WO2021039509A1 - Protection element and battery pack - Google Patents
Protection element and battery pack Download PDFInfo
- Publication number
- WO2021039509A1 WO2021039509A1 PCT/JP2020/031182 JP2020031182W WO2021039509A1 WO 2021039509 A1 WO2021039509 A1 WO 2021039509A1 JP 2020031182 W JP2020031182 W JP 2020031182W WO 2021039509 A1 WO2021039509 A1 WO 2021039509A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- lower case
- upper case
- fitting
- protective element
- slit
- Prior art date
Links
Images
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01H—ELECTRIC SWITCHES; RELAYS; SELECTORS; EMERGENCY PROTECTIVE DEVICES
- H01H85/00—Protective devices in which the current flows through a part of fusible material and this current is interrupted by displacement of the fusible material when this current becomes excessive
- H01H85/02—Details
- H01H85/04—Fuses, i.e. expendable parts of the protective device, e.g. cartridges
- H01H85/041—Fuses, i.e. expendable parts of the protective device, e.g. cartridges characterised by the type
- H01H85/046—Fuses formed as printed circuits
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01H—ELECTRIC SWITCHES; RELAYS; SELECTORS; EMERGENCY PROTECTIVE DEVICES
- H01H37/00—Thermally-actuated switches
- H01H37/74—Switches in which only the opening movement or only the closing movement of a contact is effected by heating or cooling
- H01H37/76—Contact member actuated by melting of fusible material, actuated due to burning of combustible material or due to explosion of explosive material
- H01H37/761—Contact member actuated by melting of fusible material, actuated due to burning of combustible material or due to explosion of explosive material with a fusible element forming part of the switched circuit
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01H—ELECTRIC SWITCHES; RELAYS; SELECTORS; EMERGENCY PROTECTIVE DEVICES
- H01H85/00—Protective devices in which the current flows through a part of fusible material and this current is interrupted by displacement of the fusible material when this current becomes excessive
- H01H85/02—Details
- H01H85/04—Fuses, i.e. expendable parts of the protective device, e.g. cartridges
- H01H85/05—Component parts thereof
- H01H85/165—Casings
- H01H85/175—Casings characterised by the casing shape or form
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01H—ELECTRIC SWITCHES; RELAYS; SELECTORS; EMERGENCY PROTECTIVE DEVICES
- H01H37/00—Thermally-actuated switches
- H01H37/74—Switches in which only the opening movement or only the closing movement of a contact is effected by heating or cooling
- H01H37/76—Contact member actuated by melting of fusible material, actuated due to burning of combustible material or due to explosion of explosive material
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01H—ELECTRIC SWITCHES; RELAYS; SELECTORS; EMERGENCY PROTECTIVE DEVICES
- H01H85/00—Protective devices in which the current flows through a part of fusible material and this current is interrupted by displacement of the fusible material when this current becomes excessive
- H01H85/02—Details
- H01H85/04—Fuses, i.e. expendable parts of the protective device, e.g. cartridges
- H01H85/05—Component parts thereof
- H01H85/055—Fusible members
- H01H85/08—Fusible members characterised by the shape or form of the fusible member
- H01H85/11—Fusible members characterised by the shape or form of the fusible member with applied local area of a metal which, on melting, forms a eutectic with the main material of the fusible member, i.e. M-effect devices
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01H—ELECTRIC SWITCHES; RELAYS; SELECTORS; EMERGENCY PROTECTIVE DEVICES
- H01H85/00—Protective devices in which the current flows through a part of fusible material and this current is interrupted by displacement of the fusible material when this current becomes excessive
- H01H85/02—Details
- H01H85/04—Fuses, i.e. expendable parts of the protective device, e.g. cartridges
- H01H85/05—Component parts thereof
- H01H85/165—Casings
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M10/00—Secondary cells; Manufacture thereof
- H01M10/42—Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
- H01M10/44—Methods for charging or discharging
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M10/00—Secondary cells; Manufacture thereof
- H01M10/42—Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
- H01M10/48—Accumulators combined with arrangements for measuring, testing or indicating the condition of cells, e.g. the level or density of the electrolyte
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M50/00—Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
- H01M50/20—Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M50/00—Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
- H01M50/50—Current conducting connections for cells or batteries
- H01M50/572—Means for preventing undesired use or discharge
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M50/00—Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
- H01M50/50—Current conducting connections for cells or batteries
- H01M50/572—Means for preventing undesired use or discharge
- H01M50/574—Devices or arrangements for the interruption of current
- H01M50/583—Devices or arrangements for the interruption of current in response to current, e.g. fuses
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02H—EMERGENCY PROTECTIVE CIRCUIT ARRANGEMENTS
- H02H7/00—Emergency protective circuit arrangements specially adapted for specific types of electric machines or apparatus or for sectionalised protection of cable or line systems, and effecting automatic switching in the event of an undesired change from normal working conditions
- H02H7/18—Emergency protective circuit arrangements specially adapted for specific types of electric machines or apparatus or for sectionalised protection of cable or line systems, and effecting automatic switching in the event of an undesired change from normal working conditions for batteries; for accumulators
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02J—CIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
- H02J7/00—Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01H—ELECTRIC SWITCHES; RELAYS; SELECTORS; EMERGENCY PROTECTIVE DEVICES
- H01H85/00—Protective devices in which the current flows through a part of fusible material and this current is interrupted by displacement of the fusible material when this current becomes excessive
- H01H85/02—Details
- H01H85/46—Circuit arrangements not adapted to a particular application of the protective device
- H01H2085/466—Circuit arrangements not adapted to a particular application of the protective device with remote controlled forced fusing
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01H—ELECTRIC SWITCHES; RELAYS; SELECTORS; EMERGENCY PROTECTIVE DEVICES
- H01H61/00—Electrothermal relays
- H01H61/02—Electrothermal relays wherein the thermally-sensitive member is heated indirectly, e.g. resistively, inductively
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/10—Energy storage using batteries
Definitions
- This technology relates to a protective element that cuts off the current path and a battery pack that uses the protective element.
- This application claims priority on the basis of Japanese Patent Application No. Japanese Patent Application No. 2019-157431 filed on August 29, 2019 in Japan, and this application can be referred to in this application. It will be used.
- the battery pack In electronic devices that use many lithium-ion secondary batteries, the battery pack is overcharge-protected or over-discharged protected by turning the output on and off using the FET switch built into the battery pack.
- the FET switch if the FET switch is short-circuited and broken for some reason, a lightning surge or the like is applied and a momentary large current flows, or the output voltage drops abnormally due to the life of the battery cell, or conversely, an excessive abnormal voltage occurs.
- the battery pack and electronic devices must be protected from accidents such as ignition even if the voltage is output. Therefore, in order to safely cut off the output of the battery cell in any such conceivable abnormal state, a protective element made of a fuse element having a function of cutting off the current path by an external signal is used. ..
- a structure is used in which a heating element is provided inside the protective element and the soluble conductor on the current path is melted by the heat generated by the heating element. ..
- lithium-ion secondary batteries have been expanding in recent years, and their use in applications with higher currents, such as electric tools such as electric drivers and transportation equipment such as hybrid cars, electric vehicles, and electrically power assisted bicycles, has been considered.
- Department recruitment has started.
- a large current exceeding several tens of A to 100 A may flow, especially at the time of startup. It is desired to realize a protective element corresponding to such a large current capacity.
- FIGS. 26 to 29 are diagrams showing a configuration example of a protective element assuming a large current application.
- 26 is an external perspective view
- FIG. 27 is a plan view
- FIG. 28 is a sectional view taken along line DD'in FIG. 27,
- FIG. 29 is a plan view showing the upper case omitted.
- the protective element 100 shown in FIGS. 26 to 29 is said to have a soluble conductor 103 connected between the first and second external connection terminals 101 and 102 connected to an external circuit such as a battery charge / discharge circuit. It constitutes a part of an external circuit, and in the event of an abnormality such as overvoltage, the soluble conductor 103 melts to cut off the current path between the first external connection terminal 101 and the second external connection terminal 102. is there.
- the protective element 100 includes an insulating substrate 105, first and second external connection terminals 101 and 102 connected to an external circuit, two heating elements 106 arranged in parallel on the surface of the insulating substrate 105, and a heating element 106. Solder over the insulating layer 107 to be coated, the surface electrode 108 laminated on the insulating layer 107 and connected to the heating element 106, the first external connection terminal 101, the surface electrode 108, and the second external connection terminal 102. It includes a soluble conductor 103 mounted via a paste.
- the first and second external connection terminals 101 and 102 are arranged inside and outside the element housing, and are connected to a connection electrode provided on an external circuit board on which the protection element 100 is mounted by screwing or the like. By doing so, the soluble conductor 103 is incorporated into a part of the current path formed on the external circuit board.
- the heating element 106 is a conductive member that generates heat when energized with a relatively high resistance value, and is made of, for example, nichrome, W, Mo, Ru, or a material containing these. Further, the heating element 106 is connected to the heating element feeding electrode 109 formed on the surface of the insulating substrate 105. The heating element feeding electrode 109 is connected to the third external connection terminal 110 via a solder paste. In the protection element 100, the third external connection terminal 110 is connected to the connection electrode provided on the external circuit board on which the protection element 100 is mounted, so that the heating element 106 is connected to the external power supply provided in the external circuit. It is connected. The heating element 106 is constantly controlled to energize and generate heat by a switch element or the like (not shown).
- the heating element 106 is covered with an insulating layer 107 made of a glass layer or the like, and the surface electrode 108 is formed on the insulating layer 107, so that the surface electrode 108 is superimposed via the insulating layer 107. Further, on the surface electrode 108, a soluble conductor 103 connected between the first and second external connection terminals 101 and 102 is connected via a solder paste.
- the protective element 100 is thermally connected by superimposing the heating element 106 and the soluble conductor 103, and when the heating element 106 generates heat by energization, the soluble conductor 103 can be melted.
- the soluble conductor 103 is formed of a low melting point metal such as Pb free solder or a high melting point metal such as Ag, Cu or an alloy containing these as a main component, or has a laminated structure of a low melting point metal and a high melting point metal. Then, the soluble conductor 103 is connected from the first external connection terminal 101 to the second external connection terminal 102 across the surface electrode 108, so that the soluble conductor 103 is one of the current paths of the external circuit in which the protection element 100 is incorporated. Make up the part.
- a low melting point metal such as Pb free solder
- a high melting point metal such as Ag, Cu or an alloy containing these as a main component
- the soluble conductor 103 is melted by self-heating (Joule heat) when a current exceeding the rating is energized, or is blown by the heat generated by the heating element 106, and is between the first and second external connection terminals 101 and 102. To shut off.
- self-heating Jooule heat
- the heating element 106 is energized by the switch element.
- the heating element 106 is heated to a high temperature, and the soluble conductor 103 incorporated in the current path of the external circuit is melted.
- the melted conductor of the soluble conductor 103 is attracted to the highly wettable surface electrodes 108 and the first and second external connection terminals 101 and 102, so that the soluble conductor 103 is melted. Therefore, the protection element 100 can blow between the first external connection terminal 101 and the surface electrode 108 to the second external connection terminal 102 to cut off the current path of the external circuit.
- the protective element 100 has a lower case 111 and an upper case 112, and the lower case 111 and the upper case 112 are joined to each other to form a housing 113 of the protective element 100.
- To configure. 30 is a view showing the housing 113, (A) is a bottom view of the upper case 112, (B) is a cross-sectional view of the lower case 111 and the upper case 112, and (C) is a lower case 111. It is a plan view of.
- the lower case 111 supports the insulating substrate 105 and the first and second external connection terminals 101 and 102.
- the upper case 112 has a space for accommodating the above-described element internal configuration.
- the lower case 111 has a fitting convex portion 114 formed at each corner portion. Further, the upper case 112 is formed with a fitting recess 115 that is fitted with the fitting convex portion 114 at each corner portion.
- the adhesive 120 is supplied to the side edge portion of the lower case 111 including the fitting convex portion 114, and is associated with the upper case 112. As a result, the fitting convex portion 114 and the fitting concave portion 115 are fitted via the adhesive 120, and the lower case 111 and the upper case 112 are joined.
- the protective element 100 in order for the protective element 100 to be used for high current applications, it is required to increase the size of the soluble conductor 103 and the heating element 106 as described above.
- the thermal shock at the time of fusing the soluble conductor 103 also increases, and the air inside the case expands rapidly, so that the housing 113 is required to have a bonding strength that can withstand the pressure.
- it is conceivable to increase the amount of the adhesive 120 but if the adhesive 120 is increased, it flows into the fitting recess 115 at the time of fitting. The amount increases.
- the adhesive also enters the fitting recess 115 along the fitting convex portion 114.
- the present technology eliminates the excess adhesive between the fitting convex portion and the fitting concave portion, and secures the adhesive strength between the lower case and the upper case, and a protective element using the protective element.
- the purpose is to provide a pack.
- the protective element according to the present technology has a soluble conductor, a lower case and an upper case, and is formed by joining the upper case and the lower case with an adhesive.
- the upper case and the lower case are provided with a fitting recess formed in one of them, and a fitting convex portion fitted in the fitting recess is formed in either one of the upper case and the lower case.
- a slit that is continuous with the joint recess and extends to the abutting surface of the upper case and the lower case to allow the adhesive to flow is formed.
- the protective element according to the present technology has a soluble conductor, a lower case and an upper case, and is formed by joining the upper case and the lower case with an adhesive.
- the upper case and the lower case one of the upper case and the lower case is formed with a fitting recess, and the other is formed with a fitting protrusion that fits into the fitting recess.
- the go-convex portion has a slit formed on the outer peripheral surface to allow the adhesive to flow.
- the protective element according to the present technology has a soluble conductor, a lower case and an upper case, and is formed by joining the upper case and the lower case with an adhesive.
- the upper case and the lower case one of the upper case and the lower case is formed with a fitting recess, and the other is formed with a fitting convex portion to be fitted to the fitting recess.
- a slit that is continuous with the joint recess and extends to the abutting surface of the upper case and the lower case to allow the adhesive to flow is formed, and the fitting convex portion is a slit that allows the adhesive to flow on the outer peripheral surface. Is formed.
- the battery pack according to the present technology includes one or more battery cells and a protective element connected to the charge / discharge path of the battery cell to block the charge / discharge path, and the protective element is a soluble conductor. It has a lower case and an upper case, and includes a housing formed by joining the upper case and the lower case with an adhesive, and the upper case and the lower case are either one of them.
- a fitting recess is formed in, and a fitting protrusion that fits in the fitting recess is formed in one of the fitting recesses, and is continuous with the fitting recess and extends to the butt surface of the upper case and the lower case.
- a slit for flowing the adhesive is formed.
- the battery pack according to the present technology includes one or more battery cells and a protective element connected to the charge / discharge path of the battery cell to block the charge / discharge path, and the protective element is a soluble conductor. It has a lower case and an upper case, and includes a housing formed by joining the upper case and the lower case with an adhesive, and the upper case and the lower case are either one of them.
- a fitting recess is formed in, a fitting protrusion that fits in the fitting recess is formed in one of the fitting protrusions, and the fitting protrusion is formed with a slit that allows the adhesive to flow along the protruding direction. Is what you are doing.
- the battery pack according to the present technology includes one or more battery cells and a protective element connected to the charge / discharge path of the battery cell to block the charge / discharge path, and the protective element is a soluble conductor.
- the upper case and the lower case are provided with a lower case and a housing formed by joining the upper case and the lower case with an adhesive, and the upper case and the lower case are either one of them.
- a fitting recess is formed in, and a fitting protrusion that fits in the fitting recess is formed in one of the fitting recesses, and is continuous with the fitting recess and extends to the butt surface of the upper case and the lower case. Then, a slit for flowing the adhesive is formed, and the fitting convex portion is formed with a slit for flowing the adhesive along the protruding direction.
- the slit fits the excess adhesive by allowing the excess adhesive filled in the fitting recess to flow inside. Prevents it from staying in the fitting recess fitted with the protrusion. As a result, it is possible to prevent the adhesion between the upper case and the lower case from being hindered by the excess adhesive remaining in the fitting recess.
- FIG. 1 is an external perspective view of a protective element to which the present technology is applied.
- FIG. 2 is a cross-sectional view of a protective element to which the present technology is applied.
- FIG. 3 is a plan view showing the upper case of the protective element to which the present technology is applied, omitting the upper case.
- FIG. 4 is a cross-sectional view showing a state in which the soluble conductor is melted in the protective element to which the present technology is applied.
- 5A and 5B are views showing a lower case, where FIG. 5A is a plan view and FIG. 5B is a sectional view taken along line EE'of FIG. 5A.
- 6A and 6B are views showing an upper case, where FIG. 6A is a bottom view and FIG.
- FIG. 6B is a cross-sectional view taken along the line CC'of FIG. 6A.
- 7A and 7B are views showing a joining process between the lower case and the upper case
- FIG. 7A is a plan view of the lower case showing the flow of the adhesive
- FIG. 7B is a lower case coated with the adhesive.
- It is a GG'cross-sectional view of (A) which shows the flow of the adhesive in the state which the upper case is fitted.
- 8A and 8B are views showing a modified example of the concave slit, where FIG. 8A is a bottom view of the upper case and FIG. 8B is a sectional view taken along line HH'of FIG. 8A.
- FIG. 9 is a plan view showing a modified example of the concave slit.
- FIG. 10 is a plan view showing a modified example of the concave slit.
- 11A and 11B are views showing a joining process between the lower case and the upper case
- FIG. 11A is a plan view showing the lower case coated with an adhesive
- FIG. 11B is a plan view showing the upper case and the lower case facing each other.
- It is a cross-sectional view of FF'arranged (A).
- 12A and 12B are views showing a housing provided with a convex slit in the lower case
- FIG. 12A is a bottom view of the upper case
- FIG. 12B is a cross-sectional view in which the upper case and the lower case are arranged to face each other.
- (C) is a plan view of the lower case.
- FIG. 13A and 13B are views showing a fitting convex portion in which a convex portion slit is formed, where FIG. 13A is a plan view and FIG. 13B is a sectional view taken along line JJ'in FIG. 14A and 14B are views showing a housing provided with a convex slit in the lower case, FIG. 14A is a bottom view of the upper case, and FIG. 14B is a cross-sectional view in which the upper case and the lower case are arranged to face each other. (C) is a plan view of the lower case.
- 15A and 15B are views showing a fitting convex portion in which a convex portion slit is formed, FIG. 15A is a plan view, and FIG.
- FIG. 15B is a cross-sectional view taken along the line JJ'of FIG. 15A.
- 16A and 16B are views showing an upper case provided with a fitting convex portion, where FIG. 16A is a bottom view and FIG. 16B is a sectional view taken along line L-L'of FIG. 16A.
- 17A and 17B are views showing a lower case provided with a fitting recess, where FIG. 17A is a plan view and FIG. 17B is a sectional view taken along line MM'of FIG. 17A.
- 18A and 18B are views showing a joining process between the lower case and the upper case, FIG. 18A is a plan view of the lower case showing the flow of the adhesive, and FIG. 18B is a lower case coated with the adhesive.
- FIG. 20 is an external perspective view of the soluble conductor.
- FIG. 21 is a circuit diagram showing a configuration example of the battery pack.
- FIG. 22 is a circuit diagram of a protective element to which the present technology is applied.
- FIG. 23 is a cross-sectional view showing a modified example of the protective element to which the present technology is applied.
- FIG. 24 is a circuit diagram of a protective element according to a modified example.
- FIG. 25 is a cross-sectional view showing a state in which the soluble conductor is melted in the protective element according to the modified example.
- FIG. 26 is an external perspective view showing a protective element corresponding to a large current.
- FIG. 27 is a plan view of the protective element shown in FIG. 26.
- FIG. 28 is a cross-sectional view taken along the line DD'in FIG. 27.
- FIG. 29 is a plan view showing the protective element shown in FIG. 26 with the upper case omitted.
- FIG. 30 is a view showing a housing of the protective element shown in FIG.
- FIG. 26 (A) a bottom view of the upper case, (B) a cross-sectional view showing a state in which the lower case and the upper case are arranged facing each other, (C). ) Is a plan view of the lower case.
- 31A and 31B are views showing a joining process between the lower case and the upper case, FIG. 31A is a cross-sectional view showing a state in which the lower case and the upper case coated with an adhesive are arranged facing each other, and FIG. 31B is an adhesive. It is a top view of the lower case coated with.
- 32A and 32B are views showing a state in which the lower case and the upper case are joined, FIG. 32A is a bottom view showing the upper case in which the fitting recess is filled with an adhesive, and FIG. 32B is a bottom view showing the lower side. It is sectional drawing which shows the state which joined the case and the upper case.
- FIGS. 1, 2 and 3 show the protection element 1 to which the present technology is applied.
- the protective element 1 includes an insulating substrate 2, a soluble conductor 3 mounted on the surface of the insulating substrate 2, a lower case 4 that supports the back surface of the insulating substrate 2, and an upper case 5 that covers the surface of the insulating substrate 2.
- the lower case 4 and the upper case 5 are joined by an adhesive 19 to provide a housing 6 for accommodating the insulating substrate 2.
- the protection element 1 has first and second external connection terminals 7 and 8.
- the first and second external connection terminals 7 and 8 are arranged inside and outside the housing 6 and are connected to connection electrodes provided in an external circuit on which the protection element 1 is mounted by screwing or the like.
- the first and second external connection terminals 7 and 8 are supported by the lower case 4, and one end of each is connected by a soluble conductor 3. Then, the protective element 1 is incorporated into an external circuit via the first and second external connection terminals 7 and 8, so that the soluble conductor 3 forms a part of the current path of the external circuit, which will be described later.
- the current path can be cut off by fusing the heating element 10 due to heat generation or an overcurrent exceeding the rating.
- the insulating substrate 2 is formed of, for example, an insulating member such as alumina, glass ceramics, mullite, and zirconia.
- the insulating substrate 2 may be made of a material used for a printed wiring board such as a glass epoxy board or a phenol substrate.
- both side edges of the soluble conductor 3 connected via the surface electrode 11 described later in the extending direction are designated as the first side edge portion 2c, and the heating element electrode 15 and the heating element described later are used. Both side edges on which the feeding electrode 16 is formed are designated as the second side edge portion 2d.
- the heating element 10 that melts the soluble conductor 3 has a relatively high resistance value and is a conductive member that generates heat when energized.
- a conductive member that generates heat when energized.
- the heating element 10 is covered with an insulating layer 9 on the surface 2a of the insulating substrate 2.
- a surface electrode 11, which will be described later, is laminated on the insulating layer 9.
- the insulating layer 9 is provided to protect and insulate the heating element 10 and efficiently transfer the heat of the heating element 10 to the surface electrode 11 and the soluble conductor 3, and is made of, for example, a glass layer.
- the heating element 10 is connected to the heating element electrode 15 formed on the surface 2a of the insulating substrate 2. Further, the heating element electrode 15 is connected to the surface electrode 11 formed on the insulating layer 9. As a result, the heating element 10 is electrically connected to the soluble conductor 3 mounted on the surface electrode 11. The other end of the heating element 10 is connected to the heating element feeding electrode 16.
- the heating element feeding electrode 16 is formed on the surface 2a of the insulating substrate 2 and is connected to the third external connection terminal 17 via a connection material 20 such as solder paste, and is connected to the third external connection terminal 17 via the third external connection terminal 17. Is connected to an external circuit. Then, by connecting the protection element 1 to an external circuit, the heating element 10 is incorporated into the feeding path to the heating element 10 formed in the external circuit via the third external connection terminal 17.
- the heating element 10 is formed so that the energizing direction intersects the energizing direction of the soluble conductor 3, and the heating element electrode 15 and the heating element feeding electrode 16 are on the second side. It is preferable that it is formed on the edge portion 2d in order to efficiently use the area of the insulating substrate 2.
- a plurality of heating elements 10 may be formed on the surface of the insulating substrate 2.
- two heating elements 10 are formed. One end of each heating element 10 is connected to the heating element electrode 15, the other end is connected to the heating element feeding electrode 16, and they are electrically connected in parallel.
- the protective element 1 may be formed inside the insulating layer 9 in which the heating element 10 is laminated on the surface 2a of the insulating substrate 2. Further, the protective element 1 may form the heating element 10 inside the insulating substrate 2. Further, the protective element 1 may form the heating element 10 on the back surface 2b of the insulating substrate 2. When the heating element 10 is formed on the back surface 2b of the insulating substrate 2, one end of the heating element 10 is connected to the back surface electrode formed on the back surface 2b of the insulating substrate 2 and penetrates between the back surface electrode and the front surface electrode 11. It is electrically connected to the soluble conductor 2 mounted on the surface electrode 11 through the conductive through hole. Further, the other end of the heating element 10 is connected to the third external connection terminal 17 via a heating element feeding electrode formed on the back surface 2b of the insulating substrate 2.
- a surface electrode 11 is formed which is connected to the heating element 10 via the heating element electrode 15 and is connected to the soluble conductor 3.
- the surface electrode 11 is connected to the soluble conductor 3 via a bonding material 20 such as solder paste. Further, in the surface electrode 11, when the soluble conductor 3 is melted, the molten conductor 3a is aggregated, whereby the soluble conductor 3 can be melted.
- the surface electrode 11 may form a suction hole 12.
- the suction hole 12 sucks the molten conductor 3a by a capillary phenomenon and reduces the volume of the molten conductor 3a held on the surface electrode 11 (see FIG. 4).
- the protective element 1 increases the cross-sectional area of the soluble conductor 3 in order to cope with a large current application, so that even if the amount of melting increases, the protective element 1 is attracted to the suction hole 12 to increase the volume of the molten conductor 3a. Can be reduced.
- the insulating substrate 2 having such a configuration constitutes a fusing member 18 that melts the soluble conductor 3 by the heat when the heating element 10 is energized and generates heat, and sucks and shuts off the molten conductor 3a into the suction hole 12. To do.
- the protective element 1 reduces the volume of the molten conductor 3a held on the surface electrode 11 to more reliably insulate between the first and second external connection terminals 7 and 8, and also provides a soluble conductor. It is possible to reduce the scattering of the molten conductor 3a due to the arc discharge generated at the time of fusing of 3 to prevent a decrease in insulation resistance, and further prevent a short-circuit failure due to adhesion of the soluble conductor 3 to a peripheral circuit at the mounting position. ..
- a conductive layer 13 is formed on the inner surface of the suction hole 12.
- the conductive layer 13 is formed of, for example, copper, silver, gold, iron, nickel, palladium, lead, tin, or an alloy containing any one as a main component, and the inner surface of the suction hole 12 is made of electrolytic plating or conductive paste. It can be formed by a known method such as printing. Further, the conductive layer 13 may be formed by inserting a plurality of metal wires or an aggregate of ribbons having conductivity into the suction holes 12.
- the suction hole 12 is preferably formed as a through hole penetrating in the thickness direction of the insulating substrate 2. As a result, the suction hole 12 can suck the molten conductor 3a to the back surface 2b side of the insulating substrate 2, suck more molten conductor 3a, and reduce the volume of the molten conductor 3a at the fusing portion. ..
- the suction hole 12 may be formed as a non-through hole.
- the conductive layer 13 of the suction hole 12 is continuous with the surface electrode 11 formed on the surface 2a of the insulating substrate 2. Since the surface electrode 11 supports the soluble conductor 3 and the molten conductor 3a aggregates, the surface electrode 11 and the conductive layer 13 are continuous, so that the molten conductor 3a can be easily guided into the suction hole 12. ..
- the conductive layer 13 and the surface electrode 11 are heated by the heating element 10 to facilitate suction of the molten conductor 3a of the soluble conductor 3 into the suction hole 12 and to easily aggregate on the surface electrode 11. be able to. Therefore, the protective element 1 promotes the action of sucking the molten conductor 3a from the surface electrode 11 into the suction hole 12 via the conductive layer 13, and can reliably melt the soluble conductor 3.
- the back surface electrode 14 connected to the conductive layer 13 of the suction hole 12 may be formed on the back surface 2b of the insulating substrate 2.
- the back surface electrode 14 is continuous with the conductive layer 13, so that when the soluble conductor 3 melts, the molten conductor 3a that has moved through the suction holes 12 aggregates (see FIG. 4).
- the protective element 1 can attract a larger amount of the molten conductor 3a and reduce the volume of the molten conductor 3a at the fusing portion.
- the protective element 1 increases the number of paths for sucking the molten conductor 3a of the soluble conductor 3 by forming a plurality of suction holes 12, and sucks more molten conductors 3a to suck the molten conductor 3a at the fusing site. You may try to reduce the volume of.
- the plurality of suction holes 12 may be formed over the width direction of the soluble conductor 3 on which the surface electrode 11 and the soluble conductor 3 overlap. Further, the suction hole 12 may be formed in a region where the surface electrode 11 on which the molten conductor 3a wets and spreads and the soluble conductor 3 do not overlap.
- the front electrode 11 and the back surface can be formed on both sides of the suction hole 12 regardless of whether they are formed on the front surface 2a, the back surface 2b or the inside of the insulating substrate 2. It is preferable for heating the electrode 14 and for sucking and aggregating more molten conductors 3a.
- the housing 6 of the protection element 1 is formed by joining the lower case 4 and the upper case 5 with an adhesive 19.
- the housing 6 can be formed by using, for example, various engineering plastics, thermoplastics, ceramics, and other insulating members. Further, in the housing 6, the soluble conductor 3 expands spherically on the surface 2a of the insulating substrate 2 when melted, and the molten conductor 3a is placed on the surface electrodes 11 and the first and second external connection terminals 7 and 8. It has enough internal space to agglomerate.
- the lower case 4 and the upper case 5 are joined using an adhesive 19.
- the adhesive 19 is supplied and cured between the upper end surface of the side wall of the lower case 4 and the lower end surface 5a of the side wall of the upper case 5 forming the side surface of the housing 6, so that the lower case 4 and the upper case 5 are formed. And are joined.
- the adhesive 19 is not particularly limited, and examples thereof include a thermosetting adhesive.
- the form of the adhesive 19 may be any form that exhibits fluidity in the bonding process, and its phase state does not matter, but it is preferably liquid from the viewpoint of workability.
- the lower case 4 and the upper case 5 have a fitting recess 25 formed in one of them, and a fitting convex that fits in the fitting recess 25 in either one.
- a portion 26 is formed.
- the fitting convex portion 26 is provided in the lower case 4 and the fitting concave portion 25 is provided in the upper case 5 will be described as an example.
- FIG. 5A and 5B are views showing the lower case 4, FIG. 5A is a plan view, and FIG. 5B is a sectional view taken along line EE'of FIG. 5A.
- the lower case 4 is formed in a substantially rectangular shape, and a total of four fitting convex portions 26 are formed at each corner portion.
- the fitting convex portion 26 is formed in a columnar shape, but the shape of the fitting convex portion 26 may be a convex shape that fits with the fitting concave portion 25 described later, for example, a conical shape, a prismatic shape, a pyramidal shape, or the like. But it may be.
- the lower case 4 is provided with a concave surface portion 23 that holds the central portion of the insulating substrate 2 in a hollow shape at a substantially central portion.
- the lower case 4 supports the outer edge of the insulating substrate 2 along the side edge of the concave surface portion 23.
- the concave surface portion 23 By providing the concave surface portion 23, the contact area between the lower case 4 and the insulating substrate 2 can be reduced, and the heat of the heating element 10 can be suppressed from being absorbed by the lower case 4. Therefore, the protective element 1 can efficiently transfer the heat of the heating element 10 to the soluble conductor 3, and can melt the heating element more quickly.
- the concave surface portion 23 in the substantially central portion of the lower case 4 the area directly below the heating element 10 is made hollow, and heat dissipation of the heating element 10 to the lower case 4 can be suppressed.
- FIG. 6A and 6B are views showing the upper case 5, where FIG. 6A is a bottom view and FIG. 6B is a sectional view taken along line CC'of FIG. 6A.
- the upper case 5 is formed in a substantially rectangular shape like the lower case 4, and each corner is provided with a total of four fitting recesses 25 into which the fitting protrusions 26 provided on the lower case 4 are fitted. ing. Further, the upper case 5 covers the soluble conductor 3 formed on the surface 2a of the insulating substrate 2 and the first and second external connection terminals 7 and 8, and the fused soluble conductor 3a covers the surface electrode 11 and the surface electrode 11. It has an internal space that can be aggregated on the first and second external connection terminals 7 and 8.
- the upper case 5 is continuous with the fitting recess 25 and extends to the lower end surface 5a of the side wall of the upper case 5 which is the abutting surface of the upper case 5 and the lower case 4, and the recess slit 27 through which the adhesive 19 flows flows. Is formed. As shown in FIG. 7, when the upper case 5 and the lower case 4 are butted against each other, the recessed slit 27 is adhered by allowing a surplus of the adhesive 19 filled in the fitting recess 25 to flow inside. It prevents the excess of the agent 19 from staying in the fitting recess 25 fitted with the fitting convex portion 26.
- the protective element 1 can be brought into close contact with the lower case 4 without the upper case 5 floating, and a desired adhesive strength can be obtained. As a result, the protective element 1 can prevent problems such as the upper case 5 coming off when the soluble conductor 3 is blown, or the height condition of a predetermined housing not being satisfied.
- the recessed slit 27 is preferably formed along the lower end surface 5a of the side wall of the upper case 5 to which the adhesive 19 is supplied. Further, the length of the recessed slit 27 is not particularly limited.
- the width of the recess slit 27 is not particularly limited, but is preferably equal to or less than the diameter of the fitting recess 25 in a plan view.
- the depth of the recess slit 27 is not particularly limited, but is preferably the same as or shallower than the depth of the fitting recess 25.
- the recess slit 27 is formed in a tapered shape that gradually becomes shallower from the bottom surface side of the fitting recess 25 to the upper surface side of the fitting recess 25 as it is separated from the fitting recess 25. It is preferable that it is.
- the excess adhesive 19 that has flowed into the recessed slit 27 is guided to the lower end surface 5a of the side wall of the upper case 5, which is the abutting surface of the upper case 5 and the lower case 4, and the upper case 5 and the lower case 4 are joined.
- the adhesive strength can be improved by relatively increasing the supply amount of the adhesive toward the corner portion of the housing 6.
- the recess slit 27 may be formed so as to gradually widen as it is separated from the fitting recess 25. This makes it easier for the excess adhesive 19 to flow out from the fitting recess 25 to the slit tip.
- a plurality of recess slits 27 may extend from one fitting recess 25. As a result, a larger amount of excess adhesive 19 can be discharged from the fitting recess 25.
- the shapes (width, length, depth, inclination, etc.) of the plurality of recessed slits 27 may be the same, and the flow amount of the adhesive 19 may be different depending on the direction by making them different.
- the recess slit 27 is formed from one fitting recess 25 formed at each corner of the upper case 5 along two adjacent side walls. ..
- a larger amount of excess adhesive 19 can be discharged from the fitting recess 25.
- the surplus of the adhesive 19 can be guided to the lower end surface 5a of the side wall of the upper case 5 which is the abutting surface with the lower case 4 and can be used for joining the upper case 5 and the lower case 4.
- the recess slit 27 is preferably formed in all the fitting recesses 25, but it does not necessarily have to be formed in all the fitting recesses 25.
- the recess slits 27 extending from the adjacent fitting recesses 25 may be formed so as to be continuous with each other.
- the surplus of the adhesive 19 filled in the fitting recess 25 is led out to the recess slit 27, and the surplus of the adhesive 19 supplied to the butt surfaces of the upper case 5 and the lower case 4 is recessed. It can be absorbed into the slit 27 to prevent the adhesion of the adhesive 19 from being hindered by the excess.
- the adhesive area with the adhesive 19 is increased, and the adhesive strength can be improved.
- the upper case 5 has first and second external connection terminals 7 and 8 and a third external connection terminal 17 supported by the lower case 4 on the lower end surface 5a of the side wall that is abutted against the lower case 4.
- a recess is formed for arranging the housing 6 inside and outside the housing 6.
- the recess is formed at a position corresponding to the arrangement position of the first and second external connection terminals 7, 8 and the third external connection terminal 17, and the recess is formed at a position corresponding to the arrangement position of the first and second external connection terminals 7, and the recess is the first and second external. It has a shape corresponding to the shapes of the connection terminals 7, 8 and the third external connection terminal 17. Therefore, in the housing 6, the lower case 4 and the upper case 5 are butted and joined without a gap, and the first and second external connection terminals 7 and 8 and the third external connection terminal 17 are moved out of the housing. It can be derived.
- the adhesive 19 is supplied to the side edge portion of the lower case 4 including the fitting convex portion 26, and is associated with the upper case 5.
- the fitting convex portion 26 and the fitting concave portion 25 are fitted via the adhesive 19, and the lower case 4 and the upper case 5 are joined.
- the protective element to which this technique is applied forms a convex slit 28 in the fitting convex portion 26 in place of the concave slit 27 continuous with the fitting concave 25 or together with the concave slit 27 continuous with the fitting concave 25. You may.
- the convex slit 28 is provided on the peripheral surface of the fitting convex portion 26, and by flowing the surplus of the adhesive 19, the excess of the adhesive 19 prevents the lower case 4 and the upper case 5 from adhering to each other. To prevent.
- the convex slit 28 is formed on the outer peripheral surface of the fitting convex portion 26.
- the convex slit 28 is linear along the protruding direction of the fitting convex portion 26.
- 12A and 12B are views showing a housing 6 in which a convex slit 28 is provided in the lower case 4.
- FIG. 12A is a bottom view of the upper case 5, and
- FIG. 12B faces the upper case 5 and the lower case 4.
- the arranged cross-sectional view (C) is a plan view of the lower case 4.
- 13A and 13B are views showing a fitting convex portion 26 in which a convex portion slit 28 is formed, where FIG. 13A is a plan view and FIG. 13B is a sectional view taken along line JJ'in FIG.
- the shape of the convex slit 28 is not limited to a straight line, but may be a wave shape, a rectangular wave shape, a zigzag shape, or the like. Further, the convex slit 28 may be formed in the protruding direction of the fitting convex portion 26, or may be formed in the direction of orbiting the outer peripheral surface. Further, the convex slit 28 may be formed in a spiral shape on the outer peripheral surface of the fitting convex portion 26. Further, the convex slits 28 may be formed continuously or intermittently.
- the direction in which the convex slit 28 is formed is not particularly limited, but it is preferably formed toward the abutting surface between the lower case 4 and the upper case 5 to which the adhesive 19 is supplied.
- the convex slit 28 is preferably formed in a direction along the side wall of the lower case 4.
- the surplus of the adhesive 19 can be flowed to the abutting surface between the lower case 4 and the upper case 5 to which the adhesive 19 is supplied, and can be used for adhesion.
- the recess slit 27 continuous with the fitting recess 25 described above it is preferable to form the recess slit 27 in the same direction as the recess slit 27.
- the convex slit 28 is preferably formed from the base of the fitting convex 28. Since the base of the fitting convex portion 26 is the abutting surface between the lower case 4 and the upper case 5, the adhesion can be promoted by positively absorbing the excess of the adhesive 19. Further, the convex slit 28 is preferably formed over the top of the fitting convex 28. As a result, the excess amount of the adhesive 19 staying in the fitting recess 25 can be easily introduced into the convex slit 28, and the absorption amount of the adhesive 19 can be increased.
- a plurality of convex slits 28 may be formed in one fitting convex portion 26.
- the convex slit 28 is preferably formed in a direction along two adjacent side walls of the fitting convex portion 26 formed at the corner portion of the lower case 4.
- the surplus of the adhesive 19 can be flowed to the abutting surface between the lower case 4 and the upper case 5 to which the adhesive 19 is supplied, and can be used for adhesion.
- the recess slit 27 continuous with the fitting recess 25 described above it is preferable to form the recess slit 27 in the same direction as the recess slit 27.
- the convex slit 28 may be formed in a tapered shape in which the width gradually decreases from the peripheral surface of the fitting convex portion 26 toward the center in a plan view.
- the capillary phenomenon can be allowed to flow, and the adhesive 19 can flow into the convex slit 28, and the inflow amount can be increased.
- the convex slit 28 may be formed in a tapered shape that gradually widens from the top to the base of the fitting convex portion 26 in a cross-sectional view. As a result, the capillary phenomenon is allowed to act, and the excess adhesive 19 staying on the abutting surface between the lower case 4 and the upper case 5 can flow into the convex slit 28, and the inflow amount is increased. Can be done.
- a convex slit 28 is provided in the fitting convex portion 26 formed in the lower case 4, and is fitted with the fitting concave portion 25 formed in the upper case 5.
- a recess slit 27 continuous with the fitting recess 25 may be formed in the upper case 5.
- FIG. 18 shows a process of joining the upper case 51 and the lower case 52 to form the protective element 50.
- 16A and 16B are views showing an upper case 51 provided with a fitting convex portion 26, where FIG. 16A is a bottom view and FIG. 16B is a sectional view taken along line L-L'of FIG. 16A.
- 17A and 17B are views showing a lower case 52 provided with a fitting recess 25, where FIG. 17A is a plan view and FIG. 17B is a sectional view taken along line MM'of FIG. 17A.
- the protective element 50 has the above-mentioned fitting recess 25 and recess slit 27 formed in the lower case 52.
- the joining process between the lower case 52 and the upper case 51 is the same as that of the protective element 1 described above. That is, as shown in FIGS. 19A and 19B, the adhesive 19 is supplied along the abutting surface of the lower case 52 with the upper case 51. At this time, the adhesive 19 is supplied onto the fitting recess 25 and the recess slit 27 formed in each corner of the lower case 52. Then, as shown in FIG. 18, when the fitting convex portion 26 formed in the upper case 51 is inserted into the fitting recess 25 and the lower case 52 and the upper case 51 are brought into contact with each other, the fitting recess 25 is formed.
- the protective element 50 is also formed in the upper case 51 in place of the recess slit 27 continuous with the fitting recess 25 formed in the lower case 52, or together with the recess slit 27 continuous with the fitting recess 25.
- the above-mentioned convex slit 28 may be formed in the fitting convex portion 26. Since the configurations of the concave slit 27 and the convex slit 28 are described in detail in the protective element 1, the details will be omitted. It goes without saying that the protective element 50 may also have various forms of the concave slit 27 and the convex slit 28, as in the protective element 1.
- the soluble conductor 3 is mounted between the first and second external connection terminals 7 and 8, and is fused by self-heating (Joule heat) when the heating element 10 is energized or a current exceeding the rating is energized. , The current path between the first external connection terminal 7 and the second external connection terminal 8 is cut off.
- the soluble conductor 3 may be a conductive material that melts due to heat generated by the energization of the heating element 10 or in an overcurrent state.
- a conductive material that melts due to heat generated by the energization of the heating element 10 or in an overcurrent state.
- SnAgCu-based Pb-free solder BiPbSn alloy, BiPb alloy, BiSn alloy, etc.
- SnPb alloy, PbIn alloy, ZnAl alloy, InSn alloy, PbAgSn alloy and the like can be used.
- the soluble conductor 3 may be a structure containing a high melting point metal and a low melting point metal.
- the soluble conductor 3 is a laminated structure composed of an inner layer and an outer layer, and is a low melting point metal layer 31 as an inner layer and a high melting point metal layer as an outer layer laminated on the low melting point metal layer 31. It has 32.
- the soluble conductor 3 is connected to the first and second external connection terminals 7 and 8 and the surface electrode 11 via a bonding material 20 such as solder paste.
- the low melting point metal layer 31 is preferably a metal containing solder or Sn as a main component, and is a material generally called "Pb-free solder".
- the melting point of the low melting point metal layer 31 does not necessarily have to be higher than the temperature of the reflow furnace, and may be melted at about 200 ° C.
- the high melting point metal layer 32 is a metal layer laminated on the surface of the low melting point metal layer 31, and is, for example, a metal containing Ag, Cu, or any of these as a main component, and is the first and second. It has a high melting point that does not melt even when the external connection terminals 7 and 8 and the surface electrodes 11 are connected to the soluble conductor 3 by reflow.
- Such a soluble conductor 3 can be formed by forming a high melting point metal layer on a low melting point metal foil by using a plating technique, or using other well-known lamination techniques and film forming techniques. Can also be formed. At this time, the soluble conductor 3 may have a structure in which the entire surface of the low melting point metal layer 31 is covered with the high melting point metal layer 32, or may be a structure in which the entire surface is covered except for a pair of opposite side surfaces.
- the soluble conductor 3 may be composed of the high melting point metal layer 32 as an inner layer and the low melting point metal layer 31 as an outer layer, or three layers in which low melting point metal layers and high melting point metal layers are alternately laminated. It can be formed by various configurations such as the above-mentioned multi-layer structure, an opening is provided in a part of the outer layer to expose a part of the inner layer.
- the soluble conductor 3 can be used even when the reflow temperature exceeds the melting temperature of the low melting point metal layer 31 by laminating the high melting point metal layer 32 as the outer layer on the low melting point metal layer 31 which is the inner layer.
- the shape can be maintained as the molten conductor 3, and the molten conductor 3 does not melt. Therefore, the protective element 1 can efficiently connect the first and second external connection terminals 7 and 8 and the surface electrode 11 to the soluble conductor 3 by reflow. Further, the protective element 1 does not melt at a predetermined temperature due to a local increase or decrease in resistance value due to deformation of the soluble conductor 3 due to reflow, or has a melting characteristic such as melting at a temperature lower than a predetermined temperature. Fluctuation of can be prevented.
- the soluble conductor 3 does not melt due to self-heating while a predetermined rated current is flowing. Then, when a current having a value higher than the rating flows, it melts due to self-heating and cuts off the current path between the first and second external connection terminals 7 and 8. Further, the soluble conductor 3 melts when the heating element 10 is energized and generates heat, and cuts off the current path between the first and second external connection terminals 7 and 8.
- the melted low melting point metal layer 31 erodes (solders) the high melting point metal layer 32, so that the high melting point metal layer 32 melts at a temperature lower than the melting temperature. Therefore, the soluble conductor 3 can be melted in a short time by utilizing the erosion action of the high melting point metal layer 32 by the low melting point metal layer 31. Further, since the molten conductor 3a of the soluble conductor 3 is separated by the physical pulling action of the surface electrode 11 and the first and second external connection terminals 7 and 8, the first is promptly and surely. , The current path between the second external connection terminals 7 and 8 can be cut off (FIG. 4).
- the soluble conductor 3 forms a volume of the low melting point metal layer 31 larger than the volume of the high melting point metal layer 32.
- the soluble conductor 3 is heated by self-heating due to an overcurrent or heat generated by the heating element 10, and the low melting point metal is melted to erode the high melting point metal, whereby the soluble conductor 3 can be rapidly melted and melted. Therefore, the soluble conductor 3 promotes this erosion action by forming the volume of the low melting point metal layer 31 larger than the volume of the high melting point metal layer 32, and promptly causes the first and second external connection terminals. It is possible to cut off between 7 and 8.
- the soluble conductor 3 is formed by laminating the refractory metal layer 32 on the low melting point metal layer 31 which is the inner layer, the fusing temperature is significantly reduced as compared with the conventional chip fuse made of the refractory metal. can do. Therefore, the soluble conductor 3 can have a large cross-sectional area and can greatly improve the current rating as compared with a chip fuse or the like having the same size. In addition, it can be made smaller and thinner than conventional chip fuses having the same current rating, and is excellent in quick-melting property.
- the soluble conductor 3 can improve the resistance (pulse resistance) to a surge in which an abnormally high voltage is momentarily applied to the electric system in which the protection element 1 is incorporated. That is, the soluble conductor 3 must not be blown until, for example, a current of 100 A flows for several msec. In this respect, since a large current flowing in an extremely short time flows through the surface layer of the conductor (skin effect), the soluble conductor 3 is provided with a refractory metal layer 32 such as Ag plating having a low resistance value as an outer layer. , The current applied by the surge can easily flow, and fusing due to self-heating can be prevented. Therefore, the soluble conductor 3 can significantly improve the resistance to surges as compared with the conventional fuse made of a solder alloy.
- the soluble conductor 3 may be coated with a flux (not shown) in order to prevent oxidation and improve the wettability at the time of fusing.
- Such a protective element 1 is incorporated and used in, for example, a circuit in a battery pack 33 of a lithium ion secondary battery.
- the battery pack 33 has, for example, a battery stack 35 composed of battery cells 34a to 34d of a total of four lithium ion secondary batteries.
- the battery pack 33 includes a battery stack 35, a charge / discharge control circuit 36 that controls charging / discharging of the battery stack 35, and a protective element 1 to which the present invention is applied that cuts off the charging / discharging path when the battery stack 35 is abnormal. It includes a detection circuit 37 that detects the voltage of the battery cells 34a to 34d, and a current control element 38 that serves as a switch element that controls the operation of the protection element 1 according to the detection result of the detection circuit 37.
- the battery stack 35 is formed by connecting battery cells 34a to 34d, which require control for protection from overcharge and overdischarge states, in series, and is detachable via the positive electrode terminals 33a and the negative electrode terminals 33b of the battery pack 33. Is connected to the charging device 29, and the charging voltage from the charging device 29 is applied.
- the battery pack 33 charged by the charging device 29 can operate the electronic device by connecting the positive electrode terminal 33a and the negative electrode terminal 33b to the electronic device operated by the battery.
- the charge / discharge control circuit 36 is a control unit that controls the operation of two current control elements 39a and 39b connected in series to the current path between the battery stack 35 and the charging device 29, and the operations of these current control elements 39a and 39b. It includes 40.
- the current control elements 39a and 39b are composed of, for example, field effect transistors (hereinafter referred to as FETs), and by controlling the gate voltage by the control unit 40, the current path of the battery stack 35 moves in the charging direction and / or the discharging direction. Controls the continuity and interruption of the.
- the control unit 40 operates by receiving power supplied from the charging device 29, and controls the current so as to cut off the current path when the battery stack 35 is over-discharged or over-charged according to the detection result by the detection circuit 37. It controls the operation of the elements 39a and 39b.
- the protection element 1 is connected on, for example, the charge / discharge current path between the battery stack 35 and the charge / discharge control circuit 36, and its operation is controlled by the current control element 38.
- the detection circuit 37 is connected to the battery cells 34a to 34d, detects the voltage values of the battery cells 34a to 34d, and supplies each voltage value to the control unit 40 of the charge / discharge control circuit 36. Further, the detection circuit 37 outputs a control signal for controlling the current control element 38 when any one of the battery cells 34a to 34d becomes an overcharge voltage or an overdischarge voltage.
- the current control element 38 is composed of, for example, an FET, and is a protection element when the voltage value of the battery cells 34a to 34d exceeds a predetermined over-discharged or over-charged state by the detection signal output from the detection circuit 37. 1 is operated to control the charge / discharge current path of the battery stack 35 so as to be cut off regardless of the switch operation of the current control elements 39a and 39b.
- the protective element 1 to which the present invention is applied which is used in the battery pack 33 having the above configuration, has the circuit configuration as shown in FIG. That is, in the protection element 1, the first external connection terminal 7 is connected to the battery stack 35 side, the second external connection terminal 8 is connected to the positive electrode terminal 33a side, whereby the soluble conductor 3 is connected to the battery stack 35. It is connected in series on the charge / discharge path. Further, in the protection element 1, the heating element 10 is connected to the current control element 38 via the heating element feeding electrode 16 and the third external connection terminal 17, and the heating element 10 is connected to the open end of the battery stack 35. To.
- one end of the heating element 10 is connected to one open end of the soluble conductor 3 and the battery stack 35 via the surface electrode 11, and the other end is connected to the current control element 38 via the third external connection terminal 17. And the other open end of the battery stack 35. As a result, a feeding path to the heating element 10 whose energization is controlled by the current control element 38 is formed.
- the detection circuit 37 detects an abnormal voltage of any of the battery cells 34a to 34d, it outputs a cutoff signal to the current control element 38. Then, the current control element 38 controls the current so as to energize the heating element 10.
- the protection element 1 a current flows from the battery stack 35 to the heating element 10, whereby the heating element 10 starts to generate heat.
- the protective element 1 the soluble conductor 3 is melted by the heat generated by the heating element 10, and the charge / discharge path of the battery stack 35 is blocked.
- the protective element 1 is formed by containing the high melting point metal and the low melting point metal in the soluble conductor 3, so that the low melting point metal is melted before the melting of the high melting point metal, and the high melting point due to the melted low melting point metal.
- the soluble conductor 3 can be dissolved in a short time by utilizing the erosion action of the melting metal.
- the heat generation of the heating element 10 is stopped because the feeding path to the heating element 10 is also blocked by the melting of the soluble conductor 3.
- the protective element 1 can cut off the charge / discharge path of the battery pack 33 by melting the soluble conductor 3 by self-heating even when an overcurrent exceeding the rating is applied to the battery pack 33.
- the protective element 1 has the lower case 4 and the upper case 5 of the housing 6 in close contact with each other and has a desired adhesive strength. Therefore, the protective element 1 can prevent the upper case 5 from coming off when the soluble conductor 3 is blown. Further, since the lower case 4 and the upper case 5 of the housing 6 are in close contact with each other, the protective element 1 can satisfy a predetermined height condition of the housing.
- the protective element 1 As described above, in the protective element 1, the soluble conductor 3 is melted by the heat generated by the energization of the heating element 10 or the self-heating of the soluble conductor 3 due to the overcurrent. At this time, the protective element 1 is a low melting point metal even when the soluble conductor 3 is exposed to a high temperature environment such as being reflow-mounted on the first and second external connection terminals 7 and 8 and the surface electrode 11. Has a structure coated with a refractory metal, so that deformation of the soluble conductor 3 is suppressed. Therefore, the fluctuation of the fusing characteristics due to the fluctuation of the resistance value due to the deformation of the soluble conductor 3 is prevented, and the fusing can be quickly performed by the predetermined overcurrent or the heat generated by the heating element 10.
- the protective element 1 according to the present invention is of course applicable not only to the case of being used in a battery pack of a lithium ion secondary battery but also to various applications requiring interruption of a current path by an electric signal.
- the protective element 60 according to the modified example may have the soluble conductor 3 sandwiched between a plurality of fusing members 18.
- the fusing member 18 is arranged on one surface and the other surface of the soluble conductor 3, respectively.
- FIG. 24 is a circuit diagram of the protection element 60.
- Each of the fusing members 18 arranged on the front surface and the back surface of the soluble conductor 3 has one end of the heating element 10 via the heating element electrode 15 and the surface electrode 11 formed on each insulating substrate 2.
- the other end of the heating element 10 is connected to a power source for heating the heating element 10 via the heating element feeding electrode 16 and the third external connection terminal 17 formed on each insulating substrate 2.
- the protective element 60 melts the soluble conductor 3 by the heat generated by the heating element 10
- the heating elements of the fusing members 18 and 18 connected to both sides of the soluble conductor 3 are generated. 10 generates heat and heats from both sides of the soluble conductor 3. Therefore, the protective element 60 can quickly heat the soluble conductor 3 and melt it even when the cross-sectional area of the soluble conductor 3 is increased in order to cope with a large current application.
- the protective element 60 also has a housing 6 similar to the protective elements 1 and 50 described above, and the lower case 4 or the upper case 5 has a fitting recess 25 and a recess slit 27, or a fitting convex portion 26 and a convex portion.
- the slit 28 is formed.
- the protective element 60 sucks the molten conductor 3a from both sides of the soluble conductor 3 into each suction hole 12 formed in the insulating substrate 2 of each fusing member 18. Therefore, the protective element 60 is attracted by the plurality of fusing members 18 even when the cross-sectional area of the soluble conductor 3 is increased and a large amount of the molten conductor 3a is generated in order to cope with a large current application, and the soluble conductor 3 is reliably soluble.
- the conductor 3 can be blown. Further, the protective element 60 can melt the soluble conductor 3 more quickly by sucking the molten conductor 3a by the plurality of fusing members 18.
- the protective element 60 uses a coating structure in which the low melting point metal constituting the inner layer is coated with the high melting point metal as the soluble conductor 3, the soluble conductor 3 can be rapidly melted. That is, the soluble conductor 3 coated with the refractory metal requires time to heat to a temperature at which the refractory metal in the outer layer melts even when the heating element 10 generates heat.
- the protective element 60 includes a plurality of fusing members 18, and by simultaneously heating each heating element 10, the refractory metal in the outer layer can be quickly heated to the melting temperature. Therefore, according to the protective element 60, the thickness of the refractory metal layer constituting the outer layer can be increased, and the rapid fusing property can be maintained while further increasing the rating.
- the protective element 60 preferably has a pair of fusing members 18 and 18 facing each other and connected to the soluble conductor 3.
- the protective element 60 can simultaneously heat the same portion of the soluble conductor 3 from both sides with the pair of fusing members 18 and 18 and suck the molten conductor 3a, so that the soluble conductor 3 can be sucked more quickly. Can be heated and melted.
- the surface electrodes 11 formed on the insulating substrates 2 of the pair of fusing members 18 and 18 face each other via the soluble conductor 3.
- the pair of fusing members 18 and 18 are connected symmetrically, so that the load applied to the soluble conductor 3 is not unbalanced at the time of reflow mounting and the like, and the resistance to deformation is improved. be able to.
- heating element 10 is formed on the front surface 2a and the back surface 2b of the insulating substrate 2, forming the heating element 10 on both sides of the suction hole 12 heats the front surface electrode 11 and the back surface electrode 14, and more. It is preferable for aggregating and sucking the molten conductor 3a of the above.
- 1 protective element 2 insulating substrate, 2a front surface, 2b back surface, 2c first side edge part, 2d second side edge part, 3 soluble conductor, 3a molten conductor, 4 lower case, 5 upper case, 6 housing Body, 7 1st external connection terminal, 8 2nd external connection terminal, 9 insulating layer, 10 heating element, 11 front electrode, 12 suction hole, 13 conductive layer, 14 back electrode, 15 heating element electrode, 16 heating element Power supply electrode, 17 third external connection terminal, 18 fusing member, 20 bonding material, 25 fitting recess, 26 fitting convex part, 27 convex part slit 28 slit, 29 charging device, 31 low melting point metal layer, 32 high melting point Metal layer, 33 battery pack, 33a positive electrode terminal, 33b negative electrode terminal, 34 battery cell, 35 battery stack, 36 charge / discharge control circuit, 37 detection circuit, 38 current control element, 39 current control element, 40 control unit, 50 protection element , 60 protective elements, 100 protective elements
Landscapes
- Chemical & Material Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Electrochemistry (AREA)
- General Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Manufacturing & Machinery (AREA)
- Combustion & Propulsion (AREA)
- Power Engineering (AREA)
- Fuses (AREA)
- Battery Mounting, Suspending (AREA)
- Charge And Discharge Circuits For Batteries Or The Like (AREA)
- Secondary Cells (AREA)
- Connection Of Batteries Or Terminals (AREA)
- Protection Of Static Devices (AREA)
Abstract
Provided is a protection element in which excess adhesive between fitting projections and fitting recesses is eliminated to reliably ensure the bonding strength between a lower case and an upper case. The present invention includes: a fusible conductor 3; and a housing 6 having a lower case 4 and an upper case 5, the upper case 5 and the lower case 4 being bonded together with an adhesive to form the housing 6, wherein either the upper case 5 or the lower case 4 is provided with fitting recesses 25, the other is provided with fitting projections 26 to fit into the fitting recesses 25, and slits 27 continuous with the fitting recesses 25 and extending along a plane where the upper case 5 and the lower case 4 are in contact with each other are formed to allow an adhesive 19 to flow therethrough.
Description
本技術は、電流経路を遮断する保護素子、及びこれを用いたバッテリパックに関する。本出願は、日本国において2019年8月29日に出願された日本特許出願番号特願2019-157431を基礎として優先権を主張するものであり、この出願は参照されることにより、本出願に援用される。
This technology relates to a protective element that cuts off the current path and a battery pack that uses the protective element. This application claims priority on the basis of Japanese Patent Application No. Japanese Patent Application No. 2019-157431 filed on August 29, 2019 in Japan, and this application can be referred to in this application. It will be used.
充電して繰り返し利用することのできる二次電池の多くは、バッテリパックに加工されてユーザに提供される。特に重量エネルギー密度の高いリチウムイオン二次電池においては、ユーザ及び電子機器の安全を確保するために、一般的に、過充電保護、過放電保護等のいくつもの保護回路をバッテリパックに内蔵し、所定の場合にバッテリパックの出力を遮断する機能を有している。
Most of the secondary batteries that can be charged and used repeatedly are processed into battery packs and provided to users. Especially in lithium-ion secondary batteries with high weight energy density, in order to ensure the safety of users and electronic devices, in general, a number of protection circuits such as overcharge protection and overdischarge protection are built into the battery pack. It has a function to shut off the output of the battery pack in a predetermined case.
多くのリチウムイオン二次電池を用いた電子装置においては、バッテリパックに内蔵されたFETスイッチを用いて出力のON/OFFを行うことにより、バッテリパックの過充電保護又は過放電保護動作を行う。しかしながら、何らかの原因でFETスイッチが短絡破壊した場合、雷サージ等が印加され、瞬間的な大電流が流れた場合、或いはバッテリセルの寿命によって出力電圧が異常に低下したり、逆に過大異常電圧を出力したりした場合であってもバッテリパックや電子機器は、発火等の事故から保護されなければならない。そこで、このような想定し得るいかなる異常状態においても、バッテリセルの出力を安全に遮断するために、外部からの信号によって電流経路を遮断する機能を有するヒューズ素子からなる保護素子が用いられている。
In electronic devices that use many lithium-ion secondary batteries, the battery pack is overcharge-protected or over-discharged protected by turning the output on and off using the FET switch built into the battery pack. However, if the FET switch is short-circuited and broken for some reason, a lightning surge or the like is applied and a momentary large current flows, or the output voltage drops abnormally due to the life of the battery cell, or conversely, an excessive abnormal voltage occurs. The battery pack and electronic devices must be protected from accidents such as ignition even if the voltage is output. Therefore, in order to safely cut off the output of the battery cell in any such conceivable abnormal state, a protective element made of a fuse element having a function of cutting off the current path by an external signal is used. ..
このようなリチウムイオン二次電池等向けの保護回路の保護素子として、保護素子内部に発熱体を有し、この発熱体の発熱によって電流経路上の可溶導体を溶断する構造が用いられている。
As a protective element of a protection circuit for such a lithium ion secondary battery or the like, a structure is used in which a heating element is provided inside the protective element and the soluble conductor on the current path is melted by the heat generated by the heating element. ..
リチウムイオン二次電池の用途は、近年拡大しており、より大電流の用途、例えば電動ドライバ等の電動工具や、ハイブリッドカー、電気自動車、電動アシスト自転車等の輸送機器に採用が検討され、一部採用が開始されている。これらの用途において、特に起動時等には、数10A~100Aを超えるような大電流が流れる場合がある。このような大電流容量に対応した保護素子の実現が望まれている。
The applications of lithium-ion secondary batteries have been expanding in recent years, and their use in applications with higher currents, such as electric tools such as electric drivers and transportation equipment such as hybrid cars, electric vehicles, and electrically power assisted bicycles, has been considered. Department recruitment has started. In these applications, a large current exceeding several tens of A to 100 A may flow, especially at the time of startup. It is desired to realize a protective element corresponding to such a large current capacity.
このような大電流に対応する保護素子を実現するために、断面積を増大させた可溶導体を用い、この可溶導体の表面に、発熱体を形成した絶縁基板を接続した保護素子が提案されている。
In order to realize a protective element that can handle such a large current, a protective element that uses a soluble conductor with an increased cross-sectional area and connects an insulating substrate with a heating element to the surface of the soluble conductor has been proposed. Has been done.
図26、図27、図28、図29は、大電流用途を想定した保護素子の一構成例を示す図である。図26は外観斜視図であり、図27は平面図であり、図28は図27におけるD-D’断面図であり、図29は上側ケースを省略して示す平面図である。図26~図29に示す保護素子100は、バッテリの充放電回路等の外部回路と接続される第1、第2の外部接続端子101,102間に可溶導体103が接続されることにより当該外部回路の一部を構成し、過電圧等の異常時には、可溶導体103が溶融することにより第1の外部接続端子101と第2の外部接続端子102との間の電流経路を遮断するものである。
26, 27, 28, and 29 are diagrams showing a configuration example of a protective element assuming a large current application. 26 is an external perspective view, FIG. 27 is a plan view, FIG. 28 is a sectional view taken along line DD'in FIG. 27, and FIG. 29 is a plan view showing the upper case omitted. The protective element 100 shown in FIGS. 26 to 29 is said to have a soluble conductor 103 connected between the first and second external connection terminals 101 and 102 connected to an external circuit such as a battery charge / discharge circuit. It constitutes a part of an external circuit, and in the event of an abnormality such as overvoltage, the soluble conductor 103 melts to cut off the current path between the first external connection terminal 101 and the second external connection terminal 102. is there.
保護素子100は、絶縁基板105と、外部回路と接続される第1、第2の外部接続端子101,102と、絶縁基板105の表面に並列された2つの発熱体106と、発熱体106を被覆する絶縁層107と、絶縁層107上に積層されるとともに発熱体106と接続された表面電極108と、第1の外部接続端子101、表面電極108、及び第2の外部接続端子102にわたってソルダーペーストを介して搭載される可溶導体103とを備える。
The protective element 100 includes an insulating substrate 105, first and second external connection terminals 101 and 102 connected to an external circuit, two heating elements 106 arranged in parallel on the surface of the insulating substrate 105, and a heating element 106. Solder over the insulating layer 107 to be coated, the surface electrode 108 laminated on the insulating layer 107 and connected to the heating element 106, the first external connection terminal 101, the surface electrode 108, and the second external connection terminal 102. It includes a soluble conductor 103 mounted via a paste.
保護素子100は、第1、第2の外部接続端子101,102が素子筐体の内外にわたって配設され、保護素子100が実装される外部回路基板に設けられた接続電極にねじ止め等により接続されることにより、可溶導体103が外部回路基板上に形成された電流経路の一部に組み込まれる。
In the protection element 100, the first and second external connection terminals 101 and 102 are arranged inside and outside the element housing, and are connected to a connection electrode provided on an external circuit board on which the protection element 100 is mounted by screwing or the like. By doing so, the soluble conductor 103 is incorporated into a part of the current path formed on the external circuit board.
発熱体106は、比較的抵抗値が高く通電すると発熱する導電性を有する部材であって、例えばニクロム、W、Mo、Ru等又はこれらを含む材料からなる。また、発熱体106は、絶縁基板105の表面上に形成された発熱体給電電極109と接続されている。発熱体給電電極109は、第3の外部接続端子110とソルダーペーストを介して接続されている。保護素子100は、第3の外部接続端子110が、保護素子100が実装される外部回路基板に設けられた接続電極に接続されることにより、発熱体106が外部回路に設けられた外部電源と接続されている。そして、発熱体106は、図示しないスイッチ素子等により常時、通電及び発熱が制御されている。
The heating element 106 is a conductive member that generates heat when energized with a relatively high resistance value, and is made of, for example, nichrome, W, Mo, Ru, or a material containing these. Further, the heating element 106 is connected to the heating element feeding electrode 109 formed on the surface of the insulating substrate 105. The heating element feeding electrode 109 is connected to the third external connection terminal 110 via a solder paste. In the protection element 100, the third external connection terminal 110 is connected to the connection electrode provided on the external circuit board on which the protection element 100 is mounted, so that the heating element 106 is connected to the external power supply provided in the external circuit. It is connected. The heating element 106 is constantly controlled to energize and generate heat by a switch element or the like (not shown).
発熱体106は、ガラス層等からなる絶縁層107によって被覆されるとともに、絶縁層107上に表面電極108が形成されることにより、絶縁層107を介して表面電極108が重畳されている。また、表面電極108上には第1、第2の外部接続端子101,102間にわたって接続された可溶導体103がソルダーペーストを介して接続されている。
The heating element 106 is covered with an insulating layer 107 made of a glass layer or the like, and the surface electrode 108 is formed on the insulating layer 107, so that the surface electrode 108 is superimposed via the insulating layer 107. Further, on the surface electrode 108, a soluble conductor 103 connected between the first and second external connection terminals 101 and 102 is connected via a solder paste.
これにより、保護素子100は、発熱体106と可溶導体103が重畳されることにより熱的に接続され、発熱体106が通電によって発熱すると可溶導体103を溶断することができる。
As a result, the protective element 100 is thermally connected by superimposing the heating element 106 and the soluble conductor 103, and when the heating element 106 generates heat by energization, the soluble conductor 103 can be melted.
可溶導体103は、Pbフリーハンダなどの低融点金属やAg、Cu又はこれらを主成分とする合金などの高融点金属により形成され、あるいは低融点金属と高融点金属の積層構造を有する。そして、可溶導体103は、第1の外部接続端子101から表面電極108を跨って第2の外部接続端子102にかけて接続されることにより、保護素子100が組み込まれた外部回路の電流経路の一部を構成する。そして、可溶導体103は、定格を超える電流が通電することによって自己発熱(ジュール熱)により溶断し、あるいは発熱体106の発熱により溶断し、第1、第2の外部接続端子101,102間を遮断する。
The soluble conductor 103 is formed of a low melting point metal such as Pb free solder or a high melting point metal such as Ag, Cu or an alloy containing these as a main component, or has a laminated structure of a low melting point metal and a high melting point metal. Then, the soluble conductor 103 is connected from the first external connection terminal 101 to the second external connection terminal 102 across the surface electrode 108, so that the soluble conductor 103 is one of the current paths of the external circuit in which the protection element 100 is incorporated. Make up the part. Then, the soluble conductor 103 is melted by self-heating (Joule heat) when a current exceeding the rating is energized, or is blown by the heat generated by the heating element 106, and is between the first and second external connection terminals 101 and 102. To shut off.
そして、保護素子100は、外部回路の電流経路を遮断する必要が生じると、スイッチ素子により発熱体106へ通電される。これにより、保護素子100は、発熱体106が高温に発熱され、外部回路の電流経路上に組み込まれた可溶導体103が溶融される。可溶導体103の溶融導体は、濡れ性の高い表面電極108及び第1、第2の外部接続端子101,102に引き寄せられることにより可溶導体103が溶断される。したがって、保護素子100は、第1の外部接続端子101~表面電極108~第2の外部接続端子102の間を溶断させ、外部回路の電流経路を遮断することができる。
Then, when the protection element 100 needs to cut off the current path of the external circuit, the heating element 106 is energized by the switch element. As a result, in the protection element 100, the heating element 106 is heated to a high temperature, and the soluble conductor 103 incorporated in the current path of the external circuit is melted. The melted conductor of the soluble conductor 103 is attracted to the highly wettable surface electrodes 108 and the first and second external connection terminals 101 and 102, so that the soluble conductor 103 is melted. Therefore, the protection element 100 can blow between the first external connection terminal 101 and the surface electrode 108 to the second external connection terminal 102 to cut off the current path of the external circuit.
保護素子100は、図30に示すように、下側ケース111と、上側ケース112とを有し、これら下側ケース111と上側ケース112とは、接合されることにより保護素子100の筐体113を構成する。なお、図30は、筐体113を示す図であり、(A)は上側ケース112の底面図、(B)は下側ケース111及び上側ケース112の断面図、(C)は下側ケース111の平面図である。下側ケース111は、絶縁基板105と、第1、第2の外部接続端子101,102とを支持する。上側ケース112は、上述した素子内部構成を収容する空間を有する。
As shown in FIG. 30, the protective element 100 has a lower case 111 and an upper case 112, and the lower case 111 and the upper case 112 are joined to each other to form a housing 113 of the protective element 100. To configure. 30 is a view showing the housing 113, (A) is a bottom view of the upper case 112, (B) is a cross-sectional view of the lower case 111 and the upper case 112, and (C) is a lower case 111. It is a plan view of. The lower case 111 supports the insulating substrate 105 and the first and second external connection terminals 101 and 102. The upper case 112 has a space for accommodating the above-described element internal configuration.
下側ケース111は、各コーナー部に嵌合凸部114が形成されている。また、上側ケース112は、各コーナー部に嵌合凸部114と嵌合される嵌合凹部115が形成されている。筐体113を形成する際には、図31に示すように、下側ケース111の嵌合凸部114を含む側縁部に接着剤120が供給され、上側ケース112と付き合わされる。これにより、嵌合凸部114と嵌合凹部115とが接着剤120を介して嵌合され、下側ケース111と上側ケース112が接合される。
The lower case 111 has a fitting convex portion 114 formed at each corner portion. Further, the upper case 112 is formed with a fitting recess 115 that is fitted with the fitting convex portion 114 at each corner portion. When forming the housing 113, as shown in FIG. 31, the adhesive 120 is supplied to the side edge portion of the lower case 111 including the fitting convex portion 114, and is associated with the upper case 112. As a result, the fitting convex portion 114 and the fitting concave portion 115 are fitted via the adhesive 120, and the lower case 111 and the upper case 112 are joined.
ここで、保護素子100が大電流用途に対応するためには、上述したように可溶導体103の大型化や、発熱体106の発熱量の増加が求められる。しかし、これに伴い可溶導体103の溶断時の熱衝撃も大きくなり、またケース内部の空気が急激に膨張するため、筐体113にはその圧力に耐える接合強度が求められる。下側ケース111と上側ケース112の接合強度を上げるためには、接着剤120の量を増加させることが考えられるが、接着剤120を増加させると、嵌合時において嵌合凹部115へ流入する量が増える。また、嵌合凸部114に沿って、嵌合凹部115との間にも接着剤が入り込む。
Here, in order for the protective element 100 to be used for high current applications, it is required to increase the size of the soluble conductor 103 and the heating element 106 as described above. However, along with this, the thermal shock at the time of fusing the soluble conductor 103 also increases, and the air inside the case expands rapidly, so that the housing 113 is required to have a bonding strength that can withstand the pressure. In order to increase the bonding strength between the lower case 111 and the upper case 112, it is conceivable to increase the amount of the adhesive 120, but if the adhesive 120 is increased, it flows into the fitting recess 115 at the time of fitting. The amount increases. In addition, the adhesive also enters the fitting recess 115 along the fitting convex portion 114.
このため、図32に示すように、下側ケース111と上側ケース112とを突き合わせたときに、嵌合凸部114と嵌合凹部115との間に流入した接着剤120の逃げ場が無くなり、却って下側ケース111と上側ケース112との密着を阻害してしまう。これにより、下側ケース111から上側ケース112が浮いた状態となり、所望の接着強度が得られずに可溶導体103の溶断時に上側ケース112が外れる、あるいは、所定の筐体の高さ条件を満たすことができない、といった不具合が生じる恐れがある。
Therefore, as shown in FIG. 32, when the lower case 111 and the upper case 112 are butted against each other, there is no escape place for the adhesive 120 that has flowed in between the fitting convex portion 114 and the fitting concave portion 115. The adhesion between the lower case 111 and the upper case 112 is hindered. As a result, the upper case 112 floats from the lower case 111, and the upper case 112 comes off when the soluble conductor 103 is blown without obtaining the desired adhesive strength, or the predetermined housing height condition is satisfied. There is a risk of problems such as being unable to meet.
そこで、本技術は、嵌合凸部と嵌合凹部との間の接着剤の余剰分を排除し、下側ケースと上側ケースとの接着強度を確実に確保できる保護素子及びこれを用いたバッテリパックを提供することを目的とする。
Therefore, the present technology eliminates the excess adhesive between the fitting convex portion and the fitting concave portion, and secures the adhesive strength between the lower case and the upper case, and a protective element using the protective element. The purpose is to provide a pack.
上述した課題を解決するために、本技術に係る保護素子は、可溶導体と、下側ケースと上側ケースを有し、上記上側ケース及び上記下側ケースが接着剤によって接合されることにより形成される筐体を備え、上記上側ケース及び上記下側ケースは、いずれか一方に嵌合凹部が形成され、いずれか他方に上記嵌合凹部に嵌合する嵌合凸部が形成され、上記嵌合凹部と連続するとともに上記上側ケース及び上記下側ケースの突き合わせ面に延在し、上記接着剤を流動させるスリットが形成されているものである。
In order to solve the above-mentioned problems, the protective element according to the present technology has a soluble conductor, a lower case and an upper case, and is formed by joining the upper case and the lower case with an adhesive. The upper case and the lower case are provided with a fitting recess formed in one of them, and a fitting convex portion fitted in the fitting recess is formed in either one of the upper case and the lower case. A slit that is continuous with the joint recess and extends to the abutting surface of the upper case and the lower case to allow the adhesive to flow is formed.
上述した課題を解決するために、本技術に係る保護素子は、可溶導体と、下側ケースと上側ケースを有し、上記上側ケース及び上記下側ケースが接着剤によって接合されることにより形成される筐体を備え、上記上側ケース及び上記下側ケースは、いずれか一方に嵌合凹部が形成され、いずれか他方に上記嵌合凹部に嵌合する嵌合凸部が形成され、上記嵌合凸部は、外周面に上記接着剤を流動させるスリットが形成されているものである。
In order to solve the above-mentioned problems, the protective element according to the present technology has a soluble conductor, a lower case and an upper case, and is formed by joining the upper case and the lower case with an adhesive. In the upper case and the lower case, one of the upper case and the lower case is formed with a fitting recess, and the other is formed with a fitting protrusion that fits into the fitting recess. The go-convex portion has a slit formed on the outer peripheral surface to allow the adhesive to flow.
上述した課題を解決するために、本技術に係る保護素子は、可溶導体と、下側ケースと上側ケースを有し、上記上側ケース及び上記下側ケースが接着剤によって接合されることにより形成される筐体を備え、上記上側ケース及び上記下側ケースは、いずれか一方に嵌合凹部が形成され、いずれか他方に上記嵌合凹部に嵌合する嵌合凸部が形成され、上記嵌合凹部と連続するとともに上記上側ケース及び上記下側ケースの突き合わせ面に延在し、上記接着剤を流動させるスリットが形成され、上記嵌合凸部は、外周面に上記接着剤を流動させるスリットが形成されているものである。
In order to solve the above-mentioned problems, the protective element according to the present technology has a soluble conductor, a lower case and an upper case, and is formed by joining the upper case and the lower case with an adhesive. In the upper case and the lower case, one of the upper case and the lower case is formed with a fitting recess, and the other is formed with a fitting convex portion to be fitted to the fitting recess. A slit that is continuous with the joint recess and extends to the abutting surface of the upper case and the lower case to allow the adhesive to flow is formed, and the fitting convex portion is a slit that allows the adhesive to flow on the outer peripheral surface. Is formed.
また、本技術に係るバッテリパックは、1つ以上のバッテリセルと、上記バッテリセルの充放電経路上に接続され、該充放電経路を遮断する保護素子を備え、上記保護素子は、可溶導体と、下側ケースと上側ケースを有し、上記上側ケース及び上記下側ケースが接着剤によって接合されることにより形成される筐体を備え、上記上側ケース及び上記下側ケースは、いずれか一方に嵌合凹部が形成され、いずれか他方に上記嵌合凹部に嵌合する嵌合凸部が形成され、上記嵌合凹部と連続するとともに上記上側ケース及び上記下側ケースの突き合わせ面に延在し、上記接着剤を流動させるスリットが形成されているものである。
Further, the battery pack according to the present technology includes one or more battery cells and a protective element connected to the charge / discharge path of the battery cell to block the charge / discharge path, and the protective element is a soluble conductor. It has a lower case and an upper case, and includes a housing formed by joining the upper case and the lower case with an adhesive, and the upper case and the lower case are either one of them. A fitting recess is formed in, and a fitting protrusion that fits in the fitting recess is formed in one of the fitting recesses, and is continuous with the fitting recess and extends to the butt surface of the upper case and the lower case. However, a slit for flowing the adhesive is formed.
また、本技術に係るバッテリパックは、1つ以上のバッテリセルと、上記バッテリセルの充放電経路上に接続され、該充放電経路を遮断する保護素子を備え、上記保護素子は、可溶導体と、下側ケースと上側ケースを有し、上記上側ケース及び上記下側ケースが接着剤によって接合されることにより形成される筐体を備え、上記上側ケース及び上記下側ケースは、いずれか一方に嵌合凹部が形成され、いずれか他方に上記嵌合凹部に嵌合する嵌合凸部が形成され、上記嵌合凸部は、突出方向に沿って上記接着剤を流動させるスリットが形成されているものである。
Further, the battery pack according to the present technology includes one or more battery cells and a protective element connected to the charge / discharge path of the battery cell to block the charge / discharge path, and the protective element is a soluble conductor. It has a lower case and an upper case, and includes a housing formed by joining the upper case and the lower case with an adhesive, and the upper case and the lower case are either one of them. A fitting recess is formed in, a fitting protrusion that fits in the fitting recess is formed in one of the fitting protrusions, and the fitting protrusion is formed with a slit that allows the adhesive to flow along the protruding direction. Is what you are doing.
また、本技術に係るバッテリパックは、1つ以上のバッテリセルと、上記バッテリセルの充放電経路上に接続され、該充放電経路を遮断する保護素子を備え、上記保護素子は、可溶導体と、下側ケースと上側ケースを有し、上記上側ケース及び上記下側ケースが接着剤によって接合されることにより形成される筐体を備え、上記上側ケース及び上記下側ケースは、いずれか一方に嵌合凹部が形成され、いずれか他方に上記嵌合凹部に嵌合する嵌合凸部が形成され、上記嵌合凹部と連続するとともに上記上側ケース及び上記下側ケースの突き合わせ面に延在し、上記接着剤を流動させるスリットが形成され、上記嵌合凸部は、突出方向に沿って上記接着剤を流動させるスリットが形成されているものである。
Further, the battery pack according to the present technology includes one or more battery cells and a protective element connected to the charge / discharge path of the battery cell to block the charge / discharge path, and the protective element is a soluble conductor. The upper case and the lower case are provided with a lower case and a housing formed by joining the upper case and the lower case with an adhesive, and the upper case and the lower case are either one of them. A fitting recess is formed in, and a fitting protrusion that fits in the fitting recess is formed in one of the fitting recesses, and is continuous with the fitting recess and extends to the butt surface of the upper case and the lower case. Then, a slit for flowing the adhesive is formed, and the fitting convex portion is formed with a slit for flowing the adhesive along the protruding direction.
本技術によれば、スリットは、上側ケース及び下側ケースを突き合わせたときに、嵌合凹部内に充填された接着剤の余剰分を内部に流動させることで、接着剤の余剰分を嵌合凸部と嵌合された嵌合凹部内に滞留させることを防ぐ。これにより、嵌合凹部内に滞留する接着剤の余剰分によって上側ケース及び下側ケースの密着が阻害されることを防止することができる。
According to the present technology, when the upper case and the lower case are butted against each other, the slit fits the excess adhesive by allowing the excess adhesive filled in the fitting recess to flow inside. Prevents it from staying in the fitting recess fitted with the protrusion. As a result, it is possible to prevent the adhesion between the upper case and the lower case from being hindered by the excess adhesive remaining in the fitting recess.
以下、本技術が適用された保護素子、バッテリパックについて、図面を参照しながら詳細に説明する。なお、本技術は、以下の実施形態のみに限定されるものではなく、本技術の要旨を逸脱しない範囲内において種々の変更が可能であることは勿論である。また、図面は模式的なものであり、各寸法の比率等は現実のものとは異なることがある。具体的な寸法等は以下の説明を参酌して判断すべきものである。また、図面相互間においても互いの寸法の関係や比率が異なる部分が含まれていることは勿論である。
Hereinafter, the protective element and battery pack to which this technology is applied will be described in detail with reference to the drawings. It should be noted that the present technology is not limited to the following embodiments, and it goes without saying that various changes can be made without departing from the gist of the present technology. In addition, the drawings are schematic, and the ratio of each dimension may differ from the actual one. Specific dimensions, etc. should be determined in consideration of the following explanation. In addition, it goes without saying that the drawings include parts having different dimensional relationships and ratios from each other.
[第1の実施の形態:嵌合凹部スリット]
図1、図2、図3に本技術が適用された保護素子1を示す。保護素子1は、絶縁基板2と、絶縁基板2の表面に搭載された可溶導体3と、絶縁基板2の裏面を支持する下側ケース4と、絶縁基板2の表面を覆う上側ケース5を有し、下側ケース4と上側ケース5が接着剤19によって接合されることにより絶縁基板2を収納する筐体6を備える。また、保護素子1は、第1、第2の外部接続端子7,8を有する。第1、第2の外部接続端子7,8は、筐体6の内外にわたって配設され、保護素子1が実装される外部回路に設けられた接続電極にねじ止め等により接続される。第1、第2の外部接続端子7,8は、下側ケース4に支持されるとともに、各一端が可溶導体3によって接続されている。そして、保護素子1は、第1、第2の外部接続端子7,8を介して外部回路に組み込まれることにより、可溶導体3が当該外部回路の電流経路の一部を構成し、後述する発熱体10の発熱、あるいは定格を超える過電流によって溶断することにより電流経路を遮断することができる。 [First Embodiment: Fitting recess slit]
FIGS. 1, 2 and 3 show theprotection element 1 to which the present technology is applied. The protective element 1 includes an insulating substrate 2, a soluble conductor 3 mounted on the surface of the insulating substrate 2, a lower case 4 that supports the back surface of the insulating substrate 2, and an upper case 5 that covers the surface of the insulating substrate 2. The lower case 4 and the upper case 5 are joined by an adhesive 19 to provide a housing 6 for accommodating the insulating substrate 2. Further, the protection element 1 has first and second external connection terminals 7 and 8. The first and second external connection terminals 7 and 8 are arranged inside and outside the housing 6 and are connected to connection electrodes provided in an external circuit on which the protection element 1 is mounted by screwing or the like. The first and second external connection terminals 7 and 8 are supported by the lower case 4, and one end of each is connected by a soluble conductor 3. Then, the protective element 1 is incorporated into an external circuit via the first and second external connection terminals 7 and 8, so that the soluble conductor 3 forms a part of the current path of the external circuit, which will be described later. The current path can be cut off by fusing the heating element 10 due to heat generation or an overcurrent exceeding the rating.
図1、図2、図3に本技術が適用された保護素子1を示す。保護素子1は、絶縁基板2と、絶縁基板2の表面に搭載された可溶導体3と、絶縁基板2の裏面を支持する下側ケース4と、絶縁基板2の表面を覆う上側ケース5を有し、下側ケース4と上側ケース5が接着剤19によって接合されることにより絶縁基板2を収納する筐体6を備える。また、保護素子1は、第1、第2の外部接続端子7,8を有する。第1、第2の外部接続端子7,8は、筐体6の内外にわたって配設され、保護素子1が実装される外部回路に設けられた接続電極にねじ止め等により接続される。第1、第2の外部接続端子7,8は、下側ケース4に支持されるとともに、各一端が可溶導体3によって接続されている。そして、保護素子1は、第1、第2の外部接続端子7,8を介して外部回路に組み込まれることにより、可溶導体3が当該外部回路の電流経路の一部を構成し、後述する発熱体10の発熱、あるいは定格を超える過電流によって溶断することにより電流経路を遮断することができる。 [First Embodiment: Fitting recess slit]
FIGS. 1, 2 and 3 show the
[絶縁基板]
絶縁基板2は、たとえば、アルミナ、ガラスセラミックス、ムライト、ジルコニアなどの絶縁性を有する部材によって形成される。その他、絶縁基板2は、ガラスエポキシ基板、フェノール基板等のプリント配線基板に用いられる材料を用いてもよい。図3に示す絶縁基板2では、後述する表面電極11を介して接続される可溶導体3の延在方向の両側縁を第1の側縁部2cとし、後述する発熱体電極15及び発熱体給電電極16が形成される両側縁を第2の側縁部2dとする。 [Insulated substrate]
The insulatingsubstrate 2 is formed of, for example, an insulating member such as alumina, glass ceramics, mullite, and zirconia. In addition, the insulating substrate 2 may be made of a material used for a printed wiring board such as a glass epoxy board or a phenol substrate. In the insulating substrate 2 shown in FIG. 3, both side edges of the soluble conductor 3 connected via the surface electrode 11 described later in the extending direction are designated as the first side edge portion 2c, and the heating element electrode 15 and the heating element described later are used. Both side edges on which the feeding electrode 16 is formed are designated as the second side edge portion 2d.
絶縁基板2は、たとえば、アルミナ、ガラスセラミックス、ムライト、ジルコニアなどの絶縁性を有する部材によって形成される。その他、絶縁基板2は、ガラスエポキシ基板、フェノール基板等のプリント配線基板に用いられる材料を用いてもよい。図3に示す絶縁基板2では、後述する表面電極11を介して接続される可溶導体3の延在方向の両側縁を第1の側縁部2cとし、後述する発熱体電極15及び発熱体給電電極16が形成される両側縁を第2の側縁部2dとする。 [Insulated substrate]
The insulating
[発熱体]
可溶導体3を溶断する発熱体10は、比較的抵抗値が高く通電すると発熱する導電性を有する部材であって、たとえばニクロム、W、Mo、Ru、Cu、Ag、あるいはこれらを主成分とする合金等からなる。これらの合金あるいは組成物、化合物の粉状体を樹脂バインダ等と混合してペースト状にしたものを、絶縁基板2の表面2aにスクリーン印刷技術を用いてパターン形成して、焼成する等によって形成することができる。 [Heating element]
Theheating element 10 that melts the soluble conductor 3 has a relatively high resistance value and is a conductive member that generates heat when energized. For example, nichrome, W, Mo, Ru, Cu, Ag, or these as main components. It consists of alloys and the like. These alloys, compositions, and powders of compounds are mixed with a resin binder or the like to form a paste, which is formed by forming a pattern on the surface 2a of the insulating substrate 2 using screen printing technology and firing the mixture. can do.
可溶導体3を溶断する発熱体10は、比較的抵抗値が高く通電すると発熱する導電性を有する部材であって、たとえばニクロム、W、Mo、Ru、Cu、Ag、あるいはこれらを主成分とする合金等からなる。これらの合金あるいは組成物、化合物の粉状体を樹脂バインダ等と混合してペースト状にしたものを、絶縁基板2の表面2aにスクリーン印刷技術を用いてパターン形成して、焼成する等によって形成することができる。 [Heating element]
The
発熱体10は、絶縁基板2の表面2a上において絶縁層9に被覆されている。絶縁層9上には、後述する表面電極11が積層される。絶縁層9は、発熱体10の保護及び絶縁を図るとともに、発熱体10の熱を効率よく表面電極11及び可溶導体3へ伝えるために設けられ、例えばガラス層からなる。
The heating element 10 is covered with an insulating layer 9 on the surface 2a of the insulating substrate 2. A surface electrode 11, which will be described later, is laminated on the insulating layer 9. The insulating layer 9 is provided to protect and insulate the heating element 10 and efficiently transfer the heat of the heating element 10 to the surface electrode 11 and the soluble conductor 3, and is made of, for example, a glass layer.
発熱体10は、一端が絶縁基板2の表面2aに形成された発熱体電極15と接続されている。また、発熱体電極15は、絶縁層9上に形成された表面電極11と接続されている。これにより発熱体10は、表面電極11上に搭載された可溶導体3と電気的に接続されている。また、発熱体10は、他端が発熱体給電電極16と接続されている。発熱体給電電極16は、絶縁基板2の表面2aに形成されるとともに、ソルダーペースト等の接続材料20を介して第3の外部接続端子17と接続され、この第3の外部接続端子17を介して外部回路と接続される。そして、保護素子1は、外部回路と接続されることにより、第3の外部接続端子17を介して発熱体10が外部回路に形成された発熱体10への給電経路に組み込まれる。
One end of the heating element 10 is connected to the heating element electrode 15 formed on the surface 2a of the insulating substrate 2. Further, the heating element electrode 15 is connected to the surface electrode 11 formed on the insulating layer 9. As a result, the heating element 10 is electrically connected to the soluble conductor 3 mounted on the surface electrode 11. The other end of the heating element 10 is connected to the heating element feeding electrode 16. The heating element feeding electrode 16 is formed on the surface 2a of the insulating substrate 2 and is connected to the third external connection terminal 17 via a connection material 20 such as solder paste, and is connected to the third external connection terminal 17 via the third external connection terminal 17. Is connected to an external circuit. Then, by connecting the protection element 1 to an external circuit, the heating element 10 is incorporated into the feeding path to the heating element 10 formed in the external circuit via the third external connection terminal 17.
また、発熱体10は、図3に示すように、通電方向が可溶導体3の通電方向と交差する方向となるように形成され、発熱体電極15及び発熱体給電電極16が第2の側縁部2dに形成されることが、絶縁基板2の面積を効率的に用いる上で好ましい。
Further, as shown in FIG. 3, the heating element 10 is formed so that the energizing direction intersects the energizing direction of the soluble conductor 3, and the heating element electrode 15 and the heating element feeding electrode 16 are on the second side. It is preferable that it is formed on the edge portion 2d in order to efficiently use the area of the insulating substrate 2.
また、発熱体10は、絶縁基板2の表面に複数形成してもよい。図3に示す保護素子1の例では、2つの発熱体10を形成している。各発熱体10は、一端が発熱体電極15と接続され、他端が発熱体給電電極16と接続され、電気的に並列に接続されている。
Further, a plurality of heating elements 10 may be formed on the surface of the insulating substrate 2. In the example of the protection element 1 shown in FIG. 3, two heating elements 10 are formed. One end of each heating element 10 is connected to the heating element electrode 15, the other end is connected to the heating element feeding electrode 16, and they are electrically connected in parallel.
なお、保護素子1は、発熱体10を絶縁基板2の表面2aに積層した絶縁層9の内部に形成してもよい。また、保護素子1は、発熱体10を絶縁基板2の内部に形成してもよい。また、保護素子1は、発熱体10を絶縁基板2の裏面2bに形成してもよい。なお、発熱体10を絶縁基板2の裏面2bに形成する場合、発熱体10は、一端が絶縁基板2の裏面2bに形成された裏面電極と接続され、裏面電極及び表面電極11間を貫通する導電貫通孔を介して表面電極11上に搭載された可溶導体2と電気的に接続される。また、発熱体10は、他端が絶縁基板2の裏面2bに形成された発熱体給電電極を介して第3の外部接続端子17と接続される。
The protective element 1 may be formed inside the insulating layer 9 in which the heating element 10 is laminated on the surface 2a of the insulating substrate 2. Further, the protective element 1 may form the heating element 10 inside the insulating substrate 2. Further, the protective element 1 may form the heating element 10 on the back surface 2b of the insulating substrate 2. When the heating element 10 is formed on the back surface 2b of the insulating substrate 2, one end of the heating element 10 is connected to the back surface electrode formed on the back surface 2b of the insulating substrate 2 and penetrates between the back surface electrode and the front surface electrode 11. It is electrically connected to the soluble conductor 2 mounted on the surface electrode 11 through the conductive through hole. Further, the other end of the heating element 10 is connected to the third external connection terminal 17 via a heating element feeding electrode formed on the back surface 2b of the insulating substrate 2.
[表面電極]
絶縁層9上には、発熱体電極15を介して発熱体10と接続されるとともに、可溶導体3と接続される表面電極11が形成されている。表面電極11は、ソルダーペースト等の接合材料20を介して可溶導体3に接続されている。また、表面電極11は、可溶導体3が溶融すると溶融導体3aが凝集され、これにより可溶導体3を溶断することができる。 [Surface electrode]
On the insulatinglayer 9, a surface electrode 11 is formed which is connected to the heating element 10 via the heating element electrode 15 and is connected to the soluble conductor 3. The surface electrode 11 is connected to the soluble conductor 3 via a bonding material 20 such as solder paste. Further, in the surface electrode 11, when the soluble conductor 3 is melted, the molten conductor 3a is aggregated, whereby the soluble conductor 3 can be melted.
絶縁層9上には、発熱体電極15を介して発熱体10と接続されるとともに、可溶導体3と接続される表面電極11が形成されている。表面電極11は、ソルダーペースト等の接合材料20を介して可溶導体3に接続されている。また、表面電極11は、可溶導体3が溶融すると溶融導体3aが凝集され、これにより可溶導体3を溶断することができる。 [Surface electrode]
On the insulating
表面電極11は、吸引孔12を形成してもよい。吸引孔12は、可溶導体3が溶融すると、毛管現象によってこの溶融導体3aを吸引し、表面電極11上で保持する溶融導体3aの体積を減少させるものである(図4参照)。保護素子1は、大電流用途に対応するために可溶導体3の断面積を増大させることにより、溶融量が増大した場合にも、吸引孔12に吸引させることで、溶融導体3aの体積を減少させることができる。このような構成を有する絶縁基板2は、発熱体10が通電、発熱されるとこの熱により可溶導体3を溶融させ、その溶融導体3aを吸引孔12に吸引し遮断する溶断部材18を構成する。
The surface electrode 11 may form a suction hole 12. When the soluble conductor 3 melts, the suction hole 12 sucks the molten conductor 3a by a capillary phenomenon and reduces the volume of the molten conductor 3a held on the surface electrode 11 (see FIG. 4). The protective element 1 increases the cross-sectional area of the soluble conductor 3 in order to cope with a large current application, so that even if the amount of melting increases, the protective element 1 is attracted to the suction hole 12 to increase the volume of the molten conductor 3a. Can be reduced. The insulating substrate 2 having such a configuration constitutes a fusing member 18 that melts the soluble conductor 3 by the heat when the heating element 10 is energized and generates heat, and sucks and shuts off the molten conductor 3a into the suction hole 12. To do.
これにより、保護素子1は、表面電極11上で保持する溶融導体3aの体積を減少させてより確実に第1、第2の外部接続端子7,8間の絶縁を図り、また、可溶導体3の溶断時に発生するアーク放電による溶融導体3aの飛散を軽減して絶縁抵抗の低下を防止し、さらに、可溶導体3の搭載位置の周辺回路への付着による短絡故障を防止することができる。
As a result, the protective element 1 reduces the volume of the molten conductor 3a held on the surface electrode 11 to more reliably insulate between the first and second external connection terminals 7 and 8, and also provides a soluble conductor. It is possible to reduce the scattering of the molten conductor 3a due to the arc discharge generated at the time of fusing of 3 to prevent a decrease in insulation resistance, and further prevent a short-circuit failure due to adhesion of the soluble conductor 3 to a peripheral circuit at the mounting position. ..
吸引孔12は、内面に導電層13が形成されている。導電層13が形成されることにより、吸引孔12は、溶融導体3aを吸引しやすくすることができる。導電層13は、例えば銅、銀、金、鉄、ニッケル、パラジウム、鉛、錫のいずれか、又はいずれかを主成分とする合金によって形成され、吸引孔12の内面を電解メッキや導電ペーストの印刷等の公知の方法により形成することができる。また、導電層13は、複数の金属線や、導電性を有するリボンの集合体を吸引孔12内に挿入することにより形成してもよい。
A conductive layer 13 is formed on the inner surface of the suction hole 12. By forming the conductive layer 13, the suction hole 12 can easily suck the molten conductor 3a. The conductive layer 13 is formed of, for example, copper, silver, gold, iron, nickel, palladium, lead, tin, or an alloy containing any one as a main component, and the inner surface of the suction hole 12 is made of electrolytic plating or conductive paste. It can be formed by a known method such as printing. Further, the conductive layer 13 may be formed by inserting a plurality of metal wires or an aggregate of ribbons having conductivity into the suction holes 12.
また、吸引孔12は、絶縁基板2の厚さ方向に貫通する貫通孔として形成されることが好ましい。これにより、吸引孔12は、溶融導体3aを絶縁基板2の裏面2b側まで吸引することができ、より多くの溶融導体3aを吸引し、溶断部位における溶融導体3aの体積を減少させることができる。なお、吸引孔12は、非貫通孔として形成してもよい。
Further, the suction hole 12 is preferably formed as a through hole penetrating in the thickness direction of the insulating substrate 2. As a result, the suction hole 12 can suck the molten conductor 3a to the back surface 2b side of the insulating substrate 2, suck more molten conductor 3a, and reduce the volume of the molten conductor 3a at the fusing portion. .. The suction hole 12 may be formed as a non-through hole.
吸引孔12の導電層13は、絶縁基板2の表面2aに形成された表面電極11と連続されている。表面電極11は、可溶導体3を支持するとともに溶融導体3aが凝集するため、表面電極11と導電層13とが連続することにより、溶融導体3aを吸引孔12内に導きやすくすることができる。
The conductive layer 13 of the suction hole 12 is continuous with the surface electrode 11 formed on the surface 2a of the insulating substrate 2. Since the surface electrode 11 supports the soluble conductor 3 and the molten conductor 3a aggregates, the surface electrode 11 and the conductive layer 13 are continuous, so that the molten conductor 3a can be easily guided into the suction hole 12. ..
なお、導電層13及び表面電極11は、発熱体10によって加熱されることにより、可溶導体3の溶融導体3aを吸引孔12内へ吸引させやすくするとともに、表面電極11上に凝集しやすくすることができる。したがって、保護素子1は、表面電極11から導電層13を介して吸引孔12へ溶融導体3aを吸引する作用を促進させ、確実に可溶導体3を溶断することができる。
The conductive layer 13 and the surface electrode 11 are heated by the heating element 10 to facilitate suction of the molten conductor 3a of the soluble conductor 3 into the suction hole 12 and to easily aggregate on the surface electrode 11. be able to. Therefore, the protective element 1 promotes the action of sucking the molten conductor 3a from the surface electrode 11 into the suction hole 12 via the conductive layer 13, and can reliably melt the soluble conductor 3.
また、絶縁基板2の裏面2bには、吸引孔12の導電層13と接続された裏面電極14を形成してもよい。裏面電極14は、導電層13と連続することにより、可溶導体3が溶融すると、吸引孔12を介して移動した溶融導体3aが凝集する(図4参照)。これにより、保護素子1は、より多くの溶融導体3aを吸引し、溶断部位における溶融導体3aの体積を減少させることができる。
Further, the back surface electrode 14 connected to the conductive layer 13 of the suction hole 12 may be formed on the back surface 2b of the insulating substrate 2. The back surface electrode 14 is continuous with the conductive layer 13, so that when the soluble conductor 3 melts, the molten conductor 3a that has moved through the suction holes 12 aggregates (see FIG. 4). As a result, the protective element 1 can attract a larger amount of the molten conductor 3a and reduce the volume of the molten conductor 3a at the fusing portion.
なお、保護素子1は、吸引孔12を複数形成することにより、可溶導体3の溶融導体3aを吸引する経路を増やし、より多くの溶融導体3aを吸引することで、溶断部位における溶融導体3aの体積を減少させるようにしてもよい。このとき、複数の吸引孔12は、表面電極11と可溶導体3とが重畳する可溶導体3の幅方向にわたって形成してもよい。また、吸引孔12は、溶融導体3aが濡れ拡がる表面電極11と可溶導体3とが重畳しない領域にも形成してもよい。
The protective element 1 increases the number of paths for sucking the molten conductor 3a of the soluble conductor 3 by forming a plurality of suction holes 12, and sucks more molten conductors 3a to suck the molten conductor 3a at the fusing site. You may try to reduce the volume of. At this time, the plurality of suction holes 12 may be formed over the width direction of the soluble conductor 3 on which the surface electrode 11 and the soluble conductor 3 overlap. Further, the suction hole 12 may be formed in a region where the surface electrode 11 on which the molten conductor 3a wets and spreads and the soluble conductor 3 do not overlap.
また、2つの発熱体10を並列して設ける場合、絶縁基板2の表面2a、裏面2b又は内部に形成するいずれの場合においても、吸引孔12の両側に形成することが、表面電極11及び裏面電極14を加熱し、またより多くの溶融導体3aを吸引、凝集するうえで好ましい。
Further, when two heating elements 10 are provided in parallel, the front electrode 11 and the back surface can be formed on both sides of the suction hole 12 regardless of whether they are formed on the front surface 2a, the back surface 2b or the inside of the insulating substrate 2. It is preferable for heating the electrode 14 and for sucking and aggregating more molten conductors 3a.
[筐体]
次いで、保護素子1の筐体6について説明する。筐体6は、下側ケース4と上側ケース5とが接着剤19によって接合されることにより形成される。筐体6は、例えば、各種エンジニアリングプラスチック、熱可塑性プラスチック、セラミックス等の絶縁性を有する部材を用いて形成することができる。また、筐体6は、絶縁基板2の表面2a上に、可溶導体3が溶融時に球状に膨張し、溶融導体3aが表面電極11や第1、第2の外部接続端子7,8上に凝集するのに十分な内部空間を有する。 [Case]
Next, thehousing 6 of the protection element 1 will be described. The housing 6 is formed by joining the lower case 4 and the upper case 5 with an adhesive 19. The housing 6 can be formed by using, for example, various engineering plastics, thermoplastics, ceramics, and other insulating members. Further, in the housing 6, the soluble conductor 3 expands spherically on the surface 2a of the insulating substrate 2 when melted, and the molten conductor 3a is placed on the surface electrodes 11 and the first and second external connection terminals 7 and 8. It has enough internal space to agglomerate.
次いで、保護素子1の筐体6について説明する。筐体6は、下側ケース4と上側ケース5とが接着剤19によって接合されることにより形成される。筐体6は、例えば、各種エンジニアリングプラスチック、熱可塑性プラスチック、セラミックス等の絶縁性を有する部材を用いて形成することができる。また、筐体6は、絶縁基板2の表面2a上に、可溶導体3が溶融時に球状に膨張し、溶融導体3aが表面電極11や第1、第2の外部接続端子7,8上に凝集するのに十分な内部空間を有する。 [Case]
Next, the
下側ケース4と上側ケース5との接合は、接着剤19を用いて行う。接着剤19は、筐体6の側面を構成する下側ケース4の側壁上端面と上側ケース5の側壁下端面5aとの間に供給、硬化されることにより、下側ケース4と上側ケース5とが接合される。接着剤19としては特に制限はなく、例えば熱硬化型の接着剤が挙げられる。また、接着剤19の形態としては接合過程において流動性を示すものであればよく、その相状態は問わないが、作業性の観点から液状であることが好ましい。
The lower case 4 and the upper case 5 are joined using an adhesive 19. The adhesive 19 is supplied and cured between the upper end surface of the side wall of the lower case 4 and the lower end surface 5a of the side wall of the upper case 5 forming the side surface of the housing 6, so that the lower case 4 and the upper case 5 are formed. And are joined. The adhesive 19 is not particularly limited, and examples thereof include a thermosetting adhesive. The form of the adhesive 19 may be any form that exhibits fluidity in the bonding process, and its phase state does not matter, but it is preferably liquid from the viewpoint of workability.
また、本技術が適用された保護素子においては、下側ケース4及び上側ケース5は、いずれか一方に嵌合凹部25が形成され、いずれか他方に嵌合凹部25に嵌合する嵌合凸部26が形成されている。以下では、下側ケース4に嵌合凸部26を設け、上側ケース5に嵌合凹部25を設ける場合を例に説明する。
Further, in the protective element to which the present technology is applied, the lower case 4 and the upper case 5 have a fitting recess 25 formed in one of them, and a fitting convex that fits in the fitting recess 25 in either one. A portion 26 is formed. In the following, a case where the fitting convex portion 26 is provided in the lower case 4 and the fitting concave portion 25 is provided in the upper case 5 will be described as an example.
[下側ケース]
図5は下側ケース4を示す図であり、(A)は平面図、(B)は(A)のE-E’断面図である。下側ケース4は、略方形状に形成され、各コーナー部に計4つの嵌合凸部26が形成されている。嵌合凸部26は円柱状に形成されているが、嵌合凸部26の形状は後述する嵌合凹部25と嵌合する凸形状であればよく、例えば円錐状、角柱状、角錐状等でもよい。 [Lower case]
5A and 5B are views showing thelower case 4, FIG. 5A is a plan view, and FIG. 5B is a sectional view taken along line EE'of FIG. 5A. The lower case 4 is formed in a substantially rectangular shape, and a total of four fitting convex portions 26 are formed at each corner portion. The fitting convex portion 26 is formed in a columnar shape, but the shape of the fitting convex portion 26 may be a convex shape that fits with the fitting concave portion 25 described later, for example, a conical shape, a prismatic shape, a pyramidal shape, or the like. But it may be.
図5は下側ケース4を示す図であり、(A)は平面図、(B)は(A)のE-E’断面図である。下側ケース4は、略方形状に形成され、各コーナー部に計4つの嵌合凸部26が形成されている。嵌合凸部26は円柱状に形成されているが、嵌合凸部26の形状は後述する嵌合凹部25と嵌合する凸形状であればよく、例えば円錐状、角柱状、角錐状等でもよい。 [Lower case]
5A and 5B are views showing the
また、下側ケース4は、略中央部に、絶縁基板2の中央部を中空に保持する凹面部23が設けられている。下側ケース4は、凹面部23の側縁に沿って絶縁基板2の外側縁を支持する。凹面部23を設けることにより、下側ケース4と絶縁基板2との接触面積が減り、発熱体10の熱が下側ケース4に吸熱されることを抑制することができる。したがって、保護素子1は、発熱体10の熱を効率よく可溶導体3に伝達することができ、より速やかに溶断させることができる。特に、凹面部23を下側ケース4の略中央部に設けることで、発熱体10の直下が中空とされ、発熱体10の熱の下側ケース4への放熱を抑制することができる。
Further, the lower case 4 is provided with a concave surface portion 23 that holds the central portion of the insulating substrate 2 in a hollow shape at a substantially central portion. The lower case 4 supports the outer edge of the insulating substrate 2 along the side edge of the concave surface portion 23. By providing the concave surface portion 23, the contact area between the lower case 4 and the insulating substrate 2 can be reduced, and the heat of the heating element 10 can be suppressed from being absorbed by the lower case 4. Therefore, the protective element 1 can efficiently transfer the heat of the heating element 10 to the soluble conductor 3, and can melt the heating element more quickly. In particular, by providing the concave surface portion 23 in the substantially central portion of the lower case 4, the area directly below the heating element 10 is made hollow, and heat dissipation of the heating element 10 to the lower case 4 can be suppressed.
[上側ケース]
図6は上側ケース5を示す図であり、(A)は底面図、(b)は(A)のC-C’断面図である。上側ケース5は、下側ケース4と同様に略方形状に形成され、各コーナー部に下側ケース4に設けられた嵌合凸部26が嵌合する計4つの嵌合凹部25が設けられている。また、上側ケース5は、絶縁基板2の表面2a上に形成された可溶導体3や第1、第2の外部接続端子7,8を覆い、また溶断した可溶導体3aが表面電極11及び第1、第2の外部接続端子7,8上に凝集可能な内部空間を有する。 [Upper case]
6A and 6B are views showing theupper case 5, where FIG. 6A is a bottom view and FIG. 6B is a sectional view taken along line CC'of FIG. 6A. The upper case 5 is formed in a substantially rectangular shape like the lower case 4, and each corner is provided with a total of four fitting recesses 25 into which the fitting protrusions 26 provided on the lower case 4 are fitted. ing. Further, the upper case 5 covers the soluble conductor 3 formed on the surface 2a of the insulating substrate 2 and the first and second external connection terminals 7 and 8, and the fused soluble conductor 3a covers the surface electrode 11 and the surface electrode 11. It has an internal space that can be aggregated on the first and second external connection terminals 7 and 8.
図6は上側ケース5を示す図であり、(A)は底面図、(b)は(A)のC-C’断面図である。上側ケース5は、下側ケース4と同様に略方形状に形成され、各コーナー部に下側ケース4に設けられた嵌合凸部26が嵌合する計4つの嵌合凹部25が設けられている。また、上側ケース5は、絶縁基板2の表面2a上に形成された可溶導体3や第1、第2の外部接続端子7,8を覆い、また溶断した可溶導体3aが表面電極11及び第1、第2の外部接続端子7,8上に凝集可能な内部空間を有する。 [Upper case]
6A and 6B are views showing the
また、上側ケース5は、嵌合凹部25と連続するとともに上側ケース5及び下側ケース4の突き合わせ面となる上側ケース5の側壁下端面5aに延在し、接着剤19を流動させる凹部スリット27が形成されている。図7に示すように、凹部スリット27は、上側ケース5及び下側ケース4を突き合わせたときに、嵌合凹部25内に充填された接着剤19の余剰分を内部に流動させることで、接着剤19の余剰分を嵌合凸部26と嵌合された嵌合凹部25内に滞留させることを防ぐ。これにより、嵌合凹部25内に滞留する接着剤19の余剰分によって上側ケース5及び下側ケース4の密着が阻害されることを防止することができる。なお、嵌合凹部25内には嵌合凸部26との接合に必要な分の接着剤19は残留するため、嵌合凹部25と嵌合凸部26との接着強度は十分に確保される。また、凹部スリット27を設けることにより接着剤19との接着面積が増加され、接着強度の向上を図ることができる。
Further, the upper case 5 is continuous with the fitting recess 25 and extends to the lower end surface 5a of the side wall of the upper case 5 which is the abutting surface of the upper case 5 and the lower case 4, and the recess slit 27 through which the adhesive 19 flows flows. Is formed. As shown in FIG. 7, when the upper case 5 and the lower case 4 are butted against each other, the recessed slit 27 is adhered by allowing a surplus of the adhesive 19 filled in the fitting recess 25 to flow inside. It prevents the excess of the agent 19 from staying in the fitting recess 25 fitted with the fitting convex portion 26. As a result, it is possible to prevent the adhesion between the upper case 5 and the lower case 4 from being hindered by the excess adhesive 19 staying in the fitting recess 25. Since the adhesive 19 required for joining the fitting convex portion 26 remains in the fitting concave portion 25, sufficient adhesive strength between the fitting concave portion 25 and the fitting convex portion 26 is ensured. .. Further, by providing the recessed slit 27, the adhesive area with the adhesive 19 is increased, and the adhesive strength can be improved.
したがって、保護素子1は、下側ケース4から上側ケース5が浮いた状態となることなく密着し、所望の接着強度を得ることができる。これにより、保護素子1は、可溶導体3の溶断時に上側ケース5が外れる、あるいは、所定の筐体の高さ条件を満たすことができない、といった不具合が生じることを防止することができる。
Therefore, the protective element 1 can be brought into close contact with the lower case 4 without the upper case 5 floating, and a desired adhesive strength can be obtained. As a result, the protective element 1 can prevent problems such as the upper case 5 coming off when the soluble conductor 3 is blown, or the height condition of a predetermined housing not being satisfied.
凹部スリット27は、接着剤19が供給される上側ケース5の側壁下端面5aに沿って形成されることが好ましい。また、凹部スリット27の長さに特に制限はない。凹部スリット27の幅は特に制限はないが、平面視において嵌合凹部25の直径以下であることが好ましい。また、凹部スリット27の深さは特に制限はないが、嵌合凹部25の深さと同じか、これよりも浅いことが好ましい。
The recessed slit 27 is preferably formed along the lower end surface 5a of the side wall of the upper case 5 to which the adhesive 19 is supplied. Further, the length of the recessed slit 27 is not particularly limited. The width of the recess slit 27 is not particularly limited, but is preferably equal to or less than the diameter of the fitting recess 25 in a plan view. The depth of the recess slit 27 is not particularly limited, but is preferably the same as or shallower than the depth of the fitting recess 25.
また、図6(B)に示すように、凹部スリット27は、嵌合凹部25から離間するにしたがい、嵌合凹部25の底面側から嵌合凹部25の上面側にかけて漸次浅くなるテーパ状に形成されていることが好ましい。これにより、凹部スリット27に流入した接着剤19の余剰分を上側ケース5及び下側ケース4の突き合わせ面となる上側ケース5の側壁下端面5aに導き、上側ケース5及び下側ケース4の接合に供することができる。また、相対的に、筐体6のコーナー部に向かって接着剤の供給量が増えることで、接着強度を向上させることができる。
Further, as shown in FIG. 6B, the recess slit 27 is formed in a tapered shape that gradually becomes shallower from the bottom surface side of the fitting recess 25 to the upper surface side of the fitting recess 25 as it is separated from the fitting recess 25. It is preferable that it is. As a result, the excess adhesive 19 that has flowed into the recessed slit 27 is guided to the lower end surface 5a of the side wall of the upper case 5, which is the abutting surface of the upper case 5 and the lower case 4, and the upper case 5 and the lower case 4 are joined. Can be offered to. Further, the adhesive strength can be improved by relatively increasing the supply amount of the adhesive toward the corner portion of the housing 6.
また、凹部スリット27は、図8に示すように、嵌合凹部25から離間するにしたがい、漸次拡幅するように形成してもよい。これにより、接着剤19の余剰分を嵌合凹部25内からよりスリット先端に流出させやすくなる。
Further, as shown in FIG. 8, the recess slit 27 may be formed so as to gradually widen as it is separated from the fitting recess 25. This makes it easier for the excess adhesive 19 to flow out from the fitting recess 25 to the slit tip.
また、図9に示すように、1つの嵌合凹部25から複数の凹部スリット27を延在させてもよい。これにより、より多くの接着剤19の余剰分を嵌合凹部25内から流出させることができる。なお、複数の凹部スリット27の形状(幅、長さ、深さ、傾斜等)は同じであってもよく、異ならせることで接着剤19の流動量を方向に応じて異ならせてもよい。
Further, as shown in FIG. 9, a plurality of recess slits 27 may extend from one fitting recess 25. As a result, a larger amount of excess adhesive 19 can be discharged from the fitting recess 25. The shapes (width, length, depth, inclination, etc.) of the plurality of recessed slits 27 may be the same, and the flow amount of the adhesive 19 may be different depending on the direction by making them different.
また、図9に示すように、凹部スリット27は、上側ケース5の各コーナー部に形成されている1つの嵌合凹部25から、隣接する2つの側壁に沿って各々形成されていることが好ましい。これにより、より多くの接着剤19の余剰分を嵌合凹部25内から流出させることができる。また、これにより、接着剤19の余剰分を下側ケース4との突き合わせ面となる上側ケース5の側壁下端面5aに導き、上側ケース5及び下側ケース4の接合に供することができる。
Further, as shown in FIG. 9, it is preferable that the recess slit 27 is formed from one fitting recess 25 formed at each corner of the upper case 5 along two adjacent side walls. .. As a result, a larger amount of excess adhesive 19 can be discharged from the fitting recess 25. Further, as a result, the surplus of the adhesive 19 can be guided to the lower end surface 5a of the side wall of the upper case 5 which is the abutting surface with the lower case 4 and can be used for joining the upper case 5 and the lower case 4.
なお、凹部スリット27は全嵌合凹部25に形成されていることが好ましいが、必ずしも全嵌合凹部25に形成されていなくともよい。
The recess slit 27 is preferably formed in all the fitting recesses 25, but it does not necessarily have to be formed in all the fitting recesses 25.
また、図10に示すように、隣りあう嵌合凹部25から延在する凹部スリット27同士が連続するように形成してもよい。これにより、嵌合凹部25内に充填された接着剤19の余剰分を凹部スリット27に導出させるとともに、上側ケース5及び下側ケース4の突き合わせ面に供給された接着剤19の余剰分を凹部スリット27内に吸収させ、接着剤19の余剰分による密着の阻害を防止することができる。また、凹部スリット27を設けることにより接着剤19との接着面積が増加され、接着強度の向上を図ることができる。
Further, as shown in FIG. 10, the recess slits 27 extending from the adjacent fitting recesses 25 may be formed so as to be continuous with each other. As a result, the surplus of the adhesive 19 filled in the fitting recess 25 is led out to the recess slit 27, and the surplus of the adhesive 19 supplied to the butt surfaces of the upper case 5 and the lower case 4 is recessed. It can be absorbed into the slit 27 to prevent the adhesion of the adhesive 19 from being hindered by the excess. Further, by providing the recessed slit 27, the adhesive area with the adhesive 19 is increased, and the adhesive strength can be improved.
なお、上側ケース5は、下側ケース4と突き合わされる側壁の下端面5aに、下側ケース4に支持された第1、第2の外部接続端子7,8及び第3の外部接続端子17を筐体6の内外にわたって配設するための凹部が形成されている。この凹部は、第1、第2の外部接続端子7,8及び第3の外部接続端子17の配設位置に対応した位置に形成されている、また、凹部は、第1、第2の外部接続端子7,8及び第3の外部接続端子17の形状に応じた形状を有する。したがって、筐体6は、下側ケース4と上側ケース5とを隙間なく突き合わさせ接合するとともに、第1、第2の外部接続端子7,8及び第3の外部接続端子17を筐体外へ導出させることができる。
The upper case 5 has first and second external connection terminals 7 and 8 and a third external connection terminal 17 supported by the lower case 4 on the lower end surface 5a of the side wall that is abutted against the lower case 4. A recess is formed for arranging the housing 6 inside and outside the housing 6. The recess is formed at a position corresponding to the arrangement position of the first and second external connection terminals 7, 8 and the third external connection terminal 17, and the recess is formed at a position corresponding to the arrangement position of the first and second external connection terminals 7, and the recess is the first and second external. It has a shape corresponding to the shapes of the connection terminals 7, 8 and the third external connection terminal 17. Therefore, in the housing 6, the lower case 4 and the upper case 5 are butted and joined without a gap, and the first and second external connection terminals 7 and 8 and the third external connection terminal 17 are moved out of the housing. It can be derived.
筐体6を形成する際には、図11に示すように、下側ケース4の嵌合凸部26を含む側縁部に接着剤19が供給され、上側ケース5と付き合わされる。これにより、嵌合凸部26と嵌合凹部25とが接着剤19を介して嵌合され、下側ケース4と上側ケース5が接合される。
When forming the housing 6, as shown in FIG. 11, the adhesive 19 is supplied to the side edge portion of the lower case 4 including the fitting convex portion 26, and is associated with the upper case 5. As a result, the fitting convex portion 26 and the fitting concave portion 25 are fitted via the adhesive 19, and the lower case 4 and the upper case 5 are joined.
[変形例1]
次いで、本技術が適用された保護素子の変形例について説明する。本技術が適用された保護素子は、嵌合凹部25と連続する凹部スリット27に替えて、又は嵌合凹部25と連続する凹部スリット27とともに、嵌合凸部26に凸部スリット28を形成してもよい。凸部スリット28は、嵌合凸部26の周面に設けられ、接着剤19の余剰分を流動させることで、接着剤19の余剰分による下側ケース4と上側ケース5との密着の阻害を防止する。 [Modification 1]
Next, a modified example of the protective element to which the present technology is applied will be described. The protective element to which this technique is applied forms aconvex slit 28 in the fitting convex portion 26 in place of the concave slit 27 continuous with the fitting concave 25 or together with the concave slit 27 continuous with the fitting concave 25. You may. The convex slit 28 is provided on the peripheral surface of the fitting convex portion 26, and by flowing the surplus of the adhesive 19, the excess of the adhesive 19 prevents the lower case 4 and the upper case 5 from adhering to each other. To prevent.
次いで、本技術が適用された保護素子の変形例について説明する。本技術が適用された保護素子は、嵌合凹部25と連続する凹部スリット27に替えて、又は嵌合凹部25と連続する凹部スリット27とともに、嵌合凸部26に凸部スリット28を形成してもよい。凸部スリット28は、嵌合凸部26の周面に設けられ、接着剤19の余剰分を流動させることで、接着剤19の余剰分による下側ケース4と上側ケース5との密着の阻害を防止する。 [Modification 1]
Next, a modified example of the protective element to which the present technology is applied will be described. The protective element to which this technique is applied forms a
凸部スリット28は、嵌合凸部26の外周面に形成され、例えば、図12、図13に示すように、凸部スリット28は、嵌合凸部26の突出方向に沿って直線状に形成されている。図12は、下側ケース4に凸部スリット28を設けた筐体6を示す図であり、(A)は上側ケース5の底面図、(B)は上側ケース5と下側ケース4を対向配置させた断面図、(C)は下側ケース4の平面図である。図13は、凸部スリット28が形成された嵌合凸部26を示す図であり、(A)は平面図、(B)は(A)のJ-J’断面図である。
The convex slit 28 is formed on the outer peripheral surface of the fitting convex portion 26. For example, as shown in FIGS. 12 and 13, the convex slit 28 is linear along the protruding direction of the fitting convex portion 26. It is formed. 12A and 12B are views showing a housing 6 in which a convex slit 28 is provided in the lower case 4. FIG. 12A is a bottom view of the upper case 5, and FIG. 12B faces the upper case 5 and the lower case 4. The arranged cross-sectional view (C) is a plan view of the lower case 4. 13A and 13B are views showing a fitting convex portion 26 in which a convex portion slit 28 is formed, where FIG. 13A is a plan view and FIG. 13B is a sectional view taken along line JJ'in FIG.
なお、凸部スリット28の形態は、直線状に限らず、波形状、矩形波状、ジグザグ状等であってもよい。また、凸部スリット28は、嵌合凸部26の突出方向に形成する他、外周面を周回する方向に形成してもよい。また、凸部スリット28は、嵌合凸部26の外周面にらせん状に形成してもよい。また、凸部スリット28は、連続して形成されてもよく、断続的に形成されていてもよい。
The shape of the convex slit 28 is not limited to a straight line, but may be a wave shape, a rectangular wave shape, a zigzag shape, or the like. Further, the convex slit 28 may be formed in the protruding direction of the fitting convex portion 26, or may be formed in the direction of orbiting the outer peripheral surface. Further, the convex slit 28 may be formed in a spiral shape on the outer peripheral surface of the fitting convex portion 26. Further, the convex slits 28 may be formed continuously or intermittently.
凸部スリット28を形成する向きは、特に制限は無いが、接着剤19が供給される下側ケース4と上側ケース5との突き合わせ面に向けて形成することが好ましい。例えば、図12に示す構成では、凸部スリット28は、下側ケース4の側壁に沿った向きに形成されることが好ましい。これにより、接着剤19の余剰分を接着剤19が供給される下側ケース4と上側ケース5との突き合わせ面に流動させることができ、接着に供することができる。また、上述した嵌合凹部25と連続する凹部スリット27が設けられている場合は、凹部スリット27と同じ向きに形成することが好ましい。
The direction in which the convex slit 28 is formed is not particularly limited, but it is preferably formed toward the abutting surface between the lower case 4 and the upper case 5 to which the adhesive 19 is supplied. For example, in the configuration shown in FIG. 12, the convex slit 28 is preferably formed in a direction along the side wall of the lower case 4. As a result, the surplus of the adhesive 19 can be flowed to the abutting surface between the lower case 4 and the upper case 5 to which the adhesive 19 is supplied, and can be used for adhesion. Further, when the recess slit 27 continuous with the fitting recess 25 described above is provided, it is preferable to form the recess slit 27 in the same direction as the recess slit 27.
また、凸部スリット28は、嵌合凸部28の基部から形成されることが好ましい。嵌合凸部26の基部は下側ケース4と上側ケース5との突き合わせ面となることから、接着剤19の余剰分を積極的に吸収することで密着を促すことができる。また、凸部スリット28は、嵌合凸部28の頂部にわたって形成することが好ましい。これにより、嵌合凹部25内に滞留する接着剤19の余剰分を凸部スリット28に導入させやすくするとともに、接着剤19の吸収量を増加させることができる。
Further, the convex slit 28 is preferably formed from the base of the fitting convex 28. Since the base of the fitting convex portion 26 is the abutting surface between the lower case 4 and the upper case 5, the adhesion can be promoted by positively absorbing the excess of the adhesive 19. Further, the convex slit 28 is preferably formed over the top of the fitting convex 28. As a result, the excess amount of the adhesive 19 staying in the fitting recess 25 can be easily introduced into the convex slit 28, and the absorption amount of the adhesive 19 can be increased.
また、凸部スリット28は、一つの嵌合凸部26に複数形成してもよい。これにより、より多くの接着剤19の余剰分を凸部スリット28内に吸収させることができる。また、凸部スリット28は、図12に示すように、下側ケース4のコーナー部に形成された嵌合凸部26の、隣り合う2つの側壁に沿った向きに形成されることが好ましい。これにより、接着剤19の余剰分を接着剤19が供給される下側ケース4と上側ケース5との突き合わせ面に流動させることができ、接着に供することができる。また、上述した嵌合凹部25と連続する凹部スリット27が設けられている場合は、凹部スリット27と同じ向きに形成することが好ましい。
Further, a plurality of convex slits 28 may be formed in one fitting convex portion 26. As a result, a larger amount of excess adhesive 19 can be absorbed into the convex slit 28. Further, as shown in FIG. 12, the convex slit 28 is preferably formed in a direction along two adjacent side walls of the fitting convex portion 26 formed at the corner portion of the lower case 4. As a result, the surplus of the adhesive 19 can be flowed to the abutting surface between the lower case 4 and the upper case 5 to which the adhesive 19 is supplied, and can be used for adhesion. Further, when the recess slit 27 continuous with the fitting recess 25 described above is provided, it is preferable to form the recess slit 27 in the same direction as the recess slit 27.
また、図14、図15に示すように、凸部スリット28は、平面視において、嵌合凸部26の周面から中心方向にわたって漸次幅が小さくなるテーパ状に形成してもよい。これにより、毛管現象を作用させ、接着剤19を凸部スリット28内に流入することができ、また流入量を増加させることができる。
Further, as shown in FIGS. 14 and 15, the convex slit 28 may be formed in a tapered shape in which the width gradually decreases from the peripheral surface of the fitting convex portion 26 toward the center in a plan view. As a result, the capillary phenomenon can be allowed to flow, and the adhesive 19 can flow into the convex slit 28, and the inflow amount can be increased.
また、凸部スリット28は、断面視において、嵌合凸部26の頂部から基部にかけて漸次拡幅するテーパ状に形成してもよい。これにより、毛管現象を作用させ、下側ケース4と上側ケース5との突き合わせ面に滞留する接着剤19の余剰分を凸部スリット28内に流入することができ、また流入量を増加させることができる。
Further, the convex slit 28 may be formed in a tapered shape that gradually widens from the top to the base of the fitting convex portion 26 in a cross-sectional view. As a result, the capillary phenomenon is allowed to act, and the excess adhesive 19 staying on the abutting surface between the lower case 4 and the upper case 5 can flow into the convex slit 28, and the inflow amount is increased. Can be done.
なお、図12、図14に示す保護素子1では、下側ケース4に形成した嵌合凸部26に凸部スリット28を設け、上側ケース5に形成した嵌合凹部25と嵌合させたが、上側ケース5に嵌合凹部25と連続する凹部スリット27を形成してもよい。嵌合凸部26と連続する凸部スリット28とともに、嵌合凹部25と連続する凹部スリット27を形成することで、より多くの接着剤19の余剰分を吸収し、接着剤19の余剰分による下側ケース4と上側ケース5との密着の阻害を防止できる。
In the protective element 1 shown in FIGS. 12 and 14, a convex slit 28 is provided in the fitting convex portion 26 formed in the lower case 4, and is fitted with the fitting concave portion 25 formed in the upper case 5. A recess slit 27 continuous with the fitting recess 25 may be formed in the upper case 5. By forming the recessed slit 27 continuous with the fitting recess 25 together with the convex slit 28 continuous with the fitting convex portion 26, a larger excess of the adhesive 19 is absorbed, and the surplus of the adhesive 19 is used. It is possible to prevent the lower case 4 and the upper case 5 from being in close contact with each other.
[変形例2]
上述した実施の形態では、上側ケース5に嵌合凹部25及び凹部スリット27を形成した構成、及び下側ケース4に嵌合凸部26及び凸部スリット28を形成した構成について説明したが、本技術が適用された保護素子は、図16、図17に示すように上側ケース51に上述した嵌合凸部26を形成し、下側ケース52に上述した嵌合凹部25及び凹部スリット27を形成してもよい。なお、以下の説明において、上述した保護素子1と同一の構成については、同一の符号を付してその詳細を省略する。 [Modification 2]
In the above-described embodiment, the configuration in which thefitting recess 25 and the recess slit 27 are formed in the upper case 5 and the configuration in which the fitting convex portion 26 and the convex slit 28 are formed in the lower case 4 have been described. As shown in FIGS. 16 and 17, the protective element to which the technique is applied forms the above-mentioned fitting convex portion 26 in the upper case 51, and forms the above-mentioned fitting recess 25 and recess slit 27 in the lower case 52. You may. In the following description, the same configuration as that of the protection element 1 described above will be designated by the same reference numerals and details thereof will be omitted.
上述した実施の形態では、上側ケース5に嵌合凹部25及び凹部スリット27を形成した構成、及び下側ケース4に嵌合凸部26及び凸部スリット28を形成した構成について説明したが、本技術が適用された保護素子は、図16、図17に示すように上側ケース51に上述した嵌合凸部26を形成し、下側ケース52に上述した嵌合凹部25及び凹部スリット27を形成してもよい。なお、以下の説明において、上述した保護素子1と同一の構成については、同一の符号を付してその詳細を省略する。 [Modification 2]
In the above-described embodiment, the configuration in which the
図18に、上側ケース51と下側ケース52とを接合して保護素子50を形成する工程を示す。図16は、嵌合凸部26が設けられた上側ケース51を示す図であり、(A)は底面図、(B)は(A)のL-L’断面図である。図17は、嵌合凹部25が設けられた下側ケース52を示す図であり、(A)は平面図、(B)は(A)のM-M’断面図である。保護素子50は、図17に示すように、下側ケース52に、上述した嵌合凹部25及び凹部スリット27が形成されている。
FIG. 18 shows a process of joining the upper case 51 and the lower case 52 to form the protective element 50. 16A and 16B are views showing an upper case 51 provided with a fitting convex portion 26, where FIG. 16A is a bottom view and FIG. 16B is a sectional view taken along line L-L'of FIG. 16A. 17A and 17B are views showing a lower case 52 provided with a fitting recess 25, where FIG. 17A is a plan view and FIG. 17B is a sectional view taken along line MM'of FIG. 17A. As shown in FIG. 17, the protective element 50 has the above-mentioned fitting recess 25 and recess slit 27 formed in the lower case 52.
下側ケース52と上側ケース51との接合工程は、上述した保護素子1と同様である。すなわち、図19(A)(B)に示すように、下側ケース52の上側ケース51との突き合わせ面に沿って接着剤19を供給する。このとき、接着剤19は、下側ケース52の各コーナー部に形成されている嵌合凹部25及び凹部スリット27上に供給される。そして、図18に示すように、上側ケース51に形成された嵌合凸部26が嵌合凹部25内に挿入され、下側ケース52と上側ケース51とが付き合わされると、嵌合凹部25内に充填された接着剤19の余剰分が凹部スリット27に流出し、嵌合凹部25内に滞留させることを防ぐ。これにより、嵌合凹部25内に滞留する接着剤19の余剰分によって上側ケース51及び下側ケース52の密着が阻害されることを防止することができる。また、凹部スリット27を設けることにより接着剤19との接着面積が増加され、接着強度の向上を図ることができる。
The joining process between the lower case 52 and the upper case 51 is the same as that of the protective element 1 described above. That is, as shown in FIGS. 19A and 19B, the adhesive 19 is supplied along the abutting surface of the lower case 52 with the upper case 51. At this time, the adhesive 19 is supplied onto the fitting recess 25 and the recess slit 27 formed in each corner of the lower case 52. Then, as shown in FIG. 18, when the fitting convex portion 26 formed in the upper case 51 is inserted into the fitting recess 25 and the lower case 52 and the upper case 51 are brought into contact with each other, the fitting recess 25 is formed. It is possible to prevent the excess adhesive 19 filled therein from flowing out to the recess slit 27 and staying in the fitting recess 25. As a result, it is possible to prevent the adhesion between the upper case 51 and the lower case 52 from being hindered by the excess adhesive 19 staying in the fitting recess 25. Further, by providing the recessed slit 27, the adhesive area with the adhesive 19 is increased, and the adhesive strength can be improved.
[変形例3]
また、保護素子50においても、下側ケース52に形成された嵌合凹部25と連続する凹部スリット27に替えて、又は嵌合凹部25と連続する凹部スリット27とともに、上側ケース51に形成された嵌合凸部26に、上述した凸部スリット28を形成してもよい。これら凹部スリット27及び凸部スリット28の構成については保護素子1において詳述しているため、詳細は省略する。なお、保護素子50においても、保護素子1と同様に、凹部スリット27及び凸部スリット28の形態を種々変更してもよいことはもちろんである。 [Modification 3]
Further, theprotective element 50 is also formed in the upper case 51 in place of the recess slit 27 continuous with the fitting recess 25 formed in the lower case 52, or together with the recess slit 27 continuous with the fitting recess 25. The above-mentioned convex slit 28 may be formed in the fitting convex portion 26. Since the configurations of the concave slit 27 and the convex slit 28 are described in detail in the protective element 1, the details will be omitted. It goes without saying that the protective element 50 may also have various forms of the concave slit 27 and the convex slit 28, as in the protective element 1.
また、保護素子50においても、下側ケース52に形成された嵌合凹部25と連続する凹部スリット27に替えて、又は嵌合凹部25と連続する凹部スリット27とともに、上側ケース51に形成された嵌合凸部26に、上述した凸部スリット28を形成してもよい。これら凹部スリット27及び凸部スリット28の構成については保護素子1において詳述しているため、詳細は省略する。なお、保護素子50においても、保護素子1と同様に、凹部スリット27及び凸部スリット28の形態を種々変更してもよいことはもちろんである。 [Modification 3]
Further, the
[可溶導体]
次いで、可溶導体3について説明する。可溶導体3は、第1及び第2の外部接続端子7,8間にわたって実装され、発熱体10の通電による発熱、又は定格を超える電流が通電することによって自己発熱(ジュール熱)により溶断し、第1の外部接続端子7と第2の外部接続端子8との間の電流経路を遮断するものである。 [Soluble conductor]
Next, thesoluble conductor 3 will be described. The soluble conductor 3 is mounted between the first and second external connection terminals 7 and 8, and is fused by self-heating (Joule heat) when the heating element 10 is energized or a current exceeding the rating is energized. , The current path between the first external connection terminal 7 and the second external connection terminal 8 is cut off.
次いで、可溶導体3について説明する。可溶導体3は、第1及び第2の外部接続端子7,8間にわたって実装され、発熱体10の通電による発熱、又は定格を超える電流が通電することによって自己発熱(ジュール熱)により溶断し、第1の外部接続端子7と第2の外部接続端子8との間の電流経路を遮断するものである。 [Soluble conductor]
Next, the
可溶導体3は、発熱体10の通電による発熱、又は過電流状態によって溶融する導電性の材料であればよく、例えば、SnAgCu系のPbフリーハンダのほか、BiPbSn合金、BiPb合金、BiSn合金、SnPb合金、PbIn合金、ZnAl合金、InSn合金、PbAgSn合金等を用いることができる。
The soluble conductor 3 may be a conductive material that melts due to heat generated by the energization of the heating element 10 or in an overcurrent state. For example, in addition to SnAgCu-based Pb-free solder, BiPbSn alloy, BiPb alloy, BiSn alloy, etc. SnPb alloy, PbIn alloy, ZnAl alloy, InSn alloy, PbAgSn alloy and the like can be used.
また、可溶導体3は、高融点金属と、低融点金属とを含有する構造体であってもよい。例えば、図20に示すように、可溶導体3は、内層と外層とからなる積層構造体であり、内層として低融点金属層31、低融点金属層31に積層された外層として高融点金属層32を有する。可溶導体3は、第1、第2の外部接続端子7,8及び表面電極11上にソルダーペースト等の接合材料20を介して接続される。
Further, the soluble conductor 3 may be a structure containing a high melting point metal and a low melting point metal. For example, as shown in FIG. 20, the soluble conductor 3 is a laminated structure composed of an inner layer and an outer layer, and is a low melting point metal layer 31 as an inner layer and a high melting point metal layer as an outer layer laminated on the low melting point metal layer 31. It has 32. The soluble conductor 3 is connected to the first and second external connection terminals 7 and 8 and the surface electrode 11 via a bonding material 20 such as solder paste.
低融点金属層31は、好ましくは、ハンダ又はSnを主成分とする金属であり、「Pbフリーハンダ」と一般的に呼ばれる材料である。低融点金属層31の融点は、必ずしもリフロー炉の温度よりも高い必要はなく、200℃程度で溶融してもよい。高融点金属層32は、低融点金属層31の表面に積層された金属層であり、例えば、Ag若しくはCu又はこれらのうちのいずれかを主成分とする金属であり、第1、第2の外部接続端子7,8及び表面電極11と可溶導体3との接続をリフローによって行う場合においても溶融しない高い融点を有する。
The low melting point metal layer 31 is preferably a metal containing solder or Sn as a main component, and is a material generally called "Pb-free solder". The melting point of the low melting point metal layer 31 does not necessarily have to be higher than the temperature of the reflow furnace, and may be melted at about 200 ° C. The high melting point metal layer 32 is a metal layer laminated on the surface of the low melting point metal layer 31, and is, for example, a metal containing Ag, Cu, or any of these as a main component, and is the first and second. It has a high melting point that does not melt even when the external connection terminals 7 and 8 and the surface electrodes 11 are connected to the soluble conductor 3 by reflow.
このような可溶導体3は、低融点金属箔に、高融点金属層をメッキ技術を用いて成膜することによって形成することができ、あるいは、他の周知の積層技術、膜形成技術を用いて形成することもできる。このとき、可溶導体3は、低融点金属層31の全面が高融点金属層32によって被覆された構造としてもよく、相対向する一対の側面を除き被覆された構造であってもよい。なお、可溶導体3は、高融点金属層32を内層とし、低融点金属層31を外層として構成してもよく、また低融点金属層と高融点金属層とが交互に積層された3層以上の多層構造とする、外層の一部に開口部を設けて内層の一部を露出させるなど、様々な構成によって形成することができる。
Such a soluble conductor 3 can be formed by forming a high melting point metal layer on a low melting point metal foil by using a plating technique, or using other well-known lamination techniques and film forming techniques. Can also be formed. At this time, the soluble conductor 3 may have a structure in which the entire surface of the low melting point metal layer 31 is covered with the high melting point metal layer 32, or may be a structure in which the entire surface is covered except for a pair of opposite side surfaces. The soluble conductor 3 may be composed of the high melting point metal layer 32 as an inner layer and the low melting point metal layer 31 as an outer layer, or three layers in which low melting point metal layers and high melting point metal layers are alternately laminated. It can be formed by various configurations such as the above-mentioned multi-layer structure, an opening is provided in a part of the outer layer to expose a part of the inner layer.
可溶導体3は、内層となる低融点金属層31に、外層として高融点金属層32を積層することによって、リフロー温度が低融点金属層31の溶融温度を超えた場合であっても、可溶導体3として形状を維持することができ、溶断するに至らない。したがって、保護素子1は、第1、第2の外部接続端子7,8及び表面電極11と可溶導体3との接続をリフローによって効率よく行うことができる。また、保護素子1は、リフローによっても可溶導体3の変形に伴って局所的に抵抗値が高く又は低くなる等により所定の温度で溶断しない、あるいは所定の温度未満で溶断する等の溶断特性の変動を防止することができる。
The soluble conductor 3 can be used even when the reflow temperature exceeds the melting temperature of the low melting point metal layer 31 by laminating the high melting point metal layer 32 as the outer layer on the low melting point metal layer 31 which is the inner layer. The shape can be maintained as the molten conductor 3, and the molten conductor 3 does not melt. Therefore, the protective element 1 can efficiently connect the first and second external connection terminals 7 and 8 and the surface electrode 11 to the soluble conductor 3 by reflow. Further, the protective element 1 does not melt at a predetermined temperature due to a local increase or decrease in resistance value due to deformation of the soluble conductor 3 due to reflow, or has a melting characteristic such as melting at a temperature lower than a predetermined temperature. Fluctuation of can be prevented.
また、可溶導体3は、所定の定格電流が流れている間は、自己発熱によっても溶断することがない。そして、定格よりも高い値の電流が流れると、自己発熱によって溶融し、第1、第2の外部接続端子7,8間の電流経路を遮断する。また、可溶導体3は、発熱体10が通電され発熱することにより溶融し、第1、第2の外部接続端子7,8間の電流経路を遮断する。
Further, the soluble conductor 3 does not melt due to self-heating while a predetermined rated current is flowing. Then, when a current having a value higher than the rating flows, it melts due to self-heating and cuts off the current path between the first and second external connection terminals 7 and 8. Further, the soluble conductor 3 melts when the heating element 10 is energized and generates heat, and cuts off the current path between the first and second external connection terminals 7 and 8.
このとき、可溶導体3は、溶融した低融点金属層31が高融点金属層32を浸食(ハンダ食われ)することにより、高融点金属層32が溶融温度よりも低い温度で溶解する。したがって、可溶導体3は、低融点金属層31による高融点金属層32の浸食作用を利用して短時間で溶断することができる。また、可溶導体3の溶融導体3aは、表面電極11及び第1、第2の外部接続端子7,8の物理的な引き込み作用により分断されることから、速やかに、かつ確実に、第1、第2の外部接続端子7,8間の電流経路を遮断することができる(図4)。
At this time, in the soluble conductor 3, the melted low melting point metal layer 31 erodes (solders) the high melting point metal layer 32, so that the high melting point metal layer 32 melts at a temperature lower than the melting temperature. Therefore, the soluble conductor 3 can be melted in a short time by utilizing the erosion action of the high melting point metal layer 32 by the low melting point metal layer 31. Further, since the molten conductor 3a of the soluble conductor 3 is separated by the physical pulling action of the surface electrode 11 and the first and second external connection terminals 7 and 8, the first is promptly and surely. , The current path between the second external connection terminals 7 and 8 can be cut off (FIG. 4).
また、可溶導体3は、低融点金属層31の体積を、高融点金属層32の体積よりも多く形成することが好ましい。可溶導体3は、過電流による自己発熱又は発熱体10の発熱によって加熱され、低融点金属が溶融することにより高融点金属を溶食し、これにより速やかに溶融、溶断することができる。したがって、可溶導体3は、低融点金属層31の体積を高融点金属層32の体積よりも多く形成することにより、この溶食作用を促進し、速やかに第1、第2の外部接続端子7,8間を遮断することができる。
Further, it is preferable that the soluble conductor 3 forms a volume of the low melting point metal layer 31 larger than the volume of the high melting point metal layer 32. The soluble conductor 3 is heated by self-heating due to an overcurrent or heat generated by the heating element 10, and the low melting point metal is melted to erode the high melting point metal, whereby the soluble conductor 3 can be rapidly melted and melted. Therefore, the soluble conductor 3 promotes this erosion action by forming the volume of the low melting point metal layer 31 larger than the volume of the high melting point metal layer 32, and promptly causes the first and second external connection terminals. It is possible to cut off between 7 and 8.
また、可溶導体3は、内層となる低融点金属層31に高融点金属層32が積層されて構成されているため、溶断温度を従来の高融点金属からなるチップヒューズ等よりも大幅に低減することができる。したがって、可溶導体3は、同一サイズのチップヒューズ等に比して、断面積を大きくでき電流定格を大幅に向上させることができる。また、同じ電流定格をもつ従来のチップヒューズよりも小型化、薄型化を図ることができ、速溶断性に優れる。
Further, since the soluble conductor 3 is formed by laminating the refractory metal layer 32 on the low melting point metal layer 31 which is the inner layer, the fusing temperature is significantly reduced as compared with the conventional chip fuse made of the refractory metal. can do. Therefore, the soluble conductor 3 can have a large cross-sectional area and can greatly improve the current rating as compared with a chip fuse or the like having the same size. In addition, it can be made smaller and thinner than conventional chip fuses having the same current rating, and is excellent in quick-melting property.
また、可溶導体3は、保護素子1が組み込まれた電気系統に異常に高い電圧が瞬間的に印加されるサージへの耐性(耐パルス性)を向上することができる。すなわち、可溶導体3は、例えば100Aの電流が数msec流れたような場合にまで溶断してはならない。この点、極短時間に流れる大電流は導体の表層を流れることから(表皮効果)、可溶導体3は、外層として抵抗値の低いAgメッキ等の高融点金属層32が設けられているため、サージによって印加された電流を流しやすく、自己発熱による溶断を防止することができる。したがって、可溶導体3は、従来のハンダ合金からなるヒューズに比して、大幅にサージに対する耐性を向上させることができる。
Further, the soluble conductor 3 can improve the resistance (pulse resistance) to a surge in which an abnormally high voltage is momentarily applied to the electric system in which the protection element 1 is incorporated. That is, the soluble conductor 3 must not be blown until, for example, a current of 100 A flows for several msec. In this respect, since a large current flowing in an extremely short time flows through the surface layer of the conductor (skin effect), the soluble conductor 3 is provided with a refractory metal layer 32 such as Ag plating having a low resistance value as an outer layer. , The current applied by the surge can easily flow, and fusing due to self-heating can be prevented. Therefore, the soluble conductor 3 can significantly improve the resistance to surges as compared with the conventional fuse made of a solder alloy.
なお、可溶導体3は、酸化防止、及び溶断時の濡れ性の向上等のため、フラックス(図示せず)を塗布してもよい。
The soluble conductor 3 may be coated with a flux (not shown) in order to prevent oxidation and improve the wettability at the time of fusing.
[回路構成例]
このような保護素子1は、図21に示すように、例えばリチウムイオン二次電池のバッテリパック33内の回路に組み込まれて用いられる。バッテリパック33は、例えば、合計4個のリチウムイオン二次電池のバッテリセル34a~34dからなるバッテリスタック35を有する。 [Circuit configuration example]
As shown in FIG. 21, such aprotective element 1 is incorporated and used in, for example, a circuit in a battery pack 33 of a lithium ion secondary battery. The battery pack 33 has, for example, a battery stack 35 composed of battery cells 34a to 34d of a total of four lithium ion secondary batteries.
このような保護素子1は、図21に示すように、例えばリチウムイオン二次電池のバッテリパック33内の回路に組み込まれて用いられる。バッテリパック33は、例えば、合計4個のリチウムイオン二次電池のバッテリセル34a~34dからなるバッテリスタック35を有する。 [Circuit configuration example]
As shown in FIG. 21, such a
バッテリパック33は、バッテリスタック35と、バッテリスタック35の充放電を制御する充放電制御回路36と、バッテリスタック35の異常時に充放電経路を遮断する本発明が適用された保護素子1と、各バッテリセル34a~34dの電圧を検出する検出回路37と、検出回路37の検出結果に応じて保護素子1の動作を制御するスイッチ素子となる電流制御素子38とを備える。
The battery pack 33 includes a battery stack 35, a charge / discharge control circuit 36 that controls charging / discharging of the battery stack 35, and a protective element 1 to which the present invention is applied that cuts off the charging / discharging path when the battery stack 35 is abnormal. It includes a detection circuit 37 that detects the voltage of the battery cells 34a to 34d, and a current control element 38 that serves as a switch element that controls the operation of the protection element 1 according to the detection result of the detection circuit 37.
バッテリスタック35は、過充電及び過放電状態から保護するための制御を要するバッテリセル34a~34dが直列接続されたものであり、バッテリパック33の正極端子33a、負極端子33bを介して、着脱可能に充電装置29に接続され、充電装置29からの充電電圧が印加される。充電装置29により充電されたバッテリパック33は、正極端子33a、負極端子33bをバッテリで動作する電子機器に接続することによって、この電子機器を動作させることができる。
The battery stack 35 is formed by connecting battery cells 34a to 34d, which require control for protection from overcharge and overdischarge states, in series, and is detachable via the positive electrode terminals 33a and the negative electrode terminals 33b of the battery pack 33. Is connected to the charging device 29, and the charging voltage from the charging device 29 is applied. The battery pack 33 charged by the charging device 29 can operate the electronic device by connecting the positive electrode terminal 33a and the negative electrode terminal 33b to the electronic device operated by the battery.
充放電制御回路36は、バッテリスタック35と充電装置29との間の電流経路に直列接続された2つの電流制御素子39a,39bと、これらの電流制御素子39a,39bの動作を制御する制御部40とを備える。電流制御素子39a,39bは、たとえば電界効果トランジスタ(以下、FETという。)により構成され、制御部40によりゲート電圧を制御することによって、バッテリスタック35の電流経路の充電方向及び/又は放電方向への導通と遮断とを制御する。制御部40は、充電装置29から電力供給を受けて動作し、検出回路37による検出結果に応じて、バッテリスタック35が過放電又は過充電であるとき、電流経路を遮断するように、電流制御素子39a,39bの動作を制御する。
The charge / discharge control circuit 36 is a control unit that controls the operation of two current control elements 39a and 39b connected in series to the current path between the battery stack 35 and the charging device 29, and the operations of these current control elements 39a and 39b. It includes 40. The current control elements 39a and 39b are composed of, for example, field effect transistors (hereinafter referred to as FETs), and by controlling the gate voltage by the control unit 40, the current path of the battery stack 35 moves in the charging direction and / or the discharging direction. Controls the continuity and interruption of the. The control unit 40 operates by receiving power supplied from the charging device 29, and controls the current so as to cut off the current path when the battery stack 35 is over-discharged or over-charged according to the detection result by the detection circuit 37. It controls the operation of the elements 39a and 39b.
保護素子1は、例えば、バッテリスタック35と充放電制御回路36との間の充放電電流経路上に接続され、その動作が電流制御素子38によって制御される。
The protection element 1 is connected on, for example, the charge / discharge current path between the battery stack 35 and the charge / discharge control circuit 36, and its operation is controlled by the current control element 38.
検出回路37は、各バッテリセル34a~34dと接続され、各バッテリセル34a~34dの電圧値を検出して、各電圧値を充放電制御回路36の制御部40に供給する。また、検出回路37は、バッテリセル34a~34dのいずれか1つが過充電電圧又は過放電電圧になったときに電流制御素子38を制御する制御信号を出力する。
The detection circuit 37 is connected to the battery cells 34a to 34d, detects the voltage values of the battery cells 34a to 34d, and supplies each voltage value to the control unit 40 of the charge / discharge control circuit 36. Further, the detection circuit 37 outputs a control signal for controlling the current control element 38 when any one of the battery cells 34a to 34d becomes an overcharge voltage or an overdischarge voltage.
電流制御素子38は、たとえばFETにより構成され、検出回路37から出力される検出信号によって、バッテリセル34a~34dの電圧値が所定の過放電又は過充電状態を超える電圧になったとき、保護素子1を動作させて、バッテリスタック35の充放電電流経路を電流制御素子39a,39bのスイッチ動作によらず遮断するように制御する。
The current control element 38 is composed of, for example, an FET, and is a protection element when the voltage value of the battery cells 34a to 34d exceeds a predetermined over-discharged or over-charged state by the detection signal output from the detection circuit 37. 1 is operated to control the charge / discharge current path of the battery stack 35 so as to be cut off regardless of the switch operation of the current control elements 39a and 39b.
以上のような構成からなるバッテリパック33に用いられる、本発明が適用された保護素子1は、図22に示すような回路構成を有する。すなわち、保護素子1は、第1の外部接続端子7がバッテリスタック35側と接続され、第2の外部接続端子8が正極端子33a側と接続され、これにより可溶導体3がバッテリスタック35の充放電経路上に直列に接続される。また、保護素子1は、発熱体10が発熱体給電電極16及び第3の外部接続端子17を介して電流制御素子38と接続されるとともに、発熱体10がバッテリスタック35の開放端と接続される。これにより、発熱体10は、一端を表面電極11を介して可溶導体3及びバッテリスタック35の一方の開放端と接続され、他端を第3の外部接続端子17を介して電流制御素子38及びバッテリスタック35の他方の開放端と接続される。これにより、電流制御素子38によって通電が制御される発熱体10への給電経路が形成される。
The protective element 1 to which the present invention is applied, which is used in the battery pack 33 having the above configuration, has the circuit configuration as shown in FIG. That is, in the protection element 1, the first external connection terminal 7 is connected to the battery stack 35 side, the second external connection terminal 8 is connected to the positive electrode terminal 33a side, whereby the soluble conductor 3 is connected to the battery stack 35. It is connected in series on the charge / discharge path. Further, in the protection element 1, the heating element 10 is connected to the current control element 38 via the heating element feeding electrode 16 and the third external connection terminal 17, and the heating element 10 is connected to the open end of the battery stack 35. To. As a result, one end of the heating element 10 is connected to one open end of the soluble conductor 3 and the battery stack 35 via the surface electrode 11, and the other end is connected to the current control element 38 via the third external connection terminal 17. And the other open end of the battery stack 35. As a result, a feeding path to the heating element 10 whose energization is controlled by the current control element 38 is formed.
[保護素子の動作]
検出回路37がバッテリセル34a~34dのいずれかの異常電圧を検出すると、電流制御素子38へ遮断信号を出力する。すると、電流制御素子38は、発熱体10に通電するよう電流を制御する。保護素子1は、バッテリスタック35から、発熱体10に電流が流れ、これにより発熱体10が発熱を開始する。保護素子1は、発熱体10の発熱により可溶導体3が溶断し、バッテリスタック35の充放電経路を遮断する。また、保護素子1は、可溶導体3を高融点金属と低融点金属とを含有させて形成することにより、高融点金属の溶断前に低融点金属が溶融し、溶融した低融点金属による高融点金属の溶食作用を利用して短時間で可溶導体3を溶解させることができる。 [Operation of protective element]
When thedetection circuit 37 detects an abnormal voltage of any of the battery cells 34a to 34d, it outputs a cutoff signal to the current control element 38. Then, the current control element 38 controls the current so as to energize the heating element 10. In the protection element 1, a current flows from the battery stack 35 to the heating element 10, whereby the heating element 10 starts to generate heat. In the protective element 1, the soluble conductor 3 is melted by the heat generated by the heating element 10, and the charge / discharge path of the battery stack 35 is blocked. Further, the protective element 1 is formed by containing the high melting point metal and the low melting point metal in the soluble conductor 3, so that the low melting point metal is melted before the melting of the high melting point metal, and the high melting point due to the melted low melting point metal. The soluble conductor 3 can be dissolved in a short time by utilizing the erosion action of the melting metal.
検出回路37がバッテリセル34a~34dのいずれかの異常電圧を検出すると、電流制御素子38へ遮断信号を出力する。すると、電流制御素子38は、発熱体10に通電するよう電流を制御する。保護素子1は、バッテリスタック35から、発熱体10に電流が流れ、これにより発熱体10が発熱を開始する。保護素子1は、発熱体10の発熱により可溶導体3が溶断し、バッテリスタック35の充放電経路を遮断する。また、保護素子1は、可溶導体3を高融点金属と低融点金属とを含有させて形成することにより、高融点金属の溶断前に低融点金属が溶融し、溶融した低融点金属による高融点金属の溶食作用を利用して短時間で可溶導体3を溶解させることができる。 [Operation of protective element]
When the
保護素子1は、可溶導体3が溶断することにより、発熱体10への給電経路も遮断されるため、発熱体10の発熱が停止される。
In the protective element 1, the heat generation of the heating element 10 is stopped because the feeding path to the heating element 10 is also blocked by the melting of the soluble conductor 3.
なお、保護素子1は、バッテリパック33に定格を超える過電流が通電された場合にも、可溶導体3が自己発熱により溶融し、バッテリパック33の充放電経路を遮断することができる。
Note that the protective element 1 can cut off the charge / discharge path of the battery pack 33 by melting the soluble conductor 3 by self-heating even when an overcurrent exceeding the rating is applied to the battery pack 33.
ここで、保護素子1は、筐体6の下側ケース4と上側ケース5とが密着され、所望の接着強度を備えている。したがって、保護素子1は、可溶導体3の溶断時に上側ケース5が外れることを防止することができる。また、保護素子1は、筐体6の下側ケース4と上側ケース5とが密着されているため、所定の筐体の高さ条件を満たすことができる。
Here, the protective element 1 has the lower case 4 and the upper case 5 of the housing 6 in close contact with each other and has a desired adhesive strength. Therefore, the protective element 1 can prevent the upper case 5 from coming off when the soluble conductor 3 is blown. Further, since the lower case 4 and the upper case 5 of the housing 6 are in close contact with each other, the protective element 1 can satisfy a predetermined height condition of the housing.
このように、保護素子1は、発熱体10の通電による発熱、あるいは過電流による可溶導体3の自己発熱によって可溶導体3が溶断する。このとき、保護素子1は、可溶導体3が第1、第2の外部接続端子7,8や表面電極11へリフロー実装される等の高温環境下に曝された場合にも、低融点金属が高融点金属によって被覆された構造を有することから、可溶導体3の変形が抑制されている。したがって、可溶導体3の変形による抵抗値の変動等に起因する溶断特性の変動が防止され、所定の過電流や発熱体10の発熱によって速やかに溶断することができる。
As described above, in the protective element 1, the soluble conductor 3 is melted by the heat generated by the energization of the heating element 10 or the self-heating of the soluble conductor 3 due to the overcurrent. At this time, the protective element 1 is a low melting point metal even when the soluble conductor 3 is exposed to a high temperature environment such as being reflow-mounted on the first and second external connection terminals 7 and 8 and the surface electrode 11. Has a structure coated with a refractory metal, so that deformation of the soluble conductor 3 is suppressed. Therefore, the fluctuation of the fusing characteristics due to the fluctuation of the resistance value due to the deformation of the soluble conductor 3 is prevented, and the fusing can be quickly performed by the predetermined overcurrent or the heat generated by the heating element 10.
本発明に係る保護素子1は、リチウムイオン二次電池のバッテリパックに用いる場合に限らず、電気信号による電流経路の遮断を必要とする様々な用途にももちろん応用可能である。
The protective element 1 according to the present invention is of course applicable not only to the case of being used in a battery pack of a lithium ion secondary battery but also to various applications requiring interruption of a current path by an electric signal.
[変形例4]
次いで、本技術が適用された保護素子の他の変形例について説明する。なお、以下の説明において、上述した保護素子1,50と同一の構成については同一の符号を付してその詳細を省略することがある。変形例に係る保護素子60は、図23に示すように、可溶導体3を複数の溶断部材18に挟持させてもよい。図23に示す保護素子60は、溶断部材18が、可溶導体3の一方の面及び他方の面にそれぞれ配設されている。図24は、保護素子60の回路図である。可溶導体3の表面及び裏面に配設された各溶断部材18は、それぞれ発熱体10の一端が、各絶縁基板2に形成された発熱体電極15及び表面電極11を介して可溶導体3と接続され、発熱体10の他端が各絶縁基板2に形成された発熱体給電電極16及び第3の外部接続端子17を介して発熱体10を発熱させるための電源に接続される。 [Modification example 4]
Next, another modification of the protective element to which the present technology is applied will be described. In the following description, the same components as those of the protection elements 1 and 50 described above may be designated by the same reference numerals and the details thereof may be omitted. As shown in FIG. 23, the protective element 60 according to the modified example may have the soluble conductor 3 sandwiched between a plurality of fusing members 18. In the protection element 60 shown in FIG. 23, the fusing member 18 is arranged on one surface and the other surface of the soluble conductor 3, respectively. FIG. 24 is a circuit diagram of the protection element 60. Each of the fusing members 18 arranged on the front surface and the back surface of the soluble conductor 3 has one end of the heating element 10 via the heating element electrode 15 and the surface electrode 11 formed on each insulating substrate 2. The other end of the heating element 10 is connected to a power source for heating the heating element 10 via the heating element feeding electrode 16 and the third external connection terminal 17 formed on each insulating substrate 2.
次いで、本技術が適用された保護素子の他の変形例について説明する。なお、以下の説明において、上述した保護素子1,50と同一の構成については同一の符号を付してその詳細を省略することがある。変形例に係る保護素子60は、図23に示すように、可溶導体3を複数の溶断部材18に挟持させてもよい。図23に示す保護素子60は、溶断部材18が、可溶導体3の一方の面及び他方の面にそれぞれ配設されている。図24は、保護素子60の回路図である。可溶導体3の表面及び裏面に配設された各溶断部材18は、それぞれ発熱体10の一端が、各絶縁基板2に形成された発熱体電極15及び表面電極11を介して可溶導体3と接続され、発熱体10の他端が各絶縁基板2に形成された発熱体給電電極16及び第3の外部接続端子17を介して発熱体10を発熱させるための電源に接続される。 [Modification example 4]
Next, another modification of the protective element to which the present technology is applied will be described. In the following description, the same components as those of the
また、図25に示すように、保護素子60は、発熱体10の発熱により可溶導体3を溶断する際には、可溶導体3の両面に接続された各溶断部材18,18の発熱体10が発熱し、可溶導体3の両面から加熱する。したがって、保護素子60は、大電流用途に対応するために可溶導体3の断面積を増大させた場合にも、速やかに可溶導体3を加熱し、溶断することができる。
Further, as shown in FIG. 25, when the protective element 60 melts the soluble conductor 3 by the heat generated by the heating element 10, the heating elements of the fusing members 18 and 18 connected to both sides of the soluble conductor 3 are generated. 10 generates heat and heats from both sides of the soluble conductor 3. Therefore, the protective element 60 can quickly heat the soluble conductor 3 and melt it even when the cross-sectional area of the soluble conductor 3 is increased in order to cope with a large current application.
保護素子60においても上述した保護素子1,50と同様の筐体6を有し、下側ケース4又は上側ケース5に、嵌合凹部25及び凹部スリット27、又は嵌合凸部26及び凸部スリット28が形成されている。
The protective element 60 also has a housing 6 similar to the protective elements 1 and 50 described above, and the lower case 4 or the upper case 5 has a fitting recess 25 and a recess slit 27, or a fitting convex portion 26 and a convex portion. The slit 28 is formed.
また、保護素子60は、可溶導体3の両面から溶融導体3aを、各溶断部材18の絶縁基板2に形成した各吸引孔12内に吸引する。したがって、保護素子60は、大電流用途に対応するために可溶導体3の断面積を増大させ溶融導体3aが多量に発生した場合にも、複数の溶断部材18によって吸引し、確実に可溶導体3を溶断させることができる。また、保護素子60は、複数の溶断部材18によって溶融導体3aを吸引することにより、より速やかに可溶導体3を溶断させることができる。
Further, the protective element 60 sucks the molten conductor 3a from both sides of the soluble conductor 3 into each suction hole 12 formed in the insulating substrate 2 of each fusing member 18. Therefore, the protective element 60 is attracted by the plurality of fusing members 18 even when the cross-sectional area of the soluble conductor 3 is increased and a large amount of the molten conductor 3a is generated in order to cope with a large current application, and the soluble conductor 3 is reliably soluble. The conductor 3 can be blown. Further, the protective element 60 can melt the soluble conductor 3 more quickly by sucking the molten conductor 3a by the plurality of fusing members 18.
保護素子60は、可溶導体3として、内層を構成する低融点金属を高融点金属で被覆する被覆構造を用いた場合にも、可溶導体3を速やかに溶断させることができる。すなわち、高融点金属で被覆された可溶導体3は、発熱体10が発熱した場合にも、外層の高融点金属が溶融する温度まで加熱するのに時間を要する。ここで、保護素子60は、複数の溶断部材18を備え、同時に各発熱体10を発熱させることで、外層の高融点金属を速やかに溶融温度まで加熱することができる。したがって、保護素子60によれば、外層を構成する高融点金属層の厚みを厚くすることができ、さらなる高定格化を図りつつ、速溶断特性を維持することができる。
Even when the protective element 60 uses a coating structure in which the low melting point metal constituting the inner layer is coated with the high melting point metal as the soluble conductor 3, the soluble conductor 3 can be rapidly melted. That is, the soluble conductor 3 coated with the refractory metal requires time to heat to a temperature at which the refractory metal in the outer layer melts even when the heating element 10 generates heat. Here, the protective element 60 includes a plurality of fusing members 18, and by simultaneously heating each heating element 10, the refractory metal in the outer layer can be quickly heated to the melting temperature. Therefore, according to the protective element 60, the thickness of the refractory metal layer constituting the outer layer can be increased, and the rapid fusing property can be maintained while further increasing the rating.
また、保護素子60は、図23に示すように、一対の溶断部材18,18が対向して可溶導体3に接続されることが好ましい。これにより、保護素子60は、一対の溶断部材18,18で、可溶導体3の同一箇所を両面側から同時に加熱するとともに溶融導体3aを吸引することができ、より速やかに可溶導体3を加熱、溶断することができる。
Further, as shown in FIG. 23, the protective element 60 preferably has a pair of fusing members 18 and 18 facing each other and connected to the soluble conductor 3. As a result, the protective element 60 can simultaneously heat the same portion of the soluble conductor 3 from both sides with the pair of fusing members 18 and 18 and suck the molten conductor 3a, so that the soluble conductor 3 can be sucked more quickly. Can be heated and melted.
また、保護素子60は、一対の溶断部材18,18の各絶縁基板2に形成された表面電極11が可溶導体3を介して互いに対向することが好ましい。これにより、一対の溶断部材18,18が対称に接続されることで、リフロー実装時等において、可溶導体3に対する負荷のかかり方がアンバランスとなることもなく、変形への耐性を向上させることができる。
Further, in the protective element 60, it is preferable that the surface electrodes 11 formed on the insulating substrates 2 of the pair of fusing members 18 and 18 face each other via the soluble conductor 3. As a result, the pair of fusing members 18 and 18 are connected symmetrically, so that the load applied to the soluble conductor 3 is not unbalanced at the time of reflow mounting and the like, and the resistance to deformation is improved. be able to.
なお、発熱体10は、絶縁基板2の表面2a、裏面2bに形成するいずれの場合においても、吸引孔12の両側に形成することが、表面電極11及び裏面電極14を加熱し、またより多くの溶融導体3aを凝集、吸引するうえで好ましい。
In any case where the heating element 10 is formed on the front surface 2a and the back surface 2b of the insulating substrate 2, forming the heating element 10 on both sides of the suction hole 12 heats the front surface electrode 11 and the back surface electrode 14, and more. It is preferable for aggregating and sucking the molten conductor 3a of the above.
1 保護素子、2 絶縁基板、2a 表面、2b 裏面、2c 第1の側縁部、2d 第2の側縁部、3 可溶導体、3a 溶融導体、4 下側ケース、5 上側ケース、6 筐体、7 第1の外部接続端子、8 第2の外部接続端子、9 絶縁層、10 発熱体、11 表面電極、12 吸引孔、13 導電層、14 裏面電極、15 発熱体電極、16 発熱体給電電極、17 第3の外部接続端子、18 溶断部材、20 接合材料、25 嵌合凹部、26 嵌合凸部、27 凸部スリット28 スリット、29 充電装置、31 低融点金属層、32 高融点金属層、33 バッテリパック、33a 正極端子、33b 負極端子、34 バッテリセル、35 バッテリスタック、36 充放電制御回路、37 検出回路、38 電流制御素子、39 電流制御素子、40 制御部、50 保護素子、60 保護素子、100 保護素子
1 protective element, 2 insulating substrate, 2a front surface, 2b back surface, 2c first side edge part, 2d second side edge part, 3 soluble conductor, 3a molten conductor, 4 lower case, 5 upper case, 6 housing Body, 7 1st external connection terminal, 8 2nd external connection terminal, 9 insulating layer, 10 heating element, 11 front electrode, 12 suction hole, 13 conductive layer, 14 back electrode, 15 heating element electrode, 16 heating element Power supply electrode, 17 third external connection terminal, 18 fusing member, 20 bonding material, 25 fitting recess, 26 fitting convex part, 27 convex part slit 28 slit, 29 charging device, 31 low melting point metal layer, 32 high melting point Metal layer, 33 battery pack, 33a positive electrode terminal, 33b negative electrode terminal, 34 battery cell, 35 battery stack, 36 charge / discharge control circuit, 37 detection circuit, 38 current control element, 39 current control element, 40 control unit, 50 protection element , 60 protective elements, 100 protective elements
Claims (18)
- 可溶導体と、
下側ケースと上側ケースを有し、上記上側ケース及び上記下側ケースが接着剤によって接合されることにより形成される筐体を備え、
上記上側ケース及び上記下側ケースは、いずれか一方に嵌合凹部が形成され、いずれか他方に上記嵌合凹部に嵌合する嵌合凸部が形成され、
上記嵌合凹部と連続するとともに上記上側ケース及び上記下側ケースの突き合わせ面に延在し、上記接着剤を流動させるスリットが形成されている保護素子。 Soluble conductor and
It has a lower case and an upper case, and includes a housing formed by joining the upper case and the lower case with an adhesive.
In the upper case and the lower case, a fitting recess is formed in one of them, and a fitting protrusion that fits in the fitting recess is formed in one of the other.
A protective element that is continuous with the fitting recess and extends to the abutting surface of the upper case and the lower case to form a slit through which the adhesive flows. - 上記スリットは、上記嵌合凹部から離間するにしたがい、上記嵌合凹部の底面側から上記嵌合凹部の上面側にかけて漸次浅くなるテーパ状に形成されている請求項1に記載の保護素子。 The protective element according to claim 1, wherein the slit is formed in a tapered shape that gradually becomes shallower from the bottom surface side of the fitting recess to the upper surface side of the fitting recess as the slit is separated from the fitting recess.
- 上記スリットは、上記嵌合凹部から離間するにしたがい、漸次拡幅する請求項1又は2に記載の保護素子。 The protective element according to claim 1 or 2, wherein the slit gradually widens as it is separated from the fitting recess.
- 1つの上記嵌合凹部から複数の上記スリットが延在されている請求項1又は2に記載の保護素子。 The protective element according to claim 1 or 2, wherein a plurality of the slits extend from one fitting recess.
- 上記嵌合凹部は、上記上側ケース又は上記下側ケースのコーナー部に形成され、
上記スリットが、1つの上記嵌合凹部から上記筐体の隣接する2つの側壁に沿って各々形成されている請求項4に記載の保護素子。 The fitting recess is formed in the corner portion of the upper case or the lower case.
The protective element according to claim 4, wherein the slit is formed from one of the fitting recesses along two adjacent side walls of the housing. - 上記嵌合凹部は、上記上側ケース又は上記下側ケースの全コーナー部に形成されている請求項1又は2に記載の保護素子。 The protective element according to claim 1 or 2, wherein the fitting recess is formed in all corners of the upper case or the lower case.
- 平面視において、上記スリットの幅は、上記嵌合凹部の直径以下である請求項1又は2に記載の保護素子。 The protective element according to claim 1 or 2, wherein the width of the slit is equal to or less than the diameter of the fitting recess in a plan view.
- 隣りあう嵌合凹部から延在するスリット同士が連続する請求項1又は2に記載の保護素子。 The protective element according to claim 1 or 2, wherein slits extending from adjacent fitting recesses are continuous.
- 可溶導体と、
下側ケースと上側ケースを有し、上記上側ケース及び上記下側ケースが接着剤によって接合されることにより形成される筐体を備え、
上記上側ケース及び上記下側ケースは、いずれか一方に嵌合凹部が形成され、いずれか他方に上記嵌合凹部に嵌合する嵌合凸部が形成され、
上記嵌合凸部は、外周面に上記接着剤を流動させるスリットが形成されている保護素子。 Soluble conductor and
It has a lower case and an upper case, and includes a housing formed by joining the upper case and the lower case with an adhesive.
In the upper case and the lower case, a fitting recess is formed in one of them, and a fitting protrusion that fits in the fitting recess is formed in one of the other.
The fitting convex portion is a protective element having a slit formed on the outer peripheral surface for flowing the adhesive. - 上記スリットは、一つの上記嵌合凸部に複数形成されている請求項9に記載の保護素子。 The protective element according to claim 9, wherein a plurality of the slits are formed in one of the fitting convex portions.
- 上記スリットは、上記嵌合凸部の周面の上記筐体の側壁に沿う方向に形成されている請求項9又は10に記載の保護素子。 The protective element according to claim 9 or 10, wherein the slit is formed in a direction along the side wall of the housing on the peripheral surface of the fitting convex portion.
- 上記嵌合凸部は、上記上側ケース又は上記下側ケースのコーナー部に形成され、
上記スリットが、上記筐体の隣接する2つの側壁に沿う方向に各々形成されている請求項11に記載の保護素子。 The fitting convex portion is formed at a corner portion of the upper case or the lower case.
The protective element according to claim 11, wherein the slits are formed in directions along two adjacent side walls of the housing. - 上記スリットは、平面視において、上記嵌合凸部の周面から中心方向にわたって漸次幅が小さくなるテーパ状に形成されている請求項9又は10に記載の保護素子。 The protective element according to claim 9 or 10, wherein the slit is formed in a tapered shape in which the width gradually decreases from the peripheral surface of the fitting convex portion toward the center in a plan view.
- 上記スリットは、断面視において、上記嵌合凸部の頂部から基部にかけて漸次拡幅するテーパ状に形成されている9又は10に記載の保護素子。 The protective element according to 9 or 10, wherein the slit is formed in a tapered shape that gradually widens from the top to the base of the fitting convex portion in a cross-sectional view.
- 可溶導体と、
下側ケースと上側ケースを有し、上記上側ケース及び上記下側ケースが接着剤によって接合されることにより形成される筐体を備え、
上記上側ケース及び上記下側ケースは、いずれか一方に嵌合凹部が形成され、いずれか他方に上記嵌合凹部に嵌合する嵌合凸部が形成され、
上記嵌合凹部と連続するとともに上記上側ケース及び上記下側ケースの突き合わせ面に延在し、上記接着剤を流動させるスリットが形成され、
上記嵌合凸部は、外周面に上記接着剤を流動させるスリットが形成されている保護素子。 Soluble conductor and
It has a lower case and an upper case, and includes a housing formed by joining the upper case and the lower case with an adhesive.
In the upper case and the lower case, a fitting recess is formed in one of them, and a fitting protrusion that fits in the fitting recess is formed in one of the other.
A slit is formed which is continuous with the fitting recess and extends to the abutting surface of the upper case and the lower case to allow the adhesive to flow.
The fitting convex portion is a protective element having a slit formed on the outer peripheral surface for flowing the adhesive. - 1つ以上のバッテリセルと、
上記バッテリセルの充放電経路上に接続され、該充放電経路を遮断する保護素子を備え、
上記保護素子は、
可溶導体と、
下側ケースと上側ケースを有し、上記上側ケース及び上記下側ケースが接着剤によって接合されることにより形成される筐体を備え、
上記上側ケース及び上記下側ケースは、いずれか一方に嵌合凹部が形成され、いずれか他方に上記嵌合凹部に嵌合する嵌合凸部が形成され、
上記嵌合凹部と連続するとともに上記上側ケース及び上記下側ケースの突き合わせ面に延在し、上記接着剤を流動させるスリットが形成されているバッテリパック。 With one or more battery cells
A protective element connected to the charge / discharge path of the battery cell and blocking the charge / discharge path is provided.
The protective element is
Soluble conductor and
It has a lower case and an upper case, and includes a housing formed by joining the upper case and the lower case with an adhesive.
In the upper case and the lower case, a fitting recess is formed in one of them, and a fitting protrusion that fits in the fitting recess is formed in one of the other.
A battery pack that is continuous with the fitting recess and extends to the abutting surface of the upper case and the lower case to form a slit through which the adhesive flows. - 1つ以上のバッテリセルと、
上記バッテリセルの充放電経路上に接続され、該充放電経路を遮断する保護素子を備え、
上記保護素子は、
可溶導体と、
下側ケースと上側ケースを有し、上記上側ケース及び上記下側ケースが接着剤によって接合されることにより形成される筐体を備え、
上記上側ケース及び上記下側ケースは、いずれか一方に嵌合凹部が形成され、いずれか他方に上記嵌合凹部に嵌合する嵌合凸部が形成され、
上記嵌合凸部は、突出方向に沿って上記接着剤を流動させるスリットが形成されているバッテリパック。 With one or more battery cells
A protective element connected to the charge / discharge path of the battery cell and blocking the charge / discharge path is provided.
The protective element is
Soluble conductor and
It has a lower case and an upper case, and includes a housing formed by joining the upper case and the lower case with an adhesive.
In the upper case and the lower case, a fitting recess is formed in one of them, and a fitting protrusion that fits in the fitting recess is formed in one of the other.
The fitting convex portion is a battery pack in which a slit for flowing the adhesive is formed along the projecting direction. - 1つ以上のバッテリセルと、
上記バッテリセルの充放電経路上に接続され、該充放電経路を遮断する保護素子を備え、
上記保護素子は、
可溶導体と、
下側ケースと上側ケースを有し、上記上側ケース及び上記下側ケースが接着剤によって接合されることにより形成される筐体を備え、
上記上側ケース及び上記下側ケースは、いずれか一方に嵌合凹部が形成され、いずれか他方に上記嵌合凹部に嵌合する嵌合凸部が形成され、
上記嵌合凹部と連続するとともに上記上側ケース及び上記下側ケースの突き合わせ面に延在し、上記接着剤を流動させるスリットが形成され、
上記嵌合凸部は、突出方向に沿って上記接着剤を流動させるスリットが形成されているバッテリパック。 With one or more battery cells
A protective element connected to the charge / discharge path of the battery cell and blocking the charge / discharge path is provided.
The protective element is
Soluble conductor and
It has a lower case and an upper case, and includes a housing formed by joining the upper case and the lower case with an adhesive.
In the upper case and the lower case, a fitting recess is formed in one of them, and a fitting protrusion that fits in the fitting recess is formed in one of the other.
A slit is formed which is continuous with the fitting recess and extends to the abutting surface of the upper case and the lower case to allow the adhesive to flow.
The fitting convex portion is a battery pack in which a slit for flowing the adhesive is formed along the projecting direction.
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR1020227004903A KR102707876B1 (en) | 2019-08-29 | 2020-08-18 | Protection device, battery pack |
CN202080057909.4A CN114245929A (en) | 2019-08-29 | 2020-08-18 | Protection element and battery pack |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2019-157431 | 2019-08-29 | ||
JP2019157431A JP7280151B2 (en) | 2019-08-29 | 2019-08-29 | protection element, battery pack |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2021039509A1 true WO2021039509A1 (en) | 2021-03-04 |
Family
ID=74677514
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2020/031182 WO2021039509A1 (en) | 2019-08-29 | 2020-08-18 | Protection element and battery pack |
Country Status (5)
Country | Link |
---|---|
JP (1) | JP7280151B2 (en) |
KR (1) | KR102707876B1 (en) |
CN (1) | CN114245929A (en) |
TW (1) | TW202118132A (en) |
WO (1) | WO2021039509A1 (en) |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH0540154U (en) * | 1991-05-30 | 1993-05-28 | 永柳工業株式会社 | Cork stopper |
JP2007287504A (en) * | 2006-04-18 | 2007-11-01 | Matsushita Electric Ind Co Ltd | Surface-mounted current fuse |
JP2011238489A (en) * | 2010-05-11 | 2011-11-24 | Yazaki Corp | Fuse |
JP2013222783A (en) * | 2012-04-16 | 2013-10-28 | Mitsubishi Electric Corp | Electronic control device |
JP2015053260A (en) * | 2013-08-07 | 2015-03-19 | デクセリアルズ株式会社 | Protective element, and battery pack |
US10121518B1 (en) * | 2017-06-21 | 2018-11-06 | Western Digital Technologies, Inc. | Reducing leak rate in adhesive-based hermetically-sealed data storage devices and systems |
Family Cites Families (12)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2536547Y2 (en) * | 1992-07-27 | 1997-05-21 | 積水化成品工業株式会社 | Reel for packaging tape, etc. |
JP2002245651A (en) * | 2001-02-15 | 2002-08-30 | Funai Electric Co Ltd | Optical pickup |
JP2002279884A (en) * | 2001-03-19 | 2002-09-27 | Omron Corp | Overcurrent interruption element, electronic parts and electronic instrument |
JP4710194B2 (en) * | 2001-08-03 | 2011-06-29 | 富士電機システムズ株式会社 | Semiconductor device package |
JP2009032489A (en) * | 2007-07-26 | 2009-02-12 | Soc Corp | Fuse |
JP2013250328A (en) * | 2012-05-30 | 2013-12-12 | Toshiba Corp | Television receiver and electronic apparatus |
JP5364834B1 (en) * | 2012-10-10 | 2013-12-11 | 株式会社ホンダアクセス | Decorative parts for vehicles |
JP2015106995A (en) * | 2013-11-29 | 2015-06-08 | マブチモーター株式会社 | Holder and motor |
US10224166B2 (en) * | 2014-11-14 | 2019-03-05 | Littelfuse, Inc. | High-current fuse with endbell assembly |
JP6719983B2 (en) * | 2015-06-04 | 2020-07-08 | デクセリアルズ株式会社 | Fuse element, fuse element, protection element, short-circuit element, switching element |
JP6857322B2 (en) * | 2016-12-14 | 2021-04-14 | 東芝ライテック株式会社 | Vehicle lighting and vehicle lighting |
KR20190002141A (en) * | 2017-06-29 | 2019-01-08 | 한국단자공업 주식회사 | Fuse |
-
2019
- 2019-08-29 JP JP2019157431A patent/JP7280151B2/en active Active
-
2020
- 2020-08-18 WO PCT/JP2020/031182 patent/WO2021039509A1/en active Application Filing
- 2020-08-18 CN CN202080057909.4A patent/CN114245929A/en active Pending
- 2020-08-18 KR KR1020227004903A patent/KR102707876B1/en active IP Right Grant
- 2020-08-28 TW TW109129580A patent/TW202118132A/en unknown
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH0540154U (en) * | 1991-05-30 | 1993-05-28 | 永柳工業株式会社 | Cork stopper |
JP2007287504A (en) * | 2006-04-18 | 2007-11-01 | Matsushita Electric Ind Co Ltd | Surface-mounted current fuse |
JP2011238489A (en) * | 2010-05-11 | 2011-11-24 | Yazaki Corp | Fuse |
JP2013222783A (en) * | 2012-04-16 | 2013-10-28 | Mitsubishi Electric Corp | Electronic control device |
JP2015053260A (en) * | 2013-08-07 | 2015-03-19 | デクセリアルズ株式会社 | Protective element, and battery pack |
US10121518B1 (en) * | 2017-06-21 | 2018-11-06 | Western Digital Technologies, Inc. | Reducing leak rate in adhesive-based hermetically-sealed data storage devices and systems |
Also Published As
Publication number | Publication date |
---|---|
CN114245929A (en) | 2022-03-25 |
KR20220031116A (en) | 2022-03-11 |
KR102707876B1 (en) | 2024-09-23 |
TW202118132A (en) | 2021-05-01 |
JP7280151B2 (en) | 2023-05-23 |
JP2021034363A (en) | 2021-03-01 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP7281274B2 (en) | Protective elements and battery packs | |
WO2015020111A1 (en) | Protective element and battery pack | |
WO2021039510A1 (en) | Protective element and battery pack | |
JP2024009983A (en) | Protection element and battery pack | |
JP6621255B2 (en) | Protection element, fuse element | |
WO2021039508A1 (en) | Protection element, battery pack | |
WO2021210634A1 (en) | Protective element, and battery pack | |
JP2018018835A (en) | Protection element and fuse element | |
WO2021039509A1 (en) | Protection element and battery pack | |
TWI820279B (en) | Protection element and battery pack | |
WO2023140066A1 (en) | Protection element and battery pack | |
KR102715826B1 (en) | Protection device, battery pack | |
WO2023140065A1 (en) | Protective element, and battery pack | |
WO2022181652A1 (en) | Protection element and battery pack |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 20856976 Country of ref document: EP Kind code of ref document: A1 |
|
ENP | Entry into the national phase |
Ref document number: 20227004903 Country of ref document: KR Kind code of ref document: A |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 20856976 Country of ref document: EP Kind code of ref document: A1 |