WO2021039681A1 - Method for fractionating soybean proteins - Google Patents

Method for fractionating soybean proteins Download PDF

Info

Publication number
WO2021039681A1
WO2021039681A1 PCT/JP2020/031755 JP2020031755W WO2021039681A1 WO 2021039681 A1 WO2021039681 A1 WO 2021039681A1 JP 2020031755 W JP2020031755 W JP 2020031755W WO 2021039681 A1 WO2021039681 A1 WO 2021039681A1
Authority
WO
WIPO (PCT)
Prior art keywords
layer
protein
soybean
aqueous layer
fraction
Prior art date
Application number
PCT/JP2020/031755
Other languages
French (fr)
Japanese (ja)
Inventor
将宏 杉山
佐本 将彦
康生 松村
健太郎 松宮
Original Assignee
不二製油グループ本社株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 不二製油グループ本社株式会社 filed Critical 不二製油グループ本社株式会社
Priority to JP2021542867A priority Critical patent/JPWO2021039681A1/ja
Publication of WO2021039681A1 publication Critical patent/WO2021039681A1/en

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A23FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
    • A23JPROTEIN COMPOSITIONS FOR FOODSTUFFS; WORKING-UP PROTEINS FOR FOODSTUFFS; PHOSPHATIDE COMPOSITIONS FOR FOODSTUFFS
    • A23J3/00Working-up of proteins for foodstuffs
    • A23J3/14Vegetable proteins
    • A23J3/16Vegetable proteins from soybean
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K1/00General methods for the preparation of peptides, i.e. processes for the organic chemical preparation of peptides or proteins of any length
    • C07K1/14Extraction; Separation; Purification
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K14/00Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
    • C07K14/415Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from plants
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/48Biological material, e.g. blood, urine; Haemocytometers
    • G01N33/50Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
    • G01N33/68Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing involving proteins, peptides or amino acids

Definitions

  • the present invention relates to a method for fractionating soybean protein.
  • the present invention also relates to a method for analyzing protein composition in soybean. Furthermore, it also relates to an evaluation method for soybean varieties and the like by determining the protein composition ratio in soybean seeds. Furthermore, the present invention also relates to soybean protein products obtained by fractionation.
  • Soy protein is widely used to improve the physical characteristics of foods due to its unique gelling power, and its use as a highly nutritious health food material is increasing.
  • the stored protein of soybeans precipitates at around pH 4.5, and can be relatively easily divided into an acid-soluble protein fraction mainly composed of soluble components other than the stored protein and an acid-precipitating protein fraction mainly composed of stored protein. ..
  • the isolated soybean protein is obtained by recovering this acid-precipitating protein fraction, and is currently widely used in the food industry.
  • the proteins that make up soybean protein are also classified into 2S, 7S, 11S, and 15S globulin based on the sedimentation coefficient by ultracentrifugation analysis.
  • 7S globulin and 11S globulin are the main constituent protein components of the globulin fraction.
  • ⁇ -conglycinin in the immunological nomenclature is substantially equivalent to 7S globulin
  • glycinin is substantially equivalent to 11S globulin.
  • the proteins that make up soybean protein have different properties in terms of physical properties such as viscosity, coagulation, and surface activity, as well as nutritional and physiological functions.
  • 7S globulin has been reported to reduce triglyceride in blood (Non-Patent Document 1).
  • 11S globulin has a high gelling power and is said to control the hardness and texture of tofu gel.
  • soybean-derived proteins include proteins with high affinity for polar lipids that make up biological membranes such as protein bodies and oil bodies, which account for about 35% of industrially produced isolated soybean proteins. It has been reported that it occupies (Non-Patent Documents 2 and 3).
  • Patent Document 1 a method of preparing an antibody of a specific protein and quantifying it by an antigen-antibody reaction, a method of evaluating it by protein staining after electrophoresis, and the like.
  • the antigen-antibody reaction is based on the reaction of only a specific protein recognized by the antibody, and there is a problem that the quantitativeness and reproducibility are lowered when the reaction becomes unstable.
  • protein staining by electrophoresis also has a problem that it is difficult to quantify when the degree of staining differs depending on the type of protein or when innumerable bands are present.
  • Patent Document 2 This is a method that can grasp the overall protein composition, although it is an approximation, unlike the molecular species research of a specific protein. Moreover, since it is a nitrogen analysis, it is highly reliable in terms of reproducibility and quantitativeness. However, although there are cases where this method is used to report the protein composition of a part of soybean, a method of extracting and fractionating almost all the proteins in soybean seeds has not been reported so far.
  • the protein composition ratio contained in soybean seeds has not been clarified so far.
  • the analysis of the crude protein mass contained in soybean seeds is the main, and although there are some analysis examples by electrophoresis, it is insufficient to determine the content ratio due to the presence of proteins that are difficult to stain such as LP.
  • soybean varieties lacking a specific protein molecular species have been developed by breeding, etc., but there is a problem that it is difficult to accurately analyze how the protein composition has changed due to the deletion. For example, when producing a variety containing a large amount of a specific target protein in soybean, it is difficult to select and breed seeds unless it is possible to evaluate how the overall composition ratio changes due to deletion other than the target.
  • an evaluation method that can be an accurate and efficient index for evaluation and selection of soybean varieties and breeding of soybean varieties as a future target is required.
  • soybean seeds protein extraction in soybean seeds is performed by suspending in an aqueous solution. Since lipids are also present in soybean seeds, emulsification occurs at the same time that proteins are extracted. When emulsification occurs, it becomes difficult to make a difference in the dissolution behavior peculiar to proteins. There is also a method of using defatted soybeans as a raw material, but when removing lipids, some proteins are denatured, which changes the dissolution behavior and lowers the fractionation accuracy. Therefore, an accurate protein composition ratio in soybeans is obtained. It becomes difficult. There is also a method of denaturing soybean protein to change the dissolution behavior and then fractionating, but there is a problem that the extraction rate is lowered due to the denaturation of the protein.
  • the conventional method 7S, 11S, LP and whey fractions can be separated.
  • the 7S and 11S proteins have a strong gelling power and are almost tasteless, while the LP protein shows only a weak gelling power but has a tofu-like richness.
  • soybeans contain a wide variety of proteins such as stored proteins such as 7S and 11S and whey proteins, as well as polar lipid-associated proteins including oil body-associated proteins and membrane proteins. If it becomes possible to extract and further fractionate most of the proteins in soybeans, it will be possible to obtain protein materials with various functional characteristics, and it will be possible to evaluate the suitability of individual soybean proteins. , Soybean varieties can be evaluated.
  • One of the objects of the present invention is to provide a method for fractionating soybean protein from soybean seeds. Another object of the present invention is to provide a method for analyzing the protein composition in soybean seeds. A more specific purpose is to provide a method for evaluating soybean varieties and the like by determining the protein composition ratio in soybean seeds.
  • soy protein is extracted using a solvent having high ionic strength as a means for suppressing emulsification of undenatured soy protein with lipid. , Found that most of the soy protein can be fractionated. More specifically, soy protein is extracted using a solvent with high ionic strength, separated into an oil layer, an intermediate layer, and a precipitation layer by solid-liquid separation, and then the intermediate layer is acid-diluted and solid-liquid separated into an aqueous layer.
  • the present invention (1) The following steps: (A) Prepare a soybean raw material having a lipid content of 15% by weight or more and a water-soluble nitrogen index (NSI) of 80 or more per dry matter; (B) A solvent having an ionic strength of 1.5 mol / L or more is added to the soybean raw material to extract the protein; (C) The extracted protein is solid-liquid separated and separated into an oil layer (O), an intermediate layer (M), and a precipitation layer (R); (D) Acid is added to the intermediate layer (M) to lower the pH to 6 or less; (E) The pH-lowered intermediate layer (M) is solid-liquid separated and separated into an aqueous layer (MA) and a precipitated layer (MR); (F) Dilute the aqueous layer (MA) with water; (G) The diluted aqueous layer (MA) is solid-liquid separated and separated into an aqueous layer (W) and a precipitated layer (G); Soy protein fractionation method, including (2) Between steps (C) and (D), the
  • (1) which further includes (3) After step (G), the following steps: (D) Dilute the aqueous layer (W) obtained in step (G) with water; (E) The diluted aqueous layer (W) is solid-liquid separated and separated into an aqueous layer (W2) and a precipitation layer (WG).
  • a method for analyzing a protein composition in soybean which comprises measuring the protein mass of a fraction obtained by any of the methods (1) to (7).
  • Soybeans which include obtaining the protein composition ratio in soybean seeds by measuring the protein mass of each fraction obtained by any of the methods (1) to (7) from the soybean seed raw material. Variety evaluation method, Regarding.
  • soybean protein in undenatured soybean seeds containing lipid can be separated into four fractions: oil body-associated protein (OBAP), polar lipid-associated protein (PLAP), whey protein, and globulin. .. Further, the globulin can be separated into a total of 5 fractions by separating each of the 7S globulin and 11S globulin fractions.
  • OBAP oil body-associated protein
  • PLAP polar lipid-associated protein
  • whey protein globulin. ..
  • the globulin can be separated into a total of 5 fractions by separating each of the 7S globulin and 11S globulin fractions.
  • the present invention makes it possible to efficiently select soybean varieties suitable for the quality required for soybean products.
  • the method of the present invention can also be used as a method for evaluating soybean varieties for breeding soybean varieties having a characteristic protein composition and for producing soybean varieties by genome editing.
  • the method of the present invention can recover almost all proteins from unmodified soybean raw materials in a fractionated state, so that soybean protein products having various functional characteristics can be obtained. It can be used for the development of various foods and drinks.
  • FIG. It is a figure which shows the process of Example 1.
  • FIG. It is a figure which shows the process of Example 2.
  • FIG. It is a figure which shows the SDS-PAGE result of each fraction fractionated by the method of Example 2 using the seed of the soybean variety Fukuyutaka as a soybean raw material.
  • Lane M molecular weight marker
  • front initial solution sample
  • O OBAP fraction
  • P PLAP fraction
  • W whey fraction
  • G globulin fraction (7S, 11S mixture).
  • LOX Lipoxygenase. It is a figure which shows the SDS-PAGE result of Example 3.
  • Lane M Molecular weight marker, 1: Ionic strength 1.2 mol / L 2: Ionic strength 0.6 mol / L 3: Ionic strength 0.4 mol / L 4: Ionic strength 0.3 mol / L 5, 5: Ionic strength 0.24 mol / L, 6: Ionic strength 0.2 mol / L, 7: Ionic strength 0.15 mol / L, 8: Ionic strength 0.12 mol / L, 9: Ionic strength 0.09 mol / L, 10: Ionic strength 0.075 mol / L, 11: Ionic strength 0.06 mol / L, 12: Ionic strength 0.045 mol / L, 13: Ionic strength 0.03 mol / L, 14: Ionic strength 3 mol / L (without dilution). It is a figure which shows the process of Example 4. It is a figure which shows the protein composition of each variety soybean fractionated by the method of this invention.
  • food and drink refers to all foods including beverages, and is also simply described as “food”. That is, the term “food” includes beverages, unless otherwise specified as “excluding beverages”.
  • the term "about” means a range of ⁇ 10%, preferably ⁇ 5%.
  • the numerical value that becomes the boundary value of the range is considered to be described in the present specification.
  • 7S globulin is also called ⁇ -conglycinin, and is generally a glycoprotein composed of three types of subunits ( ⁇ ', ⁇ , ⁇ ), and any of the subunits is used. It may be missing. These subunits are randomly combined to form a trimer.
  • the isoelectric point is around pH 4.8 and the molecular weight is about 170,000. Hereinafter, it may be simply abbreviated as "7S".
  • 11S globulin is also called glycinin, and acidic subunits and basic subunits are bound by disulfide bonds to form a dimer in which 6 molecules are collected.
  • the molecular weight is about 360,000.
  • it may be simply abbreviated as "11S”.
  • globulin When simply referred to as “globulin” in the present specification, it means a mixture in which 7S and 11S are not fractionated, or a general term for 7S and 11S.
  • lipophilic Proteins refers to a group of minor acid-precipitating soybean proteins other than 7S and 11S among the acid-precipitating soybean proteins of soybean, such as lecithin and glycolipid. It is accompanied by a large amount of polar lipids. Hereinafter, it may be simply abbreviated as "LP".
  • This LP contains proteins showing mainly about 34 kDa, about 24 kDa, and about 18 kDa in the estimated molecular weight by SDS-polyacrylamide gel electrophoresis, lipoxygenase, ⁇ -conglycinin, and many other miscellaneous proteins.
  • the "oil body associated protein” (Oil Body Associated Proteins) includes a large amount of oleosin contained in the membrane of the oil body, 34 kDa protein which is an allergen protein, etc. among the proteins contained as LP.
  • OBAP Hydrophobic proteins that are highly associated with lipids. Hereinafter, this may be simply abbreviated as "OBAP”.
  • Poly Lipid Associated Proteins refers to proteins contained as LP, which are more polar than OBAP and are mainly contained in cell membranes and protein body membranes. It refers to a group of proteins that are highly associated with polar lipids and contain a large amount of such substances. It is characterized by containing about 40 kDa of protein. Hereinafter, this may be simply abbreviated as "PLAP”.
  • whey protein refers to a group of proteins that are soluble at an acidic pH near pH 4.5. It contains about 93 kDa protein and about 54 kDa protein. Hereinafter, this may be simply abbreviated as “whey”.
  • the estimated molecular weight of the protein is a molecular weight marker (product name: "Precision Plus”) in SDS-PAGE using a commercially available ready-made gel (product name: "e-pagel 12.5%", manufactured by Atto Co., Ltd.). It can be calculated based on the mobility of "Protein (registered trademark) 2-color standard” manufactured by Bio-Rad.
  • soybean product refers to processed foods made from soybean itself, soybean protein material, processed foods to which soybean protein material is added, and the like.
  • Specific embodiments include traditional foods such as tofu, soy milk, natto, fried tofu skin, yuba, miso, and soy sauce.
  • Other embodiments include soybean protein materials such as soybean powder, soymilk powder, concentrated soybean protein, separated soybean protein, and texture used as raw materials for various processed foods.
  • various processed foods to which the soybean protein material is added can be mentioned.
  • the type of processed food is not limited, but includes, for example, processed meat foods such as ham, sausage, and hamburger, health foods such as protein powder and protein beverages, plant-based cheese-like foods, and plant-based meat-like foods.
  • the present invention provides a method for fractionating soybean protein.
  • the soybean raw material used in this embodiment is an unmodified or low-modified greasy soybean raw material. More specifically, it is a fat-containing soybean raw material having a water-soluble nitrogen index (NSI) of about 80 or more, for example, about 83 or more, about 85 or more, about 88 or more, about 90 or more, about 93 or more, about 95 or more. ..
  • the soybean raw material used in this embodiment is preferably a non-defatted fat-containing soybean raw material.
  • a soybean raw material having a lipid content of about 90% or more, for example, about 95% or more of the normal lipid content of a soybean variety used as a soybean raw material can be mentioned.
  • a fat-containing soybean raw material having a lipid content per dry matter of about 13% by weight or more, for example, about 15% by weight or more and about 20% by weight or more is preferable.
  • NSI can be expressed by the ratio (% by weight) of water-soluble nitrogen (crude protein) to the total amount of nitrogen based on a predetermined method, and in this specification, it is the value measured based on the following method. To do. That is, 100 ml of water is added to 2.0 g of the sample, the mixture is stirred and extracted at 40 ° C. for 60 minutes, and centrifuged at 1400 ⁇ g for 10 minutes to obtain supernatant 1. 100 ml of water is added to the remaining precipitate again, and the mixture is stirred and extracted at 40 ° C. for 60 minutes and centrifuged at 1400 ⁇ g for 10 minutes to obtain supernatant 2.
  • the supernatant 1 and the supernatant 2 are combined, and water is further added to make 250 ml. No.
  • the nitrogen content of the filtrate is measured by the Kjeldahl method.
  • the nitrogen content in the sample was measured by the Kjeldahl method, and the ratio of nitrogen (water-soluble nitrogen) recovered as a filtrate to the total nitrogen in the sample expressed as% by weight is defined as NSI.
  • the form of the soybean raw material used in this embodiment is not particularly limited, and may be, for example, whole soybean, half-cracked soybean, glitz, or powder.
  • the solvent used for extracting the protein from the soybean raw material preferably has an ionic strength of about 1.5 mol / L or more, for example, about 2 mol / L or more, about 2.3 mol / L or more, and about 2 Solvents of .5 mol / L or more and about 3 mol / L or more can be mentioned.
  • the upper limit of the ionic strength is not particularly limited, and examples thereof include about 10 mol / L or less, about 7 mol / L or less, and about 5 mol / L or less.
  • the type of salt added to adjust the ionic strength is not particularly limited, and examples thereof include inorganic acid salts, organic acid salts, and alkali metal salts.
  • hydrochlorides, sulfates, phosphates, nitrates, acetates, sodium salts, potassium salts and the like can be mentioned.
  • sodium chloride, potassium chloride, sodium sulfate, potassium sulfate, sodium phosphate, potassium phosphate, sodium nitrate, potassium nitrate, sodium acetate, potassium acetate and the like can be mentioned.
  • the pH of the solvent is not particularly limited, and examples thereof include about 6 to about 10, about 7 to about 9, and about 8.
  • the amount of the solvent used for extraction is not particularly limited, and is, for example, about 3 to about 20 times by weight, about 4 to about 15 times by weight, about 6 to about 12 times by weight, and about 7 to about 10 times by weight of the soybean raw material.
  • the degree can be mentioned. The larger the amount of the solvent, the higher the extraction rate of the water-soluble component and the better the separation, but if the amount is too large, concentration is required and the cost is high.
  • Extraction time and temperature are not particularly limited. Examples of extraction time are about 1 minute to about 10 hours, about 10 minutes to about 2 hours, for example, about 5 minutes or more, about 10 minutes or more, about 15 minutes or more, about 20 minutes or more, about 30 minutes or more, about 1 Time or more, about 90 minutes or more, and the like. Examples of the extraction temperature include about 4 to about 50 ° C., about 10 to about 30 ° C., room temperature, and the like.
  • stirring may be performed.
  • the stirring speed may be, for example, about 100 to 5000 rpm.
  • a reducing agent may be added to the solvent used for extraction. It is considered that the addition of the reducing agent cleaves the disulfide bond of the soybean protein and further improves the extraction rate.
  • the type of reducing agent is not particularly limited, but for example, sodium sulfite, sodium hydrogen sulfite, chlorine, nitrogen trichloride, ammonium persulfide, sodium chlorite, mercaptoethanol, N-acetyl-L-cysteine, dithiotreiol, tributylphosphine. And so on.
  • the concentration of the reducing agent is not particularly limited, but is, for example, about 0.03%, about 0.05%, about 0.1%, about 0.3%, about 0.5%, about 0.01 to 1%, about. 0.03 to 0.5% and the like can be mentioned.
  • the suspension from the soybean raw material is separated into solid and liquid by centrifugation, filtration or the like.
  • the soybean extract is separated into an oil layer (O), an intermediate layer (M), and a precipitation layer (R).
  • a centrifuge It is preferable to use a centrifuge as the solid-liquid separation.
  • the conditions for centrifugation are not limited, and examples thereof include about 500 to about 1200,000 ⁇ g, about 1,000 to about 800,000 ⁇ g, about 5,000 to about 50,000 ⁇ g, and about 18,000 ⁇ g.
  • the time for centrifugation is also not limited, and examples thereof include about 1 minute to about 20 minutes, about 1.5 minutes to about 15 minutes, about 2.5 minutes to about 10 minutes, and about 5 minutes.
  • the oil reservoir (O) obtained by the above extraction may be recovered as it is as an OBAP fraction.
  • the oil layer (O) may be washed by adding a solvent having the ionic strength specified in the solvent used for extracting the protein from the soybean raw material.
  • the solvent used for washing may be the same as or different from the solvent used for extracting the protein from the soybean raw material.
  • the conditions regarding the solvent, the amount of the solvent, the washing time, the temperature, and the stirring speed are the same as those specified for the above-mentioned extraction from the soybean raw material.
  • solid-liquid separation is performed. It is preferable to use a centrifuge as the solid-liquid separation.
  • the oil layer (O2) is recovered as an OBAP fraction, and the aqueous layer (OA) is mixed with the solid-liquid separated intermediate layer (M) of the extract.
  • a mixture of the oil layer (O2) and the precipitate layer (OR) is recovered as an OBAP fraction, and the intermediate layer (OA) is mixed with the intermediate layer (M) from which the extract is solid-liquid separated.
  • the conditions for solid-liquid separation are the same as those specified for extraction from soybean raw materials described above.
  • an aqueous solvent is added to the precipitate layer (R) and re-extraction is performed.
  • the aqueous solvent used may be water or, as described above, a salt or one containing a salt and a reducing agent.
  • the same solvent used in the first extraction may be used.
  • the conditions of the amount of solvent, the extraction time, the temperature, and the stirring speed at the time of re-extraction are the same as the conditions specified for the above-mentioned extraction from the soybean raw material.
  • solid-liquid separation is performed, the precipitate layer (R2) is used as an okara layer, and the aqueous layer (RA) is mixed with the intermediate layer (M). It is preferable to use a centrifuge as the solid-liquid separation.
  • the conditions for solid-liquid separation are the same as those specified for extraction from soybean raw materials described above.
  • intermediate layer (M) (or (M')> The intermediate layer (M) or the intermediate layer (M) was mixed with the aqueous layer (OA) from the washing of the oil layer (O) and / or the aqueous layer (RA) from the re-extraction of the precipitate layer (R).
  • the ionic strength is adjusted to the ionic strength specified in the extraction from the soybean raw material as it is or by adding a salt as needed, and then an acid is added to adjust the pH. Adjust to near the isoelectric point of soybean protein, for example, about 4 to about 6, about 4 to about 5, about 4.2 to 4.8, about 4.5.
  • the ionic strength is adjusted to be comparable to the solvent used for extraction from the soybean raw material.
  • the reducing agent may be added to the concentration specified in the extraction from the soybean raw material together with the adjustment of the ionic strength.
  • the reducing agent is derived from the soybean raw material. Adjust so that it is comparable to the solvent used for the extraction of.
  • the acid used for acid precipitation is not particularly limited, and organic acids and inorganic acids can be appropriately used.
  • organic acids and inorganic acids can be appropriately used.
  • hydrochloric acid, sulfuric acid, phosphoric acid, acetic acid, citric acid, lactic acid and the like can be mentioned.
  • aqueous layer (MA) both the aqueous layer separated from the intermediate layer (M) and the intermediate layer (M') are simply referred to as "aqueous layer (MA)".
  • aqueous layer (MA) both the aqueous layer separated from the intermediate layer (M) and the intermediate layer (M') are simply referred to as "aqueous layer (MA)".
  • the precipitated layer (MR) is collected as a PLAP fraction. It is preferable to use a centrifuge as the solid-liquid separation.
  • the conditions for solid-liquid separation are the same as those specified for extraction from soybean raw materials described above.
  • the acid-precipitated aqueous layer (MA) is diluted with water to sufficiently reduce the ionic strength so that all globulin precipitates, and if necessary, the pH is set near the isoelectric point of soy protein. For example, adjust to about 4 to about 6, about 4 to about 5, about 4.2 to 4.8, and about 4.5. It is preferable to use distilled water or pure water as the water referred to here, but the water is not limited to such high-purity water, and water containing other components such as salt may be used. Good.
  • the pH is adjusted to be comparable to the pH adjusted by the acid precipitation of the intermediate layer (M) or (M').
  • the degree of dilution can be appropriately adjusted by those skilled in the art, but the ionic strength is about 0.15 mol / L or less, for example, about 0.12 mol / L or less, about 0.09 mol / L or less, about 0.08 mol / L or less, It is preferable to dilute to about 0.06 mol / L or less, about 0.05 mol / L or less, about 0.03 mol / L or less, and about 0.15 mol / L to about 0.03 mol / L.
  • the aqueous layer (W) is recovered as a whey fraction and the precipitated layer (G) is recovered as a globulin fraction by solid-liquid separation.
  • centrifuge it is preferable to use a centrifuge as the solid-liquid separation.
  • the conditions for centrifugation are not limited, and examples thereof include about 1000 to about 5000 ⁇ g, about 1200 to about 4500 ⁇ g, about 1500 to about 3000 ⁇ g, and about 1800 ⁇ g.
  • the time for centrifugation is also not limited, and examples thereof include about 1 minute to about 20 minutes, about 1.5 minutes to about 15 minutes, about 2.5 minutes to about 10 minutes, and about 5 minutes.
  • the acid-precipitated aqueous layer (MA) is diluted with water, the ionic strength is adjusted so that only 11S of globulin precipitates, and the pH is adjusted near the isoelectric point of soy protein if necessary. For example, adjust to about 4 to about 6, about 4 to about 5, about 4.2 to 4.8, and about 4.5. It is preferable to use distilled water or pure water as the water referred to here, but the water is not limited to such high-purity water, and water containing other components such as salt may be used. Good.
  • the pH is adjusted to be about the same as the pH adjusted by the acid precipitation of the intermediate layer (M).
  • the degree of dilution can be appropriately adjusted by those skilled in the art, and for example, the ionic strength is about 0.16 mol / L to about 0.9 mol / L, for example, about 0.2 mol / L to about 0.6 mol / L, about 0. It is preferable to dilute to about 2 mol / L to about 0.5 mol / L and about 0.24 mol / L to about 0.4 mol / L.
  • the aqueous layer (W) and the precipitated layer (G) are recovered by solid-liquid separation, and the precipitated layer (G) is recovered as an 11S fraction.
  • the aqueous layer (W) is diluted with a solvent such as water to reduce the ionic strength necessary and sufficient so that all 7S precipitates, and if necessary, the pH is set near the isoelectric point of soybean protein, for example, about 4. Adjust to about 6 and about 4.5.
  • the pH is adjusted to be about the same as the pH adjusted by the acid precipitation of the intermediate layer (M).
  • the degree of dilution can be appropriately adjusted by those skilled in the art, and for example, the ionic strength is about 0.15 mol / L or less, for example, about 0.12 mol / L or less, about 0.09 mol / L or less, about 0.08 mol / L.
  • the mixture so as to be about 0.06 mol / L or less, about 0.05 mol / L or less, about 0.03 mol / L or less, and about 0.15 mol / L to about 0.03 mol / L.
  • the supernatant (W2) and the precipitate layer (WG) are collected by solid-liquid separation, and the supernatant (W2) is collected as a whey fraction and the precipitate layer (WG) is collected as a 7S fraction. It is preferable to use a centrifuge as the solid-liquid separation.
  • the conditions for centrifugation are not limited, and examples thereof include about 1000 to about 5000 ⁇ g, about 1200 to about 4500 ⁇ g, about 1500 to about 3000 ⁇ g, and about 1800 ⁇ g.
  • the time for centrifugation is also not limited, and examples thereof include about 1 minute to about 20 minutes, about 1.5 minutes to about 15 minutes, about 2.5 minutes to about 10 minutes, and about 5 minutes.
  • the nitrogen content of the powder after drying is measured and multiplied by a nitrogen protein conversion coefficient of 6.25 to calculate the protein content.
  • a nitrogen protein conversion coefficient of 6.25 For the nitrogen content, for example, the Dumas method, the Kjeldahl method, or the like can be used.
  • the protein mass ratio can be evaluated by making a relative comparison of the protein content of each fraction when the initial sample is 100% from the wet weight, the water content, and the protein content in the dry powder of each fraction.
  • the composition of 7S and 11S can be determined by, for example, the staining intensity ratio obtained by subjecting the globulin fraction to SDS-PAGE according to a conventional method and performing CBB staining or the like. This is because the dyeing intensities of CBB dyeing are the same for 7S and 11S.
  • the present invention relates to a method for analyzing a protein composition in soybean, which comprises measuring the protein mass of each fraction fractionated by the above fractionation method.
  • the present invention relates to a method for evaluating soybean varieties, which comprises determining the protein composition ratio in soybean seeds by measuring the protein mass of each obtained fraction.
  • the method of this embodiment can be used for breeding soybean varieties having the intended characteristics and for producing soybean varieties by genome editing.
  • the present invention relates to each fraction fractionated by the above fractionation method.
  • the obtained fraction may be used as it is as a soybean protein material, or may be subjected to a treatment such as drying.
  • Example 1 Fraction 1 into 4 fractions The soybean protein was separated into 4 fractions by the following operation. The outline is shown in FIG.
  • the aqueous layer (MA) was diluted 100-fold with water (w / w) to reduce the ionic strength of the solvent to 0.03 mol / L, and then the pH was adjusted to 4.5 with 0.5N HCl. Then, the mixture was centrifuged at 1800 ⁇ g for 5 minutes, and the supernatant (W) was collected as a whey fraction and the precipitate (G) was collected as a globulin fraction.
  • Example 2 Fraction 2 into 4 fractions The soybean protein was separated into 4 fractions by the following operation. The outline is shown in FIG.
  • Oil layer cleaning To the obtained oil layer (O), 4 times the amount of the buffer was added, and the mixture was stirred with a stirrer at room temperature for 10 minutes. Centrifugation was carried out at 18,000 ⁇ g for 10 minutes, and the mixture was separated into an oil layer (O2), an aqueous layer (OA) and a precipitation layer (OR). The oil layer (O2) and the precipitate layer (OR) were combined to form an OBAP fraction, and the aqueous layer (OA) was mixed with the intermediate layer (M).
  • Precipitation layer re-extraction A 9-fold amount (w / w) of water was added to the precipitate layer (R) to suspend it, and the mixture was stirred at room temperature for 10 minutes with a stirrer. The suspension was centrifuged at 18,000 xg for 10 minutes and separated into an aqueous layer (RA) and a precipitate layer (R2). The aqueous layer (RA) was mixed with the intermediate layer (M).
  • Whey and globulin fraction (4 fractions)
  • the aqueous layer (MA) was diluted 100-fold with water (w / w) to reduce the ionic strength of the solvent to 0.03 mol / L, and then the pH was adjusted to 4.5 with 0.5N HCl. Then, the mixture was centrifuged at 1800 ⁇ g for 5 minutes, and the supernatant (W) was collected as a whey fraction and the precipitate layer (G) was collected as a globulin fraction.
  • FIG. 3 shows the SDS-PAGE results of each fraction and the initial solution sample fractionated from the soybean seeds of the cultivar Fukuyutaka by the method of Example 2 above.
  • a 24 kDa band indicating oleocin can be confirmed in the OBAP fraction.
  • bands corresponding to 7S and 11S and their subunits can be confirmed, and the amount of 7S and 11S globulin can be calculated from the intensity ratio thereof.
  • Example 3 Examination of ionic strength at the time of fractionation of whey and globulin In Example 2 and 5. As shown in the table below, the ionic strength at the time of dilution during the fractionation of whey and globulin (4 fractions) is fractionated without dilution and adjusted between 1.2 mol / L and 0.03 mol / L. , The obtained whey fraction was subjected to SDS-PAGE and CBB staining was performed. The results are shown in FIG.
  • Example 4 Fractionation into 5 fractions Soybean protein was separated into 5 fractions by the following operation. The outline is shown in FIG.
  • the aqueous layer (MA) was diluted 15-fold with water (w / w) to reduce the ionic strength of the solvent to 0.2 mol / L, and then the pH was adjusted to 4.5 with 0.5N HCl. Adjusted to. Then, the mixture was centrifuged at 1800 ⁇ g for 5 minutes, and the precipitate (G) was collected as an 11S fraction. Then, the aqueous layer (W) was diluted 2.22 times with water (w / w) to further reduce the ionic strength of the solvent to 0.09 mol / L, and then the pH was adjusted to 4.5 with 0.5N HCl. did. Then, the mixture was centrifuged at 1800 ⁇ g for 5 minutes, and the aqueous layer (W2) was recovered as a whey fraction and the precipitate layer (WG) as a 7S fraction.
  • the protein composition of soybean samples could be evaluated by measuring the nitrogen content.
  • Example 5 Difference in protein composition depending on soybean varieties
  • each variety of Sato no smile, Tachinagaha, and 11S-deficient soybean was fractionated by the method of Example 3 to determine the composition ratio. It was. The results are shown in FIG. It was shown that the composition of the five protein fractions differs depending on the soybean variety. The result was that the 11S-deficient soybean had a larger 7S, whey, and PLAP fraction than other varieties. It was suggested that when 11S, which is a stored protein of soybean and occupies most of the soybean protein, is deficient, only 7S, which is the other stored protein, does not necessarily increase.
  • Fukuyutaka, Sato no Smile, and Tachinagaha are all varieties that are widely distributed in Japan, but there are differences not only in the ratio of 7S and 11S but also in the amount of whey and OBAP. As described above, it is considered that the present invention can clarify the difference in protein composition between soybean varieties, and can be used for selection of varieties having the required quality and evaluation of new varieties produced by breeding.
  • soybean protein in undenatured soybean seeds containing lipid can be separated into four fractions: oil body-associated protein (OBAP), polar lipid-associated protein (PLAP), whey protein, and globulin. .. Further, the globulin can be separated into a total of 5 fractions by separating each of the 7S globulin and 11S globulin fractions.
  • OBAP oil body-associated protein
  • PLAP polar lipid-associated protein
  • whey protein globulin. ..
  • the globulin can be separated into a total of 5 fractions by separating each of the 7S globulin and 11S globulin fractions.
  • the present invention makes it possible to efficiently select soybean varieties suitable for the quality required for soybean products.
  • the method of the present invention can also be used as a method for evaluating soybean varieties for breeding soybean varieties having a characteristic protein composition and for producing soybean varieties by genome editing.
  • the method of the present invention can recover almost all proteins from unmodified soybean raw materials in a fractionated state, so that soybean protein products having various functional characteristics can be obtained. It can be used for the development of various foods and drinks.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Biochemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Molecular Biology (AREA)
  • General Health & Medical Sciences (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Medicinal Chemistry (AREA)
  • Hematology (AREA)
  • Biomedical Technology (AREA)
  • Biophysics (AREA)
  • Analytical Chemistry (AREA)
  • Urology & Nephrology (AREA)
  • Food Science & Technology (AREA)
  • Immunology (AREA)
  • Genetics & Genomics (AREA)
  • Biotechnology (AREA)
  • Gastroenterology & Hepatology (AREA)
  • Cell Biology (AREA)
  • Nutrition Science (AREA)
  • Botany (AREA)
  • Microbiology (AREA)
  • Polymers & Plastics (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Pathology (AREA)
  • Peptides Or Proteins (AREA)

Abstract

The purposes of the present invention are to provide a method for fractionating soybean proteins, to provide a method for analyzing protein composition in soybeans, and to provide a method for evaluating a soybean species, etc. by determining the protein composition ratio in soybean seeds. According to the present invention, a large portion of soybean proteins can be fractionated by extracting the soybean proteins with the use of a solvent having a high ionic strength as a means for preventing the emulsification of non-denatured soybean proteins.

Description

大豆たんぱく質の分画方法Soy protein fractionation method
 本発明は、大豆たんぱく質を分画する方法に関する。また、本発明は、大豆中のたんぱく質組成の分析方法にも関する。さらに、大豆種子中のたんぱく質構成比を求めることによる、大豆品種等の評価方法にも関する。さらにまた、本発明は、分画によって得られた大豆たんぱく質製品にも関する。 The present invention relates to a method for fractionating soybean protein. The present invention also relates to a method for analyzing protein composition in soybean. Furthermore, it also relates to an evaluation method for soybean varieties and the like by determining the protein composition ratio in soybean seeds. Furthermore, the present invention also relates to soybean protein products obtained by fractionation.
 大豆たんぱく質は、特有のゲル化力を発揮する性質から、食品の物性改善に幅広く利用されていると共に、栄養価の高い健康食品素材としての利用も増大している。 Soy protein is widely used to improve the physical characteristics of foods due to its unique gelling power, and its use as a highly nutritious health food material is increasing.
 大豆の貯蔵たんぱく質は、pH4.5付近で沈澱し、比較的簡単に貯蔵たんぱく質以外の可溶性成分が主体の酸可溶性たんぱく画分と貯蔵たんぱく質が主体の酸沈殿性たんぱく画分とに分けることができる。この酸沈殿性たんぱく画分を回収したものが分離大豆たんぱくであり、現在広く食品工業に利用されている。 The stored protein of soybeans precipitates at around pH 4.5, and can be relatively easily divided into an acid-soluble protein fraction mainly composed of soluble components other than the stored protein and an acid-precipitating protein fraction mainly composed of stored protein. .. The isolated soybean protein is obtained by recovering this acid-precipitating protein fraction, and is currently widely used in the food industry.
 大豆たんぱく質を構成するたんぱく質は、また超遠心分析による沈降係数から、2S、7S、11S、15Sの各グロブリンに分類される。このうち、7Sグロブリンと11Sグロブリンはグロブリン画分の主要な構成たんぱく成分である。なお、免疫学的命名法にいうβ-コングリシニンは7Sグロブリンに、グリシニンは11Sグロブリンに実質的に相当するものである。 The proteins that make up soybean protein are also classified into 2S, 7S, 11S, and 15S globulin based on the sedimentation coefficient by ultracentrifugation analysis. Of these, 7S globulin and 11S globulin are the main constituent protein components of the globulin fraction. In addition, β-conglycinin in the immunological nomenclature is substantially equivalent to 7S globulin, and glycinin is substantially equivalent to 11S globulin.
 大豆たんぱく質を構成するたんぱく質は、粘性、凝固性、界面活性などの物性や栄養生理機能において異なる性質を有する。例えば7Sグロブリンは血中の中性脂肪を低下させることが報告されている(非特許文献1)。また、11Sグロブリンは、ゲル化力が高く、豆腐ゲルの硬さ・食感を支配していると言われている。 The proteins that make up soybean protein have different properties in terms of physical properties such as viscosity, coagulation, and surface activity, as well as nutritional and physiological functions. For example, 7S globulin has been reported to reduce triglyceride in blood (Non-Patent Document 1). In addition, 11S globulin has a high gelling power and is said to control the hardness and texture of tofu gel.
 さらに、大豆由来のたんぱく質には、プロテインボディー、オイルボディー等の生体膜を構成する、極性脂質との親和力の高いたんぱく質が存在し、これは工業的に生産する分離大豆たんぱくの約35%をも占めていることが報告されている(非特許文献2、3)。 Furthermore, soybean-derived proteins include proteins with high affinity for polar lipids that make up biological membranes such as protein bodies and oil bodies, which account for about 35% of industrially produced isolated soybean proteins. It has been reported that it occupies (Non-Patent Documents 2 and 3).
 大豆種子の大豆食品への加工適性の評価や栄養健康機能性などの観点から、大豆種子中のたんぱく質組成を明らかにすることは重要である。たんぱく質組成を分析する方法としては、特定のたんぱく質の抗体を調製して抗原抗体反応により定量する方法、あるいは電気泳動法後のたんぱく質染色により評価する方法などがある(特許文献1)。しかし、抗原抗体反応は抗体が認識する特定のたんぱく質のみの反応に基づいているもので、その反応が不安定になった場合に定量性や再現性が低くなる問題がある。また電気泳動法によるたんぱく質染色も、たんぱく質の種類によって染色度が異なる場合や無数のバンドが存在する場合には、定量が困難な問題がある。 It is important to clarify the protein composition in soybean seeds from the viewpoint of evaluation of processing suitability of soybean seeds for soybean foods and nutritional health functionality. As a method for analyzing a protein composition, there are a method of preparing an antibody of a specific protein and quantifying it by an antigen-antibody reaction, a method of evaluating it by protein staining after electrophoresis, and the like (Patent Document 1). However, the antigen-antibody reaction is based on the reaction of only a specific protein recognized by the antibody, and there is a problem that the quantitativeness and reproducibility are lowered when the reaction becomes unstable. In addition, protein staining by electrophoresis also has a problem that it is difficult to quantify when the degree of staining differs depending on the type of protein or when innumerable bands are present.
 一方、たんぱく質が持つ固有の溶解挙動を利用して抽出したたんぱく質を、たんぱく質組成に基づいて分画し、各画分への窒素移行率を求めることによって各画分のたんぱく質含有量比率を求めた報告がある(特許文献2)。これは特定のたんぱく質の分子種研究とは異なり、概算ではあるが全体的なたんぱく質組成を把握できる方法である。また窒素分析であるので、再現性や定量性において信頼性が高い。しかしこの方法を利用して、大豆中の一部分のたんぱく質組成を報告している例はあるものの、大豆種子中のほぼ全てのたんぱく質を抽出して分画する方法はこれまでに報告されていない。 On the other hand, the protein extracted by utilizing the unique dissolution behavior of the protein was fractionated based on the protein composition, and the nitrogen transfer rate to each fraction was obtained to obtain the protein content ratio of each fraction. There is a report (Patent Document 2). This is a method that can grasp the overall protein composition, although it is an approximation, unlike the molecular species research of a specific protein. Moreover, since it is a nitrogen analysis, it is highly reliable in terms of reproducibility and quantitativeness. However, although there are cases where this method is used to report the protein composition of a part of soybean, a method of extracting and fractionating almost all the proteins in soybean seeds has not been reported so far.
 上記文献および本明細書内に示される文献は、出典明示により本明細書に組み込まれる。 The above documents and the documents shown in the present specification are incorporated in the present specification by specifying the source.
国際公開第2009/084529号International Publication No. 2009/0845229 国際公開第2006/129647号International Publication No. 2006/129647
 大豆種子中に含まれるたんぱく質組成比については、これまであまり明らかにされていない。大豆種子中に含まれる粗たんぱく質量の分析が主であり、電気泳動よる分析例もあるものの、LPなどの染色されにくいたんぱく質の存在があるため、含有量比を求めるには不十分である。また育種等により特定のたんぱく質分子種を欠失した大豆品種の開発が行われているが、欠失によってたんぱく質組成がどのように変化したのかは正確に分析することが難しいという問題がある。例えば大豆中の特定のターゲットたんぱく質を多く含有する品種を作製する場合など、ターゲット以外の欠失によって全体の組成比がどう変化するか評価できなければ、種子の選抜や育種が困難である。このような背景から、食品加工適正や栄養健康機能の観点から、大豆品種の評価・選抜や将来目標とする大豆品種の育種における正確かつ効率的な指標となりえる評価方法が求められている。 The protein composition ratio contained in soybean seeds has not been clarified so far. The analysis of the crude protein mass contained in soybean seeds is the main, and although there are some analysis examples by electrophoresis, it is insufficient to determine the content ratio due to the presence of proteins that are difficult to stain such as LP. In addition, soybean varieties lacking a specific protein molecular species have been developed by breeding, etc., but there is a problem that it is difficult to accurately analyze how the protein composition has changed due to the deletion. For example, when producing a variety containing a large amount of a specific target protein in soybean, it is difficult to select and breed seeds unless it is possible to evaluate how the overall composition ratio changes due to deletion other than the target. Against this background, from the viewpoint of food processing suitability and nutritional health function, an evaluation method that can be an accurate and efficient index for evaluation and selection of soybean varieties and breeding of soybean varieties as a future target is required.
 一般的に大豆種子中のたんぱく質の抽出は水溶液に懸濁することによって行われる。大豆種子中には脂質も存在するため、たんぱく質が抽出されると同時に乳化も起こる。乳化が起こるとたんぱく質固有の溶解挙動の差が出にくくなってしまう。また、原料として脱脂大豆を使用する方法もあるが、脂質を除去する際に一部のたんぱく質が変性を受け、溶解挙動が変わり分画精度が下がるため、大豆中の正確なたんぱく質構成比を求めることが難しくなる。また、大豆たんぱく質を変性させて溶解挙動を変化させてから分画する方法もあるが、たんぱく質の変性により抽出率が下がるという問題がある。 Generally, protein extraction in soybean seeds is performed by suspending in an aqueous solution. Since lipids are also present in soybean seeds, emulsification occurs at the same time that proteins are extracted. When emulsification occurs, it becomes difficult to make a difference in the dissolution behavior peculiar to proteins. There is also a method of using defatted soybeans as a raw material, but when removing lipids, some proteins are denatured, which changes the dissolution behavior and lowers the fractionation accuracy. Therefore, an accurate protein composition ratio in soybeans is obtained. It becomes difficult. There is also a method of denaturing soybean protein to change the dissolution behavior and then fractionating, but there is a problem that the extraction rate is lowered due to the denaturation of the protein.
 従来の方法では、7S、11S、LPおよびホエー画分の分離が可能である。7Sおよび11Sたんぱく質は強いゲル化力を有し、ほぼ無味である一方で、LPたんぱく質は弱いゲル化力しか示さないが、豆腐のようなコク味を有するという特徴を示す。しかし、大豆中には、7S、11Sなどの貯蔵たんぱく質、ホエーたんぱく質以外にも、オイルボディー会合たんぱく質、膜たんぱく質等を含む極性脂質会合たんぱく質といった多種多様なたんぱく質が含まれる。大豆中のたんぱく質の大部分を抽出し、さらに分画することが可能となれば、様々な機能特性を有するたんぱく質素材を得ることが可能となり、また、個々の大豆たんぱく質の適性を評価することや、大豆品種を評価することが可能となる。 With the conventional method, 7S, 11S, LP and whey fractions can be separated. The 7S and 11S proteins have a strong gelling power and are almost tasteless, while the LP protein shows only a weak gelling power but has a tofu-like richness. However, soybeans contain a wide variety of proteins such as stored proteins such as 7S and 11S and whey proteins, as well as polar lipid-associated proteins including oil body-associated proteins and membrane proteins. If it becomes possible to extract and further fractionate most of the proteins in soybeans, it will be possible to obtain protein materials with various functional characteristics, and it will be possible to evaluate the suitability of individual soybean proteins. , Soybean varieties can be evaluated.
 本発明の目的の一つは、大豆種子から大豆たんぱく質を分画する方法を提供することである。本発明の他の目的は、大豆種子中のたんぱく質組成を分析する方法を提供することである。より具体的な目的としては、大豆種子中のたんぱく質構成比を求めることによる、大豆品種等の評価方法を提供することである。 One of the objects of the present invention is to provide a method for fractionating soybean protein from soybean seeds. Another object of the present invention is to provide a method for analyzing the protein composition in soybean seeds. A more specific purpose is to provide a method for evaluating soybean varieties and the like by determining the protein composition ratio in soybean seeds.
 本発明者らは、上記の課題に対して鋭意研究を重ねた結果、未変性の大豆たんぱく質の脂質との乳化を抑制する手段として高イオン強度の溶媒を使用して大豆たんぱく質を抽出することにより、大豆たんぱく質の大部分を分画できることを見出した。より具体的に、高イオン強度の溶媒を使用して大豆たんぱく質を抽出し、固液分離により油層、中間層、沈殿層に分離した後、中間層を酸沈させ、固液分離して水層と沈殿層に分離し、水層を希釈した後、固液分離によりホエー画分とグロブリン画分に分画することを含む方法により、上記課題を解決できることを見出した。本発明は、上記の新規な知見により完成されたものである。 As a result of diligent research on the above-mentioned problems, the present inventors have extracted soy protein using a solvent having high ionic strength as a means for suppressing emulsification of undenatured soy protein with lipid. , Found that most of the soy protein can be fractionated. More specifically, soy protein is extracted using a solvent with high ionic strength, separated into an oil layer, an intermediate layer, and a precipitation layer by solid-liquid separation, and then the intermediate layer is acid-diluted and solid-liquid separated into an aqueous layer. It was found that the above-mentioned problems can be solved by a method including separating into a precipitation layer, diluting the aqueous layer, and then fractionating into a whey fraction and a globulin fraction by solid-liquid separation. The present invention has been completed based on the above novel findings.
 すなわち、本発明は、
(1)以下の工程:
(A)乾物あたりの脂質含量が15重量%以上であって、水溶性窒素指数(NSI)が80以上である大豆原料を準備する;
(B)大豆原料にイオン強度1.5mol/L以上の溶媒を添加し、たんぱく質を抽出する;
(C)抽出したたんぱく質を固液分離し、油層(O)、中間層(M)、沈殿層(R)に分離する;
(D)中間層(M)に酸を添加し、pHを6以下に下げる;
(E)pHを下げた中間層(M)を固液分離し、水層(MA)および沈殿層(MR)に分離する;
(F)水層(MA)を水で希釈する;
(G)希釈した水層(MA)を固液分離し、水層(W)および沈殿層(G)に分離する;
を含む、大豆たんぱく質の分画方法、
(2)工程(C)と(D)の間に、以下の工程:
(a)工程(C)で得られた油層(O)に、イオン強度1.5mol/L以上の溶媒を添加し、固液分離により水層(OA)、および油層(O2)または油層(O2)と沈殿層(OR)に分離する;
(b)工程(C)で得られた沈殿層(R)に、水性溶媒を添加してたんぱく質を抽出し、固液分離により水層(RA)およびオカラ層(R2)に分離する;
(c)中間層(M)、水層(OA)および水層(RA)を混合して新たな中間層(M')とし、以降の工程で中間層(M)として中間層(M')を使用する、
をさらに含む、(1)の方法、
(3)工程(G)の後に、以下の工程:
(d)工程(G)で得られた水層(W)を水で希釈する;
(e)希釈した水層(W)を固液分離し、水層(W2)および沈殿層(WG)に分離する、
をさらに含む、(1)または(2)の方法、
(4)工程(B)の溶媒が、さらに還元剤を含む、(1)~(3)のいずれかの方法、
(5)工程(A)の水溶性窒素指数(NSI)が90%以上である、(1)~(4)のいずれかの方法。
(6)工程(G)の水層の希釈がイオン強度150~30mMである、(1)~(5)のいずれかの方法。
(7)工程(d)の水層の希釈がイオン強度150~30mMである、(3)~(6)のいずれかの方法。
(8)(1)~(7)のいずれかの方法により得られた画分のたんぱく質量を測定することを含む、大豆中のたんぱく質組成の分析方法、
(9)大豆種子原料から、(1)~(7)のいずれかの方法により得られた各画分のたんぱく質量を測定することにより、大豆種子中のたんぱく質構成比を求めることを含む、大豆品種の評価方法、
に関する。
That is, the present invention
(1) The following steps:
(A) Prepare a soybean raw material having a lipid content of 15% by weight or more and a water-soluble nitrogen index (NSI) of 80 or more per dry matter;
(B) A solvent having an ionic strength of 1.5 mol / L or more is added to the soybean raw material to extract the protein;
(C) The extracted protein is solid-liquid separated and separated into an oil layer (O), an intermediate layer (M), and a precipitation layer (R);
(D) Acid is added to the intermediate layer (M) to lower the pH to 6 or less;
(E) The pH-lowered intermediate layer (M) is solid-liquid separated and separated into an aqueous layer (MA) and a precipitated layer (MR);
(F) Dilute the aqueous layer (MA) with water;
(G) The diluted aqueous layer (MA) is solid-liquid separated and separated into an aqueous layer (W) and a precipitated layer (G);
Soy protein fractionation method, including
(2) Between steps (C) and (D), the following steps:
(A) A solvent having an ionic strength of 1.5 mol / L or more is added to the oil layer (O) obtained in the step (C), and the aqueous layer (OA) and the oil layer (O2) or the oil layer (O2) are separated by solid-liquid separation. ) And the sedimentation layer (OR);
(B) An aqueous solvent is added to the precipitate layer (R) obtained in the step (C) to extract the protein, and the protein is separated into an aqueous layer (RA) and an okara layer (R2) by solid-liquid separation;
(C) The intermediate layer (M), the aqueous layer (OA) and the aqueous layer (RA) are mixed to form a new intermediate layer (M'), and the intermediate layer (M') is used as the intermediate layer (M) in the subsequent steps. To use,
(1), which further includes
(3) After step (G), the following steps:
(D) Dilute the aqueous layer (W) obtained in step (G) with water;
(E) The diluted aqueous layer (W) is solid-liquid separated and separated into an aqueous layer (W2) and a precipitation layer (WG).
The method (1) or (2), further comprising
(4) The method according to any one of (1) to (3), wherein the solvent in step (B) further contains a reducing agent.
(5) The method according to any one of (1) to (4), wherein the water-soluble nitrogen index (NSI) of the step (A) is 90% or more.
(6) The method according to any one of (1) to (5), wherein the dilution of the aqueous layer in step (G) has an ionic strength of 150 to 30 mM.
(7) The method according to any one of (3) to (6), wherein the dilution of the aqueous layer in step (d) has an ionic strength of 150 to 30 mM.
(8) A method for analyzing a protein composition in soybean, which comprises measuring the protein mass of a fraction obtained by any of the methods (1) to (7).
(9) Soybeans, which include obtaining the protein composition ratio in soybean seeds by measuring the protein mass of each fraction obtained by any of the methods (1) to (7) from the soybean seed raw material. Variety evaluation method,
Regarding.
 本発明により、脂質を含有する未変性の大豆種子中の大豆たんぱく質を、オイルボディー会合たんぱく質(OBAP)、極性脂質会合たんぱく質(PLAP)、ホエーたんぱく質、グロブリンの4つの画分に分離することができる。さらにグロブリンは7Sグロブリン、11Sグロブリンの各画分に分離することにより、計5つの画分に分離することが可能となる。これにより、大豆品種の自然の状態でのたんぱく質組成を知ることができる。また、本発明により大豆製品に求められる品質に適した大豆品種を効率良く選抜することが可能となる。さらに、本発明の方法を、たんぱく質組成に特徴のある大豆品種の育種やゲノム編集による大豆品種の作成のための、大豆品種の評価方法としても利用することができる。また本発明を用いて適性品種を選抜することで、大豆製品の高品質化・原料のコストダウン・新機能を有する大豆製品の生産等に貢献できる。さらに、本発明の方法は、未変性の大豆原料からほぼすべてのたんぱく質を、分画された状態で回収することができるため、様々な機能特性を有する大豆たんぱく質製品を得ることが可能となり、新たな飲食品の開発に用いることが可能となる。 According to the present invention, soybean protein in undenatured soybean seeds containing lipid can be separated into four fractions: oil body-associated protein (OBAP), polar lipid-associated protein (PLAP), whey protein, and globulin. .. Further, the globulin can be separated into a total of 5 fractions by separating each of the 7S globulin and 11S globulin fractions. This makes it possible to know the protein composition of soybean varieties in the natural state. In addition, the present invention makes it possible to efficiently select soybean varieties suitable for the quality required for soybean products. Furthermore, the method of the present invention can also be used as a method for evaluating soybean varieties for breeding soybean varieties having a characteristic protein composition and for producing soybean varieties by genome editing. Further, by selecting suitable varieties using the present invention, it is possible to contribute to high quality of soybean products, cost reduction of raw materials, production of soybean products having new functions, and the like. Furthermore, the method of the present invention can recover almost all proteins from unmodified soybean raw materials in a fractionated state, so that soybean protein products having various functional characteristics can be obtained. It can be used for the development of various foods and drinks.
実施例1の工程を示す図である。It is a figure which shows the process of Example 1. FIG. 実施例2の工程を示す図である。It is a figure which shows the process of Example 2. FIG. 大豆品種フクユタカの種子を大豆原料として、実施例2の方法で分画した各画分のSDS-PAGE結果を示す図である。レーンM:分子量マーカー、前:初発溶液試料、O:OBAP画分、P:PLAP画分、W:ホエー画分、G:グロブリン画分(7S、11S混合)。LOX:リポキシゲナーゼ。It is a figure which shows the SDS-PAGE result of each fraction fractionated by the method of Example 2 using the seed of the soybean variety Fukuyutaka as a soybean raw material. Lane M: molecular weight marker, front: initial solution sample, O: OBAP fraction, P: PLAP fraction, W: whey fraction, G: globulin fraction (7S, 11S mixture). LOX: Lipoxygenase. 実施例3のSDS-PAGE結果を示す図である。レーンM:分子量マーカー、1:イオン強度1.2mol/L、2:イオン強度0.6mol/L、3:イオン強度0.4mol/L、4:イオン強度0.3mol/L、5:イオン強度0.24mol/L、6:イオン強度0.2mol/L、7:イオン強度0.15mol/L、8:イオン強度0.12mol/L、9:イオン強度0.09mol/L、10:イオン強度0.075mol/L、11:イオン強度0.06mol/L、12:イオン強度0.045mol/L、13:イオン強度0.03mol/L、14:イオン強度3mol/L(希釈なし)。It is a figure which shows the SDS-PAGE result of Example 3. Lane M: Molecular weight marker, 1: Ionic strength 1.2 mol / L 2: Ionic strength 0.6 mol / L 3: Ionic strength 0.4 mol / L 4: Ionic strength 0.3 mol / L 5, 5: Ionic strength 0.24 mol / L, 6: Ionic strength 0.2 mol / L, 7: Ionic strength 0.15 mol / L, 8: Ionic strength 0.12 mol / L, 9: Ionic strength 0.09 mol / L, 10: Ionic strength 0.075 mol / L, 11: Ionic strength 0.06 mol / L, 12: Ionic strength 0.045 mol / L, 13: Ionic strength 0.03 mol / L, 14: Ionic strength 3 mol / L (without dilution). 実施例4の工程を示す図である。It is a figure which shows the process of Example 4. 本発明の方法により分画した、各品種大豆のたんぱく質組成を示す図である。It is a figure which shows the protein composition of each variety soybean fractionated by the method of this invention.
 本明細書における、「飲食品」とは、飲料を含む食品全般のことをいい、単に「食品」とも記載される。すなわち、特に「飲料を除く」といった規定をしない限り、「食品」なる用語は飲料を含む。 In this specification, "food and drink" refers to all foods including beverages, and is also simply described as "food". That is, the term "food" includes beverages, unless otherwise specified as "excluding beverages".
 本明細書において、「約」なる用語は、±10%、好ましくは±5%の範囲を意味する。また、その範囲の境界値となる数値は、本明細書に記載されているものとみなされる。 In the present specification, the term "about" means a range of ± 10%, preferably ± 5%. In addition, the numerical value that becomes the boundary value of the range is considered to be described in the present specification.
 本明細書における、「7Sグロブリン」とは、β-コングリシニンとも呼ばれ、一般には3種のサブユニット(α'、α、β)から構成される糖蛋白質であるが、何れかのサブユニットが欠損していても良い。これらのサブユニットはランダムに組み合わされ、3量体を形成している。等電点はpH4.8付近で分子量は約17万である。以下、単に「7S」と略記することがある。 In the present specification, "7S globulin" is also called β-conglycinin, and is generally a glycoprotein composed of three types of subunits (α', α, β), and any of the subunits is used. It may be missing. These subunits are randomly combined to form a trimer. The isoelectric point is around pH 4.8 and the molecular weight is about 170,000. Hereinafter, it may be simply abbreviated as "7S".
 本明細書における、「11Sグロブリン」とは、グリシニンとも呼ばれ、酸性サブユニットと塩基性サブユニットがジスルフィド結合によって結合し、それらが6分子集まった12量体を形成している。分子量は約36万である。以下、単に「11S」と略記することがある。 In the present specification, "11S globulin" is also called glycinin, and acidic subunits and basic subunits are bound by disulfide bonds to form a dimer in which 6 molecules are collected. The molecular weight is about 360,000. Hereinafter, it may be simply abbreviated as "11S".
 本明細書において単に「グロブリン」と記載する場合は、7Sと11Sとが分画されていない混合物、あるいは7Sと11Sの総称を意味する。 When simply referred to as "globulin" in the present specification, it means a mixture in which 7S and 11S are not fractionated, or a general term for 7S and 11S.
 本明細書における、「脂質親和性蛋白質」(Lipophilic Proteins)とは、大豆の酸沈殿性大豆蛋白質の内、7Sと11S以外のマイナーな酸沈殿性大豆蛋白質群をいい、レシチンや糖脂質などの極性脂質を多く随伴するものである。以下、単に「LP」と略記することがある。このLP中にはSDS-ポリアクリルアミド電気泳動による推定分子量において主に約34kDa、約24kDa、約18kDaを示す蛋白質、リポキシゲナーゼ、γ-コングリシニンや、その他多くの雑多な蛋白質が含まれる。 In the present specification, "lipophilic Proteins" refers to a group of minor acid-precipitating soybean proteins other than 7S and 11S among the acid-precipitating soybean proteins of soybean, such as lecithin and glycolipid. It is accompanied by a large amount of polar lipids. Hereinafter, it may be simply abbreviated as "LP". This LP contains proteins showing mainly about 34 kDa, about 24 kDa, and about 18 kDa in the estimated molecular weight by SDS-polyacrylamide gel electrophoresis, lipoxygenase, γ-conglycinin, and many other miscellaneous proteins.
 本明細書における、「オイルボディー会合たんぱく質」(Oil Body Associated Proteins)とは、LPとして含まれるたんぱく質の内、オイルボディーの膜に含まれているオレオシンや、アレルゲンたんぱく質である34kDaたんぱく質等が多く含まれる、脂質と会合性の高い疎水性たんぱく質群をいう。以下、これを単に「OBAP」と略記することがある。 In the present specification, the "oil body associated protein" (Oil Body Associated Proteins) includes a large amount of oleosin contained in the membrane of the oil body, 34 kDa protein which is an allergen protein, etc. among the proteins contained as LP. A group of hydrophobic proteins that are highly associated with lipids. Hereinafter, this may be simply abbreviated as "OBAP".
 本明細書における、「極性脂質会合たんぱく質」(Polar Lipid Associated Proteins)とは、LPとして含まれるたんぱく質の内、OBAPよりも極性の高い、主に細胞膜やプロテインボディーの膜に含まれている膜たんぱく質等が多く含まれる、極性脂質と会合性の高いたんぱく質群をいう。ここには、約40kDaのたんぱく質が含まれていることが特徴である。以下、これを単に「PLAP」と略記することがある。 In the present specification, "Polar Lipid Associated Proteins" refers to proteins contained as LP, which are more polar than OBAP and are mainly contained in cell membranes and protein body membranes. It refers to a group of proteins that are highly associated with polar lipids and contain a large amount of such substances. It is characterized by containing about 40 kDa of protein. Hereinafter, this may be simply abbreviated as "PLAP".
 本明細書における、「ホエーたんぱく質」(Whey Proteins)とは、pH4.5付近の酸性pHにおいて可溶性のたんぱく質群をいう。ここには、約93kDaのたんぱく質や約54kDaのたんぱく質が含まれている。以下、これを単に「ホエー」と略記することがある。 In the present specification, "whey protein" (Whey Proteins) refers to a group of proteins that are soluble at an acidic pH near pH 4.5. It contains about 93 kDa protein and about 54 kDa protein. Hereinafter, this may be simply abbreviated as "whey".
 本明細書において、たんぱく質の推定分子量は、市販既製ゲル(製品名:「e・パジェル12.5%」、アトー株式会社製)を用いたSDS-PAGEにおいて、分子量マーカー(製品名:「プレシジョン Plus プロテイン(登録商標)2色スタンダード」バイオ・ラッド社製)の移動度を基に算出できる。 In the present specification, the estimated molecular weight of the protein is a molecular weight marker (product name: "Precision Plus") in SDS-PAGE using a commercially available ready-made gel (product name: "e-pagel 12.5%", manufactured by Atto Co., Ltd.). It can be calculated based on the mobility of "Protein (registered trademark) 2-color standard" manufactured by Bio-Rad.
 本明細書における、「大豆製品」とは、大豆そのものを原料とする加工食品、大豆たんぱく素材、大豆たんぱく素材が添加された加工食品等をいう。具体的な実施形態として、例えば豆腐、豆乳、納豆、油揚げ、湯葉、みそ、醤油等の伝統的な食品が挙げられる。他の実施形態として、種々の加工食品の原料に用いられている大豆粉、豆乳粉末、濃縮大豆たんぱく、分離大豆たんぱく、組織状等の大豆たんぱく素材が挙げられる。また他の実施形態として、前記大豆たんぱく素材が添加された種々の加工食品が挙げられる。加工食品の種類は限定されないが、例えばハムやソーセージ、ハンバーグ等の肉加工食品、プロテインパウダーやプロテイン飲料等の健康食品、植物ベースのチーズ様食品、植物ベースの肉様食品等が包含される。 In the present specification, "soybean product" refers to processed foods made from soybean itself, soybean protein material, processed foods to which soybean protein material is added, and the like. Specific embodiments include traditional foods such as tofu, soy milk, natto, fried tofu skin, yuba, miso, and soy sauce. Other embodiments include soybean protein materials such as soybean powder, soymilk powder, concentrated soybean protein, separated soybean protein, and texture used as raw materials for various processed foods. In addition, as another embodiment, various processed foods to which the soybean protein material is added can be mentioned. The type of processed food is not limited, but includes, for example, processed meat foods such as ham, sausage, and hamburger, health foods such as protein powder and protein beverages, plant-based cheese-like foods, and plant-based meat-like foods.
 一の態様において、本発明は、大豆たんぱく質の分画方法を提供する。 In one embodiment, the present invention provides a method for fractionating soybean protein.
<大豆原料>
 本態様において用いられる大豆原料は、未変性または低変性の含脂大豆原料である。より具体的には水溶性窒素指数(NSI)が約80以上、例えば、約83以上、約85以上、約88以上、約90以上、約93以上、約95以上、の含脂大豆原料である。また、本態様において用いられる大豆原料は、脱脂されていない含脂大豆原料が好ましい。例えば、大豆原料として用いられる大豆品種の通常の脂質含量の約90%以上、例えば約95%以上の脂質含量を有する大豆原料が挙げられる。より具体的には、乾物あたりの脂質含量が約13重量%以上、例えば約15重量%以上、約20重量%以上である含脂大豆原料であることが好ましい。
<Soybean ingredients>
The soybean raw material used in this embodiment is an unmodified or low-modified greasy soybean raw material. More specifically, it is a fat-containing soybean raw material having a water-soluble nitrogen index (NSI) of about 80 or more, for example, about 83 or more, about 85 or more, about 88 or more, about 90 or more, about 93 or more, about 95 or more. .. The soybean raw material used in this embodiment is preferably a non-defatted fat-containing soybean raw material. For example, a soybean raw material having a lipid content of about 90% or more, for example, about 95% or more of the normal lipid content of a soybean variety used as a soybean raw material can be mentioned. More specifically, a fat-containing soybean raw material having a lipid content per dry matter of about 13% by weight or more, for example, about 15% by weight or more and about 20% by weight or more is preferable.
 なお、NSIは所定の方法に基づき、全窒素量に占める水溶性窒素(粗たんぱく)の比率(重量%)で表すことができ、本明細書においては以下の方法に基づいて測定された値とする。すなわち、試料2.0gに100mlの水を加え、40℃にて60分間攪拌抽出し、1400×gにて10分間遠心分離し、上清1を得る。残った沈殿に再度100mlの水を加え、40℃にて60分間攪拌抽出し、1400×gにて10分遠心分離し、上清2を得る。上清1および上清2を合わせ、さらに水を加えて250mlとする。No.5Aろ紙にてろ過したのち、ろ液の窒素含量をケルダール法にて測定する。同時に試料中の窒素含量をケルダール法にて測定し、ろ液として回収された窒素(水溶性窒素)の試料中の全窒素に対する割合を重量%として表したものをNSIとする。 In addition, NSI can be expressed by the ratio (% by weight) of water-soluble nitrogen (crude protein) to the total amount of nitrogen based on a predetermined method, and in this specification, it is the value measured based on the following method. To do. That is, 100 ml of water is added to 2.0 g of the sample, the mixture is stirred and extracted at 40 ° C. for 60 minutes, and centrifuged at 1400 × g for 10 minutes to obtain supernatant 1. 100 ml of water is added to the remaining precipitate again, and the mixture is stirred and extracted at 40 ° C. for 60 minutes and centrifuged at 1400 × g for 10 minutes to obtain supernatant 2. The supernatant 1 and the supernatant 2 are combined, and water is further added to make 250 ml. No. After filtering with 5A filter paper, the nitrogen content of the filtrate is measured by the Kjeldahl method. At the same time, the nitrogen content in the sample was measured by the Kjeldahl method, and the ratio of nitrogen (water-soluble nitrogen) recovered as a filtrate to the total nitrogen in the sample expressed as% by weight is defined as NSI.
 本態様において用いられる大豆原料の形態は特に限定されず、例えば、丸大豆、半割れ大豆、グリッツ、粉末状であり得る。 The form of the soybean raw material used in this embodiment is not particularly limited, and may be, for example, whole soybean, half-cracked soybean, glitz, or powder.
<大豆原料からの抽出>
 本態様の分画方法において、大豆原料からのたんぱく質の抽出に用いる溶媒は、イオン強度約1.5mol/L以上が好ましく、例えば、約2mol/L以上、約2.3mol/L以上、約2.5mol/L以上、約3mol/L以上の溶媒が挙げられる。イオン強度の上限は特に限定されないが、例えば約10mol/L以下、約7mol/L以下、約5mol/L以下が挙げられる。
<Extraction from soybean ingredients>
In the fractionation method of this embodiment, the solvent used for extracting the protein from the soybean raw material preferably has an ionic strength of about 1.5 mol / L or more, for example, about 2 mol / L or more, about 2.3 mol / L or more, and about 2 Solvents of .5 mol / L or more and about 3 mol / L or more can be mentioned. The upper limit of the ionic strength is not particularly limited, and examples thereof include about 10 mol / L or less, about 7 mol / L or less, and about 5 mol / L or less.
 イオン強度を調整するために添加される塩の種類は特に限定されず、例えば、無機酸塩、有機酸塩、アルカリ金属塩が挙げられる。例えば、塩酸塩、硫酸塩、リン酸塩、硝酸塩、酢酸塩、ナトリウム塩、カリウム塩などが挙げられる。より具体的に、塩化ナトリウム、塩化カリウム、硫酸ナトリウム、硫酸カリウム、リン酸ナトリウム、リン酸カリウム、硝酸ナトリウム、硝酸カリウム、酢酸ナトリウム、酢酸カリウムなどが挙げられる。 The type of salt added to adjust the ionic strength is not particularly limited, and examples thereof include inorganic acid salts, organic acid salts, and alkali metal salts. For example, hydrochlorides, sulfates, phosphates, nitrates, acetates, sodium salts, potassium salts and the like can be mentioned. More specifically, sodium chloride, potassium chloride, sodium sulfate, potassium sulfate, sodium phosphate, potassium phosphate, sodium nitrate, potassium nitrate, sodium acetate, potassium acetate and the like can be mentioned.
 溶媒のpHは特に限定されず、例えば、約6~約10、約7~約9、約8などが挙げられる。 The pH of the solvent is not particularly limited, and examples thereof include about 6 to about 10, about 7 to about 9, and about 8.
 抽出に用いられる溶媒の量は特に限定されず、例えば大豆原料に対して約3~約20重量倍、約4~約15重量倍、約6~約12重量倍、約7~約10重量倍程度が挙げられる。溶媒量が多い方が水溶性成分の抽出率が高まり、分離を良くすることができるが、多すぎると濃縮が必要となりコストがかかる。 The amount of the solvent used for extraction is not particularly limited, and is, for example, about 3 to about 20 times by weight, about 4 to about 15 times by weight, about 6 to about 12 times by weight, and about 7 to about 10 times by weight of the soybean raw material. The degree can be mentioned. The larger the amount of the solvent, the higher the extraction rate of the water-soluble component and the better the separation, but if the amount is too large, concentration is required and the cost is high.
 抽出時間、温度は特に限定されない。抽出時間の例として、約1分間~約10時間、約10分間~約2時間、例えば約5分間以上、約10分間以上、約15分間以上、約20分間以上、約30分間以上、約1時間以上、約90分間以上、等が挙げられる。抽出温度の例として、約4~約50℃、約10~約30℃、室温、等が挙げられる。 Extraction time and temperature are not particularly limited. Examples of extraction time are about 1 minute to about 10 hours, about 10 minutes to about 2 hours, for example, about 5 minutes or more, about 10 minutes or more, about 15 minutes or more, about 20 minutes or more, about 30 minutes or more, about 1 Time or more, about 90 minutes or more, and the like. Examples of the extraction temperature include about 4 to about 50 ° C., about 10 to about 30 ° C., room temperature, and the like.
 抽出時、撹拌を行ってもよい。撹拌速度は、例えば約100~5000rpm等が挙げられる。 At the time of extraction, stirring may be performed. The stirring speed may be, for example, about 100 to 5000 rpm.
 抽出に用いられる溶媒には、還元剤を添加してもよい。還元剤の添加により、大豆たんぱく質のジスルフィド結合が切断され、より抽出率が向上することが考えられる。還元剤の種類は特に限定されないが、例えば亜硫酸ナトリウム、亜硫酸水素ナトリウム、塩素、三塩化窒素、過硫化アンモニウム、亜塩素酸ナトリウム、メルカプトエタノール、N-アセチル-L-システイン、ジチオトレイオール、トリブチルホスフィン等が挙げられる。還元剤の濃度は特に限定されないが、例えば約0.03%、約0.05%、約0.1%、約0.3%、約0.5%、約0.01~1%、約0.03~0.5%等が挙げられる。 A reducing agent may be added to the solvent used for extraction. It is considered that the addition of the reducing agent cleaves the disulfide bond of the soybean protein and further improves the extraction rate. The type of reducing agent is not particularly limited, but for example, sodium sulfite, sodium hydrogen sulfite, chlorine, nitrogen trichloride, ammonium persulfide, sodium chlorite, mercaptoethanol, N-acetyl-L-cysteine, dithiotreiol, tributylphosphine. And so on. The concentration of the reducing agent is not particularly limited, but is, for example, about 0.03%, about 0.05%, about 0.1%, about 0.3%, about 0.5%, about 0.01 to 1%, about. 0.03 to 0.5% and the like can be mentioned.
<抽出後の固液分離>
 抽出後、大豆原料からの懸濁液を遠心分離、濾過等により固液分離する。固液分離により、大豆抽出液が油層(O)、中間層(M)、沈殿層(R)に分離される。固液分離として、遠心分離機を使用するのが好ましい。遠心分離の条件は限定されないが、例えば約500~約1200000×g、約1000~約800000×g、約5000~約50000×g、約18000×gなどが挙げられる。また、遠心分離の時間も限定されないが、例えば、約1分間~約20分間、約1.5分間~約15分間、約2.5分間~約10分間、約5分間などが挙げられる。
<Solid-liquid separation after extraction>
After extraction, the suspension from the soybean raw material is separated into solid and liquid by centrifugation, filtration or the like. By solid-liquid separation, the soybean extract is separated into an oil layer (O), an intermediate layer (M), and a precipitation layer (R). It is preferable to use a centrifuge as the solid-liquid separation. The conditions for centrifugation are not limited, and examples thereof include about 500 to about 1200,000 × g, about 1,000 to about 800,000 × g, about 5,000 to about 50,000 × g, and about 18,000 × g. The time for centrifugation is also not limited, and examples thereof include about 1 minute to about 20 minutes, about 1.5 minutes to about 15 minutes, about 2.5 minutes to about 10 minutes, and about 5 minutes.
<OBAP画分の回収>
 上記抽出により得られた油層(O)は、そのままOBAP画分として回収してもよい。他の実施形態では、油層(O)に、大豆原料からのたんぱく質の抽出に用いる溶媒において規定したイオン強度を有する溶媒を添加し、洗浄を行ってもよい。洗浄に用いる溶媒は、大豆原料からのたんぱく質の抽出に用いた溶媒と同じでもよいし、異なっていてもよい。溶媒に関する条件、溶媒量、洗浄時間、温度、撹拌速度の条件は、上記の、大豆原料からの抽出に規定される条件と同様である。洗浄後、固液分離を行う。固液分離として、遠心分離機を用いることが好ましい。二層分離の場合は、油層(O2)をOBAP画分として回収し、水層(OA)を抽出液を固液分離した中間層(M)に混合する。三層分離の場合は、油層(O2)および沈殿層(OR)を混合したものをOBAP画分として回収し、中間層(OA)を、抽出液を固液分離した中間層(M)と混合する。固液分離の条件は、上記の、大豆原料からの抽出に規定される条件と同様である。
<Recovery of OBAP fraction>
The oil reservoir (O) obtained by the above extraction may be recovered as it is as an OBAP fraction. In another embodiment, the oil layer (O) may be washed by adding a solvent having the ionic strength specified in the solvent used for extracting the protein from the soybean raw material. The solvent used for washing may be the same as or different from the solvent used for extracting the protein from the soybean raw material. The conditions regarding the solvent, the amount of the solvent, the washing time, the temperature, and the stirring speed are the same as those specified for the above-mentioned extraction from the soybean raw material. After cleaning, solid-liquid separation is performed. It is preferable to use a centrifuge as the solid-liquid separation. In the case of two-layer separation, the oil layer (O2) is recovered as an OBAP fraction, and the aqueous layer (OA) is mixed with the solid-liquid separated intermediate layer (M) of the extract. In the case of three-layer separation, a mixture of the oil layer (O2) and the precipitate layer (OR) is recovered as an OBAP fraction, and the intermediate layer (OA) is mixed with the intermediate layer (M) from which the extract is solid-liquid separated. To do. The conditions for solid-liquid separation are the same as those specified for extraction from soybean raw materials described above.
<沈殿層(R)の再抽出>
 ある実施形態において、沈殿層(R)に水性溶媒を添加し、再抽出を行う。使用する水性溶媒は、水でもよいし、上記のように、塩、または塩および還元剤を含むものでもよい。例えば、1回目の抽出で使用されたものと同じ溶媒を用いてもよい。再抽出の際の溶媒量、抽出時間、温度、撹拌速度の条件は、上記の、大豆原料からの抽出に規定される条件と同様である。再抽出後、固液分離を行い、沈殿層(R2)をオカラ層とし、水層(RA)を、上記中間層(M)と混合する。固液分離として、遠心分離機を用いることが好ましい。固液分離の条件は、上記の、大豆原料からの抽出に規定される条件と同様である。
<Re-extraction of sedimentation layer (R)>
In one embodiment, an aqueous solvent is added to the precipitate layer (R) and re-extraction is performed. The aqueous solvent used may be water or, as described above, a salt or one containing a salt and a reducing agent. For example, the same solvent used in the first extraction may be used. The conditions of the amount of solvent, the extraction time, the temperature, and the stirring speed at the time of re-extraction are the same as the conditions specified for the above-mentioned extraction from the soybean raw material. After re-extraction, solid-liquid separation is performed, the precipitate layer (R2) is used as an okara layer, and the aqueous layer (RA) is mixed with the intermediate layer (M). It is preferable to use a centrifuge as the solid-liquid separation. The conditions for solid-liquid separation are the same as those specified for extraction from soybean raw materials described above.
<中間層(M)(または(M')の酸沈>
 上記中間層(M)、または上記中間層(M)に、油層(O)の洗浄からの水層(OA)および/または沈殿層(R)の再抽出からの水層(RA)を混合した新たな中間層(M')について、そのまま、または必要に応じて塩を添加してイオン強度を、上記大豆原料からの抽出に規定するイオン強度に調整した後、酸を添加して、pHを大豆たんぱく質の等電点付近、例えば約4~約6、約4~約5、約4.2~4.8、約4.5に調整する。ある実施形態において、上記イオン強度の調整は、大豆原料からの抽出に使用した溶媒と同程度になるように調整する。他の実施形態において、イオン強度の調整とともに、還元剤を上記大豆原料からの抽出に規定する濃度となるように添加してもよい、より具体的な実施形態において、還元剤は、大豆原料からの抽出に使用した溶媒と同程度となるように調整する。
<Acid deposit of intermediate layer (M) (or (M')>
The intermediate layer (M) or the intermediate layer (M) was mixed with the aqueous layer (OA) from the washing of the oil layer (O) and / or the aqueous layer (RA) from the re-extraction of the precipitate layer (R). For the new intermediate layer (M'), the ionic strength is adjusted to the ionic strength specified in the extraction from the soybean raw material as it is or by adding a salt as needed, and then an acid is added to adjust the pH. Adjust to near the isoelectric point of soybean protein, for example, about 4 to about 6, about 4 to about 5, about 4.2 to 4.8, about 4.5. In certain embodiments, the ionic strength is adjusted to be comparable to the solvent used for extraction from the soybean raw material. In another embodiment, the reducing agent may be added to the concentration specified in the extraction from the soybean raw material together with the adjustment of the ionic strength. In a more specific embodiment, the reducing agent is derived from the soybean raw material. Adjust so that it is comparable to the solvent used for the extraction of.
 酸沈に使用される酸は特に限定されず、有機酸、無機酸が適宜使用できる。例えば、塩酸、硫酸、リン酸、酢酸、クエン酸、乳酸等が挙げられる。 The acid used for acid precipitation is not particularly limited, and organic acids and inorganic acids can be appropriately used. For example, hydrochloric acid, sulfuric acid, phosphoric acid, acetic acid, citric acid, lactic acid and the like can be mentioned.
 酸沈の後、固液分離を行い、水層(MA)(中間層(M)および中間層(M')から分離された水層のいずれも、単に「水層(MA)」と称する、以降の各画分の表記についても同様とする)と沈殿層(MR)に分離する。沈殿層(MR)は、PLAP画分として回収する。固液分離として、遠心分離機を用いることが好ましい。固液分離の条件は、上記の、大豆原料からの抽出に規定される条件と同様である。 After acid precipitation, solid-liquid separation is performed, and both the aqueous layer (MA) (both the aqueous layer separated from the intermediate layer (M) and the intermediate layer (M') are simply referred to as "aqueous layer (MA)". The same applies to the notation of each subsequent fraction) and the precipitate layer (MR). The precipitated layer (MR) is collected as a PLAP fraction. It is preferable to use a centrifuge as the solid-liquid separation. The conditions for solid-liquid separation are the same as those specified for extraction from soybean raw materials described above.
<ホエー画分とグロブリン画分の分画>
 ある実施形態では、酸沈後の水層(MA)を水で希釈して、グロブリンが全て沈澱するようにイオン強度を十分に低下させ、必要に応じてpHを大豆たんぱく質の等電点付近、例えば約4~約6、約4~約5、約4.2~4.8、約4.5に調整する。なお、ここでいう水として蒸留水または純水を使用することが好ましいが、このような純度の高い水に限定されず、例えば塩等の他の成分が含まれているものを使用してもよい。より具体的な実施形態において、pHは、上記中間層(M)または(M')の酸沈で調整したpHと同程度となるように調整する。希釈の程度は当業者により適宜調整可能であるが、イオン強度が約0.15mol/L以下、例えば約0.12mol/L以下、約0.09mol/L以下、約0.08mol/L以下、約0.06mol/L以下、約0.05mol/L以下、約0.03mol/L以下、約0.15mol/L~約0.03mol/L、となるように希釈することが好ましい。希釈後、固液分離により、水層(W)をホエー画分、沈殿層(G)をグロブリン画分として回収する。固液分離として、遠心分離機を使用するのが好ましい。遠心分離の条件は限定されないが、例えば約1000~約5000×g、約1200~約4500×g、約1500~約3000×g、約1800×gなどが挙げられる。また、遠心分離の時間も限定されないが、例えば、約1分~約20分、約1.5分~約15分、約2.5分~約10分、約5分などが挙げられる。
<Whey fraction and globulin fraction fraction>
In one embodiment, the acid-precipitated aqueous layer (MA) is diluted with water to sufficiently reduce the ionic strength so that all globulin precipitates, and if necessary, the pH is set near the isoelectric point of soy protein. For example, adjust to about 4 to about 6, about 4 to about 5, about 4.2 to 4.8, and about 4.5. It is preferable to use distilled water or pure water as the water referred to here, but the water is not limited to such high-purity water, and water containing other components such as salt may be used. Good. In a more specific embodiment, the pH is adjusted to be comparable to the pH adjusted by the acid precipitation of the intermediate layer (M) or (M'). The degree of dilution can be appropriately adjusted by those skilled in the art, but the ionic strength is about 0.15 mol / L or less, for example, about 0.12 mol / L or less, about 0.09 mol / L or less, about 0.08 mol / L or less, It is preferable to dilute to about 0.06 mol / L or less, about 0.05 mol / L or less, about 0.03 mol / L or less, and about 0.15 mol / L to about 0.03 mol / L. After dilution, the aqueous layer (W) is recovered as a whey fraction and the precipitated layer (G) is recovered as a globulin fraction by solid-liquid separation. It is preferable to use a centrifuge as the solid-liquid separation. The conditions for centrifugation are not limited, and examples thereof include about 1000 to about 5000 × g, about 1200 to about 4500 × g, about 1500 to about 3000 × g, and about 1800 × g. The time for centrifugation is also not limited, and examples thereof include about 1 minute to about 20 minutes, about 1.5 minutes to about 15 minutes, about 2.5 minutes to about 10 minutes, and about 5 minutes.
<ホエー画分と7S、11S画分の分画>
 ある実施形態では、酸沈後の水層(MA)を水で希釈して、グロブリンのうち11Sのみが沈澱するようにイオン強度を調整し、必要に応じてpHを大豆たんぱく質の等電点付近、例えば約4~約6、約4~約5、約4.2~4.8、約4.5に調整する。なお、ここでいう水として蒸留水または純水を使用することが好ましいが、このような純度の高い水に限定されず、例えば塩等の他の成分が含まれているものを使用してもよい。より具体的な実施形態において、pHは、上記中間層(M)の酸沈で調整したpHと同程度となるように調整する。希釈の程度は当業者により適宜調整可能であるが、例えば、イオン強度が約0.16mol/L~約0.9mol/L、例えば約0.2mol/L~約0.6mol/L、約0.2mol/L~約0.5mol/L、約0.24mol/L~約0.4mol/L、となるように希釈することが好ましい。希釈後、固液分離により、水層(W)および沈殿層(G)を回収し、沈殿層(G)を11S画分として回収する。さらに、水層(W)を水などの溶媒で希釈して、7Sが全て沈澱するようにイオン強度を必要十分に低下させ、必要に応じてpHを大豆たんぱく質の等電点付近、例えば約4~約6、約4.5に調整する。より具体的な実施形態において、pHは、上記中間層(M)の酸沈で調整したpHと同程度となるように調整する。希釈の程度は当業者により適宜調整可能であるが、例えば、イオン強度が約0.15mol/L以下、例えば約0.12mol/L以下、約0.09mol/L以下、約0.08mol/L以下、約0.06mol/L以下、約0.05mol/L以下、約0.03mol/L以下、約0.15mol/L~約0.03mol/L、となるように希釈することが好ましい。希釈後、固液分離により、上清(W2)および沈殿層(WG)を回収し、上清(W2)をホエー画分、沈殿層(WG)を7S画分として回収する。固液分離として、遠心分離機を使用するのが好ましい。遠心分離の条件は限定されないが、例えば約1000~約5000×g、約1200~約4500×g、約1500~約3000×g、約1800×gなどが挙げられる。また、遠心分離の時間も限定されないが、例えば、約1分~約20分、約1.5分~約15分、約2.5分~約10分、約5分などが挙げられる。
<Whey fraction and 7S and 11S fractions>
In one embodiment, the acid-precipitated aqueous layer (MA) is diluted with water, the ionic strength is adjusted so that only 11S of globulin precipitates, and the pH is adjusted near the isoelectric point of soy protein if necessary. For example, adjust to about 4 to about 6, about 4 to about 5, about 4.2 to 4.8, and about 4.5. It is preferable to use distilled water or pure water as the water referred to here, but the water is not limited to such high-purity water, and water containing other components such as salt may be used. Good. In a more specific embodiment, the pH is adjusted to be about the same as the pH adjusted by the acid precipitation of the intermediate layer (M). The degree of dilution can be appropriately adjusted by those skilled in the art, and for example, the ionic strength is about 0.16 mol / L to about 0.9 mol / L, for example, about 0.2 mol / L to about 0.6 mol / L, about 0. It is preferable to dilute to about 2 mol / L to about 0.5 mol / L and about 0.24 mol / L to about 0.4 mol / L. After dilution, the aqueous layer (W) and the precipitated layer (G) are recovered by solid-liquid separation, and the precipitated layer (G) is recovered as an 11S fraction. Further, the aqueous layer (W) is diluted with a solvent such as water to reduce the ionic strength necessary and sufficient so that all 7S precipitates, and if necessary, the pH is set near the isoelectric point of soybean protein, for example, about 4. Adjust to about 6 and about 4.5. In a more specific embodiment, the pH is adjusted to be about the same as the pH adjusted by the acid precipitation of the intermediate layer (M). The degree of dilution can be appropriately adjusted by those skilled in the art, and for example, the ionic strength is about 0.15 mol / L or less, for example, about 0.12 mol / L or less, about 0.09 mol / L or less, about 0.08 mol / L. Hereinafter, it is preferable to dilute the mixture so as to be about 0.06 mol / L or less, about 0.05 mol / L or less, about 0.03 mol / L or less, and about 0.15 mol / L to about 0.03 mol / L. After dilution, the supernatant (W2) and the precipitate layer (WG) are collected by solid-liquid separation, and the supernatant (W2) is collected as a whey fraction and the precipitate layer (WG) is collected as a 7S fraction. It is preferable to use a centrifuge as the solid-liquid separation. The conditions for centrifugation are not limited, and examples thereof include about 1000 to about 5000 × g, about 1200 to about 4500 × g, about 1500 to about 3000 × g, and about 1800 × g. The time for centrifugation is also not limited, and examples thereof include about 1 minute to about 20 minutes, about 1.5 minutes to about 15 minutes, about 2.5 minutes to about 10 minutes, and about 5 minutes.
<各画分のたんぱく質量の評価>
 上記で得られた各画分(OBAP画分、PLAP画分、ホエー画分、グロブリン画分、またはグロブリン画分の代わりに7S画分および11S画分)のたんぱく質含量を測定する。たんぱく質量の測定方法は当業者が適宜選択できる。なお、各画分のたんぱく質含量の相対比較のため、固液分離前の、大豆原料からの抽出液を初発試料としてサンプリングしておくことが好ましい。例えば、各画分の重量を測定後乾燥する。乾燥の方法は当業者が適宜選択でき、例えば風乾、スプレードライ、フリーズドライ等が挙げられる。熱変性の少なさから、フリーズドライが好ましい。乾燥後の重量を測定した後、乾燥後の粉末の窒素含量を測定し、窒素たんぱく質換算係数6.25を掛けてたんぱく質含量を算出する。窒素含量は、例えばデュマ法、ケルダール法等が使用できる。各画分の湿重量、水分含量、乾燥粉末中のたんぱく質含量から、初発試料を100%とした場合の各画分のたんぱく質含量を相対比較することにより、たんぱく質質量比を評価できる。
<Evaluation of protein mass of each fraction>
The protein content of each fraction obtained above (OBAP fraction, PLAP fraction, whey fraction, globulin fraction, or 7S fraction and 11S fraction instead of globulin fraction) is measured. A person skilled in the art can appropriately select the method for measuring the protein mass. In order to make a relative comparison of the protein contents of each fraction, it is preferable to sample the extract from the soybean raw material before solid-liquid separation as the initial sample. For example, the weight of each fraction is measured and then dried. A person skilled in the art can appropriately select the drying method, and examples thereof include air drying, spray drying, and freeze drying. Freeze-drying is preferable because of less heat denaturation. After measuring the weight after drying, the nitrogen content of the powder after drying is measured and multiplied by a nitrogen protein conversion coefficient of 6.25 to calculate the protein content. For the nitrogen content, for example, the Dumas method, the Kjeldahl method, or the like can be used. The protein mass ratio can be evaluated by making a relative comparison of the protein content of each fraction when the initial sample is 100% from the wet weight, the water content, and the protein content in the dry powder of each fraction.
<グロブリン画分中の7S、11S量の評価>
 上記グロブリン画分を得た場合、7S、11Sの組成については、例えば、グロブリン画分を常法に従ってSDS-PAGEに供し、CBB染色等を行った染色強度比で求めることもできる。7Sと11Sに関しては、CBB染色の染色強度が同等であるためである。
<Evaluation of 7S and 11S amounts in the globulin fraction>
When the above globulin fraction is obtained, the composition of 7S and 11S can be determined by, for example, the staining intensity ratio obtained by subjecting the globulin fraction to SDS-PAGE according to a conventional method and performing CBB staining or the like. This is because the dyeing intensities of CBB dyeing are the same for 7S and 11S.
 他の態様において、本発明は、上記の分画方法により分画された各画分のたんぱく質量を測定することを含む、大豆中のたんぱく質組成の分析方法に関する。さらなる態様において、得られた各画分のたんぱく質量を測定することにより、大豆種子中のたんぱく質構成比を求めることを含む、大豆品種の評価方法に関する。 In another aspect, the present invention relates to a method for analyzing a protein composition in soybean, which comprises measuring the protein mass of each fraction fractionated by the above fractionation method. In a further aspect, the present invention relates to a method for evaluating soybean varieties, which comprises determining the protein composition ratio in soybean seeds by measuring the protein mass of each obtained fraction.
 大豆のたんぱく質組成を分析することにより、意図する大豆製品に適した物性(ゲル化能、風味等)を決定すること、より適した物性を有する大豆品種を選抜することが可能となる。また、本態様の方法は、意図する特性を有する大豆品種の育種やゲノム編集による、大豆品種の作成に利用することが可能である。 By analyzing the protein composition of soybeans, it is possible to determine the physical characteristics (gelling ability, flavor, etc.) suitable for the intended soybean product, and to select soybean varieties with more suitable physical characteristics. In addition, the method of this embodiment can be used for breeding soybean varieties having the intended characteristics and for producing soybean varieties by genome editing.
 さらに他の態様において、本発明は、上記の分画方法により分画された各画分に関する。本態様では、これまで知られていた7S、11S、ホエー画分のみならず、OBAP画分、PLAP画分といった新たな大豆たんぱく質素材を提供する。得られた画分はそのまま大豆たんぱく質素材として使用しても良いし、乾燥等の処理を行ってもよい。 In still another aspect, the present invention relates to each fraction fractionated by the above fractionation method. In this aspect, not only the previously known 7S, 11S and whey fractions, but also new soybean protein materials such as OBAP fraction and PLAP fraction are provided. The obtained fraction may be used as it is as a soybean protein material, or may be subjected to a treatment such as drying.
 以下、実施例により本発明の実施形態についてより具体的に記載する。特記しない限り、濃度等は重量を基準とする。例えば、「%」は特記しない限り「重量%(w/w)」を意味する。 Hereinafter, embodiments of the present invention will be described more specifically by way of examples. Unless otherwise specified, the concentration, etc. is based on weight. For example, "%" means "weight% (w / w)" unless otherwise specified.
実施例1:4画分への分画1
 以下の操作により、大豆たんぱく質を4画分に分離した。概略を図1に示す。
Example 1: Fraction 1 into 4 fractions
The soybean protein was separated into 4 fractions by the following operation. The outline is shown in FIG.
1.抽出
 脱皮脱胚軸を行った丸大豆(品種:フクユタカ、NSI90以上、脂質含量21%)を粉砕し、丸大豆粉を得た。大豆紛に9倍量のバッファー(1M硫酸ナトリウム、0.1%亜硫酸水素ナトリウム)を添加し、懸濁させた。このときのバッファーのイオン強度は3mol/Lである。1N NaOHを添加し、pHを8.0に調整した。懸濁液を、室温で1時間スターラー撹拌(200rpm)し、抽出を行った。抽出液の一部を、初発溶液としてサンプリングした。抽出液を18000×gで10分間遠心分離し、油層(O)、中間層(M)、沈殿層(R)に分離した。油層(O)をOBAP画分として回収した。
1. 1. Extraction The whole soybeans that had been molted and hypocotyled (variety: Fukuyutaka, NSI 90 or more, lipid content 21%) were crushed to obtain whole soybean flour. A 9-fold amount of buffer (1 M sodium sulfate, 0.1% sodium bisulfite) was added to the soybean powder and suspended. The ionic strength of the buffer at this time is 3 mol / L. 1N NaOH was added to adjust the pH to 8.0. The suspension was stirred at room temperature for 1 hour with a stirrer (200 rpm) for extraction. A part of the extract was sampled as the initial solution. The extract was centrifuged at 18,000 × g for 10 minutes and separated into an oil layer (O), an intermediate layer (M) and a precipitation layer (R). The oil reservoir (O) was recovered as an OBAP fraction.
2.PLAPの分画
 得られた中間層(M)に2N HClを添加し、pHを4.5に下げた。その後、18000×gで10分間遠心分離し、水層(MA)と沈殿層(MR)に分離した。沈殿層(MR)をPLAP画分として回収した。
2. 2. Fraction of PLAP 2N HCl was added to the obtained intermediate layer (M) to lower the pH to 4.5. Then, it was centrifuged at 18,000 × g for 10 minutes, and separated into an aqueous layer (MA) and a precipitate layer (MR). The precipitated layer (MR) was recovered as a PLAP fraction.
3.ホエーとグロブリンの分画(4分画)
 水層(MA)を水で100倍希釈し(w/w)て溶媒のイオン強度を0.03mol/Lに低下させた後、0.5N HClでpHを4.5に調整した。その後、1800×gで5分間遠心分離し、上清(W)をホエー画分、沈殿(G)をグロブリン画分として回収した。
3. 3. Whey and globulin fraction (4 fractions)
The aqueous layer (MA) was diluted 100-fold with water (w / w) to reduce the ionic strength of the solvent to 0.03 mol / L, and then the pH was adjusted to 4.5 with 0.5N HCl. Then, the mixture was centrifuged at 1800 × g for 5 minutes, and the supernatant (W) was collected as a whey fraction and the precipitate (G) was collected as a globulin fraction.
4.各画分のたんぱく質量の評価
 上記で回収した各画分(OBAP、PLAP、ホエー、グロブリン)をフリーズドライに供し、乾燥した。乾燥前後の重量を測定した。乾燥粉末についてデュマ法で窒素含量を測定し、窒素たんぱく質換算係数6.25を掛けてたんぱく質含量を算出した。各画分の湿重量、水分含量、乾燥粉末中のたんぱく質含量から、初発溶液試料を100%とした場合の各画分のたんぱく質含量を相対比較した。
4. Evaluation of Protein Mass of Each Fraction Each fraction (OBAP, PLAP, whey, globulin) recovered above was freeze-dried and dried. The weight before and after drying was measured. The nitrogen content of the dry powder was measured by the Dumas method and multiplied by a nitrogen protein conversion coefficient of 6.25 to calculate the protein content. From the wet weight, water content, and protein content in the dry powder of each fraction, the protein content of each fraction was compared relative to each other when the initial solution sample was 100%.
5.グロブリン画分中の7S、11Sの定量
 常法に従ってグロブリン画分をSDS-PAGEに供した。市販既製ゲル(製品名:「e・パジェル12.5%」、アトー株式会社製)、分子量マーカー(製品名:「プレシジョン Plus プロテイン(登録商標)2色スタンダード」バイオ・ラッド社製)を使用した。CBB染色を行った染色強度比で7S、11Sグロブリン量を評価した。
5. Quantification of 7S and 11S in the globulin fraction The globulin fraction was subjected to SDS-PAGE according to a conventional method. Commercially available ready-made gel (product name: "e-Pagel 12.5%", manufactured by Ato Co., Ltd.) and molecular weight marker (product name: "Precision Plus Protein (registered trademark) 2-color standard" manufactured by Bio-Rad) were used. .. The amounts of 7S and 11S globulin were evaluated based on the staining intensity ratio of CBB staining.
実施例2:4画分への分画2
 以下の操作により、大豆たんぱく質を4画分に分離した。概略を図2に示す。
Example 2: Fraction 2 into 4 fractions
The soybean protein was separated into 4 fractions by the following operation. The outline is shown in FIG.
1.抽出
 脱皮脱胚軸を行った丸大豆(実施例1と同じ)を粉砕し、丸大豆粉を得た。大豆紛に9倍量のバッファー(1M硫酸ナトリウム、0.1%亜硫酸水素ナトリウム)を添加し、懸濁させた。このときのバッファーのイオン強度は3mol/Lである。1N NaOHを添加し、pHを8.0に調整した。懸濁液を、室温で1時間スターラー撹拌(200rpm)し、抽出を行った。抽出液の一部を、初発溶液としてサンプリングした。抽出液を18000×gで10分間遠心分離し、油層(O)、中間層(M)、沈殿層(R)に分離した。
1. 1. Extraction The whole soybeans that had been molted and hypocotyled (same as in Example 1) were crushed to obtain whole soybean flour. A 9-fold amount of buffer (1 M sodium sulfate, 0.1% sodium bisulfite) was added to the soybean powder and suspended. The ionic strength of the buffer at this time is 3 mol / L. 1N NaOH was added to adjust the pH to 8.0. The suspension was stirred at room temperature for 1 hour with a stirrer (200 rpm) for extraction. A part of the extract was sampled as the initial solution. The extract was centrifuged at 18,000 × g for 10 minutes and separated into an oil layer (O), an intermediate layer (M) and a precipitation layer (R).
2.油層洗浄
 得られた油層(O)に、4倍量の前記バッファーを添加し、室温で10分間スターラー撹拌した。18000×gで10分間遠心分離し、油層(O2)、水層(OA)、沈殿層(OR)に分離した。油層(O2)と沈殿層(OR)を合わせてOBAP画分とし、水層(OA)を上記中間層(M)と混合した。
2. 2. Oil layer cleaning To the obtained oil layer (O), 4 times the amount of the buffer was added, and the mixture was stirred with a stirrer at room temperature for 10 minutes. Centrifugation was carried out at 18,000 × g for 10 minutes, and the mixture was separated into an oil layer (O2), an aqueous layer (OA) and a precipitation layer (OR). The oil layer (O2) and the precipitate layer (OR) were combined to form an OBAP fraction, and the aqueous layer (OA) was mixed with the intermediate layer (M).
3.沈殿層再抽出
 沈殿層(R)に、9倍量(w/w)の水を加えて懸濁させ、室温で10分間スターラー撹拌した。懸濁液を18000×gで10分間遠心分離し、水層(RA)、沈殿層(R2)に分離した。水層(RA)を、上記中間層(M)と混合した。
3. 3. Precipitation layer re-extraction A 9-fold amount (w / w) of water was added to the precipitate layer (R) to suspend it, and the mixture was stirred at room temperature for 10 minutes with a stirrer. The suspension was centrifuged at 18,000 xg for 10 minutes and separated into an aqueous layer (RA) and a precipitate layer (R2). The aqueous layer (RA) was mixed with the intermediate layer (M).
4.PLAPの分画
 得られた新たな中間層(M')(中間層(M)、水層(OA)、水層(RA)の混合物)に、上記沈殿層再抽出時の水の添加により減少した分の、硫酸ナトリウムおよび亜硫酸水素ナトリウムを添加してイオン強度が「1.抽出」の際と同じになるように塩濃度を補正した。2N HClを添加してpHを4.5に下げ、18000×gで10分間遠心分離し、水層(MA)と沈殿層(MR)に分離し、沈殿層(MR)をPLAP画分として回収した。
4. Fractionation of PLAP Decreased by adding water during re-extraction of the precipitate layer to the obtained new intermediate layer (M') (mixture of intermediate layer (M), aqueous layer (OA), and aqueous layer (RA)). Sodium sulfate and sodium bisulfite were added to adjust the salt concentration so that the ionic strength was the same as in "1. Extraction". Add 2N HCl to lower the pH to 4.5, centrifuge at 18000 xg for 10 minutes, separate into aqueous layer (MA) and precipitate layer (MR), and recover the precipitate layer (MR) as a PLAP fraction. did.
5.ホエーとグロブリンの分画(4分画)
 水層(MA)を水で100倍希釈し(w/w)て溶媒のイオン強度を0.03mol/Lに低下させた後、0.5N HClでpHを4.5に調整した。その後、1800×gで5分間遠心分離し、上清(W)をホエー画分、沈殿層(G)をグロブリン画分として回収した。
5. Whey and globulin fraction (4 fractions)
The aqueous layer (MA) was diluted 100-fold with water (w / w) to reduce the ionic strength of the solvent to 0.03 mol / L, and then the pH was adjusted to 4.5 with 0.5N HCl. Then, the mixture was centrifuged at 1800 × g for 5 minutes, and the supernatant (W) was collected as a whey fraction and the precipitate layer (G) was collected as a globulin fraction.
6.各画分のたんぱく質量の評価
 上記で回収した各画分(OBAP、PLAP、ホエー、グロブリン)をフリーズドライに供し、乾燥した。乾燥前後の重量を測定した。乾燥粉末についてデュマ法で窒素含量を測定し、窒素たんぱく質換算係数6.25を掛けてたんぱく質含量を算出した。各画分の湿重量、水分含量、乾燥粉末中のたんぱく質含量から、初発溶液試料を100%とした場合の各画分のたんぱく質含量を相対比較した。
6. Evaluation of Protein Mass of Each Fraction Each fraction (OBAP, PLAP, whey, globulin) recovered above was freeze-dried and dried. The weight before and after drying was measured. The nitrogen content of the dry powder was measured by the Dumas method and multiplied by a nitrogen protein conversion coefficient of 6.25 to calculate the protein content. From the wet weight, water content, and protein content in the dry powder of each fraction, the protein content of each fraction was compared relative to each other when the initial solution sample was 100%.
7.グロブリン画分中の7S、11Sの定量
 常法に従ってグロブリン画分をSDS-PAGEに供した。市販既製ゲル(製品名:「e・パジェル12.5%」、アトー株式会社製)、分子量マーカー(製品名:「プレシジョン Plus プロテイン(登録商標)2色スタンダード」バイオ・ラッド社製)を使用した。CBB染色を行った染色強度比で7S、11Sグロブリン量を評価した。
7. Quantification of 7S and 11S in the globulin fraction The globulin fraction was subjected to SDS-PAGE according to a conventional method. Commercially available ready-made gel (product name: "e-Pagel 12.5%", manufactured by Ato Co., Ltd.) and molecular weight marker (product name: "Precision Plus Protein (registered trademark) 2-color standard" manufactured by Bio-Rad) were used. .. The amounts of 7S and 11S globulin were evaluated based on the staining intensity ratio of CBB staining.
 品種フクユタカの大豆種子から上記実施例2の方法で分画した各画分、初発溶液試料のSDS-PAGE結果を図3に示す。OBAP画分にはオレオシンを示す24kDaのバンドが確認できる。グロブリン画分については、7S、11Sおよびそのサブユニットに該当するバンドが確認でき、その強度比によって7S、11Sグロブリン量が算出できる。 FIG. 3 shows the SDS-PAGE results of each fraction and the initial solution sample fractionated from the soybean seeds of the cultivar Fukuyutaka by the method of Example 2 above. A 24 kDa band indicating oleocin can be confirmed in the OBAP fraction. As for the globulin fraction, bands corresponding to 7S and 11S and their subunits can be confirmed, and the amount of 7S and 11S globulin can be calculated from the intensity ratio thereof.
実施例3:ホエーとグロブリンの分画の際のイオン強度の検討
 上記実施例2の、5.ホエーとグロブリンの分画(4分画)の際の希釈時のイオン強度を下表に示すとおり、希釈なし、および1.2mol/L~0.03mol/Lの間で調整して分画し、得られたホエー画分をSDS-PAGEに供し、CBB染色を行った。結果を図4に示す。
Example 3: Examination of ionic strength at the time of fractionation of whey and globulin In Example 2 and 5. As shown in the table below, the ionic strength at the time of dilution during the fractionation of whey and globulin (4 fractions) is fractionated without dilution and adjusted between 1.2 mol / L and 0.03 mol / L. , The obtained whey fraction was subjected to SDS-PAGE and CBB staining was performed. The results are shown in FIG.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
 図4より、レーン7~13、すなわちイオン強度0.15mol/L以下で7S、11Sのほとんどがホエー画分からグロブリン画分に移行していることが確認された。一方、レーン1~6(イオン強度0.2mol/L以上)では、7Sのほとんどがホエー画分に保持されていた。一方、11Sは希釈により徐々にホエー画分からグロブリン画分に移行し始め、レーン5(イオン強度0.24mol/L)で11Sのほとんどがグロブリン画分へ移行していた。 From FIG. 4, it was confirmed that most of 7S and 11S were transferred from the whey fraction to the globulin fraction in lanes 7 to 13, that is, when the ionic strength was 0.15 mol / L or less. On the other hand, in lanes 1 to 6 (ionic strength 0.2 mol / L or more), most of 7S was retained in the whey fraction. On the other hand, 11S gradually began to shift from the whey fraction to the globulin fraction by dilution, and most of 11S moved to the globulin fraction in lane 5 (ionic strength 0.24 mol / L).
実施例4:5画分への分画
 以下の操作により、大豆たんぱく質を5画分に分離した。概略を図5に示す。
Example 4: Fractionation into 5 fractions Soybean protein was separated into 5 fractions by the following operation. The outline is shown in FIG.
1.抽出~4.PLAPの分画までは、上記実施例2と同様の手順で分画した。 1. 1. Extraction-4. Up to the fractionation of PLAP, fractionation was performed in the same procedure as in Example 2 above.
5.ホエーとグロブリンの分画
 水層(MA)を水で15倍希釈し(w/w)て溶媒のイオン強度を0.2mol/Lに低下させた後、0.5N HClでpHを4.5に調整した。その後、1800×gで5分間遠心分離し、沈殿(G)を11S画分として回収した。次いで水層(W)を水で2.22倍希釈し(w/w)て溶媒のイオン強度をさらに0.09mol/Lに低下させた後、0.5N HClでpHを4.5に調整した。その後、1800×gで5分間遠心分離し、水層(W2)をホエー画分、沈殿層(WG)を7S画分として回収した。
5. Fractionation of whey and globulin The aqueous layer (MA) was diluted 15-fold with water (w / w) to reduce the ionic strength of the solvent to 0.2 mol / L, and then the pH was adjusted to 4.5 with 0.5N HCl. Adjusted to. Then, the mixture was centrifuged at 1800 × g for 5 minutes, and the precipitate (G) was collected as an 11S fraction. Then, the aqueous layer (W) was diluted 2.22 times with water (w / w) to further reduce the ionic strength of the solvent to 0.09 mol / L, and then the pH was adjusted to 4.5 with 0.5N HCl. did. Then, the mixture was centrifuged at 1800 × g for 5 minutes, and the aqueous layer (W2) was recovered as a whey fraction and the precipitate layer (WG) as a 7S fraction.
6.各画分のたんぱく質量の評価
 上記で回収した各画分(OBAP、PLAP、7S、11S、ホエー)をフリーズドライに供し、乾燥した。乾燥前後の重量を測定した。乾燥粉末についてデュマ法で窒素含量を測定し、窒素たんぱく質換算係数6.25を掛けてたんぱく質含量を算出した。各画分の湿重量、水分含量、乾燥粉末中のたんぱく質含量から、初発溶液試料を100%とした場合の各画分のたんぱく質含量を相対比較した。
6. Evaluation of Protein Mass of Each Fraction Each fraction (OBAP, PLAP, 7S, 11S, whey) recovered above was freeze-dried and dried. The weight before and after drying was measured. The nitrogen content of the dry powder was measured by the Dumas method and multiplied by a nitrogen protein conversion coefficient of 6.25 to calculate the protein content. From the wet weight, water content, and protein content in the dry powder of each fraction, the protein content of each fraction was compared relative to each other when the initial solution sample was 100%.
 本方法により、窒素含量の測定により大豆試料のたんぱく質組成を評価することができた。 By this method, the protein composition of soybean samples could be evaluated by measuring the nitrogen content.
実施例5:大豆品種によるたんぱく質組成の違い
 実施例1で用いたフクユタカの他に、里のほほえみ、タチナガハ、11S欠損大豆の各品種を、実施例3の方法により分画し、組成比を求めた。結果を図6に示す。大豆の品種によって、たんぱく質の5画分の組成が異なることが示された。11S欠損大豆は他品種と比較して、7S、ホエー、PLAP画分が多いという結果となった。大豆の貯蔵たんぱく質であり、大豆たんぱく質の多くを占める11Sを欠損した場合に、必ずしももう一方の貯蔵たんぱく質である7Sのみが増えるわけではないことが示唆された。またフクユタカ、里のほほえみ、タチナガハはいずれも日本国内において広く流通している品種であるが、7S、11Sの比率だけではなくホエーやOBAP量に差が見られた。このように本発明によって大豆品種間のたんぱく質組成の違いを明らかにすることができ、求める品質を有する品種の選抜や育種によって作出した新品種の評価に利用できると考えられる。
Example 5: Difference in protein composition depending on soybean varieties In addition to Fukuyutaka used in Example 1, each variety of Sato no smile, Tachinagaha, and 11S-deficient soybean was fractionated by the method of Example 3 to determine the composition ratio. It was. The results are shown in FIG. It was shown that the composition of the five protein fractions differs depending on the soybean variety. The result was that the 11S-deficient soybean had a larger 7S, whey, and PLAP fraction than other varieties. It was suggested that when 11S, which is a stored protein of soybean and occupies most of the soybean protein, is deficient, only 7S, which is the other stored protein, does not necessarily increase. Fukuyutaka, Sato no Smile, and Tachinagaha are all varieties that are widely distributed in Japan, but there are differences not only in the ratio of 7S and 11S but also in the amount of whey and OBAP. As described above, it is considered that the present invention can clarify the difference in protein composition between soybean varieties, and can be used for selection of varieties having the required quality and evaluation of new varieties produced by breeding.
 本発明により、脂質を含有する未変性の大豆種子中の大豆たんぱく質を、オイルボディー会合たんぱく質(OBAP)、極性脂質会合たんぱく質(PLAP)、ホエーたんぱく質、グロブリンの4つの画分に分離することができる。さらにグロブリンは7Sグロブリン、11Sグロブリンの各画分に分離することにより、計5つの画分に分離することが可能となる。これにより、大豆品種の自然の状態でのたんぱく質組成を知ることができる。また、本発明により大豆製品に求められる品質に適した大豆品種を効率良く選抜することが可能となる。さらに、本発明の方法を、たんぱく質組成に特徴のある大豆品種の育種やゲノム編集による大豆品種の作成のための、大豆品種の評価方法としても利用することができる。また本発明を用いて適性品種を選抜することで、大豆製品の高品質化・原料のコストダウン・新機能を有する大豆製品の生産等に貢献できる。さらに、本発明の方法は、未変性の大豆原料からほぼすべてのたんぱく質を、分画された状態で回収することができるため、様々な機能特性を有する大豆たんぱく質製品を得ることが可能となり、新たな飲食品の開発に用いることが可能となる。 According to the present invention, soybean protein in undenatured soybean seeds containing lipid can be separated into four fractions: oil body-associated protein (OBAP), polar lipid-associated protein (PLAP), whey protein, and globulin. .. Further, the globulin can be separated into a total of 5 fractions by separating each of the 7S globulin and 11S globulin fractions. This makes it possible to know the protein composition of soybean varieties in the natural state. In addition, the present invention makes it possible to efficiently select soybean varieties suitable for the quality required for soybean products. Furthermore, the method of the present invention can also be used as a method for evaluating soybean varieties for breeding soybean varieties having a characteristic protein composition and for producing soybean varieties by genome editing. Further, by selecting suitable varieties using the present invention, it is possible to contribute to high quality of soybean products, cost reduction of raw materials, production of soybean products having new functions, and the like. Furthermore, the method of the present invention can recover almost all proteins from unmodified soybean raw materials in a fractionated state, so that soybean protein products having various functional characteristics can be obtained. It can be used for the development of various foods and drinks.

Claims (9)

  1.  以下の工程:
    (A)乾物あたりの脂質含量が15重量%以上であって、水溶性窒素指数(NSI)が80以上である大豆原料を準備する;
    (B)大豆原料にイオン強度1.5mol/L以上の溶媒を添加し、たんぱく質を抽出する;
    (C)抽出したたんぱく質を固液分離し、油層(O)、中間層(M)、沈殿層(R)に分離する;
    (D)中間層(M)に酸を添加し、pHを6以下に下げる;
    (E)pHを下げた中間層(M)を固液分離し、水層(MA)および沈殿層(MR)に分離する;
    (F)水層(MA)を水で希釈する;
    (G)希釈した水層(MA)を固液分離し、水層(W)および沈殿層(G)に分離する;
    を含む、大豆たんぱく質の分画方法。
    The following steps:
    (A) Prepare a soybean raw material having a lipid content of 15% by weight or more and a water-soluble nitrogen index (NSI) of 80 or more per dry matter;
    (B) A solvent having an ionic strength of 1.5 mol / L or more is added to the soybean raw material to extract the protein;
    (C) The extracted protein is solid-liquid separated and separated into an oil layer (O), an intermediate layer (M), and a precipitation layer (R);
    (D) Acid is added to the intermediate layer (M) to lower the pH to 6 or less;
    (E) The pH-lowered intermediate layer (M) is solid-liquid separated and separated into an aqueous layer (MA) and a precipitated layer (MR);
    (F) Dilute the aqueous layer (MA) with water;
    (G) The diluted aqueous layer (MA) is solid-liquid separated and separated into an aqueous layer (W) and a precipitated layer (G);
    How to fractionate soy protein, including.
  2.  工程(C)と(D)の間に、以下の工程:
    (a)工程(C)で得られた油層(O)に、イオン強度1.5mol/L以上の溶媒を添加し、固液分離により水層(OA)、および油層(O2)または油層(O2)と沈殿層(OR)に分離する;
    (b)工程(C)で得られた沈殿層(R)に、水性溶媒を添加してたんぱく質を抽出し、固液分離により水層(RA)およびオカラ層(R2)に分離する;
    (c)中間層(M)、水層(OA)および水層(RA)を混合して新たな中間層(M')とし、以降の工程で中間層(M)として中間層(M')を使用する、
    をさらに含む、請求項1に記載の方法。
    Between steps (C) and (D), the following steps:
    (A) A solvent having an ionic strength of 1.5 mol / L or more is added to the oil layer (O) obtained in the step (C), and the aqueous layer (OA) and the oil layer (O2) or the oil layer (O2) are separated by solid-liquid separation. ) And the sedimentation layer (OR);
    (B) An aqueous solvent is added to the precipitate layer (R) obtained in the step (C) to extract the protein, and the protein is separated into an aqueous layer (RA) and an okara layer (R2) by solid-liquid separation;
    (C) The intermediate layer (M), the aqueous layer (OA) and the aqueous layer (RA) are mixed to form a new intermediate layer (M'), and the intermediate layer (M') is used as the intermediate layer (M) in the subsequent steps. To use,
    The method according to claim 1, further comprising.
  3.  工程(G)の後に、以下の工程:
    (d)工程(G)で得られた水層(W)を水で希釈する;
    (e)希釈した水層(W)を固液分離し、水層(W2)および沈殿層(WG)に分離する、
    をさらに含む、請求項1または2に記載の方法。
    After step (G), the following steps:
    (D) Dilute the aqueous layer (W) obtained in step (G) with water;
    (E) The diluted aqueous layer (W) is solid-liquid separated and separated into an aqueous layer (W2) and a precipitation layer (WG).
    The method according to claim 1 or 2, further comprising.
  4.  工程(B)の溶媒が、さらに還元剤を含む、請求項1~3のいずれか1項に記載の方法。 The method according to any one of claims 1 to 3, wherein the solvent in the step (B) further contains a reducing agent.
  5.  工程(A)の水溶性窒素指数(NSI)が90%以上である、請求項1~4のいずれか1項に記載の方法。 The method according to any one of claims 1 to 4, wherein the water-soluble nitrogen index (NSI) of the step (A) is 90% or more.
  6.  工程(G)の水層の希釈がイオン強度150~30mMである、請求項1~5のいずれか1項に記載の方法。 The method according to any one of claims 1 to 5, wherein the dilution of the aqueous layer in step (G) has an ionic strength of 150 to 30 mM.
  7.  工程(d)の水層の希釈がイオン強度150~30mMである、請求項3~6のいずれか1項に記載の方法。 The method according to any one of claims 3 to 6, wherein the dilution of the aqueous layer in step (d) has an ionic strength of 150 to 30 mM.
  8.  請求項1~7のいずれか1項に記載の方法により得られた画分のたんぱく質量を測定することを含む、大豆中のたんぱく質組成の分析方法。 A method for analyzing a protein composition in soybean, which comprises measuring the protein mass of a fraction obtained by the method according to any one of claims 1 to 7.
  9.  大豆種子原料から、請求項1~7のいずれか1項に記載の方法により得られた各画分のたんぱく質量を測定することにより、大豆種子中のたんぱく質構成比を求めることを含む、大豆品種の評価方法。
     
    A soybean variety including obtaining a protein composition ratio in soybean seeds by measuring the protein mass of each fraction obtained by the method according to any one of claims 1 to 7 from a soybean seed raw material. Evaluation method.
PCT/JP2020/031755 2019-08-27 2020-08-24 Method for fractionating soybean proteins WO2021039681A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2021542867A JPWO2021039681A1 (en) 2019-08-27 2020-08-24

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2019-154937 2019-08-27
JP2019154937 2019-08-27

Publications (1)

Publication Number Publication Date
WO2021039681A1 true WO2021039681A1 (en) 2021-03-04

Family

ID=74685488

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/031755 WO2021039681A1 (en) 2019-08-27 2020-08-24 Method for fractionating soybean proteins

Country Status (2)

Country Link
JP (1) JPWO2021039681A1 (en)
WO (1) WO2021039681A1 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5344654A (en) * 1976-09-30 1978-04-21 Gen Foods Ltd Method of producing protein food
JPH0543597A (en) * 1991-08-12 1993-02-23 Fuji Oil Co Ltd Method for fractioning 7s protein
JPH08173052A (en) * 1994-12-26 1996-07-09 Morinaga & Co Ltd Production of soybean protein
JP2013545479A (en) * 2010-12-16 2013-12-26 バーコン ニュートラサイエンス (エムビー) コーポレイション Soy protein product with improved water binding capacity

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5344654A (en) * 1976-09-30 1978-04-21 Gen Foods Ltd Method of producing protein food
JPH0543597A (en) * 1991-08-12 1993-02-23 Fuji Oil Co Ltd Method for fractioning 7s protein
JPH08173052A (en) * 1994-12-26 1996-07-09 Morinaga & Co Ltd Production of soybean protein
JP2013545479A (en) * 2010-12-16 2013-12-26 バーコン ニュートラサイエンス (エムビー) コーポレイション Soy protein product with improved water binding capacity

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
SAMOTO, M. ET AL.: "Simple and efficient procedure for removing the 34kDa allergenic soybean protein, Gly m I, from defatted soy milk.", BIOSCIENCE, BIOTECHNOLOGY, AND BIOCHEMISTRY, vol. 58, no. 11, 1994, pages 2123 - 2125, XP000486158, DOI: 10. 1271/bbb.58.2123 *

Also Published As

Publication number Publication date
JPWO2021039681A1 (en) 2021-03-04

Similar Documents

Publication Publication Date Title
KR101302533B1 (en) Fat-reduced soybean protein material and soybean emulsion composition, and processes for production thereof
JP4453253B2 (en) Fractionated soy protein and production method thereof
EP0666034B1 (en) Process for preparing fractionated soybean proteins and foods using the same
JP6408508B2 (en) Improved production of protein solutions from soy
SE465349B (en) PROCEDURE FOR PREPARATION OF SOY PROTEIN INSULATE WITH LOW PHYTE CONTENT
HUE035687T2 (en) Protein concentrates and isolates, and processes for the production thereof
JP2009275056A (en) Method for improving rate of separation and sedimentation of precipitation
JP4330627B2 (en) Process for the preparation of flax protein isolate
JP6267737B2 (en) Soy protein product with improved water binding capacity
JP5353244B2 (en) Production method of fractionated soy protein material
WO2021039681A1 (en) Method for fractionating soybean proteins
Roberts et al. Characteristics of the various soybean globulin components with respect to denaturation by ethanol
Mann et al. Optimization of extraction of deoiled rice bran protein and its utilization in wheat based cookies
CN116250591B (en) Pea protein with good gel property and thermal stability and preparation method thereof
Ma et al. Functional Performance of Plant Proteins. Foods 2022, 11, 594
Zhang et al. A new process for preparation of soybean protein concentrate with hexane-aqueous ethanol mixed solvents
US20230292788A1 (en) Production of non-precipitated plant protein isolates
RAW NV Vorobieva, IL Kazantseva, LF Ramazaeva
JPH1189519A (en) Production of soybean protein hydrolyzate
Min et al. Effect of Enzymatic Hydrolysis on the Antioxidant Activity of Edible Bird Nest

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20856124

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2021542867

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20856124

Country of ref document: EP

Kind code of ref document: A1