the tubular body or the inner surface 213 of the tubular body (that is, a position adjacent to the second hole).
  • the protrusion provided in the through hole 212 of the flow path member 210 has the same shape as the protrusion 23 provided in the through hole 12 of the wiring member 10 described above.
  • the width of the protrusion provided in the through hole 212 may be larger than the height of the protrusion.
  • the tip of the protrusion provided in the through hole 212 may have a wavy contour shape.
  • the inner wall surface of the through hole 212 may have burrs at a position close to the outer surface 214 of the tubular body or the outer surface 214 of the tubular body (that is, a position adjacent to the first hole).
  • burrs When such a configuration is satisfied, turbulence is generated by burrs when the liquid L flows into the through hole 212, so that foreign matter is less likely to adhere to the inner wall surface of the through hole 212.
  • the burr provided in the through hole 212 of the flow path member 210 has the same shape as the burr 24 provided in the through hole 12 of the wiring member 10 described above.
  • the height of the protrusion provided in the through hole 212 may be larger than the height of the burr.
  • the contour shape of the first hole located on the outer peripheral side of the through hole 212 is formed when two virtual line segments VL (see FIG. 9) that pass through the center of gravity C (see FIG. 9) of the contour and are orthogonal to each other are drawn.
  • At least one of the four figures S1, S2, S3, and S4 formed by the contour and the virtual line segment VL may have an area different from that of the other figures.
  • the contour shape of the second hole located on the inner peripheral side of the through hole 212 is the contour and the virtual line segment VL when two virtual line segment VL passing through the center of gravity C of the contour and orthogonal to each other are drawn.
  • At least one of the four figures S1, S2, S3, and S4 formed may have a different area from the other figures.
  • the contour shape of the first hole located on the outer peripheral side of the through hole 212 may have a contour obtained by deforming a part of an ellipse, or the first hole located on the inner peripheral side of the through hole 212 may have a contour.
  • the contour shape of the two holes may have a contour obtained by deforming a part of the ellipse.
  • the inner wall surface of the through hole 212 in the flow path member 210 of the present disclosure may have a negative skewness Rsk value of the roughness curve in the penetration direction. That is, the value of such skewness Rsk may be smaller than zero.
  • the lower limit of the value of the skewness Rsk of the roughness curve is, for example, -2, and may be -2 or more and -0.3 or less.
  • the inner wall surface of the through hole 212 may have a surface roughness Ra of a roughness curve in the penetration direction of 0.2 ⁇ m or more and 0.4 ⁇ m or less.
  • the liquid L has a surface texture in which it easily flows, but due to moderate turbulence, there is little adhesion of solid fine particles and microorganisms due to growth and proliferation.
  • the flow path member 210 shown in FIG. 14 can also be used alone as a cylinder. Further, the flow path member 210 shown in FIG. 14 can also be used as the liquid supply device 200 by combining with the plunger 220 shown in FIG.
  • FIG. 15 is a perspective view showing an example of the plunger 220 of the present disclosure.
  • the plunger 220 shown in FIG. 15 has a cylindrical shape and is inserted into the liquid storage portion 216 of the flow path member 210. That is, the outer diameter of the plunger 220 is slightly smaller than the inner diameter of the flow path member 210.
  • a small amount is an interval at which the target liquid L does not leak from the gap between the inner surface 213 of the flow path member 210 and the outer surface 223 of the plunger 220 and can slide with low frictional resistance.
  • the portion where at least a part of the inner surface 213 of the flow path member 210 and at least a part of the outer surface 223 of the plunger 220 slide is a sliding surface. The plunger 220 inserted through the flow path member 210 rotates internally.
  • the plunger 220 has one opening 228, the other opening 221 and a side wall 224, and an inflow hole 225.
  • the opening 228 is located on one end face 227 side.
  • the opening 221 is located on the other end face 222 side.
  • the inflow hole 225 is a through hole that penetrates the side wall 224.
  • a rotating member (not shown) is connected to the opening 228. Such a rotating member rotates the plunger 220 in the rotation direction R (see FIG. 16).
  • the plunger 220 rotates so that the central portion of the inflow hole 225 coincides with the central portion of the through holes 212a and 212b of the flow path member 210.
  • the inner diameter of the inflow hole 225 in the plunger 220 is preferably larger than the inner diameter of the through holes 212a and 212b in the flow path member 210.
  • a conduit (not shown) is connected to the opening 228, and the liquid L (see FIG. 16) is supplied from the conduit to the liquid storage portion 229 via the opening 228. Then, the liquid L supplied to the liquid storage unit 229 is discharged from the through holes 212a and 212b through the inflow hole 225.
  • the liquid storage unit 229 is a region surrounded by the inner surface 226 of the side wall 224. Further, it is preferable that a check valve or the like (not shown) is arranged in the path of the liquid L so that the liquid L does not flow back from the liquid storage unit 229.
  • FIG. 16 to 19 are diagrams for explaining the operation of the liquid supply device 200 of the present disclosure.
  • FIG. 16 shows a state in which the position of the inflow hole 225 of the plunger 220 and the position of the through hole 212a of the flow path member 210 are aligned.
  • the liquid supply device 200 can discharge the liquid L supplied from the opening 228 of the plunger 220 from the through hole 212a.
  • FIG. 17 shows a state in which the plunger 220 rotates in the rotation direction R and changes its direction, and the positions of the inflow holes 225 of the plunger 220 and the positions of the through holes 212a and 212b of the flow path member 210 do not match. There is.
  • the liquid supply device 200 can stop the discharge of the liquid L supplied from the opening 228 of the plunger 220.
  • FIG. 18 shows a state in which the position of the inflow hole 225 of the plunger 220 and the position of the through hole 212b of the flow path member 210 are aligned.
  • the liquid supply device 200 can discharge the liquid L supplied from the opening 228 of the plunger 220 from the through hole 212b.
  • FIG. 19 shows a state in which the plunger 220 rotates in the rotation direction R and changes its direction, so that the positions of the inflow holes 225 of the plunger 220 and the positions of the through holes 212a and 212b of the flow path member 210 do not match. There is.
  • the liquid supply device 200 can stop the discharge of the liquid L supplied from the opening 228 of the plunger 220.
  • the rotation speed of the plunger 220 may or may not be constant. Further, in the present disclosure, when the inflow hole 225 of the plunger 220 and the through hole 212a or the through hole 212b of the flow path member 210 are aligned with each other, the liquid supply device 200 rotates the plunger 220 for a certain period of time. You may stop it. Further, in the present disclosure, the rotation direction R of the plunger 220 may be continuously or temporarily reversed.
  • the flow path member 210 in the present disclosure is mainly composed of ceramics. Further, the flow path member 210 in the present disclosure may be made of ceramics.
  • the ceramics include aluminum oxide ceramics, zirconium oxide ceramics, composite ceramics of aluminum oxide and zirconium oxide, silicon nitride ceramics, aluminum nitride ceramics, silicon carbide ceramics and mulite ceramics. ..
  • the material is cheaper than other ceramics and the workability is excellent, but the characteristics such as corrosion resistance required for the flow path member 210 are satisfied.
  • cylindrical plunger 220 that slides on the inner surface 213 of the tubular body that is the flow path member 210 of the present disclosure may also be ceramics or aluminum oxide ceramics.
  • a spray-drying granule method spray-drying method
  • two molded bodies are prepared using the obtained granules.
  • One corresponds to the lower portion of the cross section cut horizontally along the central axis of the through hole, and the other corresponds to the upper portion.
  • a portion to be a through hole is formed by combining the two, and the surface of the portion is further processed so that Rsk becomes negative after firing. Specifically, a process (transfer process) of pressing a mold having a desired surface texture is performed.
  • a sintered body is obtained by holding and firing at a maximum temperature of 1500 to 1600 ° C. for 2 to 12 hours in an air atmosphere.
  • it is a tubular body containing ceramics as a main component, has a through hole penetrating the wall constituting the tubular body, and has a through hole in the penetrating direction of the inner wall surface of the through hole.
  • a tubular body having a negative skewness Rsk value of the roughness curve can be obtained.
  • processing may be performed to make the inner surface a sliding surface.
  • the surface of the portion to be the through hole after firing has the above-mentioned surface texture. It may be processed using a mold. Further, in order to set the surface roughness Ra of the roughness curve in the penetration direction of the inner wall surface of the through hole to 0.2 ⁇ m or more and 0.4 ⁇ m or less, the surface of the portion to be the through hole after firing is the surface described above. It may be processed using a mold of properties.
  • the portion that becomes the through hole in the molded body in order to make the opening diameter of the first hole that opens on the outer surface of the tubular body larger than the opening diameter of the second hole that opens on the inner surface of the tubular body, the portion that becomes the through hole in the molded body.
  • the portion to be the first hole may be made larger than the portion to be the second hole. Further, when the difference between the opening diameter of the first hole and the opening diameter of the second hole is 0.03 mm or more, the processing dimensions at the time of forming the portion to be the through hole in the molded body may be adjusted.
  • one tubular molded body is formed by using the granules obtained above, and a pin-shaped mold is passed through the side wall from the outer surface of the tubular molded body to form a through hole.
  • the tubular body of the present disclosure may be manufactured by firing a tubular molded body having through holes formed therein.
  • the shape of the pin-shaped mold is formed.
  • the base end side outer surface side of the side wall
  • the tip end side inner surface side of the side wall
  • a recess may be arranged at a position corresponding to the protrusion in the pin-shaped mold. Further, in the pin-shaped mold, the friction coefficient (surface roughness) at the position corresponding to the protrusion may be increased.
  • the position corresponding to the protrusion in the pin-shaped mold in order to make the width of the protrusion formed on the inner wall surface of the through hole at a position close to the inner surface or the inner surface of the tubular body larger than the height of the protrusion, the position corresponding to the protrusion in the pin-shaped mold.
  • the width of the dents arranged in the dents may be made larger than the height of the dents.
  • a dent may be arranged at a position corresponding to the burr in the pin-shaped mold. Further, the friction coefficient (surface roughness) at the position corresponding to the burr in the pin-shaped mold may be increased.
  • the depth of the dent arranged at the position corresponding to the protrusion in the pin-shaped mold is changed to the burr. It may be larger than the depth of the dent arranged at the position corresponding to.
  • a part of the ellipse is changed to the cross-sectional shape of the pin-shaped mold. It may be in a deformed shape.
  • a cylinder can be obtained by producing a degreased body by degreasing the obtained molded body and then firing it in an air atmosphere at a maximum temperature of 1500 to 1600 ° C. for 2 to 12 hours. .. After obtaining the sintered body, processing may be performed to make the outer peripheral surface a sliding surface.
  • the flow path member of the present disclosure described above is a cylinder, and a liquid supply device can be obtained by providing a plunger that reciprocates in the cylinder.
  • this mixed powder, ion-exchanged water, and a dispersant were put into a ball mill, mixed and pulverized to prepare a primary slurry.
  • a binder an aqueous solution of acrylic resin and polyethylene glycol was added to the primary slurry and mixed to prepare a secondary slurry.
  • granules were prepared by spray-drying the secondary slurry using a spray dryer.
  • the granules were press-molded into a cylindrical shape to obtain a molded product having a diameter of 9.8 mm and a length of 30 mm as a plunger.
  • the lower part (lower molded body) and the upper part (upper molded body) of the cross section cut in the horizontal direction along the central axis of the through hole were separately press-molded.
  • the lower half of the through hole is located in the lower molded body, and the upper half of the through hole is located in the upper molded body.
  • the surface of the through hole in the molded product was processed so that Rsk became negative after firing.
  • the surface texture of the mold of the portion corresponding to the surface of the through hole in the molded body was set to the desired surface texture, and the above-mentioned surface texture was pressed against the molded body (transfer processing).
  • the plunger, the upper part of the cylinder, and the lower part of the cylinder which are mainly composed of aluminum oxide ceramics, are fired by holding and firing at a maximum temperature of 1550 ° C. for 4 hours in an air atmosphere. Obtained.
  • the upper part and the lower part of the cylinder were joined by a known method.
  • the dimensions of the cylinder after joining are 12 mm in outer diameter, 8 mm in inner diameter, and 16 mm in length.
  • the plunger was processed so that the outer diameter was 7.95 mm.
  • the through hole in the cylinder was machined to have a diameter of 1.5 mm after joining.
  • the position of the through hole was such that its center was 4 mm away from one end surface of the cylinder.
  • the opening diameter D1 and the opening diameter D2 of the through hole were set to the same value.
  • Rsk was measured on the surface of the through hole of the manufactured cylinder. This measurement is performed according to JIS B0601 (2001), and the measurement conditions are Gaussian for the cutoff type and least squares straight line correction for the tilt correction, with a measurement length of 1.0 mm and a cutoff wavelength of 0.8 mm. The speed was 0.15 mm / sec.
  • each plunger and each cylinder were installed in the liquid supply device shown in FIG. 11, the liquid was discharged, and the amount of adhesion was confirmed.
  • a carbonated drink syrup (stock solution: pH 2.2, solution amount: 100 ml) was used.
  • the discharge was performed at a rate of 20 times per minute, and this was repeated for 20 hours.
  • measure the mass (M1) before discharge and the mass (M2) after discharge in the cylinder and set the rate of change ⁇ M (%) to ⁇ (M2-M1) / M1 ⁇ ⁇ 100 (%). Obtained by.
  • the sample having a negative Rsk had a positive Rsk. It was about half the value of ⁇ M of the sample, and it was confirmed that the amount of adhesion was small because Rsk was negative. Further, it was confirmed that among the samples having a negative Rsk, the ⁇ M of the sample having an Rsk of -2, -1, and -0.3 was small.
  • a sample having the above was prepared.
  • the Rsk of the surface of the through hole in each was -1, and Ra was 0.4 ⁇ m.
  • the same evaluation as in Example 1 was performed.
  • the sample having the opening diameter D1 larger than the opening diameter D2 had a smaller ⁇ M than the sample having the same opening diameter D1 and the opening diameter D2.
  • the sample having an opening diameter D1 larger than the opening diameter D2 and having a protrusion at a position close to the opening diameter D2 had a smaller ⁇ M than the sample having no protrusion.
  • Wiring member (example of tubular body) 12 Through hole 12c Inner wall surface 13 Inner surface 14 Outer surface 17 Side wall (example of wall) 21 1st hole 22 2nd hole 23 Protrusion 24 Flowers 120 Flow path member (example of tubular body) 121 Wall 122 Through hole 123 Inner surface 124 Outer surface 210 Flow path member (example of tubular body) 212 Through hole 213 Inner surface 214 Outer surface 217 Side wall (example of wall) C Center of gravity D1, D2 Opening diameter VL Virtual line segment L1 Width H1, H2 Height S1 to S4 Graphic

Landscapes

  • Engineering & Computer Science (AREA)
  • Architecture (AREA)
  • Civil Engineering (AREA)
  • Structural Engineering (AREA)
  • Structure Of Printed Boards (AREA)

Abstract

A tubular body of the present disclosure includes, as the main component thereof, a ceramic material. The tubular body includes through-holes that pass through walls that constitute the tubular body. The through-holes include: first holes that open to the outer surface of the tubular body; and second holes that open to the inner surface of the tubular body. The opening diameter of the first holes is greater than that of the second holes.

Description

筒状体、配線部材および流路部材Cylindrical body, wiring member and flow path member
 本開示は、筒状体、配線部材および流路部材に関する。 The present disclosure relates to a tubular body, a wiring member, and a flow path member.
 電気配線およびチューブなどの線状部材を内部に挿通して、かかる線状部材の支持または固定などを行う配線部材が知られている(特許文献1参照)。 There is known a wiring member in which a linear member such as an electric wiring and a tube is inserted inside to support or fix the linear member (see Patent Document 1).
特開2017-143851号公報JP-A-2017-143851
 本開示の筒状体は、セラミックスを主成分とする筒状体であり、前記筒状体を構成する壁を貫通する貫通孔を有し、前記貫通孔は、前記筒状体の外面に開口する第1孔および前記筒状体の内面に開口する第2孔を有し、前記第1孔の開口径は、前記第2孔の開口径よりも大きい。 The tubular body of the present disclosure is a tubular body containing ceramics as a main component, has a through hole penetrating the wall constituting the tubular body, and the through hole opens in the outer surface of the tubular body. It has a first hole to be formed and a second hole to open on the inner surface of the tubular body, and the opening diameter of the first hole is larger than the opening diameter of the second hole.
図1は、本開示の配線部材の一例を示す斜視図である。FIG. 1 is a perspective view showing an example of the wiring member of the present disclosure. 図2は、本開示の配線部材の一例を示す側面図である。FIG. 2 is a side view showing an example of the wiring member of the present disclosure. 図3は、図2におけるA-A線での断面の一例を示す部分拡大図である。FIG. 3 is a partially enlarged view showing an example of a cross section taken along the line AA in FIG. 図4は、図2におけるA-A線での断面の一例を示す部分拡大図である。FIG. 4 is a partially enlarged view showing an example of a cross section taken along the line AA in FIG. 図5は、突起を含む部分の断面を拡大して示す模式図である。FIG. 5 is a schematic view showing an enlarged cross section of a portion including a protrusion. 図6は、本開示の配線部材における第2孔の輪郭形状を示す図である。FIG. 6 is a diagram showing the contour shape of the second hole in the wiring member of the present disclosure. 図7は、本開示の配線部材における第1孔の輪郭形状を示す図である。FIG. 7 is a diagram showing the contour shape of the first hole in the wiring member of the present disclosure. 図8は、バリを含む部分の断面を拡大して示す模式図である。FIG. 8 is a schematic view showing an enlarged cross section of a portion including a burr. 図9は、本開示の配線部材における第2孔の輪郭形状を示す図である。FIG. 9 is a diagram showing the contour shape of the second hole in the wiring member of the present disclosure. 図10は、本開示の配線部材における第1孔の輪郭形状を示す図である。FIG. 10 is a diagram showing the contour shape of the first hole in the wiring member of the present disclosure. 図11は、本開示の流路部材の一例を示す斜視図である。FIG. 11 is a perspective view showing an example of the flow path member of the present disclosure. 図12は、本開示の液体供給装置における液体の吐出まで動作を示す概略図である。FIG. 12 is a schematic view showing the operation up to the discharge of the liquid in the liquid supply device of the present disclosure. 図13は、本開示の液体供給装置における液体の吐出時の動作を示す概略図である。FIG. 13 is a schematic view showing an operation at the time of discharging the liquid in the liquid supply device of the present disclosure. 図14は、本開示の流路部材の一例を示す斜視図である。FIG. 14 is a perspective view showing an example of the flow path member of the present disclosure. 図15は、本開示のプランジャの一例を示す斜視図である。FIG. 15 is a perspective view showing an example of the plunger of the present disclosure. 図16は、本開示の液体供給装置の動作を説明するための図である。FIG. 16 is a diagram for explaining the operation of the liquid supply device of the present disclosure. 図17は、本開示の液体供給装置の動作を説明するための図である。FIG. 17 is a diagram for explaining the operation of the liquid supply device of the present disclosure. 図18は、本開示の液体供給装置の動作を説明するための図である。FIG. 18 is a diagram for explaining the operation of the liquid supply device of the present disclosure. 図19は、本開示の液体供給装置の動作を説明するための図である。FIG. 19 is a diagram for explaining the operation of the liquid supply device of the present disclosure.
 電気配線およびチューブなどの線状部材を内部に挿通して、かかる線状部材の支持および固定などを行う配線部材が知られている。一方で、かかる配線部材を筒状体で構成する場合、線状部材の位置変動を抑制するうえで更なる改善の余地があった。そこで、線状部材の位置変動を抑制することができる筒状体の実現が期待されている。 There are known wiring members that support and fix such linear members by inserting electrical wiring and linear members such as tubes inside. On the other hand, when the wiring member is formed of a tubular body, there is room for further improvement in suppressing the positional fluctuation of the linear member. Therefore, it is expected to realize a tubular body capable of suppressing the positional fluctuation of the linear member.
 以下、本開示の筒状体、配線部材および流路部材について、図1~図10を参照しながら説明する。 Hereinafter, the tubular body, the wiring member, and the flow path member of the present disclosure will be described with reference to FIGS. 1 to 10.
 なお、図面は模式的なものであり、各要素の寸法の関係、各要素の比率などは、現実と異なる場合があることに留意する必要がある。また、図面の相互間においても、互いの寸法の関係や比率が異なる部分が含まれている場合がある。 It should be noted that the drawings are schematic, and the relationship between the dimensions of each element, the ratio of each element, etc. may differ from the reality. In addition, there may be parts in which the relations and ratios of the dimensions of the drawings are different from each other.
<配線部材>
 図1は、本開示の配線部材10の一例を示す斜視図であり、図2は、本開示の配線部材10の一例を示す側面図である。図1および図2に示すように、配線部材10は、挿入孔15と、閉塞壁11と、側壁17と、貫通孔12とを有する。側壁17は、壁の一例である。配線部材10は、内面13および外面14を有する筒状体からなり、この筒状体を構成する側壁17を貫通する貫通孔12を有する。
<Wiring member>
FIG. 1 is a perspective view showing an example of the wiring member 10 of the present disclosure, and FIG. 2 is a side view showing an example of the wiring member 10 of the present disclosure. As shown in FIGS. 1 and 2, the wiring member 10 has an insertion hole 15, a closing wall 11, a side wall 17, and a through hole 12. The side wall 17 is an example of a wall. The wiring member 10 is made of a tubular body having an inner surface 13 and an outer surface 14, and has a through hole 12 penetrating a side wall 17 constituting the tubular body.
 ここで、貫通孔12は、1個以上であればよく、対象となる配線部材(電気配線およびチューブなど)を挿通させる部分であり、挿通孔とも言えるものである。図1の例において、配線部材10には貫通孔12が2個設けられる(以下、貫通孔12a、12bとも呼称する)。 Here, the number of through holes 12 may be one or more, and is a portion through which a target wiring member (electrical wiring, tube, etc.) is inserted, and can be said to be an insertion hole. In the example of FIG. 1, the wiring member 10 is provided with two through holes 12 (hereinafter, also referred to as through holes 12a and 12b).
 筒状体からなる配線部材10は、一方の端部に挿入孔15が位置し、他方の端部に閉塞壁11が位置する。すなわち、本開示の筒状体には、両方の端部が開口した形状のみならず、一方の端部が閉塞され、他方の端部が開口した形状が含まれる。 The wiring member 10 made of a tubular body has an insertion hole 15 located at one end and a closing wall 11 located at the other end. That is, the tubular body of the present disclosure includes not only a shape in which both ends are open, but also a shape in which one end is closed and the other end is open.
 本開示の配線部材10に対して、図示しない線状部材は、挿入孔15から挿入され、筒状体の内部に位置する空間16と、貫通孔12とに挿通されることにより、配線部材10に支持される。なお、空間16は、側壁17の内面13と、閉塞壁11の内面11aとで囲まれる領域である。 With respect to the wiring member 10 of the present disclosure, a linear member (not shown) is inserted through the insertion hole 15 and inserted into the space 16 located inside the tubular body and the through hole 12, so that the wiring member 10 is inserted. Supported by. The space 16 is an area surrounded by the inner surface 13 of the side wall 17 and the inner surface 11a of the closed wall 11.
 図3は、図2におけるA-A線での断面の一例を示す部分拡大図である。図3に示すように、本開示の配線部材10に形成される貫通孔12は、筒状体の外面14に開口する第1孔21と、筒状体の内面13に開口する第2孔22とを有する。 FIG. 3 is a partially enlarged view showing an example of a cross section taken along the line AA in FIG. As shown in FIG. 3, the through holes 12 formed in the wiring member 10 of the present disclosure include a first hole 21 that opens on the outer surface 14 of the tubular body and a second hole 22 that opens on the inner surface 13 of the tubular body. And have.
 ここで、本開示では、貫通孔12において、第1孔21の開口径D1が第2孔22の開口径D2よりも大きい。なお、本開示において、開口径とは、対象となる孔の径のうちもっとも長い径のことである。 Here, in the present disclosure, in the through hole 12, the opening diameter D1 of the first hole 21 is larger than the opening diameter D2 of the second hole 22. In the present disclosure, the opening diameter is the longest diameter of the target holes.
 貫通孔12に電気配線などの線状部材を挿通させて、かかる線状部材の位置を固定する場合、線状部材が貫通孔12内で動く(位置が変わる)と、線状部材が疲労破壊したりショートしたりする場合がある。 When a linear member such as an electric wiring is inserted through the through hole 12 to fix the position of the linear member, when the linear member moves in the through hole 12 (the position changes), the linear member breaks due to fatigue. It may be short-circuited or short-circuited.
 そこで、本開示の配線部材10では、第1孔21の開口径D1を第2孔22の開口径D2よりも大きくすることで、少なくとも第1孔21側から第2孔22側(開口径が大きい外周側から開口径が小さい内周側)へ線状部材が動くことを抑制することができる。したがって、本開示の配線部材10では、線状部材の位置変動を抑制することができる。本開示の配線部材10では、特に、配線部材10に加速度がかかる場合に、効果がある。 Therefore, in the wiring member 10 of the present disclosure, by making the opening diameter D1 of the first hole 21 larger than the opening diameter D2 of the second hole 22, at least the first hole 21 side to the second hole 22 side (opening diameter is large). It is possible to suppress the movement of the linear member from the large outer peripheral side to the inner peripheral side with a small opening diameter). Therefore, in the wiring member 10 of the present disclosure, the position fluctuation of the linear member can be suppressed. The wiring member 10 of the present disclosure is particularly effective when acceleration is applied to the wiring member 10.
 ここで、第1孔21の開口径D1と第2孔22の開口径D2との差は、D1>D2を満たすものであればよく、0.03mm以上であってもよい。 Here, the difference between the opening diameter D1 of the first hole 21 and the opening diameter D2 of the second hole 22 may be 0.03 mm or more as long as it satisfies D1> D2.
 また、本開示では、貫通孔12において、第1孔21の開口面積が第2孔22の開口面積よりも大きくてもよい。このような構成を満たしているときには、少なくとも第1孔21側から第2孔22側(開口面積が大きい外周側から開口面積が小さい内周側)へ線状部材が動くことを抑制することができる。したがって、本開示の配線部材10では、線状部材の位置変動を抑制することができる。 Further, in the present disclosure, in the through hole 12, the opening area of the first hole 21 may be larger than the opening area of the second hole 22. When such a configuration is satisfied, it is possible to suppress the movement of the linear member from at least the first hole 21 side to the second hole 22 side (from the outer peripheral side having a large opening area to the inner peripheral side having a small opening area). it can. Therefore, in the wiring member 10 of the present disclosure, the position fluctuation of the linear member can be suppressed.
 また、図4に示すように、貫通孔12の内壁面12cは、筒状体の内面13または筒状体の内面13に近い位置(すなわち、第2孔22に隣接する位置)に、突起23を有していてもよい。このような構成を満たしているときには、突起23で外周側から内周側への線状部材の移動がさらに抑制される。 Further, as shown in FIG. 4, the inner wall surface 12c of the through hole 12 is located at a position close to the inner surface 13 of the tubular body or the inner surface 13 of the tubular body (that is, a position adjacent to the second hole 22). May have. When such a configuration is satisfied, the protrusion 23 further suppresses the movement of the linear member from the outer peripheral side to the inner peripheral side.
 図5は、突起23を含む部分の断面を拡大して示す模式図であり、図4の突起23付近の拡大図ともいえる。図5に示すように、突起23は貫通孔12内にある。本開示において、突起23とは、貫通孔12の中心軸に沿った断面視において、貫通孔12の貫通方向と直交する方向に突出しているものであり、高さH1が、0.02≦H1/D2≦0.1を満たすもののことをいう。 FIG. 5 is a schematic view showing an enlarged cross section of a portion including the protrusion 23, and can be said to be an enlarged view of the vicinity of the protrusion 23 in FIG. As shown in FIG. 5, the protrusion 23 is in the through hole 12. In the present disclosure, the protrusion 23 is a protrusion 23 that protrudes in a direction orthogonal to the penetration direction of the through hole 12 in a cross-sectional view along the central axis of the through hole 12, and has a height H1 of 0.02 ≦ H1. It means that / D2 ≦ 0.1 is satisfied.
 ここで、高さH1は、断面視において貫通孔12の内壁面12cの仮想線分Sを起点とし、内壁面12cから離れる方向に平行移動したときに、突起23と最後に交わる部位12dまでの距離のことである。 Here, the height H1 starts from the virtual line segment S of the inner wall surface 12c of the through hole 12 in the cross-sectional view, and reaches the portion 12d that finally intersects the protrusion 23 when it is translated in the direction away from the inner wall surface 12c. It is the distance.
 図6は、本開示の配線部材における第2孔22の輪郭形状を示す図である。図6に示すように、突起23の幅をL1、突起23の高さをH1とするとき、幅L1が高さH1よりも大きくてもよい。なお、かかる突起23の幅L1および高さH1は、たとえば、第2孔22の輪郭と、かかる輪郭の外接円CCとに基づいて評価することができる。 FIG. 6 is a diagram showing the contour shape of the second hole 22 in the wiring member of the present disclosure. As shown in FIG. 6, when the width of the protrusion 23 is L1 and the height of the protrusion 23 is H1, the width L1 may be larger than the height H1. The width L1 and height H1 of the protrusion 23 can be evaluated based on, for example, the contour of the second hole 22 and the circumscribed circle CC of the contour.
 このような構成を満たしているときには、幅L1を広くすることにより、貫通孔12の内壁面12cで線状部材が強く拘束される面積を増やすことができる。したがって、本開示の配線部材10では、線状部材の位置変動をさらに抑制することができる。突起23の幅L1は、たとえば、500μm以上である。 When such a configuration is satisfied, by increasing the width L1, the area where the linear member is strongly restrained by the inner wall surface 12c of the through hole 12 can be increased. Therefore, in the wiring member 10 of the present disclosure, the position fluctuation of the linear member can be further suppressed. The width L1 of the protrusion 23 is, for example, 500 μm or more.
 また、図6に示すように、本開示の配線部材10では、突起23の先端部が波打った輪郭形状を有していてもよい。このような構成を満たしているときには、外周側から内周側への線状部材の移動がさらに抑制される。 Further, as shown in FIG. 6, in the wiring member 10 of the present disclosure, the tip portion of the protrusion 23 may have a wavy contour shape. When such a configuration is satisfied, the movement of the linear member from the outer peripheral side to the inner peripheral side is further suppressed.
 図7は、本開示の配線部材10における第1孔21の輪郭形状を示す図であり、図8は、バリ24を含む部分の断面を拡大して示す模式図である。 FIG. 7 is a diagram showing the contour shape of the first hole 21 in the wiring member 10 of the present disclosure, and FIG. 8 is a schematic diagram showing an enlarged cross section of a portion including a burr 24.
 図7および図8に示すように、貫通孔12の内壁面12cは、筒状体の外面14または筒状体の外面14に近い位置(すなわち、第1孔21に隣接する位置)に、バリ24を有していてもよい。このような構成を満たしているときには、バリ24で内周側から外周側への線状部材の移動が抑制される。 As shown in FIGS. 7 and 8, the inner wall surface 12c of the through hole 12 is burred at a position close to the outer surface 14 of the tubular body or the outer surface 14 of the tubular body (that is, a position adjacent to the first hole 21). 24 may have. When such a configuration is satisfied, the burr 24 suppresses the movement of the linear member from the inner peripheral side to the outer peripheral side.
 本開示において、バリ24とは、貫通孔12の中心軸に沿った断面視において、貫通孔12の貫通方向と直交する方向に突出しているものであり、高さH2が、0.02≦H2/D1≦0.1を満たすもののことをいう。 In the present disclosure, the burr 24 protrudes in a direction orthogonal to the penetrating direction of the through hole 12 in a cross-sectional view along the central axis of the through hole 12, and the height H2 is 0.02 ≦ H2. It means that / D1 ≦ 0.1 is satisfied.
 ここで、高さH2は、図8に示すように、断面視において貫通孔12の内壁面12cの仮想線分Sを起点とし、内壁面12cから離れる方向に平行移動したときに、バリ24と最後に交わる部位12eまでの距離のことである。 Here, as shown in FIG. 8, the height H2 starts from the virtual line segment S of the inner wall surface 12c of the through hole 12 in the cross-sectional view, and when it is translated in the direction away from the inner wall surface 12c, it becomes the burr 24. It is the distance to the last intersecting part 12e.
 また、本開示の配線部材10では、内周側の突起23の高さH1が、外周側のバリ24の高さH2よりも大きくてもよい。このような構成を満たしているときには、内周側から外周側への線状部材の移動がさらに抑制される。なお、バリ24の幅L2は、突起23の幅L1よりも小さく、たとえば、300μm以下である。 Further, in the wiring member 10 of the present disclosure, the height H1 of the protrusion 23 on the inner peripheral side may be larger than the height H2 of the burr 24 on the outer peripheral side. When such a configuration is satisfied, the movement of the linear member from the inner peripheral side to the outer peripheral side is further suppressed. The width L2 of the burr 24 is smaller than the width L1 of the protrusion 23, and is, for example, 300 μm or less.
 図9は、本開示の配線部材における第2孔22の輪郭形状を示す図である。図9に示すように、第2孔22の輪郭形状は、かかる輪郭の重心Cを通り互いに直交する2つの仮想線分VLを引いたときに、輪郭と仮想線分VLで形成される4つの図形S1、S2、S3、S4のうち少なくとも1つが他の図形と面積が異なっていてもよい。たとえば、図9の例では、図形S2が、他の図形S1、S3、S4よりも面積が小さい。 FIG. 9 is a diagram showing the contour shape of the second hole 22 in the wiring member of the present disclosure. As shown in FIG. 9, the contour shape of the second hole 22 is formed by four virtual line segment VLs formed by the contour and the virtual line segment VL when two virtual line segment VL passing through the center of gravity C of the contour and orthogonal to each other are drawn. At least one of the figures S1, S2, S3, and S4 may have a different area from the other figures. For example, in the example of FIG. 9, the figure S2 has a smaller area than the other figures S1, S3, and S4.
 このような構成を満たしているときには、4つの図形S1、S2、S3、S4のうち少なくとも1つの形状が変形してることから、この変形部分が線状部材を拘束する。したがって、本開示の配線部材10では、線状部材の位置変動をさらに抑制することができる。 When such a configuration is satisfied, at least one of the four figures S1, S2, S3, and S4 is deformed, so that the deformed portion restrains the linear member. Therefore, in the wiring member 10 of the present disclosure, the position fluctuation of the linear member can be further suppressed.
 また、本開示では、図9に示すように、第2孔22の輪郭形状が楕円の一部を変形した輪郭を有していてもよい。このような構成を満たしているときには、この変形部分が線状部材を拘束する。したがって、本開示の配線部材10では、線状部材の位置変動をさらに抑制することができる。 Further, in the present disclosure, as shown in FIG. 9, the contour shape of the second hole 22 may have a contour obtained by deforming a part of an ellipse. When such a configuration is satisfied, this deformed portion restrains the linear member. Therefore, in the wiring member 10 of the present disclosure, the position fluctuation of the linear member can be further suppressed.
 図10は、本開示の配線部材における第1孔21の輪郭形状を示す図である。図10に示すように、第1孔21の輪郭形状は、かかる輪郭の重心Cを通り互いに直交する2つの仮想線分VLを引いたときに、輪郭と仮想線分VLで形成される4つの図形S1、S2、S3、S4のうち少なくとも1つが他の図形と面積が異なっていてもよい。たとえば、図10の例では、図形S3、S4が、他の図形S1、S2よりも面積が大きい。 FIG. 10 is a diagram showing the contour shape of the first hole 21 in the wiring member of the present disclosure. As shown in FIG. 10, the contour shape of the first hole 21 is formed by four virtual line segment VLs formed by the contour and the virtual line segment VL when two virtual line segment VL passing through the center of gravity C of the contour and orthogonal to each other are drawn. At least one of the figures S1, S2, S3, and S4 may have a different area from the other figures. For example, in the example of FIG. 10, the figures S3 and S4 have a larger area than the other figures S1 and S2.
 このような構成を満たしているときには、4つの図形S1、S2、S3、S4のうち少なくとも1つの形状が変形してることから、この変形部分が線状部材を拘束する。したがって、本開示の配線部材10では、線状部材の位置変動をさらに抑制することができる。 When such a configuration is satisfied, at least one of the four figures S1, S2, S3, and S4 is deformed, so that the deformed portion restrains the linear member. Therefore, in the wiring member 10 of the present disclosure, the position fluctuation of the linear member can be further suppressed.
 また、本開示では、図10に示すように、第1孔21の輪郭形状が楕円の一部を変形した輪郭を有していてもよい。このような構成を満たしているときには、この変形部分が線状部材を拘束する。したがって、本開示の配線部材10では、線状部材の位置変動をさらに抑制することができる。 Further, in the present disclosure, as shown in FIG. 10, the contour shape of the first hole 21 may have a contour obtained by deforming a part of an ellipse. When such a configuration is satisfied, this deformed portion restrains the linear member. Therefore, in the wiring member 10 of the present disclosure, the position fluctuation of the linear member can be further suppressed.
 また、本開示の配線部材10における貫通孔12の内壁面12c(図3参照)は、貫通方向(図3における矢印方向)における粗さ曲線のスキューネスRskの値が負であってもよい。すなわち、かかるスキューネスRskの値がゼロより小さくてもよい。このような構成を満たしているときには、内壁面12c内での線状部材の移動がさらに抑制される。 Further, the inner wall surface 12c (see FIG. 3) of the through hole 12 in the wiring member 10 of the present disclosure may have a negative value of skewness Rsk of the roughness curve in the through direction (arrow direction in FIG. 3). That is, the value of such skewness Rsk may be smaller than zero. When such a configuration is satisfied, the movement of the linear member within the inner wall surface 12c is further suppressed.
 ここで、粗さ曲線のスキューネスRskの値の下限値としては、たとえば-2であり、-2以上-0.3以下であってもよい。このような構成を満たしているときには、内壁面12c内での線状部材の移動がさらに抑制される。 Here, the lower limit of the value of the skewness Rsk of the roughness curve is, for example, -2, and may be -2 or more and -0.3 or less. When such a configuration is satisfied, the movement of the linear member within the inner wall surface 12c is further suppressed.
 また、貫通孔12の内壁面12cは、貫通方向における粗さ曲線の表面粗さRaが0.2μm以上0.4μm以下であってもよい。このような構成を満たしているときには、内壁面12c内での線状部材の移動がさらに抑制される。 Further, the inner wall surface 12c of the through hole 12 may have a surface roughness Ra of a roughness curve in the penetration direction of 0.2 μm or more and 0.4 μm or less. When such a configuration is satisfied, the movement of the linear member within the inner wall surface 12c is further suppressed.
 本開示における配線部材10は、セラミックスを主成分とする。また、本開示における配線部材10は、セラミックスからなっていてもよい。ここで、セラミックスとしては、たとえば、酸化アルミニウム質セラミックス、酸化ジルコニウム質セラミックス、酸化アルミニウムおよび酸化ジルコニウムの複合セラミックス、窒化珪素質セラミックス、窒化アルミニウム質セラミックス、炭化珪素質セラミックスまたはムライト質セラミックス等が挙げられる。 The wiring member 10 in the present disclosure is mainly composed of ceramics. Further, the wiring member 10 in the present disclosure may be made of ceramics. Here, examples of the ceramics include aluminum oxide ceramics, zirconium oxide ceramics, composite ceramics of aluminum oxide and zirconium oxide, silicon nitride ceramics, aluminum nitride ceramics, silicon carbide ceramics and mulite ceramics. ..
 配線部材10が酸化アルミニウム質セラミックスを主成分とするときには、他のセラミックスと比較して材料が安価であり加工性に優れながら、配線部材10に要求される耐久性等の特性を満たす。 When the wiring member 10 contains aluminum oxide ceramic as the main component, the material is cheaper than other ceramics and the workability is excellent, but the characteristics such as durability required for the wiring member 10 are satisfied.
 ここで、酸化アルミニウム質セラミックスとは、セラミックスを構成する全成分100質量%のうち、酸化アルミニウムを70質量%以上含有するものである。セラミックスの材質は、以下の方法により確認することができる。まず、X線回折装置(XRD)を用いて、対象試料を測定し、得られた2θ(2θは、回折角度である。)の値よりJCPDSカードを用いて同定を行なう。次に、ICP(Inductively Coupled Plasma)発光分光分析装置(ICP)または蛍光X線分析装置(XRF)を用いて、含有成分の定量分析を行なう。そして、たとえば、上記同定により酸化アルミニウムの存在が確認され、XRFで測定したAlの含有量から酸化アルミニウム(Al)に換算した含有量が70質量%以上であれば、酸化アルミニウム質セラミックスである。なお、他のセラミックスに関しても、同じ方法で確認できる。 Here, the aluminum oxide ceramics are those containing 70% by mass or more of aluminum oxide out of 100% by mass of all the components constituting the ceramics. The material of the ceramics can be confirmed by the following method. First, a target sample is measured using an X-ray diffractometer (XRD), and identification is performed using a JCPDS card from the obtained 2θ (2θ is a diffraction angle) value. Next, a quantitative analysis of the contained components is performed using an ICP (Inductively Coupled Plasma) emission spectroscopic analyzer (ICP) or a fluorescent X-ray analyzer (XRF). Then, for example, if the presence of aluminum oxide is confirmed by the above identification and the content converted from the Al content measured by XRF into aluminum oxide (Al 2 O 3 ) is 70% by mass or more, the aluminum oxide ceramics Is. It should be noted that other ceramics can be confirmed by the same method.
 貫通孔12の内壁面12cにおけるスキューネスRskおよび表面粗さRaの測定方法の一例は以下の通りである。まず、測定する方向は、第1孔21側から第2孔22側へ向かう方向、または第2孔22側から第1孔21側へ向かう方向のいずれかである。スキューネスRskおよび表面粗さRaは、JIS B0601(2001)に準じて測定する。スキューネスRskおよび表面粗さRaの測定条件は、カットオフ種別はガウシアンであり、傾斜補正は最小二乗直線補正を用い、測定長さは1.0mmであり、カットオフ波長は0.8mmであり、測定速度は0.15mm/秒である。 An example of a method for measuring skewness Rsk and surface roughness Ra on the inner wall surface 12c of the through hole 12 is as follows. First, the measurement direction is either the direction from the first hole 21 side to the second hole 22 side or the direction from the second hole 22 side to the first hole 21 side. Skewness Rsk and surface roughness Ra are measured according to JIS B0601 (2001). The measurement conditions for skewness Rsk and surface roughness Ra are that the cutoff type is Gaussian, the inclination correction uses the least squares straight line correction, the measurement length is 1.0 mm, and the cutoff wavelength is 0.8 mm. The measurement speed is 0.15 mm / sec.
<流路部材および液体供給装置>
 つづいて、本開示の流路部材および液体供給装置について、図11~図19を参照しながら説明する。図11は、本開示の流路部材120の一例を示す斜視図であり、全体として液体供給装置100の構成部材の分解斜視図である。
<Flower path member and liquid supply device>
Subsequently, the flow path member and the liquid supply device of the present disclosure will be described with reference to FIGS. 11 to 19. FIG. 11 is a perspective view showing an example of the flow path member 120 of the present disclosure, and is an exploded perspective view of the constituent members of the liquid supply device 100 as a whole.
 図11に示すように、本開示の液体供給装置100は、上から順に、ボール弁130、流路部材120およびプランジャ110を備える。流路部材120は、以下においてシリンダ120とも記載する場合がある。 As shown in FIG. 11, the liquid supply device 100 of the present disclosure includes a ball valve 130, a flow path member 120, and a plunger 110 in this order from the top. The flow path member 120 may also be referred to as a cylinder 120 below.
 ボール弁130は、対象となる液体をシリンダ120へ流したり、止めたりすることに用いられるものである。具体的には、ボール131が内壁から離れたときが液体の流れる状態であり、ボール131が内壁に接しているときが液体を止めている状態である。ここで、対象となる液体とは、飲料用の液体供給装置100が飲料用であれば、原液のシロップである。なお、弁としては、対象となる液体をシリンダ120へ流したり、止めたりすることができるものであればボール弁である必要はなく、他の弁を使用可能である。 The ball valve 130 is used to flow or stop the target liquid into the cylinder 120. Specifically, when the ball 131 is separated from the inner wall, the liquid is flowing, and when the ball 131 is in contact with the inner wall, the liquid is stopped. Here, the target liquid is a syrup of a stock solution if the liquid supply device 100 for beverages is for beverages. The valve does not have to be a ball valve as long as it can flow or stop the target liquid into the cylinder 120, and other valves can be used.
 プランジャ110は、シリンダ120の内面123と摺動する部分を含む外周面111と、対象の液体と接する第1面112とを有する円柱形状である。なお、プランジャ110の形状としては、この形状に限らない。 The plunger 110 has a cylindrical shape having an outer peripheral surface 111 including a portion sliding with the inner surface 123 of the cylinder 120 and a first surface 112 in contact with the target liquid. The shape of the plunger 110 is not limited to this shape.
 シリンダ120は、内面123および外面124を有する筒状体からなり、この筒状体を構成する壁121を貫通する貫通孔122を有する。ここで、貫通孔122は、1個以上であればよく、対象となる液体が流れて吐出される部分であり、排出孔とも言えるものである。 The cylinder 120 is made of a tubular body having an inner surface 123 and an outer surface 124, and has a through hole 122 penetrating a wall 121 constituting the tubular body. Here, the number of through holes 122 may be one or more, and is a portion through which the target liquid flows and is discharged, and can be said to be a discharge hole.
 そして、シリンダ120の内径は、プランジャ110の外径よりもわずかに大きいものである。ここで、わずかとは、シリンダ120の内面123とプランジャ110の外周面111との隙間から対象の液体が漏洩せず、低い摩擦抵抗で摺動できる間隔のことである。シリンダ120の内面123の少なくとも一部とプランジャ110の外周面111の少なくとも一部とが摺動する部分は摺動面である。本開示の液体供給装置100は、本開示の流路部材120からなるシリンダ120とプランジャ110とを備えるものである。 The inner diameter of the cylinder 120 is slightly larger than the outer diameter of the plunger 110. Here, "small" is an interval at which the target liquid does not leak from the gap between the inner surface 123 of the cylinder 120 and the outer peripheral surface 111 of the plunger 110 and can slide with low frictional resistance. The portion where at least a part of the inner surface 123 of the cylinder 120 and at least a part of the outer peripheral surface 111 of the plunger 110 slide is a sliding surface. The liquid supply device 100 of the present disclosure includes a cylinder 120 and a plunger 110 made of the flow path member 120 of the present disclosure.
 図12は、本開示の液体供給装置100における液体の吐出まで動作を示す概略図である。図13は、本開示の液体供給装置100における液体の吐出時の動作を示す概略図である。 FIG. 12 is a schematic view showing the operation of the liquid supply device 100 of the present disclosure up to the discharge of the liquid. FIG. 13 is a schematic view showing the operation of the liquid supply device 100 of the present disclosure at the time of discharging the liquid.
 図12に示すように、シリンダ120内にプランジャ110を挿入した状態で、ボール弁130における内壁からボール131を離すことにより、シリンダ120へ液体を供給することができる。 As shown in FIG. 12, the liquid can be supplied to the cylinder 120 by separating the ball 131 from the inner wall of the ball valve 130 with the plunger 110 inserted in the cylinder 120.
 次に、図13に示すように、ボール弁130における内壁にボール131が接した状態において、プランジャ110を摺動させることにより、貫通孔122から液体を吐出(排出)することができる。ここで、液体の吐出に際してのプランジャ110の摺動方向とは、図13において上方向であり、言い換えれば、ボール弁130に近づく方向である。 Next, as shown in FIG. 13, the liquid can be discharged (discharged) from the through hole 122 by sliding the plunger 110 in a state where the ball 131 is in contact with the inner wall of the ball valve 130. Here, the sliding direction of the plunger 110 when discharging the liquid is the upward direction in FIG. 13, in other words, the direction approaching the ball valve 130.
 そして、液体の吐出後にあたっては、プランジャ110をボール弁130から離れる方向に摺動させ、ボール弁130における内壁からボール131を離すことにより、シリンダ120へ液体を供給することができる。このように、ボール131およびプランジャ110の動作により、液体の供給および吐出が可能となる。 Then, after discharging the liquid, the liquid can be supplied to the cylinder 120 by sliding the plunger 110 in the direction away from the ball valve 130 and separating the ball 131 from the inner wall of the ball valve 130. In this way, the operation of the ball 131 and the plunger 110 enables the supply and discharge of the liquid.
 ここで、本開示では、上述した配線部材10と同様に、貫通孔122において、外周側の第1孔の開口径D1(図3参照)が内周側の第2孔の開口径D2(図3参照)よりも大きい。このような構成を満たしていることにより、液体が貫通孔122内を流れる際に乱流が生じるため、内壁面に固形微粒子や微生物などの生育増殖による異物が付着しにくくなる。ひいては、貫通孔122を流れてからの液体の吐出を長期間繰り返しても、内壁面への異物の堆積が少ないため、高精度の吐出を長期間にわたって行うことができる。 Here, in the present disclosure, similarly to the wiring member 10 described above, in the through hole 122, the opening diameter D1 of the first hole on the outer peripheral side (see FIG. 3) is the opening diameter D2 of the second hole on the inner peripheral side (FIG. 3). 3) is larger than. By satisfying such a configuration, turbulence is generated when the liquid flows through the through hole 122, so that foreign substances such as solid fine particles and microorganisms are less likely to adhere to the inner wall surface due to growth and proliferation. As a result, even if the liquid is repeatedly discharged after flowing through the through hole 122 for a long period of time, foreign matter is less accumulated on the inner wall surface, so that high-precision discharge can be performed for a long period of time.
 また、本開示では、貫通孔122において、第1孔の開口面積が第2孔の開口面積よりも大きくてもよい。このような構成を満たしているときには、液体が貫通孔122に流れ込む際に乱流が生じるため、貫通孔122の内壁面に異物が付着しにくい。 Further, in the present disclosure, in the through hole 122, the opening area of the first hole may be larger than the opening area of the second hole. When such a configuration is satisfied, turbulence is generated when the liquid flows into the through hole 122, so that foreign matter is unlikely to adhere to the inner wall surface of the through hole 122.
 また、貫通孔122の内壁面は、筒状体の内面123または筒状体の内面123に近い位置(すなわち、第2孔に隣接する位置)に、突起を有していてもよい。このような構成を満たしているときには、液体が貫通孔122に流れ込む際に突起で乱流が生じるため、貫通孔122の内壁面に異物がさらに付着しにくい。 Further, the inner wall surface of the through hole 122 may have a protrusion at a position close to the inner surface 123 of the tubular body or the inner surface 123 of the tubular body (that is, a position adjacent to the second hole). When such a configuration is satisfied, turbulent flow is generated at the protrusions when the liquid flows into the through hole 122, so that foreign matter is less likely to adhere to the inner wall surface of the through hole 122.
 なお、流路部材120の貫通孔122に設けられる突起は、上述した配線部材10の貫通孔12に設けられる突起23と同様の形状を有するものである。 The protrusion provided in the through hole 122 of the flow path member 120 has the same shape as the protrusion 23 provided in the through hole 12 of the wiring member 10 described above.
 すなわち、貫通孔122に設けられる突起の幅は、突起の高さよりも大きくてもよい。このような構成を満たしているときには、液体が貫通孔122に流れ込む際に突起で乱流が生じるため、貫通孔122の内壁面に異物がさらに付着しにくい。 That is, the width of the protrusion provided in the through hole 122 may be larger than the height of the protrusion. When such a configuration is satisfied, turbulent flow is generated at the protrusions when the liquid flows into the through hole 122, so that foreign matter is less likely to adhere to the inner wall surface of the through hole 122.
 また、貫通孔122に設けられる突起の先端部は、波打った輪郭形状を有していてもよい。このような構成を満たしているときには、液体が貫通孔122に流れ込む際に突起で乱流が生じるため、貫通孔122の内壁面に異物がさらに付着しにくい。 Further, the tip of the protrusion provided in the through hole 122 may have a wavy contour shape. When such a configuration is satisfied, turbulent flow is generated at the protrusions when the liquid flows into the through hole 122, so that foreign matter is less likely to adhere to the inner wall surface of the through hole 122.
 また、貫通孔122の内壁面は、筒状体の外面124または筒状体の外面124に近い位置(すなわち、第1孔に隣接する位置)に、バリを有していてもよい。このような構成を満たしているときには、液体が貫通孔122に流れ込む際にバリで乱流が生じるため、貫通孔122の内壁面に異物がさらに付着しにくい。 Further, the inner wall surface of the through hole 122 may have burrs at a position close to the outer surface 124 of the tubular body or the outer surface 124 of the tubular body (that is, a position adjacent to the first hole). When such a configuration is satisfied, turbulence is generated by burrs when the liquid flows into the through hole 122, so that foreign matter is less likely to adhere to the inner wall surface of the through hole 122.
 なお、流路部材120の貫通孔122に設けられるバリは、上述した配線部材10の貫通孔12に設けられるバリ24と同様の形状を有するものである。 The burr provided in the through hole 122 of the flow path member 120 has the same shape as the burr 24 provided in the through hole 12 of the wiring member 10 described above.
 すなわち、貫通孔122に設けられる突起の高さは、バリの高さよりも大きくてもよい。このような構成を満たしているときには、液体が貫通孔122に流れ込む際に乱流が生じるため、貫通孔122の内壁面に異物がさらに付着しにくい。 That is, the height of the protrusion provided in the through hole 122 may be larger than the height of the burr. When such a configuration is satisfied, turbulence is generated when the liquid flows into the through hole 122, so that foreign matter is less likely to adhere to the inner wall surface of the through hole 122.
 また、貫通孔122の外周側に位置する第1孔の輪郭形状は、かかる輪郭の重心C(図9参照)を通り互いに直交する2つの仮想線分VL(図9参照)を引いたときに、輪郭と仮想線分VLで形成される4つの図形S1、S2、S3、S4のうち少なくとも1つが他の図形と面積が異なっていてもよい。 Further, the contour shape of the first hole located on the outer peripheral side of the through hole 122 is formed when two virtual line segments VL (see FIG. 9) that pass through the center of gravity C (see FIG. 9) of the contour and are orthogonal to each other are drawn. , At least one of the four figures S1, S2, S3, and S4 formed by the contour and the virtual line segment VL may have an area different from that of the other figures.
 同様に、貫通孔122の内周側に位置する第2孔の輪郭形状は、かかる輪郭の重心Cを通り互いに直交する2つの仮想線分VLを引いたときに、輪郭と仮想線分VLで形成される4つの図形S1、S2、S3、S4のうち少なくとも1つが他の図形と面積が異なっていてもよい。 Similarly, the contour shape of the second hole located on the inner peripheral side of the through hole 122 is the contour and the virtual line segment VL when two virtual line segment VL passing through the center of gravity C of the contour and orthogonal to each other are drawn. At least one of the four figures S1, S2, S3, and S4 formed may have a different area from the other figures.
 このような構成を満たしているときには、4つの図形S1、S2、S3、S4のうち少なくとも1つの形状が変形してることから、液体が貫通孔122に流れ込む際にこの変形部分で乱流が生じるため、貫通孔122の内壁面に異物がさらに付着しにくい。 When such a configuration is satisfied, at least one of the four figures S1, S2, S3, and S4 is deformed, so that when the liquid flows into the through hole 122, turbulence occurs in this deformed portion. Therefore, foreign matter is less likely to adhere to the inner wall surface of the through hole 122.
 また、本開示では、貫通孔122の外周側に位置する第1孔の輪郭形状が楕円の一部を変形した輪郭を有していてもよいし、貫通孔122の内周側に位置する第2孔の輪郭形状が楕円の一部を変形した輪郭を有していてもよい。このような構成を満たしているときには、液体が貫通孔122に流れ込む際にこの変形部分で乱流が生じるため、貫通孔122の内壁面において異物がさらに付着しにくい。 Further, in the present disclosure, the contour shape of the first hole located on the outer peripheral side of the through hole 122 may have a contour obtained by deforming a part of an ellipse, or the contour shape of the first hole located on the inner peripheral side of the through hole 122 may be formed. The contour shape of the two holes may have a contour obtained by deforming a part of the ellipse. When such a configuration is satisfied, when the liquid flows into the through hole 122, a turbulent flow is generated at this deformed portion, so that foreign matter is less likely to adhere to the inner wall surface of the through hole 122.
 また、本開示の流路部材120(シリンダ120)における貫通孔122の内壁面は、貫通方向における粗さ曲線のスキューネスRskの値が負であってもよい。すなわち、かかるスキューネスRskの値がゼロより小さくてもよい。このような構成を満たしているときには、液体が貫通孔122内を流れる際に、内壁面に固形微粒子や微生物などの生育増殖による付着が少ない。ひいては、貫通孔122を流れてからの液体の吐出を長期間繰り返しても、内壁面への異物の堆積が少ないため、高精度の吐出を長期間にわたって行うことができる。 Further, the inner wall surface of the through hole 122 in the flow path member 120 (cylinder 120) of the present disclosure may have a negative skewness Rsk value of the roughness curve in the penetration direction. That is, the value of such skewness Rsk may be smaller than zero. When such a configuration is satisfied, when the liquid flows through the through hole 122, there is little adhesion of solid fine particles and microorganisms to the inner wall surface due to growth and proliferation. As a result, even if the liquid is repeatedly discharged after flowing through the through hole 122 for a long period of time, foreign matter is less accumulated on the inner wall surface, so that high-precision discharge can be performed for a long period of time.
 ここで、粗さ曲線のスキューネスRskの値の下限値としては、たとえば-2であり、-2以上-0.3以下であってもよい。このような構成を満たしているときには、液体が貫通孔122内を流れる際に、固形微粒子や微生物などの生育増殖による付着がより少ない。 Here, the lower limit of the value of the skewness Rsk of the roughness curve is, for example, -2, and may be -2 or more and -0.3 or less. When such a configuration is satisfied, when the liquid flows through the through hole 122, there is less adhesion due to growth and proliferation of solid fine particles and microorganisms.
 また、貫通孔122の内壁面は、貫通方向における粗さ曲線の表面粗さRaが0.2μm以上0.4μm以下であってもよい。このような構成を満たしているときには、液体が流れやすい表面性状でありながら、適度な乱流により、固形微粒子や微生物などの生育増殖による付着が少ない。 Further, the inner wall surface of the through hole 122 may have a surface roughness Ra of a roughness curve in the penetration direction of 0.2 μm or more and 0.4 μm or less. When such a structure is satisfied, the surface texture is such that the liquid easily flows, but due to moderate turbulence, there is little adhesion of solid fine particles and microorganisms due to growth and proliferation.
 そして、本開示における流路部材120は、セラミックスを主成分とする。また、本開示における流路部材120は、セラミックスからなっていてもよい。ここで、セラミックスとしては、たとえば、酸化アルミニウム質セラミックス、酸化ジルコニウム質セラミックス、酸化アルミニウムおよび酸化ジルコニウムの複合セラミックス、窒化珪素質セラミックス、窒化アルミニウム質セラミックス、炭化珪素質セラミックスまたはムライト質セラミックス等が挙げられる。 The flow path member 120 in the present disclosure is mainly composed of ceramics. Further, the flow path member 120 in the present disclosure may be made of ceramics. Here, examples of the ceramics include aluminum oxide ceramics, zirconium oxide ceramics, composite ceramics of aluminum oxide and zirconium oxide, silicon nitride ceramics, aluminum nitride ceramics, silicon carbide ceramics and mulite ceramics. ..
 流路部材120が酸化アルミニウム質セラミックスを主成分とするときには、他のセラミックスと比較して材料が安価であり加工性に優れながら、流路部材120に要求される耐食性等の特性を満たす。 When the flow path member 120 contains aluminum oxide ceramic as a main component, the material is cheaper than other ceramics and the workability is excellent, but the characteristics such as corrosion resistance required for the flow path member 120 are satisfied.
 また、本開示の流路部材120である筒状体の内面123と摺動する円柱形状のプランジャ110についてもセラミックスであってよく、酸化アルミニウム質セラミックスであってもよい。 Further, the cylindrical plunger 110 that slides on the inner surface 123 of the tubular body that is the flow path member 120 of the present disclosure may also be ceramics or aluminum oxide ceramics.
 図14は、本開示の流路部材210を示す斜視図である。図14に示すように、流路部材210は、流入孔215と、閉塞壁211と、側壁217と、貫通孔212とを有する。側壁217は、壁の一例である。流路部材210は、内面213および外面214を有する筒状体からなり、この筒状体を構成する側壁217を貫通する貫通孔212を有する。 FIG. 14 is a perspective view showing the flow path member 210 of the present disclosure. As shown in FIG. 14, the flow path member 210 has an inflow hole 215, a closing wall 211, a side wall 217, and a through hole 212. The side wall 217 is an example of a wall. The flow path member 210 is made of a tubular body having an inner surface 213 and an outer surface 214, and has a through hole 212 penetrating the side wall 217 constituting the tubular body.
 ここで、貫通孔212は、1個以上であればよく、対象となる液体Lが流れて吐出される部分であり、排出孔とも言えるものである。図14の例において、流路部材210には貫通孔212が2個設けられる(以下、貫通孔212a、212bとも呼称する)。 Here, the number of through holes 212 may be one or more, and is a portion through which the target liquid L flows and is discharged, and can be said to be a discharge hole. In the example of FIG. 14, the flow path member 210 is provided with two through holes 212 (hereinafter, also referred to as through holes 212a and 212b).
 筒状体からなる流路部材210は、一方の端部に流入孔215が位置し、他方の端部に閉塞壁211が位置する。流入孔215には、図示しない導管が接続され、かかる導管から流入孔215を介して液体貯留部216に液体Lが供給される。そして、液体貯留部216に供給された液体Lは、貫通孔212から排出される。なお、液体貯留部216は、側壁217の内面213と、閉塞壁211の内面211aとで囲まれる領域である。 The flow path member 210 made of a tubular body has an inflow hole 215 located at one end and a closing wall 211 located at the other end. A duct (not shown) is connected to the inflow hole 215, and the liquid L is supplied from the conduit to the liquid storage unit 216 via the inflow hole 215. Then, the liquid L supplied to the liquid storage unit 216 is discharged from the through hole 212. The liquid storage portion 216 is an area surrounded by the inner surface 213 of the side wall 217 and the inner surface 211a of the closed wall 211.
 ここで、本開示では、上述した配線部材10と同様に、貫通孔212において、外周側の第1孔の開口径D1(図3参照)が内周側の第2孔の開口径D2(図3参照)よりも大きい。このような構成を満たしていることにより、液体Lが貫通孔212内を流れる際に乱流が生じるため、内壁面に固形微粒子や微生物などの生育増殖による異物が付着しにくくなる。ひいては、貫通孔212を流れてからの液体Lの吐出を長期間繰り返しても、内壁面への異物の堆積が少ないため、高精度の吐出を長期間にわたって行うことができる。 Here, in the present disclosure, similarly to the wiring member 10 described above, in the through hole 212, the opening diameter D1 of the first hole on the outer peripheral side (see FIG. 3) is the opening diameter D2 of the second hole on the inner peripheral side (FIG. 3). 3) is larger than. By satisfying such a configuration, turbulence is generated when the liquid L flows through the through hole 212, so that foreign substances such as solid fine particles and microorganisms are less likely to adhere to the inner wall surface due to growth and proliferation. As a result, even if the liquid L is repeatedly discharged after flowing through the through hole 212 for a long period of time, foreign matter is less accumulated on the inner wall surface, so that high-precision discharge can be performed for a long period of time.
 また、本開示では、貫通孔212において、第1孔の開口面積が第2孔の開口面積よりも大きくてもよい。このような構成を満たしているときには、液体Lが貫通孔212に流れ込む際に乱流が生じるため、貫通孔212の内壁面に異物が付着しにくい。 Further, in the present disclosure, in the through hole 212, the opening area of the first hole may be larger than the opening area of the second hole. When such a configuration is satisfied, turbulence is generated when the liquid L flows into the through hole 212, so that foreign matter is unlikely to adhere to the inner wall surface of the through hole 212.
 また、貫通孔212の内壁面は、筒状体の内面213または筒状体の内面213に近い位置(すなわち、第2孔に隣接する位置)に、突起を有していてもよい。このような構成を満たしているときには、液体Lが貫通孔212に流れ込む際に突起で乱流が生じるため、貫通孔212の内壁面に異物がさらに付着しにくい。 Further, the inner wall surface of the through hole 212 may have a protrusion at a position close to the inner surface 213 of the tubular body or the inner surface 213 of the tubular body (that is, a position adjacent to the second hole). When such a configuration is satisfied, when the liquid L flows into the through hole 212, turbulent flow is generated at the protrusions, so that foreign matter is less likely to adhere to the inner wall surface of the through hole 212.
 なお、流路部材210の貫通孔212に設けられる突起は、上述した配線部材10の貫通孔12に設けられる突起23と同様の形状を有するものである。 The protrusion provided in the through hole 212 of the flow path member 210 has the same shape as the protrusion 23 provided in the through hole 12 of the wiring member 10 described above.
 すなわち、貫通孔212に設けられる突起の幅は、突起の高さよりも大きくてもよい。このような構成を満たしているときには、液体Lが貫通孔212に流れ込む際に突起で乱流が生じるため、貫通孔212の内壁面に異物がさらに付着しにくい。 That is, the width of the protrusion provided in the through hole 212 may be larger than the height of the protrusion. When such a configuration is satisfied, when the liquid L flows into the through hole 212, turbulent flow is generated at the protrusions, so that foreign matter is less likely to adhere to the inner wall surface of the through hole 212.
 また、貫通孔212に設けられる突起の先端部は、波打った輪郭形状を有していてもよい。このような構成を満たしているときには、液体Lが貫通孔212に流れ込む際に突起で乱流が生じるため、貫通孔212の内壁面に異物がさらに付着しにくい。 Further, the tip of the protrusion provided in the through hole 212 may have a wavy contour shape. When such a configuration is satisfied, when the liquid L flows into the through hole 212, turbulent flow is generated at the protrusions, so that foreign matter is less likely to adhere to the inner wall surface of the through hole 212.
 また、貫通孔212の内壁面は、筒状体の外面214または筒状体の外面214に近い位置(すなわち、第1孔に隣接する位置)に、バリを有していてもよい。このような構成を満たしているときには、液体Lが貫通孔212に流れ込む際にバリで乱流が生じるため、貫通孔212の内壁面に異物がさらに付着しにくい。 Further, the inner wall surface of the through hole 212 may have burrs at a position close to the outer surface 214 of the tubular body or the outer surface 214 of the tubular body (that is, a position adjacent to the first hole). When such a configuration is satisfied, turbulence is generated by burrs when the liquid L flows into the through hole 212, so that foreign matter is less likely to adhere to the inner wall surface of the through hole 212.
 なお、流路部材210の貫通孔212に設けられるバリは、上述した配線部材10の貫通孔12に設けられるバリ24と同様の形状を有するものである。 The burr provided in the through hole 212 of the flow path member 210 has the same shape as the burr 24 provided in the through hole 12 of the wiring member 10 described above.
 すなわち、貫通孔212に設けられる突起の高さは、バリの高さよりも大きくてもよい。このような構成を満たしているときには、液体Lが貫通孔212に流れ込む際に乱流が生じるため、貫通孔212の内壁面に異物がさらに付着しにくい。 That is, the height of the protrusion provided in the through hole 212 may be larger than the height of the burr. When such a configuration is satisfied, turbulence is generated when the liquid L flows into the through hole 212, so that foreign matter is less likely to adhere to the inner wall surface of the through hole 212.
 また、貫通孔212の外周側に位置する第1孔の輪郭形状は、かかる輪郭の重心C(図9参照)を通り互いに直交する2つの仮想線分VL(図9参照)を引いたときに、輪郭と仮想線分VLで形成される4つの図形S1、S2、S3、S4のうち少なくとも1つが他の図形と面積が異なっていてもよい。 Further, the contour shape of the first hole located on the outer peripheral side of the through hole 212 is formed when two virtual line segments VL (see FIG. 9) that pass through the center of gravity C (see FIG. 9) of the contour and are orthogonal to each other are drawn. , At least one of the four figures S1, S2, S3, and S4 formed by the contour and the virtual line segment VL may have an area different from that of the other figures.
 同様に、貫通孔212の内周側に位置する第2孔の輪郭形状は、かかる輪郭の重心Cを通り互いに直交する2つの仮想線分VLを引いたときに、輪郭と仮想線分VLで形成される4つの図形S1、S2、S3、S4のうち少なくとも1つが他の図形と面積が異なっていてもよい。 Similarly, the contour shape of the second hole located on the inner peripheral side of the through hole 212 is the contour and the virtual line segment VL when two virtual line segment VL passing through the center of gravity C of the contour and orthogonal to each other are drawn. At least one of the four figures S1, S2, S3, and S4 formed may have a different area from the other figures.
 このような構成を満たしているときには、4つの図形S1、S2、S3、S4のうち少なくとも1つの形状が変形してることから、液体Lが貫通孔212に流れ込む際にこの変形部分で乱流が生じるため、貫通孔212の内壁面に異物がさらに付着しにくい。 When such a configuration is satisfied, at least one of the four figures S1, S2, S3, and S4 is deformed, so that when the liquid L flows into the through hole 212, turbulence is generated at this deformed portion. As a result, foreign matter is less likely to adhere to the inner wall surface of the through hole 212.
 また、本開示では、貫通孔212の外周側に位置する第1孔の輪郭形状が楕円の一部を変形した輪郭を有していてもよいし、貫通孔212の内周側に位置する第2孔の輪郭形状が楕円の一部を変形した輪郭を有していてもよい。このような構成を満たしているときには、液体Lが貫通孔212に流れ込む際にこの変形部分で乱流が生じるため、貫通孔212の内壁面において異物がさらに付着しにくい。 Further, in the present disclosure, the contour shape of the first hole located on the outer peripheral side of the through hole 212 may have a contour obtained by deforming a part of an ellipse, or the first hole located on the inner peripheral side of the through hole 212 may have a contour. The contour shape of the two holes may have a contour obtained by deforming a part of the ellipse. When such a configuration is satisfied, when the liquid L flows into the through hole 212, a turbulent flow is generated at this deformed portion, so that foreign matter is less likely to adhere to the inner wall surface of the through hole 212.
 また、本開示の流路部材210における貫通孔212の内壁面は、貫通方向における粗さ曲線のスキューネスRskの値が負であってもよい。すなわち、かかるスキューネスRskの値がゼロより小さくてもよい。このような構成を満たしているときには、液体Lが貫通孔212内を流れる際に、内壁面に固形微粒子や微生物などの生育増殖による付着が少ない。ひいては、貫通孔212を流れてからの液体Lの吐出を長期間繰り返しても、内壁面への異物の堆積が少ないため、高精度の吐出を長期間にわたって行うことができる。 Further, the inner wall surface of the through hole 212 in the flow path member 210 of the present disclosure may have a negative skewness Rsk value of the roughness curve in the penetration direction. That is, the value of such skewness Rsk may be smaller than zero. When such a configuration is satisfied, when the liquid L flows through the through hole 212, there is little adhesion of solid fine particles and microorganisms to the inner wall surface due to growth and proliferation. As a result, even if the liquid L is repeatedly discharged after flowing through the through hole 212 for a long period of time, foreign matter is less accumulated on the inner wall surface, so that high-precision discharge can be performed for a long period of time.
 ここで、粗さ曲線のスキューネスRskの値の下限値としては、たとえば-2であり、-2以上-0.3以下であってもよい。このような構成を満たしているときには、液体Lが貫通孔212内を流れる際に、固形微粒子や微生物などの生育増殖による付着がより少ない。 Here, the lower limit of the value of the skewness Rsk of the roughness curve is, for example, -2, and may be -2 or more and -0.3 or less. When such a configuration is satisfied, when the liquid L flows through the through hole 212, adhesion due to growth and proliferation of solid fine particles and microorganisms is less.
 また、貫通孔212の内壁面は、貫通方向における粗さ曲線の表面粗さRaが0.2μm以上0.4μm以下であってもよい。このような構成を満たしているときには、液体Lが流れやすい表面性状でありながら、適度な乱流により、固形微粒子や微生物などの生育増殖による付着が少ない。 Further, the inner wall surface of the through hole 212 may have a surface roughness Ra of a roughness curve in the penetration direction of 0.2 μm or more and 0.4 μm or less. When such a configuration is satisfied, the liquid L has a surface texture in which it easily flows, but due to moderate turbulence, there is little adhesion of solid fine particles and microorganisms due to growth and proliferation.
 図14に示す流路部材210は、単独でシリンダとして用いることもできる。さらに、図14に示す流路部材210は、図15に示すプランジャ220と組み合わせることにより、液体供給装置200として用いることもできる。 The flow path member 210 shown in FIG. 14 can also be used alone as a cylinder. Further, the flow path member 210 shown in FIG. 14 can also be used as the liquid supply device 200 by combining with the plunger 220 shown in FIG.
 図15は、本開示のプランジャ220の一例を示す斜視図である。図15に示すプランジャ220は、円筒形状を有し、流路部材210の液体貯留部216に挿通される。すなわち、プランジャ220の外径は、流路部材210の内径よりもわずかに小さい。 FIG. 15 is a perspective view showing an example of the plunger 220 of the present disclosure. The plunger 220 shown in FIG. 15 has a cylindrical shape and is inserted into the liquid storage portion 216 of the flow path member 210. That is, the outer diameter of the plunger 220 is slightly smaller than the inner diameter of the flow path member 210.
 ここで、わずかとは、流路部材210の内面213とプランジャ220の外面223との隙間から対象の液体Lが漏洩せず、低い摩擦抵抗で摺動できる間隔のことである。流路部材210の内面213の少なくとも一部とプランジャ220の外面223の少なくとも一部とが摺動する部分は摺動面である。流路部材210に挿通されたプランジャ220は、内部で回転する。 Here, a small amount is an interval at which the target liquid L does not leak from the gap between the inner surface 213 of the flow path member 210 and the outer surface 223 of the plunger 220 and can slide with low frictional resistance. The portion where at least a part of the inner surface 213 of the flow path member 210 and at least a part of the outer surface 223 of the plunger 220 slide is a sliding surface. The plunger 220 inserted through the flow path member 210 rotates internally.
 プランジャ220は、一方の開口部228と、他方の開口部221と、側壁224と、流入孔225とを有する。開口部228は、一方の端面227側に位置する。開口部221は、他方の端面222側に位置する。流入孔225は、側壁224を貫通する貫通孔である。 The plunger 220 has one opening 228, the other opening 221 and a side wall 224, and an inflow hole 225. The opening 228 is located on one end face 227 side. The opening 221 is located on the other end face 222 side. The inflow hole 225 is a through hole that penetrates the side wall 224.
 開口部228には、図示しない回転部材が接続される。かかる回転部材は、プランジャ220を回転方向R(図16参照)に回転させる。プランジャ220は、流入孔225の中央部が流路部材210の貫通孔212a、212bの中央部と一致するように回転する。プランジャ220における流入孔225の内径は、流路部材210における貫通孔212a、212bの内径よりも大きいことが好ましい。 A rotating member (not shown) is connected to the opening 228. Such a rotating member rotates the plunger 220 in the rotation direction R (see FIG. 16). The plunger 220 rotates so that the central portion of the inflow hole 225 coincides with the central portion of the through holes 212a and 212b of the flow path member 210. The inner diameter of the inflow hole 225 in the plunger 220 is preferably larger than the inner diameter of the through holes 212a and 212b in the flow path member 210.
 開口部228には、図示しない導管が接続され、かかる導管から開口部228を介して液体貯留部229に液体L(図16参照)が供給される。そして、液体貯留部229に供給された液体Lは、流入孔225を介して貫通孔212a、212bから排出される。なお、液体貯留部229は、側壁224の内面226で囲まれる領域である。また、液体Lの経路には図示しない逆止弁などが配置され、液体Lが液体貯留部229から逆流しないようにされているとよい。 A conduit (not shown) is connected to the opening 228, and the liquid L (see FIG. 16) is supplied from the conduit to the liquid storage portion 229 via the opening 228. Then, the liquid L supplied to the liquid storage unit 229 is discharged from the through holes 212a and 212b through the inflow hole 225. The liquid storage unit 229 is a region surrounded by the inner surface 226 of the side wall 224. Further, it is preferable that a check valve or the like (not shown) is arranged in the path of the liquid L so that the liquid L does not flow back from the liquid storage unit 229.
 図16~図19は、本開示の液体供給装置200の動作を説明するための図である。図16には、プランジャ220の流入孔225の位置と流路部材210の貫通孔212aの位置とが合った状態が示されている。図16に示す状態において、液体供給装置200は、プランジャ220の開口部228から供給される液体Lを、貫通孔212aから排出することができる。 16 to 19 are diagrams for explaining the operation of the liquid supply device 200 of the present disclosure. FIG. 16 shows a state in which the position of the inflow hole 225 of the plunger 220 and the position of the through hole 212a of the flow path member 210 are aligned. In the state shown in FIG. 16, the liquid supply device 200 can discharge the liquid L supplied from the opening 228 of the plunger 220 from the through hole 212a.
 図17には、プランジャ220が回転方向Rに回転して向きが変わり、プランジャ220の流入孔225の位置と流路部材210の貫通孔212a、212bの位置とが合わなくなった状態が示されている。図17に示す状態において、液体供給装置200は、プランジャ220の開口部228から供給される液体Lの排出を止めることができる。 FIG. 17 shows a state in which the plunger 220 rotates in the rotation direction R and changes its direction, and the positions of the inflow holes 225 of the plunger 220 and the positions of the through holes 212a and 212b of the flow path member 210 do not match. There is. In the state shown in FIG. 17, the liquid supply device 200 can stop the discharge of the liquid L supplied from the opening 228 of the plunger 220.
 図18には、プランジャ220の流入孔225の位置と流路部材210の貫通孔212bの位置とが合った状態が示されている。図18に示す状態において、液体供給装置200は、プランジャ220の開口部228から供給される液体Lを、貫通孔212bから排出することができる。 FIG. 18 shows a state in which the position of the inflow hole 225 of the plunger 220 and the position of the through hole 212b of the flow path member 210 are aligned. In the state shown in FIG. 18, the liquid supply device 200 can discharge the liquid L supplied from the opening 228 of the plunger 220 from the through hole 212b.
 図19には、プランジャ220が回転方向Rに回転して向きが変わり、プランジャ220の流入孔225の位置と流路部材210の貫通孔212a、212bの位置とが合わなくなった状態が示されている。図17に示す状態において、液体供給装置200は、プランジャ220の開口部228から供給される液体Lの排出を止めることができる。 FIG. 19 shows a state in which the plunger 220 rotates in the rotation direction R and changes its direction, so that the positions of the inflow holes 225 of the plunger 220 and the positions of the through holes 212a and 212b of the flow path member 210 do not match. There is. In the state shown in FIG. 17, the liquid supply device 200 can stop the discharge of the liquid L supplied from the opening 228 of the plunger 220.
 本開示において、プランジャ220の回転速度は一定であってもよいし、一定でなくてもよい。また、本開示において、プランジャ220の流入孔225と、流路部材210の貫通孔212aまたは貫通孔212bとの位置が合った状態の場合に、液体供給装置200は、一定時間プランジャ220の回転を停止させてもよい。また、本開示において、プランジャ220の回転方向Rは、継続的または一時的に反転させてもよい。 In the present disclosure, the rotation speed of the plunger 220 may or may not be constant. Further, in the present disclosure, when the inflow hole 225 of the plunger 220 and the through hole 212a or the through hole 212b of the flow path member 210 are aligned with each other, the liquid supply device 200 rotates the plunger 220 for a certain period of time. You may stop it. Further, in the present disclosure, the rotation direction R of the plunger 220 may be continuously or temporarily reversed.
 また、本開示における流路部材210は、セラミックスを主成分とする。また、本開示における流路部材210は、セラミックスからなっていてもよい。ここで、セラミックスとしては、たとえば、酸化アルミニウム質セラミックス、酸化ジルコニウム質セラミックス、酸化アルミニウムおよび酸化ジルコニウムの複合セラミックス、窒化珪素質セラミックス、窒化アルミニウム質セラミックス、炭化珪素質セラミックスまたはムライト質セラミックス等が挙げられる。 Further, the flow path member 210 in the present disclosure is mainly composed of ceramics. Further, the flow path member 210 in the present disclosure may be made of ceramics. Here, examples of the ceramics include aluminum oxide ceramics, zirconium oxide ceramics, composite ceramics of aluminum oxide and zirconium oxide, silicon nitride ceramics, aluminum nitride ceramics, silicon carbide ceramics and mulite ceramics. ..
 流路部材210が酸化アルミニウム質セラミックスを主成分とするときには、他のセラミックスと比較して材料が安価であり加工性に優れながら、流路部材210に要求される耐食性等の特性を満たす。 When the flow path member 210 contains aluminum oxide ceramic as a main component, the material is cheaper than other ceramics and the workability is excellent, but the characteristics such as corrosion resistance required for the flow path member 210 are satisfied.
 また、本開示の流路部材210である筒状体の内面213と摺動する円筒形状のプランジャ220についてもセラミックスであってよく、酸化アルミニウム質セラミックスであってもよい。 Further, the cylindrical plunger 220 that slides on the inner surface 213 of the tubular body that is the flow path member 210 of the present disclosure may also be ceramics or aluminum oxide ceramics.
<製造方法>
 次に、本開示の筒状体の製造方法について説明する。
<Manufacturing method>
Next, a method for manufacturing the tubular body of the present disclosure will be described.
 まず、酸化アルミニウム粉末、焼結助剤、イオン交換水、分散剤を用意する。そしてこれらを所望量秤量した後に、混合・粉砕することにより1次スラリーを得る。次に、得られた1次スラリーにバインダを添加・混合することにより2次スラリーを得る。その後、2次スラリーを噴霧乾燥造粒法(スプレードライ法)により噴霧乾燥して造粒することによって顆粒を得る。 First, prepare aluminum oxide powder, sintering aid, ion-exchanged water, and dispersant. Then, after weighing these in a desired amount, they are mixed and pulverized to obtain a primary slurry. Next, a binder is added to and mixed with the obtained primary slurry to obtain a secondary slurry. Then, the secondary slurry is spray-dried by a spray-drying granule method (spray-drying method) to granulate the granules to obtain granules.
 次に、得られた顆粒を用いて2つの成形体を作製する。1つは、貫通孔の中心軸に沿って水平方向に切断した断面の下側部分に相当し、もう1つは、上側部分に相当する。そして、それぞれの成形体において、2つを合わせることによって貫通孔となる部分を形成し、さらにその部分の表面に、焼成後においてRskが負となるような加工をする。具体的には、所望の表面性状の型を押し当てる加工(転写加工)を行なう。 Next, two molded bodies are prepared using the obtained granules. One corresponds to the lower portion of the cross section cut horizontally along the central axis of the through hole, and the other corresponds to the upper portion. Then, in each molded body, a portion to be a through hole is formed by combining the two, and the surface of the portion is further processed so that Rsk becomes negative after firing. Specifically, a process (transfer process) of pressing a mold having a desired surface texture is performed.
 その後、各成形体を脱脂した後、大気雰囲気中において、最高温度1500~1600℃で2~12時間保持して焼成することで、焼結体を得る。次に、公知の方法で接合することにより、セラミックスを主成分とする筒状体であり、この筒状体を構成する壁を貫通する貫通孔を有し、貫通孔の内壁面の貫通方向における粗さ曲線のスキューネスRskの値が負である筒状体を得ることができる。 After that, after degreasing each molded product, a sintered body is obtained by holding and firing at a maximum temperature of 1500 to 1600 ° C. for 2 to 12 hours in an air atmosphere. Next, by joining by a known method, it is a tubular body containing ceramics as a main component, has a through hole penetrating the wall constituting the tubular body, and has a through hole in the penetrating direction of the inner wall surface of the through hole. A tubular body having a negative skewness Rsk value of the roughness curve can be obtained.
 なお、焼結体を得た後、または、接合して筒状体とした後に、内面に関して摺動面とするための加工を行なってもよい。 After obtaining the sintered body or joining it into a tubular body, processing may be performed to make the inner surface a sliding surface.
 また、貫通孔の内壁面の貫通方向における粗さ曲線のスキューネスRskを-2以上-0.3以下とするには、焼成後において貫通孔となる部分の表面が前述したものとなる表面性状の型を用いて加工すればよい。さらに、貫通孔の内壁面の貫通方向における粗さ曲線の表面粗さRaを0.2μm以上0.4μm以下とするには、焼成後において貫通孔となる部分の表面が前述したものとなる表面性状の型を用いて加工すればよい。 Further, in order to set the skewness Rsk of the roughness curve in the penetration direction of the inner wall surface of the through hole to -2 or more and -0.3 or less, the surface of the portion to be the through hole after firing has the above-mentioned surface texture. It may be processed using a mold. Further, in order to set the surface roughness Ra of the roughness curve in the penetration direction of the inner wall surface of the through hole to 0.2 μm or more and 0.4 μm or less, the surface of the portion to be the through hole after firing is the surface described above. It may be processed using a mold of properties.
 また、貫通孔において、筒状体の外面に開口する第1孔の開口径を、筒状体の内面に開口する第2孔の開口径より大きくするには、成形体における貫通孔となる部分の形成にあたり、第1孔となる部分を第2孔となる部分より大きくすればよい。さらに、第1孔の開口径と第2孔の開口径との差を0.03mm以上とする場合も、成形体における貫通孔となる部分の形成時の加工寸法を調整すればよい。 Further, in the through hole, in order to make the opening diameter of the first hole that opens on the outer surface of the tubular body larger than the opening diameter of the second hole that opens on the inner surface of the tubular body, the portion that becomes the through hole in the molded body. In forming the above, the portion to be the first hole may be made larger than the portion to be the second hole. Further, when the difference between the opening diameter of the first hole and the opening diameter of the second hole is 0.03 mm or more, the processing dimensions at the time of forming the portion to be the through hole in the molded body may be adjusted.
 また、貫通孔の内壁面において、筒状体の内面に近い位置に突起を形成するには、成形体における貫通孔となる部分の形成にあたり、突起となる部分が残るような加工をすればよい。 Further, in order to form a protrusion on the inner wall surface of the through hole at a position close to the inner surface of the tubular body, it is sufficient to perform processing so that the portion to be the protrusion remains when forming the portion to be the through hole in the molded body. ..
 また、上記にて得られた顆粒を用いて1つの筒状の成形体を形成するとともに、かかる筒状の成形体の外面からピン状の金型を側壁に貫通させて貫通孔を形成し、貫通孔が形成された筒状の成形体を焼成することにより、本開示の筒状体を製造してもよい。 Further, one tubular molded body is formed by using the granules obtained above, and a pin-shaped mold is passed through the side wall from the outer surface of the tubular molded body to form a through hole. The tubular body of the present disclosure may be manufactured by firing a tubular molded body having through holes formed therein.
 この場合、貫通孔において、筒状体の外面に開口する第1孔の開口径を、筒状体の内面に開口する第2孔の開口径より大きくするには、ピン状の金型の形状を基端側(側壁の外面側)が太く、先端側(側壁の内面側)が細くなるようにすればよい。 In this case, in order to make the opening diameter of the first hole that opens to the outer surface of the tubular body larger than the opening diameter of the second hole that opens to the inner surface of the tubular body, the shape of the pin-shaped mold is formed. The base end side (outer surface side of the side wall) may be thicker, and the tip end side (inner surface side of the side wall) may be thinner.
 またこの場合、貫通孔の内壁面において、筒状体の内面または内面に近い位置に突起を形成するには、ピン状の金型において突起に対応する位置に凹みを配置すればよい。また、ピン状の金型において突起に対応する位置の摩擦係数(表面粗さ)を大きくしてもよい。 In this case, in order to form a protrusion on the inner wall surface of the through hole at a position close to the inner surface or the inner surface of the tubular body, a recess may be arranged at a position corresponding to the protrusion in the pin-shaped mold. Further, in the pin-shaped mold, the friction coefficient (surface roughness) at the position corresponding to the protrusion may be increased.
 またこの場合、貫通孔の内壁面において、筒状体の内面または内面に近い位置に形成される突起の幅を突起の高さよりも大きくするには、ピン状の金型において突起に対応する位置に配置される凹みの幅を凹みの高さよりも大きくすればよい。 Further, in this case, in order to make the width of the protrusion formed on the inner wall surface of the through hole at a position close to the inner surface or the inner surface of the tubular body larger than the height of the protrusion, the position corresponding to the protrusion in the pin-shaped mold. The width of the dents arranged in the dents may be made larger than the height of the dents.
 またこの場合、貫通孔の内壁面において、筒状体の外面または外面に近い位置にバリを形成するには、ピン状の金型においてバリに対応する位置に凹みを配置すればよい。また、ピン状の金型においてバリに対応する位置の摩擦係数(表面粗さ)を大きくしてもよい。 In this case, in order to form a burr on the outer surface of the tubular body or a position close to the outer surface on the inner wall surface of the through hole, a dent may be arranged at a position corresponding to the burr in the pin-shaped mold. Further, the friction coefficient (surface roughness) at the position corresponding to the burr in the pin-shaped mold may be increased.
 またこの場合、貫通孔の内壁面に形成される突起の高さをバリの高さよりも大きくするには、ピン状の金型において突起に対応する位置に配置される凹みの深さを、バリに対応する位置に配置される凹みの深さよりも大きくすればよい。 In this case, in order to make the height of the protrusion formed on the inner wall surface of the through hole larger than the height of the burr, the depth of the dent arranged at the position corresponding to the protrusion in the pin-shaped mold is changed to the burr. It may be larger than the depth of the dent arranged at the position corresponding to.
 またこの場合、貫通孔において、第1孔または第2孔の輪郭形状が楕円の一部を変形した輪郭を有するようにするためには、ピン状の金型の断面形状を楕円の一部が変形した形状にすればよい。 Further, in this case, in order for the contour shape of the first hole or the second hole to have a contour obtained by deforming a part of the ellipse in the through hole, a part of the ellipse is changed to the cross-sectional shape of the pin-shaped mold. It may be in a deformed shape.
 次に、シリンダについても製造方法の一例を記載する。上述したものと同じ顆粒を用いてプレス成形することにより、円柱形状の成形体を得る。なお、この後所望の切削加工を行なってもよい。 Next, an example of the manufacturing method for the cylinder will be described. By press molding using the same granules as described above, a cylindrical molded body is obtained. After that, a desired cutting process may be performed.
 次に、得られた成形体を脱脂することで脱脂体を作製した後、大気雰囲気中において、最高温度1500~1600℃で2~12時間保持して焼成することで、シリンダを得ることができる。なお、焼結体を得た後、外周面に関して摺動面とするための加工を行なってもよい。 Next, a cylinder can be obtained by producing a degreased body by degreasing the obtained molded body and then firing it in an air atmosphere at a maximum temperature of 1500 to 1600 ° C. for 2 to 12 hours. .. After obtaining the sintered body, processing may be performed to make the outer peripheral surface a sliding surface.
 上述した本開示の流路部材がシリンダであり、このシリンダ内を往復するプランジャを備えれば液体供給装置を得ることができる。 The flow path member of the present disclosure described above is a cylinder, and a liquid supply device can be obtained by providing a plunger that reciprocates in the cylinder.
 以下に、本開示の実施例を具体的に説明するが、本開示はこの実施例に限定されるものではない。 The examples of the present disclosure will be specifically described below, but the present disclosure is not limited to these examples.
 主成分である酸化アルミニウム粉末100質量部に、焼結助剤として、炭酸カルシウム粉末を酸化カルシウム(CaO)に換算して0.3質量部、炭酸マグネシウム粉末を酸化マグネシウム(MgO)に換算して0.6質量部、酸化珪素粉末を0.3質量部添加して、調合粉末を得た。 Converting calcium carbonate powder to calcium oxide (CaO) to 0.3 parts by mass and magnesium carbonate powder to magnesium oxide (MgO) as a sintering aid to 100 parts by mass of aluminum oxide powder, which is the main component. 0.6 parts by mass and 0.3 parts by mass of silicon oxide powder were added to obtain a mixed powder.
 次に、この調合粉末と、イオン交換水と、分散剤とをボールミルに入れ、混合・粉砕して1次スラリーを作製した。次に、バインダとして、アクリル樹脂、ポリエチレングリコールの水溶液を1次スラリーに添加し、混合して2次スラリーを作製した。次に、噴霧乾燥機を用いて2次スラリーを噴霧乾燥することにより、顆粒を作製した。 Next, this mixed powder, ion-exchanged water, and a dispersant were put into a ball mill, mixed and pulverized to prepare a primary slurry. Next, as a binder, an aqueous solution of acrylic resin and polyethylene glycol was added to the primary slurry and mixed to prepare a secondary slurry. Next, granules were prepared by spray-drying the secondary slurry using a spray dryer.
 そして、顆粒を円柱形状にプレス成形し、直径が9.8mmであり、長さが30mmであるプランジャとなる成形体を得た。 Then, the granules were press-molded into a cylindrical shape to obtain a molded product having a diameter of 9.8 mm and a length of 30 mm as a plunger.
 次に、シリンダ用の成形体は、貫通孔の中心軸に沿って水平方向に切断した断面の下側部分(下部成形体)と上側部分(上部成形体)とを別々にプレス成形した。下部成形体には、貫通孔の下側半分が位置し、上部成形体には、貫通孔の上側半分が位置する。そして、成形体における貫通孔の表面には、焼成後にRskが負となる加工を施した。具体的には、成形体における貫通孔の表面にあたる部分の型の表面性状を所望の表面性状とし、成形にあたって、上記表面性状を押し当てる加工(転写加工)を行なった。 Next, in the molded body for the cylinder, the lower part (lower molded body) and the upper part (upper molded body) of the cross section cut in the horizontal direction along the central axis of the through hole were separately press-molded. The lower half of the through hole is located in the lower molded body, and the upper half of the through hole is located in the upper molded body. Then, the surface of the through hole in the molded product was processed so that Rsk became negative after firing. Specifically, the surface texture of the mold of the portion corresponding to the surface of the through hole in the molded body was set to the desired surface texture, and the above-mentioned surface texture was pressed against the molded body (transfer processing).
 次に、各成形体を脱脂した後、大気雰囲気中において、最高温度1550℃で4時間保持して焼成することにより、酸化アルミニウム質セラミックスを主成分とするプランジャ、シリンダの上部、シリンダの下部を得た。そして、シリンダの上部と下部を公知の方法で接合した。接合後のシリンダの寸法は、外径が12mm、内径が8mm、長さが16mmである。プランジャは、外径が7.95mmとなるように加工した。シリンダにおける貫通孔は、接合後に直径1.5mmとなるように加工した。貫通孔の位置は、その中心がシリンダの一方端面から4mm離れた位置とした。貫通孔の開口径D1,開口径D2は同じ値とした。以上のような方法で、複数のプランジャと、貫通孔の表面性状の異なるシリンダを作製した。 Next, after degreasing each molded product, the plunger, the upper part of the cylinder, and the lower part of the cylinder, which are mainly composed of aluminum oxide ceramics, are fired by holding and firing at a maximum temperature of 1550 ° C. for 4 hours in an air atmosphere. Obtained. Then, the upper part and the lower part of the cylinder were joined by a known method. The dimensions of the cylinder after joining are 12 mm in outer diameter, 8 mm in inner diameter, and 16 mm in length. The plunger was processed so that the outer diameter was 7.95 mm. The through hole in the cylinder was machined to have a diameter of 1.5 mm after joining. The position of the through hole was such that its center was 4 mm away from one end surface of the cylinder. The opening diameter D1 and the opening diameter D2 of the through hole were set to the same value. By the above method, a plurality of plungers and cylinders having different surface textures of through holes were produced.
 そして、作製したシリンダの貫通孔の表面について、Rskの測定を行なった。この測定は、JIS B0601(2001)に準じて測定し、測定条件は、カットオフ種別をガウシアン、傾斜補正は最小二乗直線補正を用い、測定長さ1.0mm、カットオフ波長0.8mm、測定速度0.15mm/秒とした。 Then, Rsk was measured on the surface of the through hole of the manufactured cylinder. This measurement is performed according to JIS B0601 (2001), and the measurement conditions are Gaussian for the cutoff type and least squares straight line correction for the tilt correction, with a measurement length of 1.0 mm and a cutoff wavelength of 0.8 mm. The speed was 0.15 mm / sec.
 次に、図11に示す液体供給装置に各プランジャおよび各シリンダを設置し、液体の吐出を実施し、付着量の確認を行なった。 Next, each plunger and each cylinder were installed in the liquid supply device shown in FIG. 11, the liquid was discharged, and the amount of adhesion was confirmed.
 液体としては、炭酸飲料のシロップ(原液:pH2.2、溶液量:100ml)を用いた。また、吐出に関しては、毎分20回の割合で吐出し、これを20時間繰り返した。付着量の確認は、シリンダにおける吐出前の質量(M1)と、吐出後の質量(M2)とを測定し、変化率ΔM(%)を{(M2-M1)/M1}×100(%)により求めた。 As the liquid, a carbonated drink syrup (stock solution: pH 2.2, solution amount: 100 ml) was used. As for the discharge, the discharge was performed at a rate of 20 times per minute, and this was repeated for 20 hours. To confirm the amount of adhesion, measure the mass (M1) before discharge and the mass (M2) after discharge in the cylinder, and set the rate of change ΔM (%) to {(M2-M1) / M1} × 100 (%). Obtained by.
 シリンダにおけるRskは、-3、-2、-1、-0.3、-0.1,1の6種類で確認を行なった結果、Rskが負であった試料は、Rskが正であった試料のΔMの半分程度の値であり、Rskが負であることにより付着量が少ないことが確認された。また、Rskが負である試料の中でも、Rskが-2、-1、-0.3の試料のΔMが小さいことが確認された。 As a result of confirming the Rsk in the cylinder with 6 types of -3, -2, -1, -0.3, -0.1, 1, the sample having a negative Rsk had a positive Rsk. It was about half the value of ΔM of the sample, and it was confirmed that the amount of adhesion was small because Rsk was negative. Further, it was confirmed that among the samples having a negative Rsk, the ΔM of the sample having an Rsk of -2, -1, and -0.3 was small.
 次に、成形体における貫通孔の表面にあたる部分の型の表面性状を異ならせ、Rskを-1とし、Raが0.1μm、0.2μm、0.4μm、0.6μmとなるシリンダを作製した。なお、成形体における貫通孔の表面にあたる部分の型の表面性状を異ならせたこと以外は、実施例1と同様にして試料を作製し、実施例1と同様の評価を行なった。なお、Rskが-1であり、Raが0.6である試料は、実施例1におけるRskが-1の試料と同じものである。 Next, the surface texture of the mold of the portion corresponding to the surface of the through hole in the molded body was changed to prepare a cylinder in which Rsk was -1 and Ra was 0.1 μm, 0.2 μm, 0.4 μm, and 0.6 μm. .. A sample was prepared in the same manner as in Example 1 except that the surface texture of the mold of the portion corresponding to the surface of the through hole in the molded product was different, and the same evaluation as in Example 1 was performed. The sample having Rsk of -1 and Ra of 0.6 is the same as the sample having Rsk of -1 in Example 1.
 結果、4つの試料のうち、Raが0.2μmおよび0.4μmの試料のΔMが小さいことが確認された。 As a result, it was confirmed that among the four samples, the ΔM of the samples with Ra of 0.2 μm and 0.4 μm was small.
 次に、貫通孔の開口径D1と開口径D2が同じ試料と、開口径D1が開口径D2よりも大きい試料と、開口径D1が開口径D2よりも大きく、開口径D2に近い位置に突起を有する試料とを作製した。なお、それぞれにおける貫通孔の表面のRskは-1、Raは0.4μmとした。そして、実施例1と同様の評価を行なった。結果、開口径D1が開口径D2よりも大きい試料は、開口径D1と開口径D2が同じ試料よりもΔMが小さかった。また、開口径D1が開口径D2よりも大きく、開口径D2に近い位置に突起を有する試料は、突起を有していない試料よりもΔMが小さかった。 Next, a sample having the same opening diameter D1 and an opening diameter D2 of the through hole, a sample having an opening diameter D1 larger than the opening diameter D2, and a protrusion having an opening diameter D1 larger than the opening diameter D2 and close to the opening diameter D2. A sample having the above was prepared. The Rsk of the surface of the through hole in each was -1, and Ra was 0.4 μm. Then, the same evaluation as in Example 1 was performed. As a result, the sample having the opening diameter D1 larger than the opening diameter D2 had a smaller ΔM than the sample having the same opening diameter D1 and the opening diameter D2. Further, the sample having an opening diameter D1 larger than the opening diameter D2 and having a protrusion at a position close to the opening diameter D2 had a smaller ΔM than the sample having no protrusion.
 なお、本開示は上述の実施形態に限定されるものではなく、本開示の要旨を逸脱しない範囲において種々の変更、改良等が可能である。また、本開示では、異なる実施形態にわたる構成要素を適宜組み合わせてもよい。 Note that the present disclosure is not limited to the above-described embodiment, and various changes, improvements, etc. can be made without departing from the gist of the present disclosure. Further, in the present disclosure, components over different embodiments may be appropriately combined.
 10  配線部材(筒状体の一例)
 12  貫通孔
 12c 内壁面
 13  内面
 14  外面
 17  側壁(壁の一例)
 21  第1孔
 22  第2孔
 23  突起
 24  バリ
 120 流路部材(筒状体の一例)
 121 壁
 122 貫通孔
 123 内面
 124 外面
 210 流路部材(筒状体の一例)
 212 貫通孔
 213 内面
 214 外面
 217 側壁(壁の一例)
 C   重心
 D1、D2 開口径
 VL  仮想線分
 L1  幅
 H1、H2 高さ
 S1~S4 図形
10 Wiring member (example of tubular body)
12 Through hole 12c Inner wall surface 13 Inner surface 14 Outer surface 17 Side wall (example of wall)
21 1st hole 22 2nd hole 23 Protrusion 24 Bali 120 Flow path member (example of tubular body)
121 Wall 122 Through hole 123 Inner surface 124 Outer surface 210 Flow path member (example of tubular body)
212 Through hole 213 Inner surface 214 Outer surface 217 Side wall (example of wall)
C Center of gravity D1, D2 Opening diameter VL Virtual line segment L1 Width H1, H2 Height S1 to S4 Graphic

Claims (12)

  1.  セラミックスを主成分とする筒状体であり、
     前記筒状体を構成する壁を貫通する貫通孔を有し、
     前記貫通孔は、前記筒状体の外面に開口する第1孔および前記筒状体の内面に開口する第2孔を有し、
     前記第1孔の開口径は、前記第2孔の開口径よりも大きい、
     筒状体。
    It is a tubular body whose main component is ceramics.
    It has a through hole that penetrates the wall that constitutes the tubular body, and has a through hole.
    The through hole has a first hole that opens on the outer surface of the tubular body and a second hole that opens on the inner surface of the tubular body.
    The opening diameter of the first hole is larger than the opening diameter of the second hole.
    Cylindrical body.
  2.  前記第1孔および前記第2孔の少なくとも一方の輪郭は、前記輪郭の重心を通り互いに直交する2つの仮想線分を引いたときに、前記輪郭と前記仮想線分で形成される4つの図形のうち少なくとも1つが他の図形と面積が異なる、
     請求項1に記載の筒状体。
    The contour of at least one of the first hole and the second hole is a four figure formed by the contour and the virtual line segment when two virtual line segments orthogonal to each other are drawn through the center of gravity of the contour. At least one of them has a different area from the other figures,
    The tubular body according to claim 1.
  3.  前記貫通孔の内壁面は、前記筒状体の内面または内面に近い位置に突起を有する、
     請求項1または2に記載の筒状体。
    The inner wall surface of the through hole has protrusions on the inner surface or a position close to the inner surface of the tubular body.
    The tubular body according to claim 1 or 2.
  4.  前記突起の幅をL1、前記突起の高さをH1とするとき、L1がH1よりも大きい、
     請求項3に記載の筒状体。
    When the width of the protrusion is L1 and the height of the protrusion is H1, L1 is larger than H1.
    The tubular body according to claim 3.
  5.  前記突起の先端部は、波打った輪郭形状を有する、
     請求項3または4に記載の筒状体。
    The tip of the protrusion has a wavy contour shape.
    The tubular body according to claim 3 or 4.
  6.  前記貫通孔の内壁面は、前記筒状体の外面または外面に近い位置にバリを有する、
     請求項3~5のいずれか一つに記載の筒状体。
    The inner wall surface of the through hole has a burr on the outer surface of the tubular body or at a position close to the outer surface.
    The tubular body according to any one of claims 3 to 5.
  7.  前記突起の高さH1は、前記バリの高さH2よりも大きい、
     請求項6に記載の筒状体。
    The height H1 of the protrusion is larger than the height H2 of the burr.
    The tubular body according to claim 6.
  8.  前記貫通孔の内壁面は、貫通方向における粗さ曲線のスキューネスRskの値が負である、
     請求項1~7のいずれか一つに記載の筒状体。
    The inner wall surface of the through hole has a negative skewness Rsk value of the roughness curve in the penetration direction.
    The tubular body according to any one of claims 1 to 7.
  9.  前記粗さ曲線のスキューネスRskは、-2以上-0.3以下である、
     請求項8に記載の筒状体。
    The skewness Rsk of the roughness curve is -2 or more and -0.3 or less.
    The tubular body according to claim 8.
  10.  前記貫通孔の内壁面は、貫通方向における粗さ曲線の表面粗さRaが0.2μm以上0.4μm以下である、
     請求項1~9のいずれか一つに記載の筒状体。
    The inner wall surface of the through hole has a surface roughness Ra of a roughness curve in the penetration direction of 0.2 μm or more and 0.4 μm or less.
    The tubular body according to any one of claims 1 to 9.
  11.  請求項1~10のいずれか一つに記載の筒状体を用いた配線部材。 A wiring member using the tubular body according to any one of claims 1 to 10.
  12.  請求項1~10のいずれか一つに記載の筒状体を用いた流路部材。 A flow path member using the tubular body according to any one of claims 1 to 10.
PCT/JP2020/031893 2019-08-29 2020-08-24 Tubular body, wiring member, and channel member WO2021039742A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2021542903A JPWO2021039742A1 (en) 2019-08-29 2020-08-24

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2019-156960 2019-08-29
JP2019156960 2019-08-29

Publications (1)

Publication Number Publication Date
WO2021039742A1 true WO2021039742A1 (en) 2021-03-04

Family

ID=74684194

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/031893 WO2021039742A1 (en) 2019-08-29 2020-08-24 Tubular body, wiring member, and channel member

Country Status (2)

Country Link
JP (1) JPWO2021039742A1 (en)
WO (1) WO2021039742A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022107613A1 (en) * 2020-11-17 2022-05-27 京セラ株式会社 Cylindrical body, wiring member, and flow path member
WO2022210427A1 (en) * 2021-03-30 2022-10-06 京セラ株式会社 Bottomed cylindrical body

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58179574A (en) * 1981-12-23 1983-10-20 ロベ−ル・プリユニエ Guide pipe for filler metal wire of welder
JP2005526938A (en) * 2002-05-22 2005-09-08 ジ・アンスパッチ・エフォート・インコーポレーテッド ball bearing
JP2013255789A (en) * 2012-05-15 2013-12-26 Ibaraki Univ Body insertion tube self-adhering to tissue, and method for adhering the body insertion tube to body organ tissue
CN206600567U (en) * 2017-03-24 2017-10-31 广州新勇隆专用设备零配件有限公司 A kind of ceramic expects pipe

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58179574A (en) * 1981-12-23 1983-10-20 ロベ−ル・プリユニエ Guide pipe for filler metal wire of welder
JP2005526938A (en) * 2002-05-22 2005-09-08 ジ・アンスパッチ・エフォート・インコーポレーテッド ball bearing
JP2013255789A (en) * 2012-05-15 2013-12-26 Ibaraki Univ Body insertion tube self-adhering to tissue, and method for adhering the body insertion tube to body organ tissue
CN206600567U (en) * 2017-03-24 2017-10-31 广州新勇隆专用设备零配件有限公司 A kind of ceramic expects pipe

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022107613A1 (en) * 2020-11-17 2022-05-27 京セラ株式会社 Cylindrical body, wiring member, and flow path member
WO2022210427A1 (en) * 2021-03-30 2022-10-06 京セラ株式会社 Bottomed cylindrical body

Also Published As

Publication number Publication date
JPWO2021039742A1 (en) 2021-03-04

Similar Documents

Publication Publication Date Title
WO2021039742A1 (en) Tubular body, wiring member, and channel member
CN102620492B (en) Expansion valve
JP5807850B2 (en) Cermet, cermet manufacturing method, and cutting tool
EP2660071B1 (en) Ball pen tip and ball pen using same
KR20160006213A (en) Cermet and cutting tool
WO2014156447A1 (en) Surface-coated boron nitride sintered tool
US20200291951A1 (en) Pump housing made from at least three different sinterable materials
JP2010201551A (en) Carbide drill with fluid supply hole
WO2022163779A1 (en) Void fraction sensor, flowmeter employing same, and cryogenic liquid transfer tube
JP2015051571A (en) Ball point pen
JP6712652B2 (en) Corrosion resistant material
US11999660B2 (en) Ceramic joined body and method for manufacturing same
KR101217580B1 (en) Sliding member, mechanical seal ring, mechanical seal, and faucet valve
EP3375562A1 (en) Blank for shaft milling cutter
CN107020569A (en) A kind of stainless steel capillary polishes special fixture
WO2022107613A1 (en) Cylindrical body, wiring member, and flow path member
CN101674908A (en) Powder compact, sintered bearing, and process for producing the same
CN1936393A (en) Ceramic-pipe type rotary plug valve and mfg. process
WO2020241703A1 (en) Flow path member
CN107429350B (en) Heat-resistant sintered material having excellent oxidation resistance, high-temperature wear resistance, and salt corrosion resistance, and method for producing same
JP2009132591A (en) Abrasion resistant ceramic, sliding member, and pump
JP2009132590A (en) Machinable ceramic, sliding member, and pump
JP5734108B2 (en) Drill blanks and drills
JPWO2019163782A1 (en) Pump components and plungers
JP2011025388A (en) Cermet sintered body and cutting tool

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20857331

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2021542903

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20857331

Country of ref document: EP

Kind code of ref document: A1